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Abstract 

The complexity of a number of fundamental problems in computational geometry is examined and a number 

of new fast algorithms are presented and analyzed. General methods for obtaining results in geometric 

complexity are given and upper and lower bounds are obtained for problems involving sets of points, lines, 

and polygons in the plane. An effort is made to recast classical theorems into a useful computational form 

and analogies are developed between constructibility questions in Euclidean geometry and computability 

questions in modern computational complexity. 

I. Introduction 

Geometric problems arise in a wide variety of 

application areas, from ]pattern recognition to 

operations research and numerical analysis. Many 

of these are simply-stated questions involving 

points, lines, and polygons, but their computational 

complexity has never been systematically investigated. 

It is our purpose here to develop a number of geo- 

metric algorithms, give bounds on their space and 

time requirements, and exhibit a close connection 

between geometric questions and such well-understood 

algorithms as sorting and searching. 

We shall use three major approaches to obtain 

geometric results : first, analytic geometry pro- 

vides the crucial link that enables algebraic 

complexity theory to be brought directly to bear on 

geometric problems. Second, it is often possible to 

map a geometric problem into a combinatorial problem 

of known complexity, such as sorting. Third, geo- 

metric properties of the problem, such as convexity 

or a convenient metric, can often be exploited to 

yield fast algorithms. We give examples involving 

the use of each of t~ese methods. 

This research was supported in part by the 

Office of Naval Research under Grant Number 

NR044-483 and my wife. 

Unfortunately, the classical mathematics of 

geometry is not well-suited to the development of 

good computational techniques, largely because there 

was no need for fast algorithms during the period 

when geometry flourished. It is our plan to recast 

geometry into a computational setting, prove theorems 

that are of direct algorithmic value, and investigate 

the complexity of basic geometric problems. 

An example of the unsuitability of traditional 

methods is provided by the problem of separability. 

Two finite plane point sets, P and Q are said to be 

(linearly) separable iff there exists a straight line 

with the property that every point of P lies on 

one side of Z and every point of Q lies on the other. 

Problem i. Given two finite plane 8ets, each 

containing n points, determine if they are separable. 

This problem is of importance in pattern recognition 

and clustering. The theorem of combinatorial geom- 

etry that pertains to separability is that of Kirch- 

berger [I]. 

Theorem 5. Two finite plane sets P and Q are sep- 

arable iff every subset of four or fewer points of 

P u Q is separable. 

Since there are O(n ~) such subsets, the theorem 

suggests an O(n 4) algorithm for separability, namely, 

one that examines all subsets. A much more efficient 

(in fact, optimal) algorithm can be obtained from the 

following, more computationally oriented, theorem. 
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Theorem 2. Two finite plane sets are separable 

iff their convex hulls are disjoint. 

(see figure i.) As we shall see later, an O(n log n) 

algorithm is possible. 

Figure i. Separable sets and their convex hulls. 

II. Alsehraic methods 

Since many geometry problems can be conveniently 

expressed in algebraic terms, the theory of algebraic 

complexity can often be borrowed directly. An 

example of this approach is the problem of finding 

the area of plane polygon with n vertices whose 

coordinates are (xi,Yi) , i = 0, ... , n-i o The 

area of the polygon is then given by 

n-i 
1 

I E xi(Yi+ 1 - Yi_l ) I [2] 
i=O 

where indices are taken modulo n. If this expres- 

sion is evaluated explicitly as written, n multi- 

plications and 2n-1 addition/subtractions are 

required, not counting the multiplication by one- 

half. We certainly would expect the number of 

multiplications required to compute the area of an 

n-gon to increase strictly monotonically with n. 

It is surprising that this is not the case and the 

author [3] has proven the following 

Theorem 3. The area of a plane polygon with n 

vertices can be found in n-I multiplications if n 

is odd and n-2 multiplications if n is even, and 

these are lower bounds. 

