
LOWER BOUNDS FROM COMPLEX FUNCTION THEORY t

Michael Ian Shamos
Departments of Computer Science and Mathematics

Carnegie-Mellon University
Pittsburgh, PA 15213

and

Gideon Yuval tt
Department of Computer Science

The Hebrew University
Jerusalem, Israel

Abstract

We employ elementary results from the theOr! of several complex variables to obtain a quadratic lower bound

on the complexity of computing the mean distance between points in the plane. This problem' has 2N inputs and a

single output and we show that exactly N(N-l)/2 square roots must be computed by any program over +, -, x, f,

;--, tog and comparisons, even allowing an arbitrary field of constants. The argument is based on counting the

total number of sheets of the Riemann surface of the analytic continuation to the complex domain of the (real)

function computed by any algorithm which solves the problem. While finding an exact answer requires O(N2) oper­

ations, we show that an e-approximate solution can be obtained in O(N) time for any E > 0 , even if no square

roots are permitted.

I. Introduction

The complexity of algebraic problems over the four

basic arithmetics has been extensively studied!. For

the most part, non-linear lower bounds have been very

difficult to obtain, requiring the formidable machin­

ery of algebraic geometry2. If we allow as primitives

such auxiliary functions as aPcsin, tog, and sqPt, it

is widely assumed that proving lower bounds will be

even more troublesome, because linear independence

arguments no longer apply. The purpose of this paper

is to introduce a technique for counting the number of

invocations of such functions required during a compu­

tation. We will find that, in many cases, multiple­

valued functions are easier to count than arithmetics.

Extending the power of {+, - x, f} by allowing

square roots is a temptation that is difficult to

avoid. The computational power of these primitives is

precisely that of the Euclidean ruler and compass, and

the ancient geometers were preoccupied with the ques­

tion of what could and could not be constructed using

them. The matter drew the attention of Gauss, Galois,

and Hilbert 3, and there now exists a considerable body

of theory relating to square roots. Most of this work,

however, pertains to computability, not complexity, and

we still have no effective way of counting the number

of square roots required to compute functions.

Interestingly, research has been done on determin­

ing how many arithmetics are need~d to approximate a

square root to any givenaccuracy4, but there also

seems to be some justification for considering square

root as a primitive in its own right. First, in alge­

braic complexity we usually assume straight-line or

tree programs with real inputs and infinite-precision

operations, so roundoff error is not considered. Also,

computer hardware exists in whichsqua~~ roots can be

performed as quickly as floating-point multiplications,

hence treating the root c:lS a single operation. is quite

realistic.

The method we shall employ is elementary in con­

cept. Consider a straight-line program over {+,-, x,

r} (omitting division for the time being), whose

input, X = (Xl' ••• , xN) , is an N-tuple of real

numbers. This program computes an analytic function

f(X), which may be complex-valued, on'tbereals. 'By

the ideptity theorem for analytic functions, there is

a unique function fc(Z) , of N complex variables, which

equals f when all its arguments are real. This func­

tion f is said to be the analytic continuation of f.c
The situation is, complicated somewhat by the fact that

the square root ,function is multiple-valued, but it is
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NOOOl4-76-C-0829, and by the National Science Foundation under Grant MCS75-222-55.
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and it can be computed directly from this, expression

in O(N2) operations.

Theorem 1. The mean distance in one dimension can be

found in O(N tog N) time, and this is optimaL.

Equation (3) shows that, once the sort is accomplished,

S can be computed in linear time.

To prove the lower bound, we show that any tree

program which computes S can be made to sort the x's

with no additional comparisons. Consider the partial

derivative of S with respect to anyone of the inputs:

(1)

(3)S

S

allowed. (Square roots are not needed for distance

calculations in one dimension.) The distance between

points Xl and xj is given by Ixj - Xi I. The maximum

distance between any two points, also known as the

diameter of the set, can be found in O(N) time by sub­

tracting the smallest x-value from the largest. This

can be done in about 3N/2 comparisons9 • By contrast,

the smallest interpoint distance cannot be found in

fewer than O(N 10gN) comparisons lO • The median dist­

ance can be found in O(N log N) time by entirely dif­

ferent methods ll • In this section we will find upper

and lower bounds on computing the mean distance bet­

ween points on the line.

