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Time and space are fundamental parameters for measuring the efficiency of algorithms, 
and the notion of trading off one for the other is a familiar one in the programmer's 
informal repertoire. Nonetheless, providing satisfactory mathematical definitions of 
computational time and space and establishing formal relationships between them 
remains a central problem in computing theory. In this chapter we examine the interplay 
between time and space determined by a variety of machine models and explore the 
connection between time and space complexity classes. We consider a number of 
possible inclusion relationships among these classes and discuss their consequences, 
along with recent results indicating that mechanical procedures may be available for 
reducing the space used by programs. This rosy picture is darkened somewhat by a 
counterexample due to Cobham, which states that minimum time and space cannot 
always be achieved by a single program. 

1. INTRODUCTION 

If I had had more time, I could have written you a shorter letter. 

Blaise Pascal: 

Every programmer has observed that he can often reduce the storage 
required by a program at the expense of its running time. This can 
sometimes be done by compressing the data in clever ways; the added cost 

tnus research was supported in part under NSF grant GJ 43634X, contract number OCR 
7412997 AOI. 

fThis quotation was kindly supplied by Theodore J. Ronca, Jr. 
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is the time taken to perform the encoding and decoding. Other times, it 
may be necessary to redesign the entire algorithm or use a different data 
structure for representing the problem in order to decrease storage. With 
extraordinary luck, the new representation may permit a reduction in both 
storage and execution time- a recent example is Hopcroft and Tarjan's 
linear-time planarity algorithm [Hopcroft and Tarjan 74], which master
fully exploits the list representation of graphs. In this chapter we will 
survey some of the theoretical results that bear on the question of whether 
the ability to exchange time for space is a general phenomenon in com
putation or merely a fortuitous property of some unrepresentative pro
grams. We will indicate how to define computational space and time for 
several models of automata and try to present a convincing case that the 
notion of a time-space tradeoff transcends any specific machine or pro
gramming language. 

To clarify the concepts of time and space, we look first at the problem of 
recognizing palindromes. A palindrome is a character string that is identi
cal to its reverse, such as the owl's complaint "TOOHOTTOHOOT". 
Given a string, how much time and space are needed to determine whether 
or not it is a palindrome? 

To gain an intuitive grasp of the question, let us use a .familiar theoreti
cal model and imagine that the input string is provided on a two-way, 
read-only input tape. That is, we can scan the tape one square at a time 
and move it in either direction one square at a time, but not change 
anything on it. One method is to begin at the left end of the string, 
"remember" the character there, and move to the right end to see if the 
character matches. Now, at the right end, we can pick up the second 
symbol from the right, travel back down the tape, and compare it with the 
second symbol from th~ left. This procedure is repeated until either every 
character is checked or a mismatch is found. 

How much time does this method require to determine whether a given 
string is a palindrome? If the string to be checked is a palindrome N 
characters long, we will need N / 2 trips across it, having average length 
approximately N /2. A reasonable definition of computation time is the 
number of primitive operations performed, in this case the number of 
moves made during the trips, or about N 2/4. 

The amount of space used is not so apparent. Indeed, it may seem at 
first glance that no space at all is required other than the tape itself. 
However, during the scan we must remember in some way which square of 
the tape to stop at in order to check the current character. This requires 
being able to store numbers up to size N, which means that we have 
auxiliary space somewhere for about log N symbols, or we will get lost 
while trying to examine the string. What about the space occupied by the 
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program that is controlling this procedure? We will ignore such space for 
the purposes of this discussion because the size of the program is a 
constant, independent of the length of the input string. The justification is 
that no matter how long the program is there exist inputs so large that the 
program will be small by comparison. 

A faster way to accomplish palindrome recognition is to copy the input 
tape into auxiliary memory and then compare the copy, character by 
character, with the input tape read backwards. This method requires a 
number of steps only proportional to N , but now the number of symbols 
that must be stored in memory rises to N as well. 

Is there a single method that recognizes palindromes simultaneously in 
time proportional to N and space less than proportional to N? We shall 
return to this question in the last section. 

2. TIME AND SPACE IN VARIOUS MACHINE MODELS 

Let us make these intuitive concepts of time and space more precise, 
choosing initially the Turing machine model because it is simple and 
well-known. Let Turing machine M have a finite-state control, a two-way 
read-only input tape, and k semi-infinite work tapes, as in Fig. 1. This is 
the definition given by [Hopcroft and Ullman 69]. Assume that an input 
string x is given, symbol by symbol, on sequence of consecutive nonblank 
squares on the read-only tape. Let TM(X) be the number of moves made by 
M before halting, when presented with input x . We define the time 
complexity T M(N) of M as 

TM (N) = max{ TM (x) Ilength(x) = N}, 

that is, the largest number of steps taken by M on any input of length N. 
Similarly, we define the space complexity SM(N) as the maximum number 

Fig. 1. A multitape Turing machine. 
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of work tape squares scanned by M on any input of length N . From now on 
we will dispense with the subscript M if no ambiguity results. 

