
c12) United States Patent
April et al.

(54) SYSTEMS, APPARATUS AND METHODS
FOR RENDERING DIGITAL CONTENT
RELATING TO A SPORTING EVENT WITH
ONLINE GAMING INFORMATION

(71) Applicant: SportsCastr.LIVE LLC, New York,
NY (US)

(72) Inventors: Kevin April, New York, NY (US);
Peter Azuolas, Philadelphia, PA (US);
Philip Nicholas Schupak, Brooklyn,
NY (US); Brian Silston, New York,
NY (US)

(73) Assignee: SPORTSCASTR.LIVE LLC, New
York, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 17/141,631

(22) Filed: Jan. 5, 2021

Related U.S. Application Data

(63) Continuation of application No. 17/027,219, filed on
Sep. 21, 2020, which is a continuation of application

(Continued)

(51) Int. Cl.
H04N 21123
H04N 21161

(52) U.S. Cl.

(2011.01)
(2011.01)

(Continued)

CPC H04N 2116125 (2013.01); H04L 65/4076
(2013.01); H04L 65/601 (2013.01);
(Continued)

NEWS FEEDS
:,RSS)

____ I ., ! : Viewer
'--~ ... :c11ent Device n

,02A

t .-?f,!Y 2020.I
t/_:1028: ' 1

------------------~-~
Broadcast.er : Bro.Jdc3.ster Viewer C!ie11t Viewe(

Client D6V!C6 #1 ! Cbenl Device #2 O~vice #-3 Client Device #4

\'- @A ·., r~: '-..,7@: '-..,JdoiJ

'y

258

I 1111111111111111 1111111111 11111 111111111111111 11111 11111 1111111111 11111111
US011039218Bl

(10) Patent No.: US 11,039,218 Bl
(45) Date of Patent: *Jun. 15, 2021

(58) Field of Classification Search
None

(56)

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,434,621 Bl
8,128,503 Bl

8/2002 Pezzillo et al.
3/2012 Haot et al.

(Continued)

OTHER PUBLICATIONS

Hashemizadehnaeini, Transcoding H.264 Video via FFMPEG encoder.
Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni
Politecnico Di Milano. Thesis, 2015, p. 1-100.

(Continued)

Primary Examiner - Cai Y Chen
(74) Attorney, Agent, or Firm - Smith Baluch LLP

(57) ABSTRACT

Instructions are transmitted to a client device that includes a
display. The instructions cause the display to render a video
relating to a sporting event and also render online gaming
information relating to the sporting event. In one example,
the instructions cause the first client device to: receive, on a
first communication channel, first digital content corre
sponding to the video relating to the first sporting event;
render, on the display of the client device, the video relating
to the sporting event based on the first digital content
received on the first communication channel; receive, on a
second communication channel different from the first com
munication channel, second digital content corresponding to
the online gaming information; and render, on the display of
the client device, the online gaming information based on
the second digital content received on the second commu
nication channel.

30 Claims, 56 Drawing Sheets

US 11,039,218 Bl
Page 2

Related U.S. Application Data

No. 16/580,552, filed on Sep. 24, 2019, now Pat. No.
10,805,687, which is a continuation of application
No. 16/267,887, filed on Feb. 5, 2019, now Pat. No.
10,425,697, which is a continuation of application
No. PCT/US2017/045801, filed on Aug. 7, 2017.

(60) Provisional application No. 62/518,506, filed on Jun.
12, 2017, provisional application No. 62/485,878,
filed on Apr. 14, 2017, provisional application No.
62/435,361, filed on Dec. 16, 2016, provisional
application No. 62/371,558, filed on Aug. 5, 2016.

(51)

(52)

Int. Cl.
H04N 2112187
H04L 29106
H04N 2114788
H04N 2112343
H04N 211472
H04N 211431
H04N 211845
U.S. Cl.

(2011.01)
(2006.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)

CPC H04L 65/608 (2013.01); H04L 65/80
(2013.01); H04N 2112187 (2013.01); H04N

2112343 (2013.01); H04N 2114316 (2013.01);
H04N 2114788 (2013.01); H04N 21/47217

(2013.01); H04N 2118456 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

8,341,662 Bl 12/2012 Bassett et al.
8,549,574 B2 10/2013 Perlman et al.
8,595,186 Bl 11/2013 Mandyam et al.
8,874,778 B2 10/2014 Xu et al.
9,055,271 B2 6/2015 Verna et al.
9,106,934 B2 8/2015 Horen et al.
9,149,682 B2 10/2015 Dornbush et al.
9,251,852 B2 2/2016 Burns
9,288,278 B2 3/2016 Panje et al.
9,509,793 B2 11/2016 Brown et al.
9,516,390 B2 12/2016 Lau et al.
9,584,858 B2 2/2017 Vinson et al.
9,591,054 B2 3/2017 Thornburgh et al.
9,641,566 Bl 5/2017 Hiremath
9,654,844 B2 5/2017 Kim et al.
9,692,800 B2 6/2017 Gaunt et al.
9,706,443 B2 7/2017 Oyman et al.

10,425,697 B2 9/2019 Schupak et al.
10,484,743 B2 11/2019 Cox
10,740,305 B2 8/2020 Barthel et al.
10,805,687 B2 10/2020 April et al.
10,848,792 B2 11/2020 Evans

2001/0001160 Al* 5/2001 Shoff H04N 5/44543
725/51

2001/0039209 Al* 11/2001 DeWeese G07F 17 /3288
463/40

2004/0003101 Al 1/2004 Roth et al.
2008/0022347 Al 1/2008 Cohen
2008/0062318 Al 3/2008 Ellis et al.
2008/0168493 Al 7/2008 Allen et al.
2009/0222754 Al 9/2009 Phillips et al.
2010/0299703 Al 11/2010 Altman
2011/0083144 Al 4/2011 Bocharov et al.
2011/0086144 Al* 4/2011 Arampongpun . A23G9/26

426/250
2011/0090960 Al 4/2011 Leontaris et al.
2011/0280540 Al 11/2011 Woodman
2013/0222597 Al 8/2013 Brink et al.
2013/0227596 Al 8/2013 Pettis et al.
2014/0129680 Al 5/2014 Mukherjee
2014/0359075 Al 12/2014 Amidei et al.

2016/0037215 Al 2/2016 Cardona
2016/0249108 Al 8/2016 Sexton
2016/0360261 Al 12/2016 Makhlouf
2017/0034237 Al 2/2017 Silver
2017/0099516 Al 4/2017 Barbulescu et al.
2017/0188054 Al 6/2017 Ma et al.
2020/0162796 Al 5/2020 Azuolas et al.

OTHER PUBLICATIONS

International Search Report and Written Opinion in International
Patent Application No. PCT/US2017/045801 dated Oct. 30, 2019,
18 pages.
International Search Report and Written Opinion in International
Patent Application No. PCT/US2018/033016 datedAug. 6, 2018, 29
pages.
Analyze & Optimize. Maestro 2020. Accessed at https:/ /info.maestro.
io/analyze-and-optimize on Apr. 21, 2021. 3 pages.
Around-the-clock action for you sportsbook. BetGenius Brochure.
Accessed at https:/ / geniussports.com/ sportsbook/content/
streaming/ on Mar. 19, 2021. 1 page.
Betradar Live Streaming Brochure 2021. Accessed at https://www.
betradar.com/wp-content/uploads/sites/4/2014/ 11/Betradar-Live
Streaming-Brochure.pdf on Apr. 29, 2021. 7 pages.
Betradar Product Brochure 2021. Accessed at https://www.betradar.
com/wp-content/uploads/ sites/4/2021/02/Betradar-Product -Brochure-
2021. pdf on Apr. 29, 2021. 24 pages.
Betradar. Sportradar. Accessed at https://www.betradar.com/ on Apr.
21, 2021. 2 pages.
Customize & Control. Maestro 2020. Accessed at https://info.
maestro.io/customize-and-control on Apr. 21, 2021. 2 pages.
Empson, Baseball's Digital Trifecta and How America's Pastime is
Setting the Pace for Sports Online. TechCrunch Nov. 4, 2013.
Accessed at https:/ /techcrunch.com/2013/ 11/04/baseballs-digital
trifecta-and-how-americas-pastime-is-setting-the-pace-for-sports
online/. 10 pages.
Engage & Monetize. Maestro 2020. Accessed at https:/ /info.maestro.
io/engage-and-monetize on Apr. 21, 2021. 3 pages.
Esports-Take your fan experience to the next level and build
community. Maestro 2020. Accessed at https://info.maestro.io/
esports on Apr. 21, 2021. 4 pages.
Genius Sports Group Analyst Day Presentation Jan. 2021. Accessed
at https://s27 .q4cdn.com/5 52951210/files/doc_downloads/GSG_
Analyst_Day_Presentation_January_202l_vFF _2.pdf on Apr. 29,
2021. 52 pages.
Genius Sports Group Investor Presentation Oct. 2020. Accessed at
https://news .geniussports .com/wp-content/uploads/2020/ 10/GSG
Investor-Presentation.pdf on Apr. 29, 2021. 29 pages.
Ha, Major League Baseball's "At Bat" App Gets updated to
Supported Expanded Instant Replay. TechCrunch Mar. 31, 2014.
Accessed https:/ /techcrunch.com/2014/03/31/mlb-at-bat-expanded
instant-replay/. 4 pages.
LA Techwatch, LA Startup Maestro Just Raised $3M to Broadcast
eSports at Scale. LA Tech Watch Sep. 19, 2017. Accessed at https://
www.latechwatch.com/2017 /09/la-startup-maestro-just-raised-3m
broadcast-esports-scale/, 13 pages.
MLB App. MLB 2021. Accessed at https://www.mlb.com/apps/mlb
app on Apr. 21, 2021. 1 page.
Perez, Live Video Viewing up 86% over last year in MLB's at Bat
app, thanks for Addition of multitasking. TechCrunchApr. 15, 2016.
Accessed at https:/ /techcrunch.com/2016/04/ l 5/live-video-viewing
up-86-over-last-year-in-mlbs-at-bat-app-thanks-to-addition-of
multitasking/. 4 pages.
Perez, MLB.com At Bat and NHL are first to Launch Personalized
App Icons on iOS 10.3. TechCrunch Mar. 28, 2017. Accessed at
https:/ /techcrunch.com/2017 /03/28/mlb-com-at-bat-and-nhl-are-first
to-launch-personalized-app-icons-on-ios- l 0-3/. 5 pages.
Sports-Personalized fan-first experiences that go beyond the field.
Maestro 2020. Accessed at https://Info.maestro.Io/sports on Apr. 21,
2021. 3 pages.
Sports Betting. Sportradar. Accessed at https://sportradar. us/betting
services/ on Apr. 21, 2021. 4 pages.

(56) References Cited

OTHER PUBLICATIONS

US 11,039,218 Bl
Page 3

Washington, Betgenius launches live streaming service for sportsbooks.
Genius Sports Oct. 8, 2019. Accessed at https://news.geniussports.
corn/betgenius-launches-live-strearning-service-for-sportsbooks/ on
Apr. 30, 2021. 5 pages.

* cited by examiner

U.S. Patent

Digital Distribution
Platform (App Store)

Event
Information

Provider

NEWS FEEDS
(RSS)

Broadcaster
Client Device #1

100A

Jun.15,2021 Sheet 1 of 56 US 11,039,218 Bl

1oOO:

BroadcasWiewing
Servers & Memory
Storage Devices

1200A __l.02Ai / ·················

Viewer
Client Device #1

Internet

Broadcaster
Client Device #2

Viewer Client
Device #3

Viewer
Client Device #2

Viewer
Client Device #4

1008! _gQQQ_i gp_Q[)__i
_ ____ ~-~)

y
FIG. 1A

250 254

I n1rnrm1w1·.' u, IK .:JI
1
.
11
.l'.

1
..... :· •• , 't 1111~1mr,:-r:n1mmt111 ••••••••••••••• 011rF''''·n·1iiiiiITnu,rum1~11m~

258
I = I B.tk•iiitf'' i;'.;h~······n;;,~ ••••<•••·••·•·•·•,.,tWtl:lflflHfflttW:tfltM : :tfflRi.WPPTTiillllllll U I

FIG. 18

~200A

252

-:,:-:

\ :l

·256

e •
00 •
~
~
~
~ = ~

~ = ?
"'Ul
N
0
N

rJJ
=-('D
('D
N

0
Ul
O'I

d
rJl.

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Broadcaster .. ~lient k 1 00A!
Device~ ..

rJo.?A-1

Broadcaster Client [_-j00B•
Device #2

r102e1 ,10061
•soo

400• Broadcast/Viewing Servers and Memory Storage Device , ;·502A,5028 •

••••••••••••• Memory System iJOOMedia Sources .-------~ .----'--4-, /_1:::~tlnf:M
Control Provider
Server I

Data RTMP WebRTC HLS Server Database . RTMP M d.
Media CON e ia Architecture News Feeds

Server(s) Server(s) '---.--- (RSS)

- !~ ~~
, • ~---___._-----, 504A, 5048 ,

, '---J • 604A •

m .202A . " ~f ~,r I-->--,-__.__,

L_ ________ -4!204C• [206A• L "'°-T"_..._.........,..~-.......

~ \

i200Ai~ { { {

!f?cC/QQI ~ ClientApp I I
•. 200C\

Ii ~/

Viewer Client Device #1

....... "-! , "-._z················,

~202JI :mA ;~cl
: / .• ,

i~Q4}:J_j : 2108.
~· i.~OQQ~

Viewer Client Device #3 ~2oi3c

FIG. 2

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D

"""" (,H

0
Ul
O'I

d
rJl.

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

U.S. Patent

'420'

Jun.15,2021 Sheet 4 of 56 US 11,039,218 Bl

/-10008!
/'

/---:700: I AWS Hosted Systems

/1000A!

Web Server r ~

~ ~

Database
Pool (API

and

I [600j
' \ Website)

~

t ~ t t
II

I .,,,- -... ,.,.- -... - .,, - .,,

Database Database Control Socket
--':,;,

Server - Servers Shard Shard

\~
..._ .,, - .,,

csoo:J t i
;460 I' ____________ ,...________ Redis'

Based -
Memory - Async

\)
Cache) Queue

}15}/ ! ,-

~?_Q~
~

~440

~~Qi~ RTMP/App ~ - -
Media - S3 Data J

\
~ ~

''y~ Storage - ~

' - WebRTC -
- Media -Servers

1
\

/,,,,,-

HLS Server I Gateway
RTMP CON Architecture NAS - 1.3;>

Server 1-E-- Server

\380!
\ Pool I

\

<:
I Transcoding

'-·-·-·-·-·-·-·-·-·-·-·-·'
Server

!870:/ Pool ,340
\
\

I\ -------------

:800

FIG. 3

U.S. Patent Jun.15,2021 Sheet 5 of 56 US 11,039,218 Bl

Provide Access to this
Server for Broadcaster

No

Notify Admin (via SMS)

re a Non
Server not at

No

Display "No Available
Server" Error Screen

FIG.

Broadcast Media Server
Selection Algotithm

Provide Access to this
Server for Broadcaster

Provide Access to this
Server for Broadcaster

FIG.4A I FIG.48

4A

U.S. Patent Jun.15,2021 Sheet 6 of 56 US 11,039,218 Bl

No

External Software

Provide Access to this
Server for Broadcaster

Notify Admin (via SMS)

No

Display "No Available
Server" Error Screen

WebRTC

Provide Access to this
Server for Broadcaster

Provide Access to this
Server for Broadcaster

FIG. 4B

U.S. Patent Jun.15,2021

RTMP/WebRTC
Media Server

Process

Report
Server Stats
to Database

Get List of
Current Connected

Broadcaster Streams
Assigned to Pending

Server

Get Stream
Information

from Database

Sheet 7 of 56

FIG. 5A

US 11,039,218 Bl

Read from Server
Upload Queue

Upload Raw
Video Recording

to Amazon S3

Store Upload
Success/Time
to Database

Notify Transcoding
Service of Video
Needing to be
Transcoded to

Adaptive Bitrate
for Replay

U.S. Patent

Yes

Jun.15,2021 Sheet 8 of 56 US 11,039,218 Bl

Disconnect
Stream

Validate StreamlD
with Database

Start Live
Transcoder to

Provide Multiple
Different Resolution
Copies of Stream

(for WebRTC, also
Transcode to

H.264)

No Has Stream been
Connected for at Least

3 Seconds?

Yes

Start Recording of Highest
ResolutionTranscoded Copy

Notify Database
of Stream Start

FIG. 58

U.S. Patent Jun.15,2021

HLS Segmentation:
Create/Update Playiist,

Chunklists, and File
Segments for All

Transcoded Copies

Yes

Queue Additional
Screenshot in Async
Queue (Thumbnail)

Sheet 9 of 56

Queue First
Screenshot in
Async Queue
(Thumbnail)

Queue Push Notifications
(SMS, Email) e.g. to

Broadcaster Followers,
Subscribers

Any Viewers
an HLS Co

US 11,039,218 Bl

Stop Recording of Highest
Resolution Transcoded Copy

Send Out Chat/System Event
Channel Notification of

Stream Ending

Stop Live
Transcoder

Store Stream Endtime
in Dat13base

Queue Upload of Raw Video
Recording of Highest Resolution

Copy to Server Upload Queue

FIG. SC

Broadcaster Client !tOOA!
Device #1

,......-:_ _______________

102A---{
✓lJQQj

!3301 ____ N-----, ~---------------------------7
11 I

I I
I RTMP I
I Media - RTMP I -I -
I Server(s) CON I
I I
I I

1 ~~ VPN:/ 1 .~=---,- -~-------------- -- _________ J

[3_20! ij4i5!

\
'

' r----------->"-
1 \
I '

Web Server(s)
I

_______ _J

:ZOO [200A!

Viewer Client Device #1

Client App

FIG. 6

Broadcaster Client ~_lQ_Qfj_j
Device #2

r,028!

WebRTC
HLS Server

Media ~

Architecture Server(s)

!-36d) 13801/ , _____________]

tsooo!

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
0
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Display "Still
Unloading" Message

Provide Link to
daptive HLS Playlis

Provide Raw
Streaming Ready

Video File

Viewer Stream
Source Selection

FIG.

urrently Less th

~:zqg_:

Provide Direct Media
Service Point Addres

lstheVIEWER ~ Yes I
a VIP Account or a Member~

of the Media?

Is there a RTMP ~ Yes
CON Server that is Currently

not Serving It's Maximum

7

Viewers?

Provide HLS CON
Server Address

Provide RTMP
CON Address

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

U.S. Patent Jun.15,2021 Sheet 12 of 56 US 11,039,218 Bl

:.384A-...

\,
.3848 1

c ~

HLS Child

\

:320/360
RTMP/WebRTC ~l

Media Server

:375A
r·················

/

.3801
··············'

i.J821
HLS Mother / J

I
HLS Child HLS Child HLS Child

AWS Load
Balancer

I

.386
~··············

I

.388
AWS Cloudfront ~·············"

HLS CON

i.204A---, r·g9g,4 ..

Viewer Client ~.2l)CJ.4!
Device #1

i5000i I Client App _____-, J

FIG. 8

Connect to
HLS CHILD

HLS Stream Viewing
via HLS Server Architecture

Viewer Client Device
Requests HLS Playlist

from HLS CON
(AWS Cloudfront)

Connect to HLS
CON Load Balancer

✓[mA Loop for Duration of Live Stream

Select Highest
Bandwidth

Stream from
from Copy of
HLS Playlist

Is Current Calculate~o
Available Bandwidth for Viewer

Client Sufficient for
Selected Strea

No __,,,,- Does the CON
Have a Copy of the

HLS Playlist?

Return Copy of
HLS Playlist to 1--------'

Viewer Client

FIG. 9A

? ~

Select Highest Available
Stream that Meets

Available Bandwidth or
Lowest Available Stream

Delete Viewer
Client Copy
of Chunklist

~ Does Viewer Client
Have Chunk list for Selected
• Stream? ~

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
~

0
Ul
O'I

d
r.,;_

"'""' "'""' "' = w
\0
'N
"'""' 00

= "'""'

HLS CHILD
Requests Copy of
HLS Playlist from
HLS MOTHER

ER Have

HLS MOTHER
Requests Copy of
HLS Playlist from
MEDIA SERVER,
Re-writes Caching
Rule for Playlist,

and Caches Playlist

C

Send Copy of HLS
Playlist to HLS CDN

Send Copy of
HLS Playlist to

HLS CHILD

/I!Q:?£1"

Connect to HLS
CHILD

oes HLS CHILD
Yes ave Copy of Chunklist or

hunklist Copy In the H
Lesstha

Has
nloading of all Chu

Connect to HLS
CON Load Balancer

- -··

Request Copy of Chunklist from
HLS CDN

oes the HLS CDN Have ~No
a Copy of Chunklist or is the

Chunklist Copy Less than
2 Seconds Old?

FIG. 98

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...

0
Ul
O'I

d
r.,;_

"'""' "'""' "' = w
\0
'N
"'""' 00

= "'""'

HLS CHILD
Requests Copy of Chunklist

from HLS MOTHER

LS MOTHE
hunklist, or
n HLS MO

Second

No

HLS MOTHER Requests
Copy of Chunkist from MEDIA SERVER,

Re-writes Caching Rule for Chunklist,
and Caches Chunklist

Connect to
HLS CHILD

/g_ogq

Send Fresh Copy
of Chunklist to

HLS CHILD

Request Next Chunk

G

in Chunklist from HLS CON

Connect to HLS
CON Load Balancer

FIG. 9C

Return Fresh Copy
of Chunklist to
Viewer Client

Send Fresh Copy
of Chunklist to CON

L

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
Ul
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

No

HLS CHILD Requests
Requests Copy of Chunk

from HLS MOTHER

No

HLS MOTHER
Requests Copy of Chunk
from MEDIA SERVER,

Re-writes Caching Rule for
Chunk, and Caches Chunk

Yes

/190201

Return Copy of Chunk
to Viewer Client

I I

Send Copy of Chunk I >I Send Copy of Chunk
to HLS CHILD to HLS CON

FIG. 9D

r-----'

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =-('D
('D
O'I

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

SERVICE
RTMP Media

Server Scaling
System

(Fig. 11)

SERVICE-
RTMP CON

Server Scaling
System
(Fig. 12)

I

Async Queue
Monitoring

(Control Server)

1)/

SERVICE-
Stream and

Server
Watchdog

(Fig. 13-14)

,,,
Anonymous

User Logging

\V

SERVICE-
Event

Data Ingress

(Fig. 15)

FIG. 10

SERVICE
Asnychronous

Task Processor

(Fig. 17)

\V

SERVICE -
Live Event

Data Monitor

(Fig. 16)

~I

News Importer
(RSS Feeds)

✓_g_QQ_j

VI

SERVICE-
Take Stream
Thumbnail

(FIG. 18)

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =-('D
('D
-....J
0
Ul
O"I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

SERVICE: RTMP
Media Server

Scaling System

Retrieve List of
RTMP Media

Servers Marked
for Shutdown

Retrieve
Statistics on

Active
Servers

Retrieve
Server

Information

FIG. 11A

~-flOiA

Mark Server
as no Longer

active

Terminate
Server
atAWS

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
QO

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

D

Update
Server to
Return to

Active Status

Yes

re there any
Servers Currently
Marked Pending

Shutdown?

No

as it been Less
than 2 Minutes Since

Last Server Start
Requested?

No

Retrieve List ~Is the Active
of Servers Yes Server Count Below

Marked Minimum Spare
Pending Servers?

Shutdown

This is the Buffer
Time to Allow New
Servers to Come
Online

FIG. 118

No

Is the Current
sed Capacity Greater
han the Maximu
'-

Allowed?

No

~f1Q28

This is to keep
a Minimum
Capacity to Allow
for Spikes in
Stream Creation

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
1,0

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

When Server
Comes Online, it
Self Reports Active
Status to Database.
See "Check RTMP
Media/CON Server"
Process

Request New Server
Creation at AWS

Label Server
with Date/Time

of Creation

No

No

FIG.

/

Is the Current
Capacity Less

than the Minimum
Capacity?

Yes

Is the Current
Server Count Greater

than Minimum
Server Count ' /

?
Yes

11G

~

Retrieve
Oldest

Active Server
Information

Mark Server
as Pending
Shutdown

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
0
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

SERVICE: RTMP
CON Server

Scaling System

Retrieve List of
RTMP CON

Servers Marked
for Shutdown

Retrieve
Statistics on

Active
Servers

Server
Information

FIG.

/~'

12A

Mark Server
as no Longer

active

Terminate
Server
atAWS

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

D

Update
Server to
Return to

Active Status

Yes

re there any
Servers Currently
Marked Pending

Shutdown?

No

as it been Less
than 2 Minutes Since

Last Server Start
Requested?

No

~!12.Q2.B:

Retrieve List ~Is the Active
of Servers es Server Count Below

Marked Minimum Spare
Pending Servers?

Shutdown

This is the Buffer
Time to Allow New
Servers to Come
Online

FIG. 128

No

Is the Current
sed Capacity Greater
han the Maximum

Allowed?

No

This is to keep
a Minimum
Capacity to Allow
for Spikes in
Stream Creation

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
N

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

When Server
Comes Online, it
Self Reports Active
Status to Database.
See "Check RTMP
Media/CON Server"
Process

Request New Server
Creation at AWS

Label Server
with Date/Time

of Creation

No

/

Is the Current
Capacity Less

than the Minimum
Capacity?

Yes

Is the Current

/1202C

.----w~--<(Server Count Greater
1

than Minimum
Server Count

No

"- /

?
Yes

FIG. 12C

Retrieve
Oldest

Active Server
Information

Mark Server
as Pending
Shutdown

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
~

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

SERVICE: Stream
and Server Watchdog

Retrieve List of Broadcaster Streams
from Database that were Created but
Have not Started in Last 30 Minutes

Retrieve List of Live Broadcaster Streams

Are there any
Currently Live Streams that

ave Not Been Checked
?

Retrieve List of
Media Servers

/ 1JQ2,Ai

Yes

No

FIG. 13A

Delete Unstarted
Streams In List

Mark Stream as Ended

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
.i;...

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Yes

Check RTMP
Media/CON Server

(Fig. 14)

~![3028]

No
~ Retrieve List of RTMPl,E-------<

CON Media Servers ~

~ Yes

Generate Final
Viewer Heatmap

Broadcast Stream
End to Chat/System

Event Channel

End Recording

Queue
Recording Upload

FIG. 138

Check RTMP
Media/CON Server

(Fig. 14)

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
Ul
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Remove from
Server List

Server Status
OK and Return

Archive
Server Statistics

FIG.

Check RTMP
Media/CON Server

No

0
14A

/H0-2"1]

Determine Capacity
Based on Server Type

Update Server List
with Capacity

Update Server Tagging
at AWS with Server

Class and Launch Time

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
O'I
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Determine New
Current Total

Streamer Capacit

Send SMS to Admin to
Alert Terminated Server

Return

Mark Server
as Down

Send SMS Notification
to Admin Regarding

Down Server

/1.402()_!

Yes

Return

FIG. 148

Determine New
Current Total

Streamer Capacit

Send SMS to
Admin to Alert New

Server launch

Mark Server as Active
amd Available to

Accept Connections.