The mean distance is the sum, S, of the interpoint

distances, divided by N(N-l)/2, the number of distinct

pairs of points. Since the mean can be computed from

Sand N in a constant number of operations, we will

focus our attention on computing S only. By definition,

N-l N
r r Ix. -x.\

i=l j=i+l J 1

Proof: Let us sort the coordinates in O(N log N) time

so that Xi is now the i'th smallest value. The inter­

val between any pair of points is made up of intervals

between consecutive points. In the sum S, the distance

between Xi and x i+l is counted i(N-i) times, once for

every pair of the form (u,v), l~u~i, i+1~vSN , of which

there are i(N~i). Thus, after the sort,

N-1
S r i(N-i) (x

i
+1 - Xi) (2)

i=l

which may be rewritten as

N
r (2i - N - 1) xi

i=l

II. Mean Distance in One Dimension

just this property that will enable us to obtain a

lower bound on the number of square roots performed by

any program that computes f. The multiple-valuedness

of f c is completely described by its Riemann surface,

on which the function is single-valued. The Riemann

surface of ;z- has two sheets, reflecting the fact

that square root is bi-valued. The reader who is un­

familiar with these ideas should consult Bieberbach5

or Knopp6 for background material. Each square root

performed during the execution of our program for f

can at most double the number of sheets of the Riemann

surface of f c • Furthermore, all such bifurcations of

the Riemann surface must be directly attributable to

the square root operations, since the other primitives

are unambiguous. It follows that if the Riemann sur­

face of f c has R sheets, then at least log2R square

roots must have been executed by the program that

computed f. In this way we will obtain tight lower

bounds.

The actual problem that we will use to illustrate

the technique is one from computational geometry that

has previously resisted solution: Given N points in

the plane, N(N-l)/2 pairwise distances are determined.

The average of these is a measure of the "spread" of

the set and is called the mean intraset distance. This

quantity is of interest in pattern recognition,clus­

tering, and multidimensional scaling7 :and we would like

to develop a fast algorithm for computing it. The

existence of efficient algorithms for calculating

related distance measures 8 makes it implausible that

this simple function should require O(N2 ) operations

to compute, but we will show that exactly N(N-l)/2

square roots are required for its evaluation. While

this last result is discouraging, particularly if large

numbers of points are involved, we explain in a later

section how to obtain an e-approximation to the mean

distance in only linear time.

To give the reader a chance to become comfortable

with the idea of using complex function theory to

analyze real algorithms, we postpone the discussion

and begin instead with the simpler, one-dimensional

version of the mean distance problem.

From this partial derivative the rank of Xi can be det­

ermined. Since, within a given branch of the computa­

tion tree, the partials can be evaluated by arithmetics

alone, O(N log N) comparisons must have been made. 0

Given N points on the line, we can ask a number of

questions about the set of distances determined by

those points and discuss the complexity of answering

our questions. We assume that the points are given as

an N-tuple X = (xl' ••• , ~), and consider tree

programs over {+, - x, +}, with binary comparisons

2i - N - 1 (4)
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III. Mean Distance in Two Dimensions

The effect of dimension on complexity in geometric

problems has only begun to be studied, but we know

that the maximum12 and minimum10 interpoint distances

in the plane can be found in O(N log N) time. The best

known algorithm for computing the median distance in

the plane is quadratic, although no better lower bound

than O(N log N) has been shown. We can find the mean

Let M = N(N-l)/2. It may appear that since there

are only 2N parameters in equation (5), not all of the

M square roots are algebraically independent and pos~

sibly some may be eliminated. Our job is to show that,

in fact, (5) is optimal with respect to square roots.

