
GEOMETRIC COMPLEXITY

Michael fan Shemos

Department of Computer Science

Yale University

New Haven, Connecticut 06520

Abstract

The complexity of a number of fundamental problems in computational geometry is examined and a number

of new fast algorithms are presented and analyzed. General methods for obtaining results in geometric

complexity are given and upper and lower bounds are obtained for problems involving sets of points, lines,

and polygons in the plane. An effort is made to recast classical theorems into a useful computational form

and analogies are developed between constructibility questions in Euclidean geometry and computability

questions in modern computational complexity.

I. Introduction

Geometric problems arise in a wide variety of

application areas, from]pattern recognition to

operations research and numerical analysis. Many

of these are simply-stated questions involving

points, lines, and polygons, but their computational

complexity has never been systematically investigated.

It is our purpose here to develop a number of geo-

metric algorithms, give bounds on their space and

time requirements, and exhibit a close connection

between geometric questions and such well-understood

algorithms as sorting and searching.

We shall use three major approaches to obtain

geometric results : first, analytic geometry pro-

vides the crucial link that enables algebraic

complexity theory to be brought directly to bear on

geometric problems. Second, it is often possible to

map a geometric problem into a combinatorial problem

of known complexity, such as sorting. Third, geo-

metric properties of the problem, such as convexity

or a convenient metric, can often be exploited to

yield fast algorithms. We give examples involving

the use of each of t~ese methods.

This research was supported in part by the

Office of Naval Research under Grant Number

NR044-483 and my wife.

Unfortunately, the classical mathematics of

geometry is not well-suited to the development of

good computational techniques, largely because there

was no need for fast algorithms during the period

when geometry flourished. It is our plan to recast

geometry into a computational setting, prove theorems

that are of direct algorithmic value, and investigate

the complexity of basic geometric problems.

An example of the unsuitability of traditional

methods is provided by the problem of separability.

Two finite plane point sets, P and Q are said to be

(linearly) separable iff there exists a straight line

with the property that every point of P lies on

one side of Z and every point of Q lies on the other.

Problem i. Given two finite plane 8ets, each

containing n points, determine if they are separable.

This problem is of importance in pattern recognition

and clustering. The theorem of combinatorial geom-

etry that pertains to separability is that of Kirch-

berger [I].

Theorem 5. Two finite plane sets P and Q are sep-

arable iff every subset of four or fewer points of

P u Q is separable.

Since there are O(n ~) such subsets, the theorem

suggests an O(n 4) algorithm for separability, namely,

one that examines all subsets. A much more efficient

(in fact, optimal) algorithm can be obtained from the

following, more computationally oriented, theorem.

224

Theorem 2. Two finite plane sets are separable

iff their convex hulls are disjoint.

(see figure i.) As we shall see later, an O(n log n)

algorithm is possible.

Figure i. Separable sets and their convex hulls.

II. Alsehraic methods

Since many geometry problems can be conveniently

expressed in algebraic terms, the theory of algebraic

complexity can often be borrowed directly. An

example of this approach is the problem of finding

the area of plane polygon with n vertices whose

coordinates are (xi,Yi) , i = 0, ... , n-i o The

area of the polygon is then given by

n-i
1

I E xi(Yi+ 1 - Yi_l) I [2]
i=O

where indices are taken modulo n. If this expres-

sion is evaluated explicitly as written, n multi-

plications and 2n-1 addition/subtractions are

required, not counting the multiplication by one-

half. We certainly would expect the number of

multiplications required to compute the area of an

n-gon to increase strictly monotonically with n.

It is surprising that this is not the case and the

author [3] has proven the following

Theorem 3. The area of a plane polygon with n

vertices can be found in n-I multiplications if n

is odd and n-2 multiplications if n is even, and

these are lower bounds.

Proof. The above summation can be written as

n-2

!l z %-Xn-1) %+l-Yil) l 2 i=O - , n odd

n
-- - 1
2

E
i=l

1 I - -
(x2i x0) (Y2i+l Y2i-i)

+ (x2i-i - Xn-l) (Y2i - Y2i-2) I'

n even, from which the theorem follows explicitly.