The first hint of a formal connection between time and space is that 
T(N) and S(N) are not independent. 

Let M be a Turing machine with k work tapes. For convenience, assume 
that M halts on every input and that S (N) > log N . (The latter assumption 
holds in most cases, since, speaking informally, M needs this much space 
to detect which part of its input is being read.) 

Theorem 1: There is a constant £ > 0 such that for all N , 

£ log TM (N) .;;; SM (N) .;;; kTM (N). 

Sketch of proof: Since M has only k work tapes, each with a single 
read-write head, it can visit at most k new work tape squares at each step, 
so obviously S(N)';;; kT(N). To prove the other inequality, consider the 
number C of distinct configurations in which M can find itself. If M has k 
work tapes, m internal states, and a tape alphabet of a symbols, then a 
configuration is determined uniquely by the state, the position of the read 
head on the input tape, the positions of the work tape heads, and the 
contents ofthe storage tapes. Thus C';;; m(N + 2)(S (N» ka S(N)k. Now, if M 
ever enters the same configuration twice it will not halt, so T(N) .;;; C, and 
the result follows by taking logarithms. 

Either of the bounds of Theorem I can essentially be achieved. For 
example, there is a machine M that runs for precisely 2N steps while using 
precisely N tape squares for any input of length N , so that SM(N) = 
log2 T M(N). There also exists a machine L , which visits new work tape 
squares with all but one of its work tape heads at every time step, so that 
SL(N) > (k - I)TL(N) for such a machine. 

While either of the bounds may be tight for specific machines, we are 
interested in solving problems (computing recursive functions), for which 
there are many Turing machines that will work, each with possibly diffe
rent complexities Sand T. One of the machines may use very little time, 
and another may use little space, but Theorem 1 says nothing about this 
possibility, since it applies to a single specific machine. 

Let us now see how invariant the quantities time and space remain as we 
modify the machine model. 

2.1. Turing Machine Variants 

A natural way of generalizing the Turing machine is to drop the 
restriction that the work tapes be one dimensional. Such variant Turing 
machines (VTMs) might be supplied with a finite-number of finite dimen-
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sional work "tapes" each of which could be scanned by a finite number of 
read-write heads. For example, a VTM with a single two-dimensional tape 
scanned by three heads is illustrated in Fig. 2. In a single step, each of the 
heads may independently change the symbol in the square it is scanning 
and move up, down, left, or right. It may be helpful to think of a 
two-dimensional VTM as having pieces of paper on which to compute as a 
human might. 

In order to be able to compare VTMs and ordinary multi tape TMs, we 
supply the VTMs with a one-dimensional input tape as well as their work 
tapes. Time and space for VTMs are defined exactly as before, namely, as 
the number of steps performed and the number of work tape squares 
scanned. 

1beorem 2: [Hartmanis and Steams 65]. For any VTM V with time 
complexity T v(N), there is a Turing machine M, which computes the same 
function as V, using time that is at most proportional to (Tv(N)f. 

In particular, this means that whatever can be done by VTMs in time 
bounded by a polynomial in N can also be done by ordinary Turing 
machines in polynomial time. It is known, incidentally, that n + 1-
dimensional VTMs are a bit faster than n-dimensional VTMs; adding a 
reasonable technical condition that simulations be "on-line", it has even 
been shown that the quadratic slowdown of Theorem 2, when ordinary 
Turing machines simulate VTMs, cannot be improved [Hennie 66]. 

The result for space is even more attractive: 

Theorem 3: For any VTM V there is a Turing machine M, with possibly 
more states and a larger tape alphabet, which computes the same function 
as V, using no more space than V. 
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Thus, as we increase the dimensionality of the working storage, space 
remains invariant and time is preserved to within a polynomial. 

2.2. Counter Machines 

We turn now to a model that does not outwardly resemble a Turing 
machine, but is equivalent in that it can compute any function that a TM 
can compute. A counter machine is composed of the following : 

(1) A finite-state control. 
(2) A two-way read-only input tape. 
(3) A finite collection of counters, each of which can contain an 

arbitrary integer. 
(4) Three instructions to control the counters: 

(a) Increment a counter by one. 
(b) Decrement a counter by one. 
(c) Test to determine whether a counter is zero. 

All the counters can be tested or modified in different ways at each time 
step. 