Server Status
OK and Return

e
•
r:J)_
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
-....J
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

U.S. Patent Jun.15,2021 Sheet 28 of 56

Store Basic
Event Data
(Type, Id,
Status)

SERVICE: Event
Data Ingress

For Each Event Type Supported

Retrieve Event Information for One or
More Events (e.g., STATS LLC)

Yes

For Each Event

Normalize and
Store More

Detailed Event
Information

(Quarter, Inning,
Half, etc)

Complete

Normalize and
Store Event

Date
(Converting
from UTC to
EST/EDT)

FIG. 15

US 11,039,218 Bl

Normalize and
Store Event
Participant

(e.g., Team)
Data

SERVICE - Live Event
Data Monitor ~J6Q2Al

Retrieve List
of Events for
Current 48

Hour Window

ny Events i

For Each Event

Store Basic
Event Data
(Type, Id,
Status)

This Pulls a List of All Events Scheduled
with Start Times from 24 Hours in Past to 24
Hours in Future.This Allows Tracking of
in Progress Events, and Events that had
inconsistent/Incorrect Start Times, and any Late
Modifications to Event Information (e.g., Scoring)

Complete

Normalize and
Store More

Detailed Event
Information

(Quarter, Inning,
Half, etc)

Normalize and
Store Event

Date
(Converting
from UTC to
EST/EDT)

Normalize and
Store Event
Participant

(e.g., Team)
Data

FIG. 16A

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
N
1,0

0
Ul
O'I

d
r.,;_

"'""' "'""' "' = w
\0
'N
"'""' 00

= "'""'

Update Event Update Event Yes
Information 1< I (e.g., Game) 1< <.
(e.g., Score

Data)
Clock

Each Event Type Has
Event-Specific Data that
Gets Stored.

Upgrade EventH For Example, NFL has
Specific Data "Possession, Timeouts,

Yards to Go, Yards from
Goal, Timeouts"

Queue Async
Message for

Status "In

No

Broadcast of I ~ Are there ~ Yes
Updated Event 1--------------=- Any Events Remaining
Data to Socket to Process ?

for Event
Information

Channel

FIG.

Yes No

168

Update
Complete

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
~
0
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Use Multiple Queues of
Varying Priority to Accelerate the~
Processing of Tasks for Certain
System Events

SERVICE: Asynchronous
Task Process

Read Bundle from
Asynchronous Queue

FIG. 17A

No

Yes

Yes

~J702AI

For Each Suscriber to
Broadcaster, Send

Out PUSH Notifications

Process - Take
Stream Thumbnail

(Fig. 18)

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
~
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Other System
Event Classes

LoadUser H Load
Data Associated Stream~

with Event Data

There are Other Different
Asynchronous System Events that
this Service Handles (UserUpdated,
sendEmail, logEvent)

FIG. 17B

~fz¢.t?J

Send Push
~ Notification

Send Email I

Yes I Send
Web Push

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =-('D
('D
~
N

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Return
No

Connect to Live WebRTC

Process - Take Stream
Screenshot (Thumbnail)

Load Stream
Data from
Database

~ta62Ai

Transcoded Broadcaster 1.-::: c
App I Connect to Live

:> > Broadcaster Stream
Stream (e.g., H.264)

Wait for Next
KeyFrame

FIG. 18A

(e.g., H.264)

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
~
~

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Broadcast to
Socket for

Chat/System
Event Channel
Associated with
Live Stream that
New Screenshot

has Taken

}8028 ~

Capture
Screenshot

Upload Screenshot
to Amazon s3

• t Screens

Update
Stream

Information
with New

Screenshot
and Archived
Screenshots

Yes

Resize Screenshot
for Social Media

Network Requirements

Yes

Overlay Network
Promotion

Graphics/Watermark

Upload "Share
Graphic" to
Amazon S3

Broadcaster Request ->-------
Social Share

Submit Link and
Share Graphic to
Social Networks - ./ ?

;,,
No

Determine List of Viewers
that Suscribe to Broadcaster

Queue "new FollowingStream"
Events for Each Suscriber

FIG. 188

Queue the Sharing Notifications
so that they can be Processed in
Parallel Across the Async Worker Pool
Allowing for Faster Delivery to
Viewers/Suscribers

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
~
.i;...

0
Ul
O'I

d
r.,;_

"'""' "'""' "' = w
\0
'N
"'""' 00

= "'""'

No

Send to
Social
Login

User
Login at
Social

No

User Login

Login
Method Select

Number H SMS
Validated Verification

Sent

FIG. 19A

Invalid
Code

~•1902A

Code
Entered

Valid Code Provided

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
~
Ul
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Send to
Start Point

Yes

No

1 No / Login "'- Yes
~ nn f..lnrna.n!:lrta. ~

I User
Configuration

Screen

Send to
Stream Create

FIG.

~Tfc;}ii

Fails Validation

H User Provides r<Val1/'d
Profile Picture, Input
Username, etc ?

I Yes

Save
User

Profile in
Database

198

e
•
00
•
~
~
~
~ = ~

~ = ?
"'Ul
N
0
N

rJJ =-('D
('D
~
O'I
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

U.S. Patent Jun.15,2021 Sheet 37 of 56

Yes

Event

Title

Request List of
Events (in Database)

from API (Web
Server Pool)

Select Event

Broadcaster Stream
Create Mobile

Anything

Title

Tags

FIG. 20A

News

US 11,039,218 Bl

Title

Request List of
News Items from
API (Web Server

Pool)

Select News

U.S. Patent Jun.15,2021 Sheet 38 of 56 US 11,039,218 Bl

'200281
/····················'

Twitter

No/Complete No

Yes Server
>---~ Determines

Location
No

Submit Stream Create Request
to Web Server

Web Server Validates
Stream Create Request

Stream Created: Web Server Enters
Stream Information in Database and

Runs Broadcast Media Server
Selection Algorithm (Fig. 7A & 7B)
to Return Selected Media Server

(Hostname) and StreamlD

Go to "Broadcaster Stream Active
Mobile" (Fig. 21)

FIG. 208

Validation Failure

U.S. Patent Jun.15,2021 Sheet 39 of 56 US 11,039,218 Bl

Broadcaster Stream
Active Mobile

Connect to Media Server
Selected by Broadcast Media

Server Selection Algorithm

Connect to Socket for Chat/
System Event Channel

Based on StreamlD

Connect to Socket for
'>--------'""" Event Information Channel

Begin Main Loop

Update Internal Frame
and Time Clock (e.g.,

for Graphics, Animations)

Based on Eventl D

FIG. 21A
FIG. 2181

Display Default
Chat Message

Chat
>--.:;;;.i Display

Chat

FIG. 21A

U.S. Patent Jun.15,2021

No

Ignore
Unknown Event

No

Sheet 40 of 56

Increase
Viewing Count

Decrease
Viewing Count

Add Notice
to Chat

Yes

FIG. 218

US 11,039,218 Bl

Add Join
to Chat

Update
Information

(e.g., Score)

Update
Status

U.S. Patent Jun.15,2021 Sheet 41 of 56 US 11,039,218 Bl

Capture
Camera Frame

Send Video
Frame to

Media Server

No

No

Other Event
Information
Processing

~2102C

Update
Event Clock

Update Graphics/
->----'~Animation Layer(s)

Yes

FIG. 21C

1219gp~

Disconnect from
Media Server

Request Final
Stats for Stream

from API
for Stream

Display End of
Stream Screen

Open
Confirm Screen

No

Close
Confirm Screen

FIG. 21D

Set Stream
State to Close

Activate System
Share Dialog

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
N
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Yes

Open
Viewers Panel

Request Current
Viewer List from

API

Update Current
Viewers List with
Server Response

Graphics/ Animation
(Bottom Third)

Interaction
?~s

Yes
Is Graphics/Animation

(Bottom Third)
Open?

Set Animation State
to Transition to Open

/?cJQ?,f

Set Animation
State to Transition

to Close

FIG. 21£

Yes

Switch Source
to Rear Camera

Switch
Source to

Portrait
Camera

I I I

e
•
00
•
~
~
~
~ = ~

~ = ?
"'Ul
N
0
N

rJJ =-('D
('D
.i;...
~

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

l.2202A.:~

Viewer Creates
Chat that API
Broadcasts to

Socket for
Chat/System

Event Channel
Associated with

Stream
(WEBSERVER

POOL)

Connects to
SOCKET
SERVER
POOL for

Chat/System
Event Channel

ST ART - Mobile
Broadcaster

Requests Stream
Create

After Stream
is Created

Connect to
Media Server

(RTMP MEDIA
SERVER POOL)

Broadcaster
Ends Stream

B

Make Request
to API

(WEBSERVER
POOL)

Activate Live
Transcoding and
Start Recording
(RTMP MEDIA

SERVER POOL)

Creates
Queue Entry

for
Screenshot

(ASYNC
QUEUE)

FIG. 22A

Media Server HStore Stream
Selection Information in
Algorithm Database

(Fig. 7) (DATABASE)

Loop While Stream is Active

'Server Checks1
Redis for

Stored Data
(REDIS DATA;

STORE)

(CONTROL
SERVER) Takes

Screen shot
(Fig. 18)

Pulls Stream
Information

from
(DATABASE)!

Stores
Screenshot in
(AMAZON S3)

e
•
r:J)_
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
.i;...

0
Ul
O'I

d
r.,;_

"'""' "'""' "' = w
\0
'N
"'""' 00

= "'""'

~~22Q2l3J

Connects to
(SOCKET
SERVER
POOL) for

Event
Information

Channel

Media Server H Queue Entry
Stops Recording for

1-----i (RTMP MEDIA Background I >I

SERVER POOL) Upload

(CONTROL SERVER)
Sends Event Information

to Socket for Event
Information Channel

(ASYNC
(QUEUE)

Uploads
Adaptive to

(AMAZON S3)

FIG. 228

Uploads
Recording to

s3 (RTMP
MEDIA

SERVER)

Connects API to

(TRANSCODING
(POOL) Converts

to Adaptive
POOL)

Report Complete1 >I
Stores

Updated
Status in

(DATABASE)!
(WEBSERVER

POOL)

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
Ul
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Viewer Creates
Chat that API
Broadcasts to

Socket for
Chat/System

Event Channel
Associated with

Stream
(WEBSERVER

POOL)

RTMP CON
Viewer Process

Request Stream
Information from

API
(WEB SERVER

POOL)

Connect to
ChaUSystem

Event Channel
(SOCKET
SERVER

POOL)

Checks for
Cached Copy

(REDIS
CACHE)

Requests
~ Updates fro

(DATABASE

Connect to
RTMP CON

Server
(RTMP CON
Server Pool)

No

Viewer Stream
Source Selection

Algorithm
(WEBSERVER
POOL) (Fig. 8)

ect to Medi
Yes

~ Does RTMP CON ~ Yes Retrieve RTMP
Stream Information

Server Have ActiveConnection
..... to Stream?

FIG. 23A

/2302A

Connect to
Media Server
(RTMP Media
Server Pool)

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
O'I
0
Ul
O'I

d
r.,;_

"'""' "'""' "' = w
\0
'N
"'""' 00

= "'""'

(CONTROL SERVER)
Sends Event Information

to Socket for Event
Information Channel

I :::-1

RTMPViewer
Sends Chat

Message

Connect to
Event

Information
Channel

(SOCKET
SERVER
POOL)

Chat Message
Sent to API

(WEBSERVER
POOL)

Connect to
RTMP Media

Server

Replay Log
Updated

(DATABASE)!

FIG. 238

/

Play Stream

Loop Until Stream Ends

Chat Message
Sent to

(SOCKET
SERVER
POOL) to

ocket for Chat/
System Event

Channel
Associated
with Stream

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
-....J
0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

Viewer Creates
Chat that API
Broadcasts to

Socket for
Chat/System

Event Channel
Associated with

Stream
(WEBSERVER

POOL)

HLS Viewer
Process

Request Stream
Information from

API
(WEB SERVER

POOL)

Connect to
Chat/System

Event Channel
(SOCKET
SERVER
POOL)

/,2402Ai

Requests
Checks for

Cached Copy

(REDIS
CACHE)

1 :>!Updates frorrt--"'i

(DATABASE)

FIG. 24A

Viewer Stream Source
Selection Algorithm

(WEBSERVER POOL)
(Fig. 8)

Goto
"HLS Stream Viewing"

(Fig. 6)

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
QO

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

(CONTROL SERVER)
Sends Event Information

to Socket for Event
Information Channel

I ::,, I

Viewer
Sends Chat

Message

Connect to
Event

Information
Channel

(SOCKET
SERVER
POOL)

Chat Message
Sent to API

(WEBSERVER
POOL)

Replay Log
Updated

(DATABASE)!

FIG. 248

~24028!

Chat Message
Sent to

(SOCKET
SERVER
POOL) to

ocket for Chat/
System Event

Channel

e •
00 •
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
.i;...
1,0

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

U.S. Patent Jun.15,2021 Sheet 50 of 56 US 11,039,218 Bl

MOBILE - Replay

Request Stream
Information fron API

Load First 10
Seconds of Replay

Data from API

Load Media File

Connect to
Socket for

Chat/System
Event Channel

Create the Draw
Screen and Start
Video Playback

Begin Main Loop

Return to
Previous Screen

During Live Recordings, the Server Side Logs Every
Event that Occurs and Ties it to a Timestamp. This

Allows to Sync the Replay to the Order that it Happened
During Recording ... So the Event Information Updates

as it did while Live, Members Come and Go, and
Chat Recording Plays

There is no Chat on Replays. However, System
System Knows the Socket is Authenticated and
When People Connect and Disconnect, thereby

Allowing Collection of Detailed Stats About the
Views and Viewers

FIG. 25A

U.S. Patent Jun.15,2021

Update Internal
Clock and Current
Video Time Clock

Is the Current
Buffer of Replay Data

< 5 Seconds?

Is the Video Yes
ime Clock Value Differen

than the the Last
Time Checke

?
No

Sheet 51 of 56 US 11,039,218 Bl

Clear Chat

Retrieve Next
10 Seconds of
Replay Data
from Current
Buffer End

LOGIC
Process Replay

Event Data

Update
Animation

Layer

LOGIC
Replay User

Input

This Leaves a 5 Second
Buffer at All Times Allowing
Viewers to Continue
Streaming Replay Events in
Case of Poor Network
Connections

FIG. 258

U.S. Patent Jun.15,2021 Sheet 52 of 56

Screen Shows
Owner Stats
Information, Display Replay
Share Links, Stats Screen
and Ability to
Replay Stream

Load
Outro Video

Play
Outro Video

Display Post
Replay Screen

Replay Ended

FIG. 25C

US 11,039,218 Bl

Screen Allows
Viewer to Replay,
Share Replay,
and Follow Broadcaster

Logic - Process
Replay Event Data

Update Live Viewer
Count with Value
in Replay Event

Unlike the Live Stream which Relies on
member_added/removed to track
Viewer Counts, Replays Contain Per
Second Viewer Counts to Make Sure They
Are Correct in the Case the Viewer Seeks

Return

For Each Membership
Event at this Timestamp

/g§Qgtt

Add a "Has Joined
~-----------< the Stream" Message

Yes
For Each Chat

Event at this Timestamp

FIG. 26A

to the Chat

Display Chat

e
•
00
•
~
~
~
~ = ~

2'
?

"'Ul
N
0
N

rJJ =('D
('D
Ul
~

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

,----------1

No

B
/2602B!

As with Viewer Counts, the Events
Are Encoded On a Per Second Basis so
that In the Case of a Seek Event, the Scorebug
will Update Correctly Immediately After the Video
Restarts Playing

So All Replays of Events Will Have an Event
Update/Refresh at Every Timestamp

Yes Update
Status

FIG. 268

No

Add Notice
to Chat

Add Notice I I to Chat

Change Scorebug
Animation to In

Progress and Restart
the Animation

e
•
00
•
~
~
~
~ = ~

~ = ?
Ul
"'
N
0
N

rJJ =('D
('D
Ul
.i;...

0
Ul
O'I

d
r.,;_

"'""'
"'""' "' = w
\0
'N
"'""' 00

=
"'""'

U
.S. P

aten
t

Ju
n

.1
5

,2
0

2
1

(I)
(/)

.......
(I)

co
s...

"O

0
0

..
0

:
)

C
l)

~

0
(I)

0
1u u
"O

(I)

a
. E

:)

cu
G

S
heet 55 of 56

0
z

- C
l)

.... -(I)
~

\----,;;,.I
.c

 :::,
..........
0

cu
(I)
LL

U
S 11,039,218 B

l

C

s...
:::,

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

-
-
-
3

'1
.
.
,
 (I)

a:

U.S. Patent

Logic - Replay
User Input

Return

No

Return

Jun.15,2021 Sheet 56 of 56

Avtivate System
Share Dialog

Open
Viewers Panel

US 11,039,218 Bl

Request List of Viewers
that Were Active at the

Current Video Timestamp

Update Live Viewers
List with Server Response

Set Animation
State to

Transition to Open

Cloose Playback Window, Return
to Previous Screen

FIG. 27

Return

Set Animation
State to

ransition to Close

US 11,039,218 Bl
1

SYSTEMS, APPARATUS AND METHODS
FOR RENDERING DIGITAL CONTENT

RELATING TO A SPORTING EVENT WITH
ONLINE GAMING INFORMATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a Continuation Application of
U.S. application Ser. No. 17/027,219, filed Sep. 21, 2020,
and entitled SYSTEMS, APPARATUS, AND METHODS
FOR SCALABLE LOW-LATENCY VIEWING OF
BROADCAST DIGITAL CONTENT STREAMS OF LIVE
EVENTS, AND SYNCHRONIZATION OF EVENT
INFORMATION WITH VIEWED STREAMS, VIA MUL
TIPLE INTERNET CHANNELS, which is a Continuation
Application of U.S. application Ser. No. 16/580,552, filed
Sep. 24, 2019, and entitled "SYSTEMS, APPARATUS,
AND METHODS FOR SCALABLE LOW-LATENCY
VIEWING OF BROADCAST DIGITAL CONTENT
STREAMS OF LIVE EVENTS, AND SYNCHRONIZA
TION OF EVENT INFORMATION WITH VIEWED
STREAMS, VIA MULTIPLE INTERNET CHANNELS,"
which is a continuation of U.S. application Ser. No. 16/267,
887, filed Feb. 5, 2019, entitled "SYSTEMS,APPARATUS,
AND METHODS FOR SCALABLE LOW-LATENCY
VIEWING OF BROADCAST DIGITAL CONTENT
STREAMS OF LIVE EVENTS, AND SYNCHRONIZA
TION OF EVENT INFORMATION WITH VIEWED
STREAMS, VIA MULTIPLE INTERNET CHANNELS,"
which is a Bypass Continuation Application of International
Patent Application No. PCT/US2017/045801, filed Aug. 7,
2017, entitled "SYSTEMS, APPARATUS, AND METH
ODS FOR SCALABLE LOW-LATENCY VIEWING OF
BROADCAST DIGITAL CONTENT STREAMS OF LIVE
EVENTS, AND SYNCHRONIZATION OF EVENT
INFORMATION WITH VIEWED STREAMS, VIA MUL
TIPLE INTERNET CHANNELS," which claims a priority
benefit to the following U.S. provisional patent applications:

2
recorded video content to a user's home. Also, additional
increase of Internet access was sparked by the rise of the
smartphone and the ability for smartphones to access the
Internet on-the-go. In 2005, YouTube™ began to offer

5 Internet users the ability to upload, edit, view, rate, share and
comment on a wide variety of user-generated and corporate
media video content. Examples of such content include
video clips, television show clips, music videos, audio
recordings, movie trailers, video biogs, short original videos,

10 and educational videos. Within one year of its inception,
YouTube™ reached 65 thousand daily video uploads, with
100 million daily views.

The first Internet live video streaming platform in the
United States, aptly called Livestream, was launched in

15 2007. Livestream, as well as other nascent live video stream
ing platforms, were content agnostic, and over time Internet
viewers desired more specialized, content-specific, and
niche live video streaming platforms. To accommodate
evolving viewer demand, various live video streaming plat-

20 forms have launched since Livestream; examples of such
more specialized platforms include Twitch.tv (a live video
streaming platform for creative arts and gaming content,
which launched in 2011), and musical.ly (a live video
streaming platform designed for music video content, which

25 launched in 2014).
Live video streaming platforms have also aimed to attract

social network users, and social networking platforms have
evolved to include live video streaming capabilities. For
example, Twitch.tv includes social networking components,

30 and in 2015 the social media platform Twitter acquired the
live video streaming platform Periscope. Other social media
platforms have followed suit, with both Facebook and
Instagram implementing live video streaming capabilities
into their mobile applications in 2016. The widespread use

35 of smartphones enables users of these social media plat
forms to share live videos with their social network.

SUMMARY

U.S. Provisional Patent Application Ser. No. 62/371,558, 40

filed Aug. 5, 2016, entitled "SYSTEMS, APPARATUS,
AND METHODS FOR LIVE COMMENTARY;" U.S. Pro
visional Patent Application Ser. No. 62/435,361, filed Dec.

In spite of the proliferation of live video streaming over
the Internet, the Inventors have recognized and appreciated
various technological problems in conventional techniques
for transmission of digital content via the Internet that
adversely impact the live video streaming viewer experi
ence. One such technological problem relates to viewer
"latency," i.e., the delay between a first user generating a live
video stream for transmission via the Internet and a second
user receiving a copy of the live video stream via the Internet
for viewing. For example, the live video streaming platform

50 Twitch.tv has a latency of approximately 15 seconds, and
Facebook's live streaming platform has an average latency
of approximately 10 seconds. Other technological chal
lenges for live video streaming arising from shortcomings in
conventional techniques, as recognized and appreciated by

16, 2016, entitled "SYSTEMS,APPARATUS,AND METH
ODS FOR LIVE COMMENTARY;" U.S. Provisional Patent 45

Application Ser. No. 62/485,878, filed Apr. 14, 2017,
entitled "SYSTEMS, APPARATUS, AND METHODS FOR
LIVE STREAMING, RECORDING, AND REPLAY OF
BROADCAST VIDEO AND/OR AUDIO VIA THE
INTERNET;" and U.S. Provisional Patent Application Ser.
No. 62/518,506, filed Jun. 12, 2017, entitled "SYSTEMS,
APPARATUS, AND METHODS FOR SCALABLE LOW
LATENCY VIEWING OF BROADCAST DIGITAL CON
TENT STREAMS OF LIVE EVENTS, AND SYNCHRO
NIZATION OF EVENT INFORMATION WITH VIEWED
STREAMS VIA MULTIPLE INTERNET CHANNELS
AND AN HTTP LIVE STREAMING (HLS) CACHING
SERVER ARCHITECTURE." Each of the above-identified
applications is hereby incorporated herein by reference in its
entirety.

BACKGROUND

The public's access to the Internet, as well as the amount
of bandwidth for Internet users, increased greatly in the
mid-1990s to the early 2000s. The available Internet band
width allowed for the streaming of both recorded audio and

55 the Inventors, include, for example, the difficulties in pro
viding relatively low latency copies of live video streams
with relatively high quality (e.g., high definition HD and
high bit rate, such as 2 to 5 megabits per second), synchro
nizing such low latency and high quality copies of a live

60 video stream amongst multiple viewers (particularly as the
number of viewers of a given live video stream significantly
increases), and allowing for different classes or types of
viewers to flexibly access copies of a live video stream via
different live streaming formats (which may lead to different

65 qualities of service).
With these various technological challenges in mind, the

present disclosure relates generally to inventive systems,

US 11,039,218 Bl
3

apparatus, and methods for facilitating one or more broad
casters to create/provide video and/or audio (also referred to
herein as a "broadcast") and allow one or more viewers to
consume the video and/or audio, either by receiving a copy

4
role of a main commentator for the event, or a "color
commentator" (e.g., analyst or s=arizer) for the event; in
a given role, the broadcaster may describe the event as it
occurs (e.g., provide chronological or "play-by-play"
updates to "call" the event), and/or may provide expert
analysis, background or anecdotal information about the
event and/or participants in the event, and/or relevant sta
tistics regarding the event, participants in the event, or
related events. FIG. 1B illustrates a display of an example
client device, in which a broadcaster is providing video
based commentary about a sports game, and in which chat
messages from one or more viewers, event information
about the sports game, and other graphics and/or animations
are displayed together with the broadcaster's video-based

of a live stream representing the video and/or audio essen- 5

tially in real-time as created/provided by a given broad
caster, or by retrieving and playing a recording of the live
stream at a later time. In the context of essentially real-time
viewing of live streams, in various implementations the
inventive systems, apparatus and methods discussed in 10

detail herein address one or more technological problems
relating to viewer latency, synchronization amongst different
numbers of viewers, and providing scalable and flexible
access to live streams to different classes/types of viewers
and/or with different qualities of service. 15 commentary.

With reference to FIG. lA, in various implementations a
given broadcaster uses a network-connected client device
(e.g., a first smart phone or other personal computing device
communicatively coupled to the Internet) to generate a live
stream of digital content corresponding to the video and/or 20

audio created/provided by the broadcaster, wherein the live
stream is transmitted to an inventive server and memory
storage architecture (additional details of the server and
memory storage architecture are shown, for example, in
FIGS. 2 and 3). The inventive server and memory storage 25

architecture processes the broadcaster's live stream to gen
erate multiple copies of the live stream which are provided
to respective viewers, and also records the live stream and
stores the recording for later replay. One or more viewers
using different network-connected client devices (e.g., a 30

second and third smart phone or other personal computing
device communicatively coupled to the Internet) may com
municatively couple to the server and memory storage
architecture to receive a copy of the live stream of the digital
content as a real-time or essentially real-time consumer of 35

the broadcast created/provided by the broadcaster, or
retrieve and play a recording of the live stream generated by
the broadcaster client device (and recorded by the server and
memory storage architecture). In some implementations, a
given broadcaster themselves may view their own broadcast 40

as a viewer on the same client device (e.g., by opening a
separate tab on their client device and connecting to the
server and memory storage architecture as both a broad
caster and a viewer). In one aspect, the inventive server and
memory storage architecture allows any number of broad- 45

casters to generate respective live streams of digital content,
and any number of viewers to receive respective copies of a
given broadcaster's live stream of digital content. In another
aspect, the inventive server and memory storage architecture
allows a given viewer of a first broadcaster's live stream to 50

effectively switch in essentially real-time to view one or
more other broadcasters' live streams.

In some implementations, the inventive systems, appara-

Examples of various activities constituting events accord
ing to the present disclosure include, but are not limited to,
a variety of sports games (e.g., professional, semi-profes
sional, intramural, community-oriented) or sporting activi
ties (e.g., exercise-related activities, physical training activi
ties, fishing, hunting), musical performances, theatrical
performances, other artistic or entertainment-oriented activi
ties, speeches or presentations, political activities (e.g.,
election-related activities, campaign-related activities, pub
lic or "town hall" meetings, public marches or demonstra
tions), military activities, professional activities (e.g., meet-
ings or conferences), academic or educational activities
(e.g., academic presentations or lectures, research activities,
medical or scientific procedures, ceremonies), cooking or
baking activities, competitive activities (e.g., racing activi
ties), game-related activities (e.g., online gaming, board
games, chess matches, role-playing games), social activities,
and news-related activities. In one aspect, the video-based
commentary provided by one or more broadcasters about the
event and consumed by one or more viewers may provide a
"second screen" experience for the viewers; in particular, in
some implementations, the viewers may consume the video
based commentary about the event on their respective client
devices as they are watching the event itself on another
device (e.g., a television), or watching and/or participating
in the event at the event's venue.