interval, no matter how small. This is known as the

Identity Theorem13 or Principle of Analytic Continua­

tion. Given a real function, defined on an interval

of the real line, there is at most one complex anal­

ytic function, defined on the whole plane, which

agrees with the given real function on the given inter­

val. In the case of square root, this mea~s that we

cannot get ~id of multiple-valuednessby trying to

restrict the domain of definition. Suppose we unabash­

edly declare that what we really mean by IX is -11X'1.
This is to no avail, because the analytic continuation

of 11X1, as well as of Ii. , is IZ again. Before

proceeding further, we must quote a version of the

Identity Theorem for several complex variables 14 :

"If f l is analytic in a domain Dl , and f 2 in a

domain D2, if Dl n D2 is a non-empty domain, and if

fl(Z) , f 2 (Z) have equal values in a real environ­

ment of a point of Dl n D2 , then fl(Z) and f 2(Z)

are analytic continuations of each other; i.e.

there exists a unique function f(Z), analytic in

Dl u D2 , which coincides with f1 in D1 and f 2 in DZ."

We are now ready to show how a unique complex function

corresponds to any program which computes a real anal­

ytic function.

Consider a straight-line program over {+, -, x, ~}

with N real inputs, which computes a real fUnction

f(X) f(xl'...'~). This function is analytic,

except for square root singularities (which are iso­

lated), on the real hyperplanes. By the Identity Theo~

rem, if we take Dl and D2 to be the singularity-free

regions of the real hyperplanes, there., is a unique

function f c ' of N complex variables, which coincides

with f on the reals. If f c is multiple-valued, this

can only arise from the presence of square roots in the

program that defines f.

It is important to realize that the mere presence

of k explicit square roots in the program defining f

does not guarantee that the Riemann surface of f will
k c

have 2 . sheets. For example, the surface _of ,/32 + Ifi
has two sheets, not four. This is true because the two

roots are not "independent" in the sense that there is

no closed path in the complex plane-that reverses the

sign of one without also reversing the sign of the

other. The ambiguity is thus two-fold~ not four-fold.

The last complication remaining before we can prove

the main theorem concetnsdisconnected sheets. The

Riemann surface of g(z) = Ii2 has two sheets, one

corresponding to the function g(z) = +z, the other to

the function g(z) == -z. There is, however, no path

leading from one sheet to the other, so once we choose
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(5)L vf(xi - x
J
.)2 + (y. - y.)2

i<j 1. J

The square root function is multiple-valued: the

square root of 9 is both 3 and -3. This behavior is

clarified in complex analysis by introducing an ele­

gant device known as the Riemann surface, which ref­

lects the fact that the square root of a number z in

the complex plane is not a function of z alone, but

also of the path that was taken to arrive at 2. Beg­

inning at 2, let us go out and return via a path that

encircles the origin. During this trip, the square

root will have changed sign'. This is a consequence of

the relation Ii = Ir exp(ie/2) where (r, e) are

the polar coordinates of z. This means that if we

replace e by e + 2n, the square root will change

by a factor of exp(2~i/2) = -1. We express this by

saying that the Riemann surface of ~ consists of

two sheets that cover the complex plane and, in trav­

ersinga path that surrounds the origin, we move from

one sheet to the other. The "ambiguity" of a function

is completely characterized by its Riemann surface~

Now let us consider complex functions of N complex

variables, defined by finite expressions in those var­

iables whose only multiple-valued primitive is r .
Let the Riemann surface of such a function f have R

sheets. Since each square root introduces at most a

twofold ambiguity, at least 10g2R square roots must

have been used to define f. In order to us~ this to

prove lower bounds, we. must establish a connection

between a' straight-line program over the reals and the

Riemann surface of some function of many complex var­

iables. We must further be able to count the number

of sheets of that surface.

A complex analytic function of one variable may be

defined completely by giving its value on-any finite

distance from the sum'



IV. Approximations to the Mean Distance

Theorem 4. An £-approximation to the mean distance in

one dimension can be found in O(N Zog(l/£)) time.

