
I 1111111111111111 1111111111 111111111111111 111111111111111 IIIIII IIII 11111111

c12) United States Patent
Beck et al.

(54) CONSOLIDATION OF PRODUCT DATA
MODELS

(76) Inventors: Brandon M. Beck, Austin, TX (US);
Shawn A. P. Smith, Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 12/768,121

(22) Filed: Apr. 27, 2010

(63)

(51)

(52)

(58)

(56)

Related U.S. Application Data

Continuation of application No. 10/827,078, filed on
Apr. 19, 2004, now Pat. No. 7,739,080.

Int. Cl.
G06F 17150
G06Q 10106
G06Q 30/06
G06T 17100
U.S. Cl.

(2006.01)
(2012.01)
(2012.01)
(2006.01)

CPC G06Q 30/0621 (2013.01); G06F 17/50
(2013.01); G06F 17/504 (2013.01); G06Q
10/06 (2013.01); G06T 17/005 (2013.01);

Y02P 90/265 (2015.11)
Field of Classification Search
CPC G06F 2217/06; G06F 17/50; G06F 17/504;

G06Q 30/0621; G06Q 10/06; G06T
17 /005; Y02P 90/265

USPC ... 703/2; 706/956
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,311,424 A * 5/1994 Mukherjee et al. G06Q 10/06
705/29

5,515,524 A 5/1996 Lynch

Loadandgrouptherul&Sfweach
configuration model

BulldaunlfiedDAGfromtherulesofall
lnpotmodels

Determinewhichfamil1esc:an'tbe
trlvlallycomblnedtoge,ther LHSlsfrom ,__ _____ .. atrivialfamily

Craatamar11errulesforthenon-tnvial
familiesandaddthemtolheindexad

rul~

Foreachfamily,qualify119rule9w1th
thedefiningconatra1ntsfromthernodel

ltcomeslrom

Removeaddeddefiningconstra1nts
fromlheRHSofruleswharathey

causecydesinlheDAG

US010360612Bl

(10) Patent No.:
(45) Date of Patent:

US 10,360,612 Bl
*Jul. 23, 2019

5,576,965 A
5,615,341 A
5,802,508 A
5,825,651 A *

5,873,081 A
5,996,114 A
6,002,854 A

11/1996 Akasaka et al.
3/1997 Agrawal et al.
9/1998 Morgenstern

10/ 1998 Gupta et al.

2/1999 Hare!
ll/ 1999 Moeller
12/1999 Lynch et al.

(Continued)

OTHER PUBLICATIONS

G06Q 10/06
703/7

R. Gupta et al., The combining DAG: a technique for parallel data
flow analysis; IEEE Transactions on Parallel and Distributed Sys­
tems, vol. 5, Issue 8, Aug. 1994, pp. 805-813.

(Continued)

Primary Examiner - Saif A Alhija

(74) Attorney, Agent, or Firm - Terrile, Cannatti &
Chambers, LLP; Kent B. Chambers

(57) ABSTRACT

A model consolidation process combines multiple configu­
ration models into a single unified configuration model that
contains the union of the allowable combinations (i.e. com­
binations that are buildable) from each of the original
models. An aspect of at least one embodiment of the model
consolidation process is that it allows models to be com­
bined in such a way that any incompatibilities or contradic­
tions between models are detected and automatically
resolved where possible. If an incompatibility is detected
that cannot be automatically resolved, then the configuration
models should not be combined. Instead if this incompat­
ibility case occurs, at least one embodiment of the model
consolidation process produces a description of the problem
encountered and report the problem along with the necessary
information required for a human to resolve it.

33 Claims, 13 Drawing Sheets

,ooo

/

US 10,360,612 Bl
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

6,009,406 A 12/1999 Nick
6,105,018 A * 8/2000 Demers G06F 17 /30312
6,178,502 Bl 1/2001 Caswell et al.
6,216,109 Bl 4/2001 Zweben et al.
6,223,094 Bl * 4/2001 Muehleck et al. 700/107
6,241,775 Bl 6/2001 Blatchford
6,300,948 Bl 10/2001 Geller et al.
6,405,308 Bl 6/2002 Gupta et al.
6,584,369 B2 6/2003 Patel et al.
6,795,832 B2 * 9/2004 McGeorge et al. 709/219
6,807,576 Bl 10/2004 Jeffries et al.
6,865,524 Bl * 3/2005 Shah G06F 17/50

703/13
6,882,892 B2 4/2005 Farrah et al.
6,983,187 B2 * 1/2006 Kern 700/97
6,983,190 B2 * 1/2006 Denton et al. 703/7
7,043,407 B2 * 5/2006 Lynch G06F 17/5095

703/1
7,149,663 Bl* 12/2006 Barrett G06F 17/504

703/2
7,171,400 B2 1/2007 Koubenski et al.
7,188,333 Bl 3/2007 LaMotta et al.
7,200,582 Bl* 4/2007 Smith 706/47
7,225,038 B2 * 5/2007 Kind 700/95
7,272,607 B2 * 9/2007 Udeshi G06F 17 /30961

707/769
7,464,064 Bl* 12/2008 Smith 706/47
7,480,597 B2 1/2009 Clark et al.
7,574,379 B2 8/2009 Flaxer et al.
7,584,079 B2 9/2009 Lichtenberg et al.
7,739,080 Bl* 6/2010 Beck et al. 703/2
7,882,057 Bl* 2/2011 Little G06Q 10/06

706/60
7,953,779 Bl* 5/2011 Ragusa G06F 17 /30994

707/956
8,321,487 Bl* 11/2012 Shukla et al. 707/651
8,370,408 B2 * 2/2013 Ragusa et al. 707/956

2002/0013631 Al 1/2002 Parunak et al.
2002/0165701 Al * 11/2002 Lichtenberg et al.

G06F 17/5095
703/7

2003/0069737 Al 4/2003 Koubenski et al.
2004/0002838 Al 1/2004 Oliver et al.
2004/0030786 Al 2/2004 Zehavi
2004/0098151 Al* 5/2004 Carlucci et al. 700/95
2004/0133457 Al 7/2004 Sadiq et al.
2004/0140976 Al * 7/2004 Callahan . 345/419
2004/0252878 Al* 12/2004 Okuda et al. 382/145
2004/0254950 Al* 12/2004 Musgrove G06F 17 /30327
2005/0038542 Al* 2/2005 Kern G06F 17/50

700/105
2005/0209829 Al* 9/2005 Binzer G06F 17/50

703/1
2006/0106626 Al 5/2006 Jeng et al.
2006/0136904 Al 6/2006 Weidman et al.
2007/0005633 Al* 1/2007 Ball et al. 707/102
2007/0074180 Al 3/2007 Hinchey et al.
2008/0147584 Al 6/2008 Buss
2009/0070368 Al* 3/2009 Callahan G06F 17/50
2009/0089174 Al* 4/2009 Brunner et al. 705/26
2011/0276439 Al* 11/2011 Ragusa et al. 705/27.2
2013/0091033 Al* 4/2013 Goodman G06Q 30/0621

705/26.5

OTHER PUBLICATIONS

J. Estublier et al., Toward SCM/PDM Integration? Spring-Verag
Berlin Heidelberg, 1998, pp. 1-19.
H. Peltonen, An Object Model for Evolutionary Configuration
Management, 1993, pp. 1-18.
M.L. McMillan, Symbolic Model Checking an Approach to the
State Population Explosion Problem, Carnegie Mellon University,
May 1992, pp. 41-45 and cover.

F. Polat, UVT: A unification-based tool for knowledge base verifi­
cation, IEEE, vol. 8, Issue 3, published Jun. 1993, pp. 69-75.
Non-Final Rejection dated Jul. 5, 2006, issued in parent U.S. Appl.
No. 10/827,078.
Applicant Response to Non-Final Office Action dated Jul. 5, 2006,
as filed with the USPTO on Dec. 29, 2006.
Final Rejection dated Jan. 29, 2007, issued in parent U.S. Appl. No.
10/827,078.
An RCE Submission filed by the Applicant on Jul. 30, 2007.
Non-Final Rejection dated Oct. 5, 2007, issued in parent U.S. Appl.
No. 10/827,078.
Applicant Response to Non-Final Office Action dated Oct. 5, 2007,
as filed with the USPTO on Apr. 7, 2008.
Final Rejection dated Jul. 15, 2008, issued in parent U.S. Appl. No.
10/827,078.
An RCE Submission filed by the Applicant on Jan. 15, 2009.
Non-Final Rejection dated Apr. 2, 2009, issued in parent U.S. Appl.
No. 10/827,078.
Applicant Response to Non-Final Office Action dated Apr. 2, 2009,
as filed with the USPTO on Oct. 2, 2009 .
Notice of Allowance dated Jan. 27, 2010, issued in parent U.S. Appl.
No. 10/827,078.
Plaintiff's Original Complaint for Damages and Injunctive Relief
filed in the United States District Court, Eastern District of Texas,
Sherman Division, Case No. 4:15-CV-00316-RC-CMC, on May 7,
2015, pp. 1-32.
Defendants' Answer to Plaintiff's Complaint, Affirmative and Spe­
cial Defenses, Defendants' Counterclaims, and Reliance on Jury
Demand as filed on Oct. 28, 2015 in Ford Motor Company,
Plaintiff/Counter-Defendant v. Versata Software, Inc., F /KIA Trilogy
Software, Inc., Trilogy Development Group, Inc. and Trilogy, Inc.,
Defendants/Counter-Plaintiffs, United States District Court, Eastern
District of Michigan, Case No. 15-10628-MFL-EAS (Consolidated
with case No. 15-11624-MFL-EAS), pp. 1-56 .
Declaration of Deborah L. McGuinness, Ph.D. dated Sep. 9, 2016,
as filed in United States Patent and Trademark Office CBM Case
No. 2016-00101 of U.S. Pat. No. 7,739,080, pp. 1-36.
File History of U.S. Pat. No. 7,739,080, Apr. 19, 2004-Jun. 15,
2010, pp. 1-326.
Resume of Deborah L. McGuinness, Ph.D., Jul. 2016, as filed in
United States Patent and Trademark Office CBM case No. 2016-
00101 of U.S. Pat. No. 7,739,080 on Sep. 12, 2016, pp. 1-43.
Stefik, Mark, Introduction to Knowledge Systems, 1995, pp. 1-224,
Morgan Kaufmann Publishers, Inc., San Francisco, CA. (Per MPEP
609.04(a), Applicant points out that the year of publication is
sufficiently earlier than the effective U.S. filing date and any foreign
priority date so that the particular month of publication is not in
issue.).
McDermott, John, Rl: an Expert in the Computer Systems Domain,
Jun. 1980, pp. 1-3, Carnegie-Mellon University, Pittsburgh, PA.
McGuinness, Deborah L. and Jon R. Wright, An Industrial-Strength
Description Logic-Based Configurator Platform, IEEE Intelligent
Systems, Jul./Aug. 1998, pp. 69-77.
McGuinness, Deborah L., Lori Alperin Resnick, and Charles Isbell,
Description Logic in Practice: A Classic Application, Date Unknown,
as filed in United States Patent and Trademark Office CBM Case
No. 2016-00101 on Sep. 12, 2016, pp. 1-6.
Petition for Post-Grant Review (Covered Business Method Review)
Under 35 U.S.C. §321 and§ 18 of the Leahy-Smith America Invents
Act (Claims 1-22 of U.S. Pat. No. 7,739,080) dated Sep. 12, 2016,
as filed in United States Patent and Trademark Office CBM Case
No. 2016-00101 of U.S. Pat. No. 7,739,080, pp. 1-51.
Petitioner's Power of Attorney dated Aug. 17, 2016 as filed in
United States Patent and Trademark Office CBM Case No. 2016-
00101 of U.S. Pat. No. 7,739,080 on Sep. 12, 2016, pp. 1-3.
Matal, Joe, A Guide to the Legislative History of the America
Invents Act: Part II of II, The Federal Circuit Bar Journal, vol. 21,
No. 4, Jun. 2012, pp. 539-653.
Versata Development Group, Inc., F/K/A Trilogy Development
Group, Inc., Versata Software, Inc., F/K/A Trilogy Development
Group, Inc., and Trilogy, Inc. 's Preliminary Proposed Constructions
for Proposed Terms and Claim Elements for Construction dated Jun.

