US011871088B2

a2 United States Patent

Azuolas et al.

US 11,871,088 B2
Jan. 9, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)
")

@
(22)
(65)

(63)

(1)

(52)

(58)

SYSTEMS, APPARATUS, AND METHODS
FOR PROVIDING EVENT VIDEO STREAMS
AND SYNCHRONIZED EVENT
INFORMATION VIA MULTIPLE INTERNET
CHANNELS

Applicant: SportsCastr, Inc., Las Vegas, NV (US)

Inventors: Peter Azuolas, Las Vegas, NV (US);
Kevin April, Kenilworth, IL (US);
Brian Silston, New York, NY (US);
Philip Nicholas Schupak, Brooklyn,

NY (US)
Assignee: SportsCastr, Inc., Las Vegas, NV (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/833,188

Filed: Jun. 6, 2022

Prior Publication Data
US 2023/0126229 Al Apr. 27, 2023
Related U.S. Application Data

Continuation of application No. 16/685,782, filed on
Nov. 15, 2019, now Pat. No. 11,356,742, which is a

(Continued)

Int. CL.
HO4N 21/6437
HO4N 212187

(2011.01)
(2011.01)

(Continued)
U.S. CL
CPC HO4N 21/6437 (2013.01); HO4L 65/65
(2022.05); HO4L 65/764 (2022.05);
(Continued)
Field of Classification Search
CPC HO4N 21/6437; HO4N 21/2187; HOAN
21/23106; HOAN 21/23439; HOAN
21/2368; HO4AL 65/65; HOAL 65/764
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,251,294 A
5,999,908 A

10/1993 Abelow
12/1999 Abelow

(Continued)

FOREIGN PATENT DOCUMENTS

AU
WO
WO

2015222869 B2
1991012583 Al
2011149558 A3

7/2019
8/1991
3/2012

OTHER PUBLICATIONS

Analyze & Optimize. Maestro 2020. Accessed at https://info.maestro.
io/analyze-and-optimize on Apr. 21, 2021. 2 pages.
(Continued)

Primary Examiner — Sm A Rahman
(74) Attorney, Agent, or Firm — Smith Baluch LLP

57 ABSTRACT

A broadcaster device generates a live stream including
video-based commentary regarding a live event combined
with an audio and/or video feed of the live event itself. A
viewer device receives a copy of the integrated live event
and commentator stream and synchronized event informa-
tion (e.g., real-time scores), and displays the integrated
stream and the event information (e.g., as a “scorebug”).
Viewers of a given live event may seamlessly select amongst
different broadcasters for the same live event to access
different integrated live event and commentator streams
respectively synchronized with the event information. A
social media platform is provided in tandem with live
streaming of digital content relating to live events to allow
a given broadcaster and their associated viewers to commu-
nicate with one another, comment on the event and/or the
broadcaster’s live stream, and send digital gifts.

34 Claims, 67 Drawing Sheets

1008
330§ .. e l
Mo RTMP WesRTC HLS Server
Media P Media | HLS Serve
Server(s} CDN Server(s) Architeciure
: ven 7] 7
(RSP £, S S S v
3207 340 360 3807
o] e} 9] <
RN
\\
lWebServer(s) [g
- 700 2004~

Viewer Client Device #1

L5000

US 11,871,088 B2

Page 2
Related U.S. Application Data 10,425,697 B2~ 9/2019 April et al.
10,437,551 Bl 10/2019 Stanek et al.
continuation of application No. PCT/US2018/ 10,484,730 Bl 11/2019 Li et al.
033016, filed on May 16, 2018. 10,484,743 B2 11/2019 Cox
10,554,324 BL 22020 Lim et al.
(60) Provisional application No. 62/627,859, filed on Feb. 10,601,914 B2 3/2020 Birrer et al.
8, 2018, provisional application No. 62/542,729, filed }g’gg?’;gg g} ggg%g i/l{len_et atl |
on Aug. 8, 2017, provisional application No. 10:715:860 Bl 72020 B;rrtTel:ItltZtZI'.
62/507,158, filed on May 16, 2017. 10,721,543 B2 7/2020 Huske et al.
10,735,783 Bl 82020 Shen et al.
(51) Int. CL 10,740,305 B2 8;2020 B}ellrthelzﬁal.
10,742,699 Bl 82020 Shen et al.
szg ;;//5;1 88283 10,805,687 B2 10/2020 April et al.
: 10,848,792 B2 11/2020 Evans
HO4N 21/2343 (2011.01) 10,855,763 B2 12/2020 Birrer et al.
HO4N 21/2368 (2011.01) 10,970,904 Bl 4/2021 Kosmiskas
HO4L 65/65 (2022.01) 11,039,102 Bl 6/2021 Marcin et al.
(52) Us.Cl 11031045 B2 2031 Bostasmante et al
i ,051, ustamante et al.
CPC HO4N 21/2187 (2013.01); HO4N 21/2368 11,076,111 Bl 72021 Ni et al.
(2013.01); HO4N 21/23106 (2013.01); HO4N 11,076,188 Bl 7/2021 Purushe
21/23439 (2013.01) 11,146,834 B1 10/2021 Shen et al.
11,153,581 B1 10/2021 Purushe
. 11,157,233 Bl 10/2021 Stanek et al.
(56) References Cited 11,178,447 Bl 11/2021 Panter et al.
11,356,742 B2 6/2022 Azuolas et al.
U.S. PATENT DOCUMENTS 11,425,178 Bl /2022 Shen et al.
6,434,621 Bl 82002 Pezzillo et al. ﬂ’f‘g%}‘g E} §§§8§§ EZfeggﬁl'
6,529,146 Bl 3/2003 Kowalski et al. 11:451:883 B2 0/2022 Huske et al.
6,701,383 Bl 3/2004 Wason et al. 11,457,245 Bl 9/2022 Bhatia et al.
6,834,371 Bl 12/2004 Jensen et al. 11470361 B2 10/2022 Bustamante et al.
6,839,059 Bl 1/2005 Anderson ct al. 11,490,132 B2 11/2022 Bustamante et al.
6,922,702 Bl 7/2005 Jensen et al. 11,533.543 Bl 12/2022 Suh et al.
7,133,834 Bl 11/2006 Abelow 11,658,822 Bl 5/2023 Engers et al.
7,729,940 B2 6/2010 Harvey et al. 11,792,444 B2 10/2023 Bustamante et al.
8,000,993 B2 8/2011 Harvey et al. 2001/0001160 Al 52001 Shoff et al.
8,002,618 Bl 82011 Lockton et al. 2001/0039209 Al 11/2001 DeWeese et al.
8,112,301 B2 2/2012 Harvey et al. 2004/0003101 A1 1/2004 Roth et al.
8,128,503 Bl 3/2012 Haot et al. 2004/0177002 Al 9/2004 Abelow
3’5‘3’3?3 gé ‘7‘;383 (L:;’l?clfgl’féte;lﬁ 2007/0043632 Al 2/2007 Abelow
8341662 B 12/2012 Basselt cf al P00MONEII1E Al 35008 Eiisatal
8,376,855 B2 2/2013 Lockton et al. 2008/0168493 Al 7/2008 Allen et al.
2’2‘9‘2%‘6‘ g% }%83 ﬁ;ﬁ;nmﬁteﬁlél 2009/0144785 Al* 6/2000 Walkerccoooo.... HO4N 5/262
293, : 725/105
grsee Bl 32012 Muske etal 2009/0222754 Al 9/2009 Phillips et al.
2858303 Bl 102014 Sap S 2010/0070345 Al 32010 Abelow
890039 By L0004 Lot 2010/0274848 Al* 10/2010 Altmaieroo....... HO4L 67/14
i : 709/228
ggzg;;sf g% 12@8}‘5‘ 5;;; th'al 2010/0299703 Al 112010 Altman
0108034 B> $9015 Fore orol 2011/0083144 Al 4/2011 Bocharov et al.
0.149.682 B2 10/2015 Dornbush et al. 2011/0086144 Al 4/2011 Arampongpun et al.
025185 By 29016 Burms 2011/0090960 Al 4/2011 Leontaris et al.
0288278 B2 3/2016 Panje et al 2011/0280540 Al 11/2011 Woodman
0500793 By 119016 Broe Sl 2012/0058808 Al 3/2012 Lockton
9.511.287 B2 12/2016 Lockton et al. 2012/0069131 AL~ 3/2012 Abelow
031639 B> 129016 Lev ot al 2012/0072845 Al 3/2012 John et al.
05847858 B2 22017 Vinson et al 2012/0210348 Al 82012 Verna et al.
9,591,054 B2 3/2017 Thornburgh et al. 2012/0295686 Al 11/2012 Lockton
0541556 Bl 2017 Himmo 2013/0222597 Al 82013 Brink et al.
oesazad B2 017 Kimarl 2013/0225285 Al 82013 Lockton
0092800 By 69017 G 2013/0227596 Al 82013 Pettis et al.
0706443 B2 7/2017 Oymin cf l 2013/0297706 Al 112013 Arme et al.
07116018 BL 7017 Lompo €2y 2014/0129680 Al 5/2014 Mukherjee
0878243 B2 19018 Tockion ot ol 2014/0359075 Al 12/2014 Amidei et al.
0019510 By 39018 Tockion & & 2015/0131845 Al 52015 Forouhar et al.
0054646 Bl 49018 Marcinst al 2015/0163562 Al 6/2015 Leventhal et al.
10015924 Bl 7018 Shome ™ 2016/0037215 Al 2/2016 Cardona
10105506 Bl 102018 Maano o 2016/0086108 Al 3/2016 Abelow
10116959 Bl 102018 Shon et al 2016/0249108 Al 82016 Sexton
10129310 BI 112018 Branning 2016/0255403 Al* 9/2016 Gomes HO4N 21/47202
10,226,698 Bl 3/2019 Lockton et al. 725/49
10,243,694 Bl 3/2019 Marcin et al. 2016/0360261 Al 12/2016 Makhlouf
10,313,412 Bl 6/2019 Hall et al. 2017/0034237 Al 2/2017 Silver
10,326,814 Bl 6/2019 Hall et al. 2017/0099516 Al 4/2017 Barbulescu et al.
10327040 BL 6/2019 Shen et al. 2017/0188054 Al 62017 Ma et al.
10,397,291 Bl 82019 Hall et al. 2017/0264961 A1 9/2017 Lockton

US 11,871,088 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0025586 Al 1/2018 Lockton
2018/0307383 Al* 10/2018 Faulkner HO4N 7/155
2020/0021892 Al 1/2020 April et al.
2020/0098228 Al 3/2020 Amaitis et al.
2020/0111325 Al 4/2020 Lockton et al.
2020/0162796 Al 5/2020 Azuolas et al.
2021/0168462 Al 6/2021 April et al.
2021/0397847 Al 12/2021 Jayaram et al.
2022/0254379 Al 8/2022 Chang et al.
2022/0327830 Al 10/2022 Chang et al.
2022/0335720 Al 10/2022 Chang et al.

OTHER PUBLICATIONS

Around-the-clock action for you sportsbook. BetGenius Brochure.
Accessed at https://geniussports.com/sportsbook/content/
streaming/ on Mar. 19, 2021. 1 page.

Betradar Live Streaming Brochure 2021. Accessed at https://www.
betradar.com/wp-content/uploads/sites/4/2014/11/Betradar-Live-
Streaming-Brochure.pdf on Apr. 29, 2021. 7 pages.

Betradar Product Brochure 2021. Accessed at https://www.betradar.
com/wp-content/uploads/sites/4/202 1/02/Betradar-Product-Brochure-
2021.pdf on Apr. 29, 2021. 24 pages.

Betradar. Sportradar. Accessed at https://www.betradar.com/ on Apr.
21, 2021. 2 pages.

Customize & Control. Maestro 2020. Accessed at https:/info.
maestro.io/customize-and-control on Apr. 21, 2021. 2 pages.
Empson, Baseball’s Digital Trifecta and How America’s Pastime is
Setting the Pace for Sports Online. TechCrunch Nov. 4, 2013.
Accessed at https://techcrunch.com/2013/11/04/baseballs-digital-
trifecta-and-how-americas-pastime-is-setting-the-pace-for-sports-
online/. 10 pages.

Engage & Monetize. Maestro 2020. Accessed at https://info.maestro.
io/engage-and-monetize on Apr. 21, 2021. 3 pages.
Esports—Take your fan experience to the next level and build
community. Maestro 2020. Accessed at https://info.maestro.io/
esports on Apr. 21, 2021. 4 pages.

Genius Sports Group Analyst Day Presentation Jan. 2021. Accessed
at https://s27.q4cdn.com/552951210/files/doc_downloads/GSG_
Analyst Day Presentation_January 2021 _vFF 2.pdf on Apr. 29,
2021. 52 pages.

Genius Sports Group Investor Presentation Oct. 2020. Accessed at
https://news.geniussports.com/wp-content/uploads/2020/10/GSG-
Investor-Presentation.pdf on Apr. 29, 2021. 29 pages.

Ha, Major League Baseball’s “At Bat” App Gets updated to
Supported Expanded Instant Replay. TechCrunch Mar. 31, 2014.
Accessed at https://techcrunch.com/2014/03/31/mlb-at-bat-expanded-
instant-replay/. 4 pages.

Hashemizadehnaeini, Transcoding H.264 Video via FFMPEG encoder.
Corso di Laurea Magistrale in Ingegneria delle Telecomunicazioni
Politecnico Di Milano. Thesis, 2015, p. 1-100.

International Search Report and Written Opinion in International
Patent Application No. PCT/US2017/045801 dated Oct. 30, 2019,
18 pages.

International Search Report and Written Opinion in International
Patent Application No. PCT/US2018/033016 dated Aug. 6, 2018, 29
pages.

LA TechWatch, LA Startup Maestro Just Raised $3M to Broadcast
eSports at Scale. LA TechWatch Sep. 19, 2017. Accessed at https://
www latechwatch.com/2017/09/la-startup-maestro-just-raised-3m-
broadcast-esports-scale/. 13 pages.

MLB App. MLB 2021. Accessed at https://www.mlb.com/apps/mlb-
app on Apr. 21, 2021. 1 page.

Perez, Live Video Viewing up 86% over last year in MLB’s at Bat
app, thanks for Addition of multitasking. TechCrunch Apr. 15, 2016.
Accessed at https://techcrunch.com/2016/04/15/live-video-viewing-
up-86-over-last-year-in-mlbs-at-bat-app-thanks-to-addition-of-
multitasking/. 4 pages.

Perez, MLB.com at Bat and NHL are first to Launch Personalized
App Icons on iOS 10.3. TechCrunch Mar. 28, 2017. Accessed at
https://techcrunch.com/2017/03/28/mlb-com-at-bat-and-nhl-are-first-
to-launch-personalized-app-icons-on-ios-10-3/. 5 pages.
Sports—Personalized fan-first experiences that go beyond the field.
Maestro 2020. Accessed at https://info.maestro.io/sports on Apr. 21,
2021. 3 pages.

Sports Betting. Sportradar. Accessed at https://sportradar.us/betting-
services/ on Apr. 21, 2021. 4 pages.

Streaming. BetGenius Product Deck. Accessed on Dec. 3, 2020. 2
pages.

‘Washington, Betgenius launches live streaming service for sportsbooks.
Genius Sports Oct. 8, 2019. Accessed at https://news.geniussports.
com/betgenius-launches-live-streaming-service-for-sportsbooks/ on
Apr. 30, 2021. 5 pages.

In-Play MultiBet Unlock new in-play revenues, GeniusSports Web-
site, Mar. 13, 2023, 4 pages.

Integration Guide—Genius Live Player, GeniusSports Drop & Play
Integration Guide, Nov. 28, 2022, 1 page.

Integration Schema—Integration Process GeniusSports Wiki, May
29, 2023, 4 pages.

Integration Schema—Integration Service—Interface, GeniusSports
Wiki, Dec. 16, 2020, 2 pages.

Integration Schema—Integration Service GeniusSports Wiki, Apr.
13, 2022, 16 pages.

Integration Schema—Service Reliability and Availability, GeniusSports,
Mar. 29, 2023, 2 pages.

Integration Schema GeniusSports Wiki, Oct. 11, 2019, 2 pages.
International Search Report and Written Opinion dated May 13,
2022 in International application No. PCT/US2022/014999 22
pages.

Introducing Drop and Play (Medium container), BetGenius Web-
site, Jul. 5, 2022, 3 pages.

Lemire “Sportradar Launches Real-Time Data Product for Media
Companies” Sports Business Journal, Oct. 27, 2020, 1 page.

Live Sports Data Integration—API Explorer for Genius Ably Push
Feeds, GeniusSports Wiki , Mar. 20, 2023, S pages.

Live Sports Data Integration—Authenticating against Genius Sports
APIs, GeniusSports Wiki, Aug. 12, 2022, 2 pages.

Live Sports Data Integration—Match State Platform Access Control
API, GeniusSports Wiki, Aug. 12, 2022, 3 pages.

Live Sports Data Integration—Statistics API, GeniusSports Wiki,
Aug. 18, 2022, 5 pages.

LiveStats Version 7—Data Streaming, Dec. 5, 2020 GeniusSports
Support Centre, 3 pages.

Livestream—Read—FAQs, GeniusSports Developer Center Web-
site, Jul. 31, 2017, 4 pages.

Menmuir Betgenius Launces ‘Next Level’ Sportbook Streaming
Service, SBCNews, Oct. 8, 2019, 2 pages.

Multibet Back-End Integration—Market Lifetime, GeniusSports
Wiki, Feb. 13, 2023, 2 pages.

Multibet Back-End Integration—Multibet API, GeniusSports Wiki,
Mar. 15, 2023, 10 pages.

Multibet Back-End Integration, GeniusSports Wiki, Feb. 13, 2023,
4 pages.

Multibet Back-End Integration, Multibet Sportsbook Integration
(V3), GeniusSports Wiki, Feb. 13, 2023, 5 pages.

Multibet Front-End Integration—Authenticating User-SessionUs-
ing a Proxy Service, GeniusSports Wiki, Feb. 13, 2023, 2 pages.
Multibet Front-End Integration—UI Widget Customization,
GeniusSports Wiki, Feb. 13, 2023, 4 pages.

Multibet Front-End Integration, GeniusSports Wiki, Feburary 13,
2023, 2 pages.

Read-Read a stream of live game events.GeniusSports Developer
Centre Website, Nov. 2, 2016, 28 pages.

References, GeniusSports Drop & Play Integration Guide, Nov. 28,
2022, 1 page.

Risk Services Integration, GeniusSports Wiki , Mar. 20, 2023, 10
pages.

SmartStream Integrations, GeniusSports Wiki, Oct. 26, 2022, 4
pages.

US 11,871,088 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Sportradar—Data Services 2019, accessed at waybackmachine https://
www.sportradar.com/rights-holder-solutions/data-services/ on Jun.
4, 2019, 3 pages.

Sportradar “Sportradar Accelerates Data and Video on AWS, Launches
Simulated Reality Innovation in 11 Days” Dec. 2, 2020, accessed at
https://aws.amazon.com/solutions/case-studies/sportradar-case-
study/ on Dec. 20, 2020, S pages.

Sportradar Aspera, Live Streaming of Sports Content with FASPStream
to International Online Platforms, 2017, assessed at https://www.
ibm.com/aspera/pdfs/Sportradar_ AsperaCS_2017.pdf on Feb. 24,
2023, 2 pages.

Sportradar Bookmaker SDK Deployment Guide, Jul. 3, 2014, 5
pages.

Sportradar Bookmaker SDK Developer Guide Sep. 7, 2015, accessed
at https://sdk.sportradar.com/bookmaker/java/file?g=12aae9f9b-9e0b-
40af-869b-380eede8806d on Feb. 17, 2023, 11 pages.

Sportradar brochure “Unified Odds Feed Integration Process” Oct.
15, 2021, accessed at https://iodocs.betradar.com/unifiedsdk/UOF _
Integration_Process.pdf on Feb. 17, 2023, 14 pages.

Sportradar Drive Fan Behavior with Insights 2021 accessed at
WaybackMachines https://sportradar.us/sports-media/insights/ on Apr.
14, 2021, 4 pages.

Sportradar Live Streaming of Sports Content with FASPStream to
International Online Platforms, 2017, accessed at https://www.ibm.
com/aspera/pdfs/Sportradar_ AsperaCS_2017.pdf on Feb. 16, 2023,
2 pages.

Sportradar Live-Score Setup Document Apr. 2021, 8 pages.
Sportradar NFL. V7 US API Portal, Feb. 7, 2023, 5 pages.
Sportradar Sports Data API Dec. 23, 2022, accessed at https://
sportradar.com/sports-entertainment/content/sports-data-api/?lang=
en-us on Feb. 16, 2023, 3 pages.

Sportradar Streams Live Data for Australian Open Broadcasts on
Aspera, Digital Media World, accessed at WayBack Machines
https://www.digitalmediaworld.tv/disrupt/2375-sportradar-streams-
live-data-for-australian-open-broadcases-on-aspera on May 16, 2021,
(2019) 3 pages.

Sportradar Supercharge Your OTT Solution with the Power of Data,
accessed at Wayback Machine https://sportradar.us/sports-media/
OTT on May 13, 2020, 3 pages.

Sportradar U.S. SEC Amendment No. 2 to Registration Statement,
filed Sep. 7, 2021, Registration No. 333-258882 accessed at SEC
Home » Search the Next-Generation EDGAR System»
CompanySearch» on Feb. 16, 2023, 336 pages.

Streaming, Grab Attention With Video, Genius Sports Website,
2022, accessed Apr. 13, 2023, 4 pages.

Styling Genius Live Player, GeniusSports Drop & Play Integration
Guide, Nov. 28, 2022, 2 pages.

Understanding Match State, GeniusSports Wiki, Mar. 24, 2023, 2
pages.

Video Integration and Player User Guide Feb. 25, 2021, Genius
Sports Wiki Website, 1 page.

Video Streaming API, GeniusSports Wiki Website, Mar. 24, 2021,
1 page.

Video Streaming Genius Sports Wiki Website, Mar. 26, 2021, 1
page.

Video-Streaming-v1, Swagger, Apr. 2019, 3 pages.

Video-v2, Swagger, Apr. 2019, 4 pages.

Virtuals, GeniusSports Drop & Play Integration Guide, Nov. 28,
2022, 1 page.

Wallstreet, John, Genius Sports-Caesars NFL Betting Live Stream
Validates Vision, Dec. 21, 2022, Sportico, 4 pages.
Warehouse—Read Stream API Documentation—American Foot-
ball!, GeniusSports Developer Centre Website, May 12, 2021, 14
pages.

Warehouse—Read Stream API Documentation—Basketball,
GeniusSports Developer Centre Website, Jul. 30, 2017, 27 pages.
56 Bit Sportradar Case Study, Sportradar Time System 2022 accessed
at https://www.56bit.com/case-studies/sportradar-time-system on Feb.
16, 2023, 5 pages.

API Feed Overview and Documentation, Jan. 31, 2022, GeniusSport
Support Centre, 3 pages.

Betbuilder Architecture, GeniusSports, Oct. 13, 2022, S pages.
BetBuilder evolves to provide the ultimate pre-match experience,
GeniusSports Website Sep. 18, 2019, 3 pages.

Betbuilder Integration—Prebuilt bets GeniusSports Wiki, May 25,
2021, 2 pages.

Betbuilder Integration, GeniusSports, Oct. 13, 2022, 1 page.
Betgenius Adds Live Streaming to Tipsport Deal, Gaming Intelli-
gence, Sep. 23, 2020, 1 page.

Betgenius Launches Live Streaming Service for Sportsbooks, Genius
Sports, Oct. 8, 2019, 3 pages.

Betgenius Streaming, Bring your sportsbook to Life-Right Around
the Clock, Dec. 3, 2020, 2 pages.

Betradar 10 Benefits of our New Audio Visual Player—1Jul. 10,
2019, accessed at https://www.betradar.com/news-archive/the-top-
10-benefits-of-our-new-audio-visual-player/ on Feb. 24, 2023, 1
page.

Betradar Audio-Visual Brochure 2022, 8 pages.

Betradar Audio-Visual Brochure 2023, 9 pages.

Betradar Brochure—MTS SDK .NET Integration Guide—Oct. 2020
accessed at https://sdk.sportradar.com/mts/net/file? g=ab6006£6-£554-
482£-92db-26af416eec92 on Feb. 17, 2023, 14 pages.

Betradar Brochure Live Scouting & Live Odds Services, 24/7 Live
Betting Coverage from the market leader, 2015, 12 pages.
Betradar Brochure Live-Data Service 2022 accessed at https://www.
betradar.com/wp-content/uploads/sites/04/2022/11/Live-Data-Brochure-
2022.pdf, S pages.

Betradar Brochure MTS SDK Java Integration Guide—May 2019
accessed at https://sdk.sportradar.com/mts/java/file?g=998cd241-
1182-4¢30-9154-697e6cadad7b on Feb. 18, 2023, 14 pages.
Betradar CTRL User Manual, Jul. 2019 accessed at https://insidectrl.
com/wp-content/uploads/2019/09/Betradar_Ctrl_Manual 17 July
2019.pdf, on Feb. 16, 2023, 88 pages.

Betradar CTRL User Manual, Mar. 2021 access at https://insidectrl.
com/help-manual/ on Feb. 16, 2023, 102 pages.

Betradar Live Channel Online, Dec. 31, 2022, 3 page.

Betradar Live Channel Trading, Dec. 31, 2022, 2 page.

Betradar Live Data Service—Efliciently Operate Your Own In-
running trading, Dec. 30, 2022, accessed at https://www.betradar.
com/betting-services/live-data-service/ on Feb. 16, 2023, 3 page.
Betradar Live Streaming Brochure 2019, accessed at https://betradar.
com/wp-content/uploads/sites/4/2015/07/Live_Channel Brochure_
2019.pdf on Feb. 24, 2023, 7 pages.

Betradar Market-leading Sports Betting Services Product Brochure
2022, 23 pages.

Betradar Product Brochure 2015, 27 pages.

Betradar Product Brochure 2016, 29 pages.

Betradar Product Brochure 2018, 15 pages.

Betradar Product Brochure 2019, 36 pages.

Betradar Top Reasons to Use the New AV APIL, Jul. 31, 2019,
accessed at https://www.betradar.com/news-archive/6 1-reasons-to-
use-the-new-av-api/ on Feb. 24, 2023, 2 pages.

Betradar Unified Odds Feed—Quick Start Guide, May 16, 2018,
accessed at https://insidectrl.com/wp-content/uploads/2018/05/UOF-
Start-Guide.pdf on Apr. 13, 2023, 5 pages.

Betradar Unified Odds Feed—Quick Start Guide, May 30, 2022,
accessed at https://iodocs. betradar.com/unifiedsdk/UOF_Start_Guide.
pdf on Feb. 17, 2023, 6 pages.

Betradar Unified Odds—Integration Information for Development,
Mar. 27, 2019 accessed at https://iodocs.betradar.com/unifiedsdk/
Betradar_Unified-Odds_Developer_Integration.pdf on Feb. 16, 2023,
137 pages.

Betradar Unified Odds—Integration Information for Development,
Oct. 11, 2017 accessed at https://insidectrl.com/wp-content/uploads/
2017/10/2017-10-11_Betradar Unified-Odds_Developer_Integration-
1.pdf on Feb. 16, 2023, 80 pages.

Betradar’s Live Channels. Betrader Brochure 2017, 7 pages.
Boolabus, Bring it to life with Betstream, Feb. 2011, 22 pages.
Common Match State Platform APIs GeniusSports Wiki Jul. 5,
2022, 2 pages.

US 11,871,088 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Gammastack-Betradar Integration Architecture, Dec. 29, 2022 accessed
at https://www.gammastack.com/betradar-integration/ on Feb. 16,
2023, 7 pages.

GammaStack-Betradar Integration Services, Betradar Software, Dec.
29, 2022, accessed at https://www.gammastack.com/betradar-
integration-services/ on Feb. 17, 2023, 6 pages.

Genius Play Integration Guide, Drop and Play, GeniusSports Wike
Website, Jul. 19, 2021, 7 pages.

Genius Sports Expands Partnership with NFL to Provide Watch &
Bet Video Streams for the 2022 Season, Starting with Caesars
Entertainment, BusinessWire, Dec. 5, 2022, 2 pages.

Genius Sports launches In-Play Multi Bet for the next generation of
same game parlay bets Genius Sports Press, Oct. 5, 2022, 3 pages.
Genius Sports Live Sports Data Integration, GeniusSports Wiki, Jul.
5, 2022, 2 pages.

Genius Sports Live Sports Data Pull APIs, GeniusSports Wiki, Jul.
5, 2022, 2 pages.

Genius Sports Live Sports Data Push API via ably, GeniusSports
Wiki, Nov. 28, 2022, 7 pages.

Genius Sports slashes cost and lowers latencies for last-mile live
sports data delivery, Ably, Aug. 9, 2022, 8 pages.

GenusSports, Genius Sports Agrees to Official Data, Trading &
LiveStreaming Partnership with Bally’s Interactive, Aug. 25, 2022,
3 pages.

GL-Video-v2, GeniusSports Explorer API Website; accessed Mar.
10, 2023, 28 pages.

GL-Video-v3, Swagger, Feb. 2023, 9 pages.

HALPIN Introducing Extensions: A Streaming Revolution, Twitch,
Aug. 31, 2017, S pages, obtain at website: https://blog.twitch.tv/en/
2017/08/31/introducing-extensions-a-streaming-revolution-
¢31762added9/ on Jun. 7, 2023, 5 pages.

How Genius Sports delivers realtime data to their customers’
frontend at speed and at scale, Webinar, May 2021, Ably, 3 pages.
How to Integrate It, GeniusSports Drop & Play Integration Guide,
Nov. 28, 2022, 5 pages.

* cited by examiner

U.S. Patent Jan. 9, 2024 Sheet 1 of 67 US 11,871,088 B2

1000
Broadcast/Viewing
Servers & Memory
Storage Devices
75 2024 200A
/- / / _
Digital Distribution Viewer
Platform (App Store) 50 Client Device #1
/ 55
Event
Information Internet 2028 -
Provider /
65 — 2008
/ N /
NEWS FEEDS _ Viewer
(RSS) Client Device #2
102A .
2020:
T/ vl 2020\l
Broadcaster Broadcaster Viewer Client Viewer
Client Device #1 Client Device #2 Device #3 Client Device #4
\ 100A \ 1008 \ZOOC \2000
Y

FIG. 1A

258 —<

250 254
N

Seattle, WA #2 seed Wisconsin tries to make a comeback on #4 Duke!

Duke vs Wisconsin

Chat with 2.7k others.

FIG. 1B

200A

252

256

Judred ‘SN

¥20T ‘6 "uer

L9 JO T)¥9dYS

7d 880°ILS‘IT SN

Broadcaster Client | 4994 Broadcaster Client 1008
Device #1 i Device #2 -
102A 10
- 1028 1000
A &~ 500
400 Broadcast/Viewing Servers and Memory Storage Device - BO2ZA,5028
~
\ P 300 \J/ / / 55
Memory System Media Sources / Event Info
Provider
Data RTMP WebRTC Control
2770 | | storage Media Pl vedia || i || 5 | | [ows Feeds
/ /E""ﬁfééﬁé"'] \ Server(s) , Serve::(s) (RSS)
\) /) . N
420 | 3207 340 360 380 " 5040,5048 65
460 440 DOLA —
Web Server(s) Y Socket L+ 600
700 - 2024 “\&/ GOZA\\\ Server(s) //: ggig
A
=T
- 2104
200A ~_ 200C —.. i’ 202¢ 2 oo
\ y 5045 “-206C
5000 |
T~ Client App 5000““‘“~~\ Client App - 2108
Viewer Client Device #1 Viewer Client Device #3 ~208C

FIG. 2

yuaged ‘SN

¥20T ‘6 "uer

L9 JO € 199YS

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 4 of 67 US 11,871,088 B2

420 10004 10008

/ AWS Hosted Systems

I Database |

Daabse
Shard

Web Server
Pool (API
and

Website)

Database
Shard

460 Redis \
Based
Memory | 1 Async
Cache / Queue

Mm i

Control Socket
Server Servers

7
/

5007

Eil

320 240 550 L

f<:§ 360
B3 A

RTMP/App
Media
Servers

WebRTC
Media ..
d/ Servers
HLEG Server Gateway
RTMP CDN Architecture | NAS
Server k= ™ Server [V T
Pool \ ;
/(-\ 380 / Transcoding
4 Server
N340 870 Pool

800

FIG. 3

U.S. Patent Jan. 9, 2024

4504 ___
TS

T
—" s tgé\\

” Broadcaster a

No

Sheet 5 of 67

Broadcast Media Server
Selection Algotithm

US 11,871,088 B2

VIR Account?

,/ ~
__—Ts there a RTMP ViP~._No
Media Server not at Max

ideal Capacity?

Provide Access o this
Server for Broadeaster

N

RTMP Media Server not at
ax ldeal Capacity?

No

Notify Admin {via SMS)

15 there a Non- vIP ™
TMP Media Server not at TRUE

Max Capacity?

Display "No Available
Server” Error Screen

\
- - Yes
Is there a Non- VIP ™~ T

— Yes

Mobile ts Web

Broadcaster Using™

_ Mobile Appor
~Web?2 "

Provide Access to this
Server for Broadcaster

Provide Access to this
Server for Broadcaster

FIG. 4A\FIG. 4B

FIG. 4A

U.S. Patent Jan. 9, 2024 Sheet 6 of 67 US 11,871,088 B2

T
T \\
,//ls/m;\\/%b\\ NG — |3 the Client \
= Client Connecting\ . Tonnected Using WebRTC o

Using Flash?.. External Software

B e ves External Software
WebRTC
/
st
< roadcaster a =

. VIP Account? —

Y

| Yes
/@ WebRTG VIP No

Media Server not at Max
Ideal Capacity?

Provide Access io this
Server for Broadcaster

A

T T~

_ s there a Non- VIP . Yes
WebRTC Media Server not at ?
ax ldeal Capacity?

~4508

Provide Access {o this
Server for Broadcaster

Notify Admin {via SMS)

T

/
—"Is there a Non- VIP ™ Yes
WebRTC Media Server not at £
RUE Max Capacity?

Display "No Available
Server' Error Screen

FIG

Provide Access {o this
Server for Broadcaster

U.S. Patent Jan. 9, 2024 Sheet 7 of 67 US 11,871,088 B2

550A —
/ RTMP/\NebRTC\
| Media Server
\ Process /

{ Server

X Read from Server
 Monitor

Upload Queue

7 Gp!oad\\ No

Needed?

Report

| Server Stats Yes
\Jo Database /
\ Upload Raw
Get List of Video Recording
Current Connected to Amazon S3

Broadcaster Streams
Assigned to Pending
Server

NoAreK‘

v

" there Streams
onnected?

Store Upload

Sucecess/Time
{o Database

Yes
Get Stream FIG. 5A Notify Transcoding
information Service of Video
from Database F / G 55 Needing to be
Transcoded to
FIG. 5C Adaptive Bitrate
for Replay

U.S. Patent Jan. 9, 2024 Sheet 8 of 67 US 11,871,088 B2

@ @ 5508\

!

_ Is New
~ Stream?

Validate StreamiD
with Database

SIS

Yes \MT

.