Having just derived a quadratic lower bound for

computing the mean intraset distance in the plane, we

will show how it can be circumvented. We say that S*

is an £-approximation to S if, for £ > 0, we have

Theorem 3. Any comparison-tree program using arith~

metics, entire functions, k-th roots, and logarithms,

which computes the mean intraset distance in the plane,

must use O(N2 ) steps in the worst case. 0

(6)< £
S* - s

s

return to the root's original value, not twice, as for

square roots. Likewise, even though the Riemann sur­

face of log(z) has an infinite number of sheets,

these also have the wrong structure. Note that if both

exp and log are allowed, we can express a square root

as.,q exp(ilog x) , but this has the effect of

replacing a single square root by two other operations,

and cannot serve to reduce the total number of steps

required.

Finally, we demonstrate that allowing comparisons

will not enable us to eliminate any square roots. The

input to our algorithm is a real 2N-tuple, which may be

viewed as a point in Euclidean 2N-space. If the maxi­

mum number of comparisons performed during any exec­

ution of the program is a, then real 2N-space is parti­

tioned into at most 2c equivalence classes, within

which the outcomes of the decisions are identical.

Each equivalence class defines a subset of 2N-space.

Since the number of subsets is finite, one of them must

contain an interval, and the required analytic continu­

ation can be performed. The fact that comparisons do

not help should not have been unexpected: they simply

do not contribute to multiple-valuedness.

We summarize all the above results as

Proof: We give an algorithm. Letk = 1 + 2/£ and

find the k-tiles that partition the Xi into k groups

of approximately equal size. This can be done in

O(N log k) time by reeursive application of linear sel­

ection11 15. These partitioning elements divide the

Xi into k buckets and, in an additional O(N log k) time

by binary insertion, we can determine the bucket into

which each Xi falls. Let cj be the centroid of bucket

j, j = 1, •• _, k. All of the Cj can be computed in

linear time and are already in sorted order. We now

approximate by assuming that all of the points in a

a sheet, the function is completely unambiguous. Thus

we are not surprised that g(z) = liZ can be computed

without square roots. The contention that 10g2R

square roots are required to evaluate a function whose

Riemann surface has R sheets is valid if and only if

there is a path on the Riemann surface that touches all

R sheets.

Proof: From. the above discussion, we need only show

that the Riemann surface of the analytic continuation

of the sum in equation (5) has 2M sheets, where M =

N(N-l) 12, and that these sheets are connected. It

suffices to show that each of the terms in (5) becomes

singular at some point. A closed path taken around

that point will cause one root only to change sign;

the others will remain unaffected. (This will prove

that none of the ambiguities degenerate, as they do in

the case of & + IfZ .) To show how this may be

done, we consider the distance between points 1 and 2.

Take xk = Yk = k k > 1 ,and xl = 1, Yl 2 + i.

Then (Xl - x2)2 + (Y
l

- Y2)2 is zero, and its root

is singular. None of the other interpoint distances

are zero. 0

We will now enhance the power of Theorem 2 by

discussing a number of generalizations of the straight­

line model. A refinement of the argument can be made

to show that allowing divisions does not reduce the

number of square.roots required. The Identity Theorem

does not apply immediately because a program that uses

divisions computes a meromorphic function, not an anal­

ytic one. We can still perform the analytic continua­

tion, however, if we do not try to continue through a

pole.

An immediate consequence of the Riemann surface

technique is that no number of single-valued analytic

function evaluations can reduce, even by one, the num­

ber of square roots required by equation (5). We can

thus add sin(x) , cos(x), r(x), exp(x) , or any other

entire function to the set of primitives allowed in

1beorem. 2. Even other multiple-valued functions may

not help. While higher-order roots contribute many

sheets to the Riemann surface, these sheets have the

wrong structure. Suppose we allow fourth-roots. While

we may square a fourth~root to obtain a square root,

no unsquared fourth-root is of any use because we must

traverse a path around its singularity four times to

Theorem 2. Any straight-line program over

{+, -, x, r} which computes the mean distance between

N points in the plane must perform at least N(N-l)/2

square roots.
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group lie at the centroid of that group and compute