As discussed in greater detail below, in various aspects the
inventive systems, apparatus and methods described herein
provide an improvement in computer network functionality
by facilitating scalable and appreciably low-latency viewing
of copies of multiple broadcasters' live streams of video-
based commentary about an event by significant numbers of
viewers as the event unfolds. Particularly in the context of
a "second screen" experience relating to a live event, dis
cernible delay between the observation of the event itself
and a given broadcaster's video-based commentary would
significantly undermine viewer experience. Accordingly, the
inventive systems, apparatus and methods described herein
specifically address multiple technological problems in con-tus, and methods further facilitate a social platform in

tandem with broadcasting video and/or audio to one or more
viewers, in which a given broadcaster and their viewer(s)
may communicate with one another (e.g., via chat messages)
in essentially real-time during a broadcast. In one aspect,
one or more chat messages, as well as various viewer-related
information (e.g., name, surname, profile photo), may be
displayed on respective client devices used by the broad
caster and the one or more viewers as the video and/or audio

55 ventional techniques relating to transport of digital content
via the Internet by providing multiple technological solu
tions to ensure a low-latency viewing experience for sig
nificant numbers of viewers.

is rendered on the respective client devices.
In some implementations, the video and/or audio created/

provided by one or more broadcasters is video-based com
mentary about a live event being observed by a given
broadcaster. In various aspects, the broadcaster may take the

In such implementations relating to video-based commen-
60 tary about events, the inventive systems, apparatus and

methods disclosed herein further may facilitate display, on
respective client devices used by the broadcaster and the one
or more viewers, of various event information in tandem
with the video-based commentary rendered on the respective

65 client devices. For example, in connection with sports
games, displayed event information may include, but is not
limited to, one or more of team information (e.g., team

US 11,039,218 Bl
5

names, abbreviations and/or logos), score information (e.g.,
with essentially real-time score updates synchronized with
the video-based commentary), player information, venue
information, game status information (e.g., on-base, at-bat,
timeouts, fouls, pole position, yards-to-go, yards-to-goal,
down), team statistics, player statistics and the like. In some
implementations, such event information about a sports
game may be rendered in the display of a client device as a
"scorebug" that may include for example, team abbrevia
tions or logos, team scores, game status (e.g., period, quarter,
inning), and actual or elapsed time for the game, with
updates to one or more information elements in essentially
real-time as the game progresses. It should be readily
appreciated that for other types of events, a wide variety of
information germane to the event may be displayed as event
information (e.g., with essentially real-time updates of
evolving information as the event progresses) together with
the rendering of the video-based commentary on respective
client devices. In another aspect, various event information
or other information germane to a given broadcaster's
video-based commentary may be rendered on a viewer client
device in a "lower third" (also sometimes referred to as a
"bottom third") of a display (e.g., as an overlay to the
video-based commentary).

In view of the foregoing, in other aspects the inventive
systems, apparatus and methods described herein provide
additional improvements in computer network functionality
by facilitating scalable and appreciably low-latency syn
chronization of displayed event information with multiple
broadcasters' live streams of video-based commentary about
an event as viewed by significant numbers of viewers as the
event unfolds. Particularly in the context of a "second
screen" experience relating to a live event, discernible delay
between the observation of the event itself and the status of
event information displayed in tandem with a given broad
caster's video-based commentary would significantly under
mine viewer experience. Accordingly, the inventive systems,
apparatus and methods described herein specifically address
multiple technological problems in conventional techniques
relating to transport of digital content via the Internet by
providing multiple technological solutions to ensure not
only a low-latency viewing experience for significant num
bers of viewers (e.g., relative to the event about which a
broadcaster is providing video-based commentary), but
appropriate synchronization of event information across all
broadcasters of an event and their associated viewers.

In some implementations as discussed herein, these tech
nological solutions contemplate multiple Internet commu
nication channels to provide relevant and synchronized
information to client devices (as would be readily appreci
ated in the relevant arts, a "communication channel" refers
to a physical or logical connection over a transmission
medium to convey information signals from one or more
senders to one or more receivers). For example, in one
implementation, a first "video" Internet communication
channel (e.g., between a media server or other media source
and a client device) conveys the digital content correspond
ing to the video-based commentary provided by the broad
caster and consumed by one or more viewers, and a second
"event information" Internet communication channel (e.g.,
between a particular socket of a socket server and the client
device) conveys the event information. In other implemen
tations, an additional "chat/system event" Internet commu
nication channel (e.g., between another socket of a socket
server and the client device) is employed to convey chat
information and other information relating to system events
regarding a particular broadcaster's live stream. In one

6
aspect, connections between client devices and a particular
socket of a socket server are persistent authenticated con
nections, so that the number of users (broadcasters and
viewers) connected to a particular socket (e.g., and currently

5 watching a particular live stream and/or particular event)
may be tracked.

In some implementations, the inventive systems, appara
tus, and methods further facilitate a variety of screen ani
mations (e.g., motion graphics), customized displays or

10 screen backgrounds, and other special effects graphics (e.g.,
augmented reality) that are generally associated with the
video and/or audio created by a broadcaster, and rendered by
client devices in tandem with a given broadcaster's video

15 and/or audio.
In some implementations in which the broadcaster may be

creating/providing video and/or audio content about an
event, one or more such screen animations, customized
displays or screen backgrounds, and other special effects

20 graphics may be related to some aspect of the event. For
example, as noted above, a "scorebug" providing informa
tion about a sporting event may be presented on a viewer's
display with a variety of motion or other special effects
graphics. In one aspect, the information provided by such a

25 scorebug is derived from the synchronized event informa
tion that is received by the client device on an event
information Internet communication channel that is separate
from the video content representing the video-based com
mentary. In another aspect, the scorebug and/or other special

30 effects graphics or animations may be rendered in the
display of the client device pursuant to execution of a client
app or program on the client device (rather than having these
display elements integrated into the broadcaster's live
stream itself). In other aspects, one or more such screen

35 animations and other special effects may be provided in a
lower/bottom third of a client device's display, and may be
interactive (e.g., in that a user of a client device may select
or thumb-over an animation, special effect and/or scorebug
to retrieve additional information and/or initiate other ani-

40 mations/graphics) and/or user-customizable (e.g., a broad
caster may select from one of multiple background displays
so that they may appear to be in any of a variety of locations
or venues, customize their video-based commentary with a
broadcaster-generated lower third, and/or add create/provide

45 introduction videos to be shown before their live stream
begins).

In yet other aspects, screen animations, customized dis
plays or screen backgrounds, and/or other special effects
graphics may be related to one or more of advertising or

50 branding (e.g., by sponsors of a broadcaster, sponsors of an
event about which a broadcaster is providing commentary,
participants in the event itself, etc.), premium features and
digital gifts (e.g., provided by one or more viewers to one or
more broadcasters or other viewers). For example, in some

55 implementations, via a client app or software program
executing on a client device, users will be able to purchase
digital gifts for other users (e.g., a viewer following a
particular broadcaster may purchase digital beers, various
digital concession stand items, ticker tapes, penalty flags,

60 etc.), and the digital gifts will appear in the broadcaster's
profile and/or be represented on a display (e.g., as an icon or
sprite) together with the broadcaster's video-based commen
tary. In one implementation, information regarding digital
gifts may be communicated between client devices and the

65 server and memory storage architecture via a chat/system
event Internet communication channel associated with a
given broadcaster's live stream of digital content.

US 11,039,218 Bl
7

In some implementations, the video and/or audio created/
provided by one or more broadcasters may relate to various
types of news, other types of current or past events, and
various topics of interest about which a given broadcaster
wishes to provide commentary. For example, a given broad
caster, or multiple broadcasters (which may be globally
distributed broadcasters, e.g., a first broadcaster in Europe,
a second broadcaster in Africa, and a third broadcaster in
Asia) may wish to broadcast about an ongoing, recent or past
event (e.g., news about a bombing, a fire, an arrest, an
economic development, a political or military development,
or any of the other activities discussed above) or a particular
topic of interest (e.g., healthy eating or dieting, gardening,
religion, dating, politics, culture, art, music, playing a musi
cal instrument, learning a language, auto repair, real estate,
business, economics, legal issues, global warming, space
exploration, a particular TV program or series, a particular
entertainment or sports personality, video games, hobbies,
etc.). As noted above, various event information regarding
the ongoing, recent or past event (or particular topic of
interest) may be provided to respective viewer devices, in
tandem with the video-based commentary, in a variety of
form factors and in a manner that ensures appropriate
synchronization of event information across all broadcasters
of an event and their associated viewers.

8
according to the present disclosure include, but are not
limited to, a variety of sports games (e.g., professional,
semi-professional, intramural, community-oriented) or
sporting activities (e.g., exercise-related activities, physical

5 training activities, fishing, hunting), musical performances,
theatrical performances, other artistic or entertainment-ori
ented activities, speeches or presentations, political activi
ties (e.g., election-related activities, campaign-related activi
ties, public or "town hall" meetings, public marches or

10 demonstrations), military activities, professional activities
(e.g., meetings or conferences), academic or educational
activities (e.g., academic presentations or lectures, research
activities, medical or scientific procedures, ceremonies),

15 cooking or baking activities, competitive activities (e.g.,
racing activities), game-related activities (e.g., online gam
ing, board games, chess matches, role playing games), social
activities, and news-related activities. Video and/or audio
created/provided by a broadcaster about an event may be

20 referred to herein as "video-based commentary." In some
implementations, the video and/or audio created/provided
by one or more broadcasters may relate to various types of
news, other types of current, recent or past events, and
various topics of interest about which a given broadcaster

25 wishes to provide commentary (e.g., news about a bombing,
a fire, an arrest, an economic development, a political or
military development, or any of the other activities dis
cussed above, healthy eating or dieting, gardening, religion,
dating, politics, culture, art, music, playing a musical instru-

Thus, in various examples discussed in greater detail
below, systems, apparatus, and methods are disclosed for
obtaining, substantially in real time, via at least one com
munication interface over at least one network, an audio
and/or visual feed generated by a broadcaster client device
during at least one live event, wherein the audio and/or
visual feed includes commentary associated with the at least
one live event, and a separate event data feed including real
time information associated with the at least one live event.
The commentary and the real time information associated
with the at least one live event are transmitted via at least one
processor communicatively coupled to the at least one
communication interface, so as to provide, substantially in
real time, streaming content via the at least one communi
cation interface over the at least one network to at least one 40

display device for concurrent display of the commentary and

30 ment, learning a language, auto repair, real estate, business,
economics, legal issues, global warming, space exploration,
a particular TV program or series, a particular entertainment
or sports personality, video games, hobbies, etc.).

VIEWER: A registered user or anonymous user that
35 consumes video and/or audio created/provided by a broad

caster, via essentially real-time access to a live stream of
digital content representing the video and/or audio, or via
retrieval and playing of a recording of the live stream of
digital content.

LIVE STREAM: Digital content (e.g., digital video and/
or digital audio) that is transferred between at least two
network-connected devices in real-time or essentially real
time as the corresponding video and/or audio codified as the
digital content is created/provided by a broadcaster. Thus, a

a graphical ticker based on the real time information asso
ciated with the event. The disclosed systems, apparatus, and
methods are enhanced tools for real-time broadcasting of
user-generated content associated with one or more live
events and community engagement that are unavailable
from existing video hosting websites.

Glossary
USER: a person who interfaces, via a mobile app or web

portal accessed on a client device communicatively coupled
to the Internet, with one or more of the various servers and
corresponding server functionality described herein.

REGISTERED USER: A user that provides profile infor
mation and validation credentials to establish a user account
so as to access, via a login process using the validation
credentials, the one or more of the various servers and
corresponding server functionality described herein.

ANONYMOUS USER: A non-registered user that has
access, without requiring a login process, to a limited feature
set based on the server functionality described herein.

BROADCASTER: A registered user that creates/provides
video and/or audio (also referred to herein in some instances
as "video-based commentary") for consumption by one or
more viewers.

EVENT: An activity about which a broadcaster may
create/provide video and/or audio as the activity occurs (i.e.,
in "real-time"). Examples of activities constituting events

45 network-connected client device used by the broadcaster
may generate a live stream of digital content corresponding
to the video and/or audio created/provided by the broad
caster, and a viewer using a different network-connected
client device may receive a copy of a live stream of the

50 digital content as a real-time or essentially real-time con
sumer of the video and/or audio created/provided by the
broadcaster. In some implementations, the video and/or
audio created/provided by the broadcaster and represented in
a live stream may be video-based commentary relating to an

55 event. A live stream of digital content may have a variety of
data formats (e.g., H.264 MPEG-4 Advanced Video Coding
video compression; VPS video compression) and transmis
sion protocols, including persistent/continuous streaming
transmission protocols (e.g., real time streaming protocol

60 "RTSP;" real time messaging protocol "RTMP;" web real
time communication "WebRTC"), as well as segmented
and/or adaptive bitrate (ABR) protocols (e.g., Apple's HTTP
Live Streaming "HLS;" Microsoft's HTTP Smooth Stream
ing "MSS;" Adobe's HTTP Dynamic Streaming "HDS;"

65 standards-based ABR protocol "MPEG-DASH").
FOLLOWER: A registered user who is notified when a

particular broadcaster is online.

US 11,039,218 Bl
9

SUBSCRIBER: A follower of a particular broadcaster that
has paid for access to additional features and/or content not
available to a follower (e.g., subscriber-specific chat chan
nels).

VIP MEMBER: an admin-designated registered user that 5

has additional access rights and high priority access to live
stream media servers.

MEDIA MEMBER: an admin-designated registered user
that is a media professional. In some implementations, the
media member designation is used during some live streams 10

to facilitate filtering and prioritization of comments/chat
message for response by the broadcaster of the live stream.

ADMIN USER: a staff account flagged with administra
tive powers.

PRIVATE PROFILE: a profile for a user that has desig- 15

nated their content as private, only allowing direct link
access to live/replay streams and archive access to broad
casters that the user has followed.

RAW VIDEO: A recording made by a media server of a
live stream generated by a broadcaster. In one example 20

implementation in which a broadcaster client device gener
ates a video stream in H.264/ AAC format and the media
server is a Real Time Messaging Protocol (RTMP) media
server, the raw video is produced by the RTMP media server
by recording the broadcaster's live stream directly (to pro- 25

vide a 720p high definition feed or even higher definition
feed). In another example in which a broadcaster client
device generates a video stream in VPS/WebRTC format and
the media server is a WebRTC media server, the WebRTC
media server first transcodes the live stream from the 30

broadcaster into a H.264 720p high definition (or even
higher definition feed) and then records the transcoded feed
to provide the raw video.

In sum, one inventive example is directed to a system
(1000) for providing a first plurality of copies (202A, 202B) 35

of a first broadcaster's live stream of digital content (102A)
including first live sporting event video-based commentary
from a first broadcaster client device (100A) to a first
plurality of viewer client devices (200A, 200B), and for
providing a second plurality of copies (202C, 202D) of a 40

second broadcaster's live stream of digital content (102B)
including second live sporting event video-based commen
tary from a second broadcaster client device (100B) to a
second plurality of viewer client devices (200C, 200D). The
system comprise: A) a plurality of media sources (300) to: 45

receive the first broadcaster's live stream of digital content
(102A) and the second broadcaster's live stream of digital
content (102B); provide a first copy (202A) of the first
plurality of copies to a first viewer client device (200A) of
the first plurality of viewer client devices via a first video 50

Internet communication channel (204A) between the plu
rality of media sources and the first viewer client device of
the first plurality of viewer client devices; and provide a first
copy (202C) of the second plurality of copies to a first
viewer client device (200C) of the second plurality of viewer 55

client devices via a second video Internet communication
channel (204C) between the plurality of media sources and
the first viewer client device of the second plurality of
viewer client devices. The system further comprises: B) a
control server (500) to periodically retrieve, via the Internet 60

and from an event information provider (55), first event
information (502A) germane to a first live sporting event,
wherein the first event information includes first score
information (504A) for the first live sporting event. The
system further comprises: C) at least one socket server (600) 65

communicatively coupled to the control server to: receive
from the control server at least the first score information;

10
and transmit the first score information (504A) to at least the
first viewer client device (200A) of the first plurality of
viewer client devices via a first event information Internet
communication channel (206A) between at least one first
event socket (602A) of the at least one socket server and the
first viewer client device of the first plurality of viewer
devices, wherein the at least one first event socket corre
sponds to the first event information germane to the first live
sporting event.

Another inventive example is directed to a system (1000)
for providing a first plurality of copies (202A, 202B) of a
first broadcaster's live stream of digital content (102A)
including first video-based commentary about a first live
sporting event from a first broadcaster client device (100A)
to a first plurality of viewer client devices (200A, 200B), and
for providing a second plurality of copies (202C, 202D) of
a second broadcaster's live stream of digital content (102B)
including second video-based commentary about a second
live sporting event from a second broadcaster client device
(100B) to a second plurality of viewer client devices (200C,
200D). The system comprises: A) a plurality of media
sources (300) to: receive the first broadcaster's live stream
of digital content (102A) and the second broadcaster's live
stream of digital content (102B); provide a first copy (202A)
of the first plurality of copies to a first viewer client device
(200A) of the first plurality of viewer client devices via a
first Internet communication channel (204A) between the
plurality of media sources and the first viewer client device
of the first plurality of viewer client devices; and provide a
first copy (202C) of the second plurality of copies to a first
viewer client device (200C) of the second plurality of viewer
client devices via a second Internet communication channel
(204C) between the plurality of media sources and the first
viewer client device of the second plurality of viewer client
devices. The system further comprises: B) a control server
(500) to periodically retrieve, via the Internet and from an
event information provider (55), first event information
(502A) germane to the first live sporting event and second
event information (502B) germane to the second live sport
ing event. The system further comprises: C) at least one
socket server (600) communicatively coupled to the control
server to: receive from the control server at least some of the
first event information (502A) and at least some of the
second event information (502B), wherein: the at least some
of the first event information includes first score information
for the first sporting event; and the at least some of the
second event information includes second score information
for the second sporting event; and transmit at least the first
score information the at least some of the first event infor
mation (502A) to the first viewer client device (200A) of the
first plurality of viewer client devices via a third Internet
communication channel (206A) between at least one first
event socket (602A) of the at least one socket server and the
first viewer client device of the first plurality of viewer
devices; and transmit at least the second score information
of the at least some of the second event information (502B)
to the first viewer client device (200C) of the second
plurality of viewer client devices via a fourth Internet
communication channel (206C) between at least one second
event socket (602B) of the at least one socket server and the
first viewer client device of the second plurality of viewer
devices.

It should be appreciated that all combinations of the
foregoing concepts and additional concepts discussed in
greater detail below (provided such concepts are not mutu
ally inconsistent) are contemplated as being part of the
inventive subject matter disclosed herein. In particular, all

US 11,039,218 Bl
11

combinations of claimed subject matter appearing at the end
of this disclosure are contemplated as being part of the
inventive subject matter disclosed herein. It should also be
appreciated that terminology explicitly employed herein that
also may appear in any disclosure incorporated by reference 5

should be accorded a meaning most consistent with the
particular concepts disclosed herein.

Other systems, processes, and features will become appar-

12
FIG.10 illustrates some of the functionality (e.g., services

and other processes) performed by the control server shown
in FIGS. 2 and 3, according to one inventive implementa
tion.

FIGS. llA through llC show a process flow diagram
illustrating an RTMP media server scaling system service
method performed by the control server of FIG. 10, accord
ing to one inventive implementation.

FIGS. 12A through 12C show a process flow diagram
illustrating an RTMP CDN server scaling system service
method performed by the control server of FIG. 10, accord
ing to one inventive implementation.

ent to those skilled in the art upon examination of the
following drawings and detailed description. It is intended 10

that all such additional systems, processes, and features be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

FIGS. 13A and 13B show a process flow diagram illus-

15 trating a stream and server watchdog service method per
formed by the control server of FIG. 10, according to one
inventive implementation. BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings
primarily are for illustrative purposes and are not intended to
limit the scope of the inventive subject matter described
herein. The drawings are not necessarily to scale; in some
instances, various aspects of the inventive subject matter
disclosed herein may be shown exaggerated or enlarged in
the drawings to facilitate an understanding of different
features. In the drawings, like reference characters generally
refer to like features (e.g., functionally similar and/or struc
turally similar elements).

FIG. lA is a block diagram showing respective elements
of a system to facilitate live streaming of digital content
(video and/or audio) from multiple broadcasters to multiple
viewers, according to some inventive implementations.

FIG. 1B illustrates a display of an example client device
in the system of FIG. lA, showing various displayed content
according to some inventive implementations.

FIG. 2 is a block diagram of the broadcast/viewing servers
and memory storage devices shown in FIG. lA according to
some inventive implementations.

FIG. 3 is a block diagram showing additional details of

FIGS. 14A and 14B show a process flow diagram illus
trating a check RTMP media/CDN server method performed

20 by the control server of FIG. 10 (e.g., as part of the method
shown in FIGS. 13A and 13B), according to one inventive
implementation.

FIG. 15 shows a process flow diagram illustrating an
event data ingress service method performed by the control

25 server of FIG. 10, according to one inventive implementa
tion.

FIGS. 16A and 16B show a process flow diagram illus
trating a live event data monitor service method performed
by the control server of FIG. 10, according to one inventive

30 implementation.
FIGS. 17A and 17B show a process flow diagram illus

trating an asynchronous task service method performed by
the control server of FIG. 10, according to one inventive

35
implementation.

FIGS. 18A and 18B show a process flow diagram illus
trating a process for taking a screenshot (thumbnail) of a live
stream, performed by the control server of FIG. 10, accord
ing to one inventive implementation.

the various interconnections between the respective compo- 40

nents of the servers and memory storage devices shown in
FIG. 2, according to some inventive implementations.

FIGS. 19A and 19B show a process flow diagram illus-
trating a user login process according to one inventive
implementation, which in some examples may be performed
by a client device and facilitated by one or more web servers
shown in FIGS. 2 and 3.

FI GS. 4A and 4 B show a process flow diagram illustrating
a broadcast media server selection algorithm according to
one inventive implementation, which in some examples may 45

be performed by one or more web servers shown in FIGS.
2 and 3.

FIGS. 20A and 20B show a process flow diagram illus-
trating a mobile broadcaster stream create process according
to one inventive implementation, which in some examples
may be performed by a broadcaster client device shown in
FIG. lA and facilitated by one or more web servers shown

FIGS. SA through SC show a process flow illustrating a
media server process for the media servers shown in FIGS.
2 and 3, according to one inventive implementation. 50 in FIGS. 2 and 3.

FIGS. 21A, 21B, 21C, 21D, and 21E show a process flow
illustrating a mobile broadcaster active stream process
according to one inventive implementation, which in some
examples may be performed at least in part by a broadcaster

FIG. 6 is a block diagram illustrating the selective cou
pling of an example viewer client device to one of the media
sources of the servers and memory storage devices shown in
FIGS. 2 and 3, according to some inventive implementa
tions. 55 client device shown in FIG. lA.

FIG. 7 is a process flow diagram illustrating a viewer
stream source selection algorithm according to one inventive
implementation, which in some examples may be performed
by the one or more web servers shown in FIGS. 2, 3 and 6.

FIG. 8 is a block diagram showing additional details of 60

the HLS server architecture of the servers and memory
storage devices shown in FIGS. 2, 3 and 6, according to
some inventive implementations.

FIGS. 9A through 9D show a process flow illustrating an
HLS stream viewing process performed by the HLS server 65

architecture shown in FIG. 8, according to one inventive
implementation.

FIGS. 22A and 22B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for the processes shown in FIGS. 20A and 20B, and
FIGS. 21A-21E, according to one inventive implementation.

FIGS. 23A and 23B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for a live stream RTMP media server or RTMP CDN
viewer, according to one inventive implementation.

FIGS. 24A and 24B show a communication flow diagram
illustrating process flow elements and the server and/or

US 11,039,218 Bl
13

memory storage devices involved in the communication
flow for a live stream HLS viewer, according to one inven
tive implementation.

14
present at the event) may stream video and/or audio of the
event to watch and/or listen in real time or substantially in
real time during the live event to the broadcaster's com
mentary. Alternatively, a broadcaster present at the live FIGS. 25A, 25B, and 25C show a process flow illustrating

a mobile client live stream replay method, according to one
inventive implementation.

FIGS. 26A, 26B, and 26C show a process flow illustrating
an event data replay process called in the method of FIGS.
25A, 25B and 25C, according to one inventive implemen
tation.

5 event may record video and/or audio content for delayed
streaming or uploading to the network platform during or
after the live event, and a viewer may download the broad
caster's recording of the live event and the video and/or

FIG. 27 shows a process flow illustrating a user input
replay process called in the method of FIGS. 25A, 25B and
25C, according to one inventive implementation.

10

audio commentary for delayed viewing and/or listening.
In some implementations, a broadcaster may or may not

be present at a live event to still generate multimedia content
(broadcaster commentary) associated with the event during
the event. For example, a broadcaster may generate audio or
visual content about the event while simultaneously follow-

DETAILED DESCRIPTION

Following below are more detailed descriptions of various
concepts related to, and implementations of, inventive sys
tems, methods and apparatus for scalable low-latency view-

15 ing the event via a live broadcast by a third party (e.g.,
television, radio, Internet, etc.). The multimedia content may
or may not include or be integrated with video and/or audio
from the event itself.

ing of broadcast digital content streams of live events, and 20

synchronization of event information with viewed streams,
via multiple Internet channels. It should be appreciated that
various concepts introduced above and discussed in greater
detail below may be implemented in various manners, and
that examples of specific implementations and applications 25

are provided primarily for illustrative purposes.
I. Overview

In some implementations, a network platform is capable
of integrating user-generated (broadcaster-generated) mul
timedia with real-time data (e.g., "event information") col
lected by the user or a third party. For example, a live
competitive event may be integrated with scores for the
event. Other real-time data may include but is not limited to
alerts, statistics, trivia, polls, news, broadcaster and/or
viewer messages, and/or advertising associated with or
relevant to the event, a participant in the event, a location of
the event, a date/time of the event, etc. In one implementa
tion, a network platform allows a user to select content, for

The present disclosure describes inventive systems, appa
ratus, and methods for connecting followers of live events
(e.g., sports, performances, speeches, etc.), including com
mentators, spectators, and/or participants in live events (e.g.,
athletes, performers, politicians, etc.). In some example
implementations, the inventive systems, apparatus and
methods further provide a social platform for sharing and
contributing multimedia associated with live events.

30 example, news articles, and create onscreen elements for
simultaneous viewing of the content.

Audio and/or visual indications and content may be
integrated with user-generated multimedia for simultaneous
presentation. The presentation may be in real-time or sub-

Live streaming is used herein to refer to delivery and/or
receipt of content in real-time, as events happen, or sub
stantially in real time, as opposed to recording content to a

35 stantially in real-time. For example, audio indications may
be presented with digital video media, and/or visual content
may be presented with digital audio media. In some imple
mentations, audio and/or visual indications and content are
presented simultaneously with digital audio and/or video file before being able to upload the file to a media server, or

downloading the entire file to a device before being able to
watch and/or listen to the content. Streaming media is used
herein to refer to multimedia (e.g., digital video and/or audio
media) that is delivered between two or more network
connected devices in real time or substantially in real time.
Streaming may apply to continuously updated media content
other than video and audio including, but not limited to, a
live ticker, closed captioning, and real-time text. An end
user (e.g., a viewer) may watch and/or listen to media
streamed over a network (e.g., the Internet) using a user
output interface such as a display and/or over a speaker 50

communicatively coupled with, for example, a desktop
computer, notebook or laptop computer, smart television,
set-top box, Blu-ray™ player, game console, digital media
player, smartphone (e.g., iOS or Android), or another net
work-connected interactive device.