The lower bound is proved in [3]. Using the above

formulas it is possible to compute the area of a

triangle in two multiplications and five addition/

subtractions. It is also possible to find the area

of a quadrilateral in two multiplications and five

additlon/subtractions !

III. Representation issues

Before going on to more complicated problems,

a word is in order concerning our model of compu-

tation. Formally, we will prove lower bounds by

showing that a reducibility exists between the given

problem and sorting. Thus the lower bound of

O(n log n) will apply to any model in which sorting

requires this much time. Models which admit square

roots and transcendental functions are not known to

obey this criterion. Informally, however, we assume

that the underlying machine is a random-access comp-

uter, and all algorithms presented will be readily

seen to be programmable on such a machine. It follows

that all upper bounds in this paper are achievable

to within a constant factor.

Geometric objects will be represented as lists

of points, where a point is a vector of coordinates

in any coordinate system whatever. Since a point can

be transformed into an arbitrary coordinate system

in constant time, our asymptotic bounds are unaffected

by choice of reference frame. A polygon is a list

of points in the order in which'they occur on the

boundary of the polygon. All polygons are assumed

to be simple, that is, they do not intersect them-

selves. Convex and star-shaped polygons are simple

afortiori. In many algorithms it is convenient to

choose the ordering of vertices around a polygon

so that, as vertices are scanned sequentially, the

interior of the polygon is to the right of the

induced direction.

IV. Geometric reducibility

Not all problems profit from being translated

into algebraic terms as did the area problem. An

example is Problem 2. Given a set of n points in

the pZfcne, detel~nine its convex hulZ. It is extremely

cumbersome to write down an analytic expression for

the vertices of the convex hull in terms of the given

original coordinates. Even if one were to do so,

he would probably obtain no insight into the complexity

of the problem. Graham [4] has given an O(n log n)

algorithm for finding the planar convex hull. We

will show that this is also a lower bound.

225

Theorem 4. Let H(n) be the time required to find

the convex hull of n points and let S(n) be the time

required to sort n real numbers. Then we have

H(n) ~ S(n) - O(n) •

P r o o f . We show t h a t a n y c o n v e x h u l l a l g o r i t h m c a n

s o r t . G i v e n n r e a l n u m b e r s { X l , . . . , x } , l e t m ffi
n

min {x.}z and r = max {Ix i, - xjl}.. Thus m is the

smallest number and r is the range of the numbers.

Choose some number ~ in the interval (0,27) and

define 8 i - e(x i - m)/r . Note that all 8 i lie

in the seml-open interval [0,27). We now associate

with each x i a point on the unit circle having polar

coordinates (i)8i). The convex hull of these can

be found in H(n) time. ~e vertices of the result-

ing convex polygon, taken in order, constitute a

sort of the 8 i . In O(n) time these can be mapped

back to the correspondi~ sorted x.. So we have
1

that S(n) S H(n) + O(n), from which the theorem

follows. [5] B

In this case, where formulating an algebraic

solution was not inviting, we were able to bypass

algebraic methods by exhibiting an equivalence

between the problem at hand and another problem

of known complexity.

V. Geometric algorithms

It is our goal in this section to present a

number of fast algorithms which can be used as

"core" algorithms for obtaining efficient solut-

ions to more complex problems.

Problem 3. Given a convex polygon, determine

the maximum distance between two of its points.

This distance is called the diameter of the

polygon. It is elementary that the diameter is

realized by two vertices. A naive algorithm is

to examine all n(n-l)/2 interpoint distances,

finding the greatest in O(n 2) time. By creating

a new geometric structure and applying classical

theorems we can obtain a linear algorithm.

