
Reprin!ed from:
PERSPECTIVES ON COMPUTER sciE~cE : Frem the 10 fh

.Anniversary Srmposi um al the C~mpl>ter Sd enee
,Deportment, C~rn,eg, .. -Me 'fon .UniversilY

. " } \ 'I}

ACADtMlCl'Itl'l>". INC.
""' YOJII(~AN • 111"\10.1('1$(;.0 te,._ II'

Time and Space t

Albert R. Meyer

Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts

Michael Ian Sham os

Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Time and space are fundamental parameters for measuring the efficiency of algorithms,
and the notion of trading off one for the other is a familiar one in the programmer's
informal repertoire. Nonetheless, providing satisfactory mathematical definitions of
computational time and space and establishing formal relationships between them
remains a central problem in computing theory. In this chapter we examine the interplay
between time and space determined by a variety of machine models and explore the
connection between time and space complexity classes. We consider a number of
possible inclusion relationships among these classes and discuss their consequences,
along with recent results indicating that mechanical procedures may be available for
reducing the space used by programs. This rosy picture is darkened somewhat by a
counterexample due to Cobham, which states that minimum time and space cannot
always be achieved by a single program.

1. INTRODUCTION

If I had had more time, I could have written you a shorter letter.

Blaise Pascal:

Every programmer has observed that he can often reduce the storage
required by a program at the expense of its running time. This can
sometimes be done by compressing the data in clever ways; the added cost

tnus research was supported in part under NSF grant GJ 43634X, contract number OCR
7412997 AOI.

fThis quotation was kindly supplied by Theodore J. Ronca, Jr.

125

126 Albert R. Meyer and Michael Ian Shamos

is the time taken to perform the encoding and decoding. Other times, it
may be necessary to redesign the entire algorithm or use a different data
structure for representing the problem in order to decrease storage. With
extraordinary luck, the new representation may permit a reduction in both
storage and execution time- a recent example is Hopcroft and Tarjan's
linear-time planarity algorithm [Hopcroft and Tarjan 74], which master
fully exploits the list representation of graphs. In this chapter we will
survey some of the theoretical results that bear on the question of whether
the ability to exchange time for space is a general phenomenon in com
putation or merely a fortuitous property of some unrepresentative pro
grams. We will indicate how to define computational space and time for
several models of automata and try to present a convincing case that the
notion of a time-space tradeoff transcends any specific machine or pro
gramming language.

To clarify the concepts of time and space, we look first at the problem of
recognizing palindromes. A palindrome is a character string that is identi
cal to its reverse, such as the owl's complaint "TOOHOTTOHOOT".
Given a string, how much time and space are needed to determine whether
or not it is a palindrome?

To gain an intuitive grasp of the question, let us use a .familiar theoreti
cal model and imagine that the input string is provided on a two-way,
read-only input tape. That is, we can scan the tape one square at a time
and move it in either direction one square at a time, but not change
anything on it. One method is to begin at the left end of the string,
"remember" the character there, and move to the right end to see if the
character matches. Now, at the right end, we can pick up the second
symbol from the right, travel back down the tape, and compare it with the
second symbol from th~ left. This procedure is repeated until either every
character is checked or a mismatch is found.

How much time does this method require to determine whether a given
string is a palindrome? If the string to be checked is a palindrome N
characters long, we will need N / 2 trips across it, having average length
approximately N /2. A reasonable definition of computation time is the
number of primitive operations performed, in this case the number of
moves made during the trips, or about N 2/4.

The amount of space used is not so apparent. Indeed, it may seem at
first glance that no space at all is required other than the tape itself.
However, during the scan we must remember in some way which square of
the tape to stop at in order to check the current character. This requires
being able to store numbers up to size N, which means that we have
auxiliary space somewhere for about log N symbols, or we will get lost
while trying to examine the string. What about the space occupied by the

Time and Space 127

program that is controlling this procedure? We will ignore such space for
the purposes of this discussion because the size of the program is a
constant, independent of the length of the input string. The justification is
that no matter how long the program is there exist inputs so large that the
program will be small by comparison.

A faster way to accomplish palindrome recognition is to copy the input
tape into auxiliary memory and then compare the copy, character by
character, with the input tape read backwards. This method requires a
number of steps only proportional to N , but now the number of symbols
that must be stored in memory rises to N as well.

Is there a single method that recognizes palindromes simultaneously in
time proportional to N and space less than proportional to N? We shall
return to this question in the last section.

2. TIME AND SPACE IN VARIOUS MACHINE MODELS

Let us make these intuitive concepts of time and space more precise,
choosing initially the Turing machine model because it is simple and
well-known. Let Turing machine M have a finite-state control, a two-way
read-only input tape, and k semi-infinite work tapes, as in Fig. 1. This is
the definition given by [Hopcroft and Ullman 69]. Assume that an input
string x is given, symbol by symbol, on sequence of consecutive nonblank
squares on the read-only tape. Let TM(X) be the number of moves made by
M before halting, when presented with input x . We define the time
complexity T M(N) of M as

TM (N) = max{ TM (x) Ilength(x) = N},

that is, the largest number of steps taken by M on any input of length N.
Similarly, we define the space complexity SM(N) as the maximum number

Fig. 1. A multitape Turing machine.

k semi - infinite
writable work tapes

128 Albert R. Meyer and Michael Ian Shamos

of work tape squares scanned by M on any input of length N . From now on
we will dispense with the subscript M if no ambiguity results.

The first hint of a formal connection between time and space is that
T(N) and S(N) are not independent.

Let M be a Turing machine with k work tapes. For convenience, assume
that M halts on every input and that S (N) > log N . (The latter assumption
holds in most cases, since, speaking informally, M needs this much space
to detect which part of its input is being read.)