US 10,360,612 Bl
Page 3

(56) References Cited

OTHER PUBLICATIONS

16, 2016, as filed in the United States District Court, Eastern District
of Michigan, Case No. 15-10628-MFL-EAS, pp. 1-11.
Defendants' Opening Claim Construction Brief dated Aug. 15,
2016, as filed in the United States District Court, Eastern District of
Michigan, Case No. 15-10628-MFL-EAS, (Consolidated with Case
No. 15-11624-MFL-EAS), Ford Motor Co. v. Versata Software,
Inc., FIKIA Trilogy Software, Inc., and Trilogy, Inc., Defendants/
Counter-Plaintiffs, pp. 1-70.
Patent Owner's Mandatory Notices Pursuant to 37 C.F.R. § 42.8(a)(2)
dated Oct. 3, 2016, as filed in United States Patent and Trademark
Office CBM Case No. 2016-00101 of U.S. Pat. No. 7,739,080, pp.
1-7.
Patent Owner's Power of Attorney Pursuant to 37 C.F.R. § 42.l0(b)
dated Oct. 3, 2016, as filed in United States Patent and Trademark
Office CBM Case No. 2016-00101 of U.S. Pat. No. 7,739,080, pp.
1-3.
Notice of Filing Date Accorded to Petition and Time for Filing
Patent Owner Preliminary Response mailed Sep. 23, 2016 in United
States Patent and Trademark Office CBM Case No. 2016-00101 of
U.S. Pat. No. 7,739,080, pp. 1-5.
Versata's Preliminary Response Under 37 C.F.R 42.207(a) as filed
in Case CBM2016-00101 on Dec. 23, 2016, pp. 1-45.
Plaintiffs Original Complaint for Damages and Injunctive Relief as
filed in the United States District Court, Eastern District of Texas,
Sherman Division, on May 7, 2015, regarding Versata Development
Group, Inc., FIKIA Trilogy Development Group, Inc., Versata Soft­
ware, Inc., FIKIA Trilogy Development Group, Inc., and Trilogy,
Inc., plaintiffs v. Ford Motor Company, defendant, pp. 1-32.
Declaration of Dr. David W. Franke in Support ofVersata's Patent
Owner Preliminary Response as filed in Case CBM2016-00101 on
Dec. 23, 2016, pp. 1-22.
About U sNersata, http://cpq.versata.com/aboutus, Aug. 8, 2016, 1
page.
McCartney, Laton, Trilogy Making a Name for Itself, http://www.
zdnet.corn/article/google-makes-preemptible-vms-more-efficient/, Jul.
28, 2000, pp. 1-11.
Ford Motor Company's Motion to Adopt in Part the Report and
Recommendation of the Special Master Regarding claim Construc­
tion (Dkt. #181) as filed in the United States District Court, Eastern

District of Michigan, Southern Division, on Dec. 8, 2016, regarding
Ford Motor Company, plaintiff/counter-defendant v. Versata Soft­
ware, Inc., et al., defendants/counter-plaintiffs, Case No. 15-10628-
MFL-EAS, pp. 1-20.
Curriculum Vitae of Dr. David W. Franke as filed in Case CBM2016-
00101 on Dec. 23, 2016, pp. 1-7.
Computerworld Staff, Ford Starts Firm to Manage Its Websites,
Computerworld, Feb. 28, 2000, pp. 1-2.
Field, Tom, Suit Yourself, CIO, Apr. 15, 1997, pp. 1-2 and 108, vol.
10, Issue 13, International Data Group.
Ford and Trilogy Launch Web Company, Information Week Reports,
Dec. 2014, 1 page, retrieved from http://www.informationweek.
corn/fordandtrilogylaunchwebcompany/d/did/1008183 on Aug. 9,
2016, InformationWeek.
Disclaimer in Patent Under 37 CFR l.32l(a) as filed in U.S. Pat. No.
7,739,080 on Oct. 26, 2017, pp. 1-2.
Email dated Oct. 26, 2016, from the Patent Trial and Appeal Board
to Counsel for Patent Owner in Case CBM2016-00101, pp. 1-2.
Report and Recommendation of the Special Master Regarding
Claim Construction as filed in the United States District Court,
Eastern District of Michigan, Southern Division regarding Ford
Motor Company, Plaintiff, v. Versata Software, Inc., et al., Defen­
dants, on Nov. 7, 2016, pp. 1-72.
Order Conduct of the Proceeding entered Jan. 11, 2017 in Cases
CBM2016-00100 and CBM2016-00101, pp. 1-4.
Decision Denying Institution of Covered Method Business Patent
Review mailed in Case CBM2016-00101 on Mar. 15, 2017, pp.
1-11.
Versata's Update Exhibit List as filed in Case CBM2016-00101 on
Jan. 13, 2017, pp. 1-3.
Transmittal Letter Accompanying Submission of Exhibit 2013 as
filed in Case CBM2016-00101 on Jan. 13, 2017, pp. 1-3.
Transcript ofT eleconference in Case CBM2016-00100 and CBM2016-
00101 dated Jan. 11, 2017, pp. 1-21.
Ford Motor Company's Preliminary Reply in Support of its Petition
for Post-Grant Review (Covered Business Method Review) Under
35 U.S.C. § 321 and§ 18 of the Leahy-Smith America Invents Act,
as filed in CBM Case No. CBM2016-00101 on Jan. 18, 2017, pp.
1-6.
Versata's Sur-Repy to Ford's Preliminary Reply as filed in CBM
Case No. CBM2016-00101 on Jan. 25, 2017, pp. 1-5.

* cited by examiner

102

+

Space defined by the rules
of models 102 and 104

104

Space defined by the
MDC of Model 102

108

Unspecified Buildable
Configurations

112

Figure 1 (prior art)

Stitched Rules

106

Space defined by the
MDC of Model 102

110

MKT2 space
116

MKT1 space
114

00
•

e
•
00
•

Directed Acyclic Graph (DAG) 200
~

J ~
~
~ = ~

Family A

""' = :-'
N
~
~

N
0

Family B -c

rJJ
=-('D
('D
N

Family C 0 -.
~

• • • d
r.,;_

"'""' = w
0--,

=
Figure 2 O'I

"'""' N

=
"'""'

DAG for models 602 and 612

Market

ENG

SER

Figure 3 (prior art)

DAG for model 622

Market

ENG

--

/

SER

..........

\
I

I
I

/

Figure 4 (prior art)

e
•
00
•

504

USA
Model

506

Canada
Model

508

Mexico
Model

Set of models that
may be created and

maintained
independently.

502

500

J

Conventional
Model

Stitching
Process

510

Figure 5 (Prior Art)

Combined

USA+Canada+Me
xico

Model

Contains all of the

information present

in the USA, Canada,

Mexico models and,
potentially,

unspecified

buildable

configurations.

512

e
•
00
•

602

612

622

Configuration Model 602: defining constraints= {SER1}

MKT Family

union

.----------~--
1 ENG Family
I

jMKT1.ENG1

intersect! MKT1 .ENG2

jMKT2.ENG1

iMKT2.ENG2
I________________ _ _____________ ,

604 union

intersect

606

1 SER Family

!MKT1 .ENG1 .SER1
:MKT1 .ENG1 .SER2
! MKT1 .ENG2.SER1
i MKT1 .ENG2.SER2
i MKT2.ENG1 .SER1
i MKT2.ENG1 .SER2
i MKT2.ENG2.SER1
! MKT2.ENG2.SER2 ---------

union

Configuration Model 612: defining constraints= {SER2}

MKT Family

MKT1

MKT2

i

ENG Family

MKT1.ENG1

MKT1.ENG2

MKT2.ENG1

i_MKT2.ENG2 _________ _

intersect

616

I SER Family

!MKT1 .ENG1 .SER1
!MKT1 .ENG1 .SER2
i MKT1 .ENG2.SER1
i MKT1 .ENG2.SER2
i MKT2.ENG1 .SER1
i MKT2.ENG1 .SER2
i MKT2.ENG2.SER1
LMKT2.ENG2.SER2 ---------

i
Actual Result of Combining Configuration Models 602 and 612

MKT Family

MKT1

MKT2

---------------------------! ENG Family

!MKT1.ENG1
i

intersect !MKT1.ENG2

jMKT2.ENG1

iMKT2.ENG2 ________ _

624

I SER Family

! MKT1 .ENG1 .SER 1
i MKT1 .ENG1 .SER2
! MKT1 .ENG2.SER 1

intersect i MKT1 .ENG2.SER2
IMKT2.ENG1 .SER1
i MKT2.ENG1 .SER2
:MKT2.ENG2.SER1
! MKT2.ENG2.SER2 --------

626

Figure 6 (Prior Art)

608

Complete Model is the
Intersection of MKT, ENG,

SER Families

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

Complete Model is the
Intersection of MKT, ENG,

SER Families

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

618

Combination of Model 602
and Model 612

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

628

e
•
00
•

""' = 610 :-'
N
~
~

N
0
-c

rJJ
=-('D
('D
(JI

0
620 -.

~

636

704

Model A

706

ModelB

•
•
•

708

Model N

Set of models that
may be created and

maintained
independently.

702

Model
ConsoldationProc

ess

710

700

)

Figure 7

Consolidated
A+B+ ... + N

Model

Contains all of the information
present in Models A through N.

712

e
•
00
•
~
~
~
~ = ~

ai
"C
0

:l!:
C:

,Q N
-o
~ IQ
::I
C)

.::::
C:
0

(..)

ai
"C
0

:l!:
C:

,Q N - ~ IQ
::I
C)

.::::
C:
0

(..)

N
IQ

ai
"C o~
:l!: -g
C: in

.!2 .2,
- "C ~ <(
::::i~
C)

.::::
C:
0 u

MKT Family

MKT1

MKT2

compare

MKT Family

MKT1

MKT2

No adjustment
required

' ' ' I

for MKT family.