Proof. The above summation can be written as 

n-2 

!l z %-Xn-1) %+l-Yil ) l 2 i=O - , n odd 

n 
-- - 1 
2 

E 
i=l 

1 I - - 
(x2i x0) (Y2i+l Y2i-i ) 

+ (x2i-i - Xn-l) (Y2i - Y2i-2 ) I' 

n even, from which the theorem follows explicitly. 

The lower bound is proved in [3]. Using the above 

formulas it is possible to compute the area of a 

triangle in two multiplications and five addition/ 

subtractions. It is also possible to find the area 

of a quadrilateral in two multiplications and five 

additlon/subtractions ! 

III. Representation issues 

Before going on to more complicated problems, 

a word is in order concerning our model of compu- 

tation. Formally, we will prove lower bounds by 

showing that a reducibility exists between the given 

problem and sorting. Thus the lower bound of 

O(n log n) will apply to any model in which sorting 

requires this much time. Models which admit square 

roots and transcendental functions are not known to 

obey this criterion. Informally, however, we assume 

that the underlying machine is a random-access comp- 

uter, and all algorithms presented will be readily 

seen to be programmable on such a machine. It follows 

that all upper bounds in this paper are achievable 

to within a constant factor. 

Geometric objects will be represented as lists 

of points, where a point is a vector of coordinates 

in any coordinate system whatever. Since a point can 

be transformed into an arbitrary coordinate system 

in constant time, our asymptotic bounds are unaffected 

by choice of reference frame. A polygon is a list 

of points in the order in which'they occur on the 

boundary of the polygon. All polygons are assumed 

to be simple, that is, they do not intersect them- 

selves. Convex and star-shaped polygons are simple 

afortiori. In many algorithms it is convenient to 

choose the ordering of vertices around a polygon 

so that, as vertices are scanned sequentially, the 

interior of the polygon is to the right of the 

induced direction. 

IV. Geometric reducibility 

Not all problems profit from being translated 

into algebraic terms as did the area problem. An 

example is Problem 2. Given a set of n points in 

the pZfcne, detel~nine its convex hulZ. It is extremely 

cumbersome to write down an analytic expression for 

the vertices of the convex hull in terms of the given 

original coordinates. Even if one were to do so, 

he would probably obtain no insight into the complexity 

of the problem. Graham [4] has given an O(n log n) 

algorithm for finding the planar convex hull. We 

will show that this is also a lower bound. 
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Theorem 4. Let H(n) be the time required to find 

the convex hull of n points and let S(n) be the time 

required to sort n real numbers. Then we have 

H(n)  ~ S(n) - O(n) • 

P r o o f .  We show t h a t  a n y  c o n v e x  h u l l  a l g o r i t h m  c a n  

s o r t .  G i v e n  n r e a l  n u m b e r s  { X l ,  . . .  , x } ,  l e t  m ffi 
n 

min {x.}z and r = max {Ix i, - xjl}.. Thus m is the 

smallest number and r is the range of the numbers. 

Choose some number ~ in the interval (0,27) and 

define 8 i - e(x i - m)/r . Note that all 8 i lie 

in the seml-open interval [0,27). We now associate 

with each x i a point on the unit circle having polar 

coordinates (i)8i). The convex hull of these can 

be found in H(n) time. ~e vertices of the result- 

ing convex polygon, taken in order, constitute a 

sort of the 8 i . In O(n) time these can be mapped 

back to the correspondi~ sorted x.. So we have 
1 

that S(n) S H(n) + O(n), from which the theorem 

follows. [5] B 

In this case, where formulating an algebraic 

solution was not inviting, we were able to bypass 

algebraic methods by exhibiting an equivalence 

between the problem at hand and another problem 

of known complexity. 

V. Geometric algorithms 

It is our goal in this section to present a 

number of fast algorithms which can be used as 

"core" algorithms for obtaining efficient solut- 

ions to more complex problems. 

Problem 3. Given a convex polygon, determine 

the maximum distance between two of its points. 