Theorem 1: There is a constant £ > 0 such that for all N ,

£ log TM (N) .;;; SM (N) .;;; kTM (N).

Sketch of proof: Since M has only k work tapes, each with a single
read-write head, it can visit at most k new work tape squares at each step,
so obviously S(N)';;; kT(N). To prove the other inequality, consider the
number C of distinct configurations in which M can find itself. If M has k
work tapes, m internal states, and a tape alphabet of a symbols, then a
configuration is determined uniquely by the state, the position of the read
head on the input tape, the positions of the work tape heads, and the
contents ofthe storage tapes. Thus C';;; m(N + 2)(S (N» ka S(N)k. Now, if M
ever enters the same configuration twice it will not halt, so T(N) .;;; C, and
the result follows by taking logarithms.

Either of the bounds of Theorem I can essentially be achieved. For
example, there is a machine M that runs for precisely 2N steps while using
precisely N tape squares for any input of length N , so that SM(N) =
log2 T M(N). There also exists a machine L , which visits new work tape
squares with all but one of its work tape heads at every time step, so that
SL(N) > (k - I)TL(N) for such a machine.

While either of the bounds may be tight for specific machines, we are
interested in solving problems (computing recursive functions), for which
there are many Turing machines that will work, each with possibly diffe
rent complexities Sand T. One of the machines may use very little time,
and another may use little space, but Theorem 1 says nothing about this
possibility, since it applies to a single specific machine.

Let us now see how invariant the quantities time and space remain as we
modify the machine model.

2.1. Turing Machine Variants

A natural way of generalizing the Turing machine is to drop the
restriction that the work tapes be one dimensional. Such variant Turing
machines (VTMs) might be supplied with a finite-number of finite dimen-

nme and Space 129

sional work "tapes" each of which could be scanned by a finite number of
read-write heads. For example, a VTM with a single two-dimensional tape
scanned by three heads is illustrated in Fig. 2. In a single step, each of the
heads may independently change the symbol in the square it is scanning
and move up, down, left, or right. It may be helpful to think of a
two-dimensional VTM as having pieces of paper on which to compute as a
human might.

In order to be able to compare VTMs and ordinary multi tape TMs, we
supply the VTMs with a one-dimensional input tape as well as their work
tapes. Time and space for VTMs are defined exactly as before, namely, as
the number of steps performed and the number of work tape squares
scanned.

1beorem 2: [Hartmanis and Steams 65]. For any VTM V with time
complexity T v(N), there is a Turing machine M, which computes the same
function as V, using time that is at most proportional to (Tv(N)f.

In particular, this means that whatever can be done by VTMs in time
bounded by a polynomial in N can also be done by ordinary Turing
machines in polynomial time. It is known, incidentally, that n + 1-
dimensional VTMs are a bit faster than n-dimensional VTMs; adding a
reasonable technical condition that simulations be "on-line", it has even
been shown that the quadratic slowdown of Theorem 2, when ordinary
Turing machines simulate VTMs, cannot be improved [Hennie 66].

The result for space is even more attractive:

Theorem 3: For any VTM V there is a Turing machine M, with possibly
more states and a larger tape alphabet, which computes the same function
as V, using no more space than V.

[$[I [N[P[U[T[[T[A[P[E $

t
(2 - way. read - only) ___

""\ /'

~ -..... r---
Finite -

/ rw state T w o -

control) d i m e n s ion a I

\ w 0 r k spa c e

3 r ead - write heads I' ~
1-

\ I--t I<-'

"- /
'--'-

FIg. 2. A two-dimensional Turing machine.

r\

)

'\
Iv

Potentially
unbound
writable

work space

130 Albert R. Meyer and Michael Ian Shamos

Thus, as we increase the dimensionality of the working storage, space
remains invariant and time is preserved to within a polynomial.

2.2. Counter Machines

We turn now to a model that does not outwardly resemble a Turing
machine, but is equivalent in that it can compute any function that a TM
can compute. A counter machine is composed of the following :

(1) A finite-state control.
(2) A two-way read-only input tape.
(3) A finite collection of counters, each of which can contain an

arbitrary integer.
(4) Three instructions to control the counters:

(a) Increment a counter by one.
(b) Decrement a counter by one.
(c) Test to determine whether a counter is zero.

All the counters can be tested or modified in different ways at each time
step.

The time used by a counter machine is the number of steps that pass
before the machine halts, a direct extension of the Turing machine defini
tion of time. One straightforward definition of the space used in processing
an input is the largest absolute value attained by any of the counters. Let
CMspace(f(N)) denote the family of formal languages that can be recog
nized by a counter machine using at most space feN) on inputs of length
N. Define TMspace(f(N)), CMtime(f(N)), and TMtime(f(N)) similarly.
Then

1beorem 4: [Fischer et at. 68]. For feN) ;;;. N ,

CMspace(j(N)) = TMspace(logf(N)).

Thus this somewhat arbitrary space measure for counter machines turns
out to be the same as Turing machine space except for a logarithmic
distortion of scale. In fact, Theorem 4 makes it clear that a better
definition of space for counter machines should have been the size of the
radix representation of the largest value in a counter, in which case CM
space and TM space would turn out to be the same.

Curiously, CM time also relates directly to CM space. Abusing notation
in a hopefully perspicuous way, let CMtime(poly(f(N))) denote the family
of languages recognizable by a counter machine using a number of steps
bounded by any polynomial inf(N) on inputs of length N.

Time and Space

Theorem 5: [Fischer et al. 68]. For f(N) > N ,

CMtime(poly(j(N»)) = CMspace(j(N»).

