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Abstract 

In this paper we approach the analysis of statistics 
algorithms from a geometric viewpoint and use techniques from 
computational geometry to develop new, fast algorithms for 
computing familiar statistical quantities. Such fundamental 
procedures as sorting and selection play an important role in 
nonparametric estimation as well as in correlation and regres­
sion and we use known results to obtain lower bounds on the 
time required to perform various statistical tests. For some 
problems, computing the test statistic is NP-hard. While 
geometric insight is helpful in understanding statistical 
calculations, the reverse is also true -- we employ statis­
tical methods to analyze the average case of geometric 
algorithms. 

1. Introduction 

From the viewpoint of applied computational complexity, 
statistics is a gold mine, for it provides a rich and exten­
sive source of unanalyzed algorithms and computational proc­
edures. For the statistician, however, the search f or effic­
ient algorithms has not been of prime concern for several 
reasons: Firs·t, the design of fast algorithms is a new and 
developing art . Second, until recently, the cost of obtaining 
data has been f ar greater than the cost of analyzing it. Now, 
however, speech and image processing provide information to 
statistical analysis programs rapidly and cheaply, so that 
fas t analysis i s of eonsi darabla i mportance. Third, statis­
ticians are properly concerned with the significance and 
effectiveness of the tests they perform, rather than with 
their cost. The result has been that the analysis of statis­
tical algorithms remains largely ignored. We will undertake 
in this paper to begin the systematic study of the algorithms 
of statistics. 

But where to begin? A reasonable approach is to lay bare 
the algorithmic elements that underpin statistical recipes and 
apply known results in order to analyze them. A large class 
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of statistical procedures, the nonparametric tests, are based 
on ranks, so it is natural to expect sorting and selection 
algorithms to come into play. The geometric flavor of statis­
tics becomes apparent when a sample is regarded as a set of 
points in Euclidean space. For example, linear regression 
asks for a hyperplane which obeys a certain relation to the 
points of the sample. In this sense it can be looked on as a 
purely geometric problem. Our objective is to explore the 
connection between combinatorial, geometric, and statistical 
problems in order to obtain useful insight into the complexity 
of statistical algorithms. An important benefit in the rev­
erse direction is that statistical methods can be applied to 
the average-case analysis of geometric algorithms. 

The field of computational statistics is quite extensive, 
encompassing random-number generation [Knuth 76], monte­
carlo methods [Hammersley 64], design of experiments, 
numerical analysis, interactive data analysis, time-series 
analysis, and other "classical" studies. We are not concerned 
with these here, but will concentrate primarily on the dis­
crete algorithms of nonparametric statistics, many of which 
are detailed in [Conover (71), Hollander (73), and Siegel 
(56)]. Background material on geometric algorithms can be 
obtained from [Shamos (75a) and Shamos (75b)]. For a treat­
ment of the spirit and methods of analysis of algorithms, 
[Aho (74)] is unsurpassed. 

The model of computation assumed throughout, unless other­
wise specified, is a random-access machine (RAM) similar to 
that described in [Aho (74)] but in which each storage loc­
ation holds a single real number and infinite-precision real 
arithmetic is performed. 

2. Central Tendency 

Even such simple statistical quantities as the measures 
of central tendency present interesting features. Let X 
denote a sample of N real numbers, so X = {xi I i=1, ..• ,N}. 
The arithmetic mean of X, as is well-known, can be computed 
in O(N) time and constant space via its algebraic definition: 

(2.1) mean (X) 

An on-line algorithm is one which does not have the advantage 
of being able to inspect all its data at once, but must 
process each input in turn and provide the correct partial 
answer for all data read thus far. Clearly, (2.1) also 
provides an on-line algorithm for computing the mean. It is 



Geometry and Statistics 253 

known that the mean (and standard deviation) can be computed 
on-line in linear time without sacrificing numerical stability 
[Hanson (75), Cotton (75)]. 

The median of X is the "middle" element of the ordered xi' 
If we denote the ith smallest element of X by x(')' then for 
N odd, median(X) = X(IN/21)' It was long believ~d that the 
most efficient method of determining the median was to sort 
the xi and thus obtain the middle element. However, devil­
ishly clever linear-time algorithms for the median (or'- any 
other order statistic) have been given by [Blum (72)] and 
[Floyd (73)] . It was shown in [Pohl (72)] that O(N) storage 
locations are required to compute the median under the assump­
tion that each number saved is stored in a different location 
(in order to avoid encoding tricks). The possibility of an 
on-line linear time median algorithm is ruled out by 

Theorem 2.1 Anyon- line median algorithm mus t take at least 
O(N log N) time in t he worst case . 

Proof: Let M be a number larger than any of the xi' Such an 
M can be found in linear time. Assume the existence of some 
algorithm A which will find the median on-line in less than 
O(N log N) time and consider the sequence of 3N numbers con­
sisting of the xi followed by 2N M's . After the first N num­
bers are read (the xi)' the median of X will be output by A. 
For each succes sive pair of M's read by A, the next largest x 
must be output. Thus algorithm A will produce a list of the 
largest N/2 xi in sorted order. 0 

The O(N log N) bound can be achieved by a number of sorting 
algorithms. 

The median can be computed purely by making comparisons 
among the xi; the numerical values are irrelevant, which makes 
the median a useful estimator when only ordinal data are 
available. The discrete character of the median is disguised, 
however, by the following formulation, which makes it appear 
continuous: 

min N 
I (2 . 2) median (X) E x. - x x i=l 1. 

A useful generalization is the weighted median, defined by 

(2.3) wmedian(X) min ~ I x w. x. - x 
i =i 1. 1. 

where the wi are given positive real weights . A linear-time 
algorithm for the weighted median, which makes recursive use 
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of a linear unweighted median algorithm, has been given by 
[Bentley (76)]. While (2.2) and (2.3) are unimodal, it is 
unprofitable to apply function minimization methods to them 
(the so-called median regression) because each function eval­
uation requires linear time, enough to solve the whole 
problem by other methods. 

The mode of X is the value that occurs most frequently. 
Specifically, consider X to be a multiset in which element xi 
occurs ni times. Then mode(X) = { i I ni a maximum > I } • 
Computing the mode is strictly more diff i cult than computing 
either the mean or median: 

Theorem 2.2 Finding the mode of N numbers requires at leas t 
O(N log N) t i me in the wors t case 3 if comparis ons are allowed 
only between linear functions of t he inputs. 