This distance is called the diameter of the 

polygon. It is elementary that the diameter is 

realized by two vertices. A naive algorithm is 

to examine all n(n-l)/2 interpoint distances, 

finding the greatest in O(n 2) time. By creating 

a new geometric structure and applying classical 

theorems we can obtain a linear algorithm. 

A llne of support of a convex polygon P is 

a line that has at least one point in common with 

P but with the property that all of P lles on one 

side of the line. The diameter of P is the great- 

est distance between parallel lines of support. [6] 

A pair of vertices v,w of P will be called antipodal 

if there exist parallel lines of support of P passing 

through v and w. It is clear that only distances 

between antipodal pairs of points need be examined 

in order to determine t!he diameter. How many 

antipodal pairs of vertices can P possess ? We will 

exhibit a data structure which permits not only the 

rapid enumeration of all antipodal pairs ) but also 

the determination of the pair of vertices through 

which lles of support parallel to a given direction 

pass. 

The cyclic ordering of the vertices of P induces 

a direction on each edge of P. Treating the edges as 

vectors, translate them to the origin. (figure 2) 

In this mapping, edges go to vectors and vertices go 

to sectors. In order to find the antipodal pair 

corresponding to some direction determined by a llne 

Z, translate the line so that it passes through the 

origin of the vector diagram. The sectors through 

which it passes indicate the points of the antipodal 

pair. In the example, the dotted lines passes through 

sectors one and four. 

71 
/ I 12 

/ ~ 67 ~ ,  7 

,i ,,, o \  : ' /  

, / # 
3 4  

Figure 2. Determining antipodal points. 

Determining the sectors through which I passes 

can be done in O(log n) time by binary search. To 

find all antipodal pairs, imagine rotating line Z 

clockwise. The antipodal pair does not change until 

passes through some vector of the diagram. In 

figure 2) pair 41,4) turns into pair (1,5) as £ 

passes through vector 45 . Since there are exactly 

n vectors to pass, there are exactly n antipodal 

pairs. Furthermore, they can all be found in O(n) 

time by scanning sequentially around the vector 

diagram. Since the distance between any two points 

can be found in constant time, we have 

Theorem 5. The diameter of a convex polygon can be 

determined in O(n) time. D 

Although it is possible for Z to pass through two 

vectors simultaneously, this complication does not 

affect the result. 

Theorem 6. The diameter of a set of n points in the 

plane can be found in O(n log n) time. 

Proof : diam(S) = dlam(hull(S)). The hull can be 

found in O(n log n) time. Since the hull is a convex 
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polygon, its diameter can be found in an additional 

O(n) time by theorem 5. D 

The optimality of the above algorithm is an open 

question. 

Theorem 7. The diameter of a polygon (not necessarily 

convex) can be found in O(n) time. 

Proof : The convex hull of a simple plane polygon 

can be found in O(n) time [7] and then theorem 5 

applies. D 

Theorem 8. Finding a simple closed polygonal path 

through n points of the plane must take O(n log n) 

time in the worst case. 

Proof a : A simple closed polygonal path (SCPP) is 

a polygon. Since the hull of a polygon can be found 

in O(n) time, if any SCPP could be found in less 

than O(n log n) time we could find convex hulls in 

less than O(n log n) time, contradicting theorem 

four. [] 

Proof b : Consider a set consisting of n-i points 

on the x-axls and another point not on the x-axls. 

Any SCPP effectively sorts the points on x-coord- 

inate, cf.[8] [] 

Sinc~ a Euclidean traveling salesman tour is an SCPP, 

theorem 8 gives a non-llnear lower bound for the 

traveling salesman problem. 

Theorem 9. The L I and L ~ diameter of a finite 

plane set can be found in O(n) time. See [7]. [] 

The L 1 distance, also called the rectilinear or 

"Manhattan" distance between points Pl and P2 is 

given by dl(pl,P2 ) = Ix I - x2] + ly I - y21. 

The distance in the infinity metric is just 

d~(Pl,e2 ) = max (Ix I - x21 , ly I - y21). An 

O(n) algorithm obtains under any metric whose 

unit ball is a convex polygon. 