131

If Theorem 5 muddies which is time and which is space for counter
machines, it serves with Theorem 4 to make the point that these quantities
still reflect the underlying quantity of Turing machine space.

2.3. Space and Time In Formal Language Theory

The Chomsky hierarchy of formal languages is defined by structural
considerations alone. Regular, context-free, context-sensitive, and type-O
grammars are distinguished by.the form of their production rules. These
grammars and their relation to automata are one of the standard topics for
courses in the theory of computation. Hopcroft and Ullman [69] provide
an introductory textbook treatment.

Time and space enter in an elegant and unexpected way. Kuroda [64]
and Landweber [63] showed that the context-sensitive languages are pre
cisely those that can be recognized by a nondeterministic Turing machine
operating in linear space, a so-called linear bounded automaton (LBA).

The concept of a nondeterministic computation enters here in an essen
tial way. A Turing machine or similar automaton is nondeterministic when
the state of the machine and symbols read by its heads determine, not
necessarily a unique next step of computation, but possibly more than one
permissible next step. Thus, a nondeterministic machine has many permis
sible complete computations which it may perform in response to a single
input word. It is said to accept an input word if at least one of its possible
computations leads to acceptance of the input; the time (or space) required
to accept an input word is taken to be the minimum number of steps (or
tape squares) among all accepting computations.

Note that there is nothing probabilistic in these notions of nondetermin
istic computation. Nondeterministic automata simply specify a family of
possible computational behaviors anyone of which may lead to successful
acceptance. (The adjective "multi path" has been suggested as more ap
propriate than "nondeterministic" to describe these automata, but, unfor
tunately, it has not been accepted by the research community.) The
possible computations can be thought of as possible proofs in a formal
proof system. Following each line or step of a proof, several next steps may
be possible, and a theorem is proved just when there is some possible
sequence of steps of proof which lead to it. The definition of time required
by a nondeterministic automaton to accept an input is thus analogous to
the number of steps in the shortest proof of a theorem.

132 Albert R. Meyer and Michael Ian Shamos

The way in which a nondeterministic machine "performs" a computa
tion is quite different from that of ordinary deterministic computers, and
there is no direct or efficient means known by which nondeterministic
computations can be carried out by ordinary computers. For this reason
nondeterministic computation may seem an artificial concept, but it has
proved to be a fruitful one. Indeed some of the most difficult and
important questions in the theory of computation involve the relation
between deterministic and nondeterministic time and space. The two most
celebrated problems of this kind are the following:

1. The LBA problem- whether deterministic and nondeterministic
LBAs accept the same family of languages.

2. The P = NP problem- whether P, the family of languages recogniz
able by Turing machines in time bounded by a polynomial, is equal to N P,
the family of languages recognizable by nondeterministic Turing machines
in time bounded by a polynomial.

For a discussion of the profound consequences of a solution (affirmative
or negative) of the P = NP problem see Cook [71a] and Karp [72], and for
the LBA problem see Hartmanis and Hunt [74] . For example, if P = NP,
then there exist far more efficient algorithms than any now known for such
classical operations-resea(ch optimization problems as the knapsack or
traveling salesman problems and a host of other apparently intractable
computations.

The languages determined by regular grammars and recursive grammars
can also be characterized by bounds on time or space although the bounds
degerate-the regular languages are precisely the family TMspace(l) and
the recUrsive languages are precisely those recognizable without any
bounds on time or space. The context-free languages cannot be char
acterized precisely in terms of time or space. (For example, it is known that
there are context-free languages that require space proportional to log N,
but there are languages recognizable in space log N that are not context
free [Lewis et al. 65, Alt and Mehlhorn 76].) There is an elegant characteri
zation of context-free languages in terms of pushdown automata, however,
and we shall indicate iIi Section 2.9 how a simple extension of the
pushdown automaton model ties together the notions of time and space.

2.4. Stack Automata

Explaining the relation between the syntactic structure of grammars and
the complexity of recognizing the languages they generate can be counted
among the fundamental insights of formal language theory. There is

Time and Space 133

another such relation between a peculiarly structured computer model
called a stack automaton and Turing machine space.

Stack automata were initially proposed as a variant of pushdown au
tomata that had additional abilities to cope with certain constructs in
computer languages like ALGOL. Basically they are pushdown automata
that can "peek" at the pushdown store without modifying it. Specifically, a
stack automaton is composed of the following:

(1) A finite state control.
(2) A two-way read-only input tape.
(3) A pushdown stack with a two-way head. The head is free to move

up and down the stack reading symbols, but it may write a symbol only
when it is at the top of the stack. Symbols are never removed from the
stack.

Actually this describes only one species, called a two-way deterministic
nonerasing stack automaton (Fig. 3), among a bestiary of stack automata
that have been collected. Let 2DNESA denote the class of languages
accepted by two-way deterministic nonerasing stack automata. Notice that
there is no a priori bound imposed on how much the stack may grow
during a computation. In fact, the stack may grow to be more than
exponentially longer than the input, even in halting computations. How
ever, the structural limitation on this large storage space imposed by the
stack discipline diminishes its value to that of considerably less Turing
machine :;pace.

1beorem 6: [Hopcroft and Ullman 67).

2DNESA = TMspace(N log N).

That 2DNESA should contain languages of only bounded computa
tional complexity might have been anticipated by students of automata
theory, but that 2DNESA should have an exact characterization in terms

Finite -
state

S

T

~------------~ A
control Nonerasing head , C

reads anywhere,
writes only at K
top of stack. $

Flg. 3. A two-way, nonerasing stack automaton.