I MKT Family
I

MKT1

I

Adjusting Model 612 So It May Be Combined With Model 602

ENG Family

~ 606

compare

ENG Family

intersect intersect

SER Family

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

•------------

SER Family

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

Adjust model 612 by adding space to ENG family
and removing space from SER.

ENG Family I SER Family
1
MKT1 .ENG1 .SER1

832 ~~i~ :~~g1:~~~1
intersect MKT1 .ENG2.SER2 -=1 ==1";

MKT1.ENG1

intersect MKT1 .ENG2

608

Complete Model is the
Intersection of MKT, ENG,

SER Families

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2
------tt~-------------

618 Adjustments to families
may not affect

the complete model.

834

! MKT2 r- 824

MKT2.ENG1 I MKT2.ENG1 .SER1
! MKT2.ENG1 .SER2

t::~---~-~-~~---------J- 826 : ~~g:~~gi~~~J _________ _J

Complete Model

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2 j ____________________ J

Figure 8

e
•
00
•
~
~
~
~ = ~

602

'-, = :-'
N
~
~

N
0
-c

612

rJJ
=-('D
('D
-....J
0 -.

620
....
~

836

602

822

922

Configuration Model 602: defining constraints= {SER1}

MKT Family

union

:,---
! ENG Family

! MKT1.ENG1

intersect! MKT1 .ENG2

i MKT2.ENG1

!MKT2.ENG2
:

604 union

intersect

606

SER Family

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1

, MKT1 .ENG2.SER2
! MKT2.ENG1 .SER1
! MKT2.ENG1 .SER2
! MKT2.ENG2.SER1
! MKT2.ENG2.SER2 _________ ,

union

Complete Model is the
Intersection of MKT, ENG,

SER Families

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

-----~---------------

608

Configuration Model 612: defining constraints= {SER2}
Complete Model is the intersection of

MKT, ENG, SER Families
·---------------------------

MKT Family ! ENG Family

MKT1
!MKT1.ENG1

intersect ! MKT1 .ENG2

jMKT2.ENG1

·------------------------------------! SER Family

i MKT1 .ENG1 .SER1
! MKT1 .ENG1 .SER2
! MKT1 .ENG2.SER1

intersect ! MKT1 .ENG2.SER2
! MKT2.ENG1 .SER1
! MKT2.ENG1 .SER2

!MKT2.ENG2 _________ '
MKT2 ~ 824

I ----- ____________ J
826 !MKT2.ENG2.SER1 t--, 828

i MKT2.ENG2.SER2 ________ ,

Complete Model

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

Actual Result of Combining Configuration Models 602 and 612 (ADJUSTED)

MKT Family

MKT1

MKT2

i ENG Family

!MKT1.ENG1

intersect j MKT1 .ENG2

!MKT2.ENG1

iMKT2.ENG2
! __________________________ _

924

i SER Family

iMKT1 .ENG1 .SER1
! MKT1 .ENG1 .SER2
;MKT1 .ENG2.SER1

intersect !MKT1 .ENG2.SER2
iMKT2.ENG1 .SER1
!MKT2.ENG1 .SER2
!MKT2.ENG2.SER1
!MKT2.ENG2.SER2 _______ _

929 Figure 9A

Combination of Model 602
and Model 612

MKT1 .ENG1 .SER1
MKT1 .ENG1 .SER2
MKT1 .ENG2.SER1
MKT1 .ENG2.SER2
MKT2.ENG1 .SER1
MKT2.ENG1 .SER2
MKT2.ENG2.SER1
MKT2.ENG2.SER2

928 930

e
•
00
•

610

830

602

+

Space defined by the rules
of models 602 and 612

612

Space defined by the
MDC of Model 602

Figure 9B

Stitched Rules

Space defined by the
MDC of Model 612

930
e
•
00
•

""' = :-'
N
~
~

N
0
-c

Start

1001

Load and group the rules for each
configuration model

1002

Build a unified DAG from the rules of all
input models

1003

Determine which families can't be
trivially combined together

1004
Create marker rules for the non-trivial
families and add them to the indexed

rules

1005
For each family, qualify its rules with

the defining constraints from the model
it comes from

1006
Remove added defining constraints
from the RHS of rules where they

cause cycles in the DAG

LHS is from
a trivial family

1007 1000
Build a DAG from the

qualified rules

1008

LHS is from a
non-trivial family

Perform the non-trivial
combination algorithm

Combine rules together
removing marker rules

Stop

Figure 10

1009

1010

/

e
•
00
•

U.S. Patent Jul. 23, 2019 Sheet 11 of 13 US 10,360,612 Bl

Start

1101-----

1102

Group all of the rules
together by LHS

feature

Determine all possible sets of rules
with overlapping RHS features

1103

Yes

1104

1105

1106

Resolve false
build ables

Optionally apply
restriction rules

Stop

No

1100

/

Output optionality
overlap error message

Figure 11

1107

1204(1)

11-------7'
Network

1202

Hill
DDDDDJD

1204(2)

1206(N) 1206(N-1) 1206(9

Figure 12

i i] -... --
IHII IHII
DDDDDDJ DDDDDDD

1204(N-1) 1204(4)

e
•
00
•

""' = :-'
N
~~

!] N
0

irnm -c
□ rn □ JDD

rJJ
=-('D
('D
.....
N

0 -.
.....
~

di.

1lr

1/0

Processor

USER INPUT
DEVICE(S)

1319

/1316

VIDEO
DRIVER

__......-1314
--"""""''----,

VIDEO
MEMORY

,

1310

Figure 13

DISPLAY

MAIN
MEMORY

,,

1lr

MASS STORAGE

e
•
00
•

1315

1309

US 10,360,612 Bl
1

CONSOLIDATION OF PRODUCT DATA
MODELS

2
concepts is described in Gupta et al., U.S. Pat. No. 5,825,651
entitled "Method and Apparatus for Maintaining and Con­
figuring Systems."

CROSS-REFERENCE TO RELATED
APPLICATIONS

A configuration rule includes a main feature, an option­
s ality, one or more constraints, and an applicable timeframe.

This application is a continuation of application Ser. No.
10/827,078, filed Apr. 19, 2004, now U.S. Pat. No. 7,739,
080, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

10

The present invention relates in general to the field of
information processing, and more specifically to a system 15

and method for consolidating data from various product data
models.

Description of the Related Art

As an example:

Main feature Optionality Constraints Timefrarne

4.8 liter V8 s XL & US May-December 2003 Rule 1

Rule 1 means "the 4.8 liter VS is standard with the XL
trim and US market from May to December 2003." The
main feature represents the feature that is being affected by
the rule. Optionalities can be positive or negative: positive
optionalities state that the main feature can work with the
constraints; negative optionalities state the main feature
cannot work with the constraints. Constraints qualify the

20 rule and can be an arbitrary Boolean expression of features
such as AND, NOT, and OR operators. In the rules below,
a "." indicates an AND operation, a "-" indicates a NOT
operation, and a "+" indicates an OR operation. The time-

A configurable product can be described by a configura­
tion model having a set of configuration rules. A configu­
rable product can be conceptually broken down into sets of
selectable families and features of families that make up
each product. A family represents a classification of a
particular type of feature. Families are typically classified as
groups of features with the same functional purpose. 25

Example families for an automobile are "engines," "tires,"
"seats," and "exterior paint color." Families can also repre­
sent other groups such as market areas. For example, a
family can include a marketing region such as USA, Canada,
Mexico, Europe, or any other region. Families can be 30

represented in terms of the minimum and maximum number

frame specifies when the other rule elements are effective.
A buildable configuration describes what features can and

can't exist with other features of a product. The example rule
above defines a buildable configuration in the following
way: "the 4.8 liter VS is buildable (because it is standard)
with the combination of XL and US." If the combination of
features, such as of XL and US, is not buildable, the example
rule is inactive. Consequently, even though the engine is
buildable with that combination, if the combination is not
buildable, the three features together are not a buildable
configuration. A rule that would make the example rule
inactive is the following:

Main feature Optionality Constraints Timefrarne

XL N us September 2002 Rule 2

of features that must be present in a configuration from a
family for the configuration to be valid. A common family
minimum and maximum or "(min, max)" is (1, 1). This
notation means that exactly one feature from the family must 35

be part of a configuration for the configuration to be valid.
Other common (min, max) settings are (0, 1), meaning that
either no features or a single feature from the family must be
present in a configuration for it to be valid, and (0, -1),
meaning that zero or any positive number of features from 40

the family must be present in a configuration for it to be
valid. Rule 2 means "the XL trim main feature is not available

with US from September of 2002 onward." Until the XL
main feature is made available with the US by changing the

45 optionality from "N" to one that expresses a positive rela­
tionship, there will not be a buildable configuration for XL,
US, and the 4.8 L engine.

A feature represents an option that can be ordered on a
product. All features are members of a family. Features are
both assigned optionalities and used to qualify other features
and the optionalities assigned to them. An example feature
from the engine family is a "4.8 liter VS." Features relate to
each other via ordering codes or optionalities. Example
optionalities include "S", "O", "M", and "N," which trans­
late to standard, optional, mandatory, and not available. A
specific example would be "the 4.8 liter VS engine is
standard on the GS trim."

Thus, a rule defines a buildable configuration between its
main feature and its constraints only. A rule does NOT define

Features relate to each other via configuration rules. A rule
can be characterized as generally including a 'left hand
side', (LHS), a 'right hand side' (RHS), and a specified
relationship between the LHS and RHS. Each LHS feature
may be associated with one or more RHS features, which
indicates that a single feature in the LHS may be constrained

so a buildable configuration relationship between the members
of its constraints. A separate rule must define that buildable
configuration. Consequently, all rules together for a product
define the complete product buildable configurations. In
order to determine if the three features in the example rule

55 (the main feature and the constraints) are a buildable con­
figuration, the rules written on each of those features (i.e.
where each feature is the main feature) should to be con­
sidered jointly. Inactive rules do not define buildable con-

or otherwise qualified by one or more RHS features. The
RHS describes when a rule is in effect and what features are 60

particularly affected. For example, a rule with a RHS of
"XA, XB" means that the rule is in effect in cases where you
have at least XA and XB in a buildable configuration, and
XA and XB are features particularly affected by the rule
along with the LHS feature. Configuration rules include 65

optionalities that define a relationship between the LHS and
RHS. Further exemplary discussion of LHS and RHS rule

figurations until they become active.
A "model" refers to a collection of rules that define the

buildable configurations of one or more products.
Referring to FIG. 2, the families in each model are

internally organized in accordance with a directed acyclic
graph ("DAG") 200. The DAG contains an edge between a
child family and a parent family if there exists a rule with a
LHS feature that belongs to the child family and a RHS
feature that belongs to the parent family. The DAG organi-

US 10,360,612 Bl
3

zation allows a child family to reference an ancestor but not
the other way around. Cyclic references within a model as
in FIG. 4 can produce ambiguities within the model.