Problem 4. Given a convex polygon P, pre- 

processing allowed, determine whether a new point 

x i8 interior or exterior to P. 

This question can be decided in O(n) time by examining 

the intersection of the boundary of P with any line 

through x. If there are two intersection points which 

bracket point x, then x is interior, otherwise x is 

exterior. But this algorithm does not take advantage 

of preprocessing. 

Theorem 10. The inclusion question for a convex 

polygon can be answered in O(log n) time, after 

O(n) preprocessing. 

Proof : Choose any point r interior to P (the 

centroid of any three non-colllnear points will 

suffice) and consider r to be the origin of polar 

coordinates. Rays drawn through the vertices of P 

orlginatlng at r partition the plane into n sectors. 

Each edge of P divides a sector into two regions, 

one interior to P and the other exterior. (see 

figure 3) Given the new point x, its polar coord- 

inates relative to r can be found in constant time. 

The sector containing x can be found in O(log n) time 

by binary search. Once the sector is determined, 

whether x is inside or outside can be found by testing 

x against the edge of P contained in the sector. 

The preprocessing consists of arranging the sectors, 

which can be done in O(n) time since the vertices 

of P are available in order by angle. [] 

Figure 3. Inclusion in a convex polygon. 

Problem 5. Given two convex n-gone, A and B, find 

their intersection. 

The intersection is a convex polygon having at most 

2n vertices. An O(n 2) algorithm comes to mind immed- 

iately : check every edge of A against every edge 

of B, looking for intersections. While this algor- 

ithm is optimal for non-convex polygons, the convex 

case is restricted enough to permit a fast algorithm. 

I. Preprocess polygon B as for inclusion testing 

(theorem i0). Let b be the origin for the sectors. 

2. If b is exterior to polygon A, go to step 6. 

3. Refer to figure 4. For each vertex of A, deter- 

mine which sector of B it lies in. Although the 

first such search may cost O(log n), all n vertices 

can be located in a total of O(n) time by pro- 

ceeding sequentially around polygon A. The scan 

never backs up, so no sector of B is examined more 

times than once plus the number of vertices of A 

that lle within it. Hence this step requires only 

O(n) time. 

4. Once it is known which sector a vertex lies in, 

it can be determined in constant time (as in 

theorem i0) whether the vertex is interior or 

exterior to B. Scan around A once, examining all 

pairs of consecutive vertices a i , ai+ 1 . If both 

vertices are in the same sector and interior to B, 
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then by convexity the edge joining them is also 

interior to B and it cannot intersect B. If one 

vertex is inside and the other is outside, then 

exactly one intersection occurs between the edge 

aiai+ 1 and the bounding edge of the sector. If 

Both vertices are outside B but in the same sector, 

no intersection occurs. The situation is the 

same even if a i and ai+ I lie in different sectors 

of B, except in the case where both are outside. 

It is then necessary to check aiai+ 1 against the 

edges Bounding all intervening sectors. Since 

no backtracking is done, this step can be perf- 

ormed in O(n) time. (Separate treatment is req- 

uired if a point of A lies o n_n an edge of B, but 

the substance of the algorithm is not affected.) 

5. The intersection consists of chains taken 

alternately from polygons A and B, with the 

intersection points in between. STOP. 

6. If b is exterior to polygon A then the search 

in step three must Be modified. At b, polygon A 

subtends some angle ~ in which all relevant 

sectors fall. These may be determined by finding 

the range of polar angles of the vertices of A. 

Let 8 i be the polar angle at b of vertex a i. 

Then let u = min {e i} and v = max {8 i} . Now, 

vertices u and v partition A into two chains of 

vertices, each of whiah may be searched as in 

step three, separately. 

We have proved 

Theorem 12. The intersection of two convex n-gons 

can be found in O(n) time. D 

\ 
! 

Figure 4. Intersection of convex polygons. 

If the polygons are not convex, their intersection 

may not even be connected. 

