
c12) United States Patent 
Ciabarra, Jr. et al. 

(54) ACCURATE AND EFFICIENT RECORDING 
OF USER EXPERIENCE, GUI CHANGES 
AND USER INTERACTION EVENTS ON A 
REMOTE WEB DOCUMENT 

(71) Applicant: Quantum Metric, LLC, Monument, 
CO (US) 

(72) Inventors: Mario Luciano Ciabarra, Jr., 
Colorado Springs, CO (US); Yiduo 
Wang, Portland, OR (US) 

(73) Assignee: Quantum Metric, Inc., Monument, CO 
(US) 

( *) Notice: Subject to any disclaimer, the term ofthis 
patent is extended or adjusted under 35 
U.S.C. 154(b) by O days. 

This patent is subject to a terminal dis
claimer. 

(21) Appl. No.: 16/206,876 

(22) Filed: 

(65) 

Nov. 30, 2018 

Prior Publication Data 

(63) 

(51) 

(52) 

US 2019/0095408 Al Mar. 28, 2019 

Related U.S. Application Data 

Continuation of application No. 14/984,102, filed on 
Dec. 30, 2015, now Pat. No. 10,146,752. 

(Continued) 

Int. Cl. 
G06F 40114 
G06F 161958 

U.S. Cl. 

(2020.01) 
(2019.01) 

(Continued) 

CPC .......... G06F 161986 (2019.01); G06F 401123 
(2020.01); G06F 40114 (2020.01); G06F 

401194 (2020.01) 

I 1111111111111111 1111111111 11111 lllll 111111111111111 11111 111111111111111111 
US011036823B2 

(IO) Patent No.: US 11,036,823 B2 
(45) Date of Patent: *Jun. 15, 2021 

(58) Field of Classification Search 
CPC ............... G06F 16/986; G06F 17/2205; G06F 

17/2211; G06F 40/14; G06F 40/123; 
G06F 40/194 

See application file for complete search history. 

(56) References Cited 

CA 
EP 
WO 

U.S. PATENT DOCUMENTS 

5,765,173 A 
5,794,254 A 

6/ 1998 Cane et al. 
8/1998 McClain 

(Continued) 

FOREIGN PATENT DOCUMENTS 

2437281 
3323053 

02075539 A2 

1/2011 
5/2018 
9/2002 

OTHER PUBLICATIONS 

U.S. Appl. No. 14/984,102, "Final Office Action", dated Feb. 1, 
2018, 19 pages. 

(Continued) 

Primary Examiner - Kyle R Stork 
(74) Attorney, Agent, or Firm - Kilpatrick Townsend & 
Stockton LLP 

(57) ABSTRACT 

The present disclosure describes how to capture events ( e.g., 
changes and user interactions) of a Web document and 
combine those changes with the original DOM displayed to 
accurately and efficiently enable a replay engine to redisplay 
the DOM, changes, and user interactions which occurred 
within a user's browser. The data collected from a client-side 
HTML DOM capture engine can be combined with a 
minimal amount of contextual information to a replay 
engine so as to accurately and efficiently replay a session of 
a plurality of web documents. 

19 Claims, 13 Drawing Sheets 



US 11,036,823 B2 
Page 2 

Related U.S. Application Data 

(60) Provisional application No. 62/098,951, filed on Dec. 
31, 2014. 

(51) 

(56) 

Int. Cl. 
G06F 401123 
G06F 401194 

(2020.01) 
(2020.01) 

References Cited 

U.S. PATENT DOCUMENTS 

6,012,087 A 
7,269,784 Bl 
7,296,051 Bl 
7,383,496 B2 
7,437,364 Bl 
7,523,191 Bl 
7,565,423 Bl 
7,587,398 Bl 
7,640,262 Bl 
7,657,517 B2 
7,668,880 Bl 
7,734,826 B2 
7,765,274 B2 
7,844,580 B2 
7,941,525 Bl 
7,979,413 B2 
8,112,496 B2 
8,224,964 Bl 
8,230,510 Bl 
8,266,245 Bl 
8,381,302 Bl 
8,423,616 B2 
8,595,187 Bl 
8,661,428 B2 
8,826,033 Bl 
8,868,533 B2 
8,914,324 Bl 
8,959,332 B2 
9,112,826 B2 
9,153,239 Bl 
9,471,285 Bl 
9,508,081 B2 
9,633,062 Bl 
9,684,668 Bl 
9,792,365 B2 
9,917,894 B2 
9,946,724 Bl 
9,959,577 Bl 
9,971,940 Bl 

10,063,645 B2 
10,079,737 B2 
10,146,752 B2 
10,318,592 B2 
10,599,753 Bl 
10,691,877 Bl 

2002/0013825 Al 
2002/0138511 Al 
2002/0174180 Al 
2003/0046260 Al 
2003/0172066 Al 
2003/0200207 Al 
2004/0025171 Al * 

2004/0162885 Al 
2004/0243936 Al 
2004/0249793 Al 
2004/0267726 Al 
2005/0066037 Al* 

2005/0203851 Al 
2005/0262167 Al 
2005/0273592 Al 
2005/0283500 Al 
2006/0112150 Al 
2007/0130188 Al 

1/2000 Freivald et al. 
9/2007 Kasriel et al. 

11/2007 Kasriel 
6/2008 Fukuda 

10/2008 Fredricksen et al. 
4/2009 Thomas et al. 
7/2009 Fredricksen 
9/2009 Fredricksen et al. 

12/2009 Beaverson et al. 
2/2010 Brown et al. 
2/2010 Carroll 
6/2010 Brown et al. 
7/2010 Kasriel et al. 

11/2010 Srivastava et al. 
5/2011 Yavilevich 
7/2011 Krishnamurthy et al. 
2/2012 Manasse et al. 
7/2012 Fredrickson et al. 
7/2012 Yangetal. 
9/2012 Saviano et al. 
2/2013 Kennedy et al. 
4/2013 Pouzin et al. 

11/2013 Mclennan et al. 
2/2014 Clark 
9/2014 Krishnaprasad et al. 

10/2014 Powell et al. 
12/2014 Guo et al. 
2/2015 Augenstein et al. 
8/2015 Gero 

10/2015 Postelnicu et al. 
10/2016 Koohgoli et al. 
11/2016 Yavilevich 
4/2017 Vollmer 
6/2017 Guo 

10/2017 Yavilevich 
3/2018 Tripathy et al. 
4/2018 Ghosh et al. 
5/2018 Mori 
5/2018 Sbaiz et al. 
8/2018 Yavilevich et al. 
9/2018 Schlesinger et al. 

12/2018 Ciabarra, Jr. et al. 
6/2019 Ciabarra, Jr. et al. 
3/2020 Eisner et al. 
6/2020 Eisner et al. 
1/2002 Freivald et al. 
9/2002 Psounis et al. 

11/2002 Brown et al. 
3/2003 Satyanarayanan et al. 
9/2003 Cooper et al. 

10/2003 Dickinson 
2/2004 Barinov ................ G06F 9/4488 

8/2004 Garg et al. 
12/2004 Fukuda 
12/2004 Both 
12/2004 Beynon et al. 

719/318 

3/2005 Song ....................... G06F 16/95 

9/2005 King et al. 
11/2005 Teodosiu et al. 
12/2005 Pryor et al. 
12/2005 Eshghi et al. 

5/2006 Brown et al. 
6/2007 Moon et al. 

709/227 

2007 /0226510 Al 
2007 /0288533 Al 
2008/0033913 Al 
2008/0091845 Al 
2008/0208979 Al 
2008/0235200 Al 
2008/0243898 Al 
2008/0243992 Al 
2008/0270436 Al 
2009/0012984 Al 
2009/0013414 Al 
2009/0177959 Al* 

2009/0196296 Al 
2009/0228680 Al 
2009/0248793 Al 
2009/0271779 Al 
2009/0299994 Al 
2010/0088551 Al 
2010/0222902 Al * 

2011/0066628 Al 
2011/0119327 Al 
2011/0252100 Al 
2011/0252305 Al 
2011/0314070 Al 
2011/0320880 Al 
2012/0016882 Al 
2012/0060082 Al 
2012/0084333 Al 
2013/0013618 Al 
2013/0013859 Al 
2013/0031056 Al 
2013/0124472 Al 
2013/0138620 Al 
2013/0138775 Al 
2013/0185387 Al 
2013/0188926 Al 
2013/0232187 Al 
2013/0238730 Al 
2013/0262567 Al 
2013/0275479 Al 
2013/0346374 Al 
2014/0032513 Al 
2014/0074783 Al 
2014/0181034 Al 
2014/0259157 Al 
2014/0358938 Al 
2014/0379823 Al 
2015/0033120 Al 
2015/0067031 Al 
2015/0134669 Al* 

2015/0142756 Al 
2015/0181269 Al 
2015/0207837 Al * 

9/2007 Iglesia et al. 
12/2007 Srivastava et al. 
2/2008 Winburn 
4/2008 Mills et al. 
8/2008 Vishwanath et al. 
9/2008 Washington et al. 