134 Albert R. Meyer and Michael Ian Shamos

of Turing machine space complexity, and that the space on the Turing
machine should be so much smaller than that on the stack, is remarkable.
The proof of Theorem 6 is one of the little gems of automaton theory; it
has the unusual aspect that the equivalence is nontrivial in both directions.
The theorem itself reveals an instance in which the concept of space
appears unexpectedly in a fundamental role.

2.5. Vector Random-Access Machines

We saw earlier that, roughly speaking, time on counter machines corre
sponds to logarithmic space on Turing machines (Theorems 4 and 5).
There is another model of computation, however, in which time bears an
even closer relationship to TM space- the vector random-access machine
(VRAM):

(1) A finite-state control.
(2) A two-way read-only input tape.
(3) A finite number of registers, each holding a bit vector of potentially

unbounded length.
(4) An instruction set comprising the operations of assignment, binary

addition and multiplication, bitwise OR and NOT, with indirect address
ing (that is, the contents of a register may be used as the address of an
operand).

(5) A test-for-zero operation.

This model differs from more primitive ones in that multiplication is
regarded as an elementary operation and data can be accessed directly
instead of through the laborious mechanism of tape storage. VRAMs were
intended as a model that better reflects "real" computers in many circum
stances. The indirect addressing feature is familiar in actual machine
languages, although it turns out to play an unimportant role in the
following theorem, that is, the theorem is true even if indirect addressing is
disallowed.

1beorem 7: [Pratt and Stockmeyer 76, Hartmanis and Simon 74]. For
feN) > N,

VRAMtime(poly(J(N))) = TMspace(poly(J(N))).

The set of languages recognizable by VRAMs operating in polynomial
time is thus the same as the set of languages recognizable by Turing
machines in polynomial space. This is another result in which the proofs of
containment in both directions are nontrivial. The method employed is to
show that each machine can simulate the other, but these simulations are

nme and Space 135

difficult. The trouble stems from the fact that on a VRAM, multiplication
takes one unit of time, no matter how long the bit vectors are. So in
polynomial time one can create bit vectors that are exponentially long, and
the TM performing the simulation cannot simply maintain a copy of the
VRAM memory, or it would not operate in polynomial space. Again we
have an instance in which time and space may appear in each other's guise.

2.6. Recursive Functions

Another way to specify computable functions, which at first sight seems
quite different from Turing machines or grammars, is by means of recur
sive definitions. For example, if A(x,y) = x + y, then we can define
another function M(u, v) on the nonnegative integers by the equations

M(O, v) = 0,

M(u + 1, v) = A(v, M(u, v» .

It is not too hard to see that, despite the apparent circularity of recursively
defining M in terms of itself, the function M is uniquely determined by
these equations and in fact M(u , v) = u X v.

These equations for defining M from A conform to a scheme of
recursive definition known as primitive recursion . Computable functions
can be classified by the form of recursive schemes sufficient to define
them, just as formal languages can be classified by forms of grammars or
automata sufficient to generate them.

One such classification was proposed by Grzegorczyk [53]. Grzegor
czyk's class 6? is defined by starting with the functions of addition and
multiplication, and then constructing new functions by composing, sub
stituting constants and new variables, and applying primitive recursion to
functions already obtained. The application of primitive recursion is con
strained so that only functions bounded above by functions already
obtained may be constructed. A completely different description or" ~? is
provided by the following result.

1beorem 8: [Ritchie 63]. &? equals the class of functions on the nonnega
tive integers that are computable by Turing machines using space propor
tional to the length in radix notation (e.g., arabic numerals) of integers
presented as inputs.

Results similar to Theorem 8 can be proved about Grzegorczyk's classes
£93, £94, ... , and other classes which have been studied such as the
primitive recursive functions or the double recursive functions [Cobham

136 Albert R. Meyer and Michael Ian Shamos

64, Meyer and Ritchie 72]. Such computational characterizations of recur
sive definitions help to clarify their expressive power and have contributed
to the solution of some technical problems relating different classifications
[Meyer and Ritchie , 67]. Thus we see another example of an independent
line of research about recursive functions converging on underlying con
cepts of time and space.

2.7. Boolean Networks and Table Look-Up Time

Boolean networks (also called logical or combinational networks) are
one of the standard models used by digital hardware designers. Such a
network with n input lines and one output line provides a recipe for
computing a boolean function from the n zeros or ones that are presented
at the inputs to a single zero or one at the output.

The number of "gates" at which atomic operations combining zeros and
ones are performed in the network provides an obvious measure of the cost
or size of a network (Fig. 4). The combinational complexity of a boolean
function is defined to be the minimum size of any network that computes
the function.

This measure of complexity of boolean functions has an intuitive appeal
beyond its familiarity in hardware design. Digital computation as currently
understood means the manipulation of discrete symbols that ultimately
can be coded as strings of zeros and ones. The basic operations by which

Inputs

... ~

Youtput = f (x l " . · ,Xn)

FIg. 4. An n-input boolean network with two-input gates.

TIme and Space 137

such symbols are combined or compared must also ultimately reduce to
the atomic operations performed on pairs of zeros and ones at gates. In ··
this sense one would expect the combinational complexity of a boolean
function to reflect the irreducible minimum effort necessary to compute
the function.

A particular boolean function always has a fixed finite number of
zero-one valued arguments and so only represents a finite computational
problem. But it is a simple matter to extend the measure of combinational
complexity to any infinite problem of interest- recognizing the infinite set
of prime numbers, for example. Define the combinational complexity of
the set of primes to be a function of N equal to the combinational
complexity of the boolean function of N arguments, which has value one if
and only if the values of the arguments comprise the N-bit representation
in binary notation of a prime number.