Theorem 12. Finding the intersection of two n-gons 

requires O(n 2) time in the worst case. 

Proof : Figure 5 shows two n-gons in which every 

edge of one intersects every edge of the other. 

The intersection consists of n2/4 disjoint quadri- 

laterals which have a total of n 2 edges. Merely 

writing out the answer requires O(n 2) time. The 

obvious algorithm discussed in problem 5 shows that 

this is also an upper bound. D 

The convex intersection algorithm is a useful 

building block for more complicated algorithms. In 

the following discussion we consider star-shaped/~ 

// polygons. 

Figure 5. Intersection of general polygons. 

Given a polygon P, the set of points which can 

"see" all points of P is called the kernel of P. 

More precisely, ker(P) = {xee I Vy£p, x~y ee}, where 

xy denotes the line segment from x to y. A polygon 

whose kernel is non-null is said to be star-shaped. 

The kernel is a convex polygon having no more than 

n edges. 

Figure 6. A polygon and its kernel. 

Problem 6. Given a polygon, find its kernel. 

Each side of P determines two half-planes. The one 

to the right (in the directed sense of P) is said to 

be the interior half-plane, owing to our earlier 

definition of a polygon. The kernel of P is just 

the intersection of all its interior half-planes. 

This shows that the kernel is convex. 

Theorem 23. The intersection of n half-planes, 

hence the kernel of an n-gon, can be found in 

O(n log n) time. 

Proof : Begin by intersecting the n half-planes 
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in pairs. This can be done in time cn/2, for some 

constant c. The result is at worst n/2 angles, or 

"2-gons." These can be intersected in pairs in time 

2cn/4 = cn/2 to form n/4 quadrilaterals, and so 

forth. This process continues for a maximum of 

log n steps. That each step only requires O(n) time 

follows from theorem ii. Thus the entire algo- 

rithm can be performed in O(n log n) time. [9] D 

This algorithm has not been shown to be optimal. 

Using the above result and the method of 

theorem i0 we can obtain an O(log n) algorithm for 

inclusion in a star-shaped polygon. It suffices 

to choose r to be inside the kernel of the polygon. 

O(n) storage and O(n log n) preprocessing time are 

required. 

Theorem 14. Whether two plane sets of n points 

are separable can be determined in O(n log n) time. 

Proof : Applying theorem 2, the convex hulls of 

the sets can be found In O(n log n) time [4]. 

By theorem Ii, the intersection of the hulls can 

be found in an additional O(n) time. If the inter- 

section is null, the sets are separable. 

That the above algorithms are closely related 

can be seen from the following chart in which there 

is an arrow from algorithm A to algorithm B if A 

is used by B. 

Vl. Closest-point problems. 

Problem 7. Given n points in the plane, with pre- 

processing allowed, how quickly can the point 

closest to a new given point be found ? 

This problem is mentioned b y  Knuth [i0] under the 

name "post-offlce search," but no solution is given. 

We will develop a data structure that solves this 

problem and a number of related ones. 

Surrounding each of the original points Pi there 

is a convex polygon Vi, called the Voronoi polygon 

associated with Pi that has the following property : 

Pi is the closest of the given points to any x~V i . 

The Voronoi polygon surrounding Pi is composed of 

pieces of the perpendicular bisectors of Pi and the 

other given points. If h(Pi,Pj ) denotes the half- 

plane containing Pi determined by the perpendicular 

bisector of Pi and pj, then V I = n h(Pi,Pj) , 

which shows that V. is a convex polygon having at 
1 

most n-i edges. The Voronoi polygons partition the 

plane, with semi-infinite polygons corresp?nding to 

points on the convex hull of the given set. Refer 

to figure seven. To solve the closest-polnt problem 

"it is only necessary to determine in which Voronoi 

polygon the new point lles. 