Each model contains variations of the buildable configu­
rations of the product. For example, a company may market 5

a product with a particular set of standard features in one
region and market the same product with a different set of
standard features in another region. For example, in an
automotive context, a V6 engine may be standard for a
particular automobile model in one country, and a VS engine 10

may be standard for the particular automobile model in
another country. In a computer context, a power supply with

4
represent all the information present in the original three
models. However, in many circumstances the conventional
consolidations processes 510 produce unspecified configu-
ration buildables in consolidated model 512. "Unspecified
configuration buildables" are configuration buildables
included in consolidated model 512 that are not defined in
any of the source models, i.e. models 504, 506, and 508. An
unspecified configuration buildable is, thus, an error that can
have significant adverse consequences. Conventional con­
solidation processes do not automatically detect unspecified
configuration buildables and correct them. Since models can
contain thousands, hundreds of thousands, or more rules, a
high degree of automation is often a key to success for

a 11 0V input may be standard in one country and a power
supply with a 220V input may be standard in another
country. 15

modeling and model data driven technologies.

Defining and maintaining the configuration space for a
large product can often be difficult to do in a single con­
figuration model. In order to limit the complexity and
facilitate maintenance the configuration space is often
defined in multiple configuration models. Each of these 20

models are then assigned a set of defining constraints that
specify which portion of the overall configuration space for
the product it is defining. An example breakdown of the
configuration space definition for an automotive vehicle
could be into 3 separate models. Each model would define 25

the configuration space of the automobile in one of 3
countries: USA, Canada, or Mexico. In this example each
configuration model would have as a defining constraint one
of the features representing each country. In the USA model
the only allowable configurations would all contain the 30

"USA" feature. Although not specifically included in this
example, time can also be a defining constraint.

A model may contain labels that describe the time period
and space over which the model applies (also referred to as
"model defining constraints"). For example, a model which 35

describes the availability of cars in the United States during
the years 2004 to 2006 may have defining constraints of
"CARS.USA.2004-2006" while a model that describes the
availability of all vehicles in North America during 2005
may have defining constraints of "{CARS+TRUCKS}. 40

{USA+CANADA+ MEXICO} .2005".
While it is convenient to have this logical separation of

the configuration space for maintenance purposes it is often
desired to provide a single unified model that represents the
configuration space for the entire product. The resulting 45

unified configuration model can then be used to answer any
questions that one of the original models could answer and
it will give the same result. The set of allowable feature
combinations for the unified model should be equivalent to
the union of allowable feature combinations for each of the 50

original configuration models.

Referring to FIG. 1, for example, assume models 102 and
104 are two configuration models with the following rules:

Model 102: model defining constraints={MKTl}
MKTl OALL
ENGi SALL

Model 104: model defining constraints={MKT2}
MKT2 OALL
ENGi SALL
ENG2 OALL

The rules in models 102 and 104 are interpreted as
allowing the following buildable configurations:

Model 102:
MKTl.ENGI

Model 104:
MKT2.ENGI
MKT2.ENG2

An example conventional consolidation process 510 that
simply combined the rules from models 102 and 104 using
a simple aggregation process would yield a consolidated
model 106 with the following rules:

Model 106: model defining constraints ("MDC")
={MKT1+MKT2}
MKTl OALL
MKT2 OALL
ENGi SALL
ENG2 OALL

The rules of model 106 are interpreted as allowing the
following buildable configurations:

Model 106:
MKTl.ENGI (corresponds to element 108)
MKT1.ENG2 (corresponds to element 112)
MKT2.ENGI (corresponds to element 110)
MKT2.ENG2 (corresponds to element 110)

Model 106 includes the model space defined by the model
defining constraints 108 of model 102 and the model space
defined by the model defining constraints of 110 of model
104. Unfortunately, in addition to representing the stitched
rules of models 102 and 104, model 106 also includes an
unspecified buildable configuration "MKT1.ENG2" 112. In

55 the embodiment of FIG. 1, buildable configurations of
model 104 have been extended into the model defining
constraints MKTI space 114. Model defining constraints
space MKT2 space 116 accurately contains only the build-

Thus, despite the differences in various models, it is often
desirable to combine the multiple models into a consolidated
model having a unified set of rules (also referred to as
"stitched rules"). Referring to FIG. 5, the conventional
consolidation system 500 includes a model 502 that repre­
sents a set of three models that may be created and main­
tained separately. Model 504 is, for example, a configuration
model that describes how a particular product may be built
and sold for the USA market. Model 506 is a configuration 60

model that describes how the same product may be built and
sold for the Canadian market. Model 508 is a configuration
model that describes how the same product may be built and
sold for the Mexican market. Models 504, 506, and 508 may
be combined into a single model 512 by conventional
consolidation (also referred to as "stitching") processes 510.
The consolidated model 512 will contain stitched rules that

able configurations of model 104.
The consolidated model should faithfully represent the

buildable configurations of the products represented by
models 102 and 104 without including any errors such as the
unspecified buildable configurations 112. Conventional con­
solidation processes attempt to solve this problem by modi-

65 fying, adding, and removing stitched rules so that rules from
each source model do not extend outside of the space defined
by their source model's defining constraints.

US 10,360,612 Bl
5

An example enhanced conventional consolidation process
510 that combined the rules from models 102 and 104,
constraining each to their source model's defining con­
straints, would yield a consolidated model 406 with the
following rules:

Model 406: model defining constraints={MKT1+MKT2}
MKTl O ALL (source model 102's defining cons­

traints={MKTl})
ENGi S MKTl (source model 102's defining cons-

traints={MKTl}) 10

MKT2 0 ALL (source model 104's defining const­
raints={MKT2})

ENGi S MKT2 (source model 104's defining cons­
traints={MKT2})

ENG2 0 MKT2 (source model 104's defining cons­
traints={MKT2})

The rules of model 406 are interpreted as allowing the
following buildable configurations:

Model 406:
MKTl.ENGl
MKT2.ENG1
MKT2.ENG2

15

20

6
// Remove any qualifiers that produce cyclical references

within the DAG. //
stitchedRules.add(stitchedRule)
// Add stitched rules to the set of stitchedRules of the

consolidated model. II
return stitchedRules

def removeDAGCycles(rule, dag):
// Defines the method "removeDAGCycles" to remove

qualifiers of the rule that produce cyclical relationships
within the DAG. //

remove qualifiers from the rule that are ancestor families
of the main feature (i.e. the LHS of the rule) in the DAG.

The following represents the example application of the
conventional model consolidation process. Consider two
source models using the following rules:

Model 602: model defining constraints={SERl}
MKTl O ALL, MKT2 0 ALL
ENGi S MKTl, ENG2 S MKT2, ENG2 0 MKTl
SERI S {ENG1+ENG2}

Model 612: model defining constraints={SER2}
MKTl O ALL, MKT2 0 ALL
ENGi S MKTl, ENG2 S MKT2
SER2 S (ENG1+ENG2)

FIG. 6 illustrates how the rules for each family combine
to yield a set of buildable configurations. In addition, FIG. The new model 406 accurately combines the intent of

source models 102 and 104 without introducing new
unspecified buildable combinations.

25 6 illustrates how conventional stitching combines the build­
able combinations of models 602 and 612 to create the
consolidated model 622. Shaded portions represent indi­
cated buildable configurations. For clarity, FIG. 6 ignores
the effects of the optionalities ('S', 'O', ...) of the rules.

Although consolidation appears to be the straight forward
process of adding all the rules from each model being
consolidated and qualifying each rule with the model defin­
ing constraint label that indicates the origin of the rule in a 30

consolidated model, the actual conventional process is not
that simple due to constraints on the model's representation
of families. To avoid creation of ambiguous models, the
consolidation process typically must also ensure that the

35
families in the consolidated model 512 can be organized into
a DAG as described above. However, the conventional
consolidation process 510 violates this constraint.

Following is pseudo code for a conventional consolida­
tion process produced using an appropriately programmed 40

computer and model data. The "//" forward slash symbols
represent the start and end of explanatory comments:
def performConventionalStitching(rules, mdc, dag):

// Defines the method "performConventionalStitching" to
consolidate one or more models using the rules in the 45

models, the model defining constraints (mdc), and the
DAG of the model.//

stitchedRules={ }
// collects the consolidated rules for the consolidated

model. II
for each rule in rules:
// Sequentially process each rule in the models being

consolidated. //
stitchedRule=rule.intersect(mdc)

50

// Intersect the rule being processed with a model qualifier 55

space, i.e. the configurations for which the model
applies. Intersection Examples wherein Al, Bl, and B2
represent model qualifier spaces:

(Xl S Al)nAl=Xl S Al
(Xl S Al)nBl=Xl S Al.Bl 60

(Xl S B2)nB1=0
(Bl S ALL)nBl=Bl SALL
(B2 S ALL)nB1=0
(Al S ALL)nA1.B2=Al S B2 //
if(stitchedRule !=0): 65

// If the intersection is not empty ... //
stitchedRule=removeDAGCycles(stitchedRule, dag)

FIG. 3 illustrates a DAG for models 602 and 612.
Model 602: model defining constraints={SERl}

The MKT rules restrict the model to buildable combi­
nations 604: all buildable combinations that include
MKTl and MKT2.

The ENG rules restrict the model to buildable combi­
nations 606: all buildable combinations that include
MKTl.ENGl, MKT1.ENG2, MKT2.ENG2.

The SER rule restricts the model to buildable combi­
nations 608: all buildable combinations that include
SER2.

The intersection of the buildable combinations allowed
by MKT (604), ENG (606) and SER (608) are the
buildable combinations allowed by the entire model
(610): all buildable combinations that include
MKTl .ENG I .SERI, MKTl .ENG2.SER1, MKT2.
ENG2.SER1.

Model 612: model defining constraints={SER2}
The MKT rules restrict the model to buildable combi­

nations 614: all buildable combinations that include
MKTl and MKT 2.

The ENG rules restrict the model to buildable combi­
nations 616: all buildable combinations that include
MKTl.ENGl, MKT2.ENG2.

The SER rule restricts the model to buildable combi­
nations 618: all buildable combinations that include
SER2.

The intersection of the buildable combinations allowed
by MKT (614), ENG (616) and SER (618) are the
buildable combinations allowed by the entire model
(620): all buildable combinations that include
MKTl .ENG 1.SER2, MKT2.ENG2.SER2.

Following are the consolidated model rules generated
using conventional consolidation process 510 and above
pseudo code:

Model 622: model defining constraints={SER1+SER2}
MKTl O ALL, MKT2 0 ALL
MKTl O ALL, MKT2 0 ALL (624)
ENGi S MKTl, ENG2 S MKT2, ENG2 0 MKTl

US 10,360,612 Bl
7

ENGI S MKTl, ENG2 S MKT2 (626)
SERI S {ENGI+ENG2}
SER2 S {ENGI+ENG2} (628)

The MKT and ENG rules could not be qualified by the
model defining constraints because doing so would have 5

caused a cycle in the family relationship DAG as depicted in
FIG. 4. Especially, the "ENG2 0 MKTl" rule was not
qualified by the model defining constraint SERI. The result
is that the unspecified buildable configuration "MKTl.
ENG2.SER2" 636 was added to the buildable combinations 10

630 of the combined model 622.