10/2008 Gormish et al. 
10/2008 Jardetzky et al. 
10/2008 Fineberg et al. 

1/2009 Ravid et al. 
1/2009 Washington et al. 
7 /2009 Chakrabarti ........ G06F l 7 /2229 

715/234 
8/2009 Vachuska 
9/2009 Reddy et al. 

10/2009 Jacobsson et al. 
10/2009 Clark 
12/2009 Krishnamurthy et al. 
4/2010 Berkner et al. 
9/2010 Eldridge G05B 15/02 

700/87 
3/2011 Jayaraman et al. 
5/2011 Masuda 

10/2011 Raciborski et al. 
10/2011 Tschiini et al. 
12/2011 Brown et al. 
12/2011 Wenig et al. 

1/2012 Tofano 
3/2012 Edala et al. 
4/2012 Huang et al. 
1/2013 Heller et al. 
1/2013 Zhu et al. 
1/2013 Srivastava et al. 
5/2013 Srivastava et al. 
5/2013 Yakushev et al. 
5/2013 Shah 
7/2013 Gero 
7/2013 Rajagopalan 
9/2013 Workman et al. 
9/2013 Nir et al. 

10/2013 Walker et al. 
10/2013 Thadikaran et al. 
12/2013 Wolf et al. 

1/2014 Gaither 
3/2014 Alsina et al. 
6/2014 Harrison et al. 
9/2014 Toma et al. 

12/2014 Billmaier et al. 
12/2014 Wilsher et al. 

1/2015 Cooke et al. 
3/2015 Acharya et al. 
5/2015 Harris ..................... G06F 16/81 

707/741 
5/2015 Watkins et al. 
6/2015 McMillan 
7/2015 Guerrera ................. H04L 65/60 

709/203 
2015/0261653 Al 9/2015 Lachambre et al. 
2015/0286511 Al* 10/2015 Mickens ................. G06F 9/544 

2015/0356116 Al 
2016/0055196 Al 
2016/0188411 Al 
2016/0188548 Al 
2016/0205221 Al 
2016/0308941 Al 
2016/0320945 Al 
2017/0011049 Al 
2017/0017650 Al 
2017/0192876 Al 

12/2015 Lin et al. 
2/2016 Collins et al. 
6/2016 Bortnikov et al. 
6/2016 Ciabarra, Jr. et al. 
7/2016 Gero 

10/2016 Cooley 
11/2016 Brunn et al. 

1/2017 Venkatesh et al. 
1/2017 Ciabarra et al. 
7/2017 Lachambre et al. 

OTHER PUBLICATIONS 

719/320 

U.S. Appl. No. 14/984,102, "Non-Final Office Action", dated Aug. 

14, 2017, 18 pages. 
U.S. Appl. No. 14/984,102, "Notice of Allowance", dated Jul. 31, 
2018, 5 pages. 



US 11,036,823 B2 
Page 3 

(56) References Cited 

OTHER PUBLICATIONS 

U.S. Appl. No. 15/212,569, "Non-Final Office Action", dated May 
23, 2018, 37 pages. 
U.S. Appl. No. 15/212,569, "Notice of Allowance", dated Jan. 30, 
2019, 23 pages. 
European International Application No. EP16825308.6, "Extended 
European Search Report", dated Jun. 4, 2018, 11 pages. 
Fu et al., "Application-Aware Client-Side Data Reduction and 
Encryption of Personal Data in Cloud Backup Services", Journal of 
Computer Science and Technology, vol. 28, Issue 6, Nov. 2013, pp. 
1012-1024. 
Liu et al., "Admad: Application-Driven Metadata Aware De
duplication Archival Storage System", Storage Network Architec
ture and Parallel I/Os,, Sep. 2008, pp. 29-35. 
Lo et al., "Imagen: Runtime Migration of Browser Sessions for 
JavaScript Web Applications", World Wide Web. International 

World Wide Web Conferences Steering Committee. Republic and 
Canton of Geneva Switzerland, May 13, 2013, pp. 815-826. 
Mogul et al., "Potential Benefits of Delta Encoding and Data 
Compression for HTTP", Proceedings of the 1997 ACM SIGCOMM 
Conference, Sep. 1997, pp. 181-194. 
PCT/US2016/042776, "International Search Report and Written 
Opinion", dated Sep. 22, 2016, 14 pages. 
Savant et al., "Server-Friendly Delta Compression for Efficient Web 
Access", Proceedings of the International Workshop on Web Con
tent Caching and Distribution, Sep. 2003, pp. 303-322. 
Tridgell et al., "Efficient Algorithms for Sorting and Synchroniza
tion," Thesis at the Australian National University, Feb. 1999, 115 
pages. 
U.S. Appl. No. 16/410,342, "Non-Final Office Action", dated Mar. 
17, 2021, 36 pages. 

* cited by examiner 



U.S. Patent Jun.15,2021 Sheet 1 of 13 US 11,036,823 B2 

100 User 

101 Web 

I 
151 Document Object 

Model (DOM) 

152 Embedded 
client-side capture 

agent 

150 Web 
document 

FIG. 1 

110 Browser 
requests 

/ 

105 network 

I 
=I -1 

I .. ) 

111 Server 
responses 

120 Ner~-vork 
device on web 
server subnet 

.,...--114 Netv11ork 
\ Mirror 

\ 

115 Seiver-side 
capture engine, 

analysis engine, and 
web session storage 

I 
130 Web seJVer 

116 

Captured server-side 
network traffic 

Captured cata from client 
side capture agent 

117 



U.S. Patent Jun.15,2021 Sheet 2 of 13 

{ 

Capture agent receives DOM 
modifications notification event 

Capture agent identifies and 
coalesces overlapping node 

modifications to prevent 
duplication info 

Capture agent checks for 
adjacent text nodes which will 
be viewed as a single node on 

replay 

FIG. 2 

DOM loaded in browser i-----. 
200 

Capture agent loaded ~ 
201 

h 

Capture agent begins 
monitoring for DOM 

changes, user interactions 

210 

Capture agent uses nearest 
uniquely identified ancestor 

DOM element to identify path to 
event. 

Capture agent strips 
sensitive information 

Capture agent 
coalesces data 

Capture agent 
compresses data 

231 

v-;33 
Capture agent sends data in 

chunks to server-side 
storage amJ analysis engine 

US 11,036,823 B2 

Capture agent captures 
user interaction 

213 

-... 
220 



U.S. Patent Jun.15,2021 

Traverse to parent 
node 

FIG. 3A 

321 

No 

Sheet 3 of 13 

Capture agent detects r:ode(s) 
modificatior:, addition, or removal 

Is 
current node 

being added or 

No 

310 

node have unique 
id? 

Yes 

Use path to the node 
changed with a root of the 

node with unique id to 
represent unique tree 

path 

US 11,036,823 B2 

300 

320 

330 



U.S. Patent 

350 Original 
documi~nt 

360 Document 
after moditication 

FIG. 3B 

Jun.15,2021 Sheet 4 of 13 

<div id="center vvindow"> 
<div id="response"> 

<span>Your application status is:</span> 
<span style="color: blue">pending</span> 

</div> 
</div> 

<div id="center _ window"> 
<div id="response"> 

US 11,036,823 B2 

<span>Your application status is:</span> 
<span style="color: blue">approved</span> 

</div> 
</div> 



U.S. Patent Jun.15,2021 

A counter is set to zero 

Current node is set to the first 
child of the targe; node's parent 

node 

Sheet 5 of 13 

400 

410 

>-----Ye.::..-------lBM 

No 

Increment 
counter by one 

FIG. 4A 

421 

US 11,036,823 B2 

Node index is 
value of counter 

430 



U.S. Patent 

No 

Jun.15,2021 

A counter is set to zero 

Current node is set to the first 
child of the targe; node's parent 

node 

f\lo 

Yes 

Increment 
counter by one 

472 

FIG. 4B 

Sheet 6 of 13 

450 

460 

US 11,036,823 B2 

Node index is 
value of counter 

/4o 



U.S. Patent Jun.15,2021 

CapH.:re agent receives DOM 
modifications nrnification 

Does notification 
contains multiple 

modif:cations 

Yes 

Create list o! modified 
nodes and list of nodes 

ihat has had a child added 
or a child removed 

Begin iterating list of 
modified nodes 

An 

510 

520 

530 

Sheet 7 of 13 US 11,036,823 B2 

ancestor of the 
current modified node is in 

the !:st of parent nm.1es with a 
child added or 

removed 

►----N(>------<"" 
Prepare data to capture 

current modification 

Yes 

Ignore duplicate 
modification 

FIG. SA 

540 550 

560 



U.S. Patent 

580 Original 
document 

590 Document after 
modifications 

FIG. 5B 

Jun.15,2021 Sheet 8 of 13 

<div id="center window"> 
<div id="response"> 

<span> Your application status is:</span> 
<span style="color: blue">pending</span> 