INTERPLAY OF GEOMETRIC ALGORITHMS 

Kernel 1 
n log n 

Intersection of 
convex polygons 

n 

Hull of a 
polygon 

n 

/ 
Diameter of 
a polygon 

n 

Diameter of a 
convex polygon 

/ 

Sorting 
n log n 

n l o g  n n l o g  n 

/ 
SeparabilltYn log n I Diameter of a set 

n log n 
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i 
Figure 7. 

I: 

Voronoi polygons. 

The Voronoi diagram has many interesting and 

useful properties , which are treated in detail else- 

where [12]. We mention only those features relevant 

to the closest-point problem. 

Th~orgm 16. The Voronoi diagram V(S) of a set S 

containing n points has at most 3n-6 edges and 

2n-4 vertices. 

/>Pool : Consider the n given points as vertices 

The vertices of V(S) are points at which three 

perpendicular bisectors meet; they are the circum- 

centers of triangles, So the degree of every vertex 

of V(S) is three. (If d>3 bisectors meet at a point, 

that point has multiplicity d-2.) Let V(S) have k 

vertices. Then 3k ~ 2(3n-6), or k & 2n-4. D 

Theorem 16. The closest point problem can be solved 

in O(log n) time and O(n 2) storage after O(n 2) pre- 

processing. 

Proof : We will give an algorithm. Consider draw- 

ing a horizontal llne through each Voronoi point. 

These lines partition the plane into slabs. If the 

Voronoi points are pre-sorted by y-coordinate, then 

the slab containing a new given point x can be found 

in O(log n) time by binary search. There are at most 

2n-3 slabs. The situation within each slab is very 

attractive. The line segments occurring within a 

slab do not intersect (except possibly at slab bound- 

aries) and are thus totally ordered by the "right- 

left" relation. Areas between slab segments belong 

wholly to one Voronoi polygon. (see figures 9 and i0) 

of a graph in which there is an edge from v. to v. 
i 3 

iff V i and V 4 J share a colmaon edge. This graph, 

D(S), is the geometric dual of V(S). Take as the , m / _  

F Voronoi polygons and slabs. 

Figure 8. Dual of the Voronoi diagram. 
Figure i0. A single Voronoi slab. 

Inside a slab there can be at most O(n) segments, 

since there are only that many in the whole diagram ! 

The polygon to which a point belongs can be found in 

O(log n) time by binary search, which solves the 

problem. Since there are O(n) slabs and no more than 

O(n) segments in any slab, O(n 2) storage suffices. 

[131 D 

edge viv j a broken line segment from Pi to the mid- 

point of the common edge, then to pj. By the con- 

vexity of the Voronoi polygons, none of these edges 

intersect, thus D(S) is planar. D(S), being a planar 

graph on n vertices, has at most 3n-6 edges. Since 

the edges of D(S) and V(S) are In one-to-one corres- 

pondence, V(S) has at most 3n-6 edges. 
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The upper bound on Voronol preprocessing follows 

from 

Theorem I?. The Voronoi diagram V(S) can be con- 

structed in O(n log n) time, and this is optimal. 

Proof : see [12]. A divide-and-conquer approach 

is used based on the fact that two Voronoi diagrams 

for separable sets each having n/2 points can be 

merged in O(n) time to form the complete Voronoi 

diagram. Recurslve application of this principle 

yields an O(n log n) algorithm. 

In many contexts, O(n 2) storage is too expen- 

sive and we would be willing to settle for a 

slightly slower algorithm if it could reduce the 

storage requirement drastically. The basic idea of 

the next algorithm is to spend O(log n) time to 

reduce the problem to one that is not larger than 

half the size of the original. 

Theorem 18. The closest-point problem can be 

solved in O(log2n) time and O(n) storage after 

O(n log n) preprocessing. 

Sketch of proof : Suppose we have sorted the given 

points so that they are ordered by x-coordinate. 

We seek a decision boundary that separates the left- 

most n/2 points from the rightmost n/2 such that 

if a point x is to the left of the boundary then it 

is closest to one of the leftmost n/2 points. If 

this test can be made in O(log n) time, the problem 

can be solved recursively. The decision boundary 

is easy to construct, given the Voronoi diagram. 