40 media using multiple tracks and/or display frames or over
lays. For example, digital video media of a basketball game
or of a broadcaster providing play-by-play audio commen
tary for the game may be displayed with an overlay of a
real-time scoreboard and/or ticker. Alternatively, the real-

45 time scoreboard and/or ticker may be presented in a separate
frame.

Audio and/or visual indications and content may be
modifiable and/or interactive. For example, traditional news
and sports broadcasting may insert audio and/or visual
indications and content into an outgoing digital audio and/or
video media stream. The receiving client devices have been
assumed to be "dumb," that is, only capable of displaying
the audio and/or video media as received. In contrast, in
inventive implementations disclosed herein "smart" client

55 devices allow audio and/or visual indications and content to
be rendered on the client side, which allows for real-time
modification and interaction with viewers and/or listeners.
That is, client-side rendering allows for interactivity with
elements and enhanced features not available to traditional

In some implementations, a network platform receives
and provides multimedia (e.g., digital video content and/or
digital audio content) associated with a live event. The
multimedia may be captured by one or more broadcasters
present at the live event. A broadcaster present at the live 60

event may stream video and/or audio content to the network
platform in real time or substantially in real time during the
live event. For example, a broadcaster may capture video of
a sporting event, such as a local high school football game,
using a video camera, smartphone camera, etc. The video 65

may include audio and/or visual commentary from the
broadcaster. One or more viewers (either present or not

broadcasting.
FIG. lA is a block diagram of a system according to one

inventive implementation, including multiple client devices
(e.g., broadcaster client devices l00A and 100B, viewer
client devices 200A, 200B, 200C and 200D), broadcast/
viewing servers and memory storage devices 1000 (e.g.,
serving as the network platform noted above), an event
information provider 55, one or more news feeds (RSS

US 11,039,218 Bl
15

feeds) 65, and a digital distribution platform (app store) 75
all communicatively coupled via the Internet 50. Each of the
client devices l00A, 100B, 200A, 200B, 200C, 200D may
download from the digital distribution platform 75 an app or
software program that becomes resident on the client device
(i.e., a client app) and performs at least some of the various
broadcaster and viewer functionality described herein in
connection with broadcasting live streams of digital content
and viewing copies ofbroadcasted live streams, exchanging
chat messages amongst broadcasters and one or more view
ers, logging system events and providing system event
messages to broadcasters and viewers, collecting and main
taining/updating event information and providing event
information to broadcasters and viewers in a synchronized
manner, providing and updating various animation and
special effects graphics, and replaying of recorded streams.

Although FIG. lA illustrates two broadcaster client
devices and four viewer client devices, it should be appre
ciated that various numbers of client devices (broadcaster
client devices and viewer client devices) are contemplated

16
real-time communication (WebRTC) protocol for continu
ous streaming over the Internet (e.g., via a persistent con
nection to a second media server of the servers and memory
storage devices 1000). The copies of the live streams 202A,

5 202B, 202C and 202D may be transmitted by the servers and
memory storage devices 1000 as continuous streams using
RTMP or WebRTC, or using segmented and/or adaptive
bitrate (ABR) protocols (e.g., Apple's HTTP Live Streaming
"HLS;" Microsoft's HTTP Smooth Streaming "MSS;" Ado-

10 be's HTTP Dynamic Streaming "HDS;" standards-based
ABR protocol "MPEG-DASH").

FIG. 1B illustrates a display 250 of an example viewer
client device 200A in the system of FIG. lA, showing
various displayed content according to some inventive

15 implementations. It should be appreciated that one or more
elements of the various content discussed in connection with
FIG. 1B similarly may be provided on the display of a
broadcaster client device. In the example of FIG. 1B, a
broadcaster is providing video-based commentary relating

20 to a live sporting event, and the display 250 of the viewer
client device 200Aincludes various content elements includ-by the systems, apparatus and methods disclosed herein, and

those shown in FIG. lA are for purposes of illustration.
More specifically, a given broadcaster may have virtually
any number of viewers using respective viewer client
devices to receive copies of the broadcaster's live stream of 25

digital content via the servers and memory storage devices
1000; similarly, the system may accommodate virtually any
number of broadcasters providing live streams of digital
content to the servers and memory storage devices 1000,
wherein each broadcaster has multiple viewers receiving 30

copies of the broadcaster's live stream of digital content. In

ing the broadcaster's video-based commentary 252, event
information 254 relating to the live sporting event about
which the broadcaster is providing the video-based com
mentary, chat messages 258 from one or more viewers
consuming the broadcaster's video-based commentary, and
various graphics, special effects and/or animation elements
256 (e.g., some of which are rendered in a "lower third" of
the display 250).

More specifically, as shown in FIG. 1B, the client device
200A renders in the display 250 (pursuant to execution of a
client app or software program) a first broadcaster's video
based commentary 252. As discussed above in connection
with FIG. lA, the first broadcaster's video-based commen
tary 252 is codified in a live stream of digital content 102A
provided by the first broadcaster client device 100A to the

the example shown in FIG. lA, a first broadcaster client
device l00A provides a first live stream of digital content
102A, and a first plurality of viewer client devices 200A and
200B (grouped by a first bracket) receive respective copies 35

202A and 202B of the first broadcaster's live stream of
digital content. Similarly, a second broadcaster client device
100B provides a second live stream of digital content 102B,
and a second plurality of viewer client devices 200C and
200D (grouped by a second bracket) receive respective
copies 202C and 202D of the second broadcaster's live
stream of digital content. With respect to events or news that
may be germane to a given broadcaster's live stream of
digital content, the broadcast/viewing servers and memory
storage devices 1000 may retrieve various event information
from the event information provider 55 (e.g., STATS LLC),
and various news from news feeds (RSS) 65, and in turn
convey various event information and/or news to one or
more client devices.

As discussed in further detail below, a variety of digital
content format and transmission protocols are contemplated
herein for the broadcaster live streams 102A and 102B
output by the broadcaster client devices l00A and 100B
respectively, as well as the copies of the live streams 202A,
202B, 202C and 202D received by respective viewer client
devices 200A, 200B, 200C and 200D. For example, the first
broadcaster client device l00Amay be a mobile broadcaster
client device (e.g., a smartphone) and output a live stream of
digital content 102A having an H.264 MPEG-4 Advanced
Video Coding (AVC) video compression standard format,
via real time messaging protocol (RTMP) transport for
continuous streaming over the Internet (e.g., via a persistent
connection to a first media server of the servers and memory
storage devices 1000). The second broadcaster client device
100B may be a web-based device (e.g., a desktop computer)
and output a live stream of digital content 102B having a
VPS video compression format, transmitted via the web

servers and memory storage devices 1000, and a copy 202A
of the first broadcaster's live stream is received by the
viewer client device 200A from the servers and memory

40 storage devices 1000. The display also includes event infor
mation 254 in the form of a "scorebug," wherein the
scorebug includes indicators for the teams participating in
the live sporting event, score information for the live sport
ing event, and event status (e.g., time clock, period or

45 quarter, etc.). In various implementations discussed in fur
ther detail below, the scorebug may be animated, may
include one or more special effects graphics elements, and/or
may be interactive (e.g., the viewer may press or thumb-over
one or more portions of the scorebug to launch further

50 graphics or animations, receive additional information about
the live sporting event, or navigate to another Internet
location to receive additional information relating to the live
sporting event).

The display 250 in FIG. 1B also includes lower-third
55 content 256 comprising additional graphics, special effects

and/or animation elements which similarly may be interac
tive; such elements may include a broadcaster-selected title
for the broadcast, as well as text commentary from the
broadcaster or event-related news. Additionally, as shown in

60 the left portion of the display 250, the display may include
one or more chat messages 258 from different viewers of the
broadcaster's video-based commentary, including responses
from the broadcaster themselves; as seen in FIG. 1B, the
chat messages 258 may include the name of the viewer, a

65 viewer photo, and the chat message content itself.
In some implementations, the network platform provided

by the servers and memory storage devices 1000 maintains

US 11,039,218 Bl
17 18

cific to a particular user. The network platform may request
the location of a user or permission to access the geo
location of the user's device in order to recommend events
nearby. The network platform may track and interpret pat-

user profiles for broadcasters and viewers. Each user profile
may be associated with, for example, a user email address,
user device, or other unique identifier. Each user profile
interface (e.g., "page" such as a webpage) may include
and/or be customized with content (e.g., a profile photo,
descriptive text, user-generated multimedia, favorite team
imagery, etc.). In some implementations, the network plat
form further allows for the creation of "team" profiles; for
example, event participants (e.g., individuals, groups, par
ties, teams, bands, schools, etc.) may share a "team" profile,
wherein the team profile interface (e.g., "page" such as a
webpage) may aggregate relevant content (e.g., news or
current events about a particular event or team, such as polls,
trivia, photo galleries, etc.) and provide further opportunities
for users to contribute and connect with each other. The
network platform may provide user preference options to
further define a team profile interface with recommendations
and/or alerts specific to a particular user (e.g., to prominently
feature recent activity of a particular user).

5 terns in the user's use of the platform to predict and
recommend events specific to the user.

In some implementations, after a user selects an event, the
network platform provides a directory of other users who are
present at the event and/or generating media associated with

10 the event. The directory interface may be presented as a
listing, drop-down menu, keyword search bar, etc. Selection
of another user from the event-specific directory allows
connection to, communication with, and/or access to media
generated by that user. Thus, a user is able to discover and

15 connect with similar users. The network platform may
provide user preference options to further define a user
directory interface with recommendations and/or alerts spe
cific to a particular user. For example, in some implemen
tations, users can discover other users based in part on one

With respect to social media-related features, as noted
above the network platform provides chat capabilities such
that users may engage in live public and/or private chat
sessions. For example, in some implementations, users may
request permission (or be allowed) to send each other private
and/ or public messages (e.g., direct messages). Furthermore,
users may be able to purchase private and/or public virtual
gifts (e.g., digital images of beers, penalty flags, etc., or
profile/content enhancements like ticker tape) or provide
"sponsorships" for other users. Public gifts received by a
user may be displayed on the user's profile and/or with his
or her content.

20 or more of the location of respective users, an event about
which the broadcaster is providing commentary, a title of a
broadcaster's live stream, and topics or other users that have
been identified (e.g., in chat messages relating to a given
broadcaster's live stream and/or a particular user's profile,

25 using #hashtags or @ symbols).
In some implementations, the popularity of an event

and/or broadcaster is monitored, displayed, and/or used in
real-time or substantially in real-time. For example, a num
ber of video servers may be scaled based on demand and/or

In some implementations, users are able to publicly
and/or privately comment on, rate, "like," or otherwise
indicate their opinions on live events, event-associated top

30 usage by client devices, including broadcasters and/or view
ers. Worker servers may be used for distributed monitoring
and capturing screenshots/thumbnails of video streams. In
another example, client media source selection of live
stream copies, such as Real-Time Messaging Protocol

35 (RTMP) versus HTTP Live Streaming (HLS), may be based
on demand and/or usage levels (e.g., number of viewers
requesting copies of a given broadcaster's live stream,
capacity of media servers and/or content delivery network).

ics, user profiles, team profiles, and user-generated content.
Users may be able to use #hashtags within their messages,
chat sessions, comments, and/or other activity to link to
messages, chat sessions, comments, and/or other activity
happening among other users and/or teams. Users may be
able to use @ symbols within their messages, chat sessions, 40

comments, and/or other activity to tag other users, event
participants, and teams.

In some implementations, a network platform provides a
directory of live events. The directory interface may be
presented as a listing, drop-down menu, keyword search bar, 45

etc. The directory interface may include and/or distinguish
between different categories of events. For example, the
directory interface may include and/or distinguish between
events that are scheduled, underway, and/or completed. The
directory interface also may include and/or distinguish 50

between different or particular types of events (e.g., live
sports versus live music, baseball versus hockey, profes
sional versus collegiate, National League versus American
League, etc.); different or particular participants in the
events (e.g., team, coach, athlete, owner, school, etc.); 55

and/or different or particular locations of the events (e.g.,
country, region, state, county, town, district, etc.). As dis
cussed in greater detail below, in one implementation a
dedicated control server of the network platform periodi
cally retrieves a variety of event information from one or 60

more event information providers (e.g., for sports events,
ESPN, STATS LLC), and populates a database of the
network platform with information on available events so as
to provide the directory of live events to a user.

In some implementations, the network platform may 65

provide user preference options to further define an event
directory interface with recommendations and/or alerts spe-

II. Servers and Memory Storage Devices
Having provided an overview of the information flow and

general functionality enabled by the various elements shown
in FIG. lA, additional details of the servers and memory
storage devices 1000 are now discussed, with reference
initially to FIG. 2.

In particular, FIG. 2 is a block diagram providing another
perspective of the system shown in FIG. lA, showing
example communication connections between the broad
caster client devices l00A and 100B and the servers and
memory storage devices 1000, example connections
between the servers and memory storage devices 1000 and
the viewer client devices 200A and 200C, and some struc-
tural details of the servers and memory storage devices
1000. Some of the broadcaster/viewer client devices that are
mobile devices (e.g., smartphones) have downloaded a cli
ent app 5000 (e.g., from the digital distribution platform or
app store 75 shown in FIG. lA) which is resident in memory
of the client device and executed by a processor of the client
device. For purposes of simplifying the illustration, only the
viewer client devices 200A and 200C explicitly show the
client app 5000 resident on the client devices; it should be
appreciated, however, that one or more mobile broadcaster
client devices also have the client app 5000 installed
thereon.

As shown in FIG. 2, in one inventive implementation the
servers/memory storage devices 1000 include one or more
web servers 700 (also referred to herein as a "web server
pool") that support an Applications Prograniming Interface

US 11,039,218 Bl
19 20

in connection with FIG. 10, the control server 500 imple
ments a number of services/processes that govern function
ality of other servers and devices in the servers/memory
storage devices 1000; examples of such control system

(API) to facilitate communications between the servers/
memory storage devices 1000 and one or more mobile
broadcaster/viewer client device executing the client app
5000, and also facilitate communications to and from web
based client devices (that access the web server(s) via a web
portal at a particular URL). In this role, as discussed in
further detail below, much of the instructive communication
between the client devices and the servers/memory storage
devices 1000 occurs via the web server(s) 700. For example,
it is via the web server(s) 700 that client devices create new
live streams for broadcast and get access to media servers,
receive access to view other broadcasters' live streams via
one of multiple different media sources, receive event infor
mation associated with broadcasters' live streams and send
and receive chat messages, log on and create or update user
profiles (or other profiles such as team profiles), and access
other social media-related functionality (e.g., digital gift
giving) to interact with other users. The web server(s) 700

5 services/processes include, but are not limited to: an RTMP
media server scaling process to add or remove servers from
the one or more RTMP media servers 320 of the media
sources 300 (see FIG. 11); an RTMP CDN server scaling
process to add or remove servers from the RTMP CDN 340

10 of the media sources 300 (see FIG. 12); a live stream and
media server watchdog process (see FIGS. 13-14); an event
data ingress process (see FIG. 15); a live event data monitor
process (see FIG. 16); an asynchronous task processor (see
FIG. 17); and a live stream thumbnail/screenshot acquisition

15 process (see FIG. 18).
With reference again to FIG. 2, the servers/memory

storage devices 1000 further comprise one or more socket
servers 600 communicatively coupled to the web server(s)
700 and the control server 500. In one aspect, the socket are communicatively coupled to a memory system 400 that

includes a database 420, data storage 440, and one or more
memory caches 460 to store various information (e.g., user
profile information, stream information, event information,
recorded live streams, etc.) germane to the operation of the
servers and memory storage devices 1000 and the various
client devices.

20 server(s) 600 facilitate communication, to one or more
broadcaster client devices and one or more viewer client
devices, of synchronized event information retrieved by the
control server 500 and associated with video-based com-
mentary relating to a particular event. In particular, one or

25 more sockets of the socket server(s) dedicated to the par
ticular event allow respective client devices to establish an
event information channel with the socket server(s), such
that the event information (e.g., in the form of "event

The servers/memory storage devices 1000 further com
prise a plurality of media sources 300 (e.g., computer servers
including one or more processors, memory, and one or more
communication interfaces) that receive a live stream of
video-based commentary from a given broadcaster client 30

device, and provide copies of the live stream of video-based
commentary to one or more viewer client devices. As shown
in FIG. 2, in one implementation the media sources 300 are
communicatively coupled to the memory system 400, and
may comprise one or more Real Time Messaging Protocol 35

(RTMP) media servers 320, an RTMP Content Delivery
Network (CDN) 340 (which itself includes a plurality of
content delivery network servers), one or more WebRTC
media servers 360, and an inventive HTTP Live Streaming
(HLS) caching and amplifying server architecture 380. 40

Additional details of the media sources 300 are discussed
below in connection with FIGS. 3 through 6, and particular
details of media server processes (performed by the RTMP
media servers 320 and the WebRTC media servers 360) are
discussed below in connection with FIGS. SA, 5B and SC. 45

As also discussed below, in one implementation the web
server(s) 700 select a particular media server of the media
sources 300 to which a given broadcaster connects to
provide the broadcaster's live stream of digital content, and
the web server(s) 700 also select a particular media source 50

of the media sources 300 to which a given viewer connects
to receive a copy of a given broadcaster's live stream;
further details of a broadcast media server selection algo
rithm and a viewer stream source selection algorithm imple
mented by the web server(s) 700 are provided below in 55

connection with FIGS. 6 and 7.

messages") is shared in a synchronized manner by all
broadcasters/viewers following the particular event.

In FIG. 2, the socket server(s) 600 also facilitate com
munication, between a given broadcaster of a live stream of
video-based commentary and corresponding viewers of cop
ies of the live stream, of chat messages and/or system event
information (also referred to collectively simply as "chat
information") relating to the broadcaster's live stream. In
particular, one or more sockets of the socket server(s) 600
dedicated to the particular broadcaster's live stream allow
respective client devices used by the broadcaster and their
viewers to establish a chat/system event channel with the
socket server(s), such that chat messages/system event infor-
mation is shared in a synchronized manner by the broad
caster of the live stream and corresponding viewers of
copies of the live stream. Chat messages sent on a given
chat/system event channel may be displayed as text on all
broadcaster/viewer client devices connected to the socket(s)
dedicated to the particular broadcaster's live stream,
whereas system event information may be received (but not
necessarily displayed itself) by all client devices connected
to the socket(s) dedicated to the particular broadcaster's live
stream, and provide the client device with relevant data or
instructions to take some action. As discussed further below,
examples of the types of system event information or
"system messages" that may be broadcast by the socket(s)
dedicated to the particular broadcaster's live stream include,
but are not limited to, indications of viewers joining or
leaving a broadcast, an indication of a new follower of a
broadcaster, indications relating to the purchase of digital
gifts and types of digital gifts (which may cause some

The servers/memory storage devices 1000 shown in FIG.
2 further comprise a control server 500 coupled to the
memory system 400, the event information provider 55, and
the news feeds (RSS) 65 (e.g., via the Internet). In one
aspect, the control server 500 periodically retrieves various
event information from the event information provider 55
and/or news from the news feeds 65 that is germane to
respective broadcasters' video-based commentary. In
another aspect, the control system 500 may store at least
some portion of retrieved event information and/or news in
the memory system 400. More generally, as discussed below

60 display or audio event on the client device), indications
relating to "likes" (e.g., cheers, handclaps, or applause icons,
or audio of crowds cheering), and other data/instructions
relating to various social networking functionality.

In one aspect, connections between a given client device
65 and a particular socket of a socket server are persistent

authenticated connections (e.g., with IP-based fingerprint
identifiers for anonymous users). The authenticated connec-

US 11,039,218 Bl
21

tion allows the servers and media storage devices 1000 to
track how many users are connected to a particular socket at
any given time (and hence how many users are viewing a
copy of a particular broadcaster's live stream, and/or how
many users are viewing a copy of a live stream relating to 5

a particular event). In another aspect, the various "mes
sages" (e.g., event messages, chat messages, system mes
sages) that are carried on the respective channels between a
given client device and corresponding sockets of the socket
server(s) are data packets including various event informa- 10

tion, chat to be displayed, or system events (e.g., "new
viewer," "disconnected viewer," "stream muted, "stream
ended").

22
socket server(s) 600 establish one or more first event sockets
602A dedicated to the first event information and one or
more second event sockets 602B dedicated to the second
event information.

As discussed further below, the web server(s) 700 provide
to the first viewer client device 200A a first event identifier
(a first EventID) that corresponds to the first event socket
602A; the web server(s) 700 also provide to the second
viewer client device 200C a second event identifier (a
second EventID) that corresponds to the second event socket
602B. The first viewer client device 200A uses the first
EventID to connect to the first event socket 602A (e.g., via
a first URL including the first EventID in a path of the URL),
and the second viewer client device 200C uses the second
EventID to connect to the second event socket 602B (e.g.,
via a second URL including the second EventID in a path of
the URL). The first score information 504A is then trans
mitted to the first viewer client device 200A via a first event
information Internet communication channel 206A between

20 the first event socket 602A and the first viewer client device

With reference again for the moment to FIG. lA, recall
that in the example arrangement depicted in FIG. lA a first 15

broadcaster client device 100A provides a first live stream of
digital content 102A, and a first plurality of viewer client
devices 200A and 200B (grouped by a first bracket) receive
respective copies 202A and 202B of the first broadcaster's
live stream of digital content. Similarly, a second broad
caster client device 100B provides a second live stream of
digital content 102B, and a second plurality of viewer client
devices 200C and 200D (grouped by a second bracket)
receive respective copies 202C and 202D of the second
broadcaster's live stream of digital content. Turning now
again to FIG. 2, and taking only the viewer client devices
200A and 200C into consideration for purposes of illustra
tion, the example implementation shown in FIG. 2 contem
plates that the first broadcaster is providing video-based
commentary about a first live sporting event, and the second 30

broadcaster is providing video-based commentary about a
second (different) live sporting event, such that the first
viewer client device 200A receives the copy 202A of the first
broadcaster's live stream of digital content 102A relating to

200A, and the second score information 504B is transmitted
to the second viewer client device 200C via a second event
information Internet communication channel 206C between
the second event socket 602B and the second viewer client

25 device 200C.

the first sporting event (and provided by the first broadcaster 35

client device l00A), and that the second viewer client device
200C receives the copy 202C of the second broadcaster's
live stream of digital content 102B relating to the second
sporting event (and provided by the second broadcaster
client device 100B). Also, in the example of FIG. 2, the first 40

broadcaster's live stream 102A is an RTMP stream received

In a manner similar to that described above in connection
with the first and second event information, in the example
of FIG. 2 chat messages and other system event information
("chat information") may be distributed to viewers of each
broadcaster via respective dedicated sockets of the socket
server(s) 600. In particular, the socket server(s) 600 simi
larly establish one or more first chat/system event sockets
604A dedicated to the first broadcaster's live stream of
digital content 102A and one or more second chat/system
event sockets 642B dedicated to the second broadcaster's
live stream of digital content 102B. The web server(s) 700
provide to the first viewer client device 200A a first stream
identifier (a first StreamID) that corresponds to the first
chat/system event socket 604A; the web server(s) 700 also
provide to the second viewer client device 200C a second
stream identifier (a second StreamID) that corresponds to the
second chat/system event socket 604B. The first viewer
client device 200A uses the first StreamID to connect to the

by the RTMP media server(s) 320, and the second broad
caster's live stream 102B is a WebRTC stream received by
the WebRTC media server(s) 360. The media sources 300
provide the copy 202A of the first broadcaster's live stream
102A to the first viewer client device 200A via a first video
Internet communication channel 204A, and provide the copy
202C of the second broadcaster's live stream 102B to the
second viewer client device 200C via a second video Inter-
net communication channel 204C (further details of the role
of the web server(s) 700 in selecting a particular media
source of the media sources 300 to which each viewer client
device connects to establish a video Internet communication
channel are discussed below in connection with FIGS. 6 and
7).

In the example of FIG. 2, as noted above the control
server 500 periodically retrieves, via the Internet and from

first chat/system event socket 604A (e.g., via a first URL
45 including the first StreamID in a path of the URL), and the

second viewer client device 200C uses the second StreamID
to connect to the second chat/system event socket 604B
(e.g., via a second URL including the second StreamID in a
path of the URL). The first chat information 210A is then

50 transmitted to the first viewer client device 200A via a first
chat/system event Internet communication channel 208A
between the first chat/system event socket 604A and the first
viewer client device 200A, and the second chat information
210B is transmitted to the second viewer client device 200C

55 via a second chat/system event Internet communication
channel 208C between the second chat/system event socket
604B and the second viewer client device 200C.

the event information provider 55, first event information
502A germane to the first live sporting event, wherein the
first event information includes at least first score informa- 60

tion 504A for the first live sporting event. The control server
further retrieves second event information 502B germane to

For purposes of simplifying the illustration in FIG. 2, the
broadcaster client devices l00A and 100B are shown only
providing respective live streams 102A and 102B directly to
different media servers 320 and 360; however, it should be
appreciated that the broadcaster client devices 100A and
100B have additional communication connections to the
socket server(s) 600 and the web server(s) 700, similar to

the second live sporting event, wherein the second event
information includes at least second score information 504B
for the second live sporting event. The control server passes
at least the first score information 504A and the second score
information 504B to the socket server(s) 600. In tum, the

65 those shown in FIG. 2 between the example viewer client
devices 200A and 200C and the socket server(s) 600 and
web server(s) 700, so that the broadcaster client devices may

US 11,039,218 Bl
23

similarly receive event information and chat information on
different communication channels respectively dedicated to
the event information and chat information.

In view of the foregoing, it may be appreciated from FIG.
2 that, in one example implementation, there are three 5

different communication channels between a given broad
caster/viewer client device and the broadcast/viewing serv-

24
particular, the web server(s) 700 would provide to the first
viewer client device 200A the first stream identifier (the first
StreamID) that corresponds to the first chat/system event
socket 604A and provide to the second viewer client device
200C the second stream identifier (the second StreamID)
that corresponds to the second chat/system event socket
604B. As discussed in the previous example, the first viewer
client device 200A would use the first StreamID to connect ers and media storage devices 1000, namely: 1) a video

communication channel (e.g., 204A, 204C) between the
client device and the media sources 300 to receive a copy of
a broadcaster's live stream of digital content; 2) an event
information communication channel (e.g., 206A, 206C)
between the client device and one or more particular sockets

to the first chat/system event socket 604A (e.g., via a first
10 URL including the first StreamID in a path of the URL), and

the second viewer client device 200C would use the second

of the socket server(s) 600 dedicated to a particular event;
and 3) a chat/system event communication channel (e.g., 15

208A, 208C) between the client device and one or more
particular sockets of the socket server(s) 600 dedicated to a
particular broadcaster's live stream of digital content.