A llne of support of a convex polygon P is

a line that has at least one point in common with

P but with the property that all of P lles on one

side of the line. The diameter of P is the great-

est distance between parallel lines of support. [6]

A pair of vertices v,w of P will be called antipodal

if there exist parallel lines of support of P passing

through v and w. It is clear that only distances

between antipodal pairs of points need be examined

in order to determine t!he diameter. How many

antipodal pairs of vertices can P possess ? We will

exhibit a data structure which permits not only the

rapid enumeration of all antipodal pairs) but also

the determination of the pair of vertices through

which lles of support parallel to a given direction

pass.

The cyclic ordering of the vertices of P induces

a direction on each edge of P. Treating the edges as

vectors, translate them to the origin. (figure 2)

In this mapping, edges go to vectors and vertices go

to sectors. In order to find the antipodal pair

corresponding to some direction determined by a llne

Z, translate the line so that it passes through the

origin of the vector diagram. The sectors through

which it passes indicate the points of the antipodal

pair. In the example, the dotted lines passes through

sectors one and four.

71
/ I 12

/ ~ 67 ~ , 7

,i ,,, o \ : ' /

, / #
3 4

Figure 2. Determining antipodal points.

Determining the sectors through which I passes

can be done in O(log n) time by binary search. To

find all antipodal pairs, imagine rotating line Z

clockwise. The antipodal pair does not change until

passes through some vector of the diagram. In

figure 2) pair 41,4) turns into pair (1,5) as £

passes through vector 45 . Since there are exactly

n vectors to pass, there are exactly n antipodal

pairs. Furthermore, they can all be found in O(n)

time by scanning sequentially around the vector

diagram. Since the distance between any two points

can be found in constant time, we have

Theorem 5. The diameter of a convex polygon can be

determined in O(n) time. D

Although it is possible for Z to pass through two

vectors simultaneously, this complication does not

affect the result.

Theorem 6. The diameter of a set of n points in the

plane can be found in O(n log n) time.

Proof : diam(S) = dlam(hull(S)). The hull can be

found in O(n log n) time. Since the hull is a convex

226

polygon, its diameter can be found in an additional

O(n) time by theorem 5. D

The optimality of the above algorithm is an open

question.

Theorem 7. The diameter of a polygon (not necessarily

convex) can be found in O(n) time.

Proof : The convex hull of a simple plane polygon

can be found in O(n) time [7] and then theorem 5

applies. D

Theorem 8. Finding a simple closed polygonal path

through n points of the plane must take O(n log n)

time in the worst case.

Proof a : A simple closed polygonal path (SCPP) is

a polygon. Since the hull of a polygon can be found

in O(n) time, if any SCPP could be found in less

than O(n log n) time we could find convex hulls in

less than O(n log n) time, contradicting theorem

four. []

Proof b : Consider a set consisting of n-i points

on the x-axls and another point not on the x-axls.

Any SCPP effectively sorts the points on x-coord-

inate, cf.[8] []

Sinc~ a Euclidean traveling salesman tour is an SCPP,

theorem 8 gives a non-llnear lower bound for the

traveling salesman problem.

Theorem 9. The L I and L ~ diameter of a finite

plane set can be found in O(n) time. See [7]. []

The L 1 distance, also called the rectilinear or

"Manhattan" distance between points Pl and P2 is

given by dl(pl,P2) = Ix I - x2] + ly I - y21.

The distance in the infinity metric is just

d~(Pl,e2) = max (Ix I - x21 , ly I - y21). An

O(n) algorithm obtains under any metric whose

unit ball is a convex polygon.

Problem 4. Given a convex polygon P, pre-

processing allowed, determine whether a new point

x i8 interior or exterior to P.

This question can be decided in O(n) time by examining

the intersection of the boundary of P with any line

through x. If there are two intersection points which

bracket point x, then x is interior, otherwise x is

exterior. But this algorithm does not take advantage

of preprocessing.

Theorem 10. The inclusion question for a convex

polygon can be answered in O(log n) time, after

O(n) preprocessing.

Proof : Choose any point r interior to P (the

centroid of any three non-colllnear points will

suffice) and consider r to be the origin of polar

coordinates. Rays drawn through the vertices of P

orlginatlng at r partition the plane into n sectors.