</div> 
</div> 

<div id="center_window"> 
<div id="response"> 

<span> Your application status is:</span> 
<span style="color: blue"> 

US 11,036,823 B2 

<span>Error - Please select from the following options: 
<ol> 

<li><a href="#">Followup Call</a></li> 
<li><a href="#">Sencl letter in mail</a></li> 

<fol> 
</span> 

</span> 
</div> 

</div> 



U.S. Patent Jun.15,2021 

Capture agent detects 
text node modification 

Yes 

• 
i=ind the beginning of 

the contiguous 
sequence 

• 
Concatenate all the 

text in the contiguous 
sequence 

FIG. 6A 

600 

~o 

/4o 
-

Sheet 9 of 13 

Serialize the modification 64 

for the pos!t!on 
determined and the text 

determined 

0 

US 11,036,823 B2 

1 

Serialize the 
modification for the 

position and text of the 
target text node 

\ 
650 



U.S. Patent Jun.15,2021 Sheet 10 of 13 US 11,036,823 B2 

<div id="cemer_window"> 
<div id="response"> ◄ ... _ . . . . .. . . . . . .. . . . . .. · · -- · -- · 

Your application status is: 
660 Original 
document 

670 Document 
after modification 

<s~n _style="color: b!ue">pending<ispan> ..,. · · · 
'••,,, 

</div> 
</div> 

<div id="cemer_window"> 
<div id="response"> 

Your application status is: 
complete 

</div> 
</div> 

·• .. ······ 

FIG. 6B 

· 1st Text Node 

··· .. • .. -Span Node 

· · · · · .. · .. ·•• ....... Last Text Node 



U.S. Patent Jun.15,2021 

A counter is set to zero 

Current node is set to ttle firs! 
child of tt1e target node's parent 

node 

720 

Sheet 11 of 13 US 11,036,823 B2 

700 

710 

/4o 
>----------Yes----------

r-Jode index is 
value of counter 

No 

No 

Increment 
counter by one 

Yes 
Is node 

previous to the 
current notie a 

text node 

' 722 

'---------Ye~----------------------' 

FIG. 7 



U.S. Patent 

Capture agent detects 
text node modification 

Jun.15,2021 Sheet 12 of 13 

800 

810 

Yes 

• __.., 
Find the beginning of the 820 
continuous sequence of 
text nodes that contains 
the text node preceding 

the additiOn 

/4o 
Concatenate the text of 

the contiguous sequence 
of text nodes 

, 
Serialize the moditication 

840 
Concatenate the text of the 

85 0 

for the position - contiguous sequence of text nodes 
determined and the text starting with the text node following 

determined the addition 

' 
Serialize a node addition for a text ---.. 

86 0 
node at the position of the text node 
following the addition with the text 

determined 

FIG. 8 

US 11,036,823 B2 

No 

Serialize a node 
addition for the node to 

be added 



!/0 SYSTEM CENTRAL 
CONTROLLER MEMORY PROCESSOR 

71 72 73 

.. ·~ '~ 
,. 

' 
• 

1 " • 

DISPLAY !/0 PORT 
KEYBOARD 

ADAPTER 77 

82 78 

.. 

MONITOR 

76 

~ 10 

PRINTER Data Collection 
74 Device 

85 

.. l . 
1 ! 

STORAGE EXTERNAL 
DEVICE(S) INTERFACE 

79 81 

75 

/. . 

e • 
00 
• 
~ 
~ 
~ 
~ = ~ 

2' 
? .... 

"'Ul 
N 
0 
N .... 

rJJ 
=('D 
('D ..... .... 
~ 

0 .... .... 
~ 

d 
r.,;_ 

"'""' 
"'""' "' = w 

_,,°'-
00 
N 
w 

= N 



US 11,036,823 B2 
1 

ACCURATE AND EFFICIENT RECORDING 
OF USER EXPERIENCE, GUI CHANGES 

AND USER INTERACTION EVENTS ON A 
REMOTE WEB DOCUMENT 

2 
using log files, and later using either server-side packet 
capture systems or a client-side capture agent communicat
ing with a server-side storage and analysis system. An 
advantage exists in combining the server-side packet capture 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

5 and client-side capture agent, as both capture overlapping 
data, and the most recent art has not been able to make 
efficient use of combining the two methods 

The present application is a continuation of, and claims 
the benefit and priority to U.S. application Ser. No. 14/984, 
102, filed Dec. 30, 2015, entitled "ACCURATE AND EFFI
CIENT RECORDING OF USER EXPERIENCE, GUI 
CHANGES AND USER INTERACTION EVENTS ON A 
REMOTE WEB DOCUMENT", which claims the benefit 
and priority under 35 U.S.C. 119(e) of U.S. Provisional 
Application No. 62/098,951, filed Dec. 31, 2014, the entire 
contents of which are incorporated herein by reference for 
all purposes. 

Attempts to keep a client-side capture agent's data in sync 
with a replay engine have met various challenges, such as 

10 client-side plugins or server-delivered scripts that modify 
the DOM prior to document load completion and changes to 
adjacent text nodes resulting in a merging of a node during 
replay. To compensate for these challenges, systems have 

15 
been required to send a new copy of the entire DOM or 
HTML as viewed by the remote browser back to the 
server-side web session storage and analysis engine, some
times more than once on a single document to "sync" the 
replay engine with the actual document being viewed 

FIELD 20 remotely with the client-side capture agent. However, this 
inefficiency of sending the full HTML from the client both 
consumes additional client bandwidth and can slow other 
interactions, for example, the client web browser fetching 
the next document or new data. 

The present disclosure relates generally to capturing 
dynamic real-time changes to a web document within a 
browser. More specifically, the present disclosure relates to 
systems and methods for the remote capture of user inter- 25 

action events and web document or graphical user interface 
changes within a web document for user experience analy
sis, playback, and statistical analysis. 

Products can also capture user interaction events on a 
remote web document. Specifically with respect to capturing 
mouse clicks and mouse movement, systems have 
approached tracking of these type of events by capturing the 
Cartesian coordinates where a mouse moves, and the Car-

BACKGROUND 30 tesian coordinates of where a user performs mouse clicks. 
This has been moderately effective in the past. However, as 
the number of devices used to access web documents 
increase and the number of varying screen displays 
increases, web designers have transitioned to a more 

Since the introduction of client-side web technologies 
such as JavaScript, web documents have become increas
ingly dynamic, allowing users to interact directly with the 
web document without the browser making time-consuming 
requests to a server for each content change. Interacting with 
a data table to sort colunms or filter data, changes to the 
Document Object Model (DOM) element opacity/location/ 
dimensions/content, and asynchronously fetching and dis
playing data are just some examples of how web documents 
have become progressively richer with dynamic content and 
interactions. 

35 dynamic, or responsive, document design, where the content 
layout changes dynamically based on the client's screen 
size. As such, simply capturing Cartesian coordinates is 
ineffective and inaccurate at helping web operators and 
designers analyze how users interact with their document, as 

40 the results are not clear with respect to what the user clicked 
or what content a mouse went over, in, or out of. 

Because web document content can be modified within 
the user's browser, website developers and providers do not 
have a clear insight into how their audience is using and 45 

interacting with the web documents or web applications. 
Despite having created the web document content, but 
because of the large amount of permutations of how users 
can interact with an individual document or groups of 
documents, providers, designers, operators, and web docu- 50 

ment creators seek an accurate and efficient way to capture 
how users interact with their web documents to playback 
and analyze the remote interactions. Traditionally, the net
work to desktop browsers was viewed as reliable and 
adhering to fairly consistent and predictable performance 55 

patterns. In the new environment where users increasingly 
access data from any device, and over widely varying 
network conditions, the proposition that performance is 
consistent is no longer valid. Users may see only partial 
content before getting frustrated and leaving a page or 60 

website. They may get frustrated due to content that does not 
even come from the primary website, but instead is sourced 
from Content Distribution Networks or external advertising 
or social media sites. 

Products can capture graphical user interface changes on 65 

a remote web document. Current capture systems have 
approached analysis of remote web document events first 

Therefore, it is desirable to provide new techniques that 
address these and other problems. 

BRIEF SUMMARY 

Embodiments provide systems, methods, and apparatuses 
to accurately and efficiently capture events of a Web docu
ment at a client device and send the events to a server-side 
capture engine, which can combine the events to reassemble 
the events. For example, user interface and user interaction 
events on a remotely displayed web document can be 
reassembled for the purpose of playback and analysis. 