The time used by a counter machine is the number of steps that pass 
before the machine halts, a direct extension of the Turing machine defini
tion of time. One straightforward definition of the space used in processing 
an input is the largest absolute value attained by any of the counters. Let 
CMspace(f(N)) denote the family of formal languages that can be recog
nized by a counter machine using at most space feN) on inputs of length 
N. Define TMspace(f(N)), CMtime(f(N)), and TMtime(f(N)) similarly. 
Then 

1beorem 4: [Fischer et at. 68]. For feN) ;;;. N , 

CMspace(j(N)) = TMspace(logf(N)). 

Thus this somewhat arbitrary space measure for counter machines turns 
out to be the same as Turing machine space except for a logarithmic 
distortion of scale. In fact, Theorem 4 makes it clear that a better 
definition of space for counter machines should have been the size of the 
radix representation of the largest value in a counter, in which case CM 
space and TM space would turn out to be the same. 

Curiously, CM time also relates directly to CM space. Abusing notation 
in a hopefully perspicuous way, let CMtime(poly(f(N))) denote the family 
of languages recognizable by a counter machine using a number of steps 
bounded by any polynomial inf(N) on inputs of length N. 
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Theorem 5: [Fischer et al. 68]. For f(N) > N , 

CMtime(poly(j(N»)) = CMspace(j(N»). 
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If Theorem 5 muddies which is time and which is space for counter 
machines, it serves with Theorem 4 to make the point that these quantities 
still reflect the underlying quantity of Turing machine space. 

2.3. Space and Time In Formal Language Theory 

The Chomsky hierarchy of formal languages is defined by structural 
considerations alone. Regular, context-free, context-sensitive, and type-O 
grammars are distinguished by.the form of their production rules. These 
grammars and their relation to automata are one of the standard topics for 
courses in the theory of computation. Hopcroft and Ullman [69] provide 
an introductory textbook treatment. 

Time and space enter in an elegant and unexpected way. Kuroda [64] 
and Landweber [63] showed that the context-sensitive languages are pre
cisely those that can be recognized by a nondeterministic Turing machine 
operating in linear space, a so-called linear bounded automaton (LBA). 

The concept of a nondeterministic computation enters here in an essen
tial way. A Turing machine or similar automaton is nondeterministic when 
the state of the machine and symbols read by its heads determine, not 
necessarily a unique next step of computation, but possibly more than one 
permissible next step. Thus, a nondeterministic machine has many permis
sible complete computations which it may perform in response to a single 
input word. It is said to accept an input word if at least one of its possible 
computations leads to acceptance of the input; the time (or space) required 
to accept an input word is taken to be the minimum number of steps (or 
tape squares) among all accepting computations. 

Note that there is nothing probabilistic in these notions of nondetermin
istic computation. Nondeterministic automata simply specify a family of 
possible computational behaviors anyone of which may lead to successful 
acceptance. (The adjective "multi path" has been suggested as more ap
propriate than "nondeterministic" to describe these automata, but, unfor
tunately, it has not been accepted by the research community.) The 
possible computations can be thought of as possible proofs in a formal 
proof system. Following each line or step of a proof, several next steps may 
be possible, and a theorem is proved just when there is some possible 
sequence of steps of proof which lead to it. The definition of time required 
by a nondeterministic automaton to accept an input is thus analogous to 
the number of steps in the shortest proof of a theorem. 
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The way in which a nondeterministic machine "performs" a computa
tion is quite different from that of ordinary deterministic computers, and 
there is no direct or efficient means known by which nondeterministic 
computations can be carried out by ordinary computers. For this reason 
nondeterministic computation may seem an artificial concept, but it has 
proved to be a fruitful one. Indeed some of the most difficult and 
important questions in the theory of computation involve the relation 
between deterministic and nondeterministic time and space. The two most 
celebrated problems of this kind are the following: 

1. The LBA problem- whether deterministic and nondeterministic 
LBAs accept the same family of languages. 

2. The P = NP problem- whether P, the family of languages recogniz
able by Turing machines in time bounded by a polynomial, is equal to N P, 
the family of languages recognizable by nondeterministic Turing machines 
in time bounded by a polynomial. 

For a discussion of the profound consequences of a solution (affirmative 
or negative) of the P = NP problem see Cook [71a] and Karp [72], and for 
the LBA problem see Hartmanis and Hunt [74] . For example, if P = NP, 
then there exist far more efficient algorithms than any now known for such 
classical operations-resea(ch optimization problems as the knapsack or 
traveling salesman problems and a host of other apparently intractable 
computations. 

The languages determined by regular grammars and recursive grammars 
can also be characterized by bounds on time or space although the bounds 
degerate-the regular languages are precisely the family TMspace(l) and 
the recUrsive languages are precisely those recognizable without any 
bounds on time or space. The context-free languages cannot be char
acterized precisely in terms of time or space. (For example, it is known that 
there are context-free languages that require space proportional to log N, 
but there are languages recognizable in space log N that are not context
free [Lewis et al. 65, Alt and Mehlhorn 76].) There is an elegant characteri
zation of context-free languages in terms of pushdown automata, however, 
and we shall indicate iIi Section 2.9 how a simple extension of the 
pushdown automaton model ties together the notions of time and space. 