Notice that at first sight this formulation of the complexity of recogniz
ing languages is very different from the Turing machine approach. To
recognize some formal language L we require a single Turing machine
which correctly handles the possibly infinite whole of L. Moreover, the
Turing machine time or space complexity of a language L may grow as
rapidly as any recursive function of the input length N. On the other hand,
the combinational complexity of L only reflects the complexity of larger
and larger finite segments of L , since entirely different networks may be
used for different values of N . The combinational complexity of any L can
never be much greater than 2N / N because any boolean function of N
arguments may be computed by a circuit of this size. (Remember that
simply expanding a boolean function into disjunctive normal form would
already yield an upper bound on combinational complexity of N2N

.)

Furthermore, Turing machine complexity only makes sense for comput
able or at best recursively enumerable languages L , whereas combinational
complexity has a perfectly definite meaning for any language L
whatsoever.

The connection between these complexities can be made by providing
Turing machines with oracles. An oracle Turing machine has, in addition
to the usual paraphernalia of input and work tapes, an oracle tape on
which an infinite sequence of zeros and ohes may be presented. The oracle
tape has a single read-only two-way head, which may move between
adjacent squares on the oracle tape. The same pattern on the oracle tape is
preserved for each input given on the input tape. In this way the oracle
Turing machine can be thought of as having a fixed infinite table of
answers or subresults available on its oracle tape. Of course, if the head on
the oracle tape is far away from a desired entry in the table, the lookup
may take a long time.

138 Albert R. Meyer and Michael Ian Shamos

Let Combinational(T(N» denote the family of languages whose combi
national complexity is at most proportional to T(N). Let Oracle TM
time(T(N» denote the family of languages that can be recognized within
time T(N) by some oracle Turing machine provided with some ap
propriate oracle tape.

Theorem 9: [Pippenger and Fischer 77, Schnorr 75). For T(N) ;;;. N ,

OracleTMtime(T (N» c Combinational(T (N) log T (N)) ,

and

Combinational(T(N)) c OracleTMtime(poly(T(N))).

Thus the time measure for oracle Turing machines, which models the
time required to perform computations by table look-up, matches well with
another intuitively appealing concept of complexity based on boolean
networks.

If we regard the size of a network as being analogous to storage space,
then Theorem 9 provides still another example in which a space measure
for one model corresponds to a time measure on another. Curiously, a
reverse correspondence also holds in this case. The time required by a
network is usually defined to be the maximum depth of the network, that
is, the length of the longest path from any input wire to the output wire.
Using this definition, Borodin [75] has observed that the network-time
complexity of any language corresponds (to within a quadratic poly
nomial) to the oracle Turing machine space required to recognize the
language.

As an aside it seems worth mentioning that the first containment given
in Theorem 9 provides an interesting technique for hardware design. In
some cases it is easier to see how to program a Turing machine to perform
certain computations efficiently than it is to design a small circuit. The
proof of Theorem 9 provides a simple means of translating an efficient
Turing machine into a comparably economical circuit.

2.8. Tapes and Heads

Thus far, time has proved to be invariant from machine to machine to
within a polynomial of low degree. But for accurate guidance in concrete
cases, we need to have a much more exact idea of the effect of machine
structure on speed of computation. Unfortunately such results are few and
difficult to obtain; we shall mention two.

Turing machines as we have defined them with several one dimensional

TIme and Space 139

tapes but only one head per tape can obviously be simulated without time
loss by Turing machines with only a single tape but with several indepen
dent heads on the tape. (Simply divide the single tape into "tracks" and let
each head attend to only one track.) The converse, that multitape
machines can simulate multihead machines without time loss, is also true
but seems to require an intricate simulation requiring nine times as many
tapes as heads to be simulated [Fischer et al. 72]. It is not known whether
the number of tapes can be kept down to the number of heads. Neither is
it known if the result can be extended to two-dimensional tapes.t

Recently Aanderaa [74] settled the question posed by Hartmanis and
Steams [65] of whether k + lone-dimensional tapes are faster than k
one-dimensional tapes. By means of a sophisticated analysis, Aanderaa
was able to show that there are languages recognizable in time exactly N,
so called "real-time" recognizable languages, on k + I tape Turing
machines that cannot be recognized in time N + constant on machines
with only k tapes. It remains open whether three tapes are more than a
constant multiple faster than two tapes. It is also not known whether
Aanderaa's results extend to two-dimensional tapes. In the one-dimen
sional case, we at least know that many tapes cannot be too musch faster
than two tapes: Hennie and Steams [66] have shown that TMtime(T(N»
c Two-tape TMtime(T(N) log T(N».

2.9. Auxiliary Pushdown Machines

Rounding out the menagerie of machine variants is the auxiliary push
down automaton (APDA) of Cook [71 b], which is made up of the follow
ing:

(1) A Turing machine, possibly nondeterministic, with a two-way
read-only input tape and a finite number of work tapes.

(2) A pushdown stack subject to the same restrictions as those on a
conventional PDA.

Since an APDA (Fig. 5) has an embedded Turing machine, it is clear
that the pushdown store is unnecessary in that it does not expand the class
of languages recognizable by an APDA. In fact, the pushdown store is less
powerful than a single additional work tape, but its inclusion will be
justified by Cook's measure of APDA space. He counts only the number
of work tape squares scanned during the computation-space on the stack,
potentially unbounded, is free!

t(Added in proof.) A solution to this problem has recently been announced by Seiferas and
Leong at Penn State.

140 Albert R. Meyer and Michael Ian Shamos

p

u
S
H Auxi liary

pushdown
o store
o
W

N

$
Space = number of work tape squares scanned
(pushdown storage is f ree).