In some embodiments, only minimal DOM node modi
fications are sent without sending the entire DOM tree, while 
ensuring the DOM model is accurately represented in the 
server-side storage and analysis system. Additionally, user 
interaction events such as mouse moving, scrolling, mouse 
clicks, and keyboard entries can be sent using unique DOM 
identifiers to accurately playback the events with respect to 
the content elements that occurred on a remote browser. 
Embodiments can address many challenges with the com
plete, yet minimal, capture set required for accurate play
back and analysis of user interface and user interaction 
events, with efficient use of network communication. 

Other embodiments are directed to systems and computer 
readable media associated with methods described herein. 



US 11,036,823 B2 
3 

A better understanding of the nature and advantages of 
embodiments of the present invention may be gained with 
reference to the following detailed description and the 
accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates the architectural components according 
to embodiments. 

FIG. 2 depicts an example workflow of one embodiment 
of the client-side capture agent. 

FIG. 3A depicts an example embodiment workflow for 
how embodiments can uniquely identify a DOM node in the 
DOM tree. 

FIG. 3B illustrates an example HTML modification. 
FIG. 4A illustrates an example embodiment workflow for 

calculating a node index. 
FIG. 4B illustrates an example embodiment workflow for 

calculating a node index by counting only the child nodes of 
the same type as the target node. 

FIG. SA depicts an example embodiment workflow for 
how embodiments can prevent transmission of overlapping 
modification notifications. 

4 
Embodiments can record everything sent from both sides, 

both from the server and the client for a specific IP address. 
One can then pull up the page that the user actually saw ( and 
thus display the pages that the user saw) and replay the steps 

5 and interactions the user took (e.g., a stock trade for a 
financial company). The determination of the actual dis
played page can be done even for dynamic web pages. This 
can be done by listening to those changes and sending the 
changes back to a server in an efficient manner. Embodi-

lO ments can link the DOM originally sent by the server with 
small changes and user interactions on the front end. 
I. System 

FIG. 1 illustrates a generalized example of a computing 

15 
environment, or high level technical architecture compo
nents, used to capture and store web replay data. One or 
more of the below-described techniques may be imple
mented in or involve one or more computer systems. The 
computing environment in FIG. 1 is not intended to suggest 

20 any limitation as to scope of use or functionality of described 
embodiments. 

A web session may begin with a user 100 on a web 

FIG. 5B illustrates an example HTML modification with 25 

multiple node modifications. 

browser 101 initiating the browser request 110 for a web 
document 150 from a web server 130. As the request is sent 
to the web server 130, the request may travel through a 
collective of routers across a network 105. The web server 

FIG. 6A illustrates an example embodiment workflow for 
how embodiments can address DOM text node modifica
tions for text nodes which have adjacent text nodes. 

FIG. 6B illustrates an example HTML change with adja
cent text nodes. 

FIG. 7 illustrates an example embodiment workflow for 
calculating a canonical node index. 

FIG. 8 illustrates an example embodiment workflow for 
serialization of a DOM node addition modification that 
occurs between two adjacent text nodes. 

FIG. 9 shows a block diagram of an example computer 
system 10 usable with system and methods according to 
embodiments of the present invention. 

DETAILED DESCRIPTION 

Efficient and accurate capture of user interactions and 
graphical user interface changes is needed for playback and 
analysis of web document sessions. There has been a large 
shift towards access via tablet, mobile, and other non
desktop devices over the last five years. Existing methods do 
not recognize the unique challenges of capturing and record
ing user interaction data in this new reality. Embodiments of 
the present invention have several new innovations that 
address the challenges of a multi-device reality. In addition, 
many sites now rely on advertising and/or social media for 
a substantial portion of the business value. Existing methods 
also fail to recognize this requirement, and do not provide 
any insight into how external content is impacting what the 
user encounters. 

Methods and systems for accurate and efficient capture of 

130 may reside behind a network device 120, such as a load 
balancer, switch, or router. 

In one embodiment, the traffic between the user 100 and 
30 web server 130 may be network mirrored 114 to the server

side capture engine 115. The server-side capture engine 115 
may exist within the web server 130. In an embodiment 
where the web server 130 is operating in a cloud environ
ment without administrative control of the network device 

35 120, the web server 130 may copy and forward its packets 
to the server-side capture engine 115. In another embodi
ment, the client-side capture agent may send the DOM to the 
server-side capture engine directly. 

Once the web server 130 has received the request, web 
40 server 130 may transmit a response 111 through the network 

device 120 and the network 105 for return to the user 100 
web browser 101. The web server 130 may include within 
the response the HTML Document Object Model (DOM) 
151 and an embedded client-side capture agent 152. In one 

45 embodiment, a web document can contain a reference to the 
capture agent (e.g., JavaScript code), which can then be 
fetched as a result. The capture agent could also be sent 
separately from the web document. Regardless, the capture 
agent would be sent in conjunction with the web document, 

50 such that the capture agent can capture data about the web 
document. Thus, the a capture agent can be received in 
conjunction with a delivery of the web document. 

The server-side capture engine 115 stores a copy of the 
request and response from the web server 130 as 116, which 

55 may include the entire DOM 151. The server-side captured 
data can be stored in the server-side capture engine 115. 
Engine 115 may include a plurality of separate engines, such 
as the capture engine, an analysis engine, and a web session a web document graphical user interface events (e.g., 

changes and user interactions) are described. Embodiments 
can address the inefficiency of sending the entire DOM or 60 

HTML by only sending the necessary DOM changes back to 
the server, and suppressing duplicate information. Embodi
ments can also address inaccuracies in capturing user inter
actions by sending specific DOM node identifiers as part of 
identifying mouse movements and mouse clicks. Some 
embodiments can replay without any prior configuration or 
instrumentation of the server-side DOM capture engine. 

storage engine. 
The embedded client-side capture agent 152 can monitor 

changes to the DOM 151 and user 100 interactions, such as 
mouse clicks, mouse movements, scrolling, and keyboard 
entry to relay action and changes through the initiation of 
additional browser requests 110 to the web server 130. 

65 Changes to DOM 151 and user interaction are examples of 
events associated with nodes in the DOM. When these 
requests return to the web server 130, they are captured by 



US 11,036,823 B2 
5 

the server-side capture engine 115 and the client-side data is 
stored as 117, as detailed above for later reassembly and 
analysis. 

Example embodiments of the embedded client-side cap
ture agent 152 are further detailed below. The server-side 5 

capture engine and web session storage 115 can combine the 
data from the client-side agent 117 with the data from the 
captured server-side network traffic 116 to create an accurate 
representation of all user interface and user interaction 
events. The server-side capture engine 115 may use various 10 

combinations of IP address, referrer, session cookies, 
browser identifier, and operating system type to link web 
documents together into a session for replay. 
II. Client-Side Capture 

15 
Server-side packet capture systems can capture the 

HTML/DOM sent to the browser. But, before the browser 
has completed loading the DOM sent from the server and 
captured server-side, the HTML may be modified using, 
perhaps, a client-side plugin or server-delivered scripts. 20 

Modern browser technology does not provide a method to 
distinguish which DOM nodes were modified client-side and 
which were delivered from the original HTML sent from and 
captured on the server-side. With this regard, using the full 
tree DOM path to address changes may lead to errors during 25 

replay and analysis when client-side scripts modify the 
DOM during the DOM load in the browser and prior to the 
capture agent loading. 

To address this challenge, embodiments can determine 
identification information of a node associated with an 30 

6 
nodes in the DOM, a removal of one or more nodes in the 
DOM, or a modification to one or more existing nodes in the 
DOM. 

At block 211, to efficiently process the changes within the 
modification notification event, the capture agent ignores 
children node modifications for ancestor nodes which were 
modified and which required the DOM content to be sent to 
the server-side capture engine. An example embodiment of 
this process is detailed in FIG. 5. 

At block 212, the capture agent looks for adjacent text 
nodes in additions, modifications, or removals that can be 
represented as one text node during replay. Example 
embodiments of these processes are detailed below in FIG. 
6A and FIG. 7. 

At block 213, the capture agent uses nearest uniquely 
identified ancestor DOM element to identify a path to the 
event. If the associated node has a unique identification, then 
an ancestor is not needed. Some embodiments can unam
biguously identify a target node of DOM changes by con
structing a sequence of node indexes by recursively taking 
the node index of the target node, then the node index of the 
target node's parent and so on until a node is reached that 
can be unambiguously identified through another means, 
such as the fact that the node is the root node of the entire 
DOM. In this description, this sequence of node indexes is 
called a "DOM path". A DOM path that ends with the root 
node of the entire DOM is called a "full tree DOM path". 