Each edge of P divides a sector into two regions,

one interior to P and the other exterior. (see

figure 3) Given the new point x, its polar coord-

inates relative to r can be found in constant time.

The sector containing x can be found in O(log n) time

by binary search. Once the sector is determined,

whether x is inside or outside can be found by testing

x against the edge of P contained in the sector.

The preprocessing consists of arranging the sectors,

which can be done in O(n) time since the vertices

of P are available in order by angle. []

Figure 3. Inclusion in a convex polygon.

Problem 5. Given two convex n-gone, A and B, find

their intersection.

The intersection is a convex polygon having at most

2n vertices. An O(n 2) algorithm comes to mind immed-

iately : check every edge of A against every edge

of B, looking for intersections. While this algor-

ithm is optimal for non-convex polygons, the convex

case is restricted enough to permit a fast algorithm.

I. Preprocess polygon B as for inclusion testing

(theorem i0). Let b be the origin for the sectors.

2. If b is exterior to polygon A, go to step 6.

3. Refer to figure 4. For each vertex of A, deter-

mine which sector of B it lies in. Although the

first such search may cost O(log n), all n vertices

can be located in a total of O(n) time by pro-

ceeding sequentially around polygon A. The scan

never backs up, so no sector of B is examined more

times than once plus the number of vertices of A

that lle within it. Hence this step requires only

O(n) time.

4. Once it is known which sector a vertex lies in,

it can be determined in constant time (as in

theorem i0) whether the vertex is interior or

exterior to B. Scan around A once, examining all

pairs of consecutive vertices a i , ai+ 1 . If both

vertices are in the same sector and interior to B,

227

then by convexity the edge joining them is also

interior to B and it cannot intersect B. If one

vertex is inside and the other is outside, then

exactly one intersection occurs between the edge

aiai+ 1 and the bounding edge of the sector. If

Both vertices are outside B but in the same sector,

no intersection occurs. The situation is the

same even if a i and ai+ I lie in different sectors

of B, except in the case where both are outside.

It is then necessary to check aiai+ 1 against the

edges Bounding all intervening sectors. Since

no backtracking is done, this step can be perf-

ormed in O(n) time. (Separate treatment is req-

uired if a point of A lies o n_n an edge of B, but

the substance of the algorithm is not affected.)

5. The intersection consists of chains taken

alternately from polygons A and B, with the

intersection points in between. STOP.

6. If b is exterior to polygon A then the search

in step three must Be modified. At b, polygon A

subtends some angle ~ in which all relevant

sectors fall. These may be determined by finding

the range of polar angles of the vertices of A.

Let 8 i be the polar angle at b of vertex a i.

Then let u = min {e i} and v = max {8 i} . Now,

vertices u and v partition A into two chains of

vertices, each of whiah may be searched as in

step three, separately.

We have proved

Theorem 12. The intersection of two convex n-gons

can be found in O(n) time. D

\
!

Figure 4. Intersection of convex polygons.

If the polygons are not convex, their intersection

may not even be connected.

Theorem 12. Finding the intersection of two n-gons

requires O(n 2) time in the worst case.

Proof : Figure 5 shows two n-gons in which every

edge of one intersects every edge of the other.

The intersection consists of n2/4 disjoint quadri-

laterals which have a total of n 2 edges. Merely

writing out the answer requires O(n 2) time. The

obvious algorithm discussed in problem 5 shows that

this is also an upper bound. D

The convex intersection algorithm is a useful

building block for more complicated algorithms. In

the following discussion we consider star-shaped/~

// polygons.

Figure 5. Intersection of general polygons.

Given a polygon P, the set of points which can

"see" all points of P is called the kernel of P.

More precisely, ker(P) = {xee I Vy£p, x~y ee}, where

xy denotes the line segment from x to y. A polygon

whose kernel is non-null is said to be star-shaped.

The kernel is a convex polygon having no more than

n edges.

Figure 6. A polygon and its kernel.

Problem 6. Given a polygon, find its kernel.