Valid
Stream?

o

N /

el .
© More Disconnect
Streams? Stream
\

Start Live

Transcoder o
Provide Multiple

Different Resolution
Copies of Stream
(for WebRTC, also

Transcode to
H.264)

No Has Stream Q\

Connected for at Least >
3 Seconds?

~

~ Yes

Start Recording of Highest
ResolutionTranscoded Copy

._.-v""/

Notify Database
of Stream Start

s i

® ®

U.S. Patent Jan. 9, 2024 Sheet 9 of 67 US 11,871,088 B2

©

@ 550C \

~

Queue First
Screenshot in
Async Queue

{Thumbnail)

b
Queue Push Notifications
(SMS, Email) e.g. to
Broadcaster Followers,
Subscribers

l

HLS Segmentation: //\\\
Create/Update Playlist, | yag Any \/iewers\
Chunklists, and File of an HLS Copy _~
Segments for All of Stream?
Transcoded Copies

Stop Recording of Highest
Resolution Transcoded Copy

No

Has 5 Seconds
Passed Since Last
Screenshot?

Send Qut Chat/System Event

Channel Notification of
Stream Ending

Queuse Additional [
Screenshot in Async Stop Live
Queue (Thumbnail) Transcoder

7

Store Stream Endtime

in Database

Queue Upload of Raw Video
Recording of Highest Resolution
Copy to Server Upload Queue

FIG. 5C

Broadcaster Client

Broadcaster Client

100A 1008
Device #1 o Device #2 -
1024 1028
' 300
&
330 — | .
i | |
i RTMP t WebRTC
| e 1T | Reas
Ll Server(s) CDN § Server(s)
SR N . W A E— ? Y,
320 | 340 360 3807
O N
M
o N
3 N
Web Server(s) I
\ 700 2004 —
™

Viewer Client Device #1

Client App

15000

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 01 139Y4S

7d 880°ILS‘IT SN

Display "Still
Unloading” Message Uploaded ?

\
Yes /Hasthe ~

< “Adaptive Transcoding
Completed?

Provide Raw
Streaming Ready
Video File

Provide Link to
daptive HLS Playlis

as

C

Viewer Stream
Source Selection o 702

~" s
/ﬁe Broadcaste\r

/

Yes /@i;ere
o Currently Less than

YeS Brovids Direct Media
Stream Live ¢ Service Point Addres

No
PN

S
" ls the VIEWER ™~ Yes
a VIP Account or a Member
of the Media?

/@e a RTMP ™ Yes

CDN Server that is Curren?y\
not Serving it's Maximum

Viewers?

Provide RTMP
CDN Address

Provide HLS CDN
Server Address

FIG. 7

Judred ‘SN

¥20T ‘6 "uer

L9 JO [T ¥9934S

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 12 of 67 US 11,871,088 B2

RTMP/WebRTC| — 320/360

Media Server

’ 3754 / 560

A\

382
HLS Mother |~
3758
3844 . 3848 \L/ , J84C 3840
/
\ L/ /
HLS Child HLS Child HLS Child HLS Child
V»—:af?sc

AWS Load 386
Balancer |

. J88
AWS Cloudfront |—
HLS CDN

2044 ——__] é’/»— 2024

Viewer Client | _— 2004
Device #1

5000
Client App |L—"

HLS Stream Viewing T 9024 l.oop for Duration of Live Stream
via HLS Server Architecture %/)\
- \\
. 7 TN
Select Highest " Is Current Calcul@\\g\do —~Towest™.__ 1o

Bandwidth
Stream from
from Copy of

Available Bandwidth for Viewer™

Client Sufficient for
Selected Strea

= Available
Stream?

yuaged ‘SN

¥20T ‘6 "uer

HLS Playlist Yes
Viewer Client Device
Fi G. GA Requests HLS Playlist
from HLS CDN
FIG. 9B
(AWS Cloudfront) Select Highest Available
Stream that Meels
. Available Bandwidth or
- Lowest Available Stream
Connect to Connect to HLS No //EJoes the CON ™ |
HLS CHILD CDN Load Balancer Have a Copy of the
HLS Playlist? I Delete Viewer
. Client Copy
\\ of Chunidist

L9 JO €] 19YS

@/oes Viewer Client \\Yes
<_Have Churk list for Selected
_ Stream? '

Return Copy of
HLS Playlist to
Viewer Client

FIG.

7d 880°ILS‘IT SN

HLS CHILD
Requests Copy of
HLS Playlist from

HLS MOTHER

-

7

~Does HLS™Yes ||

“FAOTHER Have Copy
f HLS Playlis

HLS MOTHER
Requests Copy of
HLS Playlist from
MEDIA SERVER,
Re-writes Caching

Rule for Playlist,
and Caches Playlist

~ 8028
e

Send Copy of HLS
Playlist to HLS CDN

by Viewer Client

ompleted?

Connectto HLS

CHILD

!

Send Copy of
HLS Playlist to

HLS CHILD

Yes

7 ~.

oes HLS CHiLD\
~"Have Copy of Chunklist or ™__
is Chunklist Copy In the HLS
CHILD Less than 2

Connect to HLS
CDN Load Balancer

v

Request Copy of Chunklist from

HLS CDN

A

N

T

-

2 Seconds Oid?

/Dés the HLS CDN Q\\No
-~ a Copy of Chunklist or is the
Chunklist Copy Less than

Judred ‘SN

¥20T ‘6 "uer

L9 JO p1 19YS

7d 880°ILS‘IT SN

P —802C @

HLS CHILD Return Fresh Copy
Requests Copy of Chunklist of Chunklist to

from HLS MOTHER Viewer Client

/{/\\\

es HLS MOTHER Have Yes
Copy of Chunklist, or is Capyof\

Chunidist on HLS MOTHER Les
han 2 Seconds Old?

HLS MOTHER Requesis Send Fresh Copy Send Fresh Copy
Copy of Chunkist from MEDIA SERVER, of Chunklist to of Chunklist to CDN
Re-writes Caching Rule for Chunklist, HLS CHILD
and Caches Chunklist
Request Next Chunk

in Chunklist from HLS CDN
§

///\J{\\\
Connect to Connect to HLS NO ~"Does the HLS ™
HLS CHILD CDN Load Balancer Have a Copy of -

yuaged ‘SN

¥20T ‘6 "uer

L9 JO ST 193YS

7d 880°ILS‘IT SN

Does HLS CHILD Yes

/ 8020
yZ

Have Copy of
Chunk?

HL.S CHILD Requests
Requests Copy of Chunk
from HLS MOTHER

BN

e R
" DoesHLS ™ Yes

MOTHER have Copy
of Chunk?

HLS MOTHER
Requests Copy of Chunk

from MEDIA SERVER,

Re-writes Caching Rule for
Chunk, and Caches Chunk

Send Copy of Chunk
to HLS CHILD

Return Copy of Chunk
to Viewer Client

\

FIG

to HLS CDN

Send Copy of Chunk

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 91 194§

7d 880°ILS‘IT SN

500
e
¥
(Control Server)
SERVICE -
, SERVICE -
RTMP Media Asnychronous
Server Scaling Task Processor
System
(Fig. 11) (Fig. 17)
SERVICE - SERVICE - SERVICE - SERVICE - SERVICE -
RTMP CDN Stream and . Take S
Server Scaling Server Event Live Evept ake Stream
System Watchdog Data Ingress Data Monitor Thumbnail
(Fig. 12) (Fig. 13-14) (Fig. 15) (Fig. 16) (FIG. 18)
Async Queue Ananymous News Importer
Monitoring User Logging (RSS Feeds)

yuaged ‘SN

¥20T ‘6 "uer

L9 JO LT 1¥3YS

7d 880°ILS‘IT SN

SERVICE: RTMP
Media Server
Scaling System o 11024

Retrieve List of
RTMP Media

Servers Marked F / G 7 7/4
for Sha,stdown /:'/ G 7 7 5
' FIG. 11C

if

Are there any
Servers Marked for
Shutdown

d s this Server ™

i
i
i
i
i
i
i
i

yuaged ‘SN

¥20T ‘6 "uer

“Are there any

Refrieve prd yNo Been Pending C | Mark Terminate
Server JActive Connec‘zzo - Shutdown for Less s 4 Server
Information’ ~ ? : : at AWS

~than 5 f;ﬁ%nute

Yes ™.

Retrieve
Statistics on
Active

_Servers J

FIG. T1A

L9 JO 8] 19YS

7d 880°ILS‘IT SN

/
>

=

©

=
©

\\
re there any™

.
Yes “Has it been Less ™

than 2 Minutes Since
Last Server Start

No

m
N

SUSS a: ? Yes_“servers Current(y\
thufn tg Marked Pending .~
Active Status \Shutdown’z //
No

Retrieve List |
of Servers
Marked
Pending |
Shutdown |

This is the Buffer
Time to Allow New

<1 Servers {o Come
Online

(©

\\
is the Active
%ﬁ/er Count BeIGW\
N Minimum Spare// =
"\Servers? P

N
No

This is to keep

a Minimum
Capacity to Allow
for Spikes in
Stream Creation

i
™.

\\\
Yes Is the Current ™
M\sed Capacity Greater

than the Maximum,~~
N

%wed?
Ve

Mo

FIG. 118

Judged ‘SN

$20T ‘6 "uer

L9 JO 61 19YS

7d 880°ILS‘IT SN

When Server
Comes Online, it
Self Reports Active
Status to Database.
See "Check RTMP
Media/CDN Server”
 Process

Request New Server
Creation at AWS

Label Server
with Date/Time
of Creation

No Is the Current
Capacity Less >
~dhan the Minimum

Capacity?

N\

Is the Current\
Server Count Greater

4 No

than Minimum

\ﬁver Count

Retrieve

Oldest
Active Server
information

Mark Server

as Pending
Shutdown

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 0T 139Y4S

7d 880°ILS‘IT SN

SERVICE: RTMP
CDN Server
Scaling System

Retrieve List of
RTMP CDN
Servers Marked
for Shutdown

1
!

if

Are there any
Servers Marked for
Shutdown

Retrieve
Server
Information

M

/ e 12024

FIG. 12A

FIG. 128

FIG. 12C

las this Server ™ No

Been Pending _|Mark Server| _| Terminate
Shutdown for Less .~ as no Longer erver
h ' at AWS

than 5 ,P;/ﬁnute active |

Yes ™

LY

| Retrieve
| Statistics on
| Active
L Servers

FIG. 12A

juded ‘s’

¥20T ‘6 "uer

L9 JO [T 19YS

7d 880°ILS‘IT SN

N

e \\\
%e there any

Servers Currently
. Marked Pending

\‘Shutdown? P

.
.

Update
Server to
Retum to

Active Status

No

Yes as it been Le&

than 2 Minutes Smce

Last Server Start
Req uested’> //

N

No

©

12028

Retrieve List

of Servers
Marked
Pending
Shutdown |

This is the Buffer
Time to Allow New
Servers to Come
Online

\éif
e ,\\
s the Active ™

Server Count Below
 Minimum Spare//

\\ Servers?
\\\\ /////

No

Yes

i
/ \\
Ye ﬁthe Current ™
sed Capacity Greater
—&Qem the Maxxmuy

%Wy

No

This is to keep

a Minimum
Capacity to Allow
for Spikes in
Stream Creation

yuaged ‘SN

¥20T ‘6 "uer

L9 JO TT 19YS

7d 880°ILS‘IT SN

When Server
Comes Online, it
Self Reporis Active
Status to Database.
See "Check RTMP
Media/CDN Server”
 Process

3

Request New Server
Creation at AWS

Label Server
with Date/Time
of Creation

No

No

Server Count Greater
than Minimum
werver Count

/ 1202¢

Is the Currek
.

Capacity Less
than the Minimum
Capacity?

Is the Current

\?

Yes

Retrieve

Oldest
Active Server
information

Mark Server

as Pending
Shutdown

yuaged ‘SN

¥20T ‘6 "uer

L9 JO €T 194§

7d 880°ILS‘IT SN

SERVICE: Stream
and Server Watchdog

—1302A
p
///\“\\ p ~
Retrieve List of Broadcaster Streams " Are There T “Delets Unstarted |
from Database that were Created but ~ Any Streams ~

L Streams In List

Have not Started in Last 30 Minutes - in US? |

Retrieve List of Live Broadcaster Streams

N Yes
N e

A e Fhere HQNYGS /Has the Stream Been
- Currently Live Streams that .

Actively Broadcasting in
{ave Not Been Checked . the Last 30 Seconds_.—
N —. ? :

FIG. 13A
FIG. 138

FIG. 13A

Rerieve Listof
Media Servers

‘ Mark Stream as Ended

yuaged ‘SN

¥20T ‘6 "uer

L9 JO T 19YS

7d 880°ILS‘IT SN

There A

not Been CheCke

?

es

Check RTMP

Media/CDN Server
(Fig. 14)

) TMP CDN Servers that hav .
. . . CDN Media Servers

List Df]

Retrieve

Generate Final

Viewer Heatmap
=9

Broadcast Siream
End to Chat/System

Event Channel

End Recording

Guena
Recording Upload

E

— ot Been CheCke

: There An
Media Servers that Have

?

Check RTME

Media/CDN Server
(Fig. 14)

e

yuaed ‘SN

FIG

S

19 10 ST 199U

7d 880°1L8IL SN

FIG. T4A

FIG. 148

C

Remove from
Server List

Server Status
OK and Return

Archive

Server Statistics

C

Check RTMP
Media/CDN Server

)

this a New
Server ?

,/\\

Server been Seen
-..Last 30 Seconds .

7

‘Was this
Server Marked as
Pending Shutdown

“Has this P
in the

/ 14024

Determine Capacity
Based on Server Type

Upda Seer Lis
with Capacity _

Update Server Tagging
at AWS with Server
Class and Launch Time

Judsed SN

¥20T ‘6 "uer

L9 JO 9T 194§

7d 880°ILS‘IT SN

Determine New
Current Total
Streamer Capacit

Mark Server
as Down

Send SMS to Admin to
Alert Terminated Server

Send SME Naotification
to Admin Regarding

Down Server

(Retum)

/\\
”/H; Server
Already been Marked
.~ 3% Down

/ \\\

No__—Tias Admin been NQtM\\
or has #t been Less than 5

Minutes Since they were
Last Notified 2

Yes

v

FIG. 14

< Return)

Determine New
Current Total :
Streamer Capacity ./

\

Send SMS to
Admin to Alert New

Server launch

Mark Server as Active
amd Available to
Accept Connectiong

Server Status
OK and Retumn

yuaged ‘SN

¥20T ‘6 "uer

L9 JO LT 1YS

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 28 of 67 US 11,871,088 B2

SERVICE: Event
(Data Ingress) ,;;/'/ 1502
|
|
For Each Event Type Supported
// Retrieve Event Information for One or
\\ More Events (e.g., STATS LLC)
|
For fach Event
\
Normalize and Normalize and Normalize and
Store Basic Store More Store Event Store Event
Event Data Detailed Event Date Participant
{Type, 1d, Information {Converting (e.g., Team)
Status) (Quarter, Inning, from UTC to Data
Half, eic) EST/EDT)
Yes ‘/J\
More Events 7
T
Yes " Any Moré™~.__

Event Types to
Process 7

(Complete

)

FIG. 15

FIG. 16A

FIG. 168

C

Data Monitor

SERVICE - Live Event >

i

Retrieve List
of Events for

Current 48
Hour Window

e

/Are there

No

16024
&

This Pulls a List of All Events Scheduled

with Start Times from 24 Hours in Past to 24
Hours in Future. This Allows Tracking of

in Progress Events, and Events that had
inconsistent/incorrect Start Times, and any Late
Modifications to Event Information {e.g., Scoring)

Any Events in Complete)
Window ?
}
!
For Each Event B
—-—'-—\N
T T T TN T
o™ e : R Ly
Normalize and Normalize and] | Normalize and
Store Basic Store More Store Event Store Event
Event Data Detailed Event Date Participant
{Type, Id, Information (Converting (e.g., Team)
Status) (Quarter, Inning, from UTC to Data
) Hakfety J [ESTEDT)

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 6T 19Y4S

7d 880°ILS‘IT SN

information
{(e.g., Score
_ Data)

T,
W
Upgrade Event

pdate Event

Specific Data
\MM’

3

Queue Async
Message for

Broadcast of
Updated Event

Update Event
{e.g., Game) |

Clock

Each Event Type Has
Event-Specific Data that
Gets Stored.

For Example, NFL has
"Possession, Timeouls,
Yards to Go, Yards from
Goal, Timeouts”

L
g ~.
—"Is Event

Yes -

Status "In\
mng

No

|

-
" Are ‘{Q\ Yes

Data to Socket
for Event
information
Channel

= Any Events Remaining
to Process 7

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 0¢ 199YS

7d 880°ILS‘IT SN

Use Multiple Queues of

Varying Priority to Accelerate the_____

Processing of Tasks for Certain
System Events

SERVICE: Asynchronous
Task Process

Read Bundle from
Asynchronous Queue

e

e T
Are there any™—___ No

FIG. 1/7A

FIG. 1/B

ftems Remaining to
Process 7

Yes

17024
,é-/

" System

Event Type: Stream

/
-~
3

Started ?

For Each Suscriber o
Broadcaster, Send

Out PUSH Notifications

<0 —~
System T Yes
< Event Type: Stream .

__./

Thumbnail? _—"

Process - Take
Stream Thumbnail
(Fig. 18)

No

yuaged ‘SN

¥20T ‘6 "uer

L9 JO I¢ 199YS

7d 880°ILS‘IT SN

e

__—"System Event \Yes

Type: newFollowingStream
2 5 .

!

Other System

| T ToadUser
Data Associated
t ith Evet

o

There are Other Different
Asynchronous System Events that

Event Classes

this Service Handles (UserUpdated,
sendEmail, logEvent)

Web Push
W Web Push

17028
e

No

/\\
%@s User Get Send Push
Push Notifications on New = ficati
~ Stream Creat Nofification
Send Email
//f);es User\GR Yes Send

yuaged ‘SN

¥20T ‘6 "uer

L9 JO T¢ 199YS

7d 880°ILS‘IT SN

FIG. 18A
FIG. 188

Process - Take Stream
Screenshot {Thumbnail)

3

| Load Stream|
| Data from |
__Database

L

MNo
Stream Stll

(Return :}

Connectto Live
Transcoded Broadcaster
Stream {e.g., H.264)

Live?

Is Stree;ﬁ\
App/RTMP or

WebRTC App

WebRTC?

Wait for Next

®

18024

/

Connect to Live

Broadcaster Stream
(e.g., H.264)

KeyFrame

Judred ‘SN

¥20T ‘6 "uer

L9 JO £¢ 199YS

7d 880°ILS‘IT SN

Resize Screenshot

Capture
Screenshot

Upload Screenshot

to Amazon s3

Broadcast to
Socket for
Chat/System
Event Channel
Associated with
Live Siream that
New Screenshot
has Taken

B

S
1S this the~__ Yes

//;irst Screenshot\
W
No

W
Update

Stream
Information

e
18028 —

with New
Screenshot
and Archived

Screenshots
W

for Social Media
Network Requirements

Overlay Network

Promotion
Graphics/Watermark

Upload "Share

Graphic” to
Amazon 83
!
A&id\\\ Yes Submit Link and

Broadcaster Request >
~.Social Sharg ~~

= Share Graphic to
Social Networks

Detenine List of Viewers
ithat Suscribe to Broadcaster

Queue "new FollowingStream”

Clueue the Sharing Notifications
s0 that they can be Processed in

Events for Each Suscriber

Paraliel Across the Async Worker Pool
Allowing for Faster Delivery to
Viewers/Suscribers

yuaged ‘SN

¥20T ‘6 "uer

L9 JO p¢ 19YS

7d 880°ILS‘IT SN

S

(User Login)

o

Login
Method Select

Send to
Social
Login

User
Login at

Social

y

No /Login

e

Success?

Yes

Is \‘\ Yes

No
N Phone
l.ogin?

19024
Number SMS Code
Validated Verggitttan Entered

Valid Code Provided

SLoginE

FIG. 19A

FIG. 1958

yuaged ‘SN

¥20T ‘6 "uer

L9 JO S¢ 19YS

7d 880°ILS‘IT SN

_—— 19028

Falls Validation

JPEy

/

Username, efc

/l/sNew Yes o %L'Jses*]
< Account > = Configuration
? Screen
No

Save

Send o
Stream Creat&/

e
Send to No LOQiﬂ\\ Yes
Start Point .on Homepage.

\\\V

| User
| Profile in
iDatabase

e //
User Provides -~ Valid
Profile Picture, %(lnp>

Judjed "S'N

¥20T ‘6 "uer

L9 JO 9¢ 193YS

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 37 of 67 US 11,871,088 B2

(Broadcaster Stream

Create Mobile) 20024
=

Yes // Quick

7

Stream Cz'eate;\
\(

Event News

\\Sziejrj Type?
. S— I B I
] Title I [’_" Title]] Title ‘l

/ Request List of / Request List of

/ Events (in Database) News ltems from

from APl (Web APl (Web Server
Server Pool) Poaol)

BN S N N —
r’E‘ﬁeBect Event r Tags "I r Select News ‘l

FIG. 20A
FIG. 208

FIG. Z20A

U.S. Patent

Jan. 9, 2024 Sheet 38 of 67

/zoozs

US 11,871,088 B2

©

Facebook ——Sooial Shars
Login /6—\?

Twitter

Facebook JL

No/Complete

/’/ST‘I’EE‘G\
Location?

Yes

i T

/

T _Yes
Linkedin®?

No

Login

Server
Determines
{ ocation

Submit Stream Create Request
to Web Server

Web Server Validates

Validation Failure

Stream Create Request

Stream Created: Web Server Enters
Stream Information in Database and
Runs Broadcast Media Server

Selection Algorithm (Fig. 7A & 78}
to Return Selected Media Server
(Hostname) and StreamliD

i

Go to "Broadcaster Stream Active
Mobile" (Fig. 21)

U.S. Patent Jan. 9, 2024

C)

Connect to Media Server
Selected by Broadcast Media
Server Selection Algorithm

Broadcaster Stream
Active Maobile

'3

Connect to Socket for Chat/
System Event Channel
Based on StreamiD

]

TN
s Event —.Ye&s

Sheet 39 of 67 US 11,871,088 B2

&

Connect to Socket for
Event Information Channel

?

No

Based on EventiD

3

Begin Main Loop

FIG. 21A

FIG. 218

Update Internal Frame

FIG. 21C | FIG. 21D | FIG. 21F

and Time Clock (e.g.,
for Graphics, Animations)

i

— hannei _

/ \
——— Needto =~ Yes Display Default
Display Default Chat piay
Chat Message
Message ?
No
N
\\ S
Data \YGS ///E’S H \ Chat Bisol
Received on Chat/System_> - Chator System (’;‘: ?y
~ - a

~Event? -

U.S. Patent Jan. 9, 2024 Sheet 40 of 67 US 11,871,088 B2

21028 @

e

//Message ~JYes ~ ves Add Joi
- T is User oin
S lomeer A o o Chet
, No
No
Increase

Viewing Count

//K\ Yes

Member__Removed

Decrease
Viewing Count

/ \\ Y
T Follower Add Notice
eWwW oHOWET ¢ to Chat
ignore
Unknown Event
Bt .
_—Bata Rech 5 _—Event ~Jes | Update
on Event Information.— Status Changed Status
hannel2—" ?
- , No

No

/Tnfo\ Yes
-~ Change (e.bw Update

information
SCOTEV (e.g., Score)
No

®

U.S. Patent Jan. 9, 2024 Sheet 41 of 67 US 11,871,088 B2
® © e © ®
yzd

T T Yes ¢
- — Update
2 T
Clock Change” Event Clock

NO

Other Event
Information
Processing

Capture
Camera Frame

Send Video
Frame to
Media Server

Bl

_—Graphics] ™
Animation Update
geded?

No

g

T T Yes

e
—Broadcaster Input ™ \@
Detected?

Yes

~ Update Graphics/

Animation Layer(s)

FIG. 21C

No

T
///Is/the T

“Stream State Set
to Close?

—"Is Confrim ™'®8
Screen Open?

| Yes

;

;
i

Y

e
,/{questeg\ ~._ No
Stream End?
O

<

Open

Confirm Screen>

TN
/ﬁ User\ Yes

Confirm Close?

/\ -
—Requested™
Stream Share?

Set Stream
State to Close

<i Close

Confirm Screen /

Activate System
Share Dialog

Disconnect from
Media Server

3

/ Request Final \
Stats for Stream
from API
for Stream

Display End of
Streamn Screen

FIG.

Judred ‘SN

¥20T ‘6 "uer

L9 JO T¥ 19YS

7d 880°ILS‘IT SN

T

%questeg\

Viewers List

Open
Viewers Panel

Request Current
Viewer List from
AP

7

Graphics/Animation No

- 2102E

T
_——"Request . No

(Bottom Third)
\lntesactaon 7

Yes
!s Graphics/Animation

Bottom Third)

Set Animation
Siate to Transition
to Close

{
\\ Open?
\ ~

No

Set Animation State
to Transition to Open

Update Current
Viewers List with
Server Response

W& Flip?

Yes

L
-~ Is Portratt

No
amera Active? ’

Switch Source
{o Rear Camera

Swiich
Source to
Portrait
Camera

FIG.

21E

yuaged ‘SN

¥20T ‘6 "uer

L9 JO £F 19YS

7d 880°ILS‘IT SN

s i
1
2202A~ START - Mobile | Make Request Media Server
™ Broadcaster L o AP Selection
. Requests Stream {(WEBSERVER Algorithm Database
\ Create . POOL) (Fig. 7) (DATABASE
l §
Viewer Creates 4 , After Stream Loop While Stream is Active
Chat that AP l is Created
Broadcasts to Connects o /
Socket for SOCKET o ‘1 Activate Live Server Checks/ e _
Chat/System SERVER M %Qngsc o Transcoding and Redis for Pulls Stream
Event Channel POOL for (R%\/;?’ Meg:ﬁ;\ = Start Recording Stored Data Information
Associated with Chat/System SERVER POOL) (RTMP MEDIA (REDIS DATA! from
Stream { | Event Channel SERVER POOL) STORE) (DATABASE
(WEBSERVER N e o
\\\\,figfffxwx/
T
e e}
/ Y. Qu%fj ?r?try Sé{ggggﬁfa i;; Stores .
Is the Broadcaster for Screenshites >{ Screenshot in
Stream Abo Ends Stream Screenshot | | (Fig. 18) (AMAZON 53)
X Event ~ (ASYNC
~ QUEUE
FIG. 22A Yes e
FIG. 228

22A

Juared ‘SN

¥20T ‘6 "uer

L9 JO vp 19YS

7d 880°ILS‘IT SN

\Ej 1
i
Connects {o . <> 1
(SOCKET . Uploads ,
SERVER || supcioon| |65 [resinow/ | | [rmansconi
POOL) for (RTMP MEDIA Background |z 83 (RTMP = | {(POOL) Converts
Event SERVER POOL) Upload MEDIA to Adaptive
Information (ASYNC SERVER}) 5 PQOL)
\\% {QUEUE) \/’_/
g
1 T T —
1 e e
Uploads Connects APl o Stores
(CONTROL SERVER) Adaptive to -1 || Report Complete Updated
Sends Event Information g pdate
{(AMAZON &3} (WEBSERVER Status in
to Socket for Event POOL) DATABASE
Information Channel ()
e g

yuaged ‘SN

¥20T ‘6 "uer

L9 JO St 194§

7d 880°ILS‘IT SN

RTMP CDN

Viewer Process

Viewer Creates
Chat that API
Broadcasts to

Socket for
Chat/System
Event Channel
Associated with

Stream
(WEBSERVER

POOL)

Request Stream
information from
APl
(WERB SERVER
POOL)

Checks for
Cached Copy

(REDIS
CACHE)

Viewer Stream

\\\/"\/

Connect io
Chat/System
Event Channel
(SOQCKET
SERVER
POOL)

Requgsts Source S_election //2302,4
,,,,, Updates from—>1 Algorithm
» (WEBSERVER
POOL) (Fig. 8)
: 1 . 1
Connect o ¥ c ‘'
onnect to
RTMP CDN No///{Q&w5> Yes ||| Media Server
Server Direct to Media || neda server
(RTMP CDN Server? (RTMP Media
Server Pool) ; Server Pool)
N
N

s

_—~"Does RTMP CDN ™

< Server H

FIG. Z23A

FIG. 238

ave ActiveConnection
. o Stream?

W\/

Yes | pavieve RTMP

Stream Information

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
)

i.I

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 9% 19YS

7d 880°ILS‘IT SN

23028
/
~_an Event? —
\\L/Yes
§
H
Connect o
(CONTROL SERVER) Event
Sends Event Information Information
to Socket for Event Channel Connect to
Iinformation Channel (SOCKET RT?&’?S{\%ﬁdsa Play Stream
SERVER
N POOL)
Loop Until Stream Ends
: i
, e Chat Message
: 1 R Sent to
RTMP Viewer | Chat Message (SOCKET
Sends Chat | Sentto API Repiay Log SERVER
\ Message | (WEBSERVER b POOL) to
\ POOL) (DATABASE) Socket for Chat/
; /_\// System Event
- B Channel
Associated
with Stream

FIG

Jured 'S

-

£ 30 Ly 1S

7d 880°1LSIT SN

i

i

Viewer Creates
Chat that API
Broadcasts to

Socket for
Chat/System

Event Channel

(

A

\

HLS Viewer
Process

1

Request Stream

_— 24024

Viewer Stream Source
Selection Algorithm

| (WEBSERVER POOL)

(Fig. 8)

Associated with

Stream
(WEBSERVER

POOL)

\\/\/

Information from Checks for] o
AP Cached Copy | Requests |
“1Updates from
(WEB SERVER (REDIS |
POOL) CACHE) (DATABASE)
jt
i
i
Connectto
Chat/System FIG. 24A
Event Channel .
(SOCKET FIG. 245
SERVER
POOL)

Go to
"HLS Stream Viewing"
(Fig. 6)

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 8% 19YS

7d 880°ILS‘IT SN

/is the ™~

Stream About .
/

\ .an Event?

W Yes

(CONTROL SERVER)
Sends Event Information

to Socket for BEvent
information Channel

Connect to
Event
information

Channel
(SOCKET
SERVER

Viewer
Sends Chat
Message

b
H

Chat Message
| Sentto AP

T T
S

Replay Log

| (WEBSERVER

POOL)

H
H
H
H
H
H
H
~.

FIG

_— 24028

Updated
(DATABASE)

e eeirnare ™

Chat Message
Sent to
(SOCKET
SERVER
POOCL) to
Socket for Chat/
System Event
Channel

Assaciated

with Stream

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 6¥ 19Y4S

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 50 of 67 US 11,871,088 B2

(MOBILE - Repﬂay) // 25024
&

Request Stream
Information fron API

Retum to
Previous Screen

During Live Recordings, the Server Side Logs Every
Event that Occurs and Ties it to a Timestamp. This
Allows to Sync the Replay to the Order that it Happened

/ Load First 10 During Recording... So the Event Information Updates
Seconds of Replay as it did while Live, Members Come and Go, and
Data from API Chat Recording Plays

Load Media File

Connect 1o There is no Chat on Replays. However, System
Socket for System Knows the Socket is Authenticated and
Chat/System When People Connect and Disconnect, thereby

Allowing Collection of Detailed Stats About the
Views and Viewers

Create the Draw Ff@ 25A

Screen and Start

Video Playback F / G .2 55
FIG. 25C

Event Channel

Begin Main Loop

i

@

U.S. Patent

No

Jan. 9, 2024

HK
a Seek Yes =
OCGW

Clear Chat

Update Internal
Clock and Current
Video Time Clock

i

< 5 Seconds?

than the the Last
Time Checked

s the Curm\

Buffer of Replay Data

Yes [10 Seconds of |

/} Retrieve Next\

i

[

Replay Data
from Current
Buffer End

Sheet 51 of 67

US 11,871,088 B2

- 25028

This Leaves a 5 Sgcond
Buffer at All Times Allowing
Viewers to Continue
Streaming Replay Events in
Case of Poor Network
Connections

LOGIC -
——34 | Process Replay

Event Data

PN

~ Animation ™
Update Needed?

Yes

Update

Animation
Layer

/User Input

Detected?

LOGIC -
Replay User

Input

X

No

Has \

~Playback Ended2~

U.S. Patent Jan. 9, 2024 Sheet 52 of 67 US 11,871,088 B2

Load
Qutro Video

Play
Qutro Video

 Screen Shows
QOwner Stats
Information, Display Replay
Share Links, Stats Screen
and Ability to
Replay Stream

Yes T Viewer
- the Owne‘r\
of Stream?

7 Screen Allows

Display Post Viewer to Replay,
Replay Screen Share Replay,
 and Follow Broadcaster

(Replay Ended)

FIG. 25C

Logic - Process
Replay Event Data

' Unlike the Live Stream which Relies on FIG. 26A //2602,4
. . member_added/removed to track 2
Update Lay & Viewer Viewer Counts, Replays Contain Per- F / G 2 68
Count with Value .
in Replay Event Second Viewer Counts to Make Sure They FIG. 26C
Are Correct in the Case the Viewer Seeks :

/,L A

Are there ™ No
< Any Cther Events a?\ .
~~this Timestamp?

Yes
Are there Any~_ — s lta —Ts 1t
~Membership Events at ~Jes For Each Membership : member_w Yes ~ Anonymous ~Yes
~this TimeM Event at this Timestamp Event? User?
< \\r_/‘~
1\ Add a "Has Joined
the Stream” Message
to the Chat
P I | - ,
_——Are there ™~ Yes ! 7 |§N Chat
< Any Chat Events at o _ For Each Chat . Chat or System ™ Display Chat

Event at this Timestamp

this Timestamp?] Event?

| System Event

yuaged ‘SN

¥20T ‘6 "uer

L9 JO €S 194§

7d 880°ILS‘IT SN

/\ \
— s there a\y\yes
Game Event at

this TimeW

No

™
//Event\\ Yes
Status Shange?

26028
e @
Yes :
New Follower? Adad Notice
o Chat
e
—Did T~ Yes :
~Streamer Mute/ ™ Add Notice
Unmute Video? to Chat
'Z; with Viewer Counts, the Events
Are Encoded On a Per Second Basis so
that In the Case of a Seek Event, the Scorebug
will Update Correctly Immediately After the Video
Restarts Playing
So All Replays of Events Will Have an Event
Update/Refresh at Every Timestamp
T T Change Scorebug
-~ Did Status ™ Yes { ey
Update /C/ange from Pregame ™ Animation to In
Status to In Progress? Progress and Restart

the Animation

GT

7d 880°ILS‘IT SN

yuaged ‘SN

¥20T ‘6 "uer

L9 JO S 139YS

US 11,871,088 B2

Sheet 55 of 67

Jan. 9, 2024

U.S. Patent

22092 —

{(wmey)

¥20|7D swen
8jepdn

88100Q
ajepdn

{s)oumeady
BUID

§8bueyn Moo

SAA T "

/

¢a8bueyn 8100%
S8A T

/J\
A

U.S. Patent

C

Logic - Replay
User input

Jan. 9, 2024

Sheet 56 of 67 US 11,871,088 B2

/'f;ressed\

No

/R/\\ No

equest

Play

Return)=

Stream Share?