Fig. S. An auxiliary pushdown automaton.

Theorem 10: [Cook 7tb). If T(N) ;;;. N, then

APDAspace(log T(N» = TMtime(polY(T(N»)) .

k
work
tapes

Cook's theorem thus asserts that any language recognizable in time Ton
a Turing machine can be recognized in space log T on an APDA, and
conversely space S on an APDA can be simulated in time exponential in S
on a Turing machine. These results apply, it turns out, equally well to
nondeterministic APDAs.

Again the proof involves clever simulations of APDAs by Turing
machines and vice versa, and again the simulations cannot be carried out
by "step-by-step" simulations since, for example, an APDA operating
within space log N may actually run for 2N steps, whereas Theorem 10
asserts that such an APDA can be simulated by a Turing machine running
in time poly(N). Giuliano [72] and Ibarra [71] extend Cook's methods to
define auxiliary stack automata and obtain similar results; a combination
stack-PDA is the basis for further generalizations by van Leeuwen [76].

While the addition of free pushdown storage may seem contrived, it
motivates an important unanswered question in automaton theory. Theo
rem 1 says that, for Turing machines, space is bracketed between T and
log T. For an APDA, space is equal to log T. The open question is whether
or not the containment holds when the pushdown store is removed and
only an ordinary Turing machine remains. This is tantamount to asking
whether any Turing machine that uses time T(N) can be "reprogrammed",
or transformed, into another Turing machine that uses only space
log(T(N) but possibly more time. (Theorem I implies that as ltlilch as
poly(T(N)) time might be used after such reprogramming.) In the next
section we discuss some of the implications of such a time-space tradeoff.

TIme and Space 141

3. INCLUSION RELATIONS AMONG COMPLEXITY CLASSES

Although we do not know whether TMtime(T) is contained in
TMspace(log T), or vice versa, or even whether the classes are compar
able, there is nothing to prevent our examining the several alternatives.

POSSIBLE RESULT I: TMtime(T) C TMspace(1og T).

If PRI is true, then by Theorem I it is actually the case that TM
space(log T) and TMtime(poly(T» are the same. Hence the two funda
mental complexity measures of time and space would be measures on
different scales of the same underlying 'quantity. Further"if PRI is true, an
immediate consequence is a positive solution of the LBA problem men
tioned in Section 2.3.

On another front, PRI might provide some help in certain mechanical
theorem-proving tasks. For example, a new mechanical procedure signifi
cantly improving Tarski's decision method for the theory of the real field
has recently been developed [Collins 75]. This procedure requires time and
space that both grow doubly exponentially (like 2

2N
). PRI would imply

that space for this procedure could at least be reduced to ordinary
exponential growth, and since space, not time, is often the limiting factor
in practical mechanical theorem proving, such a reduction might make a
few more short theorems accessible to the method.

We cannot pass by this example of mechanical theorem proving without
also mentioning one of the triumphant results of complexity theory: within
the past four years ways have been found to prove that most of the
classical theorem-proving problems of mathematical logic, even if they are
solvable in principle by Turing machines, are of exponential time complex
ity or worse. (See Meyer [75] for a summary of these results.) This includes
the above problem of proving theorems about the real field, so that the
general task of proving such theorems mechanically is inherently intract
able [Fischer and Rabin 74] .

To speculate on a speculation, let us remark that if PRI is true, it might
be possible to refine the correspondence between Turing machine
measures and boolean network measures mentioned in Section 2.7, to show
that network depth is the logarithm of network size. This would imply the
existence of fast boolean circuits of depth proportional to log N for finding
shortest paths in graphs, parsing context-free languages, inverting matrices,
and dividing binary numbers [Csanky 76, Valiant 75]. For each of these
problems the best currently known networks require depth proportional to
(log N)2.

142 Albert R. Meyer and Michael Ian Shamos

Since PRI is a very powerful conjecture, let us consider instead some
weaker possibilities:

POSSIBLE RESULT 2: TMtime(poly(N)) cTMspace(N).

Here we assume not a logarithmic reduction but only that polynomial time
algorithms can be run in linear space (on a possibly different Turing
Machine). If PR2 is true, then, in a very general and far-reaching sense,
any computer program using time N k (which might simultaneously be
using space N k as well) can be rewritten to use only space linear in N. The
cost of this improvement is that the resulting program may use exponential
time. Such an effective transformation would be a programming technique
of vast importance, leading potentially to optimizing compilers of great
power. We confidently expect that it would be an idea fully as useful as
such fundamental computer science concepts as recursion and iteration.

POSSIBLE RESULT 3: TMspace(N) - TMtime(poly(N)) is nonempty.

That is, there may exist some problem that can be solved in linear space
but not in polynomial time. PR3 would imply that many problems for
which no fast algorithms are known are, in fact, computationally infeasible
because they cannot be done in polynomial time. Among these are (1)
minimizing the number of states in a nondeterministic finite automaton
and deciding the equivalence of regular expressions [Meyer and
Stockmeyer 72], (2) deciding first-order predicate calculus in which equal
ity is the only predicate [Stockmeyer 76], and (3) determining which player
has a winning strategy in some simple games on graphs such as generalized
versions of HEX and the Shannon switching game [Even and TaIjan 76].

All of the above possibilities are implied by PRI. Let us see what would
happen if the inclusion in PR2 were reversed.

POSSIBLE RESULT 4: TMspace(N) c TMtime(poly(N)).

This is an electrifying possibility, since it would mean that P = NP, that
deterministic and nondeterministic Turing machines operating in poly
nomial time accept the same set of languages. PR4 would also imply that
all the apparently infeasible problems mentioned after PR3 could in fact
be solved in polynomial time.