StreamID to connect to the second chat/system event socket
604B (e.g., via a second URL including the second Stre
amID in a path of the URL). The first chat information 210A
would then be transmitted to the first viewer client device
200A via a first chat/system event Internet communication
channel 208A between the first chat/system event socket
604A and the first viewer client device 200A, and the second
chat information 210B would be transmitted to the second

20 viewer client device 200C via a second chat/system event
Internet communication channel 208C between the second

In the example of FIG. 2, the first and second broadcasters
provide to their respective viewing audiences video-based
commentary regarding different live sporting events. How
ever, as discussed elsewhere in this disclosure, it should be
appreciated that the events about which the broadcasters
provide video-based commentary are not limited to live
sporting events, but may relate to a wide variety of other 25

events, news, and/or particular topics of interest. Addition
ally, it should be appreciated that the first and second
broadcasters (and additional broadcasters) may provide to
their respective viewing audiences video-based commentary
about the same live event; in this case, the servers and media 30

storage devices 1000 provide the appropriate connectivity
such that viewers of the same live event may effectively
switch between different broadcasters' video-based com
mentary about the event, participate in different chat infor
mation exchanges associated with each broadcaster's live
stream, and all share the same event information in a
synchronized manner.

In particular, with reference again to the example of FIG.
2, consider an implementation in which both the first broad
caster's live stream of digital content 102A and the second
broadcaster's live stream of digital content 102B include the
broadcasters' respective video-based commentary about the
first live sporting event. In this situation, the web server(s)
700 would provide to both the first viewer client device
200A and the second viewer client device 200C the first
event identifier (the first EventID) that corresponds to the
one or more first event sockets 602A of the socket server(s)
600, and both of the first viewer client device 200A and the
second viewer client device 200B would use the first Even-
tID to connect to the one or more first event sockets 602A
(e.g., via a first URL including the first EventID in a path of
the URL). In this manner, the first score information 504A
would then be transmitted to both the first viewer client
device 200A via the first event information Internet com-

chat/system event socket 604B and the second viewer client
device 200C.

FIG. 3 is a block diagram showing additional details of
various interconnections between the respective components
of the servers and memory storage devices 1000 shown in
FIG. 2, according to some inventive implementations. In the
example of FIG. 3, some of the components of the servers
and memory storage devices (e.g., 1000A) are hosted by a
first web hosting service (e.g., Amazon Web Services AWS),
while one or more other components of the servers and
memory storage devices (1000B) may be hosted by a
different web hosting service and/or generally accessible via
the Internet. In yet other implementations, a single web

35 hosting service may host all of the servers and memory
storage devices. In addition to the various components
shown in the example of FIG. 2, FIG. 3 also shows that the
servers and memory storage devices 1000 may further
include a transcoder server pool 800 (e.g., that may be

40 employed for transcoding of recordings of a given broad
caster's live stream of digital content, for later replay via
adaptive bitrate protocols), an asynchronous queue 850 (e.g.,
for queuing of various messages and instructions to be acted
upon by an asynchronous task processor implemented by the

45 control server 500), and a gateway NAS server 870 (e.g., to
facilitate communications between a WebRTC media server
pool and other elements of the servers and memory storage
devices 1000A that may be hosted by the first web hosting
service). Additionally, FIG. 3 illustrates that the database

50 420 may include a main database and multiple database
shards, in which portions of data are placed in relatively
smaller shards, and the main database acts as a directory for
the database shards (in some implementations, the main

munication channel 206A between the one or more first 55

database also stores some de-normalized data, for example,
to facilitate cross-server searching).

event sockets 602A and the first viewer client device 200A,
and to the second viewer client device 200C via a second
event information Internet communication channel 206C
between the one or more first event sockets 602A and the

III. Technological Solutions to Improve Computer Net
work Functionality, Increase Computer Processing Effi
ciency and Reduce Computer Memory Requirements

second viewer client device 200C. Thus, both of the viewer 60

client devices in this scenario would receive the same

In developing the inventive systems, apparatus and meth
ods disclosed herein, including the servers and memory
storage devices 1000 shown in FIGS. 2 and 3 as well as the
client app 5000 executed by mobile client devices, the
Inventors recognized and appreciated multiple technological
problems with conventional techniques for transmission of

event/score information for the first live sporting event in a
synchronized manner from the socket server(s).

At the same time, however, the respective viewer client
devices 200A and 200C would be connected to different
chat/system event sockets of the socket server(s) corre
sponding to the different broadcasters' live streams; in

65 digital content via the Internet. As introduced above and
discussed in further detail below, the Inventors have
addressed and overcome these technological problems with

US 11,039,218 Bl
25

innovative technological solutions to effectively realize the
various technical features described herein. Examples of
these technological solutions include, but are not limited to,
improving computer network functionality (e.g., improving
the speed of content transfer from broadcaster devices to
viewer devices and synchronization of various content
amongst multiple client devices), and improving processing
efficiency of broadcaster and viewer client devices via
execution of the client app 5000, while at the same time
reducing memory storage requirements for the client app
5000 on the client devices.

More specifically, examples of the technological prob
lems addressed by the inventive solutions provided by the
servers and memory storage devices 1000 and client app
5000 include, but are not limited to: 1) how to provide
relatively low latency copies of live streams of broadcaster
digital content to multiple viewers of each of multiple
broadcasters (e.g., broadcaster-to-viewer delay time on the
order of ten seconds or less, or on the order of two-to-three
seconds or less), and with relatively high quality and reli
ability (e.g., high definition HD and high bit rate, such as 2
to 5 megabits per second); 2) how to synchronize such low
latency and high quality copies of broadcaster live streams
of digital content with event information associated with the
digital content (as well as chat information associated with
a given broadcaster) amongst the multiple viewers of each
broadcaster, irrespective of the number of viewers (e.g., 10
viewers, 1,000 viewers, or 10,000 viewers); 3) how to allow
different classes/types of viewers (e.g., VIP users, premium
subscribers, media professionals, registered users, anony
mous users, web/desktop users, mobile users), and increas
ing numbers of viewers, to flexibly access each broadcast
er's content with different live streaming formats (e.g.,
continuous streaming protocols such as real time messaging
protocol or "RTMP," web real-time communication or
"WebRTC;" segmented protocols such as HTTP live stream
ing or "HLS," HTTP Smooth Streaming or "MSS," HTTP
Dynamic Streaming or "HDS," standards-based ABR pro
tocol "MPEG-DASH") and with different qualities of ser
vice; 4) how to effectively render "studio-quality" screen
animations and special effects graphics (e.g., including
"score bugs" for sporting events) on displays of mobile client
devices via a client app with a small memory footprint (e.g.,
less than 100 megabytes, such that the client app is down
loadable via cellular networks); and 5) how to provide for
viewing of a recording of a broadcaster's live stream as if the
viewer was watching the live stream in essentially real-time
(e.g., while recreating chat messages and event information
updates). Various aspects of the technological solutions to
these respective technological problems are discussed in
turn below.

1) Latency Considerations
With respect to latency considerations, the inventive

systems, methods and apparatus disclosed herein contem
plate particular parameters for the generation of a live
stream of digital content by a broadcaster client device so as
to induce only relatively low "client side" latency. To this
end, in example implementations the client app 5000
installed and executing on a given client device selects an
appropriate keyframe interval (e.g., 30 frames) for generat
ing a broadcaster's live stream of digital content to ensure
relatively low client side-induced end-to-end digital content
latency.

In other aspects relating to reducing latency, particular
parameters and techniques for handling live streams are
contemplated for the servers and memory storage devices
1000 disclosed herein (e.g., adjusting buffer sizes and

26
transcoder settings in media servers; employing hardware
accelerated transcoding of broadcaster live streams via
graphic card processing to provide for adaptive bitrate
copies of live streams). Furthermore, in some example

5 implementations, the RTMP CDN 340 shown in FIGS. 2 and
3 comprises an innovative auto-scaling RTMP CDN server
pool, coupled to a media server pool that receives live
streams from respective broadcasters (e.g., either RTMP or
WebRTC), to facilitate delivery of low-latency live streams

10 to a larger number of multiple viewers. Additionally, for
RTMP broadcasters, the RTMP media server(s) 320 in some
implementations is/are on the same network as the RTMP
CDN 340 (e.g., the RTMP media server(s) are communica
tively coupled to the RMTP CDN servers as a virtual private

15 network (VPN), see VPN 330 in FIG. 6) so as to facilitate
low latency communications. For WebRTC broadcasters,
although in some implementations the WebRTC media serv
er(s) 360 may not be hosted by the same service as the
RTMP CDN 340 (e.g., see FIG. 3), the WebRTC media

20 server(s) are coupled to the RTMP CDN via high speed/low
latency connections. The RTMP CDN servers essentially
make further copies of transcoded live streams received
from the media server (e.g., without any other processing or
alteration) and pass on the respective further copies to

25 multiple viewers ("direct pass-through amplification"). In
this manner, the RTMP CDN servers introduce appreciably
low latency (e.g., on the order of less than 150 milliseconds)
and facilitate a significantly greater number of viewers than
could be otherwise served by the media server itself. These

30 exemplary aspects (as well as other aspects discussed in
further detail below) provide for appreciably low latency
introduced by the media servers and RTMP CDN (e.g., on
the order of about 500 milliseconds or even less) and
client-introduced digital content latency (e.g., on the order

35 of about one-to-two seconds for continuous streaming con
sumers).

2) Synchronization of Live Streams and Event Informa
tion

Yet another technical implementation challenge overcome
40 by the inventive concepts disclosed herein relates to the

display of event information updates (if present, e.g., if the
broadcast is associated with an event), as well as screen
animations and other special effects graphics that may be
generally associated with the video and/or audio associated

45 with a live stream, in a marmer that is synchronized across
multiple live streams with appreciably low latency. This is a
particularly relevant consideration given that the systems,
apparatus and methods disclosed herein are contemplated in
some implementations as supporting multiple broadcasters

50 providing video-based commentary for the same event, and
each of these broadcasters may have multiple viewers of
their broadcast-and thus, the technical challenge is to
provide the same event information, and periodic updates to
this event information, in a synchronized and low-latency

55 manner to all of these broadcasters and viewers interested in
following the same event. In exemplary implementations
(e.g., as discussed above in connection with FIG. 2), this
technical challenge is overcome with technological solu
tions implemented on both the client devices and the server

60 architecture to which the client devices are communicatively
coupled involving the use of multiple communication chan
nels respectively dedicated to video/audio content from a
given broadcaster, event information germane to an event
about which any broadcaster may be providing video-based

65 commentary, and chat information (chat messages and/or
system event messages) shared amongst the broadcaster and
their associated viewers.

US 11,039,218 Bl
27

In various inventive implementations disclosed herein
(e.g., as introduced above in connection with FIG. 2), event
information and updates to event information are provided

28
stream. Further details of viewer stream source selection for
respective viewer client devices are discussed further below
in connection with FIGS. 6 and 7.

to broadcaster client devices and viewer client devices via a
socket-based "event information channel" dedicated to the 5

Another salient element of the flexibility and scale-ability
provided by the media sources 300 of the servers and
memory storage devices 1000 shown in FIGS. 2 and 3
relates to the HLS caching and amplifying server architec
ture 360. Conventionally, as would be readily appreciated by
those of skill in the relevant arts, HLS is not designed to be

event, and separate from the copy of the live stream of
video-based commentary provided on a "video channel."
Thus, all viewers (and broadcasters) of the event, regardless
of which live stream they may be generating or watching,
connect to one or more sockets of a socket server that is/are
dedicated to the event, such that all live streams relating to
the event are similarly synchronized to event information
and updates to same. Notably, if a viewer switches amongst
different broadcasters of the same event (the viewer origi
nally watches a first live stream from a first broadcaster of
the event, and later selects a second live stream from a
second broadcaster of the same event), the event information
and updates to same (and any screen animations and special
effects graphics that incorporate the event information)
remain synchronized with all live streams from the different
broadcasters, providing for a smooth second-screen experi
ence across multiple broadcasters and viewers.

The technical challenge of displaying event information
and updates to same in a synchronized and low-latency
manner amongst multiple viewers is also addressed in part
by using a single control server 500 in the server and
memory storage devices 500 to gather and parse live event
information captured in real-time. For example, for sporting
events, game information may be obtained by the single
control server from a dedicated third-party provider (e.g.,
STATS LLC, which is a sports statistics, technology, data,
and content company that provides content to multimedia
platforms, television broadcasters, leagues and teams, fan
tasy providers, and players). This single point of entry of
event information into the server architecture, as provided
by the control server, prevents synchronization errors inher
ent in network communications. Once a change in event
status has been detected (e.g., if a play clock updates), the
control server provides these changes to the one or more
sockets dedicated to the event (to which all viewers and
broadcasters of video-based commentary regarding the
event are communicatively coupled), resulting in a single
synchronized update to all client devices and thereby sig
nificantly mitigating client-by-client latency and/or synchro
nization issues.

3) Flexible and Scalable Access to Broadcaster Content
by Multiple Classes/Types of Viewers

The inventive systems, methods and apparatus disclosed
herein and shown in FIGS. 2 and 3 further contemplate the
ability to flexibly select the source of a copy of a broad
caster's live stream to be provided to respective multiple
viewers from one of a number of possible media sources
300, namely: 1) the media server receiving the live stream
in the first instance from a broadcaster (e.g., an RMTP media
server 320 or a WebRTC media server 360); 2) an auto
scaling RTMP CDN server pool 340; or 3) an innovative
HTTP Live Streaming (HLS) server architecture 360. Thus,
multiple live stream transmission formats, protocols, and
access endpoints are contemplated for different types and
numbers of viewers that may receive copies of broadcasters'
live streams at different bitrates and with different qualities
of service. As noted above, in some implementations the
web server(s) 700 implement a viewer stream source selec
tion algorithm which selects an appropriate media source for
a given viewer based on, for example, the type of user (e.g.,
VIP users, premium subscribers, media professionals) and
the number of viewers of a particular broadcaster's live

10 cacheable at the server level, and hence synchronization
issues arise in connection with providing multiple HLS
copies of a live stream to respective viewers. In particular,
in conventional implementations, each HLS copy of the live
stream is somewhere in a "window" of time (an HLS "buffer

15 length") relative to the original live stream (e.g., delayed
from the original stream by some amount of time within an
overall time window). This uncertainty results in the possi
bility of a first viewer of a first HLS copy of a live stream
actually seeing the video content some time earlier than or

20 later than a second viewer receiving a second HLS copy of
the live stream, i.e., the respective viewers are not synchro
nized.

In exemplary implementations described herein, this tech
nical problem is solved by employing an inventive HLS

25 caching and amplifying server architecture 360, which is
discussed in further detail below in connection with FIGS.
8, 9A, 9B, 9C and 9D. The HLS server architecture includes
a "mother" server and one or more "child" servers, disposed
between a media server and a content delivery network

30 (CDN), in which the HLS mother server acts as a single
"virtual viewer" from a given media server's perspective.
Based on a single copy of an HLS file suite for a given
broadcaster's live stream as provided by a media server and
received by a mother caching server of the HLS server

35 architecture, the mother server caches and passes on copies
of the elements of the file suite (as requested) to one or more
child servers, which in turn cache and pass on copies of the
elements of the file suite to one or more geographically
distributed servers of a conventional (e.g., global) CDN

40 (serving as an HLS CDN in tandem with the mother-child
server architecture). In this manner, the mother and child
servers of the HLS architecture act as caching and ampli
fying servers, so that identical HLS streams may be served
from the HLS CDN server pool to multiple viewers of a

45 given broadcast in a significantly narrower synchronization
window than conventionally possible. In particular, in one
example implementation discussed in greater detail below in
connection with FIGS. 6A, 6B, 6C, and 6D, all HLS viewers
receiving a copy of a broadcaster's live stream via the HLS

50 server architecture including a mother caching server and
one or more child caching servers are at most less than one
HLS file segment duration out of synchronization with each
other; this phenomenon is referred to herein as "viewer
segment concurrency." Based on the viewer segment con-

55 currency provided by the inventive HLS server architecture,
respective viewers of a given broadcast may be out of
synchronization with one another by less than approximately
one or two seconds at most.

4) Client-Side Rendering of On-Screen Interactive Ani-
60 mations, Special Effects and/or Event Information

By way of background, in conventional sports broadcast
ing, game information (also sometimes referred to as a
"scorebug"), as well as screen animations and other special
effects graphics, are hard-embedded into the live stream of

65 the game broadcast itself that is received by viewers. Unlike
conventional scorebugs, screen animations, and/or other
special effects graphics that are hard-embedded into live

US 11,039,218 Bl
29

streams of a sports broadcast, in various inventive imple
mentations disclosed herein graphics and effects are gener
ated by the client device itself, separate from a given
broadcaster's video-based commentary, and then integrated
with (e.g., superimposed or overlaid on) the broadcaster's 5

video-based commentary when rendered on the display of

30
herein as a "video replay" of the live stream, or simply
"replay") as if the viewer was watching the live stream in
essentially real-time (as it was being generated by the
broadcaster client device), while also allowing the viewer to
"seek" to different points in the video replay. In one aspect
of video replay, the broadcaster themselves may assume the
role of a post-broadcast viewer of the recorded broadcast.

In exemplary implementations, a technological solution
for overcoming the technical implementation challenge of

the client device. As shown for example in FIG. lB, various
graphics may be rendered on different portions of the
display, for example, along a top or side of the display or in
a "lower third" of the display.

For mobile client devices, the client app 5000 executing
10 replaying a recorded live stream and also recreating various

chat messages and event information updates (if present) as
they occurred during the originally broadcast live stream is
based, at least in part, on having the socket-based commu-

on the device is particularly configured to render a variety of
"studio-quality" graphics while nonetheless maintaining a
small file size for the client app (e.g., less than 100 mega
bytes, and in some instances from approximately 60-70 15

megabytes); this affords an exciting and dynamic broad
caster and viewer experience on mobile client devices, while
still allowing the modestly-sized client app to be readily
downloaded (e.g., from a digital distribution platform or
"app store" 75) to a client device via a cellular network. In 20

some implementations, maintaining a modest file size for the
client app while providing high-quality graphics, animations
and other special effects is accomplished in part by design-
ing animated graphics and special effects as a series of
individual frames (still-frame images) that are hard-coded in 25

the client app, and rendering the series of individual frames
on the display in a "stop-motion" style according to an
animation timer set in the client device (e.g., 15 frames per
second). In some implementations, "sprite sheets" may be
used for graphics elements; in yet other implementations, 30

the transparency of individual frames may be set on a
pixel-by-pixel basis as may be required in some applications
to provide for suitable overlay on the broadcaster's video
based commentary.

In another aspect, client-side rendering of screen anima- 35

tions and/or other special effects graphics allows such ani
mations and graphics to be user-interactive; for example, a
user (broadcaster or viewer) on a client device may "select"
a screen animation/special effect graphic (e.g., via a touch
sensitive display screen of the client device) and launch 40

additional graphics or initiate some other functionality on
the client device.

nication techniques act in a "fully-authenticated" fashion,
for example, by dynamically creating "anonymous
accounts" for non-registered or "anonymous" users. By
creating such accounts for anonymous users, a replay log
may be created that logs when any given viewer (as a
registered user or anonymous user) joins and leaves a
particular broadcast. Additionally, the replay log may
include additional information, such as user-generated chat
information, system messages, and event information
updates, respectively synchronized with timestamps associ
ated with the live stream as originally generated by the
broadcaster client device.

During replay of a recording of the live stream, the viewer
client device requests a segment of this replay log and, using
the timestamps in the recording of the live stream, replays
not only the digital content in the live stream but also
recreates chat messages, system-related messages and event
information updates (if present) in the same order and
relative time of occurrence as if the viewer were watching
the live stream in essentially real-time when originally
broadcasted by the broadcaster. As the replay advances, the
viewer client device requests additional segments of the log,
keeping an in-memory buffer to smooth out any possible
Internet connectivity issues. Such a replay log also allows
for "seeking," i.e., when a viewer fast forwards or rewinds;
under these seeking circumstances, the viewer client device
may retrieve the appropriate segment(s) of the replay log for
the new viewing point, and continue to not only replay the
recording of the live stream from the new viewing point but
also recreate (in the same order and relative time) chat
messages, system-related messages and event information

For example, as discussed above with respect to live
events about which a given broadcaster may be providing
video-based commentary, event information and updates to
event information are provided to broadcaster client devices
and viewer client devices via a socket-based "event infor
mation channel" dedicated to the event, and separate from

45 updates (if present) as if the viewer were watching the live
stream in essentially real-time.

the copy of the live stream of video-based commentary
provided on a "video channel." Providing one or more
sockets dedicated to the event information and separate from
the live stream of video-based commentary provides for
user-interactive features in connection with the event infor-

Having outlined some of the various technological solu
tions provided by the inventive systems, apparatus and
methods disclosed herein to technological problems with

50 conventional approaches to live streaming of digital content,
the discussion now turns to additional details of respective
components of the servers and memory storage devices 1000
shown in FIGS. lA, 2 and 3, as well as the functionality of
the client app 5000 executed by client devices.

IV. Broadcaster Media Server Selection
FIGS. 4A and 4B show a process flow diagram 450A and

450B illustrating a broadcast media server selection algo
rithm according to one inventive implementation, which in
some examples may be performed by the web server(s) 700

mation, and/or the screen animations/special effects graphics
incorporating the event information; for example, the user 55

may select (e.g., thumb-over) the screen animation/special
effect graphic including the event information and obtain
access to additional (and in some cases more detailed)
information relating to the event (e.g., a drill down on more
granular event information, or a redirect to a web site or
other app related to the particular event).

60 shown in FIGS. 2 and 3. As noted above, in one implemen
tation a mobile broadcaster client device (e.g., a smartphone)
outputs a live stream of digital content having an H.264
MPEG-4 Advanced Video Coding (AVC) video compres
sion standard format, via real time messaging protocol

5) Replay of Recorded Broadcaster Live Streams with
Recreated Chat Messages and Event Information Updates

Another technical implementation challenge addressed by
the technological solutions disclosed herein relates to the
ability of a viewer to watch a recording of a live stream
generated by a broadcaster client device (also referred to

65 (RTMP) transport for continuous streaming over the Inter
net, whereas a web-based broadcaster client device (e.g., a
desktop computer) outputs a live stream of digital content

US 11,039,218 Bl
31

102B having a VPS video compression format, transmitted
via the web real-time communication (WebRTC) protocol
for continuous streaming over the Internet.

In the process shown in FIGS. 4A and 4B, the web
server(s) 700 know whether the broadcaster client device 5

requesting access to a media server is a mobile client
(H.264/RTMP) or a web-based client (VPS/WebRTC) based
on header information in the communications to the web
server from the client device. For mobile clients, the web
server provides access to (e.g., provides the address of an 10

endpoint for) one of the RTMP media servers 320 of the
media sources 300, and for web-based clients generating
VPS/WebRTC live streams of digital content, the web server
provides access to one of the WebRTC media servers 360 of
the media sources 300. If a web-based client is connecting 15

via Ado be Flash or other external software, the client may be
treated similarly to the process for mobile clients.

In some implementations, multiple media servers of the
RTMP media servers 320 are segregated into at least one
VIP media server and at least one non-VIP media server; 20

similarly, some of the WebRTC media servers 360 are
segregated into at least one VIP media server and at least one
non-VIP media server. A given broadcaster may be directed
to a VIP or non-VIP media server based on their user status
(e.g., as a VIP user), and/or the availability of a particular 25

server (e.g., based on available server capacity, in terms of
total utilized connection bandwidth to the media server). In
one aspect, to allow for some headroom in media server
capacity, the "ideal capacity" of the server may be taken as
approximately 60% of the true maximum capacity of the 30

media server. If all non-VIP media servers exceed ideal
capacity (but are at less than true maximum capacity), the
process may send an internal administrative message (e.g.,

32
the database that the live stream has started and is available
for viewing. Thereafter, the media server queues a first
screenshot (thumbnail) for the live stream in the asynchro-
nous queue (e.g., see 850 in FIG. 3) for processing by the
control server 500 (see FIGS. 18A and 18B), and also queues
push notifications to notify subscribers and followers of the
broadcaster that the broadcaster is online with a live stream
(e.g., by providing a StreamID to the followers/subscribers).

Thereafter, while the broadcaster continues to provide a
live stream, and if there are any HLS viewers (discussed
further below in connection with FIGS. 8 and 9A through
9D), the media server begins an HLS segmentation process
to create and update an HLS file suite comprising an HLS
playlist, HLS chunklists, and HLS file segments for each of
the transcoded different resolution copies of the broadcast
er's live stream. The media server process also periodically
queues in the asynchronous queue (e.g., every five seconds
or so) additional screenshots/thumbnails of the live stream.
Once the broadcaster has ended the live stream, the media
server process stops the recording of the highest resolution
transcoded copy, sends out a system message on the chat/
system event socket(s) corresponding to the broadcaster's
live stream that the stream has ended, stops the live
transcoding process, and stores the stream end time in the
database 420. The media server process then also queues the
upload of the "raw video" recording (the recording of the
highest resolution transcoded copy) to the media server
upload queue.

The video up loader process shown in FIG. SA reads from
the media server upload queue and, if there are any entries
in the queue, uploads the corresponding raw video recording
of the broadcaster's live stream to data storage 440 (e.g.,
Amazon S3) and stores the upload time to the database 420.
The video uploader process also may notify a third-party via SMS or email) to a system administrator to warn of a

significant broadcaster load. In the event that no non-VIP
servers are available to a given broadcaster (because all
non-VIP servers are at true maximum capacity), the process
displays "No Available Server" as an error message on the
display of the broadcaster client device.

35 transcoding service (e.g., see the transcoding server pool
800 in FIG. 3) to provide transcoded different resolution
copies of the recorded video to facilitate adaptive bitrate
replay for one or more viewers.

V. Media Server Process 40

FIGS. SA through SC show a process flow 550A, 550B,
550C, and 550D illustrating a media server process for the
RTMP and WebRTC media servers 320 and 360 shown in
FIGS. 2 and 3, according to one inventive implementation.
These process flows include a "server monitor" process and 45

a "video uploader" process that each of the RTMP and
WebRTC media servers implements as they receive and
process live streams from various broadcasters.

Regarding the "server monitor" process, a given media
server periodically reports server statistics to be stored in the 50

database 420, and queries the database to obtain a list of
broadcaster streams that have been assigned to, and are
connected to, the media server. For newly connected
streams, the media server validates the stream information
(e.g., StreamID), with the database, and if the stream is valid 55

the media server starts a live transcoding process to provide
different resolution copies of the live stream (e.g., 720p,
360p and 240p transcoded copies); in the case of a WebRTC
media server, the media server also transcodes the VPS/
WebRTC live stream to H.264 before providing the different 60

resolution transcoded copies. In some implementations, the
media server employs hardware-accelerated transcoding of
the broadcaster's live stream (e.g., via graphic card process
ing) to ensure low latency of viewed transcoded copies of
the live stream. The media then starts recording the highest 65

resolution transcoded copy (e.g., 720p in the illustrated
example) to provide a "raw video" recording, and notifies

VI. Viewer Stream Source Selection
FIG. 6 is a block diagram illustrating the media sources

300 and the web server(s) 700 of the servers and memory
storage devices 1000 shown in FIGS. 2 and 3, as well as the
first and second broadcaster client devices l00A and 100B
and one of the viewer client devices 200A, to facilitate a
discussion of the selective coupling of an example viewer
client device to one of the media sources, according to some
inventive implementations. In tandem with FIG. 6, FIG. 7 is
a process flow diagram illustrating a viewer stream source
selection algorithm 702 according to one inventive imple
mentation, which in some examples may be performed by
the web server(s) 700.