Pause

/ Avtivate System
Share Dialog

No

e \\\

e

No

o

o Yes
Quit Piagack\?‘

Reu rn

Yes

“Requested /
ViewerM‘

Yes

. T
Is Bottom Third I
nteraction?

Open
Viewers Panel

>_

/ Request List of V;owers

that Were Active at the
Current Video Timestamp
v

Update Live Viewers
List with Server Response

Set Animation
State fo

Transition to Close

P agin
o~ \\
,/4 Baottom Third\YeS

3

Set Animation
State to
Transition o Open

Cloose Playback Window, Return
to Previous Screen

FIG. 27

SportsCastr
R

NIKO YOUNG

KEVIN APRIL
Your camera quality is solid! This is a really great
ing!

NIKO YOUNG v
2584 < Everybody liking the broadcast’

KEVIN APRIL
Absolutely! Do you do weekly broadcasts or is i
pretty random? | subscribed!

NIKO YOUNG
Sound quality good for everyone?

258A

258A

FIG.

28

252A

255

Judred ‘SN

¥20T ‘6 "uer

L9 JO LS 1YS

7d 880°ILS‘IT SN

Broadcaster Client | ynn4 AudiofVideo Feed Broadcaster Client 1008 ——2002
Device #1 ~ for Live Event Device #2
j—10024 2 2000 1948 1000
k ;{ 500
400 Broadcast/Viewing Servers and Memory Storage Device S5024,5028
IS 300 | / 55
Memory System Media Sources rTTT P U / Event Info
Provider
Data RTMP | | WebRTC Control
Database Storage Media FS—SANP { Media Xﬂiﬁiiﬁ;ﬁ; Server o oo
T | -
// /{W] \ Sewer(s) | Serve:l(s) (RSS)
420" & 3207 340° 1] 3607 380 | —1-5044,5048 65
460 < 440 2001/ oo4A_ | ‘
Web Server(s) Socket |+ 600
700 sz~\$ gggx\ Senver(s) | -6028
50%;\ 1 _|-604B
204C—._ | 2064 4]
™~ i
h] \
=
- 202¢ 2104 2084
200A ~_ 2000 \f <
N 14 W] / 5048) - 206C
5000 3
T~ Client App 5000““\\\ Client App s 2108 F l Go 2
Viewer Client Device #1 Viewer Client Device #3 208C

Juared ‘SN

¥20T ‘6 "uer

L9 JO 8¢S 1393YS

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 59 of 67 US 11,871,088 B2

2012

input Audio/Video Feed 2000 for Live

Event to RTMP Media Server 320
2014
Provide HLS Copy 2002 of Feed for Live
Event from HLS Server Architecture 380

as Input to Broadcaster Client Device

2016
Display Live Event on Broadcaster Client
Device Based on Copy of Feed for Live Event

2018

Broadcaster Provides Video-based

Commentary for Live Event
2020
Broadcaster Client Device Creates Integrated

Live Event and Commentary Stream

2002
Broadcaster Client Device Transmils Integrated Live
Event and Commentary Stream o Media Server (e.g., RTMP
Media Server 320 or WebRTC Media Server 360}

2004

One or more Media Sources 300 Provide One or More
Copies of Integrated Live Event and Commentary Stream

for Distribution to One or More Viewer Client Devices

SERVICE - Live Event
Data Monitor

kY7

FIG. 31A

~ | This Pulls a List of All Events Scheduled 1024
T e with Start Times from 24 Hours in Past to 24 <~
| Retrieve List : X ,
| of Events for Hours in Future.This Allows Tracking of
| Current 48 in Progress Events, and Events that had
| Hour Window inconsistent/incorrect Start Times, and any Late
. S Modifications to Event Information {e.g., Scoring)
B FIG. 31A
s -
_~"Are there ~No FIG. 318
Any Events in Complete)
Window ?
i
!
For Each Event
I
i W \-....___m_,___/ W K
Normalize and Normalize and Normalize and Determine Internet Resources
Store Basic Store More Store Event Store Event (URLs) for Audio/Video Feed of
Event Data Detailed Event Date Participant Event, Store in Database, and
(Type, Id, Information {Converting (e.g., Team) Assign HLS Server to Process
Status} (Quarter, Inning, from UTC to Data Audio/Video for Broadcasters Use
Half, etc) EST/EDT)

Juared ‘SN

¥20T ‘6 "uer

L9 J0 09 1993YS

7d 880°ILS‘IT SN

information
{(e.g., Score
_ Data)

T,
W
Upgrade Event

pdate Event

Specific Data
o

A

Queue Async
Message for

Broadcast of
Updated Event

S * e
Update Event | Yeas /// Is Event ™
(e.g., Game) | < Status"In =
Clock : rong

No

each Event Type Has
Event-Specific Data that
Gets Siored.

For Example, NFL has
"Possession, Timeouls,
Yards to Go, Yards from
Goal, Timeouts”

\
s

/
- Are there ™
\Yes

Data to Socket
for Event
information
Channel

Any Events Remaining
to Process 7

©
\ 31028

il

yuaged ‘SN

¥20T ‘6 "uer

L9 JO 19 1393YS

7d 880°ILS‘IT SN

U.S. Patent
Broadcaster Stream
Active Mobile

< !

Jan. 9, 2024

)

Sheet 62 of 67 US 11,871,088 B2

32024
/

Connect to Media Server

Server Selection Algorithm

Selected by Broadcast Media

FIG. 32A
FIG. 328

FIG. 32C

Connect to Socket for Chat/
System Event Channel

FIG. 320 |FIG. 32E

FIG. 32F

Connect to Socket

- ’;/en't yes for Event Information §
\- Channel
No
Beain Mair L Connect to Game Video Stream
egin Maift Loop in Hidden Background Layer and je—I
Generate "Game_Time" Timer
Update Internal Frame Pipe Audio from Pipe Audio from
and Time Clock Game Footage Broadcaster Side
into Mixer into Mixer
Needto ™ Yes ;
ey Display Default
Dispiaégse;gglz%at = Chat Message
No
/\
- Data \\fs s it Chat [
Received on Chat/System Chat or System | Display
Channel 7 Event ? Chat
System
Event
Add Data to
Data Yes
. Event Buffer
Rece:vgg on Elv;ant info with Time Stamp
annel - "Server_Time"
V

© ©

FIG. 32

U.S. Patent Jan. 9, 2024 Sheet 63 of 67 US 11,871,088 B2

© ®

-~ 32028
; /{//
R
_ .
_—"Message™..Y®s b ves Add Join
wﬁe:_f\dded s ,?ie"/)“““% to Chat
? ~
No
No \
Increase
Viewing Count
///\\\ Yes
~Member_Removed Decrease
e Viewing Count
B
T - Yes \ Add Notice
No
Ignore
Unknown Event
BN
T \\\\ P
~Is there an Event ~._Yes - @vent\\if\s‘ Update
Channel Buffer Event at the >—=<Gtatus Changed Status
Current Game_Time.— 7
?
No Yes
info
nge ®>—-—~> E ;deatg
~_Score)? — nformation
R {(e.g., Score)

Frame

.~ 3202C
e
ol ~._ Yes Update
< Clock Change? Event Clock
\\\ﬁ/ NO
Other ’Event
Information
Processing
B
Capture
Camera Frame
e Yes P F F Detect ifi
o g ass Frame ace wetecuon | Render Modified
Is AR Active? T
TR AR Advel to AR API Update Video Frame
No
Al
///\\
s there a Yes | Capture Game Render Overlay Composite Set‘Outgm’ng Audio to Use the
Connected Game Stream Frame From Camera Final Frame Combined Mixer as Source Instead

of Broadcasters Raw Source

FIG. 32C

yuaged ‘SN

¥20T ‘6 "uer

L9 JO $9 194§

7d 880°ILS‘IT SN

U.S. Patent Jan. 9, 2024 Sheet 65 of 67 US 11,871,088 B2

Update Broadcaster
Camera View Using

Final Frame o 32020
&~

Send Video
Frame to
Media §erver

L

—
/’@aphm Yes
_ Animation Update\

esded?

.| Update Graphics/
Animation Layer

- T Yes
: //Broadcaster Input @

_ Detected?

T No

Sfream State Set
to Close?

_——"Is Confrim ~~-_Y®S
Screen Open? -

Stream End?

Yes

T~

T~
/{quested\\ No

Ny
% User ~._Yes
Confirm Close?

el

<

QOpen
Confirm Scree

o

//\ h
—Requested ™

Stream Share?

Set Stream
State to Close

Close \\/
n Confirm Screen /F

No

Activate System
Share Dialog

Disconnect from
Media Server

§

/ Request Final \

Stats for Stream
\ from APl

for Stream

Display End of
Stream Screen

FIG. 32E

yuaged ‘SN

¥20T ‘6 "uer

L9 J0 99 1393y§

7d 880°ILS‘IT SN

S208F ——__
N
T e
K %uested\ - No /B/ottomm\ No
N i Viewers List Interaction?
Yes] Yes
Open /ﬂjﬁm{es
Viewers Panel WOpen?
No
it
sﬁseﬁz?i}geﬁ Set Animation State
ewer LIStITo to Transition to Open
API
Update Current

Viewers List with
Server Response

//\
—" Request No

Set Animation
State to Transition
fo Close

/
—"Is Po

amera

Camera Flip?

\No

rirait T~

Acllvg~""]

Switch
Source o
Portrait
Camera

Yes

Switch
to Rear

Source
Camers

FIG. 32F

yuaged ‘SN

¥20T ‘6 "uer

L9 3O L9)33YS

7d 880°ILS‘IT SN

US 11,871,088 B2

1

SYSTEMS, APPARATUS, AND METHODS
FOR PROVIDING EVENT VIDEO STREAMS
AND SYNCHRONIZED EVENT
INFORMATION VIA MULTIPLE INTERNET
CHANNELS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation application of U.S.
non-provisional application Ser. No. 16/685,782, filed Nov.
15, 2019, entitled “Systems, Apparatus, and Methods for
Scalable Low-Latency Viewing of Integrated Broadcast
Commentary and Event Video Streams of Live Events, and
Synchronization of Event Information with Viewed Streams
via Multiple Internet Channels,” which claims a priority
benefit, as a bypass continuation application, to PCT Appli-
cation No. PCTUS2018033016, filed May 16, 2018, entitled
“Systems, Apparatus, and Methods for Scalable Low-La-
tency Viewing of Integrated Broadcast Commentary and
Event Video Streams of Live Events, and Synchronization of
Event Information with Viewed Streams via Multiple Inter-
net Channels,” which PCT application in turn claims a
priority benefit to U.S. provisional application Ser. No.
62/627,859, filed Feb. 8, 2018, entitled “Systems, Appara-
tus, and Methods for Scalable Low-latency Viewing of
Integrated Broadcast Commentary and Even Video Streams
of Live Events, and Synchronization of Event Information
with Viewed Streams via Multiple Internet Channels;” U.S.
provisional application Ser. No. 62/542,729, filed Aug. 8,
2017, entitled “Systems, Apparatus, and Methods for Scal-
able Low-latency Viewing of Integrated Broadcast Com-
mentary and Even Video Streams of Live Events, and
Synchronization of Event Information with Viewed Streams
via Multiple Internet Channels;” and U.S. provisional appli-
cation Ser. No. 62/507,158, filed May 16, 2017, entitled
“Systems, Apparatus, and Methods for Scalable Low-la-
tency Viewing of Integrated Broadcast Commentary and
Even Video Streams of Live Events, and Synchronization of
Event Information with Viewed Streams via Multiple Inter-
net Channels.” Each of the foregoing applications is incor-
porated by reference herein in its entirety.

BACKGROUND

The public’s access to the Internet, as well as the amount
of bandwidth for Internet users, increased greatly in the
mid-1990s to the early 2000s. The available Internet band-
width allowed for the streaming of both recorded audio and
recorded video content to a user’s home. Also, additional
increase of Internet access was sparked by the rise of the
smartphone and the ability for smartphones to access the
Internet on-the-go. In 2005, YouTube™ began to offer
Internet users the ability to upload, edit, view, rate, share and
comment on a wide variety of user-generated and corporate
media video content. Examples of such content include
video clips, television show clips, music videos, audio
recordings, movie trailers, video blogs, short original videos,
and educational videos. Within one year of its inception,
YouTube™ reached 65 thousand daily video uploads, with
100 million daily views.

The first Internet live video streaming platform in the
United States, aptly called Livestream, was launched in
2007. Livestream, as well as other nascent live video stream-
ing platforms, were content agnostic, and over time Internet
viewers desired more specialized, content-specific, and
niche live video streaming platforms. To accommodate

10

20

25

30

40

45

2

evolving viewer demand, various live video streaming plat-
forms have launched since Livestream; examples of such
more specialized platforms include Twitch.tv (a live video
streaming platform for creative arts and gaming content,
which launched in 2011), and musically (a live video
streaming platform designed for music video content, which
launched in 2014).

Live video streaming platforms have also aimed to attract
social network users, and social networking platforms have
evolved to include live video streaming capabilities. For
example, Twitch.tv includes social networking components,
and in 2015 the social media platform Twitter acquired the
live video streaming platform Periscope. Other social media
platforms have followed suit, with both Facebook and
Instagram implementing live video streaming capabilities
into their mobile applications in 2016. The widespread use
of smartphones enables users of these social media plat-
forms to share live videos with their social network.

SUMMARY

In spite of the proliferation of live video streaming over
the Internet, the Inventors have recognized and appreciated
various technological problems in conventional techniques
for transmission of digital content via the Internet that
adversely impact the live video streaming viewer experi-
ence. One such technological problem relates to viewer
“latency,” i.e., the delay between a first user generating a live
video stream for transmission via the Internet and a second
user receiving a copy of the live video stream via the Internet
for viewing. For example, the live video streaming platform
Twitch.tv has a latency of approximately 15 seconds, and
Facebook’s live streaming platform has an average latency
of approximately 10 seconds. Other technological chal-
lenges for live video streaming arising from shortcomings in
conventional techniques, as recognized and appreciated by
the Inventors, include, for example, the difficulties in pro-
viding relatively low latency copies of live video streams
with relatively high quality (e.g., high definition HD and
high bit rate, such as 2 to 5 megabits per second), synchro-
nizing such low latency and high quality copies of a live
video stream amongst multiple viewers (particularly as the
number of viewers of a given live video stream significantly
increases), and allowing for different classes or types of
viewers to flexibly access copies of a live video stream via
different live streaming formats (which may lead to different
qualities of service).

With these various technological challenges in mind, the
present disclosure relates generally to inventive systems,
apparatus, and methods for facilitating one or more broad-
casters to create/provide video and/or audio (also referred to
herein as a “broadcast”) and allow one or more viewers to
consume the video and/or audio, either by receiving a copy
of a live stream representing the video and/or audio essen-
tially in real-time as created/provided by a given broad-
caster, or by retrieving and playing a recording of the live
stream at a later time. In the context of essentially real-time
viewing of live streams, in various implementations the
inventive systems, apparatus and methods discussed in
detail herein address one or more technological problems
relating to viewer latency, synchronization amongst different
numbers of viewers, and providing scalable and flexible
access to live streams to different classes/types of viewers
and/or with different qualities of service.

With reference to FIG. 1A, in various implementations a
given broadcaster uses a network-connected client device
(e.g., a first smart phone or other personal computing device

US 11,871,088 B2

3

communicatively coupled to the Internet) to generate a live
stream of digital content corresponding to the video and/or
audio created/provided by the broadcaster, wherein the live
stream 1is transmitted to an inventive server and memory
storage architecture (additional details of the server and
memory storage architecture are shown, for example, in
FIGS. 2 and 3). The inventive server and memory storage
architecture processes the broadcaster’s live stream to gen-
erate multiple copies of the live stream which are provided
to respective viewers, and also records the live stream and
stores the recording for later replay. One or more viewers
using different network-connected client devices (e.g., a
second and third smart phone or other personal computing
device communicatively coupled to the Internet) may com-
municatively couple to the server and memory storage
architecture to receive a copy of the live stream of the digital
content as a real-time or essentially real-time consumer of
the broadcast created/provided by the broadcaster, or
retrieve and play a recording of the live stream generated by
the broadcaster client device (and recorded by the server and
memory storage architecture). In some implementations, a
given broadcaster themselves may view their own broadcast
as a viewer on the same client device (e.g., by opening a
separate tab on their client device and connecting to the
server and memory storage architecture as both a broad-
caster and a viewer). In one aspect, the inventive server and
memory storage architecture allows any number of broad-
casters to generate respective live streams of digital content,
and any number of viewers to receive respective copies of a
given broadcaster’s live stream of digital content. In another
aspect, the inventive server and memory storage architecture
allows a given viewer of a first broadcaster’s live stream to
effectively switch in essentially real-time to view one or
more other broadcasters’ live streams.

In some implementations, the inventive systems, appara-
tus, and methods further facilitate a social platform in
tandem with broadcasting video and/or audio to one or more
viewers, in which a given broadcaster and their viewer(s)
may communicate with one another (e.g., via chat messages)
in essentially real-time during a broadcast. In one aspect,
one or more chat messages, as well as various viewer-related
information (e.g., name, surname, profile photo), may be
displayed on respective client devices used by the broad-
caster and the one or more viewers as the video and/or audio
is rendered on the respective client devices.

In some implementations, the video and/or audio created/
provided by one or more broadcasters is video-based com-
mentary about a live event being observed by a given
broadcaster. In various aspects, the broadcaster may take the
role of a main commentator for the event, or a “color
commentator” (e.g., analyst or summarizer) for the event; in
a given role, the broadcaster may describe the event as it
occurs (e.g., provide chronological or “play-by-play”
updates to “call” the event), and/or may provide expert
analysis, background or anecdotal information about the
event and/or participants in the event, and/or relevant sta-
tistics regarding the event, participants in the event, or
related events. FIG. 1B illustrates a display of an example
client device, in which a broadcaster is providing video-
based commentary about a sports game, and in which chat
messages from one or more viewers, event information
about the sports game, and other graphics and/or animations
are displayed together with the broadcaster’s video-based
commentary.

Examples of various activities constituting events accord-
ing to the present disclosure include, but are not limited to,
a variety of sports games (e.g., professional, semi-profes-

20

35

40

45

50

55

4

sional, intramural, community-oriented) or sporting activi-
ties (e.g., exercise-related activities, physical training activi-
ties, fishing, hunting), musical performances, theatrical
performances, other artistic or entertainment-oriented activi-
ties, speeches or presentations, political activities (e.g.,
election-related activities, campaign-related activities, pub-
lic or “town hall” meetings, public marches or demonstra-
tions), military activities, professional activities (e.g., meet-
ings or conferences), academic or educational activities
(e.g., academic presentations or lectures, research activities,
medical or scientific procedures, ceremonies), cooking or
baking activities, competitive activities (e.g., racing activi-
ties), game-related activities (e.g., online gaming, board
games, chess matches, role-playing games), social activities,
and news-related activities. In one aspect, the video-based
commentary provided by one or more broadcasters about the
event and consumed by one or more viewers may provide a
“second screen” experience for the viewers; in particular, in
some implementations, the viewers may consume the video-
based commentary about the event on their respective client
devices as they are watching the event itself on another
device (e.g., a television), or watching and/or participating
in the event at the event’s venue.

As discussed in greater detail below, in various aspects the
inventive systems, apparatus and methods described herein
provide an improvement in computer network functionality
by facilitating scalable and appreciably low-latency viewing
of copies of multiple broadcasters’ live streams of video-
based commentary about an event by significant numbers of
viewers as the event unfolds. Particularly in the context of
a “second screen” experience relating to a live event, dis-
cernible delay between the observation of the event itself
and a given broadcaster’s video-based commentary would
significantly undermine viewer experience. Accordingly, the
inventive systems, apparatus and methods described herein
specifically address multiple technological problems in con-
ventional techniques relating to transport of digital content
via the Internet by providing multiple technological solu-
tions to ensure a low-latency viewing experience for sig-
nificant numbers of viewers.

In such implementations relating to video-based commen-
tary about events, the inventive systems, apparatus and
methods disclosed herein further may facilitate display, on
respective client devices used by the broadcaster and the one
or more viewers, of various event information in tandem
with the video-based commentary rendered on the respective
client devices. For example, in connection with sports
games, displayed event information may include, but is not
limited to, one or more of team information (e.g., team
names, abbreviations and/or logos), score information (e.g.,
with essentially real-time score updates synchronized with
the video-based commentary), player information, venue
information, game status information (e.g., on-base, at-bat,
timeouts, fouls, pole position, yards-to-go, yards-to-goal,
down), team statistics, player statistics and the like. In some
implementations, such event information about a sports
game may be rendered in the display of a client device as a
“scorebug” that may include for example, team abbrevia-
tions or logos, team scores, game status (e.g., period, quarter,
inning), and actual or elapsed time for the game, with
updates to one or more information elements in essentially
real-time as the game progresses. It should be readily
appreciated that for other types of events, a wide variety of
information germane to the event may be displayed as event
information (e.g., with essentially real-time updates of
evolving information as the event progresses) together with
the rendering of the video-based commentary on respective

US 11,871,088 B2

5

client devices. In another aspect, various event information
or other information germane to a given broadcaster’s
video-based commentary may be rendered on a viewer client
device in a “lower third” (also sometimes referred to as a
“bottom third”) of a display (e.g., as an overlay to the
video-based commentary).

In view of the foregoing, in other aspects the inventive
systems, apparatus and methods described herein provide
additional improvements in computer network functionality
by facilitating scalable and appreciably low-latency syn-
chronization of displayed event information with multiple
broadcasters’ live streams of video-based commentary about
an event as viewed by significant numbers of viewers as the
event unfolds. Particularly in the context of a “second
screen” experience relating to a live event, discernible delay
between the observation of the event itself and the status of
event information displayed in tandem with a given broad-
caster’s video-based commentary would significantly under-
mine viewer experience. Accordingly, the inventive systems,
apparatus and methods described herein specifically address
multiple technological problems in conventional techniques
relating to transport of digital content via the Internet by
providing multiple technological solutions to ensure not
only a low-latency viewing experience for significant num-
bers of viewers (e.g., relative to the event about which a
broadcaster is providing video-based commentary), but
appropriate synchronization of event information across all
broadcasters of an event and their associated viewers.

In some implementations as discussed herein, these tech-
nological solutions contemplate multiple Internet commu-
nication channels to provide relevant and synchronized
information to client devices (as would be readily appreci-
ated in the relevant arts, a “communication channel” refers
to a physical or logical connection over a transmission
medium to convey information signals from one or more
senders to one or more receivers). For example, in one
implementation, a first “video” Internet communication
channel (e.g., between a media server or other media source
and a client device) conveys the digital content correspond-
ing to the video-based commentary provided by the broad-
caster and consumed by one or more viewers, and a second
“event information” Internet communication channel (e.g.,
between a particular socket of a socket server and the client
device) conveys the event information. In other implemen-
tations, an additional “chat/system event” Internet commu-
nication channel (e.g., between another socket of a socket
server and the client device) is employed to convey chat
information and other information relating to system events
regarding a particular broadcaster’s live stream. In one
aspect, connections between client devices and a particular
socket of a socket server are persistent authenticated con-
nections, so that the number of users (broadcasters and
viewers) connected to a particular socket (e.g., and currently
watching a particular live stream and/or particular event)
may be tracked.

In some implementations, the inventive systems, appara-
tus, and methods further facilitate a variety of screen ani-
mations (e.g., motion graphics), customized displays or
screen backgrounds, and other special effects graphics (e.g.,
augmented reality) that are generally associated with the
video and/or audio created by a broadcaster, and rendered by
client devices in tandem with a given broadcaster’s video
and/or audio.

In some implementations in which the broadcaster may be
creating/providing video and/or audio content about an
event, one or more such screen animations, customized
displays or screen backgrounds, and other special effects

10

15

20

25

30

35

40

45

50

55

60

65

6

graphics may be related to some aspect of the event. For
example, as noted above, a “scorebug” providing informa-
tion about a sporting event may be presented on a viewer’s
display with a variety of motion or other special effects
graphics. In one aspect, the information provided by such a
scorebug is derived from the synchronized event informa-
tion that is received by the client device on an event
information Internet communication channel that is separate
from the video content representing the video-based com-
mentary. In another aspect, the scorebug and/or other special
effects graphics or animations may be rendered in the
display of the client device pursuant to execution of a client
app or program on the client device (rather than having these
display elements integrated into the broadcaster’s live
stream itself). In other aspects, one or more such screen
animations and other special effects may be provided in a
lower/bottom third of a client device’s display, and may be
interactive (e.g., in that a user of a client device may select
or thumb-over an animation, special effect and/or scorebug
to retrieve additional information and/or initiate other ani-
mations/graphics) and/or user-customizable (e.g., a broad-
caster may select from one of multiple background displays
so that they may appear to be in any of a variety of locations
or venues, customize their video-based commentary with a
broadcaster-generated lower third, and/or add create/provide
introduction videos to be shown before their live stream
begins).

In yet other aspects, screen animations, customized dis-
plays or screen backgrounds, and/or other special effects
graphics may be related to one or more of advertising or
branding (e.g., by sponsors of a broadcaster, sponsors of an
event about which a broadcaster is providing commentary,
participants in the event itself, etc.), premium features and
digital gifts (e.g., provided by one or more viewers to one or
more broadcasters or other viewers). For example, in some
implementations, via a client app or software program
executing on a client device, users will be able to purchase
digital gifts for other users (e.g., a viewer following a
particular broadcaster may purchase digital beers, various
digital concession stand items, ticker tapes, penalty flags,
etc.), and the digital gifts will appear in the broadcaster’s
profile and/or be represented on a display (e.g., as an icon or
sprite) together with the broadcaster’s video-based commen-
tary. In one implementation, information regarding digital
gifts may be communicated between client devices and the
server and memory storage architecture via a chat/system
event Internet communication channel associated with a
given broadcaster’s live stream of digital content.

In some implementations, the video and/or audio created/
provided by one or more broadcasters may relate to various
types of news, other types of current or past events, and
various topics of interest about which a given broadcaster
wishes to provide commentary. For example, a given broad-
caster, or multiple broadcasters (which may be globally-
distributed broadcasters, e.g., a first broadcaster in Europe,
a second broadcaster in Africa, and a third broadcaster in
Asia) may wish to broadcast about an ongoing, recent or past
event (e.g., news about a bombing, a fire, an arrest, an
economic development, a political or military development,
or any of the other activities discussed above) or a particular
topic of interest (e.g., healthy eating or dieting, gardening,
religion, dating, politics, culture, art, music, playing a musi-
cal instrument, learning a language, auto repair, real estate,
business, economics, legal issues, global warming, space
exploration, a particular TV program or series, a particular
entertainment or sports personality, video games, hobbies,
etc.). As noted above, various event information regarding

US 11,871,088 B2

7

the ongoing, recent or past event (or particular topic of
interest) may be provided to respective viewer devices, in
tandem with the video-based commentary, in a variety of
form factors and in a manner that ensures appropriate
synchronization of event information across all broadcasters
of an event and their associated viewers.

In yet other implementations, inventive systems, appara-
tus, and methods according to the present disclosure facili-
tate one or more broadcasters in providing video-based
commentary regarding a live event, and combine the broad-
caster’s video-based commentary with an audio/video feed
of the live event itself so as to generate an integrated live
event and commentator stream. Multiple viewers interested
in a particular broadcaster’s commentary may receive syn-
chronized copies of the integrated live event and commen-
tator stream via a content delivery network that accesses the
copy of live stream from a first media server endpoint
corresponding to the live stream (e.g., according to a first
live stream Internet URL). Respective viewer devices
receiving copies of this live stream also connect to an event
socket of a socket server (e.g., according to a first event
socket Internet URL) to receive synchronized event infor-
mation (e.g., real time scores) relating to the event. Based on
the received copy of the integrated live event and commen-
tator stream and the synchronized event information, a given
viewer device displays the broadcaster’s video-based com-
mentary together with the audio/video of the live event
itself, as well as the event information (e.g., as a “score-
bug”), to provide a “single screen experience.”

In some implementations relating to such a single screen
experience, the event socket also may provide event broad-
caster information relating to different broadcasters offering
video-based commentary about the same live event. Respec-
tive viewers of the same live event may select amongst
different broadcasters for the event, based on the event
broadcaster information provided by the event socket, to
access a different but synchronized integrated live event and
commentator stream (e.g., according to a second live stream
Internet URL associated with a different broadcaster). Thus,
the event broadcaster information provides a seamless tran-
sition to a different broadcaster’s commentary integrated
with the audio/video of the live event. The viewer device
may remain connected to the event socket to continue to
receive the synchronized event information which is dis-
played together with the different broadcaster’s commentary
and the audio/video of the live event, as well as ongoing
updates to event broadcaster information to keep abreast of
different broadcasters that are providing video-based com-
mentary about the event.

Thus, in various examples discussed in greater detail
below, systems, apparatus, and methods are disclosed for
obtaining, substantially in real time, via at least one com-
munication interface over at least one network, an audio
and/or visual feed generated by a broadcaster client device
during at least one live event, wherein the audio and/or
visual feed includes commentary associated with the at least
one live event, and a separate event data feed including real
time information associated with the at least one live event.
The commentary and the real time information associated
with the at least one live event are transmitted via at least one
processor communicatively coupled to the at least one
communication interface, so as to provide, substantially in
real time, streaming content via the at least one communi-
cation interface over the at least one network to at least one
display device for concurrent display of the commentary and
a graphical ticker based on the real time information asso-
ciated with the event. The disclosed systems, apparatus, and

10

15

20

25

30

35

40

45

50

55

60

65

8

methods are enhanced tools for real-time broadcasting of
user-generated content associated with one or more live
events and community engagement that are unavailable
from existing video hosting websites.

Glossary

USER: a person who interfaces, via a mobile app or web
portal accessed on a client device communicatively coupled
to the Internet, with one or more of the various servers and
corresponding server functionality described herein.

REGISTERED USER: A user that provides profile infor-
mation and validation credentials to establish a user account
s0 as to access, via a login process using the validation
credentials, the one or more of the various servers and
corresponding server functionality described herein.

ANONYMOUS USER: A non-registered user that has
access, without requiring a login process, to a limited feature
set based on the server functionality described herein.

BROADCASTER: A registered user that creates/provides
video and/or audio (also referred to herein in some instances
as “video-based commentary”) for consumption by one or
more viewers.

EVENT: An activity about which a broadcaster may
create/provide video and/or audio as the activity occurs (i.e.,
in “real-time”). Examples of activities constituting events
according to the present disclosure include, but are not
limited to, a variety of sports games (e.g., professional,
semi-professional, intramural, community-oriented) or
sporting activities (e.g., exercise-related activities, physical
training activities, fishing, hunting), musical performances,
theatrical performances, other artistic or entertainment-ori-
ented activities, speeches or presentations, political activi-
ties (e.g., election-related activities, campaign-related activi-
ties, public or “town hall” meetings, public marches or
demonstrations), military activities, professional activities
(e.g., meetings or conferences), academic or educational
activities (e.g., academic presentations or lectures, research
activities, medical or scientific procedures, ceremonies),
cooking or baking activities, competitive activities (e.g.,
racing activities), game-related activities (e.g., online gam-
ing, board games, chess matches, role playing games), social
activities, and news-related activities. Video and/or audio
created/provided by a broadcaster about an event may be
referred to herein as “video-based commentary.” In some
implementations, the video and/or audio created/provided
by one or more broadcasters may relate to various types of
news, other types of current, recent or past events, and
various topics of interest about which a given broadcaster
wishes to provide commentary (e.g., news about a bombing,
a fire, an arrest, an economic development, a political or
military development, or any of the other activities dis-
cussed above, healthy eating or dieting, gardening, religion,
dating, politics, culture, art, music, playing a musical instru-
ment, learning a language, auto repair, real estate, business,
economics, legal issues, global warming, space exploration,
a particular TV program or series, a particular entertainment
or sports personality, video games, hobbies, etc.).

VIEWER: A registered user or anonymous user that
consumes video and/or audio created/provided by a broad-
caster, via essentially real-time access to a live stream of
digital content representing the video and/or audio, or via
retrieval and playing of a recording of the live stream of
digital content.

LIVE STREAM: Digital content (e.g., digital video and/
or digital audio) that is transferred between at least two
network-connected devices in real-time or essentially real-

US 11,871,088 B2

9

time as the corresponding video and/or audio codified as the
digital content is created/provided by a broadcaster. Thus, a
network-connected client device used by the broadcaster
may generate a live stream of digital content corresponding
to the video and/or audio created/provided by the broad-
caster, and a viewer using a different network-connected
client device may receive a copy of a live stream of the
digital content as a real-time or essentially real-time con-
sumer of the video and/or audio created/provided by the
broadcaster. In some implementations, the video and/or
audio created/provided by the broadcaster and represented in
a live stream may be video-based commentary relating to an
event. A live stream of digital content may have a variety of
data formats (e.g., H.264 MPEG-4 Advanced Video Coding
video compression; VP8 video compression) and transmis-
sion protocols, including persistent/continuous streaming
transmission protocols (e.g., real time streaming protocol
“RTSP;” real time messaging protocol “RTMP;” web real-
time communication “WebRTC”), as well as segmented
and/or adaptive bitrate (ABR) protocols (e.g., Apple’s HTTP
Live Streaming “HLS;” Microsoft’s HT'TP Smooth Stream-
ing “MSS;” Adobe’s HTTP Dynamic Streaming “HDS;”
standards-based ABR protocol “MPEG-DASH”).

FOLLOWER: A registered user who is notified when a
particular broadcaster is online.

SUBSCRIBER: A follower of a particular broadcaster that
has paid for access to additional features and/or content not
available to a follower (e.g., subscriber-specific chat chan-
nels).

VIP MEMBER: an admin-designated registered user that
has additional access rights and high priority access to live
stream media servers.

MEDIA MEMBER: an admin-designated registered user
that is a media professional. In some implementations, the
media member designation is used during some live streams
to facilitate filtering and prioritization of comments/chat
message for response by the broadcaster of the live stream.

ADMIN USER: a staff account flagged with administra-
tive powers.

PRIVATE PROFILE: a profile for a user that has desig-
nated their content as private, only allowing direct link
access to live/replay streams and archive access to broad-
casters that the user has followed.

RAW VIDEO: A recording made by a media server of a
live stream generated by a broadcaster. In one example
implementation in which a broadcaster client device gener-
ates a video stream in H.264/AAC format and the media
server is a Real Time Messaging Protocol (RTMP) media
server, the raw video is produced by the RTMP media server
by recording the broadcaster’s live stream directly (to pro-
vide a 720p high definition feed or even higher definition
feed). In another example in which a broadcaster client
device generates a video stream in VP8/WebRTC format and
the media server is a WebRTC media server, the WebRTC
media server first transcodes the live stream from the
broadcaster into a H.264 720p high definition (or even
higher definition feed) and then records the transcoded feed
to provide the raw video.

APPENDIX A includes a YAML file associated with an
Application Program Interface (API) employed in connec-
tion with at least some of the inventive implementations
disclosed herein.