Each side of P determines two half-planes. The one

to the right (in the directed sense of P) is said to

be the interior half-plane, owing to our earlier

definition of a polygon. The kernel of P is just

the intersection of all its interior half-planes.

This shows that the kernel is convex.

Theorem 23. The intersection of n half-planes,

hence the kernel of an n-gon, can be found in

O(n log n) time.

Proof : Begin by intersecting the n half-planes

228

in pairs. This can be done in time cn/2, for some

constant c. The result is at worst n/2 angles, or

"2-gons." These can be intersected in pairs in time

2cn/4 = cn/2 to form n/4 quadrilaterals, and so

forth. This process continues for a maximum of

log n steps. That each step only requires O(n) time

follows from theorem ii. Thus the entire algo-

rithm can be performed in O(n log n) time. [9] D

This algorithm has not been shown to be optimal.

Using the above result and the method of

theorem i0 we can obtain an O(log n) algorithm for

inclusion in a star-shaped polygon. It suffices

to choose r to be inside the kernel of the polygon.

O(n) storage and O(n log n) preprocessing time are

required.

Theorem 14. Whether two plane sets of n points

are separable can be determined in O(n log n) time.

Proof : Applying theorem 2, the convex hulls of

the sets can be found In O(n log n) time [4].

By theorem Ii, the intersection of the hulls can

be found in an additional O(n) time. If the inter-

section is null, the sets are separable.

That the above algorithms are closely related

can be seen from the following chart in which there

is an arrow from algorithm A to algorithm B if A

is used by B.

Vl. Closest-point problems.

Problem 7. Given n points in the plane, with pre-

processing allowed, how quickly can the point

closest to a new given point be found ?

This problem is mentioned b y Knuth [i0] under the

name "post-offlce search," but no solution is given.

We will develop a data structure that solves this

problem and a number of related ones.

Surrounding each of the original points Pi there

is a convex polygon Vi, called the Voronoi polygon

associated with Pi that has the following property :

Pi is the closest of the given points to any x~V i .

The Voronoi polygon surrounding Pi is composed of

pieces of the perpendicular bisectors of Pi and the

other given points. If h(Pi,Pj) denotes the half-

plane containing Pi determined by the perpendicular

bisector of Pi and pj, then V I = n h(Pi,Pj) ,

which shows that V. is a convex polygon having at
1

most n-i edges. The Voronoi polygons partition the

plane, with semi-infinite polygons corresp?nding to

points on the convex hull of the given set. Refer

to figure seven. To solve the closest-polnt problem

"it is only necessary to determine in which Voronoi

polygon the new point lles.

INTERPLAY OF GEOMETRIC ALGORITHMS

Kernel 1
n log n

Intersection of
convex polygons

n

Hull of a
polygon

n

/
Diameter of
a polygon

n

Diameter of a
convex polygon

/

Sorting
n log n

n l o g n n l o g n

/
SeparabilltYn log n I Diameter of a set

n log n

229

i
Figure 7.

I:

Voronoi polygons.

The Voronoi diagram has many interesting and

useful properties , which are treated in detail else-

where [12]. We mention only those features relevant

to the closest-point problem.

Th~orgm 16. The Voronoi diagram V(S) of a set S

containing n points has at most 3n-6 edges and

2n-4 vertices.

/>Pool : Consider the n given points as vertices

The vertices of V(S) are points at which three

perpendicular bisectors meet; they are the circum-

centers of triangles, So the degree of every vertex

of V(S) is three. (If d>3 bisectors meet at a point,

that point has multiplicity d-2.) Let V(S) have k

vertices. Then 3k ~ 2(3n-6), or k & 2n-4. D

Theorem 16. The closest point problem can be solved

in O(log n) time and O(n 2) storage after O(n 2) pre-

processing.

Proof : We will give an algorithm. Consider draw-

ing a horizontal llne through each Voronoi point.