As depicted representationally in FIG. 6, in one aspect the
web server(s) 700 essentially serve as a controllable switch
to couple the viewer client device 200A to one of an RTMP
media server 320, the RTMP CDN 340 (which is commu
nicatively coupled to the RTMP media server(s) in a virtual
private network 330), a WebRTC media server 360 and the
HLS serve architecture 360 to receive a copy of broadcast
er's live stream of digital content. In the example of FIG. 6,
the web server(s) 700 has facilitated a connection between
the viewer client device 200A and the RTMP CDN 340 (as
shown by the dashed line in FIG. 6). However, as discussed
below, the web server(s) 700 may facilitate a connection
between the viewer client device 200A and any one of the
media sources 300 based at least in part on a number of
viewers already receiving copies of the broadcaster's live
stream. In one implementation, the database 420 stores user

US 11,039,218 Bl
33 34

profiles for broadcasters and viewers, in which the user
profile may include a user type (e.g., registered user, anony
mous user, subscriber of one or more broadcasters, VIP user,
media professional or media member, etc.); in this instance,
the web server(s) 700 may facilitate a connection between 5

the viewer client device 200A and one of the media servers
300 based at least in part on a type or status of a user of the
viewer client device 200A and/or the number of viewers
already receiving copies of the live stream.

media server and the viewer client device, since requests for
and delivery of HLS content uses only standard HTTP
transactions. This also allows HLS content to be delivered to
multiple viewer client devices over widely available HTTP
based content delivery networks (CDNs).

With reference again to the media server process in FIGS.
SA, SB, and SC, as a broadcaster's live stream is received by
a media server it is cached for some amount of time (e.g., 10
to 30 seconds). The broadcaster's live stream typically

More specifically, as shown in the process of FIG. 7, if the
viewer client device sends a request to the web server(s) 700
to view a copy of a given broadcaster's live stream (e.g.,
based on a StreamID for the live stream that the viewer
client device received in a push notification), and the web
server(s) 700 determine that there are fewer than a first
number (e.g., 10) of viewers already receiving copies of the
live stream (e.g., based on a viewing count for the stream
maintained in the database 420), the web server(s) provide
to the viewer client device an address to connect directly to
one of the RTMP media servers 320 or one of the WebRTC
media servers 360 that is processing the broadcaster's live
stream (depending on whether the broadcaster client device
is a mobile H.264 or web-based VPS client device). Irre
spective of the number of viewers, the web server(s) 700
also provide an address to the viewer client device to
connect directly to one of the media servers if a user of the
viewer client device is a VIP subscriber or media profes
sional. If however the user is not a VIP subscriber or media
professional, and there are more than a first number of
viewers already receiving copies of the live stream, the web
server(s) provide to the viewer client device an address to
connect to one of the CDN servers of the RTMP CDN 340.
However, if all CDN servers of the RTMP CDN 340 are at
their maximum capacity (e.g., as reflected in server statistics
stored in the database), the web server(s) 700 provide an
address to the viewer client device to connect to the HLS
server architecture 360.

VII. HTTP Live Streaming (HLS) Server Architecture
FIG. 8 is a block diagram showing additional details of

the HLS server architecture 380 of the servers and memory
storage devices 1000 shown in FIGS. 2, 3 and 6, according
to some inventive implementations. FIGS. 9A through 9D
show a process flow illustrating an HLS stream viewing
process 902A, 902B, 902C and 902D performed by the HLS
server architecture 380 shown in FIG. 8, according to one
inventive implementation. As some of the discussion of the
HLS server architecture 380 relates to processing of a live
stream at a media server, reference is made again to the
media server process discussed above in connection with
FIGS. SA, SB, and SC.

HTTP Live Streaming (HLS) is a conventional HTTP
based media streaming communications protocol, in which
a live media stream (e.g., video and accompanying audio) is
divided up or "segmented" by an HLS media server into a
sequence of small files that may be downloaded to a viewer
client device via HTTP communications with the HLS
media server, wherein each downloaded file represents one
short segment or "chunk" of a copy of the live stream. As
respective chunks of the copy of the live stream are down
loaded and played by the viewer client device, the client
device may select from multiple different alternate streams
containing the same video/audio material transcoded by the
media server at a variety of data rates (e.g., at different
resolutions), allowing the HLS streaming session to adapt to
the available data bit rate/bandwidth of the client device's
connection to the HLS server. HLS connections are, by
definition, not persistent connections between the HLS

10 includes a succession of frames at some frame rate (e.g., 30
frames/sec), and the succession of frames includes multiple
"keyframes" associated with video encoding/compression.
Such keyframes include the "full" content of an instant of
the video, and these keyframes reset the basis of calculation

15 (compression/estimation) for ensuing video information; in
conventional video encoding/compression techniques, com
pressed frames between keyframes essentially include only
information representing what has changed in the content
between respective frames, and not the entire visual content

20 for corresponding instants of the video. Increasing the
frequency of keyframes in the stream of video frames
reduces any errors that may be introduced in the compres
sion process, as such errors would have a shorter lifespan
(there would be fewer numbers of compressed frames

25 between keyframes).
As indicated in FIG. SB, an incoming live stream from a

broadcaster and received by a media server (e.g., incoming
H.264 from an RTMP broadcaster client, or VPS from a
WebRTC broadcaster client that has been transcoded to

30 H.264) is transcoded (e.g., by the media server) to provide
different resolution copies of the live stream at correspond
ing different bitrates (e.g., to facilitate adaptive bitrate
streaming, as noted above). For example, the broadcaster's
live stream may be transcoded to provide 720p, 360p and

35 240p different resolution copies of the live stream. As part
of the transcoding process, the media server may be con
figured such that the keyframe interval for each transcoded
copy is a predetermined value, and the keyframe interval for
the transcoded copies may be the same as or different than

40 a keyframe interval associated with the broadcaster's incom
ing live stream. Conventional examples of keyframe inter
vals that may be configured at a media server for transcoded
copies of the live stream range from about 60 frames to 300
frames of video, and in some instances as high as 600 frames

45 (at an exemplary frame rate of 30 frames/second, the asso
ciated time durations for such keyframe intervals range from
two seconds for a keyframe interval of 60 frames to 10
seconds for a keyframe interval of 300 frames, and in some
instances as high as 20 seconds for a keyframe interval of

50 600 frames).
As discussed above in connection with FIG. SC, to

implement HLS each of these different resolution copies is
divided into small segments of video based in part on the
keyframe interval of the copies. More specifically, the media

55 server may be configured to set a target segment length
(duration) of each segment into which the transcoded copy
of the live stream is divided. An example of a conventional
target segment duration for HLS is 10 seconds; however, as
discussed below, in some implementations the media server

60 is particular configured to have a significantly lower target
segment duration to facilitate the functionality of the HLS
server architecture 380 in processing copies of segmented
live streams.

With reference again to FIG. SC, the media server ulti-
65 mately divides each copy of the live stream into respective

video segments having a duration that is as close as possible
to the target segment duration, with the proviso that a

US 11,039,218 Bl
35 36

segment must start on and include a keyframe but may
include one or more keyframes (i.e., the segment duration in
practice is based on the target duration configured in the
media server, some multiple of keyframes, and the frame
rate of the transcoded copy). For purposes of illustration, 5

and taking a conventional target segment duration of 10
seconds, a frame rate of 30 frames/second, and a keyframe
interval of from 60 to 300 frames, each conventional 10
second HLS segment may have 1 keyframe (given a key
frame interval of 300 frames) or up to 5 keyframes (given a 10

keyframe interval of 60 frames).

chunklist multiplied by the duration of the HLS segment
represented by each .ts file is referred to as the "HLS
latency," because a viewing client that requests an HLS copy
(i.e., succession of .ts files) typically does not start down
loading a first .ts file representing a video segment until the
chunklist is completely populated with the set number of
pointers to corresponding .ts files (the HLS window/buffer
length). Given the example above of a conventional target
segment duration of 10 seconds, this results in a conven
tional HLS latency on the order of 100 seconds. This HLS
latency also may be viewed as a "buffer time" that provides
for stability of the HLS stream in the event of communica
tions issues or interruptions in network connectivity; the
latency arising from the segment duration and HLS window/
buffer length provides for the overall download and play
back time of the .ts file segments before another chunklist is
downloaded by a viewer client device, thereby mitigating
potential connectivity issues that may occur between the
client device and a CDN server during this buffer time
(presuming that, under normal circumstances, it is quicker
for the client to download a .ts file segment than it is for the
client to play the segment). As new .ts files get created in the
segmenting process for a given resolution copy of the live
stream, the media server puts a new pointer to the newest .ts
file into the corresponding chunklist and, once the chunklist
is filled the first time with the set number of pointers
corresponding to the buffer length, the oldest pointer gets
"bumped out" of the chunklist when a new segment/pointer
is generated, in a first-in-first-out (FIFO) manner.

For each transcoded different resolution copy of the
broadcaster's live stream, the HLS segments of the copy are
stored as small files (referred to in HLS as .ts files). Thus, in
an example in which there are 720p, 360p and 240p 15
transcoded copies of the live stream, there are three sets of
.ts files being generated and stored in memory at the media
server as each of the copies are segmented by the media
server. For each set of .ts files corresponding to a different
resolution copy of the live stream, a "chunklist" is created 20
and maintained by the media server that includes a list of
pointers (e.g., relative URLs) to corresponding .ts files
stored in memory; accordingly, in the example of three
different resolution copies, there would be three different
corresponding chunklists.

The number of pointers in a given chunklist may be 25

referred to as the "HLS window" or "HLS buffer length,"
and this HLS window/buffer length may be set as a con
figuration parameter for the media server. One conventional
example of an HLS window/buffer length is 10 pointers to
corresponding .ts files. The number of pointers in the

Below is an example of a chunklist that includes six
pointers to corresponding .ts files representing HLS video
segments:

--> curl -v https://wel 09 .media.castr.live/tl/ngrp :397965 _all/chunklist_ wl 844413579 _b2096000.m3u8
* Trying 198.204.252.202 ...
* TCP _NO DELAY set
* Connected to we109.media.castr.live (198.204.252.202) port 443 (#0)
* TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_l28_GCM_SHA256
* Server certificate: * .media.castr.live
* Server certificate: Go Daddy Secure Certificate Authority - G2
* Server certificate: Go Daddy Root Certificate Authority - G2
> Get/tl/ngrp :397965 _all/chunklist_ wl 844413579 _b2096000.m3u8 HTTP /1.1
> Host: we109.media.castr.live
> User-Agent: curl/7.51.0
> Accept: * /*
>
< HTTP/1.1 200 OK
< Accept-Ranges: bytes
< Server: WowzaStreaming Engine/4.7.0.01
< Cache-Control: no-cache
< Access-Control-Allow-Origin: *
< Access-Control-allow-Credentials: true
< Access-Control-Allow-Methods: OPTIONS, GET, POST HEAD
< Access-Control-Allow-Headers: Content-Type, User-Agent, If-Modified-Since, Cache-Control, Range
< Date: Thu, 08 Jun 207 21:10:47 GMT
< Content-Type: application/vnd.apple.mpegurl
< Content-Length: 368
<
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION: 4
#EXT-X-MEDIA-SEQUENCE:349
#EXTINF:2.352,
media_wl844413579 b2096000 349.ts
#EXTINF:2.04,
media_w1844413579 b2096000 350.ts
#EXTINF:2.002,
mediaw_l844413579 b2096000 351.ts
#EXTINF:2.001,
media_wl844413579 b2096000 352.ts
#EXTINF:2.001,
media_w1844413579 b2096000 353.ts
#EXTINF:2.001,
media_wl844413579 b2096000 354.ts

US 11,039,218 Bl
37

In addition to a chunklist for every different resolution
copy of the broadcaster's live stream, the media server also
creates an HLS "playlist" file (e.g., having a file extension
.m3u8) corresponding to the broadcaster's live stream. The
HLS playlist includes a list of the transcoded different 5

resolution copies of the live stream, and for each item in the

38
viewer client device may select a different resolution/differ
ent bitrate copy of the live stream from the list of copies in
the HLS playlist based on changes in the available band-
width (e.g., quality of connection) between the viewer client
device and the media server. Once the desired copy is
selected from the playlist based on available bandwidth, the
viewer client device then requests from the media server the
current chunklist associated with the selected copy of the
live stream, based on the corresponding pointer to the

list the playlist also includes a corresponding bandwidth/
bitrate, one or more codecs for encoding the copy of the
stream, and a pointer (e.g., relative address or URL) to the
corresponding chunklist:

720p copy-bitrate-codec(s)-relative URLl for
chunklistl

360p copy-bitrate-codec(s)-relative URL2 for
chunklist2

10 chunklist that is present in the playlist. As noted above, the
chunklist for each copy of the live stream is continuously
updated by the media server (FIFO) as new .ts files are
created by the media server. Once the viewer client device

240p copy-bitrate-codec(s)-relative URL3 for 15

chunklist3
An example of an HLS playlist file is provided below:

--> curl -v https://we109.media.castr.live/tl/ngrp:397965_all/playlist.m3u8
* Trying 198.204.252.202 ...
* TCP _NO DELAY set
* Connected to we109.media.castr.live (198.204.252.202) port 443 (#0)

retrieves the chunklist, it can then in tum begin retrieving the
respective .ts files pointed to in the chunklist (e.g., via
corresponding relative URLs) and playing the video seg-
ments represented in the .ts files. The viewer client device

* TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_l28_GCM_SHA256
* Server certificate : * .media.castr.live
* Server certificate: Go Daddy Secure Certificate Authority - G2
* Server certificate: Go Daddy Root Certificate Authority - G2
> Get/tl/ngrp:397965_all/playlist.m3u8 HTTP/1.1
> Host: we109.media.castr.live
> User-Agent: curl/7.51.0
> Accept: * /*
>
< HTTP/1.1 200 OK
< Accept-Ranges: bytes
< Access-Control-Expose-Headers: Date, Server, Content-Type, Content-Length
< Server: WowzaStreaming Engine/4.7.0.01
< Cache-Control: no-cache
< Access-Control-Allow-Origin: *
< Access-Control-allow-Credentials: true
< Access-Control-Allow-Methods: OPTIONS, GET, POST, HEAD
< Access-Control-Allow-Headers: Content-Type, User-Agent, If-Modified-Since, Cache-Control, Range
< Date: Thu, 08 Jun 207 21 :07:51 GMT
< Content-Type: application/vnd.apple.mpegurl
< Content-Length: 368
<
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-STREAM-INF:BANDWIDTH-2296000,CODECS-"avcl.77.41,mp4a.40.2",RESOLUTION-1280x720
chunklist_w1844413579_b2096000.m3u8
#EXT-X-STREAM-INF:BANDWIDTH-1031000,CODECS-"avcl.77.31,mp4a.40.2",RESOLUTION-640x360
chunklist_ w 1844413 579 _b946000 .m3u8
#EXT-X-STREAM-INF:BANDWIDTH-449000,CODECS-"avcl.66.30,mp4a.40.2",RESOLUTION-426x240
chunklist_w1844413579 b414000.m3u8
* Curl_http_done: called premature -- 0
* Connection #0 to host we 109 .media.castr.live left intact

Thus, the HLS "file suite" corresponding to a broadcast
er's live stream includes:

A play list of different resolution copies with correspond
ing pointers to chunklists

50

The chunklists, each containing a set of pointers to 55

corresponding .ts files
The .ts files pointed to in the chunklist for each different

resolution copy

repeatedly requests the appropriate chunklist from the media
server (e.g., after every video segment is played) to retrieve
a current version of the chunklist. In the foregoing manner,
as noted earlier, data/files are transmitted from the media
server to the viewer client device upon request pursuant to
HTTP, as opposed to streaming data continuously between
the media server and the viewer client device via a persistent
data connection.

Conventionally, for every request from a viewer that a
media server receives for an HLS copy of a live stream, the
media server creates a new HLS file suite for the requester,
including an HLS playlist, associated chunklists, and sets of
.ts files. Typically, such requests for an HLS copy of a live
stream would arrive at the media server from respective

To play an HLS copy of a live stream, the viewer client
device first requests a copy of the corresponding HLS 60

playlist file from the media server. Based on the available
bandwidth between the viewer client device and the media
server at any given time, once the playlist is received the
viewer client device selects the most appropriate resolution
copy from the playlist having a bit rate that may be accom
modated by the available bandwidth; this provides for
adaptive bit rate streaming in that, from time to time, the

65 (e.g., geographically distributed) servers of a CDN that are
in turn communicating with respective (e.g., geographically
distributed) viewer client devices. As HLS viewer demand

US 11,039,218 Bl
39

increases for copies of a particular broadcaster's live stream,
the load (e.g., CPU demand) on the media server increases
based on the media server's process for generating a new
HLS file suite for each new HLS requester.

Moreover, given that different viewer client devices may
be requesting (via corresponding different CDN servers) an
HLS copy of the live stream at different points in time, the
Inventors have recognized and appreciated that significant
synchronization issues arise amongst respective viewers
based at least in part on the media server's process for
generating a new HLS file suite for each new request. More
specifically, because the media server creates different HLS
file suites at different times for different requesters, a first
requester viewing a first copy of the live stream likely sees
the video content some time earlier than or later than a
second requester viewing a second copy of the live stream,
because at any given time the respective requesters may be
downloading and playing different video segments from
their respective chunklists. For conventional HLS applica
tions, this lack of synchronization amongst respective view
ers typically would not pose any problems in viewer expe
nence.

However, the Inventors have recognized and appreciated
that in the example context of multiple viewers viewing
respective copies of a broadcaster's live stream of video
based commentary regarding a live event, and also receiving
and displaying event information as real-time updates about

40
above that conventional examples of these parameters
respectively include a keyframe interval of from 60 to 300
frames, a target segment duration of 10 seconds, and an HLS
window/buffer length of 10 .ts files or "chunks," giving rise

5 to a conventional HLS latency on the order of 100 seconds.
Such a latency is practically untenable in the example
context of multiple viewers viewing the live event itself in
person or on a first screen, viewing respective HLS copies
of a broadcaster's live stream of video-based commentary

10 regarding the live event as a second screen experience
(which would be 100 seconds out of synchronization with
the live event/first screen), and also receiving and displaying
on the second screen event information as real-time updates
about the event (which would be 100 seconds out of syn-

15 chronization with the video-based commentary on the sec
ond screen).

The Inventors have recognized and appreciated that the
above-mentioned parameters may be specifically selected
(e.g., via configuration of the media server) to significantly

20 reduce latency while sufficiently maintaining stability of
HLS content delivery. To this end, in one example inventive
implementation, the keyframe interval for transcoded copies
of the live stream may be set to 30 frames (i.e., significantly
fewer than 60 to 300 frames), the target video segment

25 duration may be set to two seconds (i.e., significantly lower
than 10 seconds, and such that the succession of HLS
segments respectively have two keyframes each at a frame
rate of 30 frames/second), and the HLS window/buffer
length may be set to from four to six segments in a chunklist

the event, this lack of synchronization amongst respective
HLS viewers may significantly and adversely impact viewer
experience. For example, particularly in the context of a
"second screen experience," two different HLS viewers
watching the same event on a first screen and watching the
same broadcaster's live video-based commentary on a sec
ond screen may see the broadcaster's video-based commen
tary significantly out of synchronization with the live event 35

on the first screen, and may receive and display event
information (e.g., event score updates) on the second screen
that are noticeably out of synchronization with the live event
and/or the broadcaster's video-based commentary. Further
more, if both of the viewers happen to be watching the same
event together at the event venue on the same first screen
(e.g., together in the same room at a gathering or party), they
may find that their respective copies of the broadcaster's
video-based commentary are noticeably out of synchroni
zation on their respective viewer client devices.

30 (as opposed to 10 chunks in a chunklist as suggested
conventionally). These parameters result in a significantly
reduced HLS latency of approximately 8 to 12 seconds, as
compared to a conventional HLS latency on the order of 100
seconds

As shown in FIG. 8, in one implementation an HLS
caching and amplifying server architecture 380 includes a
"mother" server 382 and may also include one or more
"child" servers 384A through 384D, disposed between a
media server and an HLS CDN server pool 388, in which the

40 HLS mother server acts as a single "virtual viewer" from a
given media server's perspective. While FIG. 8 shows
multiple child servers, it should be appreciated that in
various inventive implementations the HLS server architec
ture need not have any child servers, or may only have one

45 child server; however, the inclusion of one or more child
servers in the inventive HLS server architecture facilitates
enhanced scaling and reduced loading (e.g., CPU usage/
bandwidth) on the mother server.

In view of the foregoing technical problems relating to
HLS viewer synchronization and media server loading, the
Inventors have implemented an inventive technical solution
via an HLS server architecture 380 that provides caching
and amplifying functionality to address the above-noted
technical problems. An example of such an HLS server
architecture is shown in FIG. 8 and discussed in detail
below, and FIGS. 9A through 9D illustrate flow diagrams
that outline the process by which a given viewer client
device requests and receives an HLS copy of a broadcaster's
live stream via the HLS server architecture shown in FIG. 8.

In considering the various HLS multiple-viewer synchro
nization issues that are addressed by the HLS server archi
tecture shown in FIG. 8 and the processes outlined in FIGS.
9A through 9D, the Inventors also have considered and
addressed the overall latency implications of conventional
HLS stream delivery in light of the inventive HLS server
architecture disclosed herein. To this end, the Inventors have
considered unconventional settings (e.g., at the media
server) for various parameters relating to HLS streams such
as keyframe interval, target segment duration, and HLS
window/buffer length for chunklists. Recall in the discussion

In example implementations, the HLS mother server, as
50 well as one or more child servers, may be implemented as

a customized NGINX-based caching server. Based on a
single copy of an HLS file suite 375A (e.g., single playlist,
associated chunklist(s), and associated .ts file segments) for
a given broadcaster's live stream as provided by a media

55 server 320/360 and received by the mother server 382 of the
HLS server architecture, the mother server caches and
passes on copies 375B of the elements of the file suite (as
requested) to one or more child servers, which in turn cache
and pass on copies 375C of the elements of the file suite to

60 one or more geographically-distributed servers of a conven
tional (e.g., global) CDN (serving as an HLS CDN in
tandem with the mother-child server architecture). In this
manner, the mother and child servers of the HLS architecture
act as caching and amplifying servers, so that identical HLS

65 streams may be served from the HLS CDN server pool to
multiple viewers of a given broadcast in a significantly
narrower synchronization window than conventionally pos-

US 11,039,218 Bl
41

sible. In particular, in one example implementation, all HLS
viewers receiving a copy of a broadcaster's live stream via
the HLS server architecture shown in FIG. 8 are at most less
than one HLS file segment duration out of synchronization
with each other (referred to herein as "viewer segment
concurrency").

As noted above, in conventional HLS, a viewer client
device does not maintain a persistent connection with an
HLS media server; similarly, by default, HLS media servers
do not allow caching ofHLS files (e.g., playlists, chunklists
and .ts files). In particular, as illustrated above in the
examples of a conventional HLS chunklist and a playlist,
these files respectively include an explicit instruction that
prevents caching (i.e., "Cache-control: no-cache"). For dif
ferent types of files, cache-control conventionally may be set

42
playlist file is ultimately provided to one or more requesting
viewer client devices. Based on the re-written caching rule,
each of the involved servers may store a copy of the revised
playlist file for the duration of the broadcaster's live stream

5 and need not request it again; and again, as noted above, the
media server only "sees" one requesting viewer and pro
vides one playlist, no matter how many actual viewers may
be requesting a copy of the broadcaster's live stream.

More specifically, as shown in FIG. 9A, when a given
10 viewing client device wishes to receive a copy of a broad

caster's live stream, the client device first queries a CDN
server for a copy of the HLS play list file corresponding to
the broadcaster's live stream. If the CDN server has a copy
of the playlist (e.g., based on a previous request from

15 another viewer client device), the CDN server returns the
playlist to the currently requesting client device. If however
the CDN server does not have a copy of the revised playlist,
the CDN server connects to a CDN load balancer 386 and in

for some time period that allows a file to be temporarily
stored (i.e., cached) by a requesting server, after which a
fresh copy of the file needs to be requested from its origin
server by the requesting server; as noted above, however,
caching is conventionally prohibited for HLS files by an 20

explicit instruction in the files.

turn requests a copy of the revised play list from one of the
HLS child servers as determined by the load balancer.

If the HLS child server has a copy of the revised play list
(e.g., based on a previous request from a CDN server), the
HLS child server returns the revised playlist to the currently
requesting CDN server (which in turn passes the play list on
to the requesting viewer client device). If however the HLS
child server does not have a copy of the revised playlist, the

Unlike conventional HLS, in inventive implementations
of the HLS server architecture shown in FIG. 8, when a first
requester requests a copy of a given broadcaster's live
stream the HLS mother server establishes and maintains a 25

persistent connection to the media server (e.g., the RTMP or
WebRTC media server receiving the broadcaster's incoming
live stream). In this manner, as long as the broadcaster is
generating the live stream, at least one requester is request
ing a copy of the live stream, and no matter how many
requests may be made by globally-distributed CDN servers
for copies of the live stream on behalf of requesting viewer
client devices, the media server only sees the load of one
requester (i.e., the HLS mother server). In this capacity, the
HLS media server does not have to make copies of the HLS
file suite to provide for additional requesters of the broad
caster's live stream as would be required in conventional
HLS; instead, the HLS mother server requests and receives
a single copy of the play list file from the media server. As
discussed further below in connection with FIGS. 9A
through 9D, the HLS mother server requests the single copy
of the playlist file from the media server in response to a
request for the playlist file made by one of the HLS child
servers to the mother server. The HLS child server makes
such a request to the mother server in response to a request
for the play list file made by a CDN server to the child server
on behalf of a requesting viewer client device. In a manner
similar to that noted above, an HLS child also may open up
and maintain a persistent connection with the HLS mother.

In an example implementation, when the HLS mother
server requests and receives the HLS playlist file from the
media server, the HLS mother server re-writes the caching
rule in the received playlist file to allow the playlist to be
cached for some period of time for which a broadcaster may

HLS child server requests a copy of the revised play list from
the HLS mother server.

If the HLS mother has a copy of the revised playlist (e.g.,
30 based on a previous request from one of the HLS child

servers), the HLS mother server returns the revised play list
to the currently requesting HLS child server. If however the
HLS mother server does not have a copy of the playlist (e.g.,
because this is the first request for a copy of the broadcast-

35 er's live stream), the HLS mother server establishes a
persistent connection with the appropriate media server
(e.g., based on the relative URL for the HLS copy of the
stream at a given media server), requests a copy of the
playlist, and re-writes the caching rule for the playlist as

40 discussed above. The HLS mother then caches the revised
playlist, returns the revised playlist to the currently request
ing HLS child server. The child server in turn caches the
revised playlist and passes the revised playlist on to the
requesting CDN server, which in turn also caches the revised

45 playlist and passes the revised playlist on to the requesting
viewer client device.