It should be appreciated that all combinations of the
foregoing concepts and additional concepts discussed in
greater detail below (provided such concepts are not mutu-
ally inconsistent) are contemplated as being part of the
inventive subject matter disclosed herein. In particular, all

25

40

45

55

10

combinations of any claimed subject matter appearing at the
end of this disclosure are contemplated as being part of the
inventive subject matter disclosed herein. It should also be
appreciated that terminology explicitly employed herein that
also may appear in any disclosure incorporated by reference
should be accorded a meaning most consistent with the
particular concepts disclosed herein.

Other systems, processes, and features will become appar-
ent to those skilled in the art upon examination of the
following drawings and detailed description. It is intended
that all such additional systems, processes, and features be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings
primarily are for illustrative purposes and are not intended to
limit the scope of the inventive subject matter described
herein. The drawings are not necessarily to scale; in some
instances, various aspects of the inventive subject matter
disclosed herein may be shown exaggerated or enlarged in
the drawings to facilitate an understanding of different
features. In the drawings, like reference characters generally
refer to like features (e.g., functionally similar and/or struc-
turally similar elements).

FIG. 1A is a block diagram showing respective elements
of a system to facilitate live streaming of digital content
(video and/or audio) from multiple broadcasters to multiple
viewers, according to some inventive implementations.

FIG. 1B illustrates a display of an example client device
in the system of FIG. 1A, showing various displayed content
according to some inventive implementations.

FIG. 2 is a block diagram of the broadcast/viewing servers
and memory storage devices shown in FIG. 1A according to
some inventive implementations.

FIG. 3 is a block diagram showing additional details of
the various interconnections between the respective compo-
nents of the servers and memory storage devices shown in
FIG. 2, according to some inventive implementations.

FIGS. 4A and 4B show a process flow diagram illustrating
a broadcast media server selection algorithm according to
one inventive implementation, which in some examples may
be performed by one or more web servers shown in FIGS.
2 and 3.

FIGS. 5A through 5C show a process flow illustrating a
media server process for the media servers shown in FIGS.
2 and 3, according to one inventive implementation.

FIG. 6 is a block diagram illustrating the selective cou-
pling of an example viewer client device to one of the media
sources of the servers and memory storage devices shown in
FIGS. 2 and 3, according to some inventive implementa-
tions.

FIG. 7 is a process flow diagram illustrating a viewer
stream source selection algorithm according to one inventive
implementation, which in some examples may be performed
by the one or more web servers shown in FIGS. 2, 3 and 6.

FIG. 8 is a block diagram showing additional details of
the HLS server architecture of the servers and memory
storage devices shown in FIGS. 2, 3 and 6, according to
some inventive implementations.

FIGS. 9A through 9D show a process flow illustrating an
HLS stream viewing process performed by the HLS server
architecture shown in FIG. 8, according to one inventive
implementation.

US 11,871,088 B2

11

FIG. 10 illustrates some of the functionality (e.g., services
and other processes) performed by the control server shown
in FIGS. 2 and 3, according to one inventive implementa-
tion.

FIGS. 11A through 11C show a process flow diagram
illustrating an RTMP media server scaling system service
method performed by the control server of FIG. 10, accord-
ing to one inventive implementation.

FIGS. 12A through 12C show a process flow diagram
illustrating an RTMP CDN server scaling system service
method performed by the control server of FIG. 10, accord-
ing to one inventive implementation.

FIGS. 13A and 13B show a process flow diagram illus-
trating a stream and server watchdog service method per-
formed by the control server of FIG. 10, according to one
inventive implementation.

FIGS. 14A and 14B show a process flow diagram illus-
trating a check RTMP media/CDN server method performed
by the control server of FIG. 10 (e.g., as part of the method
shown in FIGS. 13A and 13B), according to one inventive
implementation.

FIG. 15 shows a process flow diagram illustrating an
event data ingress service method performed by the control
server of FIG. 10, according to one inventive implementa-
tion.

FIGS. 16A and 16B show a process flow diagram illus-
trating a live event data monitor service method performed
by the control server of FIG. 10, according to one inventive
implementation.

FIGS. 17A and 17B show a process flow diagram illus-
trating an asynchronous task service method performed by
the control server of FIG. 10, according to one inventive
implementation.

FIGS. 18A and 18B show a process flow diagram illus-
trating a process for taking a screenshot (thumbnail) of a live
stream, performed by the control server of FIG. 10, accord-
ing to one inventive implementation.

FIGS. 19A and 19B show a process flow diagram illus-
trating a user login process according to one inventive
implementation, which in some examples may be performed
by a client device and facilitated by one or more web servers
shown in FIGS. 2 and 3.

FIGS. 20A and 20B show a process flow diagram illus-
trating a mobile broadcaster stream create process according
to one inventive implementation, which in some examples
may be performed by a broadcaster client device shown in
FIG. 1A and facilitated by one or more web servers shown
in FIGS. 2 and 3.

FIGS. 21A, 21B, 21C, 21D, and 21E show a process flow
illustrating a mobile broadcaster active stream process
according to one inventive implementation, which in some
examples may be performed at least in part by a broadcaster
client device shown in FIG. 1A.

FIGS. 22A and 22B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for the processes shown in FIGS. 20A and 20B, and
FIGS. 21A-21E, according to one inventive implementation.

FIGS. 23 A and 23B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for a live stream RTMP media server or RTMP CDN
viewer, according to one inventive implementation.

FIGS. 24A and 24B show a communication flow diagram
illustrating process flow elements and the server and/or

10

15

20

25

30

35

40

45

50

55

60

65

12

memory storage devices involved in the communication
flow for a live stream HLS viewer, according to one inven-
tive implementation.

FIGS. 25A, 25B, and 25C show a process flow illustrating
a mobile client live stream replay method, according to one
inventive implementation.

FIGS. 26A, 26B, and 26C show a process flow illustrating
an event data replay process called in the method of FIGS.
25A, 25B and 25C, according to one inventive implemen-
tation.

FIG. 27 shows a process flow illustrating a user input
replay process called in the method of FIGS. 25A, 25B and
25C, according to one inventive implementation.

FIG. 28 illustrates a viewing display screen of broadcaster
video-based commentary integrated with audio/video of a
live event and event information (e.g., in the form of a
scorebug) to provide a single screen experience for viewing
the broadcaster video-based commentary together with
video the live event, according to one inventive implemen-
tation.

FIG. 29 is a block diagram of the broadcast/viewing
servers and memory storage devices and associated client
devices, similar to that shown in FIG. 2, illustrating some of
the particular features germane to one example of a single
screen implementation.

FIG. 30 is a flow chart illustrating a process implemented
by the various devices shown in FIG. 29, according to one
inventive implementation.

FIGS. 31A and 31B show a process flow diagram, similar
to that shown in FIGS. 16A and 16B, illustrating a modified
live event data monitor service method performed by the
control server of FIG. 29, according to one inventive imple-
mentation.

FIGS. 32A, 32B, 32C, 32D, 32E and 32F show a process
flow, similar to that shown in FIGS. 21A, 21B, 21C, 21D,
and 21E, illustrating a modified mobile broadcaster active
stream process according to one inventive implementation
relating to the single screen experience.

DETAILED DESCRIPTION

Following below are more detailed descriptions of various
concepts related to, and implementations of, inventive sys-
tems, methods and apparatus for scalable low-latency view-
ing of broadcast digital content streams of live events
(including integrated broadcast commentary and event
audio/video streams of the live event itself), and synchro-
nization of event information with viewed streams, via
multiple Internet channels. It should be appreciated that
various concepts introduced above and discussed in greater
detail below may be implemented in various manners, and
that examples of specific implementations and applications
are provided primarily for illustrative purposes.

1. Overview

The present disclosure describes inventive systems, appa-
ratus, and methods for connecting followers of live events
(e.g., sports, performances, speeches, etc.), including com-
mentators, spectators, and/or participants in live events (e.g.,
athletes, performers, politicians, etc.). In some example
implementations, the inventive systems, apparatus and
methods further provide a social platform for sharing and
contributing multimedia associated with live events.

Live streaming is used herein to refer to delivery and/or
receipt of content in real-time, as events happen, or sub-
stantially in real time, as opposed to recording content to a
file before being able to upload the file to a media server, or
downloading the entire file to a device before being able to

US 11,871,088 B2

13

watch and/or listen to the content. Streaming media is used
herein to refer to multimedia (e.g., digital video and/or audio
media) that is delivered between two or more network-
connected devices in real time or substantially in real time.
Streaming may apply to continuously updated media content
other than video and audio including, but not limited to, a
live ticker, closed captioning, and real-time text. An end-
user (e.g., a viewer) may watch and/or listen to media
streamed over a network (e.g., the Internet) using a user
output interface such as a display and/or over a speaker
communicatively coupled with, for example, a desktop
computer, notebook or laptop computer, smart television,
set-top box, Blu-ray™ player, game console, digital media
player, smartphone (e.g., iOS or Android), or another net-
work-connected interactive device.

In some implementations, a network platform receives
and provides multimedia (e.g., digital video content and/or
digital audio content) associated with a live event. The
multimedia may be captured by one or more broadcasters
present at the live event. A broadcaster present at the live
event may stream video and/or audio content to the network
platform in real time or substantially in real time during the
live event. For example, a broadcaster may capture video of
a sporting event, such as a local high school football game,
using a video camera, smartphone camera, etc. The video
may include audio and/or visual commentary from the
broadcaster. One or more viewers (either present or not
present at the event) may stream video and/or audio of the
event to watch and/or listen in real time or substantially in
real time during the live event to the broadcaster’s com-
mentary. Alternatively, a broadcaster present at the live
event may record video and/or audio content for delayed
streaming or uploading to the network platform during or
after the live event, and a viewer may download the broad-
caster’s recording of the live event and the video and/or
audio commentary for delayed viewing and/or listening.

In some implementations, a broadcaster may or may not
be present at a live event to still generate multimedia content
(broadcaster commentary) associated with the event during
the event. For example, a broadcaster may generate audio or
visual content about the event while simultaneously follow-
ing the event via a live broadcast by a third party (e.g.,
television, radio, Internet, etc.). The multimedia content may
or may not include or be integrated with video and/or audio
from the event itself.

In some implementations, a network platform is capable
of integrating user-generated (broadcaster-generated) mul-
timedia with real-time data (e.g., “event information”) col-
lected by the user or a third party. For example, a live
competitive event may be integrated with scores for the
event. Other real-time data may include but is not limited to
alerts, statistics, trivia, polls, news, broadcaster and/or
viewer messages, and/or advertising associated with or
relevant to the event, a participant in the event, a location of
the event, a date/time of the event, etc. In one implementa-
tion, a network platform allows a user to select content, for
example, news articles, and create onscreen elements for
simultaneous viewing of the content.

Audio and/or visual indications and content may be
integrated with user-generated multimedia for simultaneous
presentation. The presentation may be in real-time or sub-
stantially in real-time. For example, audio indications may
be presented with digital video media, and/or visual content
may be presented with digital audio media. In some imple-
mentations, audio and/or visual indications and content are
presented simultaneously with digital audio and/or video
media using multiple tracks and/or display frames or over-

15

30

35

40

45

50

14

lays. For example, digital video media of a basketball game
or of a broadcaster providing play-by-play audio commen-
tary for the game may be displayed with an overlay of a
real-time scoreboard and/or ticker. Alternatively, the real-
time scoreboard and/or ticker may be presented in a separate
frame.

Audio and/or visual indications and content may be
modifiable and/or interactive. For example, traditional news
and sports broadcasting may insert audio and/or visual
indications and content into an outgoing digital audio and/or
video media stream. The receiving client devices have been
assumed to be “dumb,” that is, only capable of displaying
the audio and/or video media as received. In contrast, in
inventive implementations disclosed herein “smart” client
devices allow audio and/or visual indications and content to
be rendered on the client side, which allows for real-time
modification and interaction with viewers and/or listeners.
That is, client-side rendering allows for interactivity with
elements and enhanced features not available to traditional
broadcasting.

FIG. 1A is a block diagram of a system according to one
inventive implementation, including multiple client devices
(e.g., broadcaster client devices 100A and 100B, viewer
client devices 200A, 200B, 200C and 200D), broadcast/
viewing servers and memory storage devices 1000 (e.g.,
serving as the network platform noted above), an event
information provider 55, one or more news feeds (RSS
feeds) 65, and a digital distribution platform (app store) 75
all communicatively coupled via the Internet 50. Each of the
client devices 100A, 100B, 200A, 200B, 200C, 200D may
download from the digital distribution platform 75 an app or
software program that becomes resident on the client device
(i.e., a client app) and performs at least some of the various
broadcaster and viewer functionality described herein in
connection with broadcasting live streams of digital content
and viewing copies of broadcasted live streams, exchanging
chat messages amongst broadcasters and one or more view-
ers, logging system events and providing system event
messages to broadcasters and viewers, collecting and main-
taining/updating event information and providing event
information to broadcasters and viewers in a synchronized
manner, providing and updating various animation and
special effects graphics, and replaying of recorded streams.

Although FIG. 1A illustrates two broadcaster client
devices and four viewer client devices, it should be appre-
ciated that various numbers of client devices (broadcaster
client devices and viewer client devices) are contemplated
by the systems, apparatus and methods disclosed herein, and
those shown in FIG. 1A are for purposes of illustration.
More specifically, a given broadcaster may have virtually
any number of viewers using respective viewer client
devices to receive copies of the broadcaster’s live stream of
digital content via the servers and memory storage devices
1000; similarly, the system may accommodate virtually any
number of broadcasters providing live streams of digital
content to the servers and memory storage devices 1000,
wherein each broadcaster has multiple viewers receiving
copies of the broadcaster’s live stream of digital content. In
the example shown in FIG. 1A, a first broadcaster client
device 100A provides a first live stream of digital content
102A, and a first plurality of viewer client devices 200A and
200B (grouped by a first bracket) receive respective copies
202A and 202B of the first broadcaster’s live stream of
digital content. Similarly, a second broadcaster client device
100B provides a second live stream of digital content 102B,
and a second plurality of viewer client devices 200C and
200D (grouped by a second bracket) receive respective

US 11,871,088 B2

15

copies 202C and 202D of the second broadcaster’s live
stream of digital content. With respect to events or news that
may be germane to a given broadcaster’s live stream of
digital content, the broadcast/viewing servers and memory
storage devices 1000 may retrieve various event information
from the event information provider 55 (e.g., STATS LLC),
and various news from news feeds (RSS) 65, and in turn
convey various event information and/or news to one or
more client devices.

As discussed in further detail below, a variety of digital
content format and transmission protocols are contemplated
herein for the broadcaster live streams 102A and 102B
output by the broadcaster client devices 100A and 100B
respectively, as well as the copies of the live streams 202A,
202B, 202C and 202D received by respective viewer client
devices 200A, 200B, 200C and 200D. For example, the first
broadcaster client device 100 A may be a mobile broadcaster
client device (e.g., a smartphone) and output a live stream of
digital content 102A having an H.264 MPEG-4 Advanced
Video Coding (AVC) video compression standard format,
via real time messaging protocol (RTMP) transport for
continuous streaming over the Internet (e.g., via a persistent
connection to a first media server of the servers and memory
storage devices 1000). The second broadcaster client device
100B may be a web-based device (e.g., a desktop computer)
and output a live stream of digital content 102B having a
VP8 video compression format, transmitted via the web
real-time communication (WebRTC) protocol for continu-
ous streaming over the Internet (e.g., via a persistent con-
nection to a second media server of the servers and memory
storage devices 1000). The copies of the live streams 202A,
202B, 202C and 202D may be transmitted by the servers and
memory storage devices 1000 as continuous streams using
RTMP or WebRTC, or using segmented and/or adaptive
bitrate (ABR) protocols (e.g., Apple’s HI'TP Live Streaming
“HLS;” Microsoft’s HTTP Smooth Streaming “MSS;” Ado-
be’s HTTP Dynamic Streaming “HDS;” standards-based
ABR protocol “MPEG-DASH”).

FIG. 1B illustrates a display 250 of an example viewer
client device 200A in the system of FIG. 1A, showing
various displayed content according to some inventive
implementations. It should be appreciated that one or more
elements of the various content discussed in connection with
FIG. 1B similarly may be provided on the display of a
broadcaster client device. In the example of FIG. 1B, a
broadcaster is providing video-based commentary relating
to a live sporting event, and the display 250 of the viewer
client device 200A includes various content elements includ-
ing the broadcaster’s video-based commentary 252, event
information 254 relating to the live sporting event about
which the broadcaster is providing the video-based com-
mentary, chat messages 258 from one or more viewers
consuming the broadcaster’s video-based commentary, and
various graphics, special effects and/or animation elements
256 (e.g., some of which are rendered in a “lower third” of
the display 250).

More specifically, as shown in FIG. 1B, the client device
200A renders in the display 250 (pursuant to execution of a
client app or software program) a first broadcaster’s video-
based commentary 252. As discussed above in connection
with FIG. 1A, the first broadcaster’s video-based commen-
tary 252 is codified in a live stream of digital content 102A
provided by the first broadcaster client device 100A to the
servers and memory storage devices 1000, and a copy 202A
of the first broadcaster’s live stream is received by the
viewer client device 200A from the servers and memory
storage devices 1000. The display also includes event infor-

10

15

20

25

30

35

40

45

50

55

60

65

16

mation 254 in the form of a “scorebug,” wherein the
scorebug includes indicators for the teams participating in
the live sporting event, score information for the live sport-
ing event, and event status (e.g., time clock, period or
quarter, etc.). In various implementations discussed in fur-
ther detail below, the scorebug may be animated, may
include one or more special effects graphics elements, and/or
may be interactive (e.g., the viewer may press or thumb-over
one or more portions of the scorebug to launch further
graphics or animations, receive additional information about
the live sporting event, or navigate to another Internet
location to receive additional information relating to the live
sporting event).

The display 250 in FIG. 1B also includes lower-third
content 256 comprising additional graphics, special effects
and/or animation elements which similarly may be interac-
tive; such elements may include a broadcaster-selected title
for the broadcast, as well as text commentary from the
broadcaster or event-related news. Additionally, as shown in
the left portion of the display 250, the display may include
one or more chat messages 258 from different viewers of the
broadcaster’s video-based commentary, including responses
from the broadcaster themselves; as seen in FIG. 1B, the
chat messages 258 may include the name of the viewer, a
viewer photo, and the chat message content itself.

In some implementations, the network platform provided
by the servers and memory storage devices 1000 maintains
user profiles for broadcasters and viewers. Each user profile
may be associated with, for example, a user email address,
user device, or other unique identifier. Each user profile
interface (e.g., “page” such as a webpage) may include
and/or be customized with content (e.g., a profile photo,
descriptive text, user-generated multimedia, favorite team
imagery, etc.). In some implementations, the network plat-
form further allows for the creation of “team” profiles; for
example, event participants (e.g., individuals, groups, par-
ties, teams, bands, schools, etc.) may share a “team” profile,
wherein the team profile interface (e.g., “page” such as a
webpage) may aggregate relevant content (e.g., news or
current events about a particular event or team, such as polls,
trivia, photo galleries, etc.) and provide further opportunities
for users to contribute and connect with each other. The
network platform may provide user preference options to
further define a team profile interface with recommendations
and/or alerts specific to a particular user (e.g., to prominently
feature recent activity of a particular user).

With respect to social media-related features, as noted
above the network platform provides chat capabilities such
that users may engage in live public and/or private chat
sessions. For example, in some implementations, users may
request permission (or be allowed) to send each other private
and/or public messages (e.g., direct messages). Furthermore,
users may be able to purchase private and/or public virtual
gifts (e.g., digital images of beers, penalty flags, etc., or
profile/content enhancements like ticker tape) or provide
“sponsorships” for other users. Public gifts received by a
user may be displayed on the user’s profile and/or with his
or her content.

In some implementations, users are able to publicly
and/or privately comment on, rate, “like,” or otherwise
indicate their opinions on live events, event-associated top-
ics, user profiles, team profiles, and user-generated content.
Users may be able to use # hashtags within their messages,
chat sessions, comments, and/or other activity to link to
messages, chat sessions, comments, and/or other activity
happening among other users and/or teams. Users may be

US 11,871,088 B2

17

able to use @ symbols within their messages, chat sessions,
comments, and/or other activity to tag other users, event
participants, and teams.

In some implementations, a network platform provides a
directory of live events. The directory interface may be
presented as a listing, drop-down menu, keyword search bar,
etc. The directory interface may include and/or distinguish
between different categories of events. For example, the
directory interface may include and/or distinguish between
events that are scheduled, underway, and/or completed. The
directory interface also may include and/or distinguish
between different or particular types of events (e.g., live
sports versus live music, baseball versus hockey, profes-
sional versus collegiate, National [.eague versus American
League, etc.); different or particular participants in the
events (e.g., team, coach, athlete, owner, school, etc.);
and/or different or particular locations of the events (e.g.,
country, region, state, county, town, district, etc.). As dis-
cussed in greater detail below, in one implementation a
dedicated control server of the network platform periodi-
cally retrieves a variety of event information from one or
more event information providers (e.g., for sports events,
ESPN, STATS LLC), and populates a database of the
network platform with information on available events so as
to provide the directory of live events to a user.

In some implementations, the network platform may
provide user preference options to further define an event
directory interface with recommendations and/or alerts spe-
cific to a particular user. The network platform may request
the location of a user or permission to access the geo-
location of the user’s device in order to recommend events
nearby. The network platform may track and interpret pat-
terns in the user’s use of the platform to predict and
recommend events specific to the user.

In some implementations, after a user selects an event, the
network platform provides a directory of other users who are
present at the event and/or generating media associated with
the event. The directory interface may be presented as a
listing, drop-down menu, keyword search bar, etc. Selection
of another user from the event-specific directory allows
connection to, communication with, and/or access to media
generated by that user. Thus, a user is able to discover and
connect with similar users. The network platform may
provide user preference options to further define a user
directory interface with recommendations and/or alerts spe-
cific to a particular user. For example, in some implemen-
tations, users can discover other users based in part on one
or more of the location of respective users, an event about
which the broadcaster is providing commentary, a title of a
broadcaster’s live stream, and topics or other users that have
been identified (e.g., in chat messages relating to a given
broadcaster’s live stream and/or a particular user’s profile,
using # hashtags or @ symbols).

In some implementations, the popularity of an event
and/or broadcaster is monitored, displayed, and/or used in
real-time or substantially in real-time. For example, a num-
ber of video servers may be scaled based on demand and/or
usage by client devices, including broadcasters and/or view-
ers. Worker servers may be used for distributed monitoring
and capturing screenshots/thumbnails of video streams. In
another example, client media source selection of live
stream copies, such as Real-Time Messaging Protocol
(RTMP) versus HTTP Live Streaming (HLS), may be based
on demand and/or usage levels (e.g., number of viewers
requesting copies of a given broadcaster’s live stream,
capacity of media servers and/or content delivery network).

10

15

20

25

30

35

40

45

50

55

60

65

18

II. Servers and Memory Storage Devices

Having provided an overview of the information flow and
general functionality enabled by the various elements shown
in FIG. 1A, additional details of the servers and memory
storage devices 1000 are now discussed, with reference
initially to FIG. 2.

In particular, FIG. 2 is a block diagram providing another
perspective of the system shown in FIG. 1A, showing
example communication connections between the broad-
caster client devices 100A and 100B and the servers and
memory storage devices 1000, example connections
between the servers and memory storage devices 1000 and
the viewer client devices 200A and 200C, and some struc-
tural details of the servers and memory storage devices
1000. Some of the broadcaster/viewer client devices that are
mobile devices (e.g., smartphones) have downloaded a cli-
ent app 5000 (e.g., from the digital distribution platform or
app store 75 shown in FIG. 1A) which is resident in memory
of'the client device and executed by a processor of the client
device. For purposes of simplitying the illustration, only the
viewer client devices 200A and 200C explicitly show the
client app 5000 resident on the client devices; it should be
appreciated, however, that one or more mobile broadcaster
client devices also have the client app 5000 installed
thereon.

As shown in FIG. 2, in one inventive implementation the
servers/memory storage devices 1000 include one or more
web servers 700 (also referred to herein as a “web server
pool”) that support an Applications Programming Interface
(API) to facilitate communications between the servers/
memory storage devices 1000 and one or more mobile
broadcaster/viewer client device executing the client app
5000, and also facilitate communications to and from web-
based client devices (that access the web server(s) via a web
portal at a particular URL). In this role, as discussed in
further detail below, much of the instructive communication
between the client devices and the servers/memory storage
devices 1000 occurs via the web server(s) 700. For example,
it is via the web server(s) 700 that client devices create new
live streams for broadcast and get access to media servers,
receive access to view other broadcasters’ live streams via
one of multiple different media sources, receive event infor-
mation associated with broadcasters’ live streams and send
and receive chat messages, log on and create or update user
profiles (or other profiles such as team profiles), and access
other social media-related functionality (e.g., digital gift
giving) to interact with other users. The web server(s) 700
are communicatively coupled to a memory system 400 that
includes a database 420, data storage 440, and one or more
memory caches 460 to store various information (e.g., user
profile information, stream information, event information,
recorded live streams, etc.) germane to the operation of the
servers and memory storage devices 1000 and the various
client devices.

The servers/memory storage devices 1000 further com-
prise a plurality of media sources 300 (e.g., computer servers
including one or more processors, memory, and one or more
communication interfaces) that receive a live stream of
video-based commentary from a given broadcaster client
device, and provide copies of the live stream of video-based
commentary to one or more viewer client devices. As shown
in FIG. 2, in one implementation the media sources 300 are
communicatively coupled to the memory system 400, and
may comprise one or more Real Time Messaging Protocol
(RTMP) media servers 320, an RTMP Content Delivery
Network (CDN) 340 (which itself includes a plurality of
content delivery network servers), one or more WebRTC

US 11,871,088 B2

19

media servers 360, and an inventive HTTP Live Streaming
(HLS) caching and amplifying server architecture 380.
Additional details of the media sources 300 are discussed
below in connection with FIGS. 3 through 6, and particular
details of media server processes (performed by the RTMP
media servers 320 and the WebRTC media servers 360) are
discussed below in connection with FIGS. 5A, 5B and 5C.
As also discussed below, in one implementation the web
server(s) 700 select a particular media server of the media
sources 300 to which a given broadcaster connects to
provide the broadcaster’s live stream of digital content, and
the web server(s) 700 also select a particular media source
of the media sources 300 to which a given viewer connects
to receive a copy of a given broadcaster’s live stream;
further details of a broadcast media server selection algo-
rithm and a viewer stream source selection algorithm imple-
mented by the web server(s) 700 are provided below in
connection with FIGS. 6 and 7.

The servers/memory storage devices 1000 shown in FIG.
2 further comprise a control server 500 coupled to the
memory system 400, the event information provider 55, and
the news feeds (RSS) 65 (e.g., via the Internet). In one
aspect, the control server 500 periodically retrieves various
event information from the event information provider 55
and/or news from the news feeds 65 that is germane to
respective broadcasters’ video-based commentary. In
another aspect, the control system 500 may store at least
some portion of retrieved event information and/or news in
the memory system 400. More generally, as discussed below
in connection with FIG. 10, the control server 500 imple-
ments a number of services/processes that govern function-
ality of other servers and devices in the servers/memory
storage devices 1000; examples of such control system
services/processes include, but are not limited to: an RTMP
media server scaling process to add or remove servers from
the one or more RTMP media servers 320 of the media
sources 300 (see FIG. 11); an RTMP CDN server scaling
process to add or remove servers from the RTMP CDN 340
of the media sources 300 (see FIG. 12); a live stream and
media server watchdog process (see FIGS. 13-14); an event
data ingress process (see FIG. 15); a live event data monitor
process (see FIG. 16); an asynchronous task processor (see
FIG. 17); and a live stream thumbnail/screenshot acquisition
process (see FIG. 18).

With reference again to FIG. 2, the servers/memory
storage devices 1000 further comprise one or more socket
servers 600 communicatively coupled to the web server(s)
700 and the control server 500. In one aspect, the socket
server(s) 600 facilitate communication, to one or more
broadcaster client devices and one or more viewer client
devices, of synchronized event information retrieved by the
control server 500 and associated with video-based com-
mentary relating to a particular event. In particular, one or
more sockets of the socket server(s) dedicated to the par-
ticular event allow respective client devices to establish an
event information channel with the socket server(s), such
that the event information (e.g., in the form of “event
messages”) is shared in a synchronized manner by all
broadcasters/viewers following the particular event.

In FIG. 2, the socket server(s) 600 also facilitate com-
munication, between a given broadcaster of a live stream of
video-based commentary and corresponding viewers of cop-
ies of the live stream, of chat messages and/or system event
information (also referred to collectively simply as “chat
information™) relating to the broadcaster’s live stream. In
particular, one or more sockets of the socket server(s) 600
dedicated to the particular broadcaster’s live stream allow

10

15

20

25

30

35

40

45

50

55

60

65

20

respective client devices used by the broadcaster and their
viewers to establish a chat/system event channel with the
socket server(s), such that chat messages/system event infor-
mation is shared in a synchronized manner by the broad-
caster of the live stream and corresponding viewers of
copies of the live stream. Chat messages sent on a given
chat/system event channel may be displayed as text on all
broadcaster/viewer client devices connected to the socket(s)
dedicated to the particular broadcaster’s live stream,
whereas system event information may be received (but not
necessarily displayed itself) by all client devices connected
to the socket(s) dedicated to the particular broadcaster’s live
stream, and provide the client device with relevant data or
instructions to take some action. As discussed further below,
examples of the types of system event information or
“system messages” that may be broadcast by the socket(s)
dedicated to the particular broadcaster’s live stream include,
but are not limited to, indications of viewers joining or
leaving a broadcast, an indication of a new follower of a
broadcaster, indications relating to the purchase of digital
gifts and types of digital gifts (which may cause some
display or audio event on the client device), indications
relating to “likes” (e.g., cheers, handclaps, or applause icons,
or audio of crowds cheering), and other data/instructions
relating to various social networking functionality.

In one aspect, connections between a given client device
and a particular socket of a socket server are persistent
authenticated connections (e.g., with IP-based fingerprint
identifiers for anonymous users). The authenticated connec-
tion allows the servers and media storage devices 1000 to
track how many users are connected to a particular socket at
any given time (and hence how many users are viewing a
copy of a particular broadcaster’s live stream, and/or how
many users are viewing a copy of a live stream relating to
a particular event). In another aspect, the various “mes-
sages” (e.g., event messages, chat messages, system mes-
sages) that are carried on the respective channels between a
given client device and corresponding sockets of the socket
server(s) are data packets including various event informa-
tion, chat to be displayed, or system events (e.g., “new
viewer,” “disconnected viewer,” “stream muted, “stream
ended”).

With reference again for the moment to FIG. 1A, recall
that in the example arrangement depicted in FIG. 1A a first
broadcaster client device 100A provides a first live stream of
digital content 102A, and a first plurality of viewer client
devices 200A and 200B (grouped by a first bracket) receive
respective copies 202A and 202B of the first broadcaster’s
live stream of digital content. Similarly, a second broad-
caster client device 100B provides a second live stream of
digital content 102B, and a second plurality of viewer client
devices 200C and 200D (grouped by a second bracket)
receive respective copies 202C and 202D of the second
broadcaster’s live stream of digital content. Turning now
again to FIG. 2, and taking only the viewer client devices
200A and 200C into consideration for purposes of illustra-
tion, the example implementation shown in FIG. 2 contem-
plates that the first broadcaster is providing video-based
commentary about a first live sporting event, and the second
broadcaster is providing video-based commentary about a
second (different) live sporting event, such that the first
viewer client device 200A receives the copy 202A of the first
broadcaster’s live stream of digital content 102A relating to
the first sporting event (and provided by the first broadcaster
client device 100A), and that the second viewer client device
200C receives the copy 202C of the second broadcaster’s
live stream of digital content 102B relating to the second

US 11,871,088 B2

21

sporting event (and provided by the second broadcaster
client device 100B). Also, in the example of FIG. 2, the first
broadcaster’s live stream 102A is an RTMP stream received
by the RTMP media server(s) 320, and the second broad-
caster’s live stream 102B is a WebRTC stream received by
the WebRTC media server(s) 360. The media sources 300
provide the copy 202A of the first broadcaster’s live stream
102A to the first viewer client device 200A via a first video
Internet communication channel 204 A, and provide the copy
202C of the second broadcaster’s live stream 102B to the
second viewer client device 200C via a second video Inter-
net communication channel 204C (further details of the role
of the web server(s) 700 in selecting a particular media
source of the media sources 300 to which each viewer client
device connects to establish a video Internet communication
channel are discussed below in connection with FIGS. 6 and
D.

In the example of FIG. 2, as noted above the control
server 500 periodically retrieves, via the Internet and from
the event information provider 55, first event information
502A germane to the first live sporting event, wherein the
first event information includes at least first score informa-
tion S04 A for the first live sporting event. The control server
further retrieves second event information 502B germane to
the second live sporting event, wherein the second event
information includes at least second score information 504B
for the second live sporting event. The control server passes
at least the first score information 504 A and the second score
information 504B to the socket server(s) 600. In turn, the
socket server(s) 600 establish one or more first event sockets
602A dedicated to the first event information and one or
more second event sockets 602B dedicated to the second
event information.

As discussed further below, the web server(s) 700 provide
to the first viewer client device 200A a first event identifier
(a first EventID) that corresponds to the first event socket
602A; the web server(s) 700 also provide to the second
viewer client device 200C a second event identifier (a
second EventID) that corresponds to the second event socket
602B. The first viewer client device 200A uses the first
EventID to connect to the first event socket 602A (e.g., via
a first URL including the first EventID in a path of the URL),
and the second viewer client device 200C uses the second
EventID to connect to the second event socket 602B (e.g.,
via a second URL including the second EventID in a path of
the URL). The first score information 504A is then trans-
mitted to the first viewer client device 200A via a first event
information Internet communication channel 206 A between
the first event socket 602A and the first viewer client device
200A, and the second score information 504B is transmitted
to the second viewer client device 200C via a second event
information Internet communication channel 206C between
the second event socket 602B and the second viewer client
device 200C.

In a manner similar to that described above in connection
with the first and second event information, in the example
of FIG. 2 chat messages and other system event information
(“chat information”) may be distributed to viewers of each
broadcaster via respective dedicated sockets of the socket
server(s) 600. In particular, the socket server(s) 600 simi-
larly establish one or more first chat/system event sockets
604A dedicated to the first broadcaster’s live stream of
digital content 102A and one or more second chat/system
event sockets 642B dedicated to the second broadcaster’s
live stream of digital content 102B. The web server(s) 700
provide to the first viewer client device 200A a first stream
identifier (a first StreamlID) that corresponds to the first

10

15

20

25

30

35

40

45

50

55

60

65

22

chat/system event socket 604A; the web server(s) 700 also
provide to the second viewer client device 200C a second
stream identifier (a second StreamID) that corresponds to the
second chat/system event socket 604B. The first viewer
client device 200A uses the first StreamID to connect to the
first chat/system event socket 604A (e.g., via a first URL
including the first StreamID in a path of the URL), and the
second viewer client device 200C uses the second StreamID
to connect to the second chat/system event socket 604B
(e.g., via a second URL including the second StreamID in a
path of the URL). The first chat information 210A is then
transmitted to the first viewer client device 200A via a first
chat/system event Internet communication channel 208A
between the first chat/system event socket 604A and the first
viewer client device 200A, and the second chat information
210B is transmitted to the second viewer client device 200C
via a second chat/system event Internet communication
channel 208C between the second chat/system event socket
604B and the second viewer client device 200C.