Proof: Consider in particular a set whose elements are all 
distinct. This set has no mode. Thus any algorithm which 
finds the mode is able to determine whether all elements of a 
set are distinct, but this requires O(N log N) comparisons by 
a result of Dobkin and Lipton [Dobkin (75)]. 0 

If on-line algorithms are considered, the restriction on the 
comparisons can be removed. It is easy to see that any on­
line algorithm for the mode must take O(N log N) time by again 
considering a set all of whose elements are distinct. As each 
number is read, the algorithm must report whether or not the 
number has been seen before, which must take O(log i) time 
after i numbers have been read. The same example shows that 
linear space is required, even by off-line algorithms, for 
there is no element that can be deleted before the entire set 
is read. Curiously, if the xi are integers, then their mode 
can be found in O(N) time. [Gonzalez (75a)]. The price we pay 
for this convenience is that the number of storage locations 
required is the magnitude of the largest xi' although not all 
of these locations need be initiali zed. 

While the results of thi s section are quite trivial, they 
serve to point out some of the complexity considerations that 
arise in computing the most elementary statistics. 

3. Discrete Tools for Statistical Algorithms 

In this section we will develop the techniques necessary 
to build optimal algorithms for more advanced statistical 
problems. A powerful principle of algorithm design is the 
recursive use of one optimal algorithm to yield another, an 
idea that we will exploit repeatedly in the following pages. 
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(All quanti1es) While any particular order statistic can 
be found in linear time, we are often interested in deter­
mining all of the k-1 points that partition an ordered set 
into k equal pieces. A common example is that of computing 
the 99 percentile points of a discrete distribution. This 
can be done, for any k, in O(Nk) time by finding each quantile 
separately in O(N) time. It thus seems that sorting is a 
superior method for k>log N. The following theorem shows that 
it is never advantageous to sort. 

Theorem 3.1 [Yao (75), Gibbons (76)] Al l k-l k- ti l es of a 
set can be f ound in D(N log kJ time . 

Proof: Of the k-1 quantile points, half lie above the median 
and half lie below. Likewise, N/2 elements lie above the 
median and N/2 lie below. Thus finding the median divides 
the problem into two subproblems of equal size. If T(N,k) 
denotes the time sufficient to find all k-tiles in aN-set, 
then we have the recurrence T(N,k) ~ 2T(N/2,k/2) + O(N) , 
whose solution is T(N,k) = O(N log k) . The O(N) term in the 
recurrence includes the time necessary to find the median 
recursively and perform bookkeeping tasks. Whether Nand k 
are even or odd at any stage of the recurrence does not affect 
the order of the solution. 0 

That Theorem 3.1 is best possible follows from the fact that 
any algorithm which has better asymptotic behavior could be 
used to sort in less than O(N log N) time. 

The rank of an element is its position in a list of all 
the elements in ascending order. That is, rank(x(j» = j 
While the success of Theorem 3.1 depends on the fact that the 
quantiles are evenly spaced, we have 

Theorem 3.2 The ranks of any k elements of a set can be f ound 
in D(N l og kJ time . 

Proof: Sort the k elements in O(k log k) time. These define 
k+l buckets into which we will insert the remaining N-k ele­
ments one at a time by binary search. It is not necessary to 
perform the insertion, but merely to maintain a count of how 
many elements fall into each bucket. This can be done in 
O( (N-k) log k ) time after which a single linear pass through 
the bucket counts will determine the ranks of the k selected 
elements. 0 

Note that the above algorithm succeeds regardless of the 
relative position of the elements whose ranks are being found, 



256 Michael Ian Sham os 

and that it is always faster than sorting the set. 
Let a l a 2 ••. aN be a permutation of {1,2, .•. ,N}. A pair 

of elements (ai,aj) forms an inversion if i<j but ai>aj' 
We will call the number of inversions in which a particular 
element appears its inversion index. The collection of all 
inversion indices is the inversion table. [Knuth (73)] 
contains two algorithms for computing the inversion table of 
a permutation in O(N log N) time and attributes the proof of 
their optimality to A.J.Smith. The importance of counting 
inversions will become apparent in the next section. 

The number of elements in a set is a trivial lower bound 
on the number of operation required to process it, if each 
element must be examined. In many cases, however, it is 
possible to perform computations on a set without accessing 
all of its members. An example is provided by the following 

Theorem 3.3 [Jefferson (76)] 
sorted sets, each containing N 
O(log N) time. 

The common median of two 
elements , can be found in 

Proof': The fact that the sets are ordered enables uS to 
access the i th largest element of either set in constant time. 
Let ml' m2 denote the separate medians of ' the sets. In one 
comparison we can determine which is larger; suppose without 
loss of generality that ml > m2' No element of set 1 that 
is greater than ml can be the common median, since we can 
exhibit more than N (of the 2N) elements which lie below it. 
Similarly, no element of set 2 that is less than m2 can be 
the common median. Since half of the elements in each set 
have been eliminated, we are left with a problem of the same 
form, but on two sets each containing N/2 elements. Thus 
T(N) = T(N/2) + 0(1) = O(log N). 0 

We now generalize this result to allow N sets instead of two. 
The Cartesian sum X + Y of two sets of N real numbers is 

the multiset whose N2 elements are sums of pairs of elements 
taken from the sets X and Y. Thus X+Y = {xi+Yjl l $i,j $N}. 
Even though X+Y contains N2 elements, these are completely 
determined by the 2N elements of X and Y. Can questions 
about X+Y be answered substantially faster than for sets that 
are not of this special form? The answer varies, depending 
on the problem. Sorting X+Y has been investigated in 
[Fredman (75) an~ Harper (75)] and, in a reasonable model of 
computation, O(N log N) is a lower bound on the time suffi­
cient to sort. The situation is considerably brighter for 
medians any given order statistic in X+Y can be found in 
O(N log N) time and any element can be ranked in linear time. 
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Theorem 3.4 (Jefferson, Shamos, Tarjan) The median of X + Y 
can be found in O(N Zog N) time . 