At block 230, once the capture agent has identified 
modification(s) to send to the server-side capture, storage, 
and analysis engine, the capture agent may strip out sensitive 
information. The sensitive information may include ele-
ments such as passwords, credit cards, social security num
bers, and other configured sensitive fields. Thus, the capture 
agent can strip sensitive information before transmitting the 

event, and save that identification information with an event 
record. As an example of using identification information, 
embodiments can direct the capture agent to use the nearest 
uniquely identified ancestor node to uniquely name the path 
to the current modification. A uniquely identified node is a 
node that can be unambiguously identified without using a 
DOM path, such as an HTML element with an "id" attribute 
field. An example embodiment of this process is detailed in 
FIG. 3A. Embodiments can work backwards from the node 
to find the closest uniquely identifiable path. 

35 event records to the server-side web session storage engine. 

FIG. 2 illustrates an example workflow of one embodi
ment of the client-side capture agent. The example workflow 
can be used a method for tracking events associated with a 
web document on a client device. 

At block 200, the DOM is loaded in the browser 200. 
Then, at block 201, the capture agent is loaded. For example, 
the browser can begin loading resources, including the 
HTML document, javascript, images, stylesheets and other 
data required to render the page. The HTML document 
parsed by the browser can include instructions to load the 
capture agent software into the browser. 

At block 202, the capture agent begins monitoring for 
DOM changes (e.g., graphical user interface changes) and 
user interaction events. While processing changes and 
events, the capture agent may use memory available within 
the browser, or a permanent storage mechanism provided by 
the browser. Some events, such as mouse movements, may 
be sampled to a specific time resolution, such as 0.1 seconds, 
to reduce the amount of data collected. Other events, such as 
a mouse click, may not be sampled to ensure an accurate 
representation of the user's interactions. 

At block 210, when the capture agent receives a DOM 
modification notification event, the capture agent begins to 
process the changes. The DOM modification notification 
event may contain multiple DOM changes. As examples, the 
DOM modification can include an addition of one or more 

At block 231, the capture agent may then assemble and 
coalesce the data, including meta information such as pro
cessing time, load time, and other situational information 
available within the browser, timestamps, and other infor-

40 mation such as errors. It may coalesce the data (e.g., over a 
period of 5 seconds) by combining similar events and using 
short identifiers to optimize the information into the smallest 
amount of data bytes. 

At block 232, the capture agent may compress the data in 
45 pre-determined chunks. Various compression algorithms are 

known to those skilled in the art, which trade time to 
compress vs compression efficiency. While one compression 
algorithm may be applicable today given today's CPU 
processing power available, in the future, a more time 

50 consuming algorithm may be more appropriate. 
At block 233, the capture agent may send the data to the 

server-side storage and analysis engine. The server can use 
the data (e.g., as event records) to replay the changes. For 
example, the server can identify an event and the corre-

55 sponding node. The server can then make that change and 
replay it. After receiving the event records at the server-side 
web session storage engine, the server-side web session 
storage engine can combine the event records with a server
side captured DOM of the web document to generate a 

60 modified DOM from an original unmodified DOM. 
In some embodiments, the capture agent can store the 

event records in a client storage until the event records are 
transmitted to the server-side storage and analysis engine. 
The event records can be deleted after sending the event 

65 records to the server-side engine. Subsequent to deleting the 
event records, a plurality of additional events associated 
with nodes in the DOM can be captured. For each of the 



US 11,036,823 B2 
7 

plurality of additional events, additional identification infor
mation of an additional associated node can be determined. 
The additional identification information can be stored in an 
additional event record. The capture agent can transmit the 
additional event records to the server-side web session 5 

storage engine. 
In one embodiment, the client-side capture agent sends 

the data at pre-determined intervals or when the document is 
unloaded in the browser. The data can be sent at pre
determined intervals to ensure data is not lost in the browser 10 

or during transit. As another example, the client-side capture 
agent can send the data when there are no existing network 
requests. 

8 
ordered set of child nodes of its parent node, or of only child 
nodes of the same type as the target node (i.e., fifth span 
child referring to the fifth occurrence of the span node 
without regard to nodes of other types). A unique tree path 
of a target node exists so that one can recursively take the 
node index of the target node, and then the node index of its 
parent node and so on to construct a sequence leading up to 
an ancestor that has a unique node identifier, e.g. an "id" 
attribute. 

At block 300, the capture agent receives the DOM modi
fications notification. The notification can be received in any 
suitable form, e.g., as a flag, a flag with a message, a 
message that include information about the modification, 
etc. 

At block 310, when the capture agent receives the DOM 
modifications notification, the capture agent evaluates if the 
action is a node addition or removal. The DOM modification 
event can include indicators if the node is being added or 
removed. 

At block 320, the capture agent may then look for a 
unique identifier on the DOM node, such as an 'id' attribute 
which would uniquely identify the node. Another example is 
combinations of attributes on a specific tag name, such as 

At block 220, the capture agent may also receive user 
interaction events, such as keyboard entry, document resize, 15 

orientation changes, scroll events, mouse movements, or 
mouse clicks. In the case of keyboard entry, the capture 
agent may strip sensitive information from the data ( event 
record) as detailed above. The user interaction data can 
follow a similar path as for DOM modifications detailed 20 

above in block 213 for the capture agent identifying the 
DOM node of the target of the events, in block 230 stripping 
sensitive information, in block 231 coalescing the data, in 
block 232 compressing the data, and in block 233 sending 
the data. 25 input[name="addressl"], which would uniquely identify the 

input field for the address 1. As examples, four different ways can be used in order to 
determine a unique identification. DOM node identifiers can 
be used. Embodiments may potentially use sibling or ances
tor node identifiers. If the current node is not uniquely 
identified, one can go up to parents. Once embodiments start 
looking up at the parents, embodiments can look at siblings. 
Embodiments can look for a unique parent or sibling, such 

At block 321, the capture agent may begin to traverse the 
tree upwards looking for a unique identifier. The traversal 
may occur in any suitable order. For example, the tree can 

30 be traversed via each branch until an end is reached, and then 

as the case where there is a parent that is, for example, a DIV 
(division in HTML) or a P (paragraph in HTML). And then 
inside the paragraph there are three spans. If none of them 35 

had unique identifications on them (e.g., no unique identi
fier), the DIV may have a unique identifier. But, if there is 

a previous branch point not taken can be traversed. 
At block 330, to identify the unique tree path to the 

modified node, the agent uses the path to the node changed 
with a root of the node with unique ID to represent the 
unique tree path. The path may be represented by node 
indexes such as those illustrated in FIG. 4 or FIG. 4A. 

FIG. 3B illustrates an example HTML modification. 
Document 350 shows an example original HTML. At docu-

a change to the third span, embodiments can look to see that 
there are three span children and that current node is a third 
span child. 40 ment 360, the example original HTML in document 350 has 

been modified, where "pending" has been modified to 
"approved". As an example, some embodiments can traverse 
to the parent in search of a unique "id" attribute of 

This can use both sibling or ancestor DOM node identi
fiers and DOM element attributes that are unique. This can 
use the order of the node among its siblings. Embodiments 
can also find DOM element attributes that are unique among 
sibling DOMs. For example, one span can have a text size 45 

of 25 and it is being modified to text size of 22, so that is how 
embodiments can uniquely identify it. When no sibling or 
ancestor node that has a unique DOM node identifier is 
identified, DOM element attributes that are unique among 
sibling DOM elements can be stored to identify a first node 50 

in the path to the associated node. 

"response". Using the DIV with the "response" ID attribute 
as the root path, some embodiments can unambiguously 
identify the node which changed as the rd span child of 
"response", with the style attribute having a value of"color: 
blue". As another example, there can be a nearby node that 
might have a style tag (attribute), which says the font is 25 
and we know there's only one nearby that has the style tag 
set as the font size of 25. 

B. Node Index 
To send and store DOM changes, the nodes to which the 

changes occur (i.e. the targets of the changes) can be 
unambiguously identified. Because each node in the DOM 
has a well-ordered set of child nodes, this can be accom
plished by defining the node index of a node to be the ordinal 
number of the node in the well-ordered set of child nodes of 
the node's parent node. An example embodiment of the 

In one example with JavaScript, one might call out a 
specific identifier (e.g., a book) in JQuery. There might be a 
number of pages that are children in the book, and so a user 
might request the element of book and add a new child. So 55 

in other words, a user wants to add a new page. Thus, there 
are use cases where embodiments might address things 
where there is a unique identifier like book, the book tag or 
element, or node, and then address it from a perspective of 
children. 60 process of calculating the node index is detailed in FIGS. 4A 

and 4B. This can also be accomplished by defining the node 
index of a node to be the ordinal number of the node in the 
well-ordered set of child nodes, filtered for only child nodes 

III. Uniquely Identifying a Node in a DOM Tree 
A. Path to a Node in DOM Tree 
FIG. 3A depicts an example embodiment workflow for 

how embodiments can uniquely identify a DOM node in the 
DOM tree. Each node in a DOM has a well-ordered set of 65 

child nodes. Embodiments can define the node index of a 
node to be the ordinal number of the node in the well-

of the same type as the target node, or of the node's parent 
node. An example embodiment of the process of calculating 
the node index for nodes of the same type is detailed in FIG. 
4A. 