As shown in FIGS. 9A through 9D, once the viewer client
device has the playlist, it selects from the playlist the
appropriate resolution copy of the live stream based on the

50 associated bitrate of the copy and the available bandwidth
between the viewer client device and the CDN server. Based

be expected to provide the live stream (e.g., some number of 55

hours up to 24 hours or 86,400 seconds); in particular, the
HLS mother server strips the "Cache-control: no-cache"
setting from the received playlist file and replaces it with a
new cache-control command having some duration of cach-

on the selected copy of the live stream, the viewer client
device then requests from the CDN server the corresponding
chunklist. In a manner similar to the request for the HLS
play list, each of the CDN server, an HLS child server, and
the HLS mother server may be queried in turn for a copy of
the corresponding chunklist.

However, an important distinction between the playlist
and a requested chunklist relates to the "freshness" of the
chunklist and the re-writing of the chunklist's caching rule
by the HLS mother server. In particular, whenever the HLS
mother server requests a given chunklist from the media
server, the mother server re-writes the caching rule in the
received chunklist file to allow the chunklist to be cached for
some period of time, for example, the segment duration
corresponding to a single .ts file (e.g., two seconds). In
particular, the HLS mother server strips the "Cache-control:

ing time. The HLS mother server then caches the revised 60

play list file (for the duration of the new caching time) and
typically the playlist file need not be requested again from
the media server. A copy of this revised play list file with a
re-written caching rule in turn is provided upon request to
one or more of the HLS child servers, which in turn cached 65

the revised playlist file and pass additional copies of the
revised playlist file to one or more CDN servers so that the

US 11,039,218 Bl
43

no-cache" setting from the chunklist file and replaces it with
44

(e.g., because another requesting viewer previously
requested the same chunk from the same CDN server and the
CDN server already has the chunk cached), the CDN server

a new cache-control command having some duration of
caching time (e.g., corresponding to a segment duration). In
one aspect, a caching time corresponding to a segment
duration is contemplated given that the chunklist does not 5

change during this duration (and thus, any requests for the
chunklist during this duration are generally unnecessary).
The HLS mother server then caches the revised chunklist file
(for the duration of the new caching time) and a copy ofthis
revised chunklist file with a re-written caching rule in turn
is provided upon request to one of the HLS child servers,
which in turn also caches the revised chunklist and passes a
copy of the revised chunklist file to a CDN server so that the
chunklist file is ultimately provided to the requesting viewer
client devices. Based on the re-written caching rule, each of

returns the chunk to the client device for playing the video
segment represented in the chunk. If however the CDN
server does not have the chunk cached, it requests the chunk
from an HLS child server (e.g., via the CDN load balancer).
A similar process is repeated for the HLS child server and
the HLS mother server. If ultimately the mother server does

10 not have the chunk cached and needs to request the chunk
from the media server (e.g., because this is the first viewer
request for this chunk), the mother server requests the chunk
from the media server, re-writes the caching rule in the

15
chunk file (e.g., to change the caching rule from "no-cache"
to some period of time, for example one hour), caches the
revised chunk, and returns a copy of the chunk to the
requesting child server (which in turn passes the copy of the
chunk to the requesting CDN server and the requesting

the involved servers may cache a copy of the updated
chunklist file for up to but no more than the specified
caching time, which ensures that each copy of the chunklist
stored on a given server is "fresh" (e.g., within one segment
duration) for downloading to the requesting viewer client
device, while also mitigating unnecessary resources spent on
attending to requests for chunklists during a time period in
which there are no changes to the chunklist. In an alternate
implementation, a given child server may again re-write the
caching rule for a chunklist file to prevent caching of the 25

chunklist by a requesting CDN server (and thereby cause the
CDN server to request the chunklist from the child server
every time the chunklist is requested from the CDN server

20 client device).
Once the viewer client device has downloaded all chunks

pointed to in the chunklist, it plays them in turn, deletes the
current copy of the chunklist that the viewer client device
has cached, and then again determines the appropriate
resolution copy of the live stream to request based on the
associated bitrates of the different resolution copies and the

by a viewer client device, even if respective requests come
from one or more viewer client devices within a segment 30

duration).

available bandwidth between the viewer client device and
the CDN server. Typically, it takes less time for a client to
download a chunk then to play it; accordingly, if there are
network issues, the copy of the stream can keep playing on
the viewer client device while it downloads new chunks. For

Referring again to FIGS. 9A through 9D, and considering
a non-limiting example implementation in which the seg
ment duration corresponding to a .ts file is two seconds and

example, if the client successfully downloaded three chunks
(six seconds of video) in two seconds of wall clock time,

the CDN servers maintain the same revised caching rules as 35

the HLS mother and child servers, FIGS. 9A through 9D
illustrates that when a requesting viewer client device does

there remains a four second buffer of video at the client
device in case the fourth chunk has a delay in retrieval.

The foregoing process of requesting and receiving an
appropriate fresh chunklist based on available bandwidth,
and downloading and playing the chunks pointed to in the
chunklist, is repeated for the duration of the broadcaster's
live stream. For example, if the media server stops receiving

not have a chunklist, it requests the chunklist from a CDN
server. If the CDN server does not have the chunklist, or if
the chunklist cached on the CDN server is more than two 40

seconds old (i.e., exceeds the cache time), the CDN server
requests the chunklist from an HLS child server; otherwise,
the CDN server returns a "fresh copy" of the chunklist to the
requesting client. A similar process is repeated for the HLS
child server and the HLS mother server, i.e., if the HLS child
server does not have the chunklist, or if the chunklist cached
on the child server is more than two second old, the child
server requests the chunklist from the mother server; other
wise the child server returns a fresh copy of the chunklist to

the broadcaster's live stream, the media server may provide
a message to the HLS mother server (e.g., in response to a
request from the mother server for a fresh chunklist) that the

45 live stream has been terminated; alternatively, the media
server may provide an empty chunklist to the HLS media
server, which essentially would ultimately terminate the
iterative requesting process and the connection between the
media server and the mother server would time out.

In other aspects, the HLS mother server shown in FIG. 8
monitors the current pool of media servers that may be
servicing different broadcasters' live streams (e.g., as indi
cated in the database of the servers/memory storage devices
1000), and self-configures to provide for custom routing

the requesting CDN server. If the HLS mother server does 50

not have the chunklist, or if the chunklist cached on the
mother server is more than two seconds old, the mother
server requests the chunklist from the media server, re
writes the caching rule in the chunklist file, caches the
revised chunklist file, and returns a fresh copy of the
chunklist to the requesting child server (which in turn passes

55 (e.g., via relative URLs) between a requesting CDN server
and a particular media server to appropriately retrieve a
requested HLS copy of a given broadcaster's live stream
(i.e., via the appropriate playlist and associated chunklists
and .ts files). For example, custom routing functionality of

the fresh copy of the chunklist to the requesting CDN server
and the requesting client device).

Once the requesting viewer client device has a fresh copy
of the chunklist, the viewer client device begins requesting
the respective .ts files or "chunks" pointed to in the
chunklist. In some respects, as shown in FIGS. 9A through
9D, this process is similar to the processes outlined above
for requesting the playlist and requesting one of the
chunklists pointed to in the playlist. For example, the
requesting viewer client device requests a chunk from a
CDN server and, if the CDN server has the requested chunk

60 the mother server may allow the targeting of specific media
servers via a single entry URL (e.g., https://hls.media.cas
tr.live/we90/tl/ngrp: 123456_all/playlist.m3u8 requests
retrieval of the adaptive HLS playlist from server "we90"
for stream 123456, which the mother server internally

65 translates to https://we90.media.castr.live/tl/mgrp:
123456_all/playlist.m3u8 and thereby requests the playlist
from the appropriate server, for which, when received, the

US 11,039,218 Bl
45

mother server re-writes the caching rule, caches the revised
playlist, and passes on the revised playlist to a requesting
child server).

46
tion. In the method shown in these figures, the control
servers automatically scale the number of RTMP media
servers 320 of the media sources that are available for

As noted earlier, in some implementations the HLS CDN
shown in FIG. 8 that makes requests to one or more HLS 5

child servers may be provided as the Amazon Cloudfront
CDN. In any event, the geographically-distributed servers of

broadcasters based in part on the capacity demand for the
servers (e.g., number of broadcasters providing live
streams). The control server monitors various media server
statistics that are maintained in the database 420 (e.g.,
number of active servers in the RTMP media server pool;
servers marked for shutdown; individual server information

the CDN cache to the various elements of the HLS file suite
and can serve these from a variety of geographic locations
to provide a virtually infinite number of HLS viewers using
only a relatively small HLS CDN pool; and, irrespective of
the number of CDN servers requesting content on behalf of
respective viewers, the CDN serves the content quickly, and
the media server sees only a single virtual viewer as the HLS
mother server. In one aspect, the different "layers" of servers
in the HLS server architecture introduce some degree of
latency between a given broadcaster's live stream and the
viewer client devices; however, as noted above, all viewer
client devices have "viewer segment concurrency," and the
overall average latency for all viewers is nonetheless sig
nificantly reduced (e.g., as compared to conventional HLS).
For example, given an example chunk segment duration of
two seconds, and an example HLS window/buffer length of
four segments, there may be up to eight seconds of latency
introduced by the HLS segmenting process and another
approximately two seconds of latency introduced by the
transfer of files through the HLS server architecture.

It should be appreciated that the various concepts dis
cussed herein relating to the HLS server architecture are
similarly applicable to other segmented live video streaming
protocols (e.g., MSS, HDS, MPEG-DASH) for which inven
tive server architectures are contemplated by the present
disclosure.

VIII. Control Server and Associated Services/Processes
FIG. 10 illustrates some of the functionality (e.g., services

and other processes) performed by the control server 500
shown in FIGS. 2 and 3, according to one inventive imple
mentation. As noted above, the control server 500 is coupled
to the memory system 400, one or more event information
providers 55, one or more news feeds (RSS) 65 or other
news sources, and the socket server(s) 600. In one aspect,
the control server 500 periodically retrieves various event
information from the event information provider 55 and/or
news from the news feeds 65 that is germane to respective
broadcasters' video-based commentary. In another aspect,
the control system 500 may store at least some portion of
retrieved event information and/or news in the memory
system 400. More generally, the control server 500 imple
ments a number of services/processes that govern function
ality of other servers and devices in the servers/memory
storage devices 1000; examples of such control system
services/processes include, but are not limited to: an RTMP
media server scaling process to add or remove servers from
the one or more RTMP media servers 320 of the media
sources 300 (see FIG. 11); an RTMP CDN server scaling
process to add or remove servers from the RTMP CDN 340

10 such as server status active/shutdown, numbers of active
connections to live streams, current capacity, date/time of
when server first came online for availability, etc.) and
brings servers in and out of the RTMP media server pool
based at least in part on the server statistics. In various

15 aspects, the control server maintains a minimum number of
servers (e.g., at least two, or a minimum capacity corre
sponding to approximately double the cumulative traffic at a
particular time) in the RTMP media server pool to allow for
spikes in stream creation, and also provides for various

20 buffering times to allow new servers to come online. FIGS.
12A through 12C show a process flow diagram illustrating
an RTMP CDN server scaling system service method
1202A, 1202B, and 1202C performed by the control server
of FIG. 10, according to one inventive implementation, that

25 is similar in many respects to the method 1102A, 1102B and
1102C performed for the media server scaling service.

FIGS. 13A and 13B show a process flow diagram illus
trating a stream and server watchdog service method 1302A,
1302B performed by the control server of FIG. 10, accord-

30 ing to one inventive implementation. The stream watchdog
performed by the control server essentially ensures that new
streams created by broadcasters are valid and deletes
streams that were created but not started, or that have been
inactive for some period of time (e.g., 30 seconds). When

35 streams are ended, the method generates final viewer statis
tics (e.g., stream duration, average number of viewers,
maximum number of viewers, number of simultaneous
viewers, viewers added, viewers left, etc.), broadcasts a
"stream ended" system event message to the chat/system

40 event socket(s) of the socket server(s) dedicated to the
broadcaster's live stream, ends the recording of the live
stream by the media server, and queues the recording to the
video uploader queue of the media server process. The
server watchdog portion of the method 1302A, 1302B

45 monitors the RTMP media servers and the servers of the
RTMP CDN and invokes the check RTMP Media/CDN
server method 1402A, 1402B shown in FIGS. 14A and 14B.
As part of the server watchdog process, for new servers the
control server determines a capacity of the server (e.g.,

50 based on server type), and updates the database 420 with the
capacity of respective servers, server class, launch time,
status update (e.g., active and available for connections) and
determines a total user/streamer capacity based on newly
added servers. For servers that are already online, the server

55 watchdog ensures that servers remain active for certain
intervals (e.g., 30 second intervals), automatically removes
inactive servers from the pool, and reports active server
status back to the database. If servers are marked for

of the media sources 300 (see FIG. 12); a live stream and
media server watchdog process (see FIGS. 13-14); an event
data ingress process (see FIG. 15); a live event data monitor
process (see FIG. 16); an asynchronous task processor (see 60

FIG. 17); and a live stream thumbnail/screenshot acquisition
process (see FIG. 18).

shutdown, the server watchdog archives server statistics,
removes the server from the active server list stored in the
database, and determines an updated total user/streamer
capacity based on the removal of the server from the active
list. 1) Server Auto-Scaling Systems and Watchdogs

FIGS. llA through llC show a process flow diagram
illustrating an RTMP media server scaling system service 65

method 1102A, 1102B and 1102C performed by the control
server of FIG. 10, according to one inventive implementa-

2) Event Information Ingress and Live Event Monitoring
In some inventive implementations, another significant

role of the control server 500 shown in FIGS. 2, 3 and 10
relates to collecting of event information and/or news (e.g.,

US 11,039,218 Bl
47

from external Internet providers), maintaining relevant event
information and/or news in the database 420 (e.g., to facili
tate selection of broadcasters to follow, and/or particular
broadcaster live streams to view), and distributing the col
lected information to multiple broadcaster and viewer client
devices in a relatively low-latency and synchronized manner
with respect to broadcasters' video-based commentary.

In some implementations, the technical challenge of dis
playing event information and updates to same in a syn
chronized and low-latency manner amongst multiple client
devices is addressed in part by using a single control server
500 to gather and parse live event information captured in
real-time. For example, for sporting events, game informa
tion may be obtained by the single control server from a
dedicated third-party provider (e.g., STATS LLC). This
single point of entry of event information prevents synchro
nization errors inherent in network communications. Once a
change in event status has been detected (e.g., if a play clock
updates), the control server provides these changes to the
one or more sockets dedicated to the event (to which all
viewers and broadcasters of video-based commentary
regarding the event are communicatively coupled), resulting
in a single synchronized update to all client devices and
thereby significantly mitigating client-by-client latency and/
or synchronization issues.

In some example implementations, the control server 500
implements two service methods relating to event informa
tion, namely, an event data ingress service and a live event
data monitor service. The event data ingress service is
performed with a first periodicity (e.g., once or twice a day)
to maintain and update an event list in the database 420. The
live event data monitor service is performed with a second
and more frequent periodicity (e.g., once a minute) to check
for any events that are in progress and, if found, to retrieve
fresh data about an in-progress event from the event infor
mation provider (e.g., at an even greater frequency, for
example once a second). Similar services may be imple
mented by the control server 500 to ingest news on particular
topics, trending threads, etc.

FIG. 15 shows a process flow diagram illustrating an
event data ingress service method 1502 performed by the
control server of FIG. 10, according to one inventive imple
mentation, and FIGS. 16A and 16B show a process flow
diagram illustrating a live event data monitor service method
1602A, 1602B performed by the control server of FIG. 10,
according to one inventive implementation. In these meth
ods, an event information provider is contemplated as sup
porting multiple different types of events for furnishing
information (various types of sporting events such as bas
ketball, football, baseball, hockey, etc.), and providing infor
mation for each instance of an event of a given event type
(e.g., information for each of multiple basketball games,
each of multiple football games, each of multiple baseball
games).

For each event, the control server retrieves the raw
information provided by the event information provider, and
in some instances converts and/or compresses the raw
information to provide a standardized format of essential
data elements for storing in the database 420 and/or distri
bution to client devices (e.g., via broadcast of event mes
sages having the standardized format to one or more dedi
cated sockets of the socket server(s) 600). Examples of data
elements for event information include, but are not limited
to, a type of the event, an identifier for the event (EventID),
a status of the event (e.g., pre-game, in-progress, final),
score information for the event, team information for the
event, a progress indicator or progress details for the event

48
(e.g., quarter, period, inning, half-time; for baseball-balls,
strikes, base information; for football-possession, down,
yards to go; for basketball-timeouts, fouls), an event date
and/or time of the event (e.g., actual or elapsed time infor-

5 mation), and event participant data regarding participants in
the event. In some examples, the control server further
normalizes the event date and/or time to a particular refer
ence frame (e.g., converting from UTC to EST/EDT).

In the process 1602Aand 1602B shown in FIGS. 16Aand
10 16B, the control server particularly queries the event infor

mation provider for a list of all events in a particular window
around the current time (e.g., a 48 hour window, for events
with start times 24 hours in the past through 24 hours in the
future), to allow tracking of in-progress events (or identify

15 any events that had inconsistent or incorrect start times or
late modifications to event information). For each in-prog
ress event, an event clock and other event information (e.g.,
score information, other more detailed information about the
event) are updated frequently (e.g., once a second) to

20 provide regular updates of event information messages that
are broadcast to one or more dedicated event information
sockets of the socket server(s) 600.

3) Asynchronous Task Processing
FIGS. 17A and 17B show a process flow diagram illus-

25 trating an asynchronous task service method 1702A, l 702B
performed by the control server of FIG. 10, according to one
inventive implementation. The control server periodically
reads a task or task bundle from the asynchronous queue to
initiate various other actions or processes in connection with

30 the serves and memory storage devices 1000. A number of
different asynchronous system events may be implemented
by this process, only some examples of which are illustrated
in FIGS. 17 A and 17B. For example, if an entry in the queue
relates to a "Stream Started" system event, the asynchronous

35 task processing sends out push notifications (including a
StreamID) to followers and subscribers of the stream's
broadcaster. Another system event processed by the asyn
chronous task process is when there is a new follower of a
broadcaster's stream ("newFollowingStream"), for which

40 the process loads user data and stream data, and attends to
various user notifications as appropriate (e.g., email notifi
cations, web push notifications). The asynchronous task
processor is also responsible, in some implementations, for
taking periodic screenshots/thumbnails of a live stream (as

45 discussed below in connection with FIGS. 18A and 18B).
With respect to various push notifications handled by the

control server 500 and/or the web server(s) 700 (or other
servers of the architecture 1000), it should be appreciated
that specific apps on mobile client devices need not be open

50 for a push notification to be received on the client device.
Thus the client device may receive and display social media
or text message alerts even when the device's screen is
locked, and/or when the app pushing the notification is
closed. For iOS devices, for example, the Apple Push

55 Notification Service API may be employed to enable the
client app 5000 to receive various push notifications.

With reference again to FIG. 10, the async queue moni
toring is an application that runs on the control server and
that looks at the current size of the asynchronous queue and

60 will notify an administrator. Typically, the queue of tasks to
process is small (e.g., at any given second it may be between
0-10 items), and if the queue grows to a larger size (e.g.,
1000 items) the async queue monitor indicates to a system
administrator that there is a problem in the asynchronous

65 task processing (e.g., additional processing resources are
required, or a looping event is getting processed and re
added to the queue instead of being removed).

US 11,039,218 Bl
49

4) Acquiring Screenshots/Thumbnails
FIGS. 18A and 18B show a process flow diagram illus

trating a process 1802A, 1802B for taking a screenshot
(thumbnail) of a live stream, performed by the control server

50
platform(s) includes a link (e.g., address or URL) to the
screenshot selected by the broadcaster.

IX. Client-Side Features (e.g., Functionality of the Client
App)

of FIG. 10, according to one inventive implementation (in 5

other implementations, the web server(s) 700 of other serv-
Having provided various details of the servers and

memory storage devices 1000 shown in FIGS. 2 and 3,
attention now turns to the functionality of the client devices
relating to establishing user profiles (e.g., upon login),
creating broadcaster stream sessions and providing live

ers of the architecture 1000 may perform the process of
taking thumbnails of live streams pursuant to the general
technique outlined in FIGS. 18A and 18B).

With reference again to FIG. SC and the media server
process, the media server process queues to the asynchro
nous queue a first screenshot for a new live stream, and
periodic updates to screenshots (e.g., every five seconds or
so) during the duration of the live stream. These screenshot
tasks are read by the asynchronous task process 1702A and
1702B discussed above in connection with FIGS. 17A and
17B and implemented by the process shown in FIGS. 18A
and 18B.

In the process 1802A, 1802B, in one implementation
screenshots are taken based on a broadcaster's live stream in
H.264 (or transcoded to H.284 if the live stream is VPS/
WebRTC from a web broadcaster). Screenshots are taken on
the next available keyframe after the process is invoked. If
the screenshot is not the first one taken, the stream infor
mation (e.g., in the database 420) is updated with informa
tion relating to the newest screenshot, and the screenshot is
added to archived screenshots (e.g., in the data storage 440).
The screenshot is then broadcast to the chat/system event
socket of the socket server(s) 600 dedicated to the broad
caster's live stream.

Whenever a screenshot is taken of the broadcaster's live
stream (particularly if it is the first screenshot), it may be
resized for social media network requirements, and overlaid
with graphics, watermarks, or promotional material. If the
broadcaster requested for social share in creating the new
stream (see discussion below regarding creation of new
broadcaster streams), the process submits a link to the
resized screenshot (e.g., an address or URL) to the indicated
social network platform (e.g., Face book, Instagram, Twitter,
etc.), in some instances together with a "share graphic." In
any case, the process determines the list of users that
follow/subscribe to the broadcaster, and queues a system
event message (e.g., "new FollowingStream") event for each
subscriber to broadcast the first screenshot of the new live
stream. As above, the stream information (e.g., in the
database 420) is updated with information relating to the
screenshot, and the screenshot is archived (e.g., in the data
storage 440) and broadcast to the chat/system event socket
of the socket server(s) 600 dedicated to the broadcaster's
live stream.

With respect to sharing screenshots with social networks
if elected by the broadcaster, in another implementation (not
shown in FIGS. 18A and 18B), all screenshots of the
broadcaster's live stream that are taken as of a given time are
processed by a facial recognition algorithm to provide one of
multiple options (e.g., the best of three screenshots) for
selection by the broadcaster. For example, the process
acquires a screenshot at 1, 3 and 5 seconds, and then every
5 seconds thereafter. The facial recognition algorithm
detects candidate screenshots on rolling basis based on, for
example, the clarity of the image, the quality of the face that
is visible, and if the user is smiling. More specifically, every
acquired screenshot is analyzed and then the "best three" are
selected and presented as options to the broadcaster/viewer
during social share. The broadcaster/viewer selects their
preferred image, and the social share endpoint that is ulti
mately provided by the process to the selected social media

10 streams from broadcaster client devices to a media server,
receiving copies of a live stream at a viewer client device
(e.g., from a media server, the RTMP CDN, or the HLS
server architecture), providing special effects graphics and
animations (including animated real-time "scorebugs") on

15 displays of client devices, and replaying copies of a recorded
live stream from a broadcaster.

As noted earlier, unlike conventional scorebugs, screen
animations, and/or other special effects graphics that are
hard-embedded into live streams of a sports broadcast, in

20 various inventive implementations disclosed herein graphics
and effects are generated by the client device itself, separate
from a given broadcaster's video-based commentary, and
then integrated with (e.g., superimposed or overlaid on) the
broadcaster's video-based commentary when rendered on

25 the display of the client device. For mobile client devices,
the client app 5000 executing on the device is particularly
configured to render a variety of "studio-quality" graphics
while nonetheless maintaining a small file size for the client
app (e.g., less than 100 megabytes, and in some instances

30 from approximately 60-70 megabytes); this allows the mod
estly-sized client app to be readily downloaded to a client
device via a cellular network. In other aspects, client-side
rendering of screen animations and/or other special effects
graphics allows such animations and graphics to be user-

35 interactive and/or user-customizable.
FIGS. 19A and 19B show a process flow diagram illus

trating a user login process according to one inventive
implementation, which in some examples may be performed
by a client device and facilitated by one or more web servers

40 700 shown in FIGS. 2 and 3. As illustrated, a login process
may be implemented by phone (via SMS message with code
sent to phone, and code validation), of via a social media
network platform login process (e.g., Facebook, Twitter,
Instagram). For new user accounts, a user may establish a

45 user profile that is stored in the database 420 and that may
be referenced by a UserID after creation, and include a user
name, profile picture, and a user status or user "type" for the
user (e.g., a VIP user or member, a media professional or

50

member of the media).
1) Broadcaster Processes
FIGS. 20A and 20B show a process flow diagram illus

trating a mobile broadcaster stream create process according
to one inventive implementation, which in some examples
may be performed by a broadcaster client device (pursuant

55 to execution of the client app 5000) and facilitated by one or
more web servers (700) shown in FIGS. 2 and 3. While
much of the discussion above relates to an example in which
a broadcaster wishes to provide a live stream of digital
content including video-based commentary about a particu-

60 lar event, in other implementations the broadcaster may
desire to create a live stream about a particular topic of
interest (e.g., "anything"), or a news story, for example. For
each of these options, the broadcaster may enter a title for
the live stream, and the client device may request (e.g., from

65 the web server(s) 700) a list of events or news items for
selection by the broadcaster, as well as a pre-populated list
of tags (as noted above, event information and/or news may

US 11,039,218 Bl
51

be ingressed by the control server 500, and some event
information and/or news may already be cached in the data
cache 460 or stored in the database 420).

The broadcaster may also enter tags to be associated with
the live stream to facilitate searching and various social
media functionality (e.g., to allow other users to search for
and find the live stream based on various criteria represented
by the tags). The broadcaster may also elect other options in
the stream creation process, examples of which include, but
are not limited to, sharing an announcement of the stream
starting on a social network platform, and enabling sharing
of their location to other users (e.g., to facilitate viewing of
the broadcaster's live stream by viewers based on the
location of the broadcaster).

The broadcaster stream create process then submits a
"stream create" request to the web server(s) 700. If the
broadcaster selected a particular event from the list of events
about which to broadcast, an EventID associated with the
event is included in the stream create request. Other contents
of the stream create request includes, but is not limited to, an
API key (to authenticate the user), the title of the stream, any
tags selected, newsID (if news was selected), the broadcast-
ers social network sharing options, and broadcaster location
data (if permitted by the broadcaster). The web server(s) 700

52
that are received via the chat/system event socket (e.g., a
default chat message displayed on the client device at the
beginning of each new stream that says "keep it family
friendly!"). The client device then checks to see if any

5 further system messages or chat messages are received on
the chat/system event channel, and displays chat messages
and/or takes other actions in response to system messages
such as "member_added" (increase viewing count), "mem
ber_removed" (decrease viewing count), "new follower"

10 (add notice to chat). Although only three system messages
and corresponding actions are shown in FIG. 21B, it should
be appreciated that additional and/or other types of system
messages may be received on the chat/system event channel
(e.g., relating to other social networking functionality, and/

15 or digital gifts) and initiate corresponding actions as part of
the stream active process.