For purposes of simplifying the illustration in FIG. 2, the
broadcaster client devices 100A and 100B are shown only
providing respective live streams 102A and 102B directly to
different media servers 320 and 360; however, it should be
appreciated that the broadcaster client devices 100A and
100B have additional communication connections to the
socket server(s) 600 and the web server(s) 700, similar to
those shown in FIG. 2 between the example viewer client
devices 200A and 200C and the socket server(s) 600 and
web server(s) 700, so that the broadcaster client devices may
similarly receive event information and chat information on
different communication channels respectively dedicated to
the event information and chat information.

In view of the foregoing, it may be appreciated from FIG.
2 that, in one example implementation, there are three
different communication channels between a given broad-
caster/viewer client device and the broadcast/viewing serv-
ers and media storage devices 1000, namely: 1) a video
communication channel (e.g., 204A, 204C) between the
client device and the media sources 300 to receive a copy of
a broadcaster’s live stream of digital content; 2) an event
information communication channel (e.g., 206A, 206C)
between the client device and one or more particular sockets
of the socket server(s) 600 dedicated to a particular event;
and 3) a chat/system event communication channel (e.g.,
208A, 208C) between the client device and one or more
particular sockets of the socket server(s) 600 dedicated to a
particular broadcaster’s live stream of digital content.

In the example of FIG. 2, the first and second broadcasters
provide to their respective viewing audiences video-based
commentary regarding different live sporting events. How-
ever, as discussed elsewhere in this disclosure, it should be
appreciated that the events about which the broadcasters
provide video-based commentary are not limited to live
sporting events, but may relate to a wide variety of other
events, news, and/or particular topics of interest. Addition-
ally, it should be appreciated that the first and second
broadcasters (and additional broadcasters) may provide to
their respective viewing audiences video-based commentary
about the same live event; in this case, the servers and media
storage devices 1000 provide the appropriate connectivity
such that viewers of the same live event may effectively
switch between different broadcasters’ video-based com-
mentary about the event, participate in different chat infor-
mation exchanges associated with each broadcaster’s live
stream, and all share the same event information in a
synchronized manner.

US 11,871,088 B2

23

In particular, with reference again to the example of FIG.
2, consider an implementation in which both the first broad-
caster’s live stream of digital content 102A and the second
broadcaster’s live stream of digital content 102B include the
broadcasters’ respective video-based commentary about the
first live sporting event. In this situation, the web server(s)
700 would provide to both the first viewer client device
200A and the second viewer client device 200C the first
event identifier (the first EventID) that corresponds to the
one or more first event sockets 602A of the socket server(s)
600, and both of the first viewer client device 200A and the
second viewer client device 200B would use the first Even-
tID to connect to the one or more first event sockets 602A
(e.g., via a first URL including the first EventID in a path of
the URL). In this manner, the first score information 504A
would then be transmitted to both the first viewer client
device 200A via the first event information Internet com-
munication channel 206A between the one or more first
event sockets 602A and the first viewer client device 200A,
and to the second viewer client device 200C via a second
event information Internet communication channel 206C
between the one or more first event sockets 602A and the
second viewer client device 200C. Thus, both of the viewer
client devices in this scenario would receive the same
event/score information for the first live sporting event in a
synchronized manner from the socket server(s).

At the same time, however, the respective viewer client
devices 200A and 200C would be connected to different
chat/system event sockets of the socket server(s) corre-
sponding to the different broadcasters’ live streams; in
particular, the web server(s) 700 would provide to the first
viewer client device 200A the first stream identifier (the first
StreamID) that corresponds to the first chat/system event
socket 604 A and provide to the second viewer client device
200C the second stream identifier (the second StreamlID)
that corresponds to the second chat/system event socket
604B. As discussed in the previous example, the first viewer
client device 200A would use the first StreamID to connect
to the first chat/system event socket 604A (e.g., via a first
URL including the first StreamID in a path of the URL), and
the second viewer client device 200C would use the second
StreamID to connect to the second chat/system event socket
604B (e.g., via a second URL including the second Stre-
amlID in a path of the URL). The first chat information 210A
would then be transmitted to the first viewer client device
200A via a first chat/system event Internet communication
channel 208A between the first chat/system event socket
604A and the first viewer client device 200A, and the second
chat information 210B would be transmitted to the second
viewer client device 200C via a second chat/system event
Internet communication channel 208C between the second
chat/system event socket 604B and the second viewer client
device 200C.

FIG. 3 is a block diagram showing additional details of
various interconnections between the respective components
of the servers and memory storage devices 1000 shown in
FIG. 2, according to some inventive implementations. In the
example of FIG. 3, some of the components of the servers
and memory storage devices (e.g., 1000A) are hosted by a
first web hosting service (e.g., Amazon Web Services AWS),
while one or more other components of the servers and
memory storage devices (1000B) may be hosted by a
different web hosting service and/or generally accessible via
the Internet. In yet other implementations, a single web
hosting service may host all of the servers and memory
storage devices. In addition to the various components
shown in the example of FIG. 2, FIG. 3 also shows that the

10

15

20

25

30

35

40

45

50

55

60

65

24

servers and memory storage devices 1000 may further
include a transcoder server pool 800 (e.g., that may be
employed for transcoding of recordings of a given broad-
caster’s live stream of digital content, for later replay via
adaptive bitrate protocols), an asynchronous queue 850 (e.g.,
for queuing of various messages and instructions to be acted
upon by an asynchronous task processor implemented by the
control server 500), and a gateway NAS server 870 (e.g., to
facilitate communications between a WebRTC media server
pool and other elements of the servers and memory storage
devices 1000A that may be hosted by the first web hosting
service). Additionally, FIG. 3 illustrates that the database
420 may include a main database and multiple database
shards, in which portions of data are placed in relatively
smaller shards, and the main database acts as a directory for
the database shards (in some implementations, the main
database also stores some de-normalized data, for example,
to facilitate cross-server searching).

III. Technological Solutions to Improve Computer Net-
work Functionality, Increase Computer Processing Effi-
ciency and Reduce Computer Memory Requirements

In developing the inventive systems, apparatus and meth-
ods disclosed herein, including the servers and memory
storage devices 1000 shown in FIGS. 2 and 3 as well as the
client app 5000 executed by mobile client devices, the
Inventors recognized and appreciated multiple technological
problems with conventional techniques for transmission of
digital content via the Internet. As introduced above and
discussed in further detail below, the Inventors have
addressed and overcome these technological problems with
innovative technological solutions to effectively realize the
various technical features described herein. Examples of
these technological solutions include, but are not limited to,
improving computer network functionality (e.g., improving
the speed of content transfer from broadcaster devices to
viewer devices and synchronization of various content
amongst multiple client devices), and improving processing
efficiency of broadcaster and viewer client devices via
execution of the client app 5000, while at the same time
reducing memory storage requirements for the client app
5000 on the client devices.

More specifically, examples of the technological prob-
lems addressed by the inventive solutions provided by the
servers and memory storage devices 1000 and client app
5000 include, but are not limited to: 1) how to provide
relatively low latency copies of live streams of broadcaster
digital content to multiple viewers of each of multiple
broadcasters (e.g., broadcaster-to-viewer delay time on the
order of ten seconds or less, or on the order of two-to-three
seconds or less), and with relatively high quality and reli-
ability (e.g., high definition HD and high bit rate, such as 2
to 5 megabits per second); 2) how to synchronize such low
latency and high quality copies of broadcaster live streams
of digital content with event information associated with the
digital content (as well as chat information associated with
a given broadcaster) amongst the multiple viewers of each
broadcaster, irrespective of the number of viewers (e.g., 10
viewers, 1,000 viewers, or 10,000 viewers); 3) how to allow
different classes/types of viewers (e.g., VIP users, premium
subscribers, media professionals, registered users, anony-
mous users, web/desktop users, mobile users), and increas-
ing numbers of viewers, to flexibly access each broadcast-
er’s content with different live streaming formats (e.g.,
continuous streaming protocols such as real time messaging
protocol or “RTMP,” web real-time communication or
“WebRTC;” segmented protocols such as HT'TP live stream-
ing or “HLS,” HTTP Smooth Streaming or “MSS,” HTTP

US 11,871,088 B2

25

Dynamic Streaming or “HDS,” standards-based ABR pro-
tocol “MPEG-DASH”) and with different qualities of ser-
vice; 4) how to effectively render “studio-quality” screen
animations and special effects graphics (e.g., including
“scorebugs” for sporting events) on displays of mobile client
devices via a client app with a small memory footprint (e.g.,
less than 100 megabytes, such that the client app is down-
loadable via cellular networks); and 5) how to provide for
viewing of a recording of a broadcaster’s live stream as if the
viewer was watching the live stream in essentially real-time
(e.g., while recreating chat messages and event information
updates). Various aspects of the technological solutions to
these respective technological problems are discussed in
turn below.

1) Latency Considerations

With respect to latency considerations, the inventive
systems, methods and apparatus disclosed herein contem-
plate particular parameters for the generation of a live
stream of digital content by a broadcaster client device so as
to induce only relatively low “client side” latency. To this
end, in example implementations the client app 5000
installed and executing on a given client device selects an
appropriate keyframe interval (e.g., 30 frames) for generat-
ing a broadcaster’s live stream of digital content to ensure
relatively low client side-induced end-to-end digital content
latency.

In other aspects relating to reducing latency, particular
parameters and techniques for handling live streams are
contemplated for the servers and memory storage devices
1000 disclosed herein (e.g., adjusting buffer sizes and
transcoder settings in media servers; employing hardware-
accelerated transcoding of broadcaster live streams via
graphic card processing to provide for adaptive bitrate
copies of live streams). Furthermore, in some example
implementations, the RTMP CDN 340 shown in FIGS. 2 and
3 comprises an innovative auto-scaling RTMP CDN server
pool, coupled to a media server pool that receives live
streams from respective broadcasters (e.g., either RTMP or
WebRTC), to facilitate delivery of low-latency live streams
to a larger number of multiple viewers. Additionally, for
RTMP broadcasters, the RTMP media server(s) 320 in some
implementations is/are on the same network as the RTMP
CDN 340 (e.g., the RTMP media server(s) are communica-
tively coupled to the RMTP CDN servers as a virtual private
network (VPN), see VPN 330 in FIG. 6) so as to facilitate
low latency communications. For WebRTC broadcasters,
although in some implementations the WebRTC media serv-
er(s) 360 may not be hosted by the same service as the
RTMP CDN 340 (e.g., see FIG. 3), the WebRTC media
server(s) are coupled to the RTMP CDN via high speed/low
latency connections. The RTMP CDN servers essentially
make further copies of transcoded live streams received
from the media server (e.g., without any other processing or
alteration) and pass on the respective further copies to
multiple viewers (“direct pass-through amplification”). In
this manner, the RTMP CDN servers introduce appreciably
low latency (e.g., on the order of less than 150 milliseconds)
and facilitate a significantly greater number of viewers than
could be otherwise served by the media server itself. These
exemplary aspects (as well as other aspects discussed in
further detail below) provide for appreciably low latency
introduced by the media servers and RTMP CDN (e.g., on
the order of about 500 milliseconds or even less) and
client-introduced digital content latency (e.g., on the order
of about one-to-two seconds for continuous streaming con-
sumers).

10

15

20

25

30

35

40

45

50

55

60

65

26

2) Synchronization of Live Streams and Event Informa-
tion

Yet another technical implementation challenge overcome
by the inventive concepts disclosed herein relates to the
display of event information updates (if present, e.g., if the
broadcast is associated with an event), as well as screen
animations and other special effects graphics that may be
generally associated with the video and/or audio associated
with a live stream, in a manner that is synchronized across
multiple live streams with appreciably low latency. This is a
particularly relevant consideration given that the systems,
apparatus and methods disclosed herein are contemplated in
some implementations as supporting multiple broadcasters
providing video-based commentary for the same event, and
each of these broadcasters may have multiple viewers of
their broadcast—and thus, the technical challenge is to
provide the same event information, and periodic updates to
this event information, in a synchronized and low-latency
manner to all of these broadcasters and viewers interested in
following the same event. In exemplary implementations
(e.g., as discussed above in connection with FIG. 2), this
technical challenge is overcome with technological solu-
tions implemented on both the client devices and the server
architecture to which the client devices are communicatively
coupled involving the use of multiple communication chan-
nels respectively dedicated to video/audio content from a
given broadcaster, event information germane to an event
about which any broadcaster may be providing video-based
commentary, and chat information (chat messages and/or
system event messages) shared amongst the broadcaster and
their associated viewers.

In various inventive implementations disclosed herein
(e.g., as introduced above in connection with FIG. 2), event
information and updates to event information are provided
to broadcaster client devices and viewer client devices via a
socket-based “event information channel” dedicated to the
event, and separate from the copy of the live stream of
video-based commentary provided on a “video channel.”
Thus, all viewers (and broadcasters) of the event, regardless
of which live stream they may be generating or watching,
connect to one or more sockets of a socket server that is/are
dedicated to the event, such that all live streams relating to
the event are similarly synchronized to event information
and updates to same. Notably, if a viewer switches amongst
different broadcasters of the same event (the viewer origi-
nally watches a first live stream from a first broadcaster of
the event, and later selects a second live stream from a
second broadcaster of the same event), the event information
and updates to same (and any screen animations and special
effects graphics that incorporate the event information)
remain synchronized with all live streams from the different
broadcasters, providing for a smooth second-screen experi-
ence across multiple broadcasters and viewers.

The technical challenge of displaying event information
and updates to same in a synchronized and low-latency
manner amongst multiple viewers is also addressed in part
by using a single control server 500 in the server and
memory storage devices 500 to gather and parse live event
information captured in real-time. For example, for sporting
events, game information may be obtained by the single
control server from a dedicated third-party provider (e.g.,
STATS LLC, which is a sports statistics, technology, data,
and content company that provides content to multimedia
platforms, television broadcasters, leagues and teams, fan-
tasy providers, and players). This single point of entry of
event information into the server architecture, as provided
by the control server, prevents synchronization errors inher-

US 11,871,088 B2

27

ent in network communications. Once a change in event
status has been detected (e.g., if a play clock updates), the
control server provides these changes to the one or more
sockets dedicated to the event (to which all viewers and
broadcasters of video-based commentary regarding the
event are communicatively coupled), resulting in a single
synchronized update to all client devices and thereby sig-
nificantly mitigating client-by-client latency and/or synchro-
nization issues.

3) Flexible and Scalable Access to Broadcaster Content
by Multiple Classes/Types of Viewers

The inventive systems, methods and apparatus disclosed
herein and shown in FIGS. 2 and 3 further contemplate the
ability to flexibly select the source of a copy of a broad-
caster’s live stream to be provided to respective multiple
viewers from one of a number of possible media sources
300, namely: 1) the media server receiving the live stream
in the first instance from a broadcaster (e.g., an RMTP media
server 320 or a WebRTC media server 360); 2) an auto-
scaling RTMP CDN server pool 340; or 3) an innovative
HTTP Live Streaming (HLS) server architecture 360. Thus,
multiple live stream transmission formats, protocols, and
access endpoints are contemplated for different types and
numbers of viewers that may receive copies of broadcasters’
live streams at different bitrates and with different qualities
of service. As noted above, in some implementations the
web server(s) 700 implement a viewer stream source selec-
tion algorithm which selects an appropriate media source for
a given viewer based on, for example, the type of user (e.g.,
VIP users, premium subscribers, media professionals) and
the number of viewers of a particular broadcaster’s live
stream. Further details of viewer stream source selection for
respective viewer client devices are discussed further below
in connection with FIGS. 6 and 7.

Another salient element of the flexibility and scale-ability
provided by the media sources 300 of the servers and
memory storage devices 1000 shown in FIGS. 2 and 3
relates to the HLS caching and amplifying server architec-
ture 360. Conventionally, as would be readily appreciated by
those of skill in the relevant arts, HLS is not designed to be
cacheable at the server level, and hence synchronization
issues arise in connection with providing multiple HLS
copies of a live stream to respective viewers. In particular,
in conventional implementations, each HLS copy of the live
stream is somewhere in a “window” of time (an HLS “buffer
length™) relative to the original live stream (e.g., delayed
from the original stream by some amount of time within an
overall time window). This uncertainty results in the possi-
bility of a first viewer of a first HLS copy of a live stream
actually seeing the video content some time earlier than or
later than a second viewer receiving a second HLS copy of
the live stream, i.e., the respective viewers are not synchro-
nized.

In exemplary implementations described herein, this tech-
nical problem is solved by employing an inventive HLS
caching and amplifying server architecture 360, which is
discussed in further detail below in connection with FIGS.
8, 9A, 9B, 9C and 9D. The HLS server architecture includes
a “mother” server and one or more “child” servers, disposed
between a media server and a content delivery network
(CDN), in which the HLS mother server acts as a single
“virtual viewer” from a given media server’s perspective.
Based on a single copy of an HLS file suite for a given
broadcaster’s live stream as provided by a media server and
received by a mother caching server of the HLS server
architecture, the mother server caches and passes on copies
of'the elements of the file suite (as requested) to one or more

10

15

20

25

30

35

40

45

50

55

60

65

28

child servers, which in turn cache and pass on copies of the
elements of the file suite to one or more geographically-
distributed servers of a conventional (e.g., global) CDN
(serving as an HLS CDN in tandem with the mother-child
server architecture). In this manner, the mother and child
servers of the HLS architecture act as caching and ampli-
fying servers, so that identical HLS streams may be served
from the HLS CDN server pool to multiple viewers of a
given broadcast in a significantly narrower synchronization
window than conventionally possible. In particular, in one
example implementation discussed in greater detail below in
connection with FIGS. 6A, 6B, 6C, and 6D, all HLS viewers
receiving a copy of a broadcaster’s live stream via the HL.S
server architecture including a mother caching server and
one or more child caching servers are at most less than one
HLS file segment duration out of synchronization with each
other; this phenomenon is referred to herein as “viewer
segment concurrency.” Based on the viewer segment con-
currency provided by the inventive HLS server architecture,
respective viewers of a given broadcast may be out of
synchronization with one another by less than approximately
one or two seconds at most.

4) Client-Side Rendering of On-Screen Interactive Ani-
mations, Special Effects and/or Event Information

By way of background, in conventional sports broadcast-
ing, game information (also sometimes referred to as a
“scorebug”), as well as screen animations and other special
effects graphics, are hard-embedded into the live stream of
the game broadcast itself that is received by viewers. Unlike
conventional scorebugs, screen animations, and/or other
special effects graphics that are hard-embedded into live
streams of a sports broadcast, in various inventive imple-
mentations disclosed herein graphics and effects are gener-
ated by the client device itself, separate from a given
broadcaster’s video-based commentary, and then integrated
with (e.g., superimposed or overlaid on) the broadcaster’s
video-based commentary when rendered on the display of
the client device. As shown for example in FIG. 1B, various
graphics may be rendered on different portions of the
display, for example, along a top or side of the display or in
a “lower third” of the display.

For mobile client devices, the client app 5000 executing
on the device is particularly configured to render a variety of
“studio-quality” graphics while nonetheless maintaining a
small file size for the client app (e.g., less than 100 mega-
bytes, and in some instances from approximately 60-70
megabytes); this affords an exciting and dynamic broad-
caster and viewer experience on mobile client devices, while
still allowing the modestly-sized client app to be readily
downloaded (e.g., from a digital distribution platform or
“app store” 75) to a client device via a cellular network. In
some implementations, maintaining a modest file size for the
client app while providing high-quality graphics, animations
and other special effects is accomplished in part by design-
ing animated graphics and special effects as a series of
individual frames (still-frame images) that are hard-coded in
the client app, and rendering the series of individual frames
on the display in a “stop-motion” style according to an
animation timer set in the client device (e.g., 15 frames per
second). In some implementations, “sprite sheets” may be
used for graphics elements; in yet other implementations,
the transparency of individual frames may be set on a
pixel-by-pixel basis as may be required in some applications
to provide for suitable overlay on the broadcaster’s video-
based commentary.

In another aspect, client-side rendering of screen anima-
tions and/or other special effects graphics allows such ani-

US 11,871,088 B2

29

mations and graphics to be user-interactive; for example, a
user (broadcaster or viewer) on a client device may “select”
a screen animation/special effect graphic (e.g., via a touch-
sensitive display screen of the client device) and launch
additional graphics or initiate some other functionality on
the client device.

For example, as discussed above with respect to live
events about which a given broadcaster may be providing
video-based commentary, event information and updates to
event information are provided to broadcaster client devices
and viewer client devices via a socket-based “event infor-
mation channel” dedicated to the event, and separate from
the copy of the live stream of video-based commentary
provided on a “video channel.” Providing one or more
sockets dedicated to the event information and separate from
the live stream of video-based commentary provides for
user-interactive features in connection with the event infor-
mation, and/or the screen animations/special effects graphics
incorporating the event information; for example, the user
may select (e.g., thumb-over) the screen animation/special
effect graphic including the event information and obtain
access to additional (and in some cases more detailed)
information relating to the event (e.g., a drill down on more
granular event information, or a redirect to a web site or
other app related to the particular event).

5) Replay of Recorded Broadcaster Live Streams with
Recreated Chat Messages and Event Information Updates

Another technical implementation challenge addressed by
the technological solutions disclosed herein relates to the
ability of a viewer to watch a recording of a live stream
generated by a broadcaster client device (also referred to
herein as a “video replay” of the live stream, or simply
“replay”) as if the viewer was watching the live stream in
essentially real-time (as it was being generated by the
broadcaster client device), while also allowing the viewer to
“seek” to different points in the video replay. In one aspect
of video replay, the broadcaster themselves may assume the
role of a post-broadcast viewer of the recorded broadcast.

In exemplary implementations, a technological solution
for overcoming the technical implementation challenge of
replaying a recorded live stream and also recreating various
chat messages and event information updates (if present) as
they occurred during the originally broadcast live stream is
based, at least in part, on having the socket-based commu-
nication techniques act in a “fully-authenticated” fashion,
for example, by dynamically creating ‘“anonymous
accounts” for non-registered or “anonymous” users. By
creating such accounts for anonymous users, a replay log
may be created that logs when any given viewer (as a
registered user or anonymous user) joins and leaves a
particular broadcast. Additionally, the replay log may
include additional information, such as user-generated chat
information, system messages, and event information
updates, respectively synchronized with timestamps associ-
ated with the live stream as originally generated by the
broadcaster client device.

During replay of a recording of the live stream, the viewer
client device requests a segment of this replay log and, using
the timestamps in the recording of the live stream, replays
not only the digital content in the live stream but also
recreates chat messages, system-related messages and event
information updates (if present) in the same order and
relative time of occurrence as if the viewer were watching
the live stream in essentially real-time when originally
broadcasted by the broadcaster. As the replay advances, the
viewer client device requests additional segments of the log,
keeping an in-memory buffer to smooth out any possible

5

10

15

20

25

30

35

40

45

50

55

60

65

30

Internet connectivity issues. Such a replay log also allows
for “seeking,” i.e., when a viewer fast forwards or rewinds;
under these seeking circumstances, the viewer client device
may retrieve the appropriate segment(s) of the replay log for
the new viewing point, and continue to not only replay the
recording of the live stream from the new viewing point but
also recreate (in the same order and relative time) chat
messages, system-related messages and event information
updates (if present) as if the viewer were watching the live
stream in essentially real-time.

Having outlined some of the various technological solu-
tions provided by the inventive systems, apparatus and
methods disclosed herein to technological problems with
conventional approaches to live streaming of digital content,
the discussion now turns to additional details of respective
components of the servers and memory storage devices 1000
shown in FIGS. 1A, 2 and 3, as well as the functionality of
the client app 5000 executed by client devices.

IV. Broadcaster Media Server Selection

FIGS. 4A and 4B show a process flow diagram 450A and
450B illustrating a broadcast media server selection algo-
rithm according to one inventive implementation, which in
some examples may be performed by the web server(s) 700
shown in FIGS. 2 and 3. As noted above, in one implemen-
tation a mobile broadcaster client device (e.g., a smartphone)
outputs a live stream of digital content having an H.264
MPEG-4 Advanced Video Coding (AVC) video compres-
sion standard format, via real time messaging protocol
(RTMP) transport for continuous streaming over the Inter-
net, whereas a web-based broadcaster client device (e.g., a
desktop computer) outputs a live stream of digital content
102B having a VP8 video compression format, transmitted
via the web real-time communication (WebRTC) protocol
for continuous streaming over the Internet.

In the process shown in FIGS. 4A and 4B, the web
server(s) 700 know whether the broadcaster client device
requesting access to a media server is a mobile client
(H.264/RTMP) or a web-based client (VP8/WebRTC) based
on header information in the communications to the web
server from the client device. For mobile clients, the web
server provides access to (e.g., provides the address of an
endpoint for) one of the RTMP media servers 320 of the
media sources 300, and for web-based clients generating
VP8/WebRTC live streams of digital content, the web server
provides access to one of the WebRTC media servers 360 of
the media sources 300. If a web-based client is connecting
via Adobe Flash or other external software, the client may be
treated similarly to the process for mobile clients.

In some implementations, multiple media servers of the
RTMP media servers 320 are segregated into at least one
VIP media server and at least one non-VIP media server;
similarly, some of the WebRTC media servers 360 are
segregated into at least one VIP media server and at least one
non-VIP media server. A given broadcaster may be directed
to a VIP or non-VIP media server based on their user status
(e.g., as a VIP user), and/or the availability of a particular
server (e.g., based on available server capacity, in terms of
total utilized connection bandwidth to the media server). In
one aspect, to allow for some headroom in media server
capacity, the “ideal capacity” of the server may be taken as
approximately 60% of the true maximum capacity of the
media server. If all non-VIP media servers exceed ideal
capacity (but are at less than true maximum capacity), the
process may send an internal administrative message (e.g.,
via SMS or email) to a system administrator to warn of a
significant broadcaster load. In the event that no non-VIP
servers are available to a given broadcaster (because all

US 11,871,088 B2

31

non-VIP servers are at true maximum capacity), the process
displays “No Available Server” as an error message on the
display of the broadcaster client device.

V. Media Server Process

FIGS. 5A through 5C show a process flow 550A, 5508,
550C, and 550D illustrating a media server process for the
RTMP and WebRTC media servers 320 and 360 shown in
FIGS. 2 and 3, according to one inventive implementation.
These process flows include a “server monitor” process and
a “video uploader” process that each of the RTMP and
WebRTC media servers implements as they receive and
process live streams from various broadcasters.

Regarding the “server monitor” process, a given media
server periodically reports server statistics to be stored in the
database 420, and queries the database to obtain a list of
broadcaster streams that have been assigned to, and are
connected to, the media server. For newly connected
streams, the media server validates the stream information
(e.g., StreamlID), with the database, and if the stream is valid
the media server starts a live transcoding process to provide
different resolution copies of the live stream (e.g., 720p,
360p and 240p transcoded copies); in the case of a WebRTC
media server, the media server also transcodes the VP8/
WebRTC live stream to H.264 before providing the different
resolution transcoded copies. In some implementations, the
media server employs hardware-accelerated transcoding of
the broadcaster’s live stream (e.g., via graphic card process-
ing) to ensure low latency of viewed transcoded copies of
the live stream. The media then starts recording the highest
resolution transcoded copy (e.g., 720p in the illustrated
example) to provide a “raw video” recording, and notifies
the database that the live stream has started and is available
for viewing. Thereafter, the media server queues a first
screenshot (thumbnail) for the live stream in the asynchro-
nous queue (e.g., see 850 in FIG. 3) for processing by the
control server 500 (see FIGS. 18A and 18B), and also queues
push notifications to notify subscribers and followers of the
broadcaster that the broadcaster is online with a live stream
(e.g., by providing a StreamID to the followers/subscribers).

Thereafter, while the broadcaster continues to provide a
live stream, and if there are any HLS viewers (discussed
further below in connection with FIGS. 8 and 9A through
9D), the media server begins an HL.S segmentation process
to create and update an HLS file suite comprising an HL.S
playlist, HLS chunklists, and HLS file segments for each of
the transcoded different resolution copies of the broadcast-
er’s live stream. The media server process also periodically
queues in the asynchronous queue (e.g., every five seconds
or so) additional screenshots/thumbnails of the live stream.
Once the broadcaster has ended the live stream, the media
server process stops the recording of the highest resolution
transcoded copy, sends out a system message on the chat/
system event socket(s) corresponding to the broadcaster’s
live stream that the stream has ended, stops the live
transcoding process, and stores the stream end time in the
database 420. The media server process then also queues the
upload of the “raw video” recording (the recording of the
highest resolution transcoded copy) to the media server
upload queue.

The video uploader process shown in FIG. 5A reads from
the media server upload queue and, if there are any entries
in the queue, uploads the corresponding raw video recording
of the broadcaster’s live stream to data storage 440 (e.g.,
Amazon S3) and stores the upload time to the database 420.
The video uploader process also may notify a third-party
transcoding service (e.g., see the transcoding server pool
800 in FIG. 3) to provide transcoded different resolution

10

20

25

30

35

40

45

50

55

60

65

32

copies of the recorded video to facilitate adaptive bitrate
replay for one or more viewers.

VI. Viewer Stream Source Selection

FIG. 6 is a block diagram illustrating the media sources
300 and the web server(s) 700 of the servers and memory
storage devices 1000 shown in FIGS. 2 and 3, as well as the
first and second broadcaster client devices 100A and 100B
and one of the viewer client devices 200A, to facilitate a
discussion of the selective coupling of an example viewer
client device to one of the media sources, according to some
inventive implementations. In tandem with FIG. 6, FIG. 7 is
a process flow diagram illustrating a viewer stream source
selection algorithm 702 according to one inventive imple-
mentation, which in some examples may be performed by
the web server(s) 700.

As depicted representationally in FIG. 6, in one aspect the
web server(s) 700 essentially serve as a controllable switch
to couple the viewer client device 200A to one of an RTMP
media server 320, the RTMP CDN 340 (which is commu-
nicatively coupled to the RTMP media server(s) in a virtual
private network 330), a WebRTC media server 360 and the
HLS serve architecture 360 to receive a copy of broadcast-
er’s live stream of digital content. In the example of FIG. 6,
the web server(s) 700 has facilitated a connection between
the viewer client device 200A and the RTMP CDN 340 (as
shown by the dashed line in FIG. 6). However, as discussed
below, the web server(s) 700 may facilitate a connection
between the viewer client device 200A and any one of the
media sources 300 based at least in part on a number of
viewers already receiving copies of the broadcaster’s live
stream. In one implementation, the database 420 stores user
profiles for broadcasters and viewers, in which the user
profile may include a user type (e.g., registered user, anony-
mous user, subscriber of one or more broadcasters, VIP user,
media professional or media member, etc.); in this instance,
the web server(s) 700 may facilitate a connection between
the viewer client device 200A and one of the media servers
300 based at least in part on a type or status of a user of the
viewer client device 200A and/or the number of viewers
already receiving copies of the live stream.

More specifically, as shown in the process of FIG. 7, if the
viewer client device sends a request to the web server(s) 700
to view a copy of a given broadcaster’s live stream (e.g.,
based on a StreamID for the live stream that the viewer
client device received in a push notification), and the web
server(s) 700 determine that there are fewer than a first
number (e.g., 10) of viewers already receiving copies of the
live stream (e.g., based on a viewing count for the stream
maintained in the database 420), the web server(s) provide
to the viewer client device an address to connect directly to
one of the RTMP media servers 320 or one of the WebRTC
media servers 360 that is processing the broadcaster’s live
stream (depending on whether the broadcaster client device
is a mobile H.264 or web-based VP8 client device). Irre-
spective of the number of viewers, the web server(s) 700
also provide an address to the viewer client device to
connect directly to one of the media servers if a user of the
viewer client device is a VIP subscriber or media profes-
sional. If however the user is not a VIP subscriber or media
professional, and there are more than a first number of
viewers already receiving copies of the live stream, the web
server(s) provide to the viewer client device an address to
connect to one of the CDN servers of the RTMP CDN 340.
However, if all CDN servers of the RTMP CDN 340 are at
their maximum capacity (e.g., as reflected in server statistics

US 11,871,088 B2

33

stored in the database), the web server(s) 700 provide an
address to the viewer client device to connect to the HLS
server architecture 360.

VII. HTTP Live Streaming (HLS) Server Architecture

FIG. 8 is a block diagram showing additional details of
the HLS server architecture 380 of the servers and memory
storage devices 1000 shown in FIGS. 2, 3 and 6, according
to some inventive implementations. FIGS. 9A through 9D
show a process flow illustrating an HLS stream viewing
process 902A, 902B, 902C and 902D performed by the HLS
server architecture 380 shown in FIG. 8, according to one
inventive implementation. As some of the discussion of the
HLS server architecture 380 relates to processing of a live
stream at a media server, reference is made again to the
media server process discussed above in connection with
FIGS. 5A, 5B, and 5C.

HTTP Live Streaming (HLS) is a conventional HTTP-
based media streaming communications protocol, in which
a live media stream (e.g., video and accompanying audio) is
divided up or “segmented” by an HLS media server into a
sequence of small files that may be downloaded to a viewer
client device via HTTP communications with the HLS
media server, wherein each downloaded file represents one
short segment or “chunk” of a copy of the live stream. As
respective chunks of the copy of the live stream are down-
loaded and played by the viewer client device, the client
device may select from multiple different alternate streams
containing the same video/audio material transcoded by the
media server at a variety of data rates (e.g., at different
resolutions), allowing the HLS streaming session to adapt to
the available data bit rate/bandwidth of the client device’s
connection to the HLS server. HL.S connections are, by
definition, not persistent connections between the HLS
media server and the viewer client device, since requests for
and delivery of HLS content uses only standard HTTP
transactions. This also allows HLS content to be delivered to
multiple viewer client devices over widely available HTTP-
based content delivery networks (CDNs).

With reference again to the media server process in FIGS.
5A, 5B, and 5C, as a broadcaster’s live stream is received by
a media server it is cached for some amount of time (e.g., 10
to 30 seconds). The broadcaster’s live stream typically
includes a succession of frames at some frame rate (e.g., 30
frames/sec), and the succession of frames includes multiple
“keyframes” associated with video encoding/compression.
Such keyframes include the “full” content of an instant of
the video, and these keyframes reset the basis of calculation
(compression/estimation) for ensuing video information; in
conventional video encoding/compression techniques, com-
pressed frames between keyframes essentially include only
information representing what has changed in the content
between respective frames, and not the entire visual content
for corresponding instants of the video. Increasing the
frequency of keyframes in the stream of video frames
reduces any errors that may be introduced in the compres-
sion process, as such errors would have a shorter lifespan
(there would be fewer numbers of compressed frames
between keyframes).