US 11,036,823 B2 
9 

FIG. 4A illustrates an example embodiment workflow for 
calculating a node index. An example result would represent 
the target node as the 4th child of the parent node. 

10 
At block 510, the capture agent evaluates if the notifica

tion event contains multiple events, e.g., by examining the 
length of the array of changes. 

At block 520, if the capture agent does contain multiple At block 400, a counter is set to zero in the client-side 
agent. The counter can be stored in any suitable memory and 
associated with a process for calculating a node index. 

5 events, the capture agent creates a first list of modified nodes 
and a second list of parent nodes that has had a child added 
or a child removed. Thus, the modified nodes of the first list 
already existed and attributes of the node itself have been 
modified. The nodes of the second list have had a child node 

At block 410, for the purposes of iteratively looping 
through the DOM tree to unambiguously identify the loca
tion of the node, a variable, or current node, is set to the first 
child of the target node's parent node, where the target node 10 

is the node to unambiguously identify. 

added or removed. It is possible that nodes can be in both 
lists, in the case where a node is added and then removed. 
In this case, the capture agent will ignore the node modifi
cation altogether as the end status of the node is removed. At block 420, it is determined whether the current node is 

the target node, e.g., by comparing a reference, or memory 
location, of the node being evaluated to the reference, or 
memory location, of the node to unambiguously identify. 

At block 530, the capture agent iterates over the first list 
15 of modified nodes. 

At block 540, at each iteration, the capture agent checks 
if an ancestor of the current node is in the second list of 
parent nodes with a child added or removed. 

At block 560, if the ancestor of the current node is in the 

At block 421, the counter is incremented by one if the 
current node is not the target node. On the next iteration, the 
current node is changed to a next child of the target node's 
parent node. 20 list of parent nodes with a child added or removed from 

block 540, the current modification may be ignored by the 
capture agent, as this modification may already be sent with 
the ancestor changes. 

At block 430, the final value of the counter is the node 
index. This index is used to create an unambiguous path 
from a uniquely identified node to the target node. Using 
FIG. 5B, an example of an unambiguous path is the first span 
child of the div tag with attribute of id="response" which 25 

would represent the span tag with the inner text of "Your 
application status is:". 

FIG. 4B illustrates another example embodiment work
flow for calculating a node index, this time by counting only 
the child nodes of the same type as the target node. This 30 

embodiment can be used by the client-agent in place of FIG. 
4A to provide an unambiguous path to the target node. An 
example result would represent the target node as the 
3rd<p>, or paragraph, child of a parent node who had a 

35 
unique identifier tag. 

At block 450, a counter is set to zero in the client-side 
agent. The counter can be stored in any suitable memory and 
associated with a process for calculating a node index. 

At block 460, for the purposes of iteratively looping 40 

through the DOM tree to unambiguously identify the loca
tion of the node, a variable, or current node, is set to the first 
child of the target node's parent node, where the target node 
is the node to unambiguously identify. 

At block 470, it is determined whether the current node is 45 

the target node. 
At block 471, it is determined whether the current node is 

a same node type as the target node. Two nodes share the 
same type when they have the same node tag. For example, 
to nodes would be the same type if they were both "<span>" 50 

nodes. 
At block 472, if the current node is not the target node 

470, and if the current node is the same type of node as the 
target node 471, the counter is incremented by one. 

At block 480, if the node is the target node 470, the final 55 

value of the counter is the node index. 
IV. Overlapping Modifications 

FIG. SA depicts an example embodiment workflow for 
how embodiments can prevent transmission of overlapping 
modification notifications. 

At block 500, when the capture agent receives the DOM 
modifications notification, the notification may contain mul
tiple modifications. For the purposes of efficiently, modern 
day browsers currently send DOM modifications in groups 

60 

of changes. The capture agent analyzes the set of changes to 65 

suppresses duplicate information from overlapping modifi-
cations. 

At block 550, if the current node does not have an 
ancestor in the list of parent nodes with a child added or 
removed from block 540, or if the notification event did not 
contain multiple events from block 510, then the modifica
tion data is prepared to later send to the server-side storage 
and analysis engine. 

At block 570, the capture agent continues to iterate over 
all the modified nodes until complete. Accordingly, the 
capture agent can identify overlapping modification events, 
and store only one event record for the overlapping modi
fication events. In one embodiment, a modification of a 
single ancestor node can represent overlapping modification 
events targeting a single ancestor node subtree. For instance, 
overlapping modifications can be within a single parent node 
that has more than one child or extended grandchildren that 
has been modified (and thus overlapping with the modifi
cation of the ancestor which must be serialized). An example 
is when A has two children B and C. B has one child D. C 
has two children F and G. F has one child H. H has three 
children I, J, and K. If there is a modification to J, G, and C, 
embodiments only need to send the modification for C as it 
would contain all modification of C (i.e., including any 
modification ofF, G, H, I, J, and K), and thus there is no need 
to record J and G changes. 

FIG. 5B illustrates an example DOM change with mul
tiple node modifications. Document 580 shows an example 
original HTML. At document 590, the example original 
HTML of document 580 has been modified, where "pend-
ing" has been removed and 7 additional nodes have been 
added. As an example, some embodiments can sUlllillarize 
the entire modification as a single modification to the 
unambiguously identified node of the rd span child of 
"response", with the style attribute having a value of"color: 
blue". The node addition notifications can be suppressed as 
they are all contained in the single node modification. 
V. Merging Text 

To send and store DOM changes, the changes can be 
serialized. In one embodiment, the serialization of a node 
being added may include the identifier of the parent of the 
target node as obtained by the process detailed above, the 
node index of the new node, and the HTML representation 
of the node and its children. Obtaining the HTML represen
tation of a DOM node can be done in a computationally 
efficient manner as this is a native feature in modern 



US 11,036,823 B2 
11 

browsers and is performed with machine code rather than 
JavaScript. The drawback is that this HTML representation 
is ambiguous about whether contiguous text is represented 

12 
combines the contiguous sequence of text nodes including 
the text node for which the change was detected. The 
modification can be depicted as positioned at the start of the 
contiguous sequence of text nodes. 

At block 620, the capture agent finds the beginning of the 
contiguous sequence. The beginning of the sequence is the 
first node in the ordered list of nodes that is of type text node. 

as one text node in the DOM (the "canonical" form of the 
DOM) or as multiple text nodes. DOM modification as a 5 

result of user interaction or user interface changes may cause 
multiple sibling text nodes to appear through the addition 
and modification of text nodes. These adjacent nodes are 
represented as a single node during replay and can lead to 
errors if not properly managed during capture. 

To address this challenge, changes are serialized in such 
a manner so that an agent replaying or analyzing the 
serialized changes may assume that the beginning state of 
any set of changes is a canonical DOM: that is, there are no 
adjacent text nodes being that all of them are merged 
together. Note that the serialized changes themselves may 
render the DOM non-canonical, but it is assumed that the 
DOM is changed to return to a canonical state before the 
next set of serialized changes. This may be affected with 
three additions to the way DOM changes are serialized: 

At block 630, the capture agent concatenates all the text 
in the contiguous sequence. 

10 At block 640, the capture agent then serializes the modi-
fication for the position determined in block 620 and the text 
determined in block 630. Accordingly, the capture agent can 
merge adjacent sibling DOM text nodes into a single node 

15 
for identification of the associated node of an event. In one 
embodiment, the serialization may be a text representation 
of the text of the modified node. In another embodiment, 
serialization may be to a structure stream of data which may 
include other attributes of the text node to ensure fidelity of 

20 the all of the node's data. 
When text nodes are modified, if the modification's target 

is a text node that has adjacent text nodes, a modification to 
a "virtual text node" that combines the adjacent text nodes 
into one text node positioned at the beginning of the 
sequence of contiguous text nodes is serialized instead of a 25 

modification to the actual target text node. An example 
embodiment of this process is detailed in FIGS. 6A and 6B. 

For purposes of calculating node indexes, adjacent text 
nodes are counted as one text node, the canonical node. An 
example embodiment of the process of determining the 30 

canonical node index is detailed in FIG. 7. 

35 

At block 650, if there were no sibling text nodes, the 
capture agent serializes the modification for the position and 
text of the target text node. 