SUMMARY OF THE INVENTION

8
FIG. 6 (prior art) depicts combining rules of two models

into a consolidated model having specified and unspecified
buildable configurations.

FIG. 7 depicts a model consolidation system.
FIG. 8 depicts the model representations used for FIG. 6

and the consolidation thereof using an embodiment of the
model consolidation system of FIG. 6.

FIG. 9A depicts combining configuration models into an
accurate consolidation model using the model consolidation
system of FIG. 7.

FIG. 9B depicts a graphical representation of the combi­
nation of models into consolidated model.

FIG. 10 depicts a flowchart of a model consolidation
process 1000.

FIG. 11 depicts a flowchart for removing unspecified
buildable configurations from a consolidated model.

FIG. 12 depicts a network of computer systems in which
a model consolidation system can be used.

FIG. 13 depicts a computer system with which a modeling
20 consolidation system can be implemented.

A model consolidation process combines multiple con- 15

figuration models into a single unified configuration model
that contains the union of the allowable combinations (i.e.
combinations that are buildable) from each of the original
models. An aspect of at least one embodiment of the model
consolidation process is that it allows models to be com­
bined in such a way that any incompatibilities or contradic­
tions between models are detected and automatically
resolved where possible. If an incompatibility is detected
that cannot be automatically resolved, then the configuration
models should not be combined. Instead if this incompat- 25

ibility case occurs, at least one embodiment of the model
consolidation process produces a description of the problem
encountered and report the problem along with the necessary
information required for a human to resolve it.

One embodiment of the present invention includes a 30

method of consolidating multiple models, wherein each
model comprises only rules that define a non-cyclic chain of
dependencies among families and features of families and
include at least one rule having a constraint that references
a non-ancestral family to the constraint. The method 35

includes combining the models into a single, consolidated
model that maintains the non-cyclic chain of dependencies
among families and features of families.

Another embodiment of the present invention includes a
system for consolidating multiple models, wherein each 40

model comprises only rules that define a non-cyclic chain of
dependencies among families and features of families and
include at least one rule having a constraint that references
a non-ancestral family to the constraint. The system includes
a model consolidation module to combine the models into a 45

single, consolidated model that maintains the non-cyclic
chain of dependencies among families and features of fami­
lies.

BRIEF DESCRIPTION OF THE DRAWINGS 50

DETAILED DESCRIPTION

The term "product" is used herein to generically refer to
tangible products, such as systems, as well as intangible
products, such as services.

Contrary to conventional processes, the rules from indi-
vidual models should not simply be qualified by the defining
constraints for that model and then directly combined
together. The first reason for this is because it is possible that
one of the original models will make a statement that
contradicts a statement in one of the other models. If two
contradicting statements were present in the unified con­
figuration model then an inference procedure run on it would
never be able to draw a logical conclusion. Secondly, each
configuration model defines a non-cyclic chain of depen-
dencies among its families and features of families. The
problem with conventional stitching algorithms can occur,
for example, whenever model defining constraints reference
families that have DAG ancestors and the DAG ancestors
are not referenced by model defining constraints. In this
instance, the DAG is a union of all family relationships
across all models. Thus, if the defining constraint features
are ancestral features and are added to the RHS of every rule
in the model as with conventional consolidation processes,
a cycle would be introduced into this chain of dependencies.
In order to avoid introducing these cycles and still combine
the individual models together into a consolidated model, an
intelligent algorithm is required.

A model consolidation process, such as model consoli-
dation process 710, represents a process for combining
multiple configuration models into a single unified configu­
ration model that contains the union of the allowable com­
binations (i.e. combinations that are buildable) from each of

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several Figures designates a like or similar element.

FIG. 1 (prior art) depicts a combination of models that
generates unspecified buildable configurations.

FIG. 2 (prior art) depicts a directed acyclic graph
("DAG").

55 the original models. An aspect of at least one embodiment of
the model consolidation process is that it allows models to
be combined in such a way that any incompatibilities or
contradictions between models are detected and automati­
cally resolved where possible. If an incompatibility is

FIG. 3 (prior art) depicts a DAG for models depicted in
FIG. 6.

FIG. 4 (prior art) depicts a DAG with a cycle for a model
representing the consolidation of models in FIG. 6 obtained
using a conventional consolidation process.

FIG. 5 (prior art) depicts a conventional consolidation
system.

60 detected that cannot be automatically resolved, then the
configuration models should not be combined. Instead if this
incompatibility case occurs, at least one embodiment of the
model consolidation process produces a description of the
problem encountered and report the problem along with the

65 necessary information required for a human to resolve it.
Referring to FIG. 7, the model consolidation system 700

includes model 702, which represents a set of N models that

US 10,360,612 Bl
9

may be created and maintained separately, where N is any
integer. Model A 704 is, for example, a configuration model
that describes how a particular product may be built and sold
for the USA market. Model B 706 is a configuration model
that, for example, describes how the same product may be 5

built and sold for the Canadian market. Model N 708 is, for
example, a configuration model that describes how the same
product may be built and sold for the Mexican market.
Models 704, 706, and 708 may be combined into a single
model 712 by the model consolidation (also referred to as 10

"stitching") processes 710. The combined model 712 con­
tains stitched rules that represent all the information present
in the original three models without unspecified buildable
configurations.

FIGS. 8 and 9 depicts the model representations used for
FIGS. 6 and 7 and the resulting consolidation of the model
representations using an embodiment of model consolida­
tion system 700. For clarity, FIGS. 8 and 9 ignore the effects
of the optionalities ('S', 'O', ...) of the rules.

There is a conflict between the two models on ENG:
MKTl .ENG2 is released in Model 602 but not Model 612.
Referring to block 832, because the ENG family is above
Model 612's defining constraint family (SER) in the DAG,

15

20

10
Outputs
In at least one embodiment, model consolidation process

710 produces one of two primary outputs in the form of
consolidated model 712. One of these outputs is generated
for each invocation of the model consolidation process 710.

The first possible output is a set of rules, represented by
the consolidated model 712, that allows exactly those com­
binations of features that were allowed by one of the
inputted configuration models 702.

The second output is a set of errors that generally cannot
be fixed automatically and require human intervention.
These errors can be used to direct a human to the set(s) of
rules in the input models 702 that are conflicting with each
other.

Data Structures
At least one embodiment of the model consolidation

process 710 uses two key data structures.
1. A directed acyclic graph (DAG). Used to represent the

hierarchical relationship between the families in a
configuration model or set of rules.

2. A rule.
Process
FIG. 10 depicts a flowchart of model consolidation pro­

cess 1000, which represents one embodiment of model
consolidation process.

Step 1 (1001): Load and group the rules for each con­
figuration model

The rules from each of configuration models 702 are
loaded into model configuration process 710 and grouped by
the associated configuration models 702 from which they

we may not adjust the ENG family by intersecting its space 25

with Model 612's defining constraint (SER2). Instead,
extend the ENG family in Model 612 to be compatible with
the release of the ENG family in Model 602. Referring to
block 834, the extension is compensated for by restricting
the SER family so that it is no longer released in the space
we extended the ENG family (MKTl .ENG2. *). Referring to
block 836, the result is that the restriction on the SER family
interacts with the extension of the ENG family in such a way
that the consolidated model 822 does not include unspecified
buildable configurations and, thus, faithfully represents the
buildable configurations of models 602 and 612.

30 originated. This provides the ability to enumerate all rules
for a particular configuration model as well as the ability to
determine which configuration model a specific rule belongs
to (i.e. "is associated with").

Step 2 (1002): Construct a DAG from all of the rules
35 across models

The desired result of obtaining a complete model is
obtained by computing the following set:

A family DAG is then constructed from all of the rules of
configuration models 702. This provides the ability to deter­
mine the relationships among families in configuration mod­
els 702. In particular this allows the ancestors of a family to

(Complete Model Space for Model 602 intersect Model
602 defining constraints (SERI)) union

40 be determined to prevent cyclic relationships in the DAG of
consolidated model 712.

(Complete Model Space for Model 612 intersect Model
612 defining constraints (SER2))

Step 3 (1003): Determine which families cannot be trivi­
ally combined together

Non-trivial families are the families that cannot be trivi-In this example the complete model spaces for both
models do not extend outside their defining constraints, so
this simplifies to the following expression:

45 ally combined are the families of the defining constraints as
well as their ancestors. Trivial families can be combined

Complete Model Space for Model 602 union Complete
Model Space for Model 612

FIG. 9A depicts the accurate results of combining con­
figuration models 602 and 612 using model consolidation 50

system 700. Blocks 924, 926, and 928 respectively represent
the union of the MKT families, ENG families, and SER
families from configuration models 602 and 612. Consoli­
dated model 930 represents the accurate consolidation of
models 602 and 612 having only specified configuration 55

buildables. An embodiment of the consolidation process
used to generated consolidated model 930 is described in
more detail below.

FIG. 9B depicts a graphical representation of the combi­
nation of models 602 and 612 into consolidated model 930. 60

Inputs

using a stitching process such as the conventional stitching
process 510. The DAG created in Step 2 is utilized to
determine the ancestors of each of the defining families.
Each set of ancestor families is then combined together
along with the set of defining families. This results in the set
of families that cannot be trivially combined.

Step 4 (1004): Create marker rules for the non-trivial
families and add them to the mapping of rules

Marker rules are created to define which portions of the
overall configuration space for which a configuration model
does not provide a buildable configuration (i.e. the "uncov­
ered space"). These marker rules should look like any other
rule in a configuration model with the exception of their
optionality.

The uncovered space for a particular family in a configu­
ration model can be calculated using a temporary rule. A
temporary rule is created with a RHS representing ALL.
Both the RHS and LHS of each rule in the family are then

The input to the model consolidation process 710 is a set
of configuration models 702 to be combined into one
consolidated model 712 along with a set of defining con­
straints for each of models 702. The inputted set of con­
figuration models contains compatible relationships such
that the union of the models forms a DAG.

65 subtracted from this temporary rule. This subtraction could
result in multiple rules. If this happens, then all remaining
rules are subtracted from all temporary rules. Once this

US 10,360,612 Bl
11

subtraction is complete the remaining set of rules describes
the uncovered space for the particular family. Each of these
remaining rules is processed, and any features on the RHS
from the family being processed are moved to the LHS. This
modified rule is now a marker rule and is added to the 5

grouping of rules created during Step 1.
Step 5 (1005): For each family, qualify its rules with the

defining constraints from the model that it comes from
A preliminary pass is made of the rules to attempt to

constrain the statements they make to fall within the space 10

of the defining features of the configuration model they
come from. This is done by creating a temporary rule with
a RHS that is equivalent to the defining constraint features
of the model being processed. All rules from that model are

15
then intersected with this temporary rule and if the result is
non-empty the intersection is kept. This intersection adds to
the RHS of the rules the defining constraints of the model to
which the rule belongs.

Step 6 (1006): Remove the added defining constraint 20

features from the RHS of rules where they cause cycles in
the DAG.

When the defining constraint features of each configura­
tion model were added to the rules in Step 5, it is possible
that cyclic relationships among the families of the rules were 25

introduced. In order to remedy this, any defining constraint
features on the RHS of a rule that introduces a cycle are
removed.