Proof: We give an algorithm which successively discards 
elements of X + Y. Sort the sets X and Y initially, so that 
xi = xCi) and Yi = Y(i)' i=l, ... ,N. This can be done in 
O(N log N) operations. We view the elements of X + Y as the 
entries of a matrix and maintain, for each row i, two pointers 
u(i) and lei), delimiting those elements of the row that are 
still under consideration. At any stage, the candidate set 
of medians is C = {xi + Yj I 1 ~ i ~ N, lei) ~ j ~ u(i)}. 
If no element of row i can be the median, then we will have 
u(i) < l(i). Initially, C = X + Y. However, at later stages 
in the computation, we will not necessarily have median(X + Y) 
equal to median(C). It is therefore important to keep track 
of p, the position of the global median within the subset C. 
At the start, p = N2/2 and we take p = 1 to designate the 
largest element of C. 

We now carry out a series of iterations, each of which 
eliminates from consideration a fixed fraction of the elem­
ents of C. At the beginning of each iteration, test whether 
p ~ Icl/2. If so, select, for each i, the element xi+Yj(i)' 

h J
'(l') - 0( .) (u(i) - lei)) A' 1 were - -l.. 1 + 12 SSlgn to e ement 

Xi + Yj(i) the weight ~ (u(i) - lei)). Now compute the 

weighted (1 - ~) -point among the xi + Yj(i) , using the 

linear weighted median algorithm ,of [Bentley (76)], and let 

the result be x. +y.(.) 
10 J 10 

For each i such that 

X. + y.(.) > x. + y.(. ) , set 
1 J 1 10 J 10 

For each i such that xi + Yj(i) 

u(i) = lei) + ~ (u(i) - lei)) . 

1 
u(i) = lei) +~(u(i)-l(i))-l. 

X. + Y'(i ) , we set 
10 J 0 

Since the pointers u(i) and 

lei) have been moved closer together, certain elements have 
been implicitly discarded. Each of these is greater than at 
least half of the elements of C and cannot be the global 
median. Now subtract from p the number of elements removed 
from C. The case for p ~ Icl/2 is similar. 

Each iteration requires O(N) steps and eliminates at 
least 1/16 of the elements of C. Thus O(N log N) operations 
suffice to find the median. 0 
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With appropriate modification, the algorithm can find any 
percentile in X + Y, not just the median. The above proc­
edure has been improved by [Mizoguchi (76)], who has found a 
way to discard more points at each iteration. 

Theorem 3.5 (Tarjan) Any algorithm which finds the median 
of X + y~ using only additions and binary comparisons~ must 
requir e at leas t O(N Zog N) comparisons in the worst case . 

Proof: We assume that, once the median is found, no further 
comparisons are required to determine whether any given value 
xi + Yj is greater than or less than the median. (A proof 
which relaxes this assumption has been given by [Johnson 76]). 
Let (a,b) denote the number a + b £ , with £ positive and 
suitably small. Let X be a permutation of the set Sl = 
{(i,O)1 1 ~ i ~ N} and let Y be a permutation of the set S2 
= {(i,n-i)I 1 ~ i ~ N} , where N = 2k + 1. The median of 
X + Y is then (k+l,O) + (k+l,k+l). Further, the number of 
values of j such that xi + Yj < xk+l + Yk+l is n-i+l if 
i < k+l, and n-i if i > k+l. It follows that, once the 
median is found, we have enough information to determine 
which permutation of Sl constituted X, and O(N log N) binary 
comparisons must have been made. 0 

Problems on X + Yare sufficiently complex to justify 
geometric visualization. Working in the Cartesian plane, we 
may regard X to be a set of points on the x-axis and Y to be 
a set of points on the y-axis. The set X + Y can be viewed 
as the intersections of the 2N lines that are determined 
by these points (Figure 3.1). In the rectilinear, or Ll -
metric, the distance between points PI = (xl'Y1) and Pz = 
(x2'Y2) is given by 

(3.1) 

Thus the quantity xi + Yj is the rectilinear distance from 
the origin to the point (xi,y.). The locus of points at 
some constant distance from theJorigin in the rectilinear 
metric is a straight line of slope -1. Any point below such 
a line is closer to the origin than any point above that line. 
Finding the median of X + Y is equivalent to finding a line 
of slope -1 such that half of the points of the set lie below 
the line. The rank of an element x . + y. in X + Y is the 
number of points lying below a line 6f sl~pe -1 that passes 
through (xi'Yj)' The equation of this line has the simple 

form Y = -x + xi + Yj • 
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Figure 3.1. The median of X + Y 

If the elements of X and Yare already sorted, the array 
of sums xi + Yj forms a Young tableau because it is mono­
tonic in each row and column. Given a number c, whether there 
exist an xi and a Yj satisfying xi + Yj = c can be deter­
mined in linear time. (See [Knuth (73) for material on 
searching Young tableaux.) Furthermore, the rank of (xi'Yj) 
can be found in linear time. 

While the statistical applications of problems on X + Y 
will be discussed in section five, it is appropriate to 
examine a geometric example here. In studying aggregates of 
points in the plane, the notion of the size or spread of a 
cluster arises [Meisel (72)]. The N points of a set deter­
mine O(N2) interpoint distances. Table 3.1 gives upper and 
lower bounds on computing various functions of these dist­
ances i~ the Euclidean metric in one and two dimensions. 

Interpoint Upper Bound Upper Bound Reference 
Distance (I-dim) (2-dim) 

MAXIMUM O(N)* O(N log N) [Shamos (75a)] 
MINIMUM * * O(N log N)* O(N lo~ N) [Shamos (75c)] 
MEAN O(N log N) O(N2) [Shamos (76) ] 

* O(N2) MEDIAN O(N log N) see below 

*upper bounds marked with an asterisk are also known 
to be lower bounds. 

Table 3.1. Bounds on Computing Various 
Functions of Interpoint Distance 
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Theorem 3.6 The median interpoint dis tance determined by a 
set of N points in one dimens ion can be found in O(N log N) 
time . 

Proof: We note that, in one dimension, Euclidean and recti­
linear distance are identical. The median interpoint dist­
ance is the median of the quantities {abs(xi - Xj) I i~j}. 
But this is just the median of those elements of the Cart­
esian sum X + (-X) which are positive. This can be found 
in O(N log N) time by the algorithm of Theorem 3.4 if the 
pointers u(i) and t(i) are initialized such that only 
positive elements are examined. 0 

We are now equipped to begin the analysis of some stat­
istical algorithms. 