B. Example 

FIG. 6B illustrates an example DOM change with adja-
cent text nodes. Document 660 shows an example original 
HTML with adjacent text nodes with a span node in 
between. At document 670, the example original HTML of 
document 660 has been modified, where the span containing 
"pending" has been removed and replaced with the word 
"complete". As an example, some embodiments can identify 
the three adjacent text nodes and summarize the modifica-
tion as a removal of the span node, removal of the last text 
node, and a modification to the first text node containing the 
text of all three text nodes. 

C. Canonical Node Index 

FIG. 7 illustrates an example embodiment workflow for 
calculating a canonical node index. The canonical node 
index represents the index at which the text node, or set of 

For the addition of any node between two adjacent text 
nodes, the capture agent can also serialize a modification to 
the DOM such that the virtual text node combining the two 
adjacent text nodes are split into two or more text nodes, 
with at least one of the breaks occurring where the new 
DOM node is added. In one embodiment, a text node 
modification may be serialized for the virtual text node that 
removes the text that belongs to the text nodes appearing 
after the DOM node being added. A DOM node addition 40 

may be serialized to add a text node with the previously 
removed text after the virtual text node. Finally, a DOM 
node addition can be serialized for the DOM node being 
added between the two text nodes. An example embodiment 

45 text nodes, is uniquely identified as it will be represented in 
the DOM tree during replay. During replay of DOM 
changes, two adjacent text nodes can appear as a single text 
node, and the canonical node index can enable the merging 
of text by accounting for adjacent text nodes. Because the 

of this process is detailed in FIG. 8. 
This section particularly relates to the way embodiments 

can serialize additions of DOM nodes as the HTML of the 
node and its children. A possible drawback is that this 
serialization may be ambiguous about whether contiguous 
text in the serialization is represented as one text node in the 
DOM or as multiple text nodes. A solution is to always 
serialize changes such that the beginning state of any change 
we serialize is a canonical DOM (that is, there are no 
adjacent text nodes, all of them being merged together). 

A. Method 

FIG. 6A illustrates an example embodiment workflow for 
how embodiments can address DOM text node modifica
tions for text nodes which have adjacent text nodes. 

At block 600, the capture agent detects a text node 
modification. For example, the capture agent can review the 
node types declared on each node in the list of modifications 
to determine if any of the nodes are of type text node. 

At block 610, the capture agent determines if there are 
sibling text nodes. If so, the capture agent may serialize the 
modification as if it occurred to a single virtual text node that 

50 replay of DOM changes will have nodes represented differ
ently than during capture, it can be important to keep track 
of the canonical node index so that the replay can associate 
the indexed nodes identified in capture with their proper 

55 

location in the DOM tree during replay. 
At block 700, a counter is set to zero in the client-side 

agent. 
At block 710, for the purposes of iteratively looping 

through the DOM tree to unambiguously identify the loca
tion of the node, the current node is set to the first child of 

60 the target node's parent node, where the target node is the 
node to unambiguously identify. 

At block 720, a loop is created while the current node is 
not the target node. 

At block 721, it is determined whether the current node is 
65 a text node. If the current node is not a text node, the counter 

is incremented by one at block 723. If the current node is not 
a text node, the method proceeds to block 722. 



US 11,036,823 B2 
13 

At block 722, it is determined whether the node previous 
to the current node is a text node. If the previous node is not 
a text node, the counter is incremented by one at block 723 

At block 730, the final value of the counter is the node 
index. 

D. Serialization 

FIG. 8 illustrates an example embodiment workflow for 
serialization of a DOM node addition modification that 
occurs between two adjacent text nodes. As two adjacent 
text nodes will appear as a single node during replay, a text 
node addition next to an adjacent text node must be recorded 
as a single merged text node modification. 

At block 810, after the capture agent detects a DOM node 
addition modification 800, the capture agent may evaluate if 
it is between two adjacent text nodes. For example, if the 
node has sibling nodes, the capture agent can check if either 
of the adjacent nodes is of type text node. 

At block 820, if the modification is between two adjacent 
text nodes, the capture agent can find the beginning of the 
contiguous sequence of text nodes that contains the text 
node preceding the addition. To do so, the capture agent can 
iterate through the list of sibling nodes, checking for type of 
text node. The iteration in either direction can stop once a 
non-text node is reached or the end of the sibling list in that 
direction is reached. 

At block 830, the capture agent can concatenate the text 
of the contiguous sequence of text nodes that starts at the 
determining beginning of the contiguous sequence. 

At block 840, the capture agent may then serialize the text 
from the position determined in 820 and the text determined 
in 830. This text represents the entirety of the text node that 
will be seen from the replay's perspective, where all con
tiguous text nodes will be a single text node. An example 
would be where the following nodes exist: 

<div> 
Welcome to 
<br> 

Quantum Metric 
<br> 

2015 
</div> 

If a modification occurred removing the two<br> nodes, the 
"Welcome to", "Quantum Metric", and "2015" nodes would 
continue to be adjacent nodes during the capture, and they 
would continue to be represented as 3 distinct text nodes. 
During replay, these 3 text nodes would be a single text node 
"Welcome to Quantum Metric 2015". 

At block 850, the capture agent may then concatenate the 
text of the contiguous sequence of text nodes starting with 
the text node following the addition. 

At block 860, the capture agent may then serialize a node 
addition to the text representation of the text contained in the 
text node, for a text node at the position of the text node 
following the addition with the text determined in 850. 

14 
subsystems are shown in FIG. 9 in computer apparatus 10. 
In some embodiments, a computer system includes a single 
computer apparatus, where the subsystems can be the com
ponents of the computer apparatus. In other embodiments, a 

5 computer system can include multiple computer appara
tuses, each being a subsystem, with internal components. A 
computer system can include desktop and laptop computers, 
tablets, mobile phones and other mobile devices. 

10 
The subsystems shown in FIG. 9 are interconnected via a 

system bus 75. Additional subsystems such as a printer 74, 
keyboard 78, storage device(s) 79, monitor 76, which is 
coupled to display adapter 82, and others are shown. Periph
erals and input/output (I/O) devices, which couple to I/O 

15 
controller 71, can be connected to the computer system by 
any number of means known in the art such as input/output 
(I/O) port 77 (e.g., USB, Fire Wire®). For example, I/O port 
77 or external interface 81 (e.g. Ethernet, Wi-Fi, etc.) can be 
used to connect computer system 10 to a wide area network 

20 such as the Internet, a mouse input device, or a scanner. The 
interconnection via system bus 75 allows the central pro
cessor 73 to communicate with each subsystem and to 
control the execution of instructions from system memory 
72 or the storage device(s) 79 (e.g., a fixed disk, such as a 

25 hard drive or optical disk), as well as the exchange of 
information between subsystems. The system memory 72 
and/or the storage device(s) 79 may embody a computer 
readable medium. Another subsystem is a data collection 
device 85, such as a camera, microphone, accelerometer, and 

30 the like. Any of the data mentioned herein can be output 
from one component to another component and can be 
output to the user. 

A computer system can include a plurality of the same 
components or subsystems, e.g., connected together by 

35 external interface 81 or by an internal interface. In some 
embodiments, computer systems, subsystem, or apparatuses 
can communicate over a network. In such instances, one 
computer can be considered a client and another computer a 
server, where each can be part of a same computer system. 

40 A client and a server can each include multiple systems, 
subsystems, or components. 

It should be understood that any of the embodiments of 
the present invention can be implemented in the form of 
control logic using hardware ( e.g. an application specific 

45 integrated circuit or field programmable gate array) and/or 
using computer software with a generally programmable 
processor in a modular or integrated manner. As used herein, 
a processor includes a single-core processor, multi-core 
processor on a same integrated chip, or multiple processing 

50 units on a single circuit board or networked. Based on the 
disclosure and teachings provided herein, a person of ordi
nary skill in the art will know and appreciate other ways 
and/or methods to implement embodiments of the present 
invention using hardware and a combination of hardware 

55 and software. 

At block 870, if the modification is not between two 
adjacent text nodes, the capture agent may then serialize a 
node addition for the node to be added, where in contrast to 60 

when other text nodes are adjacent, the text node is treated 
similarly to other node additions. 

Any of the software components or functions described in 
this application may be implemented as software code to be 
executed by a processor using any suitable computer lan
guage such as, for example, Java, C, C++, C #, Objective-C, 
Swift, or scripting language such as Perl or Python using, for 
example, conventional or object-oriented techniques. The 
software code may be stored as a series of instructions or 
commands on a computer readable medium for storage 
and/or transmission, suitable media include random access VI. Computer System 

Any of the computer systems mentioned herein may 
utilize any suitable number of subsystems. Examples of such 

65 memory (RAM), a read only memory (ROM), a magnetic 
medium such as a hard-drive or a floppy disk, or an optical 
medium such as a compact disk (CD) or DVD (digital 



US 11,036,823 B2 
15 

versatile disk), flash memory, and the like. The computer 
readable medium may be any combination of such storage or 
transmission devices. 