ColoE the Voronoi polygons of points in the left 

set blue, of those in the right set yeliow. At the 

edges separating the sets, the paint will run 

together, forming a green decision boundary. This 

boundary is slngle-valued in y, so it may be 

searched by the slab method in O(log n) time. At 

the next level of the algorithm there will be two 

decision boundaries, then four, etc. Construction 

of the boundaries atsuccesslve levels proceeds as 

at the first level except that no edge of the Voronoi 

diagram is ever used twice. Once the given point 

has been compared to an edge, it is never necessary 

to test against that edge again. Complications 

arise since the decision boundaries are not required 

to be connected, and testing against a boundary with 

k pieces may achieve a (k+l)-fold splitting. A 

Voronoi polygon, hence a point, becomes a terminal 

node of the search tree when all of its edges have 

appeared as parts of decision boudarles. The depth 

of the tree is at most log2n , so O(log2n) time suffices 

for the entire algorithm. Since no edge of the Voronoi 

diagram appears more than once in the search structure, 

only O(n) storage is required. The preprocessing 

upper and lower bound is a corollary of theorem 17. 

[14] 0 

o 

stage two 
stage one ;stage two 

Figure ii. The first and second stages of division. 

The Voronoi diagram is a very powerful structure. 

It can be used to find the two closest of n points in 

O(n log n) time and to find a Euclidean minimum 

spanning tree in O(n log n) time. This follows from 

the fact that an MST of the set S is an MST of D(S), 

the dual of the Voronol diagram. [12] This result 

is attractiv~ because it says that a minimum spanning 

tree can be constructed without even examining all the 

edges of the underlying graph. The diagram also solves 

Problem 8. Given n points in the plane, find a new 

point x, interior to the convex hull of the originals, 

whose smallest distance to any point i8 a maximum. 

The best previously known algorithm for this problem 

required O(n S) time [15] but the Voronoi diagram leads 

to an O(n log n) solution, since the required point x 

is one of the vertices of the diagram. There are only 

O(n) vertices to examine, and they can all be generated 

in O(n log n) time. 

These fast algorithms demonstrate that the proper 

attack on a geometry problem is to construct those 

geometric entities that delineate the problem, such 

as the vector diagram of theorem 5, or the Voronoi 

polygons, and order these for rapid searching. In 

many cases such well-known algorithmic techniques as 

divide-and-conquer can be applied directly. 
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Vll. Parallels between Geometry and Complexity 

The connection between geometry and the theory 

of computation is not limited to the design of fast 

algorithms. Many questions arose during the devel- 

opment of classical geometry that are inherently 

complexity questions which the mathematicians of the 

day did not possess the formal tools to solve. In 

spite of this, geometry seems to have anticipated 

many of the ideas and investigations of modern comp- 

utational complexity. By studying the work of the 

geometers we may discover fruitful areas for comp- 

lexity research. 

The geometric concept most closely related to 

the theory of computation is that of a Euclidean 

construction. Euclid realized in his constructions 

those algorithmic elements that we regard as indis- 

pensible today : finiteness, clarity, and termin- 

ation. His constructions were always accompanied 

by proofs of correctness; in fact, the algorithm 

and its proof were often intertwined, a goal that 

seems even more desirable today. The question of 

the completeness of the Euclidean ruler and compass 

operations, that is, whether they suffice to per- 

form all possible constructions, was raised by the 

Ancients. For centuries, considerable effort went 

into the problem of finding algorithms with the 

Euclidean tools for trisecting an angle, constructing 

a square equal in area to a given circle, and finding 

the side of a cube whose volume is twice that of a 

given cube. The existence of such algorithms is a 

computability question. An analogous (unsolved) 

problem in computer science is to determine whether 

the "operations" of a linear bounded automaton 

suffice to recognize all context-sensitive languages. 