4. Tests of Independen ce 

In order to illustrate the close connection between geom­
etric and statistical algorithms we will begin by examining 
some simple tests of correlation between two variables. Sup­
pose that observations of two characteristics, X and Y, are 
made on each of N individuals. We wish to examine the hypo­
thesis that the variables are independent; that is, large 
values of X are not associated with large values of Y and 
small values of X are not associated with small values of Y. 
Strictly speaking, X and Yare uncorrelated (independent) if 

(4.1) Prob {XSa and YSb } = Prob {XSa}·Prob{YSb} 

Since each observation (xj'Yi) of the variables X and Y can 
be viewed as a point in the X-Y plane, it is natural to expect 
that questions regarding the distribution of X and Y can be 
posed as geometric problems. The simple act of identifying 
an observation with a coordinate point establishes the con­
nection between geometry and statistics. We will see that, 
in many statistical procedures, computing the test statistic 
is, in fact, a purely geometric matter. 

The Olmstead-Tukey test [Olmstead (47)] judges the indep­
endence of X and Y by examining outlying points in the 
scatter diagram of the (x. ,y . ). (See Figure 4.1) The test 
procedure is as follows: 1 Lef xm and Ym be the median values 
of the x i and Yi, respectively , and draw the lines x = Xm 
and y = Ym. These lines divide the plane into four quad­
rants, of which the upper right and lower left are regarded 
as positive, the others negative. Beginning at the point 
with largest x-value , proceed to the left, counting the 
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Figure 4.1. The Olmstead-Tukey Test 

number of points passed over before one is forced to cross 
the horizontal median line y = Ym. This count is given a 
positive sign if the points passed over lie in a positive 
quadrant, otherwise it is given a negative sign. In Figure 
4.1, the signed count is -3. The counting process is rep­
eated from left to right, down from the top, and up from the 
bottom. The Olmstead-Tukey test statistic T4 is the absolute 
value of the algebraic sum of the four values thus obtained. 
In our example, T4 = 11. One can readily see that large 
values of the test statistic indicate a correlation between 
X and Y, either positive or negative, while values near zero 
suggest independence. Quantitatively, as applied in practice, 
the null hypothesis of independence is tested by comparing 
the computed value of T4 against a table of its theoretical 
null distribution. As with all of the tests to be discussed 
in this paper, we are not concerned with assembling statis­
tical tables, which may be done once for all Time, but with 
the complexity of computing the test statistic, a process 
that is repeated for every sample. 

It can be readily seen how to compute T4 in O(N log N) 
time by simply following the instructions given in the 
description of the test above. That such a simple procedure 
needs this much time is surprising, particularly in view of 
the fact that it was originally developed as a quick test, 
one that engineers could easily perform at the bench. Actu­
ally, for reasonable amounts of data, it can be performed 
quickly -- in linear time, by sorting the points visually. 
Once the points are plotted, they can be read off by eye in 
sorted order in linear time. On a computer, however, this 
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perceptual trick is not available, an O(N log N) time is 
needed to sort. If we choose not to follow the original 
instructions, though, a fast algorithm can be obtained: 

Theorem 4.1 The OZmstead-Tukey statistia aan be aomputed 
in linear time. 

Proof: It is unnecessary to examine the data in abscissa 
order. The following procedure suffices: The median lines 
Xm and Ym can be found in linear time. Find Pmax' the index 
of the point having largest x-coordinate. Without loss of 
generality, we may assume that its y-coordinate exceeds Ym . 
Now determine, in a single pass through the points, that 
point having largest x-coordinate whose y-coordinate is less 
than Ym. The x-rank (with 1 .indicating largest) of thi-s--­
point in the collection of all x-values is the magnitude of 
the contribution to T4 in the right-left direction. A sim­
ilar procedure can be applied in the left-right, up-down, and 
down-up directions. 0 

Thus the Olmstead-Tukey "quick" test, which is fast on paper, 
appears initially to suffer when implemented on a computer 
but turns out to be efficient after all. 

To illustrate tests based wholly on ranks, we will study 
the Spearman, Kendall, and Hoeffding statistics. The prin­
ciple underlying these tests is quite elementary. Suppose 
that the points have been sorted by x-coordinate, so that 
x. < Xj iff i < j. If the y-coordinates are now ordered, 
t6eir 1ndices will induce a permutation of 1, ... ,N. If X 
and Yare independent, then all permutations are equally 
likely. If, however, X and Yare correlated, the Yi will 
tend to be monotonic, and the induced permutation will not be 
random. The tests we are considering assign numerical values 
to this departure from randomness. 

Let r(xi) denote the rank of Xi among all the Xi and sim­
ilarly for r(Yi). The approach of Spearman was to work with 
the differences in rank di = r(Yi) - r(xi). The Spearman 
rank correlation coefficient, which varies between -1 and +1, 
is given by 

(4.2) 1 

N 
6 1: 

i=l 

Since all or the ranks r(xi) and r(Yi) can be found by 
sorting, the Spearman rank correlation coefficient can be 
computed in O(N log N) time. 

Kendall's rank correlation appears similar, but it is not 
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immediately clear how to compute it quickly. Following 
[Kendall (55)] we order the points by X and define I to be 
the number of times, in the resulting sequence of y's, that a 
Y-observation is preceded by a larger Y-observation. Like­
wise, let T be the number of times a Y-observation is fol~ 
lowed by a larger Y-observation. The Kendall statistic S is 
given by S = T - I. It is clear that, by definition, I is 
the number of inversions in the induced Y-permutation and, as 
we saw in section three, can be calculated in O(N log N) 
time. It is also easy to show [Bradley (68)] that an altern­
ative expression for S is 

(4.3) S (~) - 2I 

and thus S can be found in O(N log N) time. The Kendall rank 
correlation coefficient is defined by 

(4.4) 
2S 

N(N-l) 

and we have 

Theorem 4.2 The Kendall rank correlation coefficient can 
be computed in O(N l og N) time and this is optimal . 