16 
skilled in the art may be made in the arrangement, operation 
and details of the method and apparatus of the present 
invention disclosed herein without departing from the spirit 
and scope of the invention as defined in the appended 

5 claims. 
Such programs may also be encoded and transmitted 

using carrier signals adapted for transmission via wired, 
optical, and/or wireless networks conforming to a variety of 
protocols, including the Internet. As such, a computer read
able medium according to an embodiment of the present 
invention may be created using a data signal encoded with 
such programs. Computer readable media encoded with the 10 

program code may be packaged with a compatible device or 
provided separately from other devices ( e.g., via Internet 
download). Any such computer readable medium may reside 
on or within a single computer product (e.g. a hard drive, a 
CD, or an entire computer system), and may be present on 15 

or within different computer products within a system or 
network. A computer system may include a monitor, printer, 
or other suitable display for providing any of the results 
mentioned herein to a user. 

Any of the methods described herein may be totally or 20 

partially performed with a computer system including one or 
more processors, which can be configured to perform the 
steps. Thus, embodiments can be directed to computer 
systems configured to perform the steps of any of the 
methods described herein, potentially with different compo- 25 

nents performing a respective steps or a respective group of 
steps. Although presented as numbered steps, steps of meth
ods herein can be performed at a same time or in a different 
order. Additionally, portions of these steps may be used with 
portions of other steps from other methods. Also, all or 30 

portions of a step may be optional. Additionally, any of the 
steps of any of the methods can be performed with modules, 
circuits, or other means for performing these steps. 

The features and advantages described in the detailed 
description are not all inclusive and, in particular, many 35 

additional features and advantages will be apparent to one of 
ordinary skill in the art in view of the drawings, detailed 
description, and claims. Moreover, it should be noted that 
the language used in the detailed description has been 
principally selected for readability and instructional pur- 40 

poses, and may not have been selected to delineate or 
circumscribe the inventive subject matter. 

Note that in this description, references to "one embodi
ment," "an embodiment" or "some embodiments" mean that 
the feature being referred to is included in at least one 45 

embodiment of the invention. Further, separate references to 
"one embodiment" or "some embodiments" in this descrip
tion do not necessarily refer to the same embodiment(s); 
however, neither are such embodiments mutually exclusive, 
unless so stated and except as will be readily apparent to 50 

those skilled in the art. Thus, the invention can include any 
variety of combinations and/or integrations of the embodi
ments described herein. However, other embodiments of the 
invention may be directed to specific embodiments relating 
to each individual aspect, or specific combinations of these 55 

individual aspects. 
Upon reading this detailed description, those of skill in the 

art will appreciate still additional alternative structural and 
functional designs for a system and method for accurate and 
efficient capture of user interface and user interaction events 60 

on a remote web document through the disclosed principles 
of the present invention. Thus, while particular embodi
ments and applications of the present invention have been 
illustrated and described, it is to be understood that the 
invention is not limited to the precise construction and 65 

components disclosed herein and that various modifications, 
changes and variations which will be apparent to those 

A recitation of "a", "an" or "the" is intended to mean "one 
or more" unless specifically indicated to the contrary. The 
use of"or" is intended to mean an "inclusive or," and not an 
"exclusive or" unless specifically indicated to the contrary. 

All patents, patent applications, publications, and descrip
tions mentioned herein are incorporated by reference in their 
entirety for all purposes. None is admitted to be prior art. 

What is claimed is: 
1. A method for tracking events associated with a web 

document on a client device, the method comprising per
forming, by the client device: 

receiving the web document at the client device, the web 
document having nodes in a Document Object Model 
(DOM), wherein the DOM is a tree data structure; 

receiving a capture agent in conjunction with a delivery of 
the web document, the capture agent configured to 
execute on the client device; 

capturing, by the capture agent, a plurality of events 
associated with a plurality of nodes in the DOM, 
wherein each of the plurality of events includes one or 
more changes to the DOM, wherein the plurality of 
events include user interactions on the web document; 

for each of the plurality of events: 
determining a timestamp for the event; 
determining identification information of an associated 

node, wherein the associated node is associated with 
the one or more changes to the DOM, and 

storing the identification information, the timestamp, 
and the one or more changes in an event record; and 

transmitting, from the capture agent, the event records to 
a server-side web session storage engine for replaying 
the user interactions according to the timestamps of the 
plurality of events. 

2. The method of claim 1, wherein determining identifi
cation information of the associated node includes: 

searching for a unique DOM node identifier of the asso
ciated node. 

3. The method of claim 2, further comprising: 
when a unique DOM node identifier is not found for the 

associated node: 
searching for a sibling or ancestor node that has a 

unique DOM node identifier; 
when the sibling or ancestor node that has the unique 

DOM node identifier is identified, determining a path 
from the sibling or ancestor node to the associated 
node; and 

storing the unique DOM node identifier of the sibling 
or ancestor node and the path in the event record. 

4. The method of claim 3, wherein the path includes an 
order of the associated node among its siblings. 

5. The method of claim 3, further comprising: 
when no sibling or ancestor node that has a unique DOM 

node identifier is identified: 
storing DOM element attributes that are unique among 

sibling DOM elements to identify a first node in the 
path to the associated node. 

6. The method of claim 2, further comprising: 
when a unique DOM node identifier is not found: 

storing DOM element attributes of the associated node 
that are unique. 

7. The method of claim 1, wherein the plurality of events 
include at least one of: an addition of one or more nodes in 



US 11,036,823 B2 
17 

the DOM, a removal of one or more nodes in the DOM or 
a modification to one or more nodes in the DOM. ' 

8. The method of claim 1, further comprising: 
receiving the event records at the server-side web session 

storage engine; and 
combining the event records with a server-side captured 

DOM of the web document to generate a modified 
DOM from an original unmodified DOM. 

9. The method of claim 1, wherein the web document is 
received from a web server and the capture agent is received 10 

from a third party server using information from the web 
server. 

18 
1~. Th~ method of claim 1, further comprising: 
d1splaymg the web document by a web browser, wherein 

the capture agent sends the event records when the web 
browser is not making any other network requests. 

16. The method of claim 1, further comprising: 
compressing, by the capture agent, the event records 

before transmitting the event records to the server-side 
web session storage engine. 

17: T~e method of claim 1, further comprising: 
stnppmg, by the capture agent, sensitive information 

before transmitting the event records to the server-side 
web session storage engine. 

18. The method of claim 8, wherein server-side captured 
DOM of the web document is received by server-side web 
session storage engine from the capture agent. 

10. The method of claim 1, further comprising: 
identifying, by the capture agent, overlapping modifica

tion events; and 
15 19. A computer product comprising a computer readable 

storing only one event record for the overlapping modi
fication events. 

11. The method of claim 10, wherein a modification of a 
single ancestor node represents overlapping modification 20 
events targeting a single ancestor node subtree. 

12. The method of claim 1, further comprising: 
merging, by the capture agent, adjacent sibling DOM text 

nodes into a single node for identification of the asso-
ciated node of an event. 

13. The method of claim 1, further comprising: 
storing, by the capture agent, the event records in client 

storage until the event records are transmitted to the 
server-side web session storage engine; and 

deleting the event records after sending the event records 
to the server-side web session storage engine. 

14. The method of claim 13, further comprising: 
subsequent to deleting the event records, capturing a 

plurality of additional events associated with nodes in 
the DOM; 

for each of the plurality of additional events: 
determining additional identification information of an 

additional associated node, and 
storing the additional identification information in an 

additional event record; and 
transmitting, from the capture agent, the additional event 

records to the server-side web session storage engine. 

25 

30 

35 

40 

medium storing a plurality of instructions for controlling a 
client device to track events associated with a web document 
on the client device, the plurality of instructions comprising: 

receiving the web document at the client device the web 
document having nodes in a Document Obje~t Model 
(DOM), wherein the DOM is a tree data structure· 

receiving a capture agent in conjunction with a delive~ of 
the web document, the capture agent configured to 
execute on the client device; 

capturing, by the capture agent, a plurality of events 
associated with a plurality of nodes in the DOM, 
wherein each of the plurality of events includes one or 
more changes to the DOM, wherein the plurality of 
events include user interactions on the web document· 

for each of the plurality of events: ' 
determining a timestamp for the event; 
determining identification information of an associated 

node, wherein the associated node is associated with 
the one or more changes to the DOM, and 

storing the identification information the timestamp 
and the one or more changes in an ~vent record; and 

transmitting, from the capture agent, the event records to 
a server-side web session storage engine for replaying 
the user interactions according to the timestamps of the 
plurality of events. 

* * * * * 