If any of the possibilities PRI- PR4 are true, then interesting conclusions
follow. Pessimistically, however, there is a fifth choice. It may be that there
is a problem in TMtime(poly(N)) that cannot be solved in linear space.
Some work of Cook [74], Cook and Sethi [74], and Jones and Laaser [76]
suggests that this "uninteresting" possibility may be the correct one, and

TIme and Space 143

our intuition (albeit a faulty barometer) about difficult problems tends to
support this view.

It is disappointing that we know so little about time and space as to be
unable to distinguish between the blatantly contradictory hypotheses PR3
and PR4. It is positively irksome, though, that we know definitely that the
classes of polynomial time and linear space are not the same [Book 72). We
can prove this by showing that there exist transformations that preserve
polynomial-time recognizability but not linear-space recognizability, but
no example is known of a problem that belongs to one class and not the
other. Yet such a problem must exist!t

3.1. Space Is More Valuable Than Time

We come now to the recent result of Hopcroft et at. [75], which is the
strongest theorem known regarding time and space. Informally, it says that
having space T is strictly more valuable than having time T :

Thorem 11: TMtime(T log T) C TMspace(T) .

This theorem is the first solid example we know that guarantees the
existence of a mechanical procedure for reducing space. It asserts, for
example, that programs that run in time N log N, even if they use space
N log N, can be reprogrammed to use only linear space. The price we pay
is that the time required for the new algorithm may be exponential. A
weakness of the result is that it appears to apply only to ordinary multitape
Turing machines with one-dimensional tapes, and not to VTMs, but the
theorem is a very good beginning. It was proved by means of a particularly
clever simulation on one-dimensional tapes and will undoubtedly be a
focal point of future work on space and time.

For completeness we mention an earlier result of this kind, which applies
to the highly restricted model of classical Turing machines with only a
single one-dimensional tape: for these machines time T2 can be simulated
in space T [Paterson 72].

3.2. Space-Time Tradeoff

The central question at this point is whether there are any inherent
time-space tradeoffs. Theorem 11 shows how to reduce space in certain
cases, but it does not claim that the time must increase. It may be that

t(Added in proof.) Some further surprising connections between time and space have
recently been observed by Kozen (76) and Chandra and Stockmeyer (76).

144 Albert R. Meyer and Michael Ian Shamos

minimal time and space are achievable by the same program. At present,
there is only one known counterexample to this enticing possibility, due to
Cobham [66] :

1beorem 12: If a Turing machine that performs palindrome checking
uses time T(N) and space S(N), then T(N) X S(N) is at least propor
tional to N 2

, and this bound is achievable in each of these cases:

(a) T(N) = 2N,
(b) T(N) = N 2/ log N ,
(c) T(N) = N (I +r>, where r is a rational between zero and one.

This quadratic lower bound for the product of time and space actually
applies more generally to all manner of machine models besides Turing
machines. The proof rests on analyzing the number of different internal
configurations which a palindrome-checking automaton must assume as it
crosses boundaries between tape squares on its input tape. The proof does
not apply, however, if the input head can jump between non-adjacent
input tape squares in a single step. The ideas of the proof do not seem to
extend to yield larger than quadratic lower bounds.

Nonetheless, Cobham's theorem is the only instance in which we can
prove the existence of a tradeoff that most programmers (and theorists)
believe occurs in some form or other. Thus the palindrome problem, which
we first explored in order to develop an intuitive feeling for computational
time and space, provides the first piece of evidence that we must give up
one in order to reduce the other.

REFERENCES

Aanderaa, S. 0 ., On k-tape versus (k - I)-tape real time computation. SIAM-AMS Prog.7,
75-96 (1974).

Alt, H. and Mehlhorn, K., Lower bounds for the space complexity of context-free recogni
tion. In Automata Languages and Programming, Third International Colloquium, (S.
Michaelson and R. Milner, eds.) 338-354, Edinburgh Univ. Press, 1976.

Book, R. V., On languages accepted in polynomial time. SIAM J. Computing 1, 281-287
(1972).

Borodin, A., Some remarks on time-space and size-depth. Computer Science Dept. Rep.,
Univ. of Toronto, Toronto, Ontario, 1975.

Chandra, A., and Stockmeyer, L., Alternation. Proc. 17th IEEE Symp. Foundations of
Computer Science 1976, 98-108.

Cobham, A., The intrinsic computational difficulty of functions. Proc. Intern. Congo Logic,
Methodology, Phi/os. Sci., 1964,24-30.

Cobham, A., The recognition problem for the set of perfect squares. Rec. 7th IEEE Symp.
Switching and Automata Theory, 1966, 78-87.

Collins, G . E., Quantifier eliminations for real closed fields by cylindrical algebraic decom
position. In (Automata Theory and Formal Languages 2nd G./. Conference), Lecture Notes
in Computer Science, Vol. 33, 134-183. Springer Verlag, New York, 1975.

TIme and Space 145

Cook, S. A., The Complexity of theorem proving procedures. Proc. 3rd A CM Symp. Theory of
Computing. Shaker Heights, Ohio, May 1971a, 151-158.

Cook, S. A, Characterizations of pushdown machines in terms of time-bounded computers. J.
ACM 18 1, 4-18 (1971b).

Cook, S. A., An observation on time-storage trade off. J. Computer and System Sciences 9 3,
308-316 (1974).

Cook, S. A., and Sethi, R., Storage requirements for deterministic polynomial time recogniz
able languages. Proc. 6th ACM Symp. Theory of Computing, Seattle, Washington, April
1974, 33-39.

Csanky, L., Fast parallel matrix inversion algorithms. SIAM J. Computing 5 4, 618-623
(1976).