Proof: Optimality follows from the fact that counting 
inversions requires O(N log N) operations. 0 

The Hoeffding test for independence [Hoeffding (48)] is 
based on the ranks r(xi) and r(Yi) and on a quantity ci which 
is defined to be the number of points (Xj'Yj) f or which both 
x; < Xi and y. < Yi' Given the r(xi)' r{Yi)' and the ci ' 
tKe Hoeffding siatistic, which is an algebraic expression in 
these quantities, can be computed in l i near time. We already 
know that the ranks require O(N log N) time. The remaining 
question is whether the ci can be found that fast. At this 
point, a geometric view clarifies things considerably. (See 
Figure 4.2) Each point Pi = (x ' ,Yi) determines a rectangle 
whose vertices are (0,0), (Xi'O), (O,Yt) and (xi'Yi)' (Since 
the statistic is based only on ranks, 1t is translation-invar­
iant and we may assume that all points lie in the first quad­
rant.) Then ci is the number of other points that lie in the 
rectangle determined by Pi There are N values of ci to be 
determined. 

Assume that the points have been ordered by x-coordinate, 
and label them 1, •.• ,N according to their x-ranks r(x i ). The 
projections of these points on the y-axi s induces a permut­
ation al, ..• ,aN of 1, ... ,N. Given a point (x i 'Yi)' a 
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new point (xj'Yj) lies in the rectangle determined by Pi iff 
Xj < xi and y. < Yi' Since the xi are already sorted. this 
means that we fequire j. < i and aj < ai' The number of 
points satisfying these conditions. ci is just N-l minus the 
inversion index of ai' (See Figure 4.3) And we have 

Theorem 4.3 The Hoeffding statistic can be computed in 
O(N Zog N) time. 

Proof: Sorting the xi originally can be done in O(N log N) 
time. The y-permutation al •••.• aNcan be found in 
O(N log N) time and all of its inversion indices can also be 
found in O(N log N) time. 0 

• 
• • 

ci=4 

• • 
• 

• 

Figure 4.2. 
The Hoeffding Test 
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Figure 4.3 
Counting Inversions 

In one dimension. the empirical cumulative distribution 
function can be viewed as a count. for each xi' of the number 
of points that lie to its left on the real line. These 
counts can all be computed in O(N log N) time by sorting the 
xi' In the plane. the empirical CDF consists precisely of 
the quantities ci defined above. so Theorem 4.3 states that 
the two-dimensional CDF can also be computed in O(N log N) 
time. 

There is a connection between the Hoeffding test. the 
empirical CDF. and finding the minima and maxima of a set of 
vectors. Given two k-vectors (ul •.••• uk) and (VI" ..• vk)' we 
say that (ul ••••• uk) $ (vl ••••• vk) iff ui $ vi' 1 $ i $ k. 
A vector V is minimal if there is no vector U in the set 
under consideration satisfying U $ V. The problem of find­
f i nding the maxima and minima of a set of N k-vectors has 
been studied in [Kung (75)]. We note here that. in the plane. 
minimal vectors are those for which ci = O. Thus finding 
maxima and minima is redueible to computing the empirical CDF. 
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Of a somewhat different flavor is the chi-square test in 
a contingency table, described in [Conover (71)]. Here we do 
not examine inversions or relative ranks, but concentrate 
instead on the distribution of the sample points. Suppose we 
construct r-l horizontal lines with the property that N/r 
of the points lie between each pair of consecutive lines and 
similarly construct c-l vertical lines to divide the set 
into slices each containing N/c points. The lines partition 
the plane into rc rectangles. (In Figure 4 . 4, c = 4 and 
r = 3.) If the xi and Yi are independent, then the 
expected number of points falling in each rectangle is N/rc. 
The chi-square statistic X2 measures departure from indep­
endence. Let Pij be the observed number of points that lie 
in the rectangle in row i and column j. The test statistic 
is then defined by 

(4.5) rc ¥ .~ (PiJ' -
N i=l J=l 

~) 2 
rc 

Theorem 4.4 The chi-square statistic for independence in an 
r x c contingency table can be computed in O(N log rcJ time . 

Proof: The horizontal lines are just the r-tiles of the y­
values; the vertical lines are c-tiles of the x-values . By 
Theorem 3.1, these can be found in O(N log r + N log c) = 
O(N l og rc) time. Once the partitioning into rectangles has 
been performed, examine each point individually. The row in 
which a point lies can be found in O(log r) time by binary 
search. Likewise, the column can be found in O(log c) time 
and the appropriate count Pij can be incremented. For N 
points, the total time required is O(N log rc). 0 

y 
• • • • • • • • 

• • • • • • • 
• 

• • • • • • 
• • 

x 
Figure 4.4. An r x c contingency table. 
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It appears, from these results, that efficient implement­
ation of even the simplest statistical tests requires moder­
ately sophisticated methods of algorithm design. But the 
challenge of computational statistics is not to squeeze the 
last microsecond from a data analysis routine; it is to 
understand what makes some statistical quantities more diffi­
cult to compute than others and to relate this difference to 
relevant measures of statistical efficacy. The computer 
scientist will be interested in the amount of time and 
storage space used in computing a statistic; the statistician 
is concerned with other indicators of performance: The 
efficiency of a test reflects how large a sample must be 
taken in order to achieve a given level of significance. The 
power of a test is the probability that it will reject a 
hypothesis that is, in fact, false. The robustness of a test 
is the quality of remaining insensitive to the underlying 
distribution from which the sample is chosen. One has the 
feeling that a statistic which is hard to compute is somehow 
"better" than one which is easy. We will examine in the next 
section some preliminary evidence that tends to support this 
notion. 

5. Estimates of Location 

One drawback of tests of hypothesis is that the hypothesis 
is often so unreasonable that very little statistical justif­
ication is needed to reject it. The statistician is usually 
interested in a quantitative appraisal of the effect of one 
variable upon another and is not satisfied with the qualit­
ative statement that there is or is not some dependence. A 
great deal of statistical thought and ingenuity has gone into 
the development of procedures for obtaining these estimates 
and we will use a simple example to study their complexity. 

Suppose that each of N patients with fevers are given a 
new brand of aspirin whose effectiveness is to be tested. Let 
the temperature of patient i before the administration of 
aspirin be xi and his temperature after be Yi. We take as 
our model of aspirin action that it reduces the temperature 
of each patient by a constant amount, subject to random 
fluctuations. We wish to estimate the value of this constant 
from the given data. This problem is referred to as the 
problem of paired observations or "one-sample location". 
[Hollander (73)]. In short, we have N pairs (xi'Yi) and we 
assume that the observed shifts zi = Yi - xi obey the law 

(5.1) 
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where the constant e is the effect due to treatment and the 
ei are mutually independent random variables each with a 
continuous distribution that is symmetric about zero. The 
problem is to estimate e from the zi . 