As indicated in FIG. 5B, an incoming live stream from a
broadcaster and received by a media server (e.g., incoming
H.264 from an RTMP broadcaster client, or VP8 from a
WebRTC broadcaster client that has been transcoded to
H.264) is transcoded (e.g., by the media server) to provide
different resolution copies of the live stream at correspond-
ing different bitrates (e.g., to facilitate adaptive bitrate
streaming, as noted above). For example, the broadcaster’s
live stream may be transcoded to provide 720p, 360p and

5

10

15

20

25

30

35

40

45

50

55

60

65

34

240p different resolution copies of the live stream. As part
of the transcoding process, the media server may be con-
figured such that the keyframe interval for each transcoded
copy is a predetermined value, and the keyframe interval for
the transcoded copies may be the same as or different than
akeyframe interval associated with the broadcaster’s incom-
ing live stream. Conventional examples of keyframe inter-
vals that may be configured at a media server for transcoded
copies of the live stream range from about 60 frames to 300
frames of video, and in some instances as high as 600 frames
(at an exemplary frame rate of 30 frames/second, the asso-
ciated time durations for such keyframe intervals range from
two seconds for a keyframe interval of 60 frames to 10
seconds for a keyframe interval of 300 frames, and in some
instances as high as 20 seconds for a keyframe interval of
600 frames).

As discussed above in connection with FIG. 5C, to
implement HLS each of these different resolution copies is
divided into small segments of video based in part on the
keyframe interval of the copies. More specifically, the media
server may be configured to set a target segment length
(duration) of each segment into which the transcoded copy
of the live stream is divided. An example of a conventional
target segment duration for HLS is 10 seconds; however, as
discussed below, in some implementations the media server
is particular configured to have a significantly lower target
segment duration to facilitate the functionality of the HLS
server architecture 380 in processing copies of segmented
live streams.

With reference again to FIG. 5C, the media server ulti-
mately divides each copy of the live stream into respective
video segments having a duration that is as close as possible
to the target segment duration, with the proviso that a
segment must start on and include a keyframe but may
include one or more keyframes (i.e., the segment duration in
practice is based on the target duration configured in the
media server, some multiple of keyframes, and the frame
rate of the transcoded copy). For purposes of illustration,
and taking a conventional target segment duration of 10
seconds, a frame rate of 30 frames/second, and a keyframe
interval of from 60 to 300 frames, each conventional 10
second HLS segment may have 1 keyframe (given a key-
frame interval of 300 frames) or up to 5 keyframes (given a
keyframe interval of 60 frames).

For each transcoded different resolution copy of the
broadcaster’s live stream, the HL.S segments of the copy are
stored as small files (referred to in HLS as .ts files). Thus, in
an example in which there are 720p, 360p and 240p
transcoded copies of the live stream, there are three sets of
ts files being generated and stored in memory at the media
server as each of the copies are segmented by the media
server. For each set of .ts files corresponding to a different
resolution copy of the live stream, a “chunklist” is created
and maintained by the media server that includes a list of
pointers (e.g., relative URLs) to corresponding .ts files
stored in memory; accordingly, in the example of three
different resolution copies, there would be three different
corresponding chunklists.

The number of pointers in a given chunklist may be
referred to as the “HLS window” or “HLS buffer length,”
and this HLS window/buffer length may be set as a con-
figuration parameter for the media server. One conventional
example of an HLS window/buffer length is 10 pointers to
corresponding .ts files. The number of pointers in the
chunklist multiplied by the duration of the HLS segment
represented by each .ts file is referred to as the “HLS
latency,” because a viewing client that requests an HLS copy

US 11,871,088 B2

35
(i.e., succession of .ts files) typically does not start down-
loading a first .ts file representing a video segment until the
chunklist is completely populated with the set number of
pointers to corresponding .ts files (the HL.S window/buffer
length). Given the example above of a conventional target
segment duration of 10 seconds, this results in a conven-
tional HLS latency on the order of 100 seconds. This HL.S
latency also may be viewed as a “buffer time” that provides
for stability of the HLS stream in the event of communica-
tions issues or interruptions in network connectivity; the
latency arising from the segment duration and HL.S window/
buffer length provides for the overall download and play-
back time of the .ts file segments before another chunklist is
downloaded by a viewer client device, thereby mitigating
potential connectivity issues that may occur between the

10

15

36

client device and a CDN server during this buffer time
(presuming that, under normal circumstances, it is quicker
for the client to download a .ts file segment than it is for the
client to play the segment). As new .ts files get created in the
segmenting process for a given resolution copy of the live
stream, the media server puts a new pointer to the newest .ts
file into the corresponding chunklist and, once the chunklist
is filled the first time with the set number of pointers
corresponding to the buffer length, the oldest pointer gets
“bumped out” of the chunklist when a new segment/pointer
is generated, in a first-in-first-out (FIFO) manner.

Below is an example of a chunklist that includes six
pointers to corresponding .ts files representing HLS video
segments:

==> curl -v https://wel09.media.castr.live/t1/ngrp:397965_all/chunklist w1844413579_b2096000.m3u8

* Trying 198.204.252.202...
* TCP_NODELAY set

* Connected to wel09.media.castr.live (198.204.252.202) port 443 (#0)

* TLS 1.2 connection using TLS_ECDHE_RSA_ WITH_AES_128 GCM_SHA256
* Server certificate: *.media.castr.live

* Server certificate: Go Daddy Secure Certificate Authority - G2

* Server certificate: Go Daddy Root Certificate Authority - G2

> Get /t1/ngrp:397965_all/chunklist w1844413579_b2096000.m3u8 HTTP/1.1

> Host: wel09.media.castr.live

> User-Agent: curl/7.51.0
> Accept: */*

>

< HTTP/1.1 200 OK

< Accept-Ranges: bytes

< Server: WowzaStreaming Engine/4.7.0.01

< Cache-Control: no-cache

< Access-Control-Allow-Origin: *

< Access-Control-allow-Credentials: true

< Access-Control-Allow-Methods: OPTIONS, GET, POST HEAD

< Access-Control-Allow-Headers: Content-Type, User-Agent, If-Modified-Since, Cache-Control, Range
< Date: Thu, 08 Jun 207 21:10:47 GMT

< Content-Type: application/vnd.apple.mpegurl

< Content-Length: 368
=<

#EXTM3U
#EXT-X-VERSION:3

#EXT-X-TARGETDURATION: 4
#EXT-X-MEDIA-SEQUENCE:349

#EXTINF:2.352,

media_w1844413579_b2096000_349.ts

#EXTINF:2.04,

media_w1844413579_b2096000_350.ts

#EXTINF:2.002,

media_w1844413579_b2096000_351.ts

#EXTINF:2.001,

media_w1844413579_b2096000_352.ts

#EXTINF:2.001,

media_w1844413579_b2096000_353.ts

#EXTINF:2.001,

media_w1844413579_b2096000_354.ts

55

60

65

In addition to a chunklist for every different resolution
copy of the broadcaster’s live stream, the media server also
creates an HLS “playlist” file (e.g., having a file
extension .m3u8) corresponding to the broadcaster’s live
stream. The HLS playlist includes a list of the transcoded
different resolution copies of the live stream, and for each
item in the list the playlist also includes a corresponding
bandwidth/bitrate, one or more codecs for encoding the copy
of the stream, and a pointer (e.g., relative address or URL)
to the corresponding chunklist:

720p copy-bitrate-codec(s)-relative URL1 for chunklistl

360p copy-bitrate-codec(s)-relative URL2 for chunklist2

240p copy-bitrate-codec(s)-relative URL3 for chunklist3

US 11,871,088 B2

37
An example of an HLS playlist file is provided below:

38

==> curl -v https://wel09.media.castr.live/t1/ngrp:397965_all/playlist. m3u8
* Trying 198.204.252.202...

* TCP_NODELAY set

* Connected to wel09.media.castr.live (198.204.252.202) port 443 (#0)

* TLS 1.2 connection using TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

* Server certificate : *.media.castrlive

* Server certificate: Go Daddy Secure Certificate Authority - G2
* Server certificate: Go Daddy Root Certificate Authority - G2
> Get /t1/ngrp:397965_all/playlist.m3u® HTTP/1.1

> Host: wel09.media.castr.live

> User-Agent: curl/7.51.0

> Accept: */*

>

< HTTP/1.1 200 OK

< Accept-Ranges: bytes

< Access-Control-Expose-Headers: Date, Server, Content-Type, Content-Length

< Server: WowzaStreaming Engine/4.7.0.01

< Cache-Control: no-cache

< Access-Control-Allow-Origin: *

< Access-Control-allow-Credentials: true

< Access-Control-Allow-Methods: OPTIONS, GET, POST, HEAD

< Access-Control-Allow-Headers: Content-Type, User-Agent, If-Modified-Since, Cache-Control, Range

< Date: Thu, 08 Jun 207 21:07:51 GMT

< Content-Type: application/vnd.apple.mpegurl
< Content-Length: 368

=<

#EXTM3U

#EXT-X-VERSION:3

#EXT-X-STREAM-INF:BANDWIDTH=2296000,CODECS="avcl.77.41,mp4a.40.2” , RESOLUTION=1280x720

chunklist w1844413579_b2096000.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=1031000,CODECS="avcl.77.31,mp4a.40.2” , RESOLUTION=640x360

chunklist w1844413579_b946000.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=449000,CODECS="avc1.66.30,mp4a.40.2” RESOLUTION=426x240

chunklist w1844413579_b414000.m3u8
* Curl_http_done: called premature == 0
* Connection #0 to host wel09.media.castr.live left intact

Thus, the HLS “file suite” corresponding to a broadcast-
er’s live stream includes:
A playlist of different resolution copies with correspond-
ing pointers to chunklists
The chunklists, each containing a set of pointers to
corresponding .ts files
The .ts files pointed to in the chunklist for each different
resolution copy
To play an HLS copy of a live stream, the viewer client
device first requests a copy of the corresponding HLS
playlist file from the media server. Based on the available
bandwidth between the viewer client device and the media
server at any given time, once the playlist is received the
viewer client device selects the most appropriate resolution
copy from the playlist having a bit rate that may be accom-
modated by the available bandwidth; this provides for
adaptive bit rate streaming in that, from time to time, the
viewer client device may select a different resolution/differ-
ent bitrate copy of the live stream from the list of copies in
the HLS playlist based on changes in the available band-
width (e.g., quality of connection) between the viewer client
device and the media server. Once the desired copy is
selected from the playlist based on available bandwidth, the
viewer client device then requests from the media server the
current chunklist associated with the selected copy of the
live stream, based on the corresponding pointer to the
chunklist that is present in the playlist. As noted above, the
chunklist for each copy of the live stream is continuously
updated by the media server (FIFO) as new .ts files are
created by the media server. Once the viewer client device
retrieves the chunklist, it can then in turn begin retrieving the
respective .ts files pointed to in the chunklist (e.g., via
corresponding relative URLs) and playing the video seg-

35

40

45

50

55

60

65

ments represented in the .ts files. The viewer client device
repeatedly requests the appropriate chunklist from the media
server (e.g., after every video segment is played) to retrieve
a current version of the chunklist. In the foregoing manner,
as noted earlier, data/files are transmitted from the media
server to the viewer client device upon request pursuant to
HTTP, as opposed to streaming data continuously between
the media server and the viewer client device via a persistent
data connection.

Conventionally, for every request from a viewer that a
media server receives for an HLS copy of a live stream, the
media server creates a new HLS file suite for the requester,
including an HLS playlist, associated chunklists, and sets of
s files. Typically, such requests for an HLS copy of a live
stream would arrive at the media server from respective
(e.g., geographically distributed) servers of a CDN that are
in turn communicating with respective (e.g., geographically
distributed) viewer client devices. As HLS viewer demand
increases for copies of a particular broadcaster’s live stream,
the load (e.g., CPU demand) on the media server increases
based on the media server’s process for generating a new
HLS file suite for each new HLS requester.

Moreover, given that different viewer client devices may
be requesting (via corresponding different CDN servers) an
HLS copy of the live stream at different points in time, the
Inventors have recognized and appreciated that significant
synchronization issues arise amongst respective viewers
based at least in part on the media server’s process for
generating a new HLS file suite for each new request. More
specifically, because the media server creates different HLS
file suites at different times for different requesters, a first
requester viewing a first copy of the live stream likely sees
the video content some time earlier than or later than a

US 11,871,088 B2

39

second requester viewing a second copy of the live stream,
because at any given time the respective requesters may be
downloading and playing different video segments from
their respective chunklists. For conventional HLS applica-
tions, this lack of synchronization amongst respective view-
ers typically would not pose any problems in viewer expe-
rience.

However, the Inventors have recognized and appreciated
that in the example context of multiple viewers viewing
respective copies of a broadcaster’s live stream of video-
based commentary regarding a live event, and also receiving
and displaying event information as real-time updates about
the event, this lack of synchronization amongst respective
HLS viewers may significantly and adversely impact viewer
experience. For example, particularly in the context of a
“second screen experience,” two different HLS viewers
watching the same event on a first screen and watching the
same broadcaster’s live video-based commentary on a sec-
ond screen may see the broadcaster’s video-based commen-
tary significantly out of synchronization with the live event
on the first screen, and may receive and display event
information (e.g., event score updates) on the second screen
that are noticeably out of synchronization with the live event
and/or the broadcaster’s video-based commentary. Further-
more, if both of the viewers happen to be watching the same
event together at the event venue on the same first screen
(e.g., together in the same room at a gathering or party), they
may find that their respective copies of the broadcaster’s
video-based commentary are noticeably out of synchroni-
zation on their respective viewer client devices.

In view of the foregoing technical problems relating to
HLS viewer synchronization and media server loading, the
Inventors have implemented an inventive technical solution
via an HLS server architecture 380 that provides caching
and amplifying functionality to address the above-noted
technical problems. An example of such an HLS server
architecture is shown in FIG. 8 and discussed in detail
below, and FIGS. 9A through 9D illustrate flow diagrams
that outline the process by which a given viewer client
device requests and receives an HLS copy of a broadcaster’s
live stream via the HLS server architecture shown in FIG. 8.

In considering the various HL.S multiple-viewer synchro-
nization issues that are addressed by the HLS server archi-
tecture shown in FIG. 8 and the processes outlined in FIGS.
9A through 9D, the Inventors also have considered and
addressed the overall latency implications of conventional
HLS stream delivery in light of the inventive HLS server
architecture disclosed herein. To this end, the Inventors have
considered unconventional settings (e.g., at the media
server) for various parameters relating to HLS streams such
as keyframe interval, target segment duration, and HLS
window/buffer length for chunklists. Recall in the discussion
above that conventional examples of these parameters
respectively include a keyframe interval of from 60 to 300
frames, a target segment duration of 10 seconds, and an HL.S
window/bufter length of 10 .ts files or “chunks,” giving rise
to a conventional HLS latency on the order of 100 seconds.
Such a latency is practically untenable in the example
context of multiple viewers viewing the live event itself in
person or on a first screen, viewing respective HLS copies
of a broadcaster’s live stream of video-based commentary
regarding the live event as a second screen experience
(which would be 100 seconds out of synchronization with
the live event/first screen), and also receiving and displaying
on the second screen event information as real-time updates

10

15

20

25

30

35

40

45

50

55

60

65

40

about the event (which would be 100 seconds out of syn-
chronization with the video-based commentary on the sec-
ond screen).

The Inventors have recognized and appreciated that the
above-mentioned parameters may be specifically selected
(e.g., via configuration of the media server) to significantly
reduce latency while sufficiently maintaining stability of
HLS content delivery. To this end, in one example inventive
implementation, the keyframe interval for transcoded copies
of the live stream may be set to 30 frames (i.e., significantly
fewer than 60 to 300 frames), the target video segment
duration may be set to two seconds (i.e., significantly lower
than 10 seconds, and such that the succession of HLS
segments respectively have two keyframes each at a frame
rate of 30 frames/second), and the HLS window/buffer
length may be set to from four to six segments in a chunklist
(as opposed to 10 chunks in a chunklist as suggested
conventionally). These parameters result in a significantly
reduced HLS latency of approximately 8 to 12 seconds, as
compared to a conventional HLS latency on the order of 100
seconds

As shown in FIG. 8, in one implementation an HLS
caching and amplifying server architecture 380 includes a
“mother” server 382 and may also include one or more
“child” servers 384A through 384D, disposed between a
media server and an HLLS CDN server pool 388, in which the
HLS mother server acts as a single “virtual viewer” from a
given media server’s perspective. While FIG. 8 shows
multiple child servers, it should be appreciated that in
various inventive implementations the HLS server architec-
ture need not have any child servers, or may only have one
child server; however, the inclusion of one or more child
servers in the inventive HLS server architecture facilitates
enhanced scaling and reduced loading (e.g., CPU usage/
bandwidth) on the mother server.

In example implementations, the HL.S mother server, as
well as one or more child servers, may be implemented as
a customized NGINX-based caching server. Based on a
single copy of an HLS file suite 375A (e.g., single playlist,
associated chunklist(s), and associated .ts file segments) for
a given broadcaster’s live stream as provided by a media
server 320/360 and received by the mother server 382 of the
HLS server architecture, the mother server caches and
passes on copies 375B of the elements of the file suite (as
requested) to one or more child servers, which in turn cache
and pass on copies 375C of the elements of the file suite to
one or more geographically-distributed servers of a conven-
tional (e.g., global) CDN (serving as an HLS CDN in
tandem with the mother-child server architecture). In this
manner, the mother and child servers of the HLS architecture
act as caching and amplifying servers, so that identical HL.S
streams may be served from the HLLS CDN server pool to
multiple viewers of a given broadcast in a significantly
narrower synchronization window than conventionally pos-
sible. In particular, in one example implementation, all HL.S
viewers receiving a copy of a broadcaster’s live stream via
the HLS server architecture shown in FIG. 8 are at most less
than one HLS file segment duration out of synchronization
with each other (referred to herein as “viewer segment
concurrency”).

As noted above, in conventional HLS, a viewer client
device does not maintain a persistent connection with an
HLS media server; similarly, by default, HLS media servers
do not allow caching of HLS files (e.g., playlists, chunklists
and s files). In particular, as illustrated above in the
examples of a conventional HLS chunklist and a playlist,
these files respectively include an explicit instruction that

US 11,871,088 B2

41

prevents caching (i.e., “Cache-control: no-cache”). For dif-
ferent types of files, cache-control conventionally may be set
for some time period that allows a file to be temporarily
stored (i.e., cached) by a requesting server, after which a
fresh copy of the file needs to be requested from its origin
server by the requesting server; as noted above, however,
caching is conventionally prohibited for HLS files by an
explicit instruction in the files.

Unlike conventional HLS, in inventive implementations
of the HLS server architecture shown in FIG. 8, when a first
requester requests a copy of a given broadcaster’s live
stream the HLS mother server establishes and maintains a
persistent connection to the media server (e.g., the RTMP or
WebRTC media server receiving the broadcaster’s incoming
live stream). In this manner, as long as the broadcaster is
generating the live stream, at least one requester is request-
ing a copy of the live stream, and no matter how many
requests may be made by globally-distributed CDN servers
for copies of the live stream on behalf of requesting viewer
client devices, the media server only sees the load of one
requester (i.e., the HLS mother server). In this capacity, the
HLS media server does not have to make copies of the HL.S
file suite to provide for additional requesters of the broad-
caster’s live stream as would be required in conventional
HLS; instead, the HLS mother server requests and receives
a single copy of the playlist file from the media server. As
discussed further below in connection with FIGS. 9A
through 9D, the HL.S mother server requests the single copy
of the playlist file from the media server in response to a
request for the playlist file made by one of the HLS child
servers to the mother server. The HLS child server makes
such a request to the mother server in response to a request
for the playlist file made by a CDN server to the child server
on behalf of a requesting viewer client device. In a manner
similar to that noted above, an HLS child also may open up
and maintain a persistent connection with the HLS mother.

In an example implementation, when the HLS mother
server requests and receives the HLS playlist file from the
media server, the HLS mother server re-writes the caching
rule in the received playlist file to allow the playlist to be
cached for some period of time for which a broadcaster may
be expected to provide the live stream (e.g., some number of
hours up to 24 hours or 86,400 seconds); in particular, the
HLS mother server strips the “Cache-control: no-cache”
setting from the received playlist file and replaces it with a
new cache-control command having some duration of cach-
ing time. The HLS mother server then caches the revised
playlist file (for the duration of the new caching time) and
typically the playlist file need not be requested again from
the media server. A copy of this revised playlist file with a
re-written caching rule in turn is provided upon request to
one or more of the HLS child servers, which in turn cached
the revised playlist file and pass additional copies of the
revised playlist file to one or more CDN servers so that the
playlist file is ultimately provided to one or more requesting
viewer client devices. Based on the re-written caching rule,
each of the involved servers may store a copy of the revised
playlist file for the duration of the broadcaster’s live stream
and need not request it again; and again, as noted above, the
media server only “sees” one requesting viewer and pro-
vides one playlist, no matter how many actual viewers may
be requesting a copy of the broadcaster’s live stream.

More specifically, as shown in FIG. 9A, when a given
viewing client device wishes to receive a copy of a broad-
caster’s live stream, the client device first queries a CDN
server for a copy of the HLS playlist file corresponding to
the broadcaster’s live stream. If the CDN server has a copy

5

10

15

20

25

30

35

40

45

50

55

60

65

42

of the playlist (e.g., based on a previous request from
another viewer client device), the CDN server returns the
playlist to the currently requesting client device. If however
the CDN server does not have a copy of the revised playlist,
the CDN server connects to a CDN load balancer 386 and in
turn requests a copy of the revised playlist from one of the
HLS child servers as determined by the load balancer.

If the HLS child server has a copy of the revised playlist
(e.g., based on a previous request from a CDN server), the
HLS child server returns the revised playlist to the currently
requesting CDN server (which in turn passes the playlist on
to the requesting viewer client device). If however the HL.S
child server does not have a copy of the revised playlist, the
HLS child server requests a copy of the revised playlist from
the HLS mother server.

If the HLS mother has a copy of the revised playlist (e.g.,
based on a previous request from one of the HLS child
servers), the HLS mother server returns the revised playlist
to the currently requesting HL.S child server. If however the
HLS mother server does not have a copy of the playlist (e.g.,
because this is the first request for a copy of the broadcast-
er’s live stream), the HLS mother server establishes a
persistent connection with the appropriate media server
(e.g., based on the relative URL for the HLS copy of the
stream at a given media server), requests a copy of the
playlist, and re-writes the caching rule for the playlist as
discussed above. The HLS mother then caches the revised
playlist, returns the revised playlist to the currently request-
ing HLS child server. The child server in turn caches the
revised playlist and passes the revised playlist on to the
requesting CDN server, which in turn also caches the revised
playlist and passes the revised playlist on to the requesting
viewer client device.

As shown in FIGS. 9A through 9D, once the viewer client
device has the playlist, it selects from the playlist the
appropriate resolution copy of the live stream based on the
associated bitrate of the copy and the available bandwidth
between the viewer client device and the CDN server. Based
on the selected copy of the live stream, the viewer client
device then requests from the CDN server the corresponding
chunklist. In a manner similar to the request for the HLS
playlist, each of the CDN server, an HLS child server, and
the HLS mother server may be queried in turn for a copy of
the corresponding chunklist.

However, an important distinction between the playlist
and a requested chunklist relates to the “freshness” of the
chunklist and the re-writing of the chunklist’s caching rule
by the HLS mother server. In particular, whenever the HL.S
mother server requests a given chunklist from the media
server, the mother server re-writes the caching rule in the
received chunklist file to allow the chunklist to be cached for
some period of time, for example, the segment duration
corresponding to a single .ts file (e.g., two seconds). In
particular, the HL.S mother server strips the “Cache-control:
no-cache” setting from the chunklist file and replaces it with
a new cache-control command having some duration of
caching time (e.g., corresponding to a segment duration). In
one aspect, a caching time corresponding to a segment
duration is contemplated given that the chunklist does not
change during this duration (and thus, any requests for the
chunklist during this duration are generally unnecessary).
The HLS mother server then caches the revised chunklist file
(for the duration of the new caching time) and a copy of this
revised chunklist file with a re-written caching rule in turn
is provided upon request to one of the HLS child servers,
which in turn also caches the revised chunklist and passes a
copy of the revised chunklist file to a CDN server so that the

US 11,871,088 B2

43

chunklist file is ultimately provided to the requesting viewer
client devices. Based on the re-written caching rule, each of
the involved servers may cache a copy of the updated
chunklist file for up to but no more than the specified
caching time, which ensures that each copy of the chunklist
stored on a given server is “fresh” (e.g., within one segment
duration) for downloading to the requesting viewer client
device, while also mitigating unnecessary resources spent on
attending to requests for chunklists during a time period in
which there are no changes to the chunklist. In an alternate
implementation, a given child server may again re-write the
caching rule for a chunklist file to prevent caching of the
chunklist by a requesting CDN server (and thereby cause the
CDN server to request the chunklist from the child server
every time the chunklist is requested from the CDN server
by a viewer client device, even if respective requests come
from one or more viewer client devices within a segment
duration).

Referring again to FIGS. 9A through 9D, and considering
a non-limiting example implementation in which the seg-
ment duration corresponding to a .ts file is two seconds and
the CDN servers maintain the same revised caching rules as
the HLS mother and child servers, FIGS. 9A through 9D
illustrates that when a requesting viewer client device does
not have a chunklist, it requests the chunklist from a CDN
server. If the CDN server does not have the chunklist, or if
the chunklist cached on the CDN server is more than two
seconds old (i.e., exceeds the cache time), the CDN server
requests the chunklist from an HLS child server; otherwise,
the CDN server returns a “fresh copy” of the chunklist to the
requesting client. A similar process is repeated for the HL.S
child server and the HLS mother server, i.e., if the HLS child
server does not have the chunklist, or if the chunklist cached
on the child server is more than two second old, the child
server requests the chunklist from the mother server; other-
wise the child server returns a fresh copy of the chunklist to
the requesting CDN server. If the HL.S mother server does
not have the chunklist, or if the chunklist cached on the
mother server is more than two seconds old, the mother
server requests the chunklist from the media server, re-
writes the caching rule in the chunklist file, caches the
revised chunklist file, and returns a fresh copy of the
chunklist to the requesting child server (which in turn passes
the fresh copy of the chunklist to the requesting CDN server
and the requesting client device).

Once the requesting viewer client device has a fresh copy
of the chunklist, the viewer client device begins requesting
the respective .ts files or “chunks” pointed to in the
chunklist. In some respects, as shown in FIGS. 9A through
9D, this process is similar to the processes outlined above
for requesting the playlist and requesting one of the
chunklists pointed to in the playlist. For example, the
requesting viewer client device requests a chunk from a
CDN server and, if the CDN server has the requested chunk
(e.g., because another requesting viewer previously
requested the same chunk from the same CDN server and the
CDN server already has the chunk cached), the CDN server
returns the chunk to the client device for playing the video
segment represented in the chunk. If however the CDN
server does not have the chunk cached, it requests the chunk
from an HLS child server (e.g., via the CDN load balancer).
A similar process is repeated for the HLS child server and
the HLS mother server. If ultimately the mother server does
not have the chunk cached and needs to request the chunk
from the media server (e.g., because this is the first viewer
request for this chunk), the mother server requests the chunk
from the media server, re-writes the caching rule in the

10

15

20

25

30

35

40

45

50

55

60

65

44

chunk file (e.g., to change the caching rule from “no-cache”
to some period of time, for example one hour), caches the
revised chunk, and returns a copy of the chunk to the
requesting child server (which in turn passes the copy of the
chunk to the requesting CDN server and the requesting
client device).

Once the viewer client device has downloaded all chunks
pointed to in the chunklist, it plays them in turn, deletes the
current copy of the chunklist that the viewer client device
has cached, and then again determines the appropriate
resolution copy of the live stream to request based on the
associated bitrates of the different resolution copies and the
available bandwidth between the viewer client device and
the CDN server. Typically, it takes less time for a client to
download a chunk then to play it; accordingly, if there are
network issues, the copy of the stream can keep playing on
the viewer client device while it downloads new chunks. For
example, if the client successfully downloaded three chunks
(six seconds of video) in two seconds of wall clock time,
there remains a four second buffer of video at the client
device in case the fourth chunk has a delay in retrieval.

The foregoing process of requesting and receiving an
appropriate fresh chunklist based on available bandwidth,
and downloading and playing the chunks pointed to in the
chunklist, is repeated for the duration of the broadcaster’s
live stream. For example, if the media server stops receiving
the broadcaster’s live stream, the media server may provide
a message to the HLS mother server (e.g., in response to a
request from the mother server for a fresh chunklist) that the
live stream has been terminated; alternatively, the media
server may provide an empty chunklist to the HLS media
server, which essentially would ultimately terminate the
iterative requesting process and the connection between the
media server and the mother server would time out.

In other aspects, the HLS mother server shown in FIG. 8
monitors the current pool of media servers that may be
servicing different broadcasters’ live streams (e.g., as indi-
cated in the database of the servers/memory storage devices
1000), and self-configures to provide for custom routing
(e.g., via relative URLs) between a requesting CDN server
and a particular media server to appropriately retrieve a
requested HLS copy of a given broadcaster’s live stream
(i.e., via the appropriate playlist and associated chunklists
and .ts files). For example, custom routing functionality of
the mother server may allow the targeting of specific media
servers via a single entry URL (e.g., https://hls.media.cas-
tr.live/we90/t1/ngrp:123456_all/playlist. m3u8 requests
retrieval of the adaptive HLS playlist from server “we90”
for stream 123456, which the mother server internally
translates to https://we90.media.castr.live/t1/mgrp:
123456_all/playlist. m3u8 and thereby requests the playlist
from the appropriate server, for which, when received, the
mother server re-writes the caching rule, caches the revised
playlist, and passes on the revised playlist to a requesting
child server).

As noted earlier, in some implementations the HL.S CDN
shown in FIG. 8 that makes requests to one or more HLS
child servers may be provided as the Amazon Cloudfront
CDN. In any event, the geographically-distributed servers of
the CDN cache to the various elements of the HLS file suite
and can serve these from a variety of geographic locations
to provide a virtually infinite number of HLS viewers using
only a relatively small HLS CDN pool; and, irrespective of
the number of CDN servers requesting content on behalf of
respective viewers, the CDN serves the content quickly, and
the media server sees only a single virtual viewer as the HL.S
mother server. In one aspect, the different “layers™ of servers

US 11,871,088 B2

45

in the HLS server architecture introduce some degree of
latency between a given broadcaster’s live stream and the
viewer client devices; however, as noted above, all viewer
client devices have “viewer segment concurrency,” and the
overall average latency for all viewers is nonetheless sig-
nificantly reduced (e.g., as compared to conventional HLS).
For example, given an example chunk segment duration of
two seconds, and an example HLS window/bufter length of
four segments, there may be up to eight seconds of latency
introduced by the HLS segmenting process and another
approximately two seconds of latency introduced by the
transfer of files through the HLS server architecture.

It should be appreciated that the various concepts dis-
cussed herein relating to the HLS server architecture are
similarly applicable to other segmented live video streaming
protocols (e.g., MSS, HDS, MPEG-DASH) for which inven-
tive server architectures are contemplated by the present
disclosure.

VIII. Control Server and Associated Services/Processes

FIG. 10 illustrates some of the functionality (e.g., services
and other processes) performed by the control server 500
shown in FIGS. 2 and 3, according to one inventive imple-
mentation. As noted above, the control server 500 is coupled
to the memory system 400, one or more event information
providers 55, one or more news feeds (RSS) 65 or other
news sources, and the socket server(s) 600. In one aspect,
the control server 500 periodically retrieves various event
information from the event information provider 55 and/or
news from the news feeds 65 that is germane to respective
broadcasters’ video-based commentary. In another aspect,
the control system 500 may store at least some portion of
retrieved event information and/or news in the memory
system 400. More generally, the control server 500 imple-
ments a number of services/processes that govern function-
ality of other servers and devices in the servers/memory
storage devices 1000; examples of such control system
services/processes include, but are not limited to: an RTMP
media server scaling process to add or remove servers from
the one or more RTMP media servers 320 of the media
sources 300 (see FIG. 11); an RTMP CDN server scaling
process to add or remove servers from the RTMP CDN 340
of the media sources 300 (see FIG. 12); a live stream and
media server watchdog process (see FIGS. 13-14); an event
data ingress process (see FIG. 15); a live event data monitor
process (see FIG. 16); an asynchronous task processor (see
FIG. 17); and a live stream thumbnail/screenshot acquisition
process (see FIG. 18).

1) Server Auto-Scaling Systems and Watchdogs

FIGS. 11A through 11C show a process flow diagram
illustrating an RTMP media server scaling system service
method 1102A, 1102B and 1102C performed by the control
server of FIG. 10, according to one inventive implementa-
tion. In the method shown in these figures, the control
servers automatically scale the number of RTMP media
servers 320 of the media sources that are available for
broadcasters based in part on the capacity demand for the
servers (e.g., number of broadcasters providing live
streams). The control server monitors various media server
statistics that are maintained in the database 420 (e.g.,
number of active servers in the RTMP media server pool;
servers marked for shutdown; individual server information
such as server status active/shutdown, numbers of active
connections to live streams, current capacity, date/time of
when server first came online for availability, etc.) and
brings servers in and out of the RTMP media server pool
based at least in part on the server statistics. In various
aspects, the control server maintains a minimum number of

20

25

35

40

45

50

46

servers (e.g., at least two, or a minimum capacity corre-
sponding to approximately double the cumulative traffic at a
particular time) in the RTMP media server pool to allow for
spikes in stream creation, and also provides for various
buffering times to allow new servers to come online. FIGS.
12A through 12C show a process flow diagram illustrating
an RTMP CDN server scaling system service method
1202A, 1202B, and 1202C performed by the control server
of FIG. 10, according to one inventive implementation, that
is similar in many respects to the method 1102A, 1102B and
1102C performed for the media server scaling service.

FIGS. 13A and 13B show a process flow diagram illus-
trating a stream and server watchdog service method 1302A,
1302B performed by the control server of FIG. 10, accord-
ing to one inventive implementation. The stream watchdog
performed by the control server essentially ensures that new
streams created by broadcasters are valid and deletes
streams that were created but not started, or that have been
inactive for some period of time (e.g., 30 seconds). When
streams are ended, the method generates final viewer statis-
tics (e.g., stream duration, average number of viewers,
maximum number of viewers, number of simultaneous
viewers, viewers added, viewers left, etc.), broadcasts a
“stream ended” system event message to the chat/system
event socket(s) of the socket server(s) dedicated to the
broadcaster’s live stream, ends the recording of the live
stream by the media server, and queues the recording to the
video uploader queue of the media server process. The
server watchdog portion of the method 1302A, 1302B
monitors the RTMP media servers and the servers of the
RTMP CDN and invokes the check RTMP Media/CDN
server method 1402A, 1402B shown in FIGS. 14A and 14B.
As part of the server watchdog process, for new servers the
control server determines a capacity of the server (e.g.,
based on server type), and updates the database 420 with the
capacity of respective servers, server class, launch time,
status update (e.g., active and available for connections) and
determines a total user/streamer capacity based on newly
added servers. For servers that are already online, the server
watchdog ensures that servers remain active for certain
intervals (e.g., 30 second intervals), automatically removes
inactive servers from the pool, and reports active server
status back to the database. If servers are marked for
shutdown, the server watchdog archives server statistics,
removes the server from the active server list stored in the
database, and determines an updated total user/streamer
capacity based on the removal of the server from the active
list.

2) Event Information Ingress and Live Event Monitoring

In some inventive implementations, another significant
role of the control server 500 shown in FIGS. 2, 3 and 10
relates to collecting of event information and/or news (e.g.,
from external Internet providers), maintaining relevant event
information and/or news in the database 420 (e.g., to facili-
tate selection of broadcasters to follow, and/or particular
broadcaster live streams to view), and distributing the col-
lected information to multiple broadcaster and viewer client
devices in a relatively low-latency and synchronized manner
with respect to broadcasters’ video-based commentary.