Even, S., and Tarjan, R. E., A combinatorial problem which is complete in polynomial space.
J. ACM 23 4, 710-719 (1976).

Fischer, M. J., and Rabin, M. 0., Super-exponential complexity of Presburger arithmetic.
SIAM-AMS Proc. 7, 27-41 (1974).

Fischer, P. c., Meyer, A R., and Rosenberg, A. L., Counter machines and counter languages,
Mathematical Systems Theory 2, 265-283 (1968).

Fischer, P. c., Meyer, A R., and Rosenberg, A. L., Real-time simulation of multihead tape
units, J. ACM 19 4, 590-607 (1972).

Giuliano, J. A, Writing stack acceptors. J. Computer and System Sciences 6, 168-204 (1972).
Grzegorczyk, A., Some classes of recursive functions. Rozprawy Mat. 4, 1-45 (1953).
Hartmanis, J., and Hunt, H. B., III, The LBA problem and its importance in the theory of

computing. SIAM-AMS Proc. 7, 1-26 (1974).
Hartminis, J ., and Simon, J., On the power of multiplication in random access machines. 15th

IEEE Computer Soc. Symp. Switching and Automata Theory , 13-23 (1974).
Hartmanis, J., and Stearns, R. E., On the computation complexity of algorithms. Trans. Amer.

Math Soc. 117, 285-306 (1965). .
Hennie, F. C., On-line Turing machine computations. IEEE Trans. Computers EC-15, 35-44

(1966).
Hennie, F. C., and Stearns, R. E., Two-tape simulation of multitape Turing machines. J.

ACM 134, 533-546 (1966).
Hopcroft, J., and Tarjan, R., Efficient planarity testing. J. ACM 21 4, 549-568 (1974).
Hopcroft, J. E., and Ullman, J. D., Nonerasing stack automata. J. Computer and System

Sciences 1 2, 166-186 (1967).
Hopcroft, J. E., and Ullman, J. D., Formal Languages and Their Relation to Automata.

Addison-Wesley, Reading, Massachusetts, 1969.
Hopcroft, J., Paul, W., and Valiant, L., On time versus space and related problems. Proc. 16th

IEEE Symp. Foundations of Computer Science, 1975, 57-64.
Ibarra, o. H., Characterizations of some tape and time complexity classes of Turing machines

in terms of multihead and auxiliary stack automata. J. Computer and Systems Sciences 5,
88-117 (1971).

Jones; N. D., and Laaser, W. T., Complete problems for deterministic polynomial time.
Theoretical Computer Science 3 I, 105-117 (1976).

Karp, R. M., Reducibility among combinatorial problems. In Complexity of Computer
Computations (R. E. Miller and J. W. Thatcher, eds.), 85-104. Plenum, New York, 1972.

Kozen, D., On parallelism in Turing machines. Proc. 17th IEEE Symp. Foundations of
Computer Science 1976, 89-97.

Kuroda, S. Y., Gasses of languages and linear-bounded automata. Information and Control 7,
207-223 (1964).

Landweber, P., Three theorems on phrase structure grammars of type I. Information and
Control 6 2, 131-136 (1963).

146 Albert R; Meyer and Michael Ian Shamos

Lewis, P. M., II, Steams, R. E .. , and Jlartmanis, J., Memory bounds for recognition of
context-f(ee an~ ' context-senSitive languages. Rec. , 6th IEEE Symp. Switching Circuit
Theory and Lcgical Design, 1965, 191-202.

Meyer, A. R., The inherent computational complexity of theories of ordered sets. Proc. Intern.
Congo Mathematicians 2, 477-482 (1975).

Meyer, A. R., and Ritchie, D. M., The complexity of loop programs. Proc. 22nd Nat. Conf,
ACM, 1967, 465-469.

Meyer, A. R., and Ritchie, D. M., A classification of the recursive functions. Z. Math. Logik
Grundlagen Math. 16, 71- 82 (1972).

Meyer, A. R., and Stockmeyer, L., The equivalence problem for regulat expressions with
squaring requires exponential space. 13th IEEE Computer Society Symp. Switching and
Automata Theory, 1972, 125- 129.

Paterson, M. S., Tape bounds for time-bounded Turing machines. J. Computer and System
Sciences 6 2, 116-124 (1972).

Pippenger, N., and Fischer, M. J., Relationships among complexity measures. Manuscript,
IBM Watson Research Center, Yorktown Heights, New York, 1977 (to appear).

Pratt, V., and Stockmeyer, L., A characterization of the power of vector machines. J.
Computer and System Sciences 122, 198-221 (1976).

Ritchie, R. W., Classes of predictably computable functions. Trans. A mer. Math. Soc. 106,
139-173 (1963).

Schnorr, C. P., The network complexity and the Turing machine complexity of finite
functions. Manuscript, Fachbereich Mathematik, Univ. of Frankfurt, 1975.

Stockmeyer, L., The polynomial-time hierarchy. Theoretical Computer Science 3 I, 1-23
(1976).

Valiant, L. G., General context-free recognition in less than cubic time. J. Computer and
System Sciences 102, '308- 315 (1975).

van Leeuwen, J., Variants of a new machine model. Proc. 17th IEEE Symp. Foundations of
Computer Science 1976, 228- 235.

	Meyer125
	Meyer126
	Meyer127
	Meyer128
	Meyer129
	Meyer130
	Meyer131
	Meyer132
	Meyer133
	Meyer134
	Meyer135
	Meyer136
	Meyer137
	Meyer138
	Meyer139
	Meyer140
	Meyer141
	Meyer142
	Meyer143
	Meyer144
	Meyer145
	Meyer146