Enough estimates have been proposed to fill an entire 
book [Andrews (72)]. Below we analyze the complexity of a 
number of the more familiar ones, roughly in order of 
increasing robustness. As before, we let z(i) denote the 
ith smallest of the z .• 

1 

a. The Arithmetic Mean. An obvious estimator of e is the 
arithmetic mean of the zi' This can be computed in linear 
time but has the disadvantage that it is severely affected 
by outliers (extremes of the data). 

b. Trimmed Mean. One proposal that alleviates some of the 
difficulties of the mean is to discard the highest and 
lowest a-fractions of the data and take the mean of the 
remainder. This is the a-trimmed mean, given by 

(5.2) e 1 
(1-2a )N 

(l-a )N 
E 

i=aN 

Since the a and l-a order statistics can be found in linear 
time [Blum (72)], the trimmed mean can be computed in 
linear time. (The median is the special case a = 1/2.) 

In higher dimensions, the analog of trimming has been 
called "peeling" by Tukey and consists of successively 
stripping away extreme points of the convex hull of the 
data until a certain fraction of the points remains. In 
the plane, an O(N2) algorithm for peeling appears in 
[Shamos (75b)]. O(N log N) is a lower bound in more than 
one dimension but no algorithm that achieves this bound is 
known. 

c. Gastwirth Estimators [Gastwirth (66)]. These are a class 
of estimators based on k-tiles, in which weights are 
attached to the various order statistics, depending on 
their distance from the median. 

(5.3) e 
k-l 

E Wi z(iN/k) 
i=l 

By Theorem 3.1, the order k Gastwirth estimator can be 
computed in O(N log k) time. This improves the naive 
method of finding the quantiles separately, which would 
require O(Nk) time. 
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d. Bickel-Hodges Estimator [Bickel (67)]. This is the 
median of pairwise means of symmetric order statistics: 

e. 

(5.4) e 

where k runs from 1 t o N/2. (5.4) can be computed in 
linear time once the data have been sorted, so O(N log N) 
is an upper bound. It is not known whether improvement is 
possible. 

Hodges-Lehmann Estimator [Hodges (63)]. This is the 
median of all pairwise averages of the zi 

~ 1 
I (5.5) e 2" median { zi + Zj 1 ~ i,j ~ N } 

While this estimator has robust properties, it is regarded 
as being too difficult to compute, as only O(N2) algorithms 
are known. This has prompted attempt,s to develop estim- ' 
ators with similar characteristics, but amenable to fast 
calculation [Antille (74)]. However, we have 

Theorem 5.1 The Hodges -Lehmann estimator can be computed in 
O(N log N) time . 

Proof: We note that (5.5) is just one-half the median of the 
set Z + Z ,where Z = { zi I 1 ~ i ~ N } , and Theorem 3.4 
applies directly. 0 

Comprehensive treatments of the modern estimators can be 
found in [Andrews (72)] and [Huber (72)]. 

Beyond the crude observation that the "good" (robust) 
estimators cost more to compute than the "bad" ones, can any­
thing quantitative be said? It is conceivable that there 
exists a point above which no additional computational work 
will improve the performance of an estimator; possibly this is 
even a polynomial quantity. How are the above results to 
affect the practical and mathematical life of the statis­
tician? The utility of fast algorithms seems obvious, but a 
more exciting possibility is that new statistical procedures 
may be based on what can be computed quickly, or that certain 
tests will be discarded because they can be performed too 
quickly (and hence might exhibit poor statistical behavior). 
As of now, however, no relation is known between computational 
complexity and any statistical measure . 
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6. The Complexity of Regression 

Regression is a technique used to model dependencies 
among variables. One hypothesizes a functional form of the 
dependence, which normally involves several undetermined 
coefficients. The problem of regression is to find values 
for these parameters such that the resulting function most 
closely represents the observed data. In this light, regres­
sion can be viewed as best approximation in a subspace, the 
geometry of which is well-studied [Rice (64)]. We will con­
centrate on the geometric aspects of regression in order to 
develop fast algorithms. 

Before performing regression, though, we are obliged to 
choose (1) the subspace of allowable approximating functions, 
and (2) the error norm that is to be minimized. For simp­
licity we will deal chiefly with linear regression in two 
variables, but under a variety of error measures. That is, 
we are trying "to fit the parameters m and b to the linear 
model y = mx + b , given N observations (xi'Yi) 

a. Least-squares (Gaussian) 
This is best approximation 

Regression. 
in the Euclidean norm 

N 
(6.1) min E (y. 

m,b i=l 1 

2 
- mxi - b) 

The constants defined by (6.1) can be computed in O(N) 
time from the expressions 

b 

(6.2) 

m 

( EYi)(Exi2) - ( Exi)( ExiYi) 

N( Exi2) - ( Exi)2 

N( ExiYi) - ( Exi)( EYi) 

N( Exi2) - ( Exi) 2 

In fact, the computation can be performed on-line in O(N) 
time such that the slope and intercept of the new regres­
sion line are available as each point is read. Its speed 
notwithstanding, however, least-squares regression places 
great weight on outlying points, precisely the ones that 
may be suspect. It is interesting to note that, despite 
the continuous aspect of (6.1), no one is tempted to use 
gradient methods to find its minimum, since the discrete 
form (6.2) is available. This contrasts with the case of 
Ll-regression. 
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b. Ll-Regression 
While least-squares regression m~n~m~zes the sum of the 
squares of the residuals, Ll-regression minimizes the 
sum of th~ magnitudes of the residuals: 

(6.3) 
N 

min L 
m,b i=l 

y. - mx. - b I 
~ ~ 

Unfortunately, no efficient methods for minimizing (6 . 3) 
are known. [Barrodale (66)] employs a linear programming 
approach, while an O(N2 log N) algorithm appear s in 
[Rivlin (69)]. 

Theorem 6.1 A best L1 linear approximation to N points in 
the plane can be found in O(N2) time and O(N) space. 