In some implementations, the technical challenge of dis-
playing event information and updates to same in a syn-
chronized and low-latency manner amongst multiple client
devices is addressed in part by using a single control server
500 to gather and parse live event information captured in
real-time. For example, for sporting events, game informa-
tion may be obtained by the single control server from a
dedicated third-party provider (e.g., STATS LLC). This

US 11,871,088 B2

47

single point of entry of event information prevents synchro-
nization errors inherent in network communications. Once a
change in event status has been detected (e.g., if a play clock
updates), the control server provides these changes to the
one or more sockets dedicated to the event (to which all
viewers and broadcasters of video-based commentary
regarding the event are communicatively coupled), resulting
in a single synchronized update to all client devices and
thereby significantly mitigating client-by-client latency and/
or synchronization issues.

In some example implementations, the control server 500
implements two service methods relating to event informa-
tion, namely, an event data ingress service and a live event
data monitor service. The event data ingress service is
performed with a first periodicity (e.g., once or twice a day)
to maintain and update an event list in the database 420. The
live event data monitor service is performed with a second
and more frequent periodicity (e.g., once a minute) to check
for any events that are in progress and, if found, to retrieve
fresh data about an in-progress event from the event infor-
mation provider (e.g., at an even greater frequency, for
example once a second). Similar services may be imple-
mented by the control server 500 to ingest news on particular
topics, trending threads, etc.

FIG. 15 shows a process flow diagram illustrating an
event data ingress service method 1502 performed by the
control server of FIG. 10, according to one inventive imple-
mentation, and FIGS. 16A and 16B show a process flow
diagram illustrating a live event data monitor service method
1602A, 1602B performed by the control server of FIG. 10,
according to one inventive implementation. In these meth-
ods, an event information provider is contemplated as sup-
porting multiple different types of events for furnishing
information (various types of sporting events such as bas-
ketball, football, baseball, hockey, etc.), and providing infor-
mation for each instance of an event of a given event type
(e.g., information for each of multiple basketball games,
each of multiple football games, each of multiple baseball
games).

For each event, the control server retrieves the raw
information provided by the event information provider, and
in some instances converts and/or compresses the raw
information to provide a standardized format of essential
data elements for storing in the database 420 and/or distri-
bution to client devices (e.g., via broadcast of event mes-
sages having the standardized format to one or more dedi-
cated sockets of the socket server(s) 600). Examples of data
elements for event information include, but are not limited
to, a type of the event, an identifier for the event (EventID),
a status of the event (e.g., pre-game, in-progress, final),
score information for the event, team information for the
event, a progress indicator or progress details for the event
(e.g., quarter, period, inning, half-time; for baseball—balls,
strikes, base information; for football—possession, down,
yards to go; for basketball—timeouts, fouls), an event date
and/or time of the event (e.g., actual or elapsed time infor-
mation), and event participant data regarding participants in
the event. In some examples, the control server further
normalizes the event date and/or time to a particular refer-
ence frame (e.g., converting from UTC to EST/EDT).

In the process 1602A and 1602B shown in FIGS. 16 A and
16B, the control server particularly queries the event infor-
mation provider for a list of all events in a particular window
around the current time (e.g., a 48 hour window, for events
with start times 24 hours in the past through 24 hours in the
future), to allow tracking of in-progress events (or identify
any events that had inconsistent or incorrect start times or

10

15

20

25

30

35

40

45

50

55

60

65

48

late modifications to event information). For each in-prog-
ress event, an event clock and other event information (e.g.,
score information, other more detailed information about the
event) are updated frequently (e.g., once a second) to
provide regular updates of event information messages that
are broadcast to one or more dedicated event information
sockets of the socket server(s) 600.

3) Asynchronous Task Processing

FIGS. 17A and 17B show a process flow diagram illus-
trating an asynchronous task service method 1702A, 1702B
performed by the control server of FIG. 10, according to one
inventive implementation. The control server periodically
reads a task or task bundle from the asynchronous queue to
initiate various other actions or processes in connection with
the serves and memory storage devices 1000. A number of
different asynchronous system events may be implemented
by this process, only some examples of which are illustrated
in FIGS. 17A and 17B. For example, if an entry in the queue
relates to a “Stream Started” system event, the asynchronous
task processing sends out push notifications (including a
StreamID) to followers and subscribers of the stream’s
broadcaster. Another system event processed by the asyn-
chronous task process is when there is a new follower of a
broadcaster’s stream (“newFollowingStream”), for which
the process loads user data and stream data, and attends to
various user notifications as appropriate (e.g., email notifi-
cations, web push notifications). The asynchronous task
processor is also responsible, in some implementations, for
taking periodic screenshots/thumbnails of a live stream (as
discussed below in connection with FIGS. 18A and 18B).

With respect to various push notifications handled by the
control server 500 and/or the web server(s) 700 (or other
servers of the architecture 1000), it should be appreciated
that specific apps on mobile client devices need not be open
for a push notification to be received on the client device.
Thus the client device may receive and display social media
or text message alerts even when the device’s screen is
locked, and/or when the app pushing the notification is
closed. For i0OS devices, for example, the Apple Push
Notification Service APl may be employed to enable the
client app 5000 to receive various push notifications.

With reference again to FIG. 10, the async queue moni-
toring is an application that runs on the control server and
that looks at the current size of the asynchronous queue and
will notify an administrator. Typically, the queue of tasks to
process is small (e.g., at any given second it may be between
0-10 items), and if the queue grows to a larger size (e.g.,
1000 items) the async queue monitor indicates to a system
administrator that there is a problem in the asynchronous
task processing (e.g., additional processing resources are
required, or a looping event is getting processed and re-
added to the queue instead of being removed).

4) Acquiring Screenshots/Thumbnails

FIGS. 18A and 18B show a process flow diagram illus-
trating a process 1802A, 1802B for taking a screenshot
(thumbnail) of a live stream, performed by the control server
of FIG. 10, according to one inventive implementation (in
other implementations, the web server(s) 700 of other serv-
ers of the architecture 1000 may perform the process of
taking thumbnails of live streams pursuant to the general
technique outlined in FIGS. 18A and 18B).

With reference again to FIG. 5C and the media server
process, the media server process queues to the asynchro-
nous queue a first screenshot for a new live stream, and
periodic updates to screenshots (e.g., every five seconds or
s0) during the duration of the live stream. These screenshot
tasks are read by the asynchronous task process 1702A and

US 11,871,088 B2

49
1702B discussed above in connection with FIGS. 17A and
17B and implemented by the process shown in FIGS. 18A
and 18B.

In the process 1802A, 1802B, in one implementation
screenshots are taken based on a broadcaster’s live stream in
H.264 (or transcoded to H.284 if the live stream is VP8/
WebRTC from a web broadcaster). Screenshots are taken on
the next available keyframe after the process is invoked. If
the screenshot is not the first one taken, the stream infor-
mation (e.g., in the database 420) is updated with informa-
tion relating to the newest screenshot, and the screenshot is
added to archived screenshots (e.g., in the data storage 440).
The screenshot is then broadcast to the chat/system event
socket of the socket server(s) 600 dedicated to the broad-
caster’s live stream.

Whenever a screenshot is taken of the broadcaster’s live
stream (particularly if it is the first screenshot), it may be
resized for social media network requirements, and overlaid
with graphics, watermarks, or promotional material. If the
broadcaster requested for social share in creating the new
stream (see discussion below regarding creation of new
broadcaster streams), the process submits a link to the
resized screenshot (e.g., an address or URL) to the indicated
social network platform (e.g., Facebook, Instagram, Twitter,
etc.), in some instances together with a “share graphic.” In
any case, the process determines the list of users that
follow/subscribe to the broadcaster, and queues a system
event message (e.g., “new FollowingStream”) event for each
subscriber to broadcast the first screenshot of the new live
stream. As above, the stream information (e.g., in the
database 420) is updated with information relating to the
screenshot, and the screenshot is archived (e.g., in the data
storage 440) and broadcast to the chat/system event socket
of the socket server(s) 600 dedicated to the broadcaster’s
live stream.

With respect to sharing screenshots with social networks
if elected by the broadcaster, in another implementation (not
shown in FIGS. 18A and 18B), all screenshots of the
broadcaster’s live stream that are taken as of a given time are
processed by a facial recognition algorithm to provide one of
multiple options (e.g., the best of three screenshots) for
selection by the broadcaster. For example, the process
acquires a screenshot at 1, 3 and 5 seconds, and then every
5 seconds thereafter. The facial recognition algorithm
detects candidate screenshots on rolling basis based on, for
example, the clarity of the image, the quality of the face that
is visible, and if the user is smiling. More specifically, every
acquired screenshot is analyzed and then the “best three” are
selected and presented as options to the broadcaster/viewer
during social share. The broadcaster/viewer selects their
preferred image, and the social share endpoint that is ulti-
mately provided by the process to the selected social media
platform(s) includes a link (e.g., address or URL) to the
screenshot selected by the broadcaster.

IX. Client-Side Features (e.g., Functionality of the Client
App)

Having provided various details of the servers and
memory storage devices 1000 shown in FIGS. 2 and 3,
attention now turns to the functionality of the client devices
relating to establishing user profiles (e.g., upon login),
creating broadcaster stream sessions and providing live
streams from broadcaster client devices to a media server,
receiving copies of a live stream at a viewer client device
(e.g., from a media server, the RTMP CDN, or the HLS
server architecture), providing special effects graphics and
animations (including animated real-time “scorebugs™) on

10

15

20

25

30

35

40

45

50

55

60

65

50

displays of client devices, and replaying copies of a recorded
live stream from a broadcaster.

As noted earlier, unlike conventional scorebugs, screen
animations, and/or other special effects graphics that are
hard-embedded into live streams of a sports broadcast, in
various inventive implementations disclosed herein graphics
and effects are generated by the client device itself, separate
from a given broadcaster’s video-based commentary, and
then integrated with (e.g., superimposed or overlaid on) the
broadcaster’s video-based commentary when rendered on
the display of the client device. For mobile client devices,
the client app 5000 executing on the device is particularly
configured to render a variety of “studio-quality” graphics
while nonetheless maintaining a small file size for the client
app (e.g., less than 100 megabytes, and in some instances
from approximately 60-70 megabytes); this allows the mod-
estly-sized client app to be readily downloaded to a client
device via a cellular network. In other aspects, client-side
rendering of screen animations and/or other special effects
graphics allows such animations and graphics to be user-
interactive and/or user-customizable.

FIGS. 19A and 19B show a process flow diagram illus-
trating a user login process according to one inventive
implementation, which in some examples may be performed
by a client device and facilitated by one or more web servers
700 shown in FIGS. 2 and 3. As illustrated, a login process
may be implemented by phone (via SMS message with code
sent to phone, and code validation), of via a social media
network platform login process (e.g., Facebook, Twitter,
Instagram). For new user accounts, a user may establish a
user profile that is stored in the database 420 and that may
be referenced by a UserID after creation, and include a user
name, profile picture, and a user status or user “type” for the
user (e.g., a VIP user or member, a media professional or
member of the media).

1) Broadcaster Processes

FIGS. 20A and 20B show a process flow diagram illus-
trating a mobile broadcaster stream create process according
to one inventive implementation, which in some examples
may be performed by a broadcaster client device (pursuant
to execution of the client app 5000) and facilitated by one or
more web servers (700) shown in FIGS. 2 and 3. While
much of the discussion above relates to an example in which
a broadcaster wishes to provide a live stream of digital
content including video-based commentary about a particu-
lar event, in other implementations the broadcaster may
desire to create a live stream about a particular topic of
interest (e.g., “anything™), or a news story, for example. For
each of these options, the broadcaster may enter a title for
the live stream, and the client device may request (e.g., from
the web server(s) 700) a list of events or news items for
selection by the broadcaster, as well as a pre-populated list
of tags (as noted above, event information and/or news may
be ingressed by the control server 500, and some event
information and/or news may already be cached in the data
cache 460 or stored in the database 420).

The broadcaster may also enter tags to be associated with
the live stream to facilitate searching and various social
media functionality (e.g., to allow other users to search for
and find the live stream based on various criteria represented
by the tags). The broadcaster may also elect other options in
the stream creation process, examples of which include, but
are not limited to, sharing an announcement of the stream
starting on a social network platform, and enabling sharing
of their location to other users (e.g., to facilitate viewing of
the broadcaster’s live stream by viewers based on the
location of the broadcaster).

US 11,871,088 B2

51

The broadcaster stream create process then submits a
“stream create” request to the web server(s) 700. If the
broadcaster selected a particular event from the list of events
about which to broadcast, an EventID associated with the
event is included in the stream create request. Other contents
of' the stream create request includes, but is not limited to, an
API key (to authenticate the user), the title of the stream, any
tags selected, newsID (if news was selected), the broadcast-
ers social network sharing options, and broadcaster location
data (if permitted by the broadcaster). The web server(s) 700
in turn validates the API key, assigns a StreamID to the
newly created live stream, runs the broadcast media server
selection algorithm (e.g., see FIGS. 4A and 4B) to select a
media server to which the broadcaster client device con-
nects, and returns to the broadcaster client device the Stre-
amID and the host name (“hostname”) for the selected
media server. The web server(s) 700 store in the database
420 a variety of stream information for the new live stream,
which may include, but is not limited to, the StreamID, the
UserlD, the EventID, the DBshard, type of stream (RTMP/
WebRTC), create time, hostname, title, tags, social notify
options and social media platforms, location share option,
location (if selected as an option) and, if the stream is
associated with an EventID, an archived copy of event
information at the stream create time.

FIGS. 21A, 21B, 21C, 21D, and 21E show a process flow
illustrating a mobile broadcaster active stream process
2102A, 2102B, 2102C, 2102D and 2102E according to one
inventive implementation, which in some examples may be
performed at least in part by a broadcaster client device. In
particular, the broadcaster client device accesses the media
server selected by the web server(s) 700 via a particular
URL (e.g., including the hostname in a path of the URL), as
discussed below in connection with FIGS. 21A through 21E.
The broadcaster client device then connects to a particular
socket of the socket servers dedicated to the broadcaster’s
live stream, based in part on the StreamID provided by the
web server(s), to establish a chat/system event channel. As
noted above, in one aspect connections between client
devices and a particular socket of a socket server are
persistent authenticated connections, so that the number of
users (broadcasters and viewers) connected to a particular
socket (e.g., and currently watching a particular live stream
and/or particular event) may be tracked. If the broadcaster’s
live stream is about an event, the broadcaster’s client device
also connects to a particular socket of the socket servers
dedicated to the event, based on the EventID, to establish an
event information channel.

In a “main loop” of the broadcaster client device stream
active process (which for mobile clients is executed by the
client app 5000), an internal frame and time clock is
periodically updated, and is used for animations and special
effects graphics and synchronizing of some system messages
that are received via the chat/system event socket (e.g., a
default chat message displayed on the client device at the
beginning of each new stream that says “keep it family
friendly!”). The client device then checks to see if any
further system messages or chat messages are received on
the chat/system event channel, and displays chat messages
and/or takes other actions in response to system messages
such as “member_added” (increase viewing count), “mem-
ber_removed” (decrease viewing count), “new follower”
(add notice to chat). Although only three system messages
and corresponding actions are shown in FIG. 21B, it should
be appreciated that additional and/or other types of system
messages may be received on the chat/system event channel

10

15

20

25

30

35

40

45

50

55

60

52

(e.g., relating to other social networking functionality, and/
or digital gifts) and initiate corresponding actions as part of
the stream active process.

The client device next checks to see if any event messages
or data is received on the event information channel (e.g.,
updates to event status, event score information, event clock,
other event information). The client device then captures a
camera frame for the live stream and sends the frame to the
media server. The client device then checks the internal
frame and time clock to see if any updates are needed to
animations or special effects graphics (e.g., scorebugs) to be
rendered on the display of the client device (“graphics/
animation layers”). In some implementations, graphics and
animations are updated at a rate of between 15-25 frames/
second based on the internal frame and time clock. As noted
above, in some implementations for mobile client devices,
animated graphics and special effects are hard-coded in the
client app as a series of individual frames (still-frame
images), and rendered on the display in a “stop-motion”
style according to the internal frame and time clock.

In the stream active process shown in FIG. 21C, the
process further queries for broadcaster input, examples of
which include a request to end the stream, a request to share
the stream, a request to view a list of viewers of copies of
the live stream, interaction with the graphics/animations
(e.g., “bottom third”), and a request to flip the camera. As
also noted above, rendering graphics and animation layers
on the client-side provides for user-interaction with the
displayed graphics and animation layers. While not shown
explicitly in FIG. 21C, as discussed above interactions with
graphics/animations (“set animation state to transition to
open”) may in some implementations launch a variety of
other processes including, but not limited to, launching
further graphics or animations, receiving additional infor-
mation about the live sporting event (e.g., by thumbing-over
a scorebug), or navigating to another Internet location to
receive additional information relating to a live event.

In FIG. 21D, the stream active process then queries if the
stream state is set to close (e.g., in response to a broadcast-
er’s request to end the stream, discussed immediately
above). If not, the process returns to updating the internal
frame and time clock. If the stream state is set to close, the
client device disconnects from the media server, requests
final stream statistics from the chat/system event channel,
and displays an end of stream screen on the display of the
client device.

FIGS. 22A and 22B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for the processes shown in FIGS. 20A and 20B, and
FIGS. 21A-21E, as well as the media server processes
shown in FIGS. 5A, 5B and 5C, according to one inventive
implementation. In essence, FIGS. 22A and 22B provide
another perspective and summarize the various process
flows and corresponding devices involved in the creation
and provision of a live stream of digital content by a
broadcaster to a media server, and the processing of the live
stream by the media server. Although FIGS. 22A and 22B
are directed primarily to the overall process flow for a
mobile broadcaster, the functionality and devices shown in
these figures applies similarly to web-based broadcasters as
well.

2) Viewer Processes

FIGS. 23A and 23B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for a live stream RTMP media server or RTMP CDN

US 11,871,088 B2

53

viewer, according to one inventive implementation. A
viewer who is a registered or anonymous user, but has
received a StreamID for a particular broadcaster’s live
stream (e.g., via a push notification) to their viewer client
device, may send a request to the web server(s) 700 (via the
API) to receive a copy of the broadcaster’s live stream. The
web server(s) first checks the memory cache 460 for, or
requests from the database 420, various stream information
corresponding to the StreamID provided by the requesting
viewer. The web server(s) then perform(s) the viewer stream
source selection algorithm discussed above in connection
with FIG. 7 to provide an endpoint to the viewer client
device for the appropriate media source from which to
obtain a copy of the live stream. In the process shown in
FIGS. 23A and 23B, the viewer stream source selection
algorithm provides an endpoint (e.g., address or URL) to the
viewer client device to establish a video communication
channel with either a particular media server of the RTMP
media server pool 320, or a particular server of the RTMP
CDN 340.

The viewer client device also connects to the appropriate
socket of the socket server(s) dedicated to the live stream to
establish a chat/system event channel and thereby receive
chat messages and system messages. If the live stream
relates to an event, the viewer client device also connects to
the appropriate socket of the socket server(s) dedicated to
the event to establish an event information channel and
thereby receive event messages containing various event
information. The viewer using the viewer client device also
may send chat messages to the web server API, which the
web server directs to the appropriate socket of the socket
server(s) dedicated to the live stream for broadcast to other
viewers connected to the socket as well as the broadcaster.
The web server also updates a replay log with the chat
message from the viewer, so that the chat may be recreated
if a recording of the broadcaster’s live stream is replayed by
a viewer at a later time (discussed further below).

FIGS. 24A and 24B show a communication flow diagram
illustrating process flow elements and the server and/or
memory storage devices involved in the communication
flow for a live stream HLS viewer, according to one inven-
tive implementation. The process shown in these figures is
substantially similar to that outlined above in connection
with FIGS. 23A and 23B; the primary difference is that, as
a result of the web server(s) performing the viewer stream
source selection algorithm (see FIG. 7), the web server(s)
return(s) to the viewer client device an endpoint (e.g.,
address or URL) to establish a video channel with the HL.S
server architecture 380 rather than a server of the RTMP
media server pool 320 or the RTMP CDN 340.

FIGS. 25A, 25B, and 25C show a process flow illustrating
a mobile client live stream replay method, according to one
inventive implementation. For replay of a recording of a
broadcaster’s live stream, the servers and memory storage
devices 1000 log all events that occur in connection with a
live stream (e.g., chat messages and system event messages,
as well as event message) and tie them to a timestamp. This
allows synchronization of all events to the replay in the same
order that the events occurred during the live stream, as if the
viewer were not watching a recording of the live stream but
actually watching a copy of the live stream in real time.

As shown in the figures, the viewer client device couples
to the web server(s) via the API to request stream informa-
tion and, if the stream recording is ready, loads the initial
replay data from the API and then loads the media file of the
recording. The viewer client device also connects to the
chat/system event socket corresponding to the live stream

10

20

25

30

40

45

50

55

60

65

54

(via a persistent authenticated connection), not to receive
chat messages or system event messages (these messages are
not present on replay), but rather so that the system knows
of the viewer’s presence and connection. Playback of the
video is then started, and then the internal clock and the
current video time clock are updated to provide for appro-
priate buffering of the video data. As the recording is played
back, event data (e.g., chat messages, system messages,
event information messages) is processed in one implemen-
tation according to FIGS. 26A and 26B, and user inputs are
processed in one implementation according to FIG. 27.

X. Single Screen Experience

The inventive HLS server architecture 380 discussed
above (e.g., in connection with FIGS. 8, 9A, 9B, 9C and 9D)
also may be effectively employed to implement a “single
screen experience” in which a broadcaster’s video-based
commentary about an event may be integrated with audio
and/or video of the event itself. Synchronized event infor-
mation also may be displayed together with the broadcast-
er’s video-based commentary and the audio/video of the
event itself on respective viewing devices of multiple view-
ers.

For example, in a manner similar to that shown in FIG. 1B
and discussed above in connection with same, FIG. 28
illustrates a display 250A of an example client device, in
which a first broadcaster is providing video-based commen-
tary 252A about a live event (e.g., a sports game such as a
basketball match), and a video 255 of the live event itself is
also shown in the display of the client device to provide a
single screen experience (integrated event video and broad-
caster commentary). Additionally, chat messages 258 A from
one or more viewers, event information 254A about the live
event, and other graphics and/or animations 258A are dis-
played together with the broadcaster’s video-based com-
mentary 252A and the video 255 of the live event itself. As
also shown along the right hand side of FIG. 28, multiple
broadcasters may be providing respective video-based com-
mentaries regarding the same live event, and any one of the
available commentaries from different broadcasters may be
selected at will by a given viewer. As discussed above in
connection with FIG. 1B, it should be appreciated that one
or more elements of the various content discussed in con-
nection with FIG. 28 similarly may be provided on the
display of a given broadcaster client device and a given
viewer client device.

One technological problem that is addressed by inventive
methods, apparatus and systems for single screen implemen-
tations is that different broadcaster’s video-based commen-
taries relating to the same event all need to be synchronized
with an audio/video feed of the live event. Because a given
viewer is seeing both the audio/video of the event and a
given broadcaster’s video-based commentary at the same
time on their viewer client device, the latency of the broad-
caster’s video-based commentary relative to the live event
itself is less of a consideration; instead, the salient technical
considerations to address include: 1) the synchronization of
a given broadcaster’s video-based commentary with an
audio/video feed of the live event or a copy of the audio/
video feed (rather than the live event itself); 2) the synchro-
nization of one viewer of a first copy of a given broadcast-
er’s integrated live stream of the event with another viewer
of a second copy of the given broadcaster’s integrated live
stream of the event; and 3) the appropriate synchronization
of event information and real-time updates to event infor-
mation for all viewers of copies of any broadcaster’s inte-
grated live stream of the live event.

US 11,871,088 B2

55

In view of the foregoing, to achieve appropriate synchro-
nization of the broadcaster’s video-based commentary and
the audio/video of the live event in one inventive imple-
mentation, each broadcaster’s client device first ingests a
copy of an audio/video feed of the live event and displays
the live event to the broadcaster on their client device based
on the audio/video feed. As the broadcaster watches the
displayed video of the live event on their client device, they
provide their video-based commentary based on the video of
the live event as displayed on their device. The broadcaster’s
client device creates a composite outgoing stream of the
audio/video feed of the live event and the broadcaster’s
video-based commentary (an “integrated live event and
commentary stream”), and transmits this integrated live
event and commentary stream to a media server. The media
server (or other constituent of the media sources 300) in turn
provides one or more copies of the integrated live event and
commentary stream for distribution to one or more viewer
client devices. In one example implementation in which the
audio/video feed of the live event already includes com-
mentary (e.g., from a network source) and/or other undesir-
able audio content, the original event audio may be filtered
or omitted from the integrated live event and commentary
stream (e.g., only the video portion of the copy of the
audio/video feed of the live event is utilized) to mitigate or
significantly reduce undesirable audio content that may
otherwise obfuscate or interfere with the broadcaster’s com-
mentary.

In one aspect, a quality of the video that a viewer sees
(both of the event and the broadcaster’s commentary) based
on a copy of the integrated live event and commentary
stream is dependent at least in part on the quality of the
broadcaster’s network connection (e.g., if the broadcaster is
on a low bandwidth connection, the resulting footage as seen
by the viewer will be relatively low quality, irrespective of
a quality of the original audio/video feed of the live event).
Additionally, another technical consideration is that the
effective network bandwidth required by the broadcaster is
significantly increased (e.g., doubled), as not only is the
broadcaster client device outputting a live stream to a media
server for distribution, but it is also ingesting the original
audio/video feed of the live event to provide a basis for the
broadcaster’s video-based commentary.

In some inventive embodiments, to mitigate potential
broadcaster network connection issues (e.g., resulting in
poor viewer video quality), the copy of the audio/video feed
for the live event is provided to broadcaster client devices by
one of the media sources 300 in the servers and memory
storage devices 1000 shown in FIGS. 2 and 3. More spe-
cifically, in one implementation, an audio/video feed of a
live event from a broadcast source is input to one of the
RTMP media servers 320, a first HL.S copy of the audio/
video feed is provided by the RTMP media server 320 to the
HLS server architecture 380, and then one or more addi-
tional copies of the audio/video feed for the live event are
provided to respective broadcaster client devices by the HL.S
server architecture 380. As mentioned above, the latency
between the actual live event and the broadcaster commen-
tary isn’t necessarily a salient consideration, since any
viewer of a copy of the broadcaster’s integrated live event
and commentary stream views both the live event and the
broadcaster’s commentary from the single copy of the
integrated stream. Accordingly, any latency arising from the
HLS server architecture 380 does not give rise to adverse
consequences on viewer experience in single screen imple-
mentations.

10

15

20

25

30

35

40

45

50

55

60

65

56

FIG. 29 is a block diagram of the broadcast/viewing
servers and memory storage devices 1000 and associated
client devices, similar to that shown in FIG. 2, illustrating
some of the particular features germane to one example of
a single screen implementation involving the RTMP media
servers 320 and the HLS server architecture 380 of media
sources 300 to process an audio/video feed of a live event.
As shown in FIG. 29, a designated one of the RTMP media
servers 320 receives an audio/video feed 2000 for a live
event (e.g., as provided by Leaguepass, MLB networks, EPL.
live feeds, etc.), and provides a first HLL.S copy 2001 of the
audio/video feed to the HLS server architecture 380 (see
“HLS Segmentation” shown in FIG. 5C and discussed above
in connection with same). The HLS server architecture then
provides one or more additional HLS copies 2002 of the first
copy 2001 of the audio/video feed to one or more broad-
caster client devices (e.g., see the broadcaster client device
100A in FIG. 29); to this end, the HLS server architecture
380 may implement, at least in part, the process discussed
above in connection with FIGS. 8 and 9A through 9D. As
discussed further below, a given broadcaster client device
then combines the HLS copy 2002 of the audio/video feed
received from the HLS server architecture 380 with video-
based commentary provided by the broadcaster to generate
an integrated live event and commentary stream 1002A,
which is transmitted to one or more of the media sources 300
(e.g., RTMP media server 320 or WebRTC media server
360).

FIG. 30 is a flow chart illustrating a process implemented
by the various devices discussed above in connection with
FIG. 29. In block 2012 of FIG. 30, the audio/video feed 2000
for the live event is input to the RTMP media server 320. A
first HLS copy of the audio/video feed is provided by the
RTMP server to the HLS server architecture 380. In block
2013, the server architecture 380 provides a second HLS
copy of the audio/video feed as input to a given broadcaster
client device. In block 2016, the broadcaster client device
displays the live event based on the HLS copy of the
audio/video feed received from the HLS server architecture.
In block 2018, the broadcaster provides video-based com-
mentary for the live event based on the video rendered in the
display of the client device, and in block 2020 the broad-
caster client device generates the integrated live event and
commentary stream 1002A. In block 2022, the client device
transmits the integrated live event and commentary stream
1002A to a media server of the media sources 300, and one
or more of the media sources 300 provide one or more
copies of the integrated live event and commentary stream
for distribution to one or more viewer client devices (e.g.,
via a content delivery network that accesses the integrated
live stream from a first media server endpoint according to
a first live stream Internet URL corresponding to the inte-
grated live stream).

With reference again to FIG. 29, and in a manner similar
to that discussed above in connection with FIG. 2, respective
viewer devices (e.g., 200A, 200C) receiving copies of a
given broadcaster’s integrated live event and commentator
stream 1002A also connect to an event socket of a socket
server 600 (e.g., according to a first event socket Internet
URL) to receive synchronized event information (e.g., real
time scores) relating to the event. Based on the received
copy of the integrated live event and commentator stream
and the synchronized event information, a given viewer
device displays the broadcaster’s video-based commentary
together with the audio/video of the live event itself as well
as the event information (e.g., as a “scorebug”).

US 11,871,088 B2

57

Although the context and use-case for the concepts out-
lined in FIGS. 29 and 30 are directed generally to live
events, it should be appreciated that, in other use-cases,
these concepts similarly may be applied to rebroadcast or
timeshifted events (e.g, for which the source audio/video
feed 2000 for the event is not necessarily contemporaneous
with the live event itself, but delayed in time by some
amount with respect to the live event, or is a rebroadcasting
of a previously recorded event).

In one aspect of single screen implementations, the event
socket corresponding to a particular live event also may
provide event broadcaster information relating to different
broadcasters offering video-based commentary about the
same live event. In this manner, a given viewer of the live
event may select amongst different broadcasters for the same
live event, based on the event broadcaster information
provided by the event socket, to access a different but
synchronized integrated live event and commentator stream
(e.g., according to a second live stream Internet URL
associated with a different broadcaster). Thus, a seamless
transition is provided to a different broadcaster’s commen-
tary integrated with the audio/video of the live event. The
viewer device may remain connected to the event socket to
continue to receive the synchronized event information
which is displayed together with the different broadcaster’s
commentary and the audio/video of the live event, as well as
ongoing updates to event broadcaster information to keep
abreast of different broadcasters that are providing video-
based commentary about the event.

The innovative HLS server architecture 380 ensures that
all broadcasters providing commentary on the same live
event are synchronized to each other. More specifically,
respective copies of the audio/video feed of the live event
provided by the HLS server architecture 380 to multiple
broadcaster client devices fall within a single HLS segment
length of synchronization—this single HLS segment length
of synchronization of copies of the audio/video feed of the
live event is referred to herein as “broadcaster segment
concurrency,” akin to the viewer segment concurrency dis-
cussed above in connection with the HLS server architecture
380.

More specifically, and with reference again to section VII
of this document (i.e., in connection with FIG. 8), HLS
copies of a live stream of digital content include a number
of segments, each containing a short segment of video
(encoded as a .ts file). An HLS buffer (also referred to as a
window or “chunklist”) contains a list of some number of
pointers to the .ts files that represent respective segments.
The media source providing the HLS files typically does not
make the HLS copy of the live stream available to a viewer
until the HLS buffer is full of pointers. When a client device
receives an HLS copy of a live stream, the client device
begins displaying the video segment (the .ts file) at the start
of'the HLS buffer (the first pointer in the chunklist); thus, the
viewer of the HLS copy is “behind real time” (offset in time
from the original video source that is being segmented) by
the length of the buffer. In one inventive implementation
discussed above, the HLS buffer includes 4-6 pointers to .ts
files of video segments, wherein each segment includes 2
seconds of video (accordingly, the offset in time between the
original video source and a viewer’s HLS copy is 8 seconds
for a 4 pointer HLS buffer and 12 seconds for a 6 pointer
HLS buffer).

According to the HLS caching server architecture 380
shown in FIG. 8, all viewers of HLS copies of live streams
are known to be inside the same single segment, with an
effective maximum desynchronization between respective

20

40

45

58

viewers of the HLS copies of the same live stream being the
duration of a single HLS video segment; this maximum
desynchronization was referred to herein earlier in connec-
tion with HLS viewers as “viewer segment concurrency”
(e.g., 2 seconds in the example described above). However,
in the context of the HLS server architecture providing
copies of audio/video feeds of live events to broadcaster
client devices to facilitate single screen experience imple-
mentations, this concept in this context also may be referred
to as “broadcaster segment concurrency.”

The broadcaster segment concurrency provide by the HLLS
server architecture in single screen experience implementa-
tions thereby allows for a given viewer of a copy of a first
broadcaster’s integrated live event and commentary stream
to smoothly transition to a copy of a second broadcaster’s
integrated live event and commentary stream relating to the
same event, without any significant interruption of the
displayed live event as part of the viewer’s single screen
experience. Generally speaking, in single-screen experience
implementations, all broadcasters providing video-based
commentary on a particular event provide respective inte-
grated live event and commentary streams that are substan-
tially synchronized (e.g., with a delay relative to the original
audio/video feed of the live event of approximately one HL.S
window/buffer length, e.g., 8 to 12 seconds for 4 or 6
pointers, respectively), and all viewers of a given broad-
caster receive respective copies of the integrated live event
and commentary stream from the broadcaster that are sub-
stantially synchronized (e.g., with a delay relative to the
original audio/video feed of the live event of approximately
two HLS windows/buffer lengths, e.g., 16 to 24 seconds for
4 or 6 pointers, respectively).

Another technological problem that is addressed in the
inventive solutions provided herein for the single-screen
experience takes into account the HL.S-induced latency with
respect to the synchronized event information that is pro-
vided to all viewers of broadcasters relating to the same
event (via a dedicated event socket of the socket server(s)
600), as well as chat messages and system event messages
(provided via a dedicated chat/system event socket of the
socket server(s) 600).

Recall that, in connection with implementations relating
to a second screen experience, the socket server(s) 600
provide event information updates in essentially real-time
and simultaneously to all broadcasters commenting about
the same live event, and all viewers that are viewing
broadcaster commentary about the same live event. The
essentially real-time and simultaneous delivery of event
information (and updates to same) to all broadcasters and
viewers concerned with the same event is a salient consid-
eration for the second screen experience, as both the broad-
caster(s) and viewer(s) likely are viewing the event either
live or on a primary screen in essentially real time with the
live event (so it is important to the viewer experience to
receive event information updates as they occur).