These lines partition the plane into slabs. If the

Voronoi points are pre-sorted by y-coordinate, then

the slab containing a new given point x can be found

in O(log n) time by binary search. There are at most

2n-3 slabs. The situation within each slab is very

attractive. The line segments occurring within a

slab do not intersect (except possibly at slab bound-

aries) and are thus totally ordered by the "right-

left" relation. Areas between slab segments belong

wholly to one Voronoi polygon. (see figures 9 and i0)

of a graph in which there is an edge from v. to v.
i 3

iff V i and V 4 J share a colmaon edge. This graph,

D(S), is the geometric dual of V(S). Take as the , m / _

F Voronoi polygons and slabs.

Figure 8. Dual of the Voronoi diagram.
Figure i0. A single Voronoi slab.

Inside a slab there can be at most O(n) segments,

since there are only that many in the whole diagram !

The polygon to which a point belongs can be found in

O(log n) time by binary search, which solves the

problem. Since there are O(n) slabs and no more than

O(n) segments in any slab, O(n 2) storage suffices.

[131 D

edge viv j a broken line segment from Pi to the mid-

point of the common edge, then to pj. By the con-

vexity of the Voronoi polygons, none of these edges

intersect, thus D(S) is planar. D(S), being a planar

graph on n vertices, has at most 3n-6 edges. Since

the edges of D(S) and V(S) are In one-to-one corres-

pondence, V(S) has at most 3n-6 edges.

230

The upper bound on Voronol preprocessing follows

from

Theorem I?. The Voronoi diagram V(S) can be con-

structed in O(n log n) time, and this is optimal.

Proof : see [12]. A divide-and-conquer approach

is used based on the fact that two Voronoi diagrams

for separable sets each having n/2 points can be

merged in O(n) time to form the complete Voronoi

diagram. Recurslve application of this principle

yields an O(n log n) algorithm.

In many contexts, O(n 2) storage is too expen-

sive and we would be willing to settle for a

slightly slower algorithm if it could reduce the

storage requirement drastically. The basic idea of

the next algorithm is to spend O(log n) time to

reduce the problem to one that is not larger than

half the size of the original.

Theorem 18. The closest-point problem can be

solved in O(log2n) time and O(n) storage after

O(n log n) preprocessing.

Sketch of proof : Suppose we have sorted the given

points so that they are ordered by x-coordinate.

We seek a decision boundary that separates the left-

most n/2 points from the rightmost n/2 such that

if a point x is to the left of the boundary then it

is closest to one of the leftmost n/2 points. If

this test can be made in O(log n) time, the problem

can be solved recursively. The decision boundary

is easy to construct, given the Voronoi diagram.

ColoE the Voronoi polygons of points in the left

set blue, of those in the right set yeliow. At the

edges separating the sets, the paint will run

together, forming a green decision boundary. This

boundary is slngle-valued in y, so it may be

searched by the slab method in O(log n) time. At

the next level of the algorithm there will be two

decision boundaries, then four, etc. Construction

of the boundaries atsuccesslve levels proceeds as

at the first level except that no edge of the Voronoi

diagram is ever used twice. Once the given point

has been compared to an edge, it is never necessary

to test against that edge again. Complications

arise since the decision boundaries are not required

to be connected, and testing against a boundary with

k pieces may achieve a (k+l)-fold splitting. A

Voronoi polygon, hence a point, becomes a terminal

node of the search tree when all of its edges have

appeared as parts of decision boudarles. The depth

of the tree is at most log2n , so O(log2n) time suffices

for the entire algorithm. Since no edge of the Voronoi

diagram appears more than once in the search structure,

only O(n) storage is required. The preprocessing

upper and lower bound is a corollary of theorem 17.

[14] 0

o

stage two
stage one ;stage two

Figure ii. The first and second stages of division.

The Voronoi diagram is a very powerful structure.

It can be used to find the two closest of n points in

O(n log n) time and to find a Euclidean minimum

spanning tree in O(n log n) time. This follows from

the fact that an MST of the set S is an MST of D(S),

the dual of the Voronol diagram. [12] This result

is attractiv~ because it says that a minimum spanning

tree can be constructed without even examining all the

edges of the underlying graph. The diagram also solves

Problem 8. Given n points in the plane, find a new

point x, interior to the convex hull of the originals,

whose smallest distance to any point i8 a maximum.