Proof: It is known that a best Ll approximat ion i n t he plane 
passes through at least two points of the set [Rice (64) ]. 
Trying all pairs of points in order to find the best line 
would require O(N3) time, but we can reduce this by sol ving 
N instances of a restricted problem. Consider the best Ll­
line that is constrained to pass through t he origi n . Then 
b=Q ~nd (6.3) becomes 

(6 . 4) 

Define 

(6.5) 

N 
min L 

m i=l 

Yi/xi and this becomes 

min L I mixi - mxi I 
m 

min L Ixil 1m. - ml 
m ~ 

Notice that the second form of (6.S) is an instance of (2 . 3) 
with weights w. = Ix i l , so it can be minimized in O(N) time. 
The general protlem can now be solved in O(N2) time by taking 
each point in turn as the origin of coordinates. The best of 
the N lines so obtained is a global optimum. 0 

Even though the variables m and b in (6.3) are continuous, 
an optimum can be found by discrete methods . The algorithm 
of Theorem 6.1 is clumsy, however, because no information 
gained in the solution of one subproblem i s used in s olving 
any of the others . Until a better algorithm is developed, 
iterative methods will r emain preferabl e . Fur thermo re, no 
non-trivial lower bound is known. 
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c. L Regression. 
TheOOChebyshev, Loo , or minimax approximation minimizes the 
magnitude of the largest residual: 

(6.6) min max I Yi - rnx i - b I 
m,b i 

While regression in this horm does not appear to have good 
statistical properties, we mention it here because the 
best known algorithm for this problem requires O(N3) time. 
[Rice (64)] shows that a Best Chebyshev approximation on 
N points is also a best Chebyshev approximation on some 
three of the points, so it suffices to examine all triples. 
Such a rote method cries out for improvement. 

d. The Theil Estimator. 
Given N points (xi'Yi)' define s .. = (y. - Yi)/(xj - xi)' 
the slopes of the lines determineaJby pairs of points, 
and we require i ~ j. The expression (6.2) for the 
slope m of the least-squares regression line is actually 
a weighted average of the Sij' [Theil (50)] recommends 
the median of the Sij as a distribution-free estimator of 
slope because it is less sensitive to outliers. No effic­
ient method is known for computing this median slope and 
straightforward application of linear selection requires 
O(N2) time and space. [Yuval (76)] has shown that the 
number of slopes Sij lying in any given interval can be 
found in O(N log N) time (by counting inversions!) and 
this appears to lead to a better algorithm. The median 
slope is one of a growing class of problems whose natural 
formulations involve a large number of intermediate quant­
ities (the slopes), but for which there are only O(N) 
inputs (the coordinates of the points) and a constant 
number of outputs (the median). Very little is known 
about lower bounds on these problems. 

e. Isotonic Regression. 
One way to relax the requirement that the regression func­
tion be linear is to restrict it merely to be monotone. 
This is realistic in a number of statistical problems 
[Barlow (72)]. The question the arises of how to perform 
such a regression in the various norms. Least-squares 
isotonic regression turns out to reduce to the problem of 
finding the convex hull of a set of points in the plane, 
which can be done in O(N log N) time in general, or in 
O(N) time if the points are already ordered by abscissae. 
[Shamos (75b)] contains a fuller discussion. 
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7. Difficult Problems 

Not all statistical quantities can be computed rapidly. 
To show this we will prove that two "simple" problems are 
NP-hard. For background material the reader is referred to 
[Karp (72)]. Informally, a problem is NP-hard if its member­
ship in P implies that P = NP. A problem is NP-complete if 
it is NP-hard and also in NP. Problems that are not in P, 
the class of problems solvable in polynomial time, are reg­
arded as computationally intractable, and there is a mountain 
of evidence to indicate that P ~ NP [Garey (76)]. Thus, 
showing that a problem is NP-hard is tantamount to showing 
that it cannot be solved exactly in any reasonable time. On 
the brighter side, polynomial-time approximate solutions to 
these problems can sometimes be obtained. 

Consider a set of integers and define the weight of a 
subset to be the sum of its elements. The partition problem 
is to determine, given a set of N integers, whether it can be 
partitioned into two subsets of equal weight. 

Theorem 7.1 
NP-comp"lete. 

[Karp (72)] 
o 

The partition prob"lem is 

We will show other problems to be NP-hard by proving that the 
partition problem is reducible to them. 

A k-clustering of a set is a partition of it into k dis­
joint subsets. The clustering problem is to determine which 
partition minimizes a given function over k-clusters. This 
function is called the error function f(P). Thus we want 

(7.1) min f(P) 
P a partition 

Theorem 7.2 The c"lustering prob"lem i s NP-hard even for 
some po"lynomia"l-time computab"le error function and just two 
c"lusters . 

Proof: Let the set to be clustered consist of N integers, 
and call the two clusters of a partition cl and c2. Let 
f (P) = I ECI - EC21, that is, the difference of the sums of the 
elements in the two clusters. Suppose there exists a P such 
that f(P) = o. Since f(P) is non-negative, this P must be 
found by the clustering algorithm. But then P is a solution 
to the partition problem above. Similarly, if no such P 
exists, then the non-existence of a solution to the partition 
problem is confirmed. Hence the partition problem is redu­
cible to clustering. 0 
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In many practical examples, clustering is not hopeless 
because the error function has a special form. Theorem 7.2 
puts us on notice, however, that we must not always expect 
to be able to perform clustering quickly. 

The randomization test for matched pairs [Siegel (56)] is 
designed to test the hypothesis that e = 0 in the model of 
(5.1). In general, when we observe the zi = Yi - xi , some 
will be positive and some negative. Define T to be the sum 
of the positive zi' with T* indicating the value of T that 
is actually observed in the sample. Now consider the 2N 
possible assignments of + and - signs to the zi. The test 
statistic is the number of such assignments that give a value 
for T that is less than T* , the value actually observed. 

Theorem 7.3 
NP-hard. 

The randomization test f or matched pairs i s 

Proof: Let I be a set of positive integers whose sum is S . 
Perform the randomization test on these numbers with T* = S/2. 
If there is no partition of I into equal-weight subsets, then 
the number of assignments giving T < T* is exactly 2N- l , 
where N = III. If some partition into equal-weight subsets 
exists, then at least two assignments of sign will Tive 
T = T* and the test statistic will be less than 2N-. In 
this way, the randomization test can be used to solve the 
partition problem. 0 

Note that Theorem 7.3 does not imply that testing the hypo­
thesis e = 0 is NP-hard, but that the randomization test 
(one of many) is NP-hard. 