For each rule the features of the RHS that belong to
defining families are investigated. The ancestors of each 30

RHS feature is computed, and if the family of the LHS
feature of the rule is in the ancestor list, then that RHS
feature is causing a cyclical relationship in the DAG and is
removed from the RHS of the rule. Otherwise, the DAG is

35
updated to include the relationship just encountered. Once
this process is completed it is guaranteed that there are no
cyclical relationships among the rules.

Step 7 (1007): Optionally, build a DAG from the qualified
rules to ensure that no cycles are present. 40

Now that the rules have been updated with the defining
constraint features, and there are no cyclical relationships in
them, an updated DAG is created. This DAG is created in the
same manner as the one created in Step 2.

Step 8 (1008): Split the rules into those with a LHS 45

feature from a trivial family and those with a LHS feature
from a non-trivial family

The rules that have a LHS feature that belong to a trivial
family are finished processing, however the rules with a
LHS feature that belongs to a non-trivial family still should 50

have more processing. Because of this, the rules are split into
two groups, those with a LHS feature from a non-trivial
family and those with a LHS feature from a trivial family.

Step 9 (1009): Perform the non-trivial combination algo-
rithm 55

This step and its associated sub-steps are only run on the
rules with LHS features from a non-trivial family. This step
updates the rules in such a way that any erroneous allowed
feature combinations created by the combination process
1000 are removed. FIG. 11 shows a flowchart of process 60

1100, which depicts a flowchart for removing unspecified
buildable configurations from a consolidated model.

Step 9.1 (1101): Group all of the rules together by LHS
feature

All of the non-trivial rules are combined together and 65

grouped together by LHS feature. This is done in a
similar manner as the grouping performed in Step 1.

12
Step 9.2 (1102): Determine all possible sets of rules with

overlapping RHS features
The rules for each LHS feature are grouped together in all

possible overlapping combinations. In one embodi­
ment, this is done by creating a set containing all of the
rules for a LHS feature and computing the power set of
this set. Each element of the power set is investigated
to see if all of the rules the element contains overlap
each other, if they do and there are rules from at least
two source models, then this set of rules is kept,
otherwise it is discarded. Additionally any sets that are
a subset of a non-discarded set are also removed. Those
of ordinary skill in the art will recognize that many
other ways exist to locate overlapping rule sets, such as
indexing the rules in a data structure and searching for
the overlapping rule sets.

Step 9.3 (1103): Check for optionality overlap
The non-marker rules in each non-discarded set of rules

from Step 9 .2 are then investigated to see if any of them
have different optionalities. If there are rules in the
same set with different optionalities that are non­
marker rules, then incompatible optionality overlap has
been detected. An error message is logged (1107)
describing which rules have different optionalities, the
space that they overlap, and which configuration mod­
els the rules came from.

Step 9.4 (1104): Check for unspecified buildables
Each non-discarded set of rules from Step 9.2 is investi­

gated to see if it contains both marker rules and
non-marker rules. If it does, then an unspecified build­
able has been detected in this set of rules. If this
situation happens, the unspecified buildable can be
automatically removed in Step 9.5.

Step 9.5 (1105): Resolve unspecified buildables.
In order to repair the unspecified buildable configuration

in a set of rules, a restriction rule preventing the
erroneous, unspecified buildable configuration must be
written.

The marker rules created in Step 4 are used to determine
which restriction rules should be written. A restriction
rule will be written for each marker rule in the set. The
LHS feature of the restriction rule is the distinguishing
constraint of the model from which the marker rule
comes. The distinguishing constraint is the model
defining constraint feature(s) of a model such that the
distinguishing constraint and all of the DAG's ances­
tors in the MDC are sufficient to distinguish the MDC
space of the model from the MDC spaces of the other
models. The RHS features of the restriction rule are the
set of features that describe where the overlap among
this set of rules occurs. In other words it is the inter­
section of the rules in the set. The resulting restriction
rule is then intersected with the same temporary rule
from Step 5 for the model that the marker rule came
from. If the result is non-empty then it is kept.

This process allows a rule from one model to extend into
another at a non-trivial family, but repairs the extension
at a family below the non-trivial family. This process is
illustrated in elements 616, 826 and 828.

Step 9.6 (1106): Optionally apply restriction rules
If the output of the model consolidation process 710 is

desired to not contain any generated restriction rules,
then the restriction rules generated in Step 9.5 can be
applied to the non-restriction rules in the set they were
generated from. The restrictions can be applied by
subtracting them from all other rules that have the same
LHS features.

US 10,360,612 Bl
13

Step 10 (1010): Combine rules together removing marker
rules

All of the rules whose LHS feature is from a trivial family
are combined together with the rules whose LHS features
are from non-trivial families. Additionally all restriction 5

rules that were generated in Step 9.5 are also added if Step
9.6 was not executed to apply them to the non-restriction
rules. Finally, all marker rules are removed.

Example 10

The following is an example of the model combination
algorithm performed on two configuration models. This
example serves to illustrate a case where the two models

15
cannot be combined together using the conventional stitch­
ing process and instead the more advanced combination
process 1000 is used instead.

Inputs:
Family/Feature definitions:
MKT={MKTl, MKT2}
ENG={ENGl, ENG2}
SER={SERl, SER2}
Configuration model #1: defining constraints={SERl}
MKTl OALL
MKT2 OALL
ENGi S MKTl
ENG2 S MKT2
ENG2 0 MKTl
SERI S ENG1+ENG2
Configuration model #2: defining constraints={ SER2}
MKTl OALL
MKT2 OALL
ENGi S MKTl
ENG2 S MKT2
SER2 S ENG1+ENG2
Step 1 (1001): Load and group the rules for each con-

figuration model
Model #1:
MKTl OALL,
MKT2 OALL,
ENGi S MKTl,
ENG2 S MKT2,
ENG2 0 MKTl,
SERI S ENG1+ENG2
Model #2:

20

25

30

35

40

45

14
Step 4 (1004): Create marker rules for the non-trivial

families and add them to the mapping of rules
A temporary rule is constructed for each non-trivial

family with ALL as the qualifiers. All other rules in the
family are then subtracted from the temporary rules with an
optionality of "x" resulting in the rules shown below:

Model #1:
MKT: []
ENG: ALL x ENG 1.MKT2
SER: ALL x SER2.(ENG1+ENG2)
Model #2:
MKT: []
ENG: ALL x ENG1.MKT2, ALL x ENG2.MKT1
SER: ALL x SER1.(ENG1+ENG2)
In this example, the optionality N has been chosen for the

marker rules. The appropriate RHS feature is moved to the
LHS in the temporary rules and the optionality is changed to
N. After this, the generated marker rules are as follows:

Model #1:
ENGi N MKT2
SER2 N ENG1+ENG2
Model #2:
ENGi N MKT2
ENG2 N MKTl
SERI N ENG1+ENG2
These marker rules are then added to the grouping of rules

from Step 1 to yield the following grouping:
Model #1:
MKTl OALL,
MKT2 OALL,
ENGi S MKTl,
ENGi N MKT2,
ENG2 S MKT2,
ENG2 0 MKTl,
SERI S ENG1+ENG2,
SER2 N ENG1+ENG2
Model #2:
MKTl OALL,
MKT2 OALL,
ENGi S MKTl,
ENGi N MKT2,
ENG2 N MKTl,
ENG2 S MKT2,
SERI N ENG1+ENG2,
SER2 S ENG1+ENG2
Step 5 (1005): For each family, qualify its rules with the

defining constraints from the model that it comes from MKTl OALL,
MKT2 OALL,
ENGi S MKTl,
ENG2 S MKT2,

In this example, since SERI is the defining constraint of
Model #1, a temporary rule with SERI on the RHS will be

50 created and all of the rules from Model #1 are intersected
SER2 S ENG1+ENG2
Step 2 (1002): Construct a DAG from all of the rules

across models
The DAG constructed is presented as an adjacency list.

The interpretation is that it is a mapping of a family to its 55

parent families.
The following nomenclature represents a DAG as

depicted in FIG. 3:
MKT-[]
ENG-[MKT]
SER-[ENG]
Step 3 (1003): Determine which families cannot be trivi-

ally combined together
In this example there is only one constraint family, SER.

60

Thus it and its ancestors are the set of families that cannot 65

be trivially combined together. This results in {MKT, ENG,
SER} as the set of non-trivial families.

with it. Similarly, Model #2 will have a temporary rule with
SER2 on the RHS and all of its rules will be intersected with
it. After the rule intersections, the qualified rules will look
like:

Model #1:
MKTl O SERI,
MKT2 0 SERI,
ENGi S MKTl.SERl,
ENGi N MKT2.SER1,
ENG2 S MKT2.SER1,
ENG2 0 MKTl.SERl,
SERI S (ENG1+ENG2).SER1
Model #2:
MKTl O SER2,
MKT2 0 SER2,
ENGi S MKT1.SER2,
ENGi N MKT2.SER2,

US 10,360,612 Bl

ENG2 N MKTl .SER2,
ENG2 S MKT2.SER2,

15

SER2 S (ENG1+ENG2).SER2

16
Step 9.3 (1103): Check for optionality overlap

Step 6 (1006): Remove the added defining constraint
features from the RHS of rules where they cause cycles in 5

the DAG

Each group of rules is checked for sets of non-marker
rules that have different optionalities. In this example there
are no rules with optionality overlap.

Step 9.4 (1104): Check for unspecified buildables
In this example, there is one set of rules with unspecified

buildables. It is as follows:
Since the SER family is a leaf in the DAG generated

during Step 2, it cannot appear on the RHS of any rule
without causing there to be a cyclic relationship. Thus all of
the additional qualification done in Step 5 will be undone.
The rule grouping will be reverted to look like:

Model #1:
MKTl OALL,
MKT2 OALL,
ENGl S MKTl,
ENGl N MKT2,
ENG2 S MKT2,
ENG2 0 MKTl,
SERI S ENG1+ENG2
Model #2:
MKTl OALL,
MKT2 OALL,
ENGl S MKTl,
ENGl N MKT2,
ENG2 NMKTl,
ENG2 S MKT2
SER2 S ENG1+ENG2

{ENG2 0 MKTl (1), ENG2 N MKTl (2)}
This set has an unspecified buildable because it contains

10
both marker and non-marker rules. This unspecified build­
able is illustrated in Element 832. It is the result of adding
Elements 606 to 616.

Step 9.5 (1105): Resolve unspecified buildables
This set of rules with an unspecified buildable will

generate one restriction rule. The restriction rule generated
15 JS:

SER2 R ENG2.MKT1
Next the restriction rule is intersected with a temporary

rule with SER2 on the RHS since the marker rule that caused
the restriction to be generated came from Model #2 and

20 SER2 is Model #2's distinguishing constraint. The results of
the intersection leaves the restriction rule unchanged.

This generated restriction rule repairs the unspecified
buildable in Element 832 by preventing it from happening in
the SER family. The restriction written adjusts the SER

25 space from Element 618 to Element 828.
Step 9.6 (1106): Optionally apply restriction rules

The restriction generated can be applied to the rules by
subtracting it from all rules that have the same LHS feature.