The best previously known algorithm for this problem

required O(n S) time [15] but the Voronoi diagram leads

to an O(n log n) solution, since the required point x

is one of the vertices of the diagram. There are only

O(n) vertices to examine, and they can all be generated

in O(n log n) time.

These fast algorithms demonstrate that the proper

attack on a geometry problem is to construct those

geometric entities that delineate the problem, such

as the vector diagram of theorem 5, or the Voronoi

polygons, and order these for rapid searching. In

many cases such well-known algorithmic techniques as

divide-and-conquer can be applied directly.

231

Vll. Parallels between Geometry and Complexity

The connection between geometry and the theory

of computation is not limited to the design of fast

algorithms. Many questions arose during the devel-

opment of classical geometry that are inherently

complexity questions which the mathematicians of the

day did not possess the formal tools to solve. In

spite of this, geometry seems to have anticipated

many of the ideas and investigations of modern comp-

utational complexity. By studying the work of the

geometers we may discover fruitful areas for comp-

lexity research.

The geometric concept most closely related to

the theory of computation is that of a Euclidean

construction. Euclid realized in his constructions

those algorithmic elements that we regard as indis-

pensible today : finiteness, clarity, and termin-

ation. His constructions were always accompanied

by proofs of correctness; in fact, the algorithm

and its proof were often intertwined, a goal that

seems even more desirable today. The question of

the completeness of the Euclidean ruler and compass

operations, that is, whether they suffice to per-

form all possible constructions, was raised by the

Ancients. For centuries, considerable effort went

into the problem of finding algorithms with the

Euclidean tools for trisecting an angle, constructing

a square equal in area to a given circle, and finding

the side of a cube whose volume is twice that of a

given cube. The existence of such algorithms is a

computability question. An analogous (unsolved)

problem in computer science is to determine whether

the "operations" of a linear bounded automaton

suffice to recognize all context-sensitive languages.

In 1796, Gauss proved that the Euclidean tools

were not adequate to inscribe a regular p-gon in a

circle for any primep unless p is a Fermat prime

(of the form 22n + I). He did this by algebraic

methods that make use of the fact that a ruler and

compass construction is ,equivalent to a computation

on the coordinates of the given points with a finite

number of the operations {+, -, ×, ÷, ~ }. With the

advent of Galois theory in the early nineteeth century

a complete characterization of those problems solvable

with ruler and compass became available. The theory

of Euclidean constructibility provides a natural

framework for the extension of arithmetic complexity ,

which deals primarily with the field {+, -, ×, ÷},

to include the square root operation. Many other

models of geometric construction have been propounded,

in much the same vein as the restricted or enhanced

Turing machine models we now study. It was known,

for example, that the ruler alone has strictly less

power than the ruler and scale together (a scale is

a ruler with two fixed marks), and that the ruler and

scale have strictly less power than the ruler and

compass. The unexpected result of Mohr and Mascheroni

(before Gauss) is that, insofar as geometric objects

are given and determined by points, the compass alone

suffices to perform all Euclidean constructions. The

compass and scale are more powerful still, since they

can be used to trisect an angle. What is of interest

to us about the Mohr-Mascheroni theorem is that it

was proved by simulation; that is, it was demonstrated

how a single compass could emulate, in a much more

complicated way, any operation performed with ruler

and compass [16]. The technique is reminiscent of

the proof that a single-tape Turing machine can

simulate ak-tape machine. Thus geometry possesses

some elementary notions of hierarchy and the power

of computing features.

So far we have discussed geometric computability

but not complexity. While concise and elegant const-

ructions were always regarded as desirable, no system-

atic study of the complexity of Euclidean constructions

was undertaken until the work of Lemoine early in this

century. [17] He recognizes five distinct Euclidean

operations :

i. Placing a compass leg on a point.
2. Placing a compass leg arbitrarily on a line.
3. Placing the ruler edge through a point.
4. Drawing a circle.
5. Producing a line.