8. Average-case Analysis of Geometric Algorithms 

Having seen how geometric algorithms can be turned into 
statistical ones, we will now reverse direction and use 
results from probability theory to assist in analyzing their 
expected-time behavior. Geometrical probability , which deals 
with the properties of random geometric objects, is a subject 
that is difficult and fraught with paradoxes [Kendall (63)]. 
To illustrate some of the troubles that appear, we will 
examine a problem that arose in the average-case analysis of 
an algorithm to find the smallest circle enclosing a set of 
points in the plane [Shamos (75b)]. 

Two points determine a circle if they are the endpoints 
of a diameter. Given three points in the plane, what is the 
probability the circle determined by the two that are farthest 
apart encloses the third? In Figure 8.1, the two farthest 
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points are labeled P and Q, 
while the third point is X. 
We want to know the probability 
that X lies within the circle 
whose diameter is PQ, subject 
to the constraint that XP ~ PQ 
and XQ ~ PQ (or P and Q would 
not be the two farthest points). 
Because of these constraints, 
X must lie in the circle cen­
tered at P with radius PQ. It 
also must lie in the circle 
centered at Q with radius PQ. 
Thus X must lie in the lune 
that is the intersection of 

Figure 8.1 
What is the probability 

that X lies in the circle? 

the two circles. (See Figure 8.2) The required probability 
is thus the ratio of the area of the PQ circle to the area 
of the lune. These areas are given in Figure 8.2. 

LUNE ... ,;.-- ............ 
, 

/ 
/ AREA(circle PQ) 11 

I 
r 
I , 

811 
\ AREA (lune) -+ 213 
\ 3 
\. , 

I 

\ 
I 

\. / 
"- ./ ... ,/ '---"" 

Figure 8.2. The probability as a ratio of areas. 

Thus the required probability is given by 

(8.1) 
11 

PROB 
8
3

11 + 213 
'" 0.639 

The only difficulty with the above analysis is that it is 
completely erroneous! We have tacitly assumed that X is 
uniformly distributed in the lune, but points can be chosen 
uniformly in the plane only within some bounded set. The 
probability calculation is correct only if, for every choice 
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of P and Q, the lune of Figure 8.2 lies entirely within this 
set. Unfortunately , there is no plane set having this prop­
erty . For the unit square, the probability that X falls in 
the PQ circle is approximately 0.47 (obtained by computer 
simulation). It is to no avail to allow the side of the 
square to go to infinity, for the problem is scale-invariant 
and edge effects do not disappear in the limit. It is diffi­
cult to imagine a more simply-stated problem in geometrical 
probability; even so, great care is required in order to 
obtain correct and meaningful results. The papers of [Karp 
(76)] and [Rabin (76)] demonstrate the power of stochastic 
reasoning applied to geometric problems. 

The problem of finding the convex hull of N points in the 
plane has received a good deal of attention recently, and a 
variety of algorithms are known, including one due to [Graham 
( 72)] which requires O(N log N) time. A different algorithm 
[Jarvis (73)] uses time O(hN) , where h is the number of 
extreme points of the final convex hull . Since all of the 
points of t he set may lie on the hull (for example, the ver­
tices of a convex polygon), Jarvis ' algorithm has a worst­
case performance of O(N2). If, however, h < log N , then it 
will be faster than Graham's . Normally we do not known h in 
advance, but if information is available concerning the dis­
tribution from which the points have been obtained, the 
expected value of h can be computed. 

Theorem 8.1 [Renyi (63)] If N points are chosen independ­
ently and unifoPmly in a bounded convex plane figure F~ the 
expected value of h~ the number of vertices of their convex 
hull~ is given by 

(8.2) E(h) 
2r 

O( r) if F is a convex -In N + , 3 
r-gon~ 

(8 . 3) E(h) O(Nl / 3) if F has a continuously 
turning tangent . 0 

Theorem 8 . 2 [Renyi (63)] If N points are chosen from a 
nOPmal distribution in the plane~ the expected number of 
points on their convex hull is given by 

(8. 4) E(h) OUln N) o 
Thus , for points drawn from a normal distribution, the alg­
orit hm of Jarvi s is asympt otical ly fas t er than that of Graham . 
For points chosen uniformly in a circle, however, its perform­
nce is O(N4/3), while Graham ' s algorithm is always O(N log N). 
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Note that the expected number of points on the hull of the 
set depends on the shape of the figure from which the points 
are drawn, but not on its area. 

A different sort of probabilistic analysis has proven 
useful in designing approximation algorithms for NP-complete 
geometric problems [Karp (76)]. Even though finding the 
length of a traveling salesman path through N points in the 
plane is NP-hard, we have a very good idea how long such a 
path will be: 

Theorem 8.3 [Beardwooci (59)] Given N points chosen indep­
endently and uniformly in a bounded plane r egion of ar ea A~ 

1. There exists a constant cl such t hat the expect ed length 
of t he minimum spanning t r ee on the N points is asymptotic 
t o c llAN as N + 00 • 

2. There exists a constant c2 such that the expected l ength 
of a traveling salesman path on the N points is asymptotic 
to c21AiV as N + 00 3 and c2 ~ 0. 75 . 0 

The constant c1 in Theorem 8.3 has been determined to be 
approximately 0.68 [Gilbert (65)]. Note that the expected 
lengths depend on the area of the region but not on its shape. 

A large amount of work has been done on geometrical prob­
ability, but little has found its way into the analysis of 
algorithms [Moran (66), Moran (69), Litt1e(74)]. We anti­
cipate that a good many average-case results will be obtained 
once these techniques become more widely known. 

9. Summary 

The interplay between statistics, geometry, and computer 
science is very close. Each discipline contributes problems 
to the others and provides methods for their solution. Many 
statistical problems raise new questions in the domain of 
discrete algorithms, while recently-discovered fast algorithm 
techniques apply directly to the computation of classical 
statistical quantities. With its complement of techniques, 
tricks, lower bounds, and NP-hard problems, computational 
statistics appears to be a rich new research area that will 
produce both practical results and theoretical insight. The 
interdisciplinary nature of the subject is enhanced by the 
use of both geometry and probability in the expected-time 
analysis of algorithms. 
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