2.4. Stack Automata 

Explaining the relation between the syntactic structure of grammars and 
the complexity of recognizing the languages they generate can be counted 
among the fundamental insights of formal language theory. There is 
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another such relation between a peculiarly structured computer model 
called a stack automaton and Turing machine space. 

Stack automata were initially proposed as a variant of pushdown au
tomata that had additional abilities to cope with certain constructs in 
computer languages like ALGOL. Basically they are pushdown automata 
that can "peek" at the pushdown store without modifying it. Specifically, a 
stack automaton is composed of the following: 

(1) A finite state control. 
(2) A two-way read-only input tape. 
(3) A pushdown stack with a two-way head. The head is free to move 

up and down the stack reading symbols, but it may write a symbol only 
when it is at the top of the stack. Symbols are never removed from the 
stack. 

Actually this describes only one species, called a two-way deterministic 
nonerasing stack automaton (Fig. 3), among a bestiary of stack automata 
that have been collected. Let 2DNESA denote the class of languages 
accepted by two-way deterministic nonerasing stack automata. Notice that 
there is no a priori bound imposed on how much the stack may grow 
during a computation. In fact, the stack may grow to be more than 
exponentially longer than the input, even in halting computations. How
ever, the structural limitation on this large storage space imposed by the 
stack discipline diminishes its value to that of considerably less Turing 
machine :;pace. 

1beorem 6: [Hopcroft and Ullman 67). 

2DNESA = TMspace(N log N). 

That 2DNESA should contain languages of only bounded computa
tional complexity might have been anticipated by students of automata 
theory, but that 2DNESA should have an exact characterization in terms 

Finite -
state 

S 

T 

~------------~ A 
control Nonerasing head , C 

reads anywhere, 
writes only at K 
top of stack. $ 

Flg. 3. A two-way, nonerasing stack automaton. 
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of Turing machine space complexity, and that the space on the Turing 
machine should be so much smaller than that on the stack, is remarkable. 
The proof of Theorem 6 is one of the little gems of automaton theory; it 
has the unusual aspect that the equivalence is nontrivial in both directions. 
The theorem itself reveals an instance in which the concept of space 
appears unexpectedly in a fundamental role. 

2.5. Vector Random-Access Machines 

We saw earlier that, roughly speaking, time on counter machines corre
sponds to logarithmic space on Turing machines (Theorems 4 and 5). 
There is another model of computation, however, in which time bears an 
even closer relationship to TM space- the vector random-access machine 
(VRAM): 

(1) A finite-state control. 
(2) A two-way read-only input tape. 
(3) A finite number of registers, each holding a bit vector of potentially 

unbounded length. 
(4) An instruction set comprising the operations of assignment, binary 

addition and multiplication, bitwise OR and NOT, with indirect address
ing (that is, the contents of a register may be used as the address of an 
operand). 

(5) A test-for-zero operation. 

This model differs from more primitive ones in that multiplication is 
regarded as an elementary operation and data can be accessed directly 
instead of through the laborious mechanism of tape storage. VRAMs were 
intended as a model that better reflects "real" computers in many circum
stances. The indirect addressing feature is familiar in actual machine 
languages, although it turns out to play an unimportant role in the 
following theorem, that is, the theorem is true even if indirect addressing is 
disallowed. 

1beorem 7: [Pratt and Stockmeyer 76, Hartmanis and Simon 74]. For 
feN) > N, 

VRAMtime(poly(J(N))) = TMspace(poly(J(N))). 

The set of languages recognizable by VRAMs operating in polynomial 
time is thus the same as the set of languages recognizable by Turing 
machines in polynomial space. This is another result in which the proofs of 
containment in both directions are nontrivial. The method employed is to 
show that each machine can simulate the other, but these simulations are 
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difficult. The trouble stems from the fact that on a VRAM, multiplication 
takes one unit of time, no matter how long the bit vectors are. So in 
polynomial time one can create bit vectors that are exponentially long, and 
the TM performing the simulation cannot simply maintain a copy of the 
VRAM memory, or it would not operate in polynomial space. Again we 
have an instance in which time and space may appear in each other's guise. 

2.6. Recursive Functions 

Another way to specify computable functions, which at first sight seems 
quite different from Turing machines or grammars, is by means of recur
sive definitions. For example, if A(x,y) = x + y, then we can define 
another function M(u, v ) on the nonnegative integers by the equations 

M(O, v) = 0, 

M(u + 1, v) = A(v, M(u, v» . 

It