The client device next checks to see if any event messages
or data is received on the event information channel (e.g.,
updates to event status, event score information, event clock,

20 other event information). The client device then captures a
camera frame for the live stream and sends the frame to the
media server. The client device then checks the internal
frame and time clock to see if any updates are needed to
animations or special effects graphics (e.g., scorebugs) to be
rendered on the display of the client device ("graphics/
animation layers"). In some implementations, graphics and
animations are updated at a rate of between 15-25 frames/
second based on the internal frame and time clock. As noted
above, in some implementations for mobile client devices,

30 animated graphics and special effects are hard-coded in the
client app as a series of individual frames (still-frame
images), and rendered on the display in a "stop-motion"
style according to the internal frame and time clock.

in tum validates the API key, assigns a StreamID to the 25

newly created live stream, runs the broadcast media server
selection algorithm (e.g., see FIGS. 4A and 4B) to select a
media server to which the broadcaster client device con
nects, and returns to the broadcaster client device the Stre
amID and the host name ("hostname") for the selected
media server. The web server(s) 700 store in the database
420 a variety of stream information for the new live stream,
which may include, but is not limited to, the StreamID, the
UserID, the EventID, the DBshard, type of stream (RTMP/
WebRTC), create time, hostname, title, tags, social notify
options and social media platforms, location share option,
location (if selected as an option) and, if the stream is
associated with an EventID, an archived copy of event
information at the stream create time.

In the stream active process shown in FIG. 21C, the
35 process further queries for broadcaster input, examples of

which include a request to end the stream, a request to share
the stream, a request to view a list of viewers of copies of
the live stream, interaction with the graphics/animations
(e.g., "bottom third"), and a request to flip the camera. As

40 also noted above, rendering graphics and animation layers
on the client-side provides for user-interaction with the
displayed graphics and animation layers. While not shown
explicitly in FIG. 21C, as discussed above interactions with
graphics/animations ("set animation state to transition to

FIGS. 21A, 218, 21C, 21D, and 21E show a process flow
illustrating a mobile broadcaster active stream process
2102A, 2102B, 2102C, 2102D and 2102E according to one
inventive implementation, which in some examples may be
performed at least in part by a broadcaster client device. In
particular, the broadcaster client device accesses the media
server selected by the web server(s) 700 via a particular
URL (e.g., including the hostname in a path of the URL), as
discussed below in connection with FIGS. 21A through 21E.
The broadcaster client device then connects to a particular
socket of the socket servers dedicated to the broadcaster's
live stream, based in part on the StreamID provided by the
web server(s), to establish a chat/system event channel. As
noted above, in one aspect connections between client
devices and a particular socket of a socket server are
persistent authenticated connections, so that the number of
users (broadcasters and viewers) connected to a particular
socket (e.g., and currently watching a particular live stream
and/or particular event) may be tracked. If the broadcaster's
live stream is about an event, the broadcaster's client device
also connects to a particular socket of the socket servers 60

dedicated to the event, based on the EventID, to establish an
event information channel.

In a "main loop" of the broadcaster client device stream
active process (which for mobile clients is executed by the
client app 5000), an internal frame and time clock is
periodically updated, and is used for animations and special
effects graphics and synchronizing of some system messages

45 open") may in some implementations launch a variety of
other processes including, but not limited to, launching
further graphics or animations, receiving additional infor
mation about the live sporting event (e.g., by thumbing-over
a scorebug), or navigating to another Internet location to

50 receive additional information relating to a live event.
In FIG. 21D, the stream active process then queries if the

stream state is set to close (e.g., in response to a broadcast
er's request to end the stream, discussed immediately
above). If not, the process returns to updating the internal

55 frame and time clock. If the stream state is set to close, the
client device disconnects from the media server, requests
final stream statistics from the chat/system event channel,
and displays an end of stream screen on the display of the
client device.

FIGS. 22A and 22B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for the processes shown in FIGS. 20A and 20B, and
FIGS. 21A-21E, as well as the media server processes

65 shown in FIGS. SA, 5B and SC, according to one inventive
implementation. In essence, FIGS. 22A and 22B provide
another perspective and summarize the various process

US 11,039,218 Bl
53 54

devices 1000 log all events that occur in connection with a
live stream (e.g., chat messages and system event messages,
as well as event message) and tie them to a timestamp. This
allows synchronization of all events to the replay in the same

flows and corresponding devices involved in the creation
and provision of a live stream of digital content by a
broadcaster to a media server, and the processing of the live
stream by the media server. Although FIGS. 22A and 22B
are directed primarily to the overall process flow for a
mobile broadcaster, the functionality and devices shown in
these figures applies similarly to web-based broadcasters as
well.

5 order that the events occurred during the live stream, as if the
viewer were not watching a recording of the live stream but
actually watching a copy of the live stream in real time.

2) Viewer Processes
FIGS. 23A and 23B show a communication flow diagram

illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for a live stream RTMP media server or RTMP CDN
viewer, according to one inventive implementation. A
viewer who is a registered or anonymous user, but has
received a StreamID for a particular broadcaster's live
stream (e.g., via a push notification) to their viewer client
device, may send a request to the web server(s) 700 (via the
API) to receive a copy of the broadcaster's live stream. The
web server(s) first checks the memory cache 460 for, or
requests from the database 420, various stream information
corresponding to the StreamID provided by the requesting
viewer. The web server(s) then perform(s) the viewer stream
source selection algorithm discussed above in connection
with FIG. 7 to provide an endpoint to the viewer client
device for the appropriate media source from which to
obtain a copy of the live stream. In the process shown in
FIGS. 23A and 23B, the viewer stream source selection
algorithm provides an endpoint (e.g., address or URL) to the
viewer client device to establish a video communication 30

channel with either a particular media server of the RTMP
media server pool 320, or a particular server of the RTMP
CDN 340.

As shown in the figures, the viewer client device couples
to the web server(s) via the API to request stream informa-

lO tion and, if the stream recording is ready, loads the initial
replay data from the API and then loads the media file of the
recording. The viewer client device also connects to the
chat/system event socket corresponding to the live stream

The viewer client device also connects to the appropriate
socket of the socket server(s) dedicated to the live stream to
establish a chat/system event channel and thereby receive
chat messages and system messages. If the live stream
relates to an event, the viewer client device also connects to
the appropriate socket of the socket server(s) dedicated to
the event to establish an event information channel and
thereby receive event messages containing various event
information. The viewer using the viewer client device also
may send chat messages to the web server API, which the
web server directs to the appropriate socket of the socket
server(s) dedicated to the live stream for broadcast to other
viewers connected to the socket as well as the broadcaster.
The web server also updates a replay log with the chat
message from the viewer, so that the chat may be recreated
if a recording of the broadcaster's live stream is replayed by
a viewer at a later time (discussed further below).

15 (via a persistent authenticated connection), not to receive
chat messages or system event messages (these messages are
not present on replay), but rather so that the system knows
of the viewer's presence and connection. Playback of the
video is then started, and then the internal clock and the

20 current video time clock are updated to provide for appro
priate buffering of the video data. As the recording is played
back, event data (e.g., chat messages, system messages,
event information messages) is processed in one implemen
tation according to FIGS. 26A and 26B, and user inputs are

25 processed in one implementation according to FIG. 27.

CONCLUSION

While various inventive implementations have been
described and illustrated herein, those of ordinary skill in the
art will readily envision a variety of other means and/or
structures for performing the function and/or obtaining the
results and/or one or more of the advantages described
herein, and each of such variations and/or modifications is

35 deemed to be within the scope of the inventive implemen
tations described herein. More generally, those skilled in the
art will readily appreciate that all parameters and configu
rations described herein are meant to be exemplary inventive
features and that other equivalents to the specific inventive

40 implementations described herein may be realized. It is,
therefore, to be understood that the foregoing implementa
tions are presented by way of example and that, within the
scope of the appended claims and equivalents thereto, inven
tive implementations may be practiced otherwise than as

45 specifically described and claimed. Inventive implementa
tions of the present disclosure are directed to each individual
feature, system, article, and/or method described herein. In
addition, any combination of two or more such features,
systems, articles, and/or methods, if such features, systems,

50 articles, and/or methods are not mutually inconsistent, is
included within the inventive scope of the present disclo-FIGS. 24A and 24B show a communication flow diagram

illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for a live stream HLS viewer, according to one inven
tive implementation. The process shown in these figures is 55

substantially similar to that outlined above in connection
with FIGS. 23A and 23B; the primary difference is that, as

sure.
The above-described implementations can be imple

mented in multiple ways. For example, implementations
may be implemented using hardware, software or a combi
nation thereof. When implemented in software, the software
code can be executed on any suitable processor or collection
of processors, whether provided in a single computer or
distributed among multiple computers. Further, it should be
appreciated that a computer may be embodied in any of a
number of forms, such as a rack-mounted computer, a
desktop computer, a laptop computer, or a tablet computer.
Additionally, a computer may be embedded in a device not
generally regarded as a computer but with suitable process
ing capabilities, including a Personal Digital Assistant
(PDA), a smart phone or any other suitable portable or fixed
electronic device.

a result of the web server(s) performing the viewer stream
source selection algorithm (see FIG. 7), the web server(s)
return(s) to the viewer client device an endpoint (e.g., 60

address or URL) to establish a video channel with the HLS
server architecture 380 rather than a server of the RTMP
media server pool 320 or the RTMP CDN 340.

FIGS. 25A, 25B, and 25C show a process flow illustrating
a mobile client live stream replay method, according to one 65

inventive implementation. For replay of a recording of a
broadcaster's live stream, the servers and memory storage

US 11,039,218 Bl
55

Also, a computer may have one or more input and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or 5

other sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech 10

recognition or in other audible format. Such computers may
be interconnected by one or more networks such as Internet.
The various methods or processes outlined herein may be
coded as software that is executable on one or more pro
cessors that employ any one of a variety of operating 15

systems or platforms. Additionally, such software may be
written using any of a number of suitable progranmiing
languages and/or programming or scripting tools, and also
may be compiled as executable machine language code or
intermediate code that is executed on a framework or virtual 20

machine.
In this respect, various inventive concepts may be embod-

ied as a computer readable memory or storage medium (or
multiple computer readable storage media) (e.g., a computer
memory, one or more floppy discs, compact discs, optical 25

discs, magnetic tapes, flash memories, circuit configurations

56
relationship between data elements. In some implementa
tions, a schema-minimal storage system may be imple
mented in a relational database environment using key-value
storage versus defined data structures.

With the foregoing in mind, each of the client devices
described herein, as well as various servers and other
computing devices of the broadcast/viewing servers and
memory storage devices shown for example in FIGS. 2 and
3, may comprise one or more processors, one or more
memory devices or systems communicatively coupled to the
one or more processors (e.g., to store software code and
other data), and one or more communication interfaces
communicatively coupled to the one or more processors so
as to implement the various specific and inventive function
ality described herein.

Also, various inventive concepts may be embodied as one
or more methods, of which an example has been provided.
The acts performed as part of the method may be ordered in
any suitable way. Accordingly, implementations may be
constructed in which acts are performed in an order different
than illustrated, which may include performing some acts
simultaneously, even though shown as sequential acts in
illustrative implementations.

All publications, patent applications, patents, and other
references mentioned herein are incorporated by reference in
their entirety.

All definitions, as defined and used herein, should be
understood to control over dictionary definitions, definitions

30 in documents incorporated by reference, and/or ordinary
meanings of the defined terms.

in Field Programmable Gate Arrays or other semiconductor
devices, or other non-transitory medium or tangible com
puter storage medium) encoded with one or more programs
that, when executed on one or more computers or other
processors, perform methods that implement the various
implementations of the invention discussed above. The
computer readable medium or media can be transportable,
such that the program or programs stored thereon can be
loaded onto one or more different computers or other pro- 35

cessors to implement various aspects of the present inven
tion as discussed above.

Unless otherwise indicated, the terms "program" or "soft
ware" are used herein in a generic sense to refer to any type
of computer code or set of computer-executable instructions
that can be employed to program a computer or other
processor to implement various aspects of implementations
as discussed above. Additionally, it should be appreciated
that according to one aspect, one or more computer pro
grams that when executed perform methods of the present
invention need not reside on a single computer or processor,
but may be distributed in a modular fashion amongst a
number of different computers or processors to implement
various aspects of the present invention.

Computer-executable instructions may be in many forms,
such as program modules, executed by one or more com
puters or other devices. Generally, program modules include
routines, programs, objects, components, data structures,
etc., that perform particular tasks or implement particular
abstract data types. Typically the functionality of the pro
gram modules may be combined or distributed as desired in
various implementations.

The indefinite articles "a" and "an," as used herein in the
specification and in the claims, unless clearly indicated to
the contrary, should be understood to mean "at least one."

The phrase "and/or," as used herein in the specification
and in the claims, should be understood to mean "either or
both" of the elements so conjoined, i.e., elements that are
conjunctively present in some cases and disjunctively pres
ent in other cases. Multiple elements listed with "and/or"

40 should be construed in the same fashion, i.e., "one or more"
of the elements so conjoined. Other elements may optionally
be present other than the elements specifically identified by
the "and/or" clause, whether related or unrelated to those
elements specifically identified. Thus, as a non-limiting

45 example, a reference to "A and/or B", when used in con
junction with open-ended language such as "comprising"
can refer, in one implementation, to A only (optionally
including elements other than B); in another implementa
tion, to B only (optionally including elements other than A);

50 in yet another implementation, to both A and B (optionally
including other elements); etc.

As used herein in the specification and in the claims, "or"
should be understood to have the same meaning as "and/or"
as defined above. For example, when separating items in a

55 list, "or" or "and/or" shall be interpreted as being inclusive,
i.e., the inclusion of at least one, but also including more
than one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the
contrary, such as "only one of' or "exactly one of," or, when

Also, data structures may be stored in computer-readable
media in any suitable form. For simplicity of illustration,
data structures may be shown to have fields that are related
through location in the data structure. Such relationships
may likewise be achieved by assigning storage for the fields
with locations in a computer-readable medium that convey
relationship between the fields. However, any suitable
mechanism may be used to establish a relationship between 65

information in fields of a data structure, including through

60 used in the claims, "consisting of," will refer to the inclusion
of exactly one element of a number or list of elements. In
general, the term "or" as used herein shall only be inter
preted as indicating exclusive alternatives (i.e. "one or the
other but not both") when preceded by terms of exclusivity,
such as "either," "one of," "only one of," or "exactly one of."
"Consisting essentially of," when used in the claims, shall

the use of pointers, tags or other mechanisms that establish have its ordinary meaning as used in the field of patent law.

US 11,039,218 Bl
57 58

2. The system of claim 1, wherein the first socket address
transmitted by the at least one webserver to the first viewer
client device includes a first event identifier (first EventID)
that corresponds to the first event socket, such that the first

As used herein in the specification and in the claims, the
phrase "at least one," in reference to a list of one or more
elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of
elements and not excluding any combinations of elements in

5 viewer client device uses a first URL including the first event
identifier (first EventID) in the first URL to connect to the
first event socket.

the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi
cally identified within the list of elements to which the
phrase "at least one" refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-

3. The system of claim 1, wherein the first event infor
mation Internet communication channel to carry the online

10 gaming information between the first event socket of the at
least one socket server and the first viewer client device is

ing example, "at least one of A and B" (or, equivalently, "at
least one of Aor B," or, equivalently "at least one of A and/or
B") can refer, in one implementation, to at least one, 15

optionally including more than one, A, with no B present
(and optionally including elements other than B); in another
implementation, to at least one, optionally including more
than one, B, with no A present (and optionally including
elements other than A); in yet another implementation, to at 20

least one, optionally including more than one, A, and at least
one, optionally including more than one, B (and optionally
including other elements); etc.

In the claims, as well as in the specification above, all
transitional phrases such as "comprising," "including," "car- 25

rying," "having," "containing," "involving," "holding,"
"composed of," and the like are to be understood to be
open-ended, i.e., to mean including but not limited to. Only
the transitional phrases "consisting of' and "consisting
essentially of' shall be closed or semi-closed transitional 30

phrases, respectively, as set forth in the United States Patent
Office Manual of Patent Examining Procedures, Section
2111.03.

The invention claimed is:
1. A system for controlling a plurality of viewer client 35

devices to receive first digital content relating to a first
sporting event and first event information germane to the
first sporting event, the first event information including
online gaming information, the system comprising:

A) a control server to periodically retrieve, via the Inter- 40

net, the first event information germane to the first
sporting event;

B) at least one socket server communicatively coupled to
the control server to:
receive from the control server at least the first event 45

information; and
transmit at least some of the first event information,

including the online gaming information, to at least
a first viewer client device of the plurality of viewer
client devices via a first event information Internet 50

communication chamiel between a first event socket
of the at least one socket server and the first viewer
client device, wherein the first event socket corre
sponds to the first event information germane to the
first sporting event; and

C) at least one webserver communicatively coupled to the
at least one socket server to transmit, to the first viewer
client device:

55

a first Internet address of a first media source to
establish a first video Internet communication chan- 60

nel between the first media source and the first
viewer client device to carry the first digital content
relating to the first sporting event; and

a first socket address of the first event socket to
establish the first event information Internet commu- 65

nication chamiel to carry the online gaming infor-
mation.

established as a persistent connection.
4. The system of claim 1, wherein:
in C), the at least one webserver transmits, to a second

viewer client device of the plurality of viewer client
devices, the first socket address of the first event socket
to establish a second event information Internet com
munication chamiel between the first event socket and
the second viewer client device; and

in B), the at least one socket server transmits at least some
of the first event information, including the online
gaming information germane to the first sporting event,
to the second viewer client device via the second event
information Internet communication channel, such that
the online gaming information is shared in a synchro
nized mamier by the first viewer client device and the
second viewer client device.

5. The system of claim 4, wherein the first socket address
transmitted by the at least one webserver to the second
viewer client device includes the first event identifier (first
EventID) that corresponds to the first event socket, such that
the second viewer client device uses a second URL includ
ing the first event identifier (first EventID) in the second
URL to connect to the first event socket.

6. The system of claim 4, wherein in A), the control server
is a single point of entry for the system to obtain the first
event information including the online gaming information
to reduce synchronization errors between the first viewer
client device and the second viewer client device.

7. The system of claim 6, wherein:
in A), the control server detects a change in status in the

first event information and transmits changes in the
online gaming information to the at least one socket
server; and

in B), the at least one socket server transmits the changes
in the online gaming information to the first viewer
client device and the second viewer client device via
the first event socket to provide a single synchronized
update and mitigate client-by-client latency and/or syn
chronization issues.

8. The system of claim 4, wherein in C), the at least one
webserver transmits to the second viewer client device one
of:

the first address of the first media source to establish a
second video Internet communication channel between
the first media source and the second viewer client
device to receive the first digital content relating to the
first sporting event; or

a second address of a second media source to establish an
alternate second video Internet communication channel
between the second media source and the second
viewer client device to receive second digital content
relating to the first sporting event.

9. The system of claim 8, wherein:
the second client device is a subscriber to one of:

the first media source and/or the first digital content
relating to the first sporting event; or

US 11,039,218 Bl
59

the second media source and/or the second digital
content relating to the first sporting event; and

in C), the at least one webserver transmits to the second
viewer client device one of:
a first identifier (first StreamID) for the first media 5

source and/or the first digital content as at least a
portion of the first address if the second client device
is a subscriber to the first media source and/or the
first digital content; or

60
receiving from the first client device a first URL including

the first event identifier (first EventID) in the first URL;
and

communicatively coupling the first client device to the
first event socket to establish the first event information
communication channel.

14. The method of claim 12, wherein in B), the at least one
first instruction transmitted to the first client device includes
a first address for the at least one media source, such that the
first client device uses the first address to request and receive
from the at least one media source the first copy of the first
stream of digital content relating to the first sporting event
via the first video communication channel, and displays the

a second identifier (second StreamID) for the second 10

media source and/or the second digital content as at
least a portion of the second address if the second
client device is a subscriber to the second media
source and/or the second digital content.

15 video relating to the first sporting event based on the 10. The system of claim 1, wherein:
in B), the at least one socket server further transmits first

real-time information relating to the first digital content
to at least the first viewer client device of the first
plurality of viewer client devices via a first real-time
information Internet communication channel between a 20

first real-time information socket of the at least one
socket server and the first viewer client device, wherein
the first real-time information socket corresponds to the
first digital content relating to the first sporting event;
and 25

in C), the at least one webserver transmits to the first
viewer client device a second socket address of the first
real-time information socket to establish the first real
time information Internet communication channel.

11. The system of claim 10, wherein the first real-time 30

information relating to the first digital content comprises:
at least one chat message;
at least one statistic;
trivia;
at least one poll; 35

news or current event information;
at least one photo;
advertising content;
an indication of a viewer joining or leaving the first digital

content; 40

at least one digital gift; and/or
at least one sponsorship.
12. A method for providing, to a first client device, first

event information germane to a first sporting event, wherein
the first event information includes first online gaming 45

information relating to the first sporting event, the method
comprising:

A) transmitting the first online gaming information to at
least the first client device via a first event information
communication channel between a first event socket of 50

at least one socket server and the first client device,
wherein the first event socket corresponds to the first
event information germane to the first sporting event;
and

B) transmitting at least one instruction to the first client 55

device to cause the first client device to request a first
copy of a first stream of digital content relating to the
first sporting event and receive the first copy via a first
video communication channel between at least one
media source and the first client device, wherein the 60

first video communication channel is different than the
first event information communication channel.

13. The method of claim 12, wherein prior to A), the
method comprises:

transmitting to the first client device a first event identifier 65

(first Event ID) that corresponds to the first event
socket;

received first copy of the first stream of digital content.
15. The method of claim 12, further comprising:
C) transferring first real-time information relating to the

first stream of digital content to and from the first client
device via a first real-time information communication
channel between a first real-time information socket of
the at least one socket server and the first client device,
wherein the first real-time information comprises:

at least one chat message;
at least one statistic;
trivia;
at least one poll;
news or current event information;
at least one photo;
advertising content;
an indication of a viewer joining or leaving the first stream

of digital content;
at least one digital gift; and/or
at least one sponsorship.
16. A method for controlling a first viewer client device to

display a video relating to a first sporting event together with
first online gaming information germane to the first sporting
event, the method comprising:

A) transmitting at least one first instruction to the first
viewer client device to cause the first viewer client
device to receive a first copy of a first stream of digital
content relating to the first sporting event via a first
video communication channel; and

B) transmitting at least one second instruction to the first
viewer client device to cause the first viewer client
device to receive the first online gaming information
via a first event information communication channel
between a first event socket of at least one socket server
and the first viewer client device, wherein the first event
information communication channel is different than
the first video communication channel.

17. The method of claim 16, wherein prior to A), the
method comprises:

receiving from the first viewer client device a first user
selection of the first sporting event from a listing of
events;

transmitting to the first viewer client device, in response
to the first user selection of the first sporting event, a
directory of sources generating media associated with
the first sporting event; and

receiving from the first viewer client device a second user
selection of a first source from the directory of sources
generating media associated with the first sporting
event,

wherein in A), the at least one first instruction transmitted
to the first viewer client device includes a first address
for the first source.

US 11,039,218 Bl
61 62

least one first display of the first client device to render the
online gaming information relating to the first sporting event
as interactive content.

18. The method of claim 16, wherein in A), the at least one
first instruction transmitted to the first viewer client device
includes a first address for a first media source, such that the
first viewer client device uses the first address to request and
receive from the first media source the first copy of a first
stream of digital content relating to the first sporting event

26. The method of claim 25, wherein in A), the first
5 instructions transmitted to the first client device cause the

via the first video communication channel, and displays the
video relating to the first sporting event based on the
received first copy of the first stream of digital content.

19. The method of claim 18, wherein in B), the at least one 10

second instruction transmitted to the first viewer client
device includes a first event identifier (first Event ID) that
corresponds to the first event socket, such that the first
viewer client device uses a first URL including the first event 15
identifier (first EventID) in the first URL to connect to the
first event socket.

20. The method of claim 19, further comprising:
C) receiving the first URL including the first event iden

tifier in the first URL; and
D) establishing the first event information communication

channel between the first event socket and the first
viewer client device as a persistent connection.

21. A method, comprising:

20

A) transmitting first instructions to a first client device 25

that includes at least one first display to cause the at
least one first display of the first client device to render
a first video relating to a first sporting event and render
online gaming information relating to the first sporting
event, wherein the first instructions transmitted in A) 30

cause the first client device to:
receive, on a first communication channel, first digital

content corresponding to the first video relating to
the first sporting event;

render, on the at least one first display of the first client
device, the first video relating to the first sporting
event based on the first digital content received on

35

first client device, when a user of the first
interacts with the interactive content, to:

launch further graphics or animations;
receive additional information about the

event; and/or
navigate to an Internet location.

client device

first sporting

27. The method of claim 21, further comprising:
B) transmitting second instructions to a second client

device that includes at least one second display to cause
the at least one second display of the second client
device to render the first video or a second video
relating to the first sporting event and render the online
gaming information relating to the first sporting event,
wherein the second instructions transmitted in B) cause
the second client device to:
receive, on a third communication channel, the first

digital content corresponding to the first video relat
ing to the first sporting event or third digital content
corresponding to the second video relating to the first
sporting event;

render, on the at least one second display of the second
client device, the first video based on the first digital
content or the second video based on the third digital
content received on the third communication chan-
nel;

receive, on a fourth communication channel different
from the third communication channel, the second
digital content corresponding to the online gaming
information; and

render, on the at least one second display of the second
client device, the online gaming information based
on the second digital content received on the fourth
communication channel.

the first communication channel;
receive, on a second communication channel different

from the first communication channel, second digital
content corresponding to the online gaming infor
mation; and

28. The method of claim 27, wherein in B), the second
40 instructions transmitted to the second client device include

the first address for the first media source or a second

render, on the at least one first display of the first client
device, the online gaming information based on the 45

second digital content received on the second com
munication channel.

22. The method of claim 21, wherein in A), the first
instructions transmitted to the first client device include a
first address for a first media source, such that the first client 50

device uses the first address to request and receive from the
first media source the first digital content via the first video
communication channel.

23. The method of claim 22, wherein in A), the first
instructions transmitted to the first client device include a 55

first event identifier (first Event ID) that corresponds to a
source of the second digital content corresponding to the
online gaming information.

24. The method of claim 23, further comprising:
B) receiving from the first client device a first URL 60

including the first event identifier; and
C) establishing the second communication channel

between the source of the second digital content and the
first client device as a persistent connection based at
least in part on B).

25. The method of claim 21, wherein in A), the first
instructions transmitted to the first client device cause the at

65

address for a second media source, such that the second
client device uses the first address or the second address to
request and receive the first digital content from the first
media source or the third digital content from the second
media source via the third video communication channel.

29. The method of claim 28, wherein in A), the second
instructions transmitted to the second client device include
the first event identifier (first Event ID) that corresponds to
the source of the second digital content corresponding to the
online gaming information.

30. The method of claim 27, further comprising:
C) transferring first real-time information relating to the

first digital content to and from the first client device
via a first real-time information communication chan
nel; and

D) transferring second real-time information relating to
the first digital content or the third digital content to and
from the second client device via a second real-time
information communication channel,

wherein at least one of the first real-time information or
the second real-time information comprises:

at least one chat message;
at least one statistic;
trivia;
at least one poll;
news or current event information;

US 11,039,218 Bl
63 64

at least one photo;
advertising content;
an indication of a viewer joining or leaving the first digital

content or the third digital content;
at least one digital gift; and/or 5

at least one sponsorship.

* * * * *