In alternative implementations relating to a single screen
experience, however, event information updates are syn-
chronized not to the live event itself, but rather to the
broadcaster’s integrated live event and commentary stream
(which is delayed relative to the original audio/video feed of
the live event due to the HLS techniques employed). In some
examples, this alternative synchronization is achieved via
event buffering and clock synchronization techniques
involving a privatized Network Time Protocol (NTP) (for
which a synchronized time for all client devices may be
acquired via additional socket connections).

US 11,871,088 B2

59

Regarding chat messages and system event messages
(conveyed to client devices via a dedicated chat/system
event socket of the socket server(s)), in single screen expe-
rience implementations these messages are “double
delayed” relative to the original audio/video feed 2000 of the
live event to which they pertain. In particular, as noted
above, viewers in the single screen experience implemen-
tations are seeing the audio/video related to a live event (as
part of the integrated broadcaster commentary and audio/
video of the live event) with a delay relative to the original
audio/video feed 2000 of the live event of two times the HLS
window/buffer length. Thus, the broadcaster of the inte-
grated live stream sees chat messages that are responding to
audio/video that occurred one HLS window in the past.
However, because the broadcaster does not necessarily
participate in chat messages in some implementations, this
broadcaster-perceived delay generally is of no significant
consequence; from the viewers’ perspective, all viewers are
experiencing chat messages in a synchronized manner, irre-
spective of delays arising from the HLS techniques
employed.

For example, assume the HLS window is 12 seconds (e.g.,
sixX pointers to respective segments each having two seconds
in duration). The broadcaster receives their copy of the
audio/video feed of the live event from the HLS server
architecture 380 with a 12 second delay relative to the
original audio/video feed 2000 of the live event. Also
assume that one or more viewers have connected to the HLS
server architecture 380 as soon as copies of the broadcaster’s
integrated live event and commentary stream are made
available at the HLS server (i.e., after two HLS windows or
24 seconds delayed from the original audio/video feed 2000
of the live event. If the viewers begin chatting immediately
about what they are viewing in their copies of the integrated
live event and commentary stream, this chat relates to what
the broadcaster was viewing and commenting on 12 seconds
prior; i.e., the broadcaster will see this viewer chat on the
broadcaster client device with a 12 second delay relative to
the content they generated (any chat messages that are
displayed on the broadcaster’s screen are in response to what
the broadcaster did 12 seconds ago).

With reference again to FIG. 29, in single screen experi-
ence implementations, the control server 500 of the server
and memory storage architecture 1000 implements addi-
tional functionality to monitor for live events and audio/
video feeds relating to these live events from a variety of
available Internet sources (e.g., Leaguepass, MLB networks,
EPL live feeds, etc.). The control server 500 then stores
access endpoints (source URLs) for respective audio/video
feeds of live events in the database 420 of the server and
memory storage architecture 1000. In one implementation,
with reference again to FIG. 10 and FIGS. 16A and 16B, the
live event data monitor service implemented by the control
server 500 is modified for these purposes.

More specifically, FIGS. 31A and 31B show a process
flow diagram, similar to that shown in FIGS. 16A and 16B,
illustrating a modified live event data monitor service
method performed by the control server of FIG. 29, accord-
ing to one inventive implementation. In one example relat-
ing to sporting events, via the modified live event data
monitor service method, the control server may monitor
existing game data retrieved from event information pro-
vider 55 (e.g., STATS) to detect “start of game” events,
determine the Internet resources corresponding to audio/
video feeds 2000 for such events, and store the URLs for
these Internet resources in the database 420.

10

15

20

25

30

35

40

45

50

55

60

65

60

Once an audio/video feed 2000 relating to an event is
identified (and is about to commence), the control server
assigns a media server of the media sources 300 (e.g., the
HLS mother 382 of the HLS server architecture 380 to
process the audio/video feed 2000 to create an HLS copy
2002 of the audio/video feed, that is in turn passed on to one
or more broadcaster client devices. In particular, the control
server 500 may signal to the assigned media server that a
new game is started, and provide the URL for the audio/
video feed 2000 of the game, pursuant to which the server
connects to the source of the audio/video feed 20000 (e.g.,
Leaguepass, MLB networks, EPL live feeds, etc.).

After the HLS window time has been reached (e.g., 12
seconds) the control server “unlocks” the HLS copy 2002
corresponding to the live event and allows broadcaster
devices to begin accessing the HL.S copy 2002 from the HL.S
server architecture 380. In one aspect, the HLS CDN 388
(see FIG. 8) may provide a relay point that a broadcaster
client device connects to (in some implementations this may
be an obfuscated/encrypted endpoint provided to valid
broadcasters to prevent non-broadcasters from accessing the
copy of the audio/video feed of the live event).

The broadcaster client device in turn combines broad-
caster video-based commentary with the HLS copy 2002 of
the audio/video feed of the live event and, as shown in FIG.
29, provides to a media server of the media source 300 (as
selected by the Web Server 700) an RTMP H.264 integrated
live event and commentator stream 1002A. The media
server processes this incoming stream from the broadcaster
client device (as discussed earlier in this disclosure) to
provide at least one copy of the incoming integrated live
event and commentary stream from the broadcaster to at
least one viewer client device (via the media sources 300).
In one implementation in which viewers access copies of the
broadcaster’s integrated stream from the HLS server archi-
tecture, the control server 500 unlocks the viewer copies
after twice the HLS window time has been reached (e.g., at
least 24 seconds after the audio/video feed 2000 of the live
event commences, and 12 seconds after the broadcaster
begins broadcasting).

With respect to the functionality of the broadcaster client
device to create an integrated live event and commentary
stream 1002A, the processes previously outlined above in
connection with FIGS. 20A and 20B, as well as FIGS. 21A,
21B, 21D, and 21E, are modified in some respects to
accommodate the inclusion of the HLS copy 2002 of the
audio/video feed of the live event.

In connection with the mobile broadcaster stream create
process outlined in FIGS. 20A and 20B, during stream
creation the broadcaster client device may synchronize an
application timer via an NTP system (e.g., private NTP pool)
that may be accessed via a designated socket of the socket
server(s) 600. For example, in the penultimate block of FIG.
20B, the “Stream Created” portion of the process may be
modified in that the web server 700 may provide a desig-
nated socket as part of the validation process for the broad-
caster client device to synchronize an application timer,
referred to hereafter as “server_time.” Alternatively, in
another implementation, the broadcaster client device need
not access an NTP system directly, but rather may synchro-
nize its application timer “server_time” via an initial time-
stamp generated and provided by the web server 700 (via a
private NTP pool); in this manner, the broadcaster client
device may use its internal clock and a calculated offset
based on the initial syncing timestamp provided by the web
server 700 (e.g., with a granularity of about one second
provided via the timestamps). In any event, it should be

US 11,871,088 B2

61

appreciated that given the delay time corresponding to an
HLS window between the original audio/video feed of the
live event and the HLS copy of the audio/video feed, a
portion of the live event displayed on the broadcaster client
device at “server_time” actually appeared in the original
audio/video feed of the live event approximately one HLS
window earlier.

FIGS. 32A, 32B, 32C, 32D, 32F and 32F show a process
flow, similar to that shown in FIGS. 21A, 21B, 21C, 21D,
and 21E, illustrating a modified mobile broadcaster active
stream process according to one inventive implementation
relating to the single screen experience, following creation
of the broadcaster stream (e.g., pursuant to FIGS. 20A and
20B and appropriate modifications thereto relating to the
application timer “server_time”). As shown in FIG. 32A, if
the stream relates to an event, the broadcast client device not
only connects to the appropriate socket of the socket
server(s) for the event information channel based on the
appropriate EventID, but also connects to the appropriate
endpoint of the HLS server architecture 380 to access an
HLS copy 2002 of the audio/video feed of the live event. As
discussed above relating to broadcaster segment concur-
rency, any broadcaster client device is within a segment
duration (e.g., 2 seconds) upon connection to the HL.S server
architecture endpoint to receive the HLS copy.

In the modified broadcaster active stream process, a
second timer, referred to as “game_time,” is created (see
FIG. 32A) according to server_time—the max latency of the
HLS stream (i.e., the duration of the HLS window)+1.5
seconds. This second timer “game_time” approximately
represents the actual time in the original audio/video feed of
the live event the portions of the live event displayed on the
broadcaster client device pursuant to the HLS copy actually
occurred in the original audio/video feed. By including a 1.5
second offset in the game_time calculation relative to
server_time (given the 2 second segment length), the
game_time is on average accurate (again, since the broad-
caster is somewhere in the 2 second window of a segment
when it connects). By linking game_time to the upper bound
of the HLS window duration, event information updates
(e.g., scorebug updates) will display anywhere from 0.5
seconds early (if they are at the end of the HLS window) to
1.5 seconds late (if they are at the start of the HL.S window;
and practically speaking 1.5 seconds is a negligible delay).

When new data is received by the broadcaster client
device on the event information channel (e.g., a score
update), instead of instantly being displayed, the broadcaster
client device adds the new event data into an event buffer
with the timestamp server_time (which is ahead of
game_time by approximately the length of the HLS window;
see FIG. 32A). Since game_time is behind server_time, the
event information updates need to be delayed until the
game_time timer has “caught up” to the server_time; stated
differently, any updated new event data present in the event
buffer is only used to update the displayed event information
on the broadcaster client device when the current value of
game_timer matches the timestamp of the new event data
(see FIG. 32B). In this manner, a broadcaster sees the event
information displayed on their device update in synchroni-
zation with the portion of the live event being displayed on
the client device (i.e., both delayed approximately by the
duration of an HLS window).

At this point in the process, as shown in FIG. 32C, an
optional augmented reality (AR) process is invoked by
passing a captured camera frame to an AR API to facilitate
face detection of the broadcaster and render a modified
video frame. Also, after a camera frame of the broadcaster

10

20

25

30

35

40

45

50

55

60

65

62

is captured, a concurrent frame of the live event from the
HLS copy of the audio/video feed is captured, an overly is
rendered on the frame of the live event from the captured
camera frame of the broadcaster, and a composite frame is
thereby generated for display on the broadcaster client
device and transmission to the designated media server. The
latency introduced in this step is negligible (e.g., approxi-
mately Y2oth of a second).

In a manner similar to the broadcaster viewing device, a
viewer client device creates an internal timer server_ time
(e.g., using a private NTP pool). Unlike the broadcaster
client device, however, the viewer client device synchro-
nizes its timer server_time at the start of consuming a copy
of the broadcaster’s integrated live event and commentator
stream. This allows a given viewer client device’s
server_time to be accurate despite any network latency
issues. When a viewer client device begins watching the
copy of a broadcaster’s integrated live event and commen-
tator stream, the viewer client device creates a second
internal timer that is equal to the server_time—2x the HL.S
window+3 seconds, referred to as “broadcast_time.” As with
the broadcaster client device, any incoming new event data
on the event information channel to which the viewer client
device is coupled is placed in an event buffer with a
timestamp equal to server_time. The viewer client device
experiences event information updates that are within -0.5
seconds to 1.5 seconds relative to the integrated live event
and commentary displayed on the viewer client device. The
viewer client device compares the timestamp of buffered
new event data (which was recorded in server_time, which
will be roughly 2xHLS Window ahead of the
broadcast_time) against the current broadcast_time, and if
there is a match, then the new event data will be displayed
on the viewer client device at that point.

As noted above, one salient feature of the single screen
experience implementations is the ability to switch between
different broadcasters during a live event. Because all broad-
caster client devices ingesting respective HLS copies of the
audio/video feed for the same live event are within the same
HLS segment time (“broadcaster segment concurrency”),
when a viewer client device switches between different
broadcasters integrated live event and commentary streams,
the viewer client device will display a stream that is within
a single HL.S segment of where it was just before the switch,
resulting in effectively no perceptible loss or repeat of
displayed live event coverage. The existing buffer of new
event data that was generated during the viewer client device
displaying the previous broadcaster’s integrated stream is
preserved. Because a new server_time is requested on con-
nection, and the broadcast_time is adjusted to account for
network latency in connecting to the new video stream, the
new broadcast will be able to reuse the previously buffered
events and there will be no invalidation of previous new
event data updates.

If the network latency in connecting to the new stream
exceeds 1 second, there will be a gap in the buffered new
event data and the viewer client device will request the
missing events from the API directly. Due to the fact that the
broadcast_time is two HLS windows in the past, even if
there is a multisecond gap in buffered new event data, the
event buffer is more than large enough to allow the viewer
client device to request the missing events without there ever
being a period of time in which the displayed event infor-
mation is not accurate to the displayed portion of the live
event.

In some implementations, the audio and/or video feed of
the live sporting event may be provided with just the “game

US 11,871,088 B2

63

audio,” e.g., background and foreground sound from the
venue of the event itself (crowd cheering, local announcers
at the venue over loudspeaker, etc.), and without any native
commercial/network broadcaster commentary. For example,
in one implementation, the video of the live sporting event
and background/foreground sound from the event venue
itself may be provided, and the event video and audio may
be integrated with (mixed with) the broadcaster’s video and
audio. In another implementation, just the audio from the
live sporting event may be provided and mixed with the
broadcaster’s video and audio. In yet another implementa-
tion, just the video from the live sporting event may be
provided and mixed with the broadcaster’s video and audio.
More specifically, in implementations in which the audio/
video feed of the live event already includes significant
commentary (e.g., from a network source) and/or other
undesirable audio content, the original event audio may be
filtered or omitted from the integrated live event and com-
mentary stream (e.g., only the video portion of the copy of
the audio/video feed of the live event is utilized) to mitigate
or significantly reduce undesirable audio content that may
otherwise obfuscate or interfere with the broadcaster’s com-
mentary.

To make use of the native game audio if desired, the
“broadcaster stream active” process may be modified as
shown in FIG. 32A to use a virtual mixer, “pipe audio from
game footage into mixer” and “pipe audio from broadcaster
side into mixer.” In FIG. 32C, after the composite final
frame is generated, the outgoing audio may be set to use the
combined mixer as the audio source instead of the broad-
casters “raw” audio source. In this manner, the addition of a
virtual “mixer” allows the audio from the game itself to be
piped into and combined with the audio from the broadcaster
microphone to create a mixed combined audio track that is
attached to the outgoing video stream to the media server.

CONCLUSION

While various inventive implementations have been
described and illustrated herein, those of ordinary skill in the
art will readily envision a variety of other means and/or
structures for performing the function and/or obtaining the
results and/or one or more of the advantages described
herein, and each of such variations and/or modifications is
deemed to be within the scope of the inventive implemen-
tations described herein. More generally, those skilled in the
art will readily appreciate that all parameters and configu-
rations described herein are meant to be exemplary inventive
features and that other equivalents to the specific inventive
implementations described herein may be realized. It is,
therefore, to be understood that the foregoing implementa-
tions are presented by way of example and that, within the
scope of the appended claims and equivalents thereto, inven-
tive implementations may be practiced otherwise than as
specifically described and claimed. Inventive implementa-
tions of the present disclosure are directed to each individual
feature, system, article, and/or method described herein. In
addition, any combination of two or more such features,
systems, articles, and/or methods, if such features, systems,
articles, and/or methods are not mutually inconsistent, is
included within the inventive scope of the present disclo-
sure.

The above-described implementations can be imple-
mented in multiple ways. For example, implementations
may be implemented using hardware, software or a combi-
nation thereof. When implemented in software, the software
code can be executed on any suitable processor or collection

10

15

20

25

30

35

40

45

50

55

60

65

64

of processors, whether provided in a single computer or
distributed among multiple computers. Further, it should be
appreciated that a computer may be embodied in any of a
number of forms, such as a rack-mounted computer, a
desktop computer, a laptop computer, or a tablet computer.
Additionally, a computer may be embedded in a device not
generally regarded as a computer but with suitable process-
ing capabilities, including a Personal Digital Assistant
(PDA), a smart phone or any other suitable portable or fixed
electronic device.

Also, a computer may have one or more input and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or
other sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or in other audible format. Such computers may
be interconnected by one or more networks such as Internet.
The various methods or processes outlined herein may be
coded as software that is executable on one or more pro-
cessors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming
languages and/or programming or scripting tools, and also
may be compiled as executable machine language code or
intermediate code that is executed on a framework or virtual
machine.

In this respect, various inventive concepts may be embod-
ied as a computer readable memory or storage medium (or
multiple computer readable storage media) (e.g., a computer
memory, one or more floppy discs, compact discs, optical
discs, magnetic tapes, flash memories, circuit configurations
in Field Programmable Gate Arrays or other semiconductor
devices, or other non-transitory medium or tangible com-
puter storage medium) encoded with one or more programs
that, when executed on one or more computers or other
processors, perform methods that implement the various
implementations of the invention discussed above. The
computer readable medium or media can be transportable,
such that the program or programs stored thereon can be
loaded onto one or more different computers or other pro-
cessors to implement various aspects of the present inven-
tion as discussed above.

Unless otherwise indicated, the terms “program” or “soft-
ware” are used herein in a generic sense to refer to any type
of computer code or set of computer-executable instructions
that can be employed to program a computer or other
processor to implement various aspects of implementations
as discussed above. Additionally, it should be appreciated
that according to one aspect, one or more computer pro-
grams that when executed perform methods of the present
invention need not reside on a single computer or processor,
but may be distributed in a modular fashion amongst a
number of different computers or processors to implement
various aspects of the present invention.

Computer-executable instructions may be in many forms,
such as program modules, executed by one or more com-
puters or other devices. Generally, program modules include
routines, programs, objects, components, data structures,
etc., that perform particular tasks or implement particular
abstract data types. Typically the functionality of the pro-
gram modules may be combined or distributed as desired in
various implementations.

US 11,871,088 B2

65

Also, data structures may be stored in computer-readable
media in any suitable form. For simplicity of illustration,
data structures may be shown to have fields that are related
through location in the data structure. Such relationships
may likewise be achieved by assigning storage for the fields
with locations in a computer-readable medium that convey
relationship between the fields. However, any suitable
mechanism may be used to establish a relationship between
information in fields of a data structure, including through
the use of pointers, tags or other mechanisms that establish
relationship between data elements. In some implementa-
tions, a schema-minimal storage system may be imple-
mented in a relational database environment using key-value
storage versus defined data structures.

With the foregoing in mind, each of the client devices
described herein, as well as various servers and other
computing devices of the broadcast/viewing servers and
memory storage devices shown for example in FIGS. 2 and
3, may comprise one Or more processors, one or more
memory devices or systems communicatively coupled to the
one or more processors (e.g., to store software code and
other data), and one or more communication interfaces
communicatively coupled to the one or more processors so
as to implement the various specific and inventive function-
ality described herein.

Also, various inventive concepts may be embodied as one
or more methods, of which an example has been provided.
The acts performed as part of the method may be ordered in
any suitable way. Accordingly, implementations may be
constructed in which acts are performed in an order different
than illustrated, which may include performing some acts
simultaneously, even though shown as sequential acts in
illustrative implementations.

All publications, patent applications, patents, and other
references mentioned herein are incorporated by reference in
their entirety.

All definitions, as defined and used herein, should be
understood to control over dictionary definitions, definitions
in documents incorporated by reference, and/or ordinary
meanings of the defined terms.

The indefinite articles “a” and “an,” as used herein in the
specification and in the claims, unless clearly indicated to
the contrary, should be understood to mean “at least one.”

The phrase “and/or,” as used herein in the specification
and in the claims, should be understood to mean “either or
both” of the elements so conjoined, i.e., elements that are
conjunctively present in some cases and disjunctively pres-
ent in other cases. Multiple elements listed with “and/or”
should be construed in the same fashion, i.e., “one or more”
of'the elements so conjoined. Other elements may optionally
be present other than the elements specifically identified by
the “and/or” clause, whether related or unrelated to those
elements specifically identified. Thus, as a non-limiting
example, a reference to “A and/or B”, when used in con-
junction with open-ended language such as “comprising”
can refer, in one implementation, to A only (optionally
including elements other than B); in another implementa-
tion, to B only (optionally including elements other than A);
in yet another implementation, to both A and B (optionally
including other elements); etc.

As used herein in the specification and in the claims, “or”
should be understood to have the same meaning as “and/or”
as defined above. For example, when separating items in a
list, “or” or “and/or” shall be interpreted as being inclusive,
i.e., the inclusion of at least one, but also including more
than one, of a number or list of elements, and, optionally,
additional unlisted items. Only terms clearly indicated to the

10

15

20

25

30

40

45

50

55

60

65

66

contrary, such as “only one of” or “exactly one of,” or, when
used in the claims, “consisting of,” will refer to the inclusion
of exactly one element of a number or list of elements. In
general, the term “or” as used herein shall only be inter-
preted as indicating exclusive alternatives (i.e. “one or the
other but not both™) when preceded by terms of exclusivity,
such as “either,” “one of” “only one of” or “exactly one of”
“Consisting essentially of,” when used in the claims, shall
have its ordinary meaning as used in the field of patent law.

As used herein in the specification and in the claims, the
phrase “at least one,” in reference to a list of one or more
elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase “at least one” refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, “at least one of A and B” (or, equivalently, “at
least one of A or B,” or, equivalently “at least one of A and/or
B”) can refer, in one implementation, to at least one,
optionally including more than one, A, with no B present
(and optionally including elements other than B); in another
implementation, to at least one, optionally including more
than one, B, with no A present (and optionally including
elements other than A); in yet another implementation, to at
least one, optionally including more than one, A, and at least
one, optionally including more than one, B (and optionally
including other elements); etc.

In the claims, as well as in the specification above, all
transitional phrases such as “comprising,” “including,” “car-
rying,” “having,” “containing,” “involving,” “holding,”
“composed of,” and the like are to be understood to be
open-ended, i.e., to mean including but not limited to. Only
the transitional phrases “consisting of” and “consisting
essentially of” shall be closed or semi-closed transitional
phrases, respectively, as set forth in the United States Patent
Office Manual of Patent Examining Procedures, Section
2111.03.

The invention claimed is:

1. A system, comprising:

at least one media source to receive an audio/video feed

of a live event and provide a first copy of the audio/
video feed of the live event from a first media server
endpoint of the at least one media source; and

a webserver configured to:

transmit first instructions to a first client device that
includes at least one first display, the first instructions
transmitted by the webserver enabling the at least
one first display of the first client device to render a
first video relating to the live event and render first
event information relating to the live event, wherein
the first instructions transmitted by the webserver
cause the first client device to:
connect to the first media server endpoint of the at
least one media source to receive, on a first
communication channel between the first media
server endpoint and the first client device, the first
copy of the audio/video feed of the live event;
connect to a first socket of a socket server to receive,
on a second communication channel between the
first socket and the first client device, first digital
content corresponding to the first event informa-
tion;

US 11,871,088 B2

67

render, on the at least one first display of the first
client device, at least some of the first event
information as at least one first user-interactive
feature overlaid on or adjacent to the first video
relating to the live event; and
obtain access to first additional information relating
to the live event and/or redirect to a first web site
or first app when a first user selects at least a
portion of the rendered at least one first user-
interactive feature; and
transmit second instructions to a second client device
that includes at least one second display, the second
instructions transmitted by the webserver enabling
the at least one second display of the second client
device to also render the first event information
relating to the live event, wherein the second instruc-
tions transmitted by the webserver cause the second
client device to:
connect to the first socket of the socket server to
receive, on a third communication channel
between the first socket and the second client
device, the first digital content corresponding to
the first event information so that the first digital
content received at the first client device and the
second client device is synchronized and client-
by-client latency between the first client device
and second client device to render the first event
information is thereby mitigated or significantly
reduced;
render, on the at least one second display of the
second client device, at least some of the first
event information as at least one second user-
interactive feature; and
obtain access to the first additional information or
second additional information relating to the live
event and/or redirect to the first web site, the first
app, a second web site or a second app when a
second user selects at least a portion of the ren-
dered at least one second user-interactive feature.
2. The system of claim 1, wherein:
the at least one media source is configured to:
receive the audio/video feed of the live event;
provide the first copy of the audio/video feed of the live
event from the first media server endpoint;
receive from the first client device a composite outgo-
ing stream of the audio/video feed and additional
video content; and
provide a first copy of the composite outgoing stream
of the audio/video feed and the additional video
content from a second media server endpoint of the
at least one media source; and
the webserver is configured to transmit the second instruc-
tions to the second client device to cause the second
client device to:
connect to the second media server endpoint to receive,
on a fourth communication channel between the
second media server endpoint and the second client
device, the first copy of the composite outgoing
stream.
3. The system of claim 2, wherein:
the at least one media source comprises at least one RTMP
media server and at least one HLS server;
the first media server endpoint is coupled to the at least
one HLS server;
the at least one RTMP media server is configured to
receive the audio/video feed of the live event and
transmit a first HLL.S copy of the audio/video feed of the

5

20

25

30

35

40

45

50

55

60

65

68

live event from the at least one RTMP media server to
the at least one HLS server; and

the at least one HLS server is configured to provide the
first copy of the audio/video feed of the live event as
another HLS copy from the first media server endpoint.

4. The system of claim 1, further comprising the socket

server.
5. The system of claim 4, further comprising:
a control server, coupled to the socket server, to provide
the first digital content corresponding to the first event
information to the socket server.
6. The system of claim 1, wherein:
the live event is a sporting or gaming event; and
the first event information is online gaming information.
7. The system of claim 1, wherein:
the live event is a sporting or gaming event; and
the first event information is score information.
8. A method, comprising:
A) receiving, by at least one media source, an audio/video
feed of a live event;
B) providing a first copy of the audio/video feed of the
live event from a first media server endpoint of the at
least one media source;
C) transmitting first instructions to a first client device that
includes at least one first display to enable the at least
one first display of the first client device to render a first
video relating to the live event and render first event
information relating to the live event, wherein the first
instructions transmitted in C) cause the first client
device to:
connect to the first media server endpoint of the at least
one media source to receive, on a first communica-
tion channel between the first media server endpoint
and the first client device, the first copy of the
audio/video feed of the live event;

connect to a first socket of a socket server to receive, on
a second communication channel between the first
socket and the first client device, first digital content
corresponding to the first event information;

render, on the at least one first display of the first client
device, at least some of the first event information as
at least one first user-interactive feature overlaid on
or adjacent to the first video relating to the live event;
and

obtain access to first additional information relating to
the live event and/or redirect to a first web site or first
app when a first user selects at least a portion of the
rendered at least one first user-interactive feature;
and

D) transmitting second instructions to a second client
device that includes at least one second display to
enable the at least one second display of the second
client device to render the first event information
relating to the live event, wherein the second instruc-
tions transmitted in D) cause the second client device
to:
connect to the first socket of the socket server to

receive, on a third communication channel between
the first socket and the second client device, the first
digital content corresponding to the first event infor-
mation so that the first digital content received at the
first client device and the second client device is
synchronized and client-by-client latency between
the first client device and second client device to
render the first event information is thereby miti-
gated or significantly reduced;

US 11,871,088 B2

69

render, on the at least one second display of the second
client device, at least some of the first event infor-
mation as at least one second user-interactive fea-
ture; and

obtain access to the first additional information or
second additional information relating to the live
event and/or redirect to the first web site, the first
app, a second web site or a second app related to the
live event when a second user selects at least a
portion of the rendered at least one second user-
interactive feature.

9. The method of claim 8, further comprising:

E) receiving, by the at least one media source from the
first client device, a composite outgoing stream of the
audio/video feed and additional video content; and

F) providing a first copy of the composite outgoing stream
of'the audio/video feed and the additional video content
from a second media server endpoint of the at least one
media source,

wherein D) further comprises transmitting the second
instructions to the second client device to cause the
second client device to:
connect to the second media server endpoint to receive,

on a fourth communication channel between the
second media server endpoint and the second client
device, the first copy of the composite outgoing
stream.

10. The method of claim 9, wherein:

the at least one media source comprises at least one RTMP
media server and at least one HLS server;

the first media server endpoint is coupled to the at least
one HLS server;

A) comprises receiving, by the at least one RTMP media
server, the audio/video feed of the live event and
transmitting a first HLS copy of the audio/video feed of
the live event from the at least one RTMP media server
to the at least one HLS server; and

B) comprises providing the first copy of the audio/video
feed of the live event as another HLS copy from the
first media server endpoint of the at least one HLS
server to the first client device.

11. The method of claim 8, wherein:

the live event is a sporting or gaming event; and

the first event information is online gaming information.

12. The method of claim 8, wherein:

the live event is a sporting or gaming event; and

the first event information is score information.

13. A method, comprising:

A) receiving, by at least one media source, an audio/video
feed of a live event;

B) providing a first copy of the audio/video feed of the
live event from a first media server endpoint of the at
least one media source to a first client device;

C) receiving, by the at least one media source from the
first client device, a composite outgoing stream of the
audio/video feed and additional video content;

D) providing a first copy of the composite outgoing
stream of the audio/video feed and additional video
content from a second media server endpoint of the at
least one media source; and

E) transmitting first instructions to a second client device
that includes at least one first display to cause the at
least one first display of the second client device to
render a first video relating to the live event and render
first event information relating to the live event,
wherein the first instructions transmitted in E) cause the
second client device to:

20

30

40

45

55

60

70

connect to the second media server endpoint of the at
least one media source to receive, on a first commu-
nication channel, the first copy of the composite
outgoing stream;

render, on the at least one first display of the first client
device, the first video relating to the live event based
on the first copy of the composite outgoing stream;

connect to a socket of a socket server to receive, on a
second communication channel different from the
first communication channel, first digital content
corresponding to the first event information; and

render, on the at least one first display of the first client
device, at least some of the first event information
based on the first digital content received on the
second communication channel.

14. The method of claim 13, wherein:

the at least one media source comprises at least one RTMP
media server and at least one HLS server;

A) comprises receiving, by the at least one RTMP media
server, the audio/video feed of the live event and
transmitting a first HLS copy of the audio/video feed of
the live event from the at least one RTMP media server
to the at least one HLS server; and

B) comprises providing the first copy of the audio/video
feed of the live event as another HLS copy from the
first media server endpoint of the at least one HLS
server to the first client device.

15. The method of claim 13, wherein the first instructions

transmitted in E) cause the second client device to:

obtain access to first additional information relating to the
live event and/or redirect to a first web site or first app
when a first user selects at least a portion of the
rendered at least some of the first event information.

16. The method of claim 15, wherein:

the live event is a sporting or gaming event; and

the first event information is online gaming information.

17. The method of claim 15, wherein:

the live event is a sporting or gaming event; and

the first event information is score information.

18. The method of claim 13, further comprising:

F) transmitting second instructions to a third client device
that includes at least one second display to enable the
at least one second display of the second client device
to render the first event information relating to the live
event, wherein the second instructions transmitted in F)
cause the third client device to:
connect to the socket of the socket server to receive, on

a third communication channel between the socket
and the third client device, the first digital content
corresponding to the first event information.

19. The method of claim 18, wherein F) further comprises
transmitting the second instructions to the third client device
to enable the at least one second display of the third client
device to render the first video relating to the live event and
render the first event information relating to the live event,
wherein the second instructions transmitted in F) cause the
third client device to:

connect to the second media server endpoint to receive, on
a fourth communication channel between the second
media server endpoint and the third client device, the
first copy of the composite outgoing stream.

20. The method of claim 19, wherein:

the second instructions transmitted in F) further cause the
third client device to:
render, on the at least one second display of the third

client device, the first video relating to the live event

US 11,871,088 B2

71

based on the first copy of the composite outgoing
stream received on the fourth communication chan-
nel; and
render, on the at least one second display of the third
client device, at least some of the first event infor-
mation based on the first digital content received on
the third communication channel.
21. The method of claim 20, wherein:
the first instructions transmitted in E) cause the second
client device to obtain access to first additional infor-
mation relating to the live event and/or redirect to a first
web site or first app when a first user selects at least a
portion of the rendered at least some of the first event
information; and
the second instructions transmitted in F) cause the third
client device to obtain access to the first additional
information or second additional information relating
to the live event and/or redirect to the first web site, the
first app, a second web site or a second app related to
the live event when a second user selects at least a
portion of the rendered at least some of the first event
information.
22. The method of claim 21, wherein:
the live event is a sporting or gaming event; and
the first event information is online gaming information.
23. The method of claim 21, wherein:
the live event is a sporting or gaming event; and
the first event information is score information.
24. A system, comprising:
at least one media source to:
receive an audio/video feed of a live event;
provide a first copy of the audio/video feed of the live
event from a first media server endpoint of the at
least one media source to a first client device;
receive from the first client device a composite outgo-
ing stream of the audio/video feed and additional
video content; and
provide a first copy of the composite outgoing stream
of the audio/video feed and additional video content
from a second media server endpoint of the at least
one media source; and
awebserver to transmit first instructions to a second client
device that includes at least one first display to cause
the at least one first display of the second client device
to render a first video relating to the live event and
render first event information relating to the live event,
wherein the first instructions transmitted by the web-
server cause the second client device to:
connect to the second media server endpoint of the at
least one media source to receive, on a first commu-
nication channel, the first copy of the composite
outgoing stream;
render, on the at least one first display of the first client
device, the first video relating to the live event based
on the first copy of the composite outgoing stream;
connect to a socket of a socket server to receive, on a
second communication channel different from the
first communication channel, first digital content
corresponding to the first event information; and
render, on the at least one first display of the first client
device, at least some of the first event information
based on the first digital content received on the
second communication channel.

w

20

25

30

35

40

45

50

55

60

72

25. The system of claim 24, wherein the first instructions
transmitted by the webserver cause the second client device
to:

obtain access to first additional information relating to the
live event and/or redirect to a first web site or first app
when a first user selects at least a portion of the
rendered at least some of the first event information.

26. The system of claim 24, wherein:

the live event is a sporting or gaming event; and

the first event information is online gaming information.

27. The system of claim 24, wherein:

the live event is a sporting or gaming event; and

the first event information is score information.

28. The system of claim 24, further comprising the socket
server.

29. The system of claim 28, further comprising:

a control server, coupled to the socket server, to provide
the first digital content corresponding to the first event
information to the socket server.

30. The system of claim 24, wherein the webserver is
configured to transmit second instructions to a third client
device that includes at least one second display to enable the
at least one second display of the third client device to render
the first event information relating to the live event, wherein
the second instructions transmitted by the webserver cause
the third client device to:

connect to the socket of the socket server to receive, on a
third communication channel between the socket and
the third client device, the first digital content corre-
sponding to the first event information.

31. The system of claim 30, wherein the webserver is
configured to transmit the second instructions to the third
client device to further enable the at least one second display
of the third client device to render the first video relating to
the live event and render the first event information relating
to the live event, wherein the second instructions transmitted
by the webserver cause the third client device to:

connect to the second media server endpoint to receive, on
a fourth communication channel between the first
media server endpoint and the third client device, the
first copy of the composite outgoing stream.

32. The system of claim 31, wherein:

the first instructions transmitted by the webserver cause
the second client device to obtain access to first addi-
tional information relating to the live event and/or
redirect to a first web site or first app when a first user
selects at least a portion of the rendered at least some
of the first event information; and

the second instructions transmitted by the webserver
cause the third client device to obtain access to the first
additional information or second additional informa-
tion relating to the live event and/or redirect to the first
web site, the first app, a second web site or a second app
related to the live event when a second user selects at
least a portion of the rendered at least some of the first
event information.

33. The system of claim 30, wherein:

the live event is a sporting or gaming event; and

the first event information is online gaming information.

34. The system of claim 30, wherein:

the live event is a sporting or gaming event; and

the first event information is score information.

#* #* #* #* #*