Step 7 (1007): Build a DAG from the qualified rules
Building a DAG from the qualified rules results in the 30

In this example the only rule with the same LHS feature is:
SER2 S ENG1+ENG2
After performing the subtraction, the resulting rules with

a LHS of SER2 are:
same DAG constructed in Step 2.

MKT-[]
ENG-[MKT]
SER-[ENG]
Step 8 (1008): Split the rules into those with a LHS

feature from a trivial family and those with a LHS feature
from a non-trivial family

35

Since all of the families in this example are non-trivial
families, splitting the rules into two groups yields only one 40

set of rules, the set of rules with a LHS feature from a
non-trivial family. All rules must go through the non-trivial
combination algorithm.

Step 9.1 (1101): Group all of the rules together by LHS
feature

The result of grouping all of the rules by the LHS feature
is shown below. In order to keep track of which model a rule
originated in, (1) or a (2) is appended to the end of the rule.

MKTl-[MKTl OALL (1), MKTl OALL (2)]
MKT2-[MKT2 0 ALL (1), MKT2 0 ALL (2)]
ENGl-[ENGl S MKTl (1), ENGl N MKT2 (1),
ENGl S MKTl (2), ENGl N MKT2 (2)]
ENG2-[ENG2 0 MKTl (1), ENG2 S MKT2 (1),
ENG2 N MKTl (2), ENG2 S MKT2 (2)]
SERl-[SERl S ENG1+ENG2 (1)]
SER2-[SER2 S ENG1+ENG2 (2)]
Step 9.2 (1102): Determine all possible sets of rules with

overlapping RHS features

45

50

55

Calculating all possible sets of rules with overlapping
RHS features results in the following sets for each LHS 60

feature:

SER2 S ENGl
SER2 S ENG2.MKT2
These SER2 rules cover the space illustrated in FIG. 828.
Step 10 (1010): Combine rules together removing dupli­

cate and marker rules
Finally the set of rules that were processed through the

non-trivial combination algorithm can be combined with
those that were processed through the trivial combination
algorithm. In this example there were no trivial families so
all rules were processed through the non-trivial algorithm.
The resulting set of rules is:

MKTl OALL
MKTl OALL
MKT2 OALL
MKT2 OALL
ENGl S MKTl
ENGl S MKTl
ENG2 0 MKTl
ENG2 S MKT2
ENG2 S MKT2
SERI S ENG1+ENG2
SER2 S ENGl
SER2 S ENG2.MKT2
These rules correspond exactly to FIGS. 924, 926, and

928.
FIG. 12 is a block diagram illustrating a network envi­

ronment in which a model consolidation system 700 may be
practiced. Network 1202 (e.g. a private wide area network
(WAN) or the Internet) includes a number of networked
server computer systems 1204(1)-(N) that are accessible by
client computer systems 1206(1)-(N), where N is the num­
ber of server computer systems connected to the network.

[{MKTl O ALL (1), MKTl O ALL (2)},
{MKT2 0 ALL (1), MKT2 0 ALL (2)},
{ENGl S MKTl (1), ENGl S MKTl (2)},
{ENGl N MKT2 (1), ENGl N MKT2 (2)},
{ENG2 0 MKTl (1), ENG2 N MKTl (2)},
{ENG2 S MKT2 (1), ENG2 S MKT2 (2)}]

65 Communication between client computer systems 1206(1)­
(N) and server computer systems 1204(1)-(N) typically
occurs over a network, such as a public switched telephone

US 10,360,612 Bl
17 18

tern 700 may be implemented in a computer program alone
or in conjunction with model consolidation system 700.

The processor 1313, in one embodiment, is a micropro­
cessor manufactured by Motorola Inc. of Illinois, Intel

network over asynchronous digital subscriber line (ADSL)
telephone lines or high-bandwidth trunks, for example com­
munications channels providing Tl or OC3 service. Client
computer systems 1206(1)-(N) typically access server com­
puter systems 1204(1)-(N) through a service provider, such
as an internet service provider ("ISP") by executing appli­
cation specific software, commonly referred to as a browser,
on one of client computer systems 1206(1)-(N).

Client computer systems 1206(1)-(N) and/or server com­
puter systems 1204(1)-(N) may be, for example, computer
systems of any appropriate design, including a mainframe, a
mini-computer, a personal computer system including note­
book computers, a wireless, mobile computing device (in­
cluding personal digital assistants). These computer systems
are typically information handling systems, which are
designed to provide computing power to one or more users,
either locally or remotely. Such a computer system may also
include one or a plurality of input/output ("I/O") devices
coupled to the system processor to perform specialized
functions. Mass storage devices such as hard disks, compact
disk ("CD") drives, digital versatile disk ("DVD") drives,
and magneto-optical drives may also be provided, either as

5 Corporation of California, or Advanced Micro Devices of
California. However, any other suitable single or multiple
microprocessors or microcomputers may be utilized. Main
memory 1315 is comprised of dynamic random access
memory (DRAM). Video memory 1314 is a dual-ported

10 video random access memory. One port of the video
memory 1314 is coupled to video amplifier 1316. The video
amplifier 1316 is used to drive the display 1317. Video
amplifier 1316 is well known in the art and may be imple­
mented by any suitable means. This circuitry converts pixel

15 DATA stored in video memory 1314 to a raster signal
suitable for use by display 1317. Display 1317 is a type of
monitor suitable for displaying graphic images.

The computer system described above is for purposes of
example only. The model consolidation system 700 may be

an integrated or peripheral device. One such example com­
puter system is shown in detail in FIG. 13.

20 implemented in any type of computer system or program­
ming or processing environment. It is contemplated that the
model consolidation system 700 might be run on a stand­
alone computer system, such as the one described above.
The model consolidation system 700 might also be run from

Embodiments of the model consolidation system 700 can
25 a server computer systems system that can be accessed by a

plurality of client computer systems interconnected over an
intranet network. Finally, the model consolidation system
700 may be run from a server computer system that is
accessible to clients over the Internet.

be implemented on a computer system such as a general­
purpose computer 1300 illustrated in FIG. 13. Input user
device(s) 1310, such as a keyboard and/or mouse, are
coupled to a bi-directional system bus 1318. The input user 30

device(s) 1310 are for introducing user input to the computer
system and communicating that user input to processor
1313. The computer system of FIG. 13 generally also
includes a video memory 1314, main memory 1315 and
mass storage 1309, all coupled to bi-directional system bus 35

1318 along with input user device(s) 1310 and processor
1313. The mass storage 1309 may include both fixed and
removable media, such as other available mass storage
technology. Bus 1318 may contain, for example, 32 address
lines for addressing video memory 1314 or main memory 40

1315. The system bus 1318 also includes, for example, an
n-bit data bus for transferring DATA between and among the
components, such as CPU 1309, main memory 1315, video
memory 1314 and mass storage 1309, where "n" is, for
example, 32 or 64. Alternatively, multiplex data/address 45

lines may be used instead of separate data and address lines.
I/O device(s) 1319 may provide connections to peripheral

devices, such as a printer, and may also provide a direct
connection to a remote server computer systems via a
telephone link or to the Internet via an ISP. I/O device(s) 50

1319 may also include a network interface device to provide
a direct connection to a remote server computer systems via
a direct network link to the Internet via a POP (point of
presence). Such connection may be made using, for
example, wireless techniques, including digital cellular tele- 55

phone connection, Cellular Digital Packet Data (CDPD)
connection, digital satellite data connection or the like.
Examples of I/O devices include modems, sound and video
devices, and specialized communication devices such as the
aforementioned network interface. 60

Computer programs and data are generally stored as
instructions and data in mass storage 1309 until loaded into
main memory 1315 for execution. Computer programs may
also be in the form of electronic signals modulated in
accordance with the computer program and data communi- 65

cation technology when transferred via a network. The
method and functions relating to model consolidation sys-

Many embodiments of the present invention have appli­
cation to a wide range of industries including the following:
computer hardware and software manufacturing and sales,
professional services, financial services, automotive sales
and manufacturing, telecommunications sales and manufac­
turing, medical and pharmaceutical sales and manufactur­
ing, and construction industries.

Although the present invention has been described in
detail, it should be understood that various changes, substi­
tutions and alterations can be made hereto without departing
from the spirit and scope of the invention as defined by the
appended claims.

What is claimed is:
1. A method of consolidating multiple configuration mod­

els of a product, the method comprising:
executing instructions, stored in a memory, by a processor

of a computer system to configure the computer system
into a machine for:
combining at least two of the configuration models of

the product into a single, consolidated model,
wherein each of the at least two configuration models
include configuration rules that define multiple
buildable configurations of the product;

detecting any unspecified buildable configurations of
the product in the consolidated model, wherein an
unspecified buildable configuration is a buildable
configuration of the product that is specified in the
consolidated model but not defined in the at least two
configuration models;

automatically resolving any detected unspecified build­
able configurations in the consolidated model so that
the unspecified buildable configurations are removed
from the consolidation model; and

generating buildable configurations of the product
using the consolidated model without generating any
unspecified buildable configurations of the product.

2. The method of claim 1 wherein combining the at least
two of the configuration models into the consolidated model

US 10,360,612 Bl
19

yields a non-cyclic chain of dependencies among families
and features of families in the consolidated model.

20
for each configuration model, determining which portions

of an overall configuration space for which the con­
figuration model does not provide a buildable configu­
ration; and

3. The method of claim 1 further comprising:
identifying a conflict between at least two of the configu­

ration models; and
resolving the conflict in the consolidated model.
4. The method of claim 1 wherein the configuration

models represent configuration models of vehicles.
5. The method of claim 1 wherein the consolidated model

includes only buildable configurations.

for each configuration model, constraining statements of
the rules within the configuration model to fall within
a space of defining features of the configuration model.

10. The method of claim 9 wherein determining which
portions of an overall configuration space for which each

10 configuration model does not provide a buildable configu­
ration further comprises: 6. The method of claim 1 wherein the configuration

models are organized in accordance with respective directed
acyclic graphs, each configuration model includes at least
one ancestor configuration model family space and a child

15
configuration model family space below the ancestor con­
figuration model family space, a first of the conflicting
configuration models comprises an ancestor configuration
model family space that is different than an ancestor con­
figuration model family space of a second of the conflicting 20

configuration model, and each child configuration model
family space constrains the ancestor configuration model
family space above the child in accordance with configura­
tion rules of the configuration model to which the child
belongs.

determining which families are ancestors of families of
defining constraints; and

subtracting a right hand side and a left hand side of each
rule of each family that are ancestors of families of
defining constraints from a rule representing all build­
able configurations, wherein the left hand side includes
one or more features of a buildable configuration and
the right hand side which features of the buildable
configuration are in effect when the rule is in effect.