the mean distance under that asswnption using·equation

(3). This can be done in linear time. By this method,

all distances between pairs of points lying in differ­

ent groups are counted exactly; all distances between

points lying within a group are ignored. However, the

sum of distances between points in group j is less

than or equal to the sum of distances between pairs of

points, one lying in group j and the other lying in

any different group i.Thus, of the k(k-l)/2 inter­

group distances, for each of the kdistances ignored,

(k-l)/2 are computed exactly, so the actual relative

error is not greater than 2k/k(k-l) = 2/{k-l) = £. 0

fences that restrict well-behaved functions to the real

domain. It may be comforting to recall the assistance

that the theory of residues provides in evaluating real

definite integrals. Another reader may becomesqueam­

ish at the mention of the theory of many complex vari­

ables; he will be reassured to hear that Theorem 2 can

be proven by carrying out the analytic continuation in

each variable separately, so that no results more soph­

isticated than the Identity Theorem for one variable

need be applied. For the studious reader, we supply a

homework problem:

Equation (1) for the mean distance in one dimension

can be rewritten in terms of square roots as

V. Discussion

Theorem 5. An £-apppoximation to the mean distance in

The metric introduced above can be used to provide

fast approximations for a variety of geometry problems.

The error may be reduced by a factor of two if we use

the metric whose unit ball is the polygon lying midway

between the regular inscribed and circumscribed 2m­

gons. We then have an error less than 1/m2 and it

suffices to choosem=l/~. 0

(8)r I(x - x.)2
i

. j l.
<J

r Ix
J
. - xii

i<j
S

VI. Summary

AZZ thefruitfuZ uses of imaginaries, in Geometry,

ape those which begin and end with reaZ quantities, and

use imaginapies onZy fop the intermediate steps.

Bertrand Russell 16

Why doesn't Theorem 2 imply a quadratic lower bound on

the complexity of evaluating (8) ? The reader who

understands the answer to this question will have

grasped the essence of the argument.

In retrospect, our methods have much of the flavor

of independence techniques. We show that the square

roots are "independent" because they can each be made

singular separately~ By identical means we can con­

struct problems of arbitrary polynomial complexity.

We have shown how to use techniques from complex

function theory to obtain lower bounds for comparison

tree programs whose primitives have been augmented to

include such multiple-valued functions as r , Zog, and

higher-order roots. In certain cases, functions that

are analytic everywhere, such as sin and exp, are of no

help in reducing the number of square roots required to

evaluate a function. By counting the number of sheets

of the Riemann surface of a function determined'by the

algorithm in question,we are able to show that a quad­

ratic number of operations are needed to compute the

mean distance between points in the plane. At the-same

time, we exhibit efficient approximation algorithms for

this problem.

time.
(

log.! )o N --_£

IE
the p Zane can be found in

Proof: We show that an £-approximate algorithm in two

dimensions can be obtained by solving ~_ 1/1£

approximate problems in one dimension. Consider the

metric in the plane whose unit ball is a regular 2m­

gon inscribed in the unit circle. The distance

between two points in this metric is the normalized

sum of their distances projected on m different axes.

(The rectilinear, or Manhattan, metric corresponds to

the case m = 2.) When all N points are projected

onto a line, we may compute an £-approximation to

their mean distance on that axis in O(N log(l/£» time

by Theorem 4. Doing this over all m axes requires

O{mN log{l/£» time. The relative error is bounded by

the ratio of the minimum and maximum distance from the

origin to a point on the unit ball.ofthe metric. For

a regular 2m-gon this ratio is given by

'IT 'lT 2
1 - cos 2m ~ 8m2 ( 7)

The reader may have the feeling that something

suspicious has Just taken place. After all, what do

complex functions have to do with algorithms over the

reals? To this we can only.· reply, that the principle

of analytic continuation prevents the building of
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