In 1796, Gauss proved that the Euclidean tools 

were not adequate to inscribe a regular p-gon in a 

circle for any primep unless p is a Fermat prime 

(of the form 22n + I). He did this by algebraic 

methods that make use of the fact that a ruler and 

compass construction is ,equivalent to a computation 

on the coordinates of the given points with a finite 

number of the operations {+, -, ×, ÷, ~ }. With the 

advent of Galois theory in the early nineteeth century 

a complete characterization of those problems solvable 

with ruler and compass became available. The theory 

of Euclidean constructibility provides a natural 

framework for the extension of arithmetic complexity , 

which deals primarily with the field {+, -, ×, ÷}, 

to include the square root operation. Many other 

models of geometric construction have been propounded, 

in much the same vein as the restricted or enhanced 

Turing machine models we now study. It was known, 

for example, that the ruler alone has strictly less 

power than the ruler and scale together (a scale is 

a ruler with two fixed marks), and that the ruler and 

scale have strictly less power than the ruler and 

compass. The unexpected result of Mohr and Mascheroni 

(before Gauss) is that, insofar as geometric objects 

are given and determined by points, the compass alone 

suffices to perform all Euclidean constructions. The 

compass and scale are more powerful still, since they 

can be used to trisect an angle. What is of interest 

to us about the Mohr-Mascheroni theorem is that it 

was proved by simulation; that is, it was demonstrated 

how a single compass could emulate, in a much more 

complicated way, any operation performed with ruler 

and compass [16]. The technique is reminiscent of 

the proof that a single-tape Turing machine can 

simulate ak-tape machine. Thus geometry possesses 

some elementary notions of hierarchy and the power 

of computing features. 

So far we have discussed geometric computability 

but not complexity. While concise and elegant const- 

ructions were always regarded as desirable, no system- 

atic study of the complexity of Euclidean constructions 

was undertaken until the work of Lemoine early in this 

century. [17] He recognizes five distinct Euclidean 

operations : 

i. Placing a compass leg on a point. 
2. Placing a compass leg arbitrarily on a line. 
3. Placing the ruler edge through a point. 
4. Drawing a circle. 
5. Producing a line. 

The total number of these operations performed during 

a construction is called its simplicity. Although 

Lemoine was able to improve greatly the simplicity 

of many famous constructions, the reason we do not 

now possess a complete theory of Euclidean complexity 

is that he was unable to prove any lower bounds. 

Apparently upper bounds were also easier to come by 

in those days ! Still, Lemoine's work is the only 

known attempt to obtain operation counts in geometry. 

Hilbert, in his Foundations of Geometry [18], 

gives a specific criterion for an expression over 

{+, -, ×, ÷, ~ a 2 + b 2} to require exactly n square 

root operations in its evaluation. The restriction 
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is that each radicand be a sum of previously comp- 

uted squares, llilbert chows that the above field 

represents those constructions performable with 

ruler and scale. While the complexity of approxi- 

mating / x in terms of other arithmetics has been 

studied, the complexity of computations involving 

the radical as a given primitive operations does not 

appear to have been examined. Hilbert's work may 

prove to be a valuable starting point for such an 

investigation. Such a project would not be without. 

practical application~ as machines exist in which 

a square root can be performed as rapidly as multi- 

plication. The obscurity of Hilbert's result is 

puzzling, especially in view of its apparent import- 

ance. 

VIII. Sumr~ar[ 

Geometry and complexity are complementary areas 

of research in the sense that the techniques and 

investigations of one are relevant to the other. It 

is clear that complexity theory provides the proper 

arena in which to study classical and computational 

geometry problems, while a review of the historical 

development of geometry suggests many avenues for 

research in complexity theory. Geometric problems 

may be attacked by the same set of fast algorithm 

techniques that have been successful on other prob- 

lems in computer science and a collection of basic 

algorithms can be assembled, each of them optimal 

and well-understood, that are useful in solving more 

complex questions. These algorithms can be used 

as building blocks for the development of efficient 

procedures for higher-dimensional problems. 
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