11. The method of claim 1 wherein each configuration
model includes at least one ancestor configuration model
family space and a child configuration model family space

7. The method of claim 6 further comprising:
executing additional code, stored in the memory, by the

processor of the computer system for:

25 below the ancestor configuration model family space and
automatically resolving any detected unspecified buildable
configurations in the consolidated model so that the unspeci­
fied buildable configurations are removed from the consoli-

extending at least one of the ancestor configuration
model family spaces of the conflicting configuration 30

models so that the ancestor configuration model
family spaces of the first and second conflicting
configuration models represent the same ancestor
configuration model family space;

35
removing from the child configuration model family

space any configuration space extended in the ances­
tor of the child configuration family space; and

wherein combining at least two of the configuration
models of the product into a single, consolidated 40

model further comprises:
combining the first and second configuration models

into a single, consolidated model that maintains a
non-cyclic chain of dependencies among families
and features of families for use in answering 45

configuration questions related to the product.
8. The method of claim 7 wherein:
extending at least one of the ancestor configuration model

family spaces of the conflicting configuration models
so that the ancestor configuration model family spaces 50

of the first and second conflicting configuration models
represent the same ancestor configuration model family
further comprises:
extending a rule from the first configuration model into

the ancestor configuration model family space; and 55

removing from the child configuration model family
space any configuration space extended in the ancestor
of the child configuration family space further com-
prises:
repairing the extension of the rule in the child family. 60

dation model further comprises:
applying an ancestor configuration model family extend­

ing algorithm and a child configuration model family
space removal algorithm to remove unspecified build­
able configurations; and

after applying the extending and removal algorithms,
combining the first and second configuration models
into a single, consolidated model that maintains a
non-cyclic chain of dependencies among families and
features of families for use in answering configuration
questions related to the product.

12. A non-transitory, computer readable medium having
instructions encoded therein to consolidate multiple con­
figuration models of a product, the instructions comprising
code executable by a processor to configure a computer
system into a machine to:

combine at least two of the configuration models of the
product into a single, consolidated model, wherein each
of the at least two configuration models include con­
figuration rules that define multiple buildable configu­
rations of the product;

detect any unspecified buildable configurations of the
product in the consolidated model, wherein an unspeci­
fied buildable configuration is a buildable configuration
of the product that is specified in the consolidated
model but not defined in the at least two configuration
models;

automatically resolve any detected unspecified buildable
configurations in the consolidated model so that the
unspecified buildable configurations are removed from
the consolidation model; and

generate buildable configurations of the product using the
consolidated model without generating any unspecified
buildable configurations of the product.

9. The method of claim 7 wherein combining the first and
second models into a single, consolidated model further
comprises:

loading the configuration models into the memory of the
computer system;

constructing a directed acyclic graph of all rules in all the
configuration models;

13. The computer readable medium of claim 12 wherein
to combine the at least two of the configuration models into

65 the consolidated model yields a non-cyclic chain of depen­
dencies among families and features of families in the
consolidated model.

US 10,360,612 Bl
21

14. The computer readable medium of claim 12 further
comprising code that is executable by the processor to:

identify a conflict between at least two of the configura­
tion models; and

resolve the conflict in the consolidated model.
15. The computer readable medium of claim 12 wherein

the configuration models represent configuration models of
vehicles.

16. The computer readable medium of claim 12 wherein
the consolidated model includes only buildable configura- 10

tions.

22
construct a directed acyclic graph of all rules in all the

configuration models;
for each configuration model, determine which portions

of an overall configuration space for which the con­
figuration model does not provide a buildable configu­
ration; and

for each configuration model, constrain statements of the
rules within the configuration model to fall within a
space of defining features of the configuration model.

21. The computer readable medium of claim 20 wherein
to determine which portions of an overall configuration
space for which each configuration model does not provide
a buildable configuration further comprises to:

to determine which families are ancestors of families of
defining constraints; and

subtract a right hand side and a left hand side of each rule
of each family that are ancestors of families of defining
constraints from a rule representing all buildable con­
figurations, wherein the left hand side includes one or
more features of a buildable configuration and the right
hand side which features of the buildable configuration
are in effect when the rule is in effect.

22. The computer readable medium of claim 12 wherein
each configuration model includes at least one ancestor

17. The computer readable medium of claim 12 wherein
the configuration models are organized in accordance with
respective directed acyclic graphs, each configuration model
includes at least one ancestor configuration model family 15

space and a child configuration model family space below
the ancestor configuration model family space, a first of the
conflicting configuration models comprises an ancestor con­
figuration model family space that is different than an
ancestor configuration model family space of a second of the 20

conflicting configuration model, and each child configura­
tion model family space constrains the ancestor configura­
tion model family space above the child in accordance with
configuration rules of the configuration model to which the
child belongs. 25 configuration model family space and a child configuration

model family space below the ancestor configuration model
family space and automatically resolving any detected
unspecified buildable configurations in the consolidated

18. The computer readable medium of claim 17 having
additional code encoded therein and executable by the
processor to:

extend at least one of the ancestor configuration model
family spaces of the conflicting configuration models 30

so that the ancestor configuration model family spaces
of the first and second conflicting configuration models
represent the same ancestor configuration model family
space;

remove from the child configuration model family space 35

any configuration space extended in the ancestor of the
child configuration family space; and

wherein the code to combine at least two of the configu­
ration models of the product into a single, consolidated
model further include code executable by the processor 40

to:
combine the first and second configuration models into

a single, consolidated model that maintains a non­
cyclic chain of dependencies among families and
features of families for use in answering configura- 45

tion questions related to the product.
19. The computer readable medium of claim 18 wherein:
the code to extend at least one of the ancestor configu­

ration model family spaces of the conflicting configu­
ration models so that the ancestor configuration model 50

family spaces of the first and second conflicting con­
figuration models represent the same ancestor configu­
ration model family further include code executable by
the processor to:
extend a rule from the first configuration model into the 55

ancestor configuration model family space; and
the code to remove from the child configuration model

family space any configuration space extended in the
ancestor of the child configuration family space further
include code executable by the processor for: 60

repairing the extension of the rule in the child family.
20. The computer readable medium of claim 18 wherein

the code to combine the first and second models into a
single, consolidated model further include code executable
by the processor to: 65

load the configuration models into a memory of the
computer system;

model so that the unspecified buildable configurations are
removed from the consolidation model further comprises:

applying an ancestor configuration model family extend­
ing algorithm and a child configuration model family
space removal algorithm to remove unspecified build­
able configurations; and

after applying the extending and removal algorithms,
combining the first and second configuration models
into a single, consolidated model that maintains a
non-cyclic chain of dependencies among families and
features of families for use in answering configuration
questions related to the product.

23. A computer system comprising:
a processor;
a non-transitory computer readable medium, coupled to

the processor, having code encoded therein to consoli­
date multiple configuration models of a product, the
code comprising code executable by the processor to
configure the computer system into a machine to:
combine at least two of the configuration models of the

product into a single, consolidated model, wherein
each of the at least two configuration models include
configuration rules that define multiple buildable
configurations of the product;

detect any unspecified buildable configurations of the
product in the consolidated model, wherein an
unspecified buildable configuration is a buildable
configuration of the product that is specified in the
consolidated model but not defined in the at least two
configuration models;

automatically resolve any detected unspecified build­
able configurations in the consolidated model so that
the unspecified buildable configurations are removed
from the consolidation model; and

generate buildable configurations of the product using
the consolidated model without generating any
unspecified buildable configurations of the product.

24. The computer system of claim 23 wherein to combine
the at least two of the configuration models into the con-

US 10,360,612 Bl
23

solidated m_o_del yields a non-cyclic chain of dependencies
among families and features of families in the consolidated
model.

25. The computer system of claim 23 further comprising
code to:

identify a conflict between at least two of the configura-
tion models; and

resolve the conflict in the consolidated model.

5

26. The computer system of claim 23 wherein the con­
figuration models represent configuration models of
vehicles.

10

27. The computer system of claim 23 wherein the con­
solidated model includes only buildable configurations.

28. The computer system of claim 23 wherein the con­
figuration models are organized in accordance with respec-. 15
t1ve directed acyclic graphs, each configuration model
includes at least one ancestor configuration model family
space and a child configuration model family space below
the ancestor configuration model family space, a first of the
conflicting configuration models comprises an ancestor con-
fl

w
guration model family space that is different than an

ancestor configuration model family space of a second of the
conflicting configuration model, and each child configura­
t)on model fam_ily space constrains the ancestor configura­
t10n model family space above the child in accordance with

fi
~

con guration rules of the configuration model to which the
child belongs.

29. The computer system of claim 28 having additional
code encoded therein and executable by the processor to:

extend at least one of the ancestor configuration model
family spaces of the conflicting configuration models
so that the ancestor configuration model family spaces
of the first and second conflicting configuration models
represent the same ancestor configuration model family

30

space; 35
remove from the child configuration model family space

any configuration space extended in the ancestor of the
child configuration family space; and

wher~in the code to combine at least two of the configu­
rat10n models of the product into a single, consolidated
model further include code executable by the processor
to:
combine the first and second configuration models into

a single, consolidated model that maintains a non­
cyclic chain of dependencies among families and
features of families for use in answering configura-
tion questions related to the product.

30. The computer system of claim 29 wherein:

40

45

the code to extend at least one of the ancestor configu­
rat)on model family spaces of the conflicting configu- 50
rat10n models so that the ancestor configuration model
family spaces of the first and second conflicting con­
figuration models represent the same ancestor configu­
ration model family further include code executable by
the processor to:

24
extend a rule from the first configuration model into the

ancestor configuration model family space; and
the code to remove from the child configuration model

family space any configuration space extended in the
ancestor of the child configuration family space further
include code executable by the processor for:
repairing the extension of the rule in the child family.

31. The computer system of claim 29 wherein the code to
combine the first and second models into a single, consoli­
dated model further include code executable by the proces­
sor to:

load the configuration models into a memory of the
computer system;

construct a directed acyclic graph of all rules in all the
configuration models;

for each configuration model, determine which portions
of an overall configuration space for which the con­
figuration model does not provide a buildable configu­
ration; and

for each configuration model, constrain statements of the
rules within the configuration model to fall within a
space of defining features of the configuration model.

32. The computer system of claim 31 wherein to deter­
mine which portions of an overall configuration space for
which each configuration model does not provide a build­
able configuration further comprises to:

to determine which families are ancestors of families of
defining constraints; and

subtract a right hand side and a left hand side of each rule
of each family that are ancestors of families of defining
constraints from a rule representing all buildable con­
figurations, wherein the left hand side includes one or
more features of a buildable configuration and the right
hand side which features of the buildable configuration
are in effect when the rule is in effect.

33. The computer system of claim 23 wherein each
cm:ifiguration model includes at least one ancestor configu­
rat10n model family space and a child configuration model
family space below the ancestor configuration model family
sp~ce and automatically resolving any detected unspecified
bmldable configurations in the consolidated model so that
the unspecified buildable configurations are removed from
the consolidation model further comprises:

applying an ancestor configuration model family extend­
ing algorithm and a child configuration model family
space removal algorithm to remove unspecified build­
able configurations; and

after applying the extending and removal algorithms,
combining the first and second configuration models
into a single, consolidated model that maintains a
non-cyclic chain of dependencies among families and
features of families for use in answering configuration
questions related to the product.

* * * * *