The total number of these operations performed during

a construction is called its simplicity. Although

Lemoine was able to improve greatly the simplicity

of many famous constructions, the reason we do not

now possess a complete theory of Euclidean complexity

is that he was unable to prove any lower bounds.

Apparently upper bounds were also easier to come by

in those days ! Still, Lemoine's work is the only

known attempt to obtain operation counts in geometry.

Hilbert, in his Foundations of Geometry [18],

gives a specific criterion for an expression over

{+, -, ×, ÷, ~ a 2 + b 2} to require exactly n square

root operations in its evaluation. The restriction

232

is that each radicand be a sum of previously comp-

uted squares, llilbert chows that the above field

represents those constructions performable with

ruler and scale. While the complexity of approxi-

mating / x in terms of other arithmetics has been

studied, the complexity of computations involving

the radical as a given primitive operations does not

appear to have been examined. Hilbert's work may

prove to be a valuable starting point for such an

investigation. Such a project would not be without.

practical application~ as machines exist in which

a square root can be performed as rapidly as multi-

plication. The obscurity of Hilbert's result is

puzzling, especially in view of its apparent import-

ance.

VIII. Sumr~ar[

Geometry and complexity are complementary areas

of research in the sense that the techniques and

investigations of one are relevant to the other. It

is clear that complexity theory provides the proper

arena in which to study classical and computational

geometry problems, while a review of the historical

development of geometry suggests many avenues for

research in complexity theory. Geometric problems

may be attacked by the same set of fast algorithm

techniques that have been successful on other prob-

lems in computer science and a collection of basic

algorithms can be assembled, each of them optimal

and well-understood, that are useful in solving more

complex questions. These algorithms can be used

as building blocks for the development of efficient

procedures for higher-dimensional problems.

Acknowledgement

The results in this paper would never have been

obtained had it not been for countless hours of

discussions with David Dobkin, Stanley Eisenstat,

and Daniel J. Hoey. I am grateful for their continued

enthusiasm over geometric problems.

3. M. Shamos. On computing the area of a plane

polygon. Submitted for publication.

4. R. L. Graham. An efficient algorithm for

determining the convex hull of a finite planar

set. Info. Proc. Lett. 1(1972) pp.132-133.

5. The proof of this theorem was suggested by Danie !

J. Hoey.

6. Yaglom and Boltyanskii. Convex Figures. Holt~

Rinehart, and Winston, 1961.

7. M. Shamos. Computational Geometry. PhD. Thesis,

Yale University, 1975.

8. M. Gemignanl. On Finite Subsets of the Plane and

Simple Closed Polygonal Paths. Math. Mag. Jan.-

Feb. 1966. pp.38-41.

9. The kernel algorithm is due to Stanley C. Eisenstat.

10. D.E.Knuth. The art of computer programming. Vol.

III, Sorting and searching. Addison-Wesley, 1973.

p.555.

Ii. After G. Voronoi. Consult ~.A. Rogers, Packing

and Covering. Cambridge University Press, 1964.

12. M. Shamos and D. Hoey. Closest-point Problems.

In preparation.

13. This is an application of a technique of Dobkin

and Lipton, Sixth SIGACT Symposium.

14. This method of attack was suggested by David Dobkin.

15. B. Dasarathy and L. White. Some maximin and pattern

classifier problems : theory and algorithms. Talk

presented at the Computer Science Conference,

February , 1975.

16. For a lucid discussion of the power of geometric

construction tools, see H. Eves, A survey of

geometry, Allyn and Bacon, 1972.

17. Lemoine, G~om4trographie, 1907.

18. D. Hilbert. Foundations of Geometry, 1899.

Edited and reprinted by Open Court, 1971.

References

i. Uber Tschebyschefsche Ann~herungsmethoden. Math.

Ann. 57 (1903) pp. 509-540.

2. R. Duda and P. Hart. Pattern Classification and

Scene Analysis. Wiley, 1973. p. 378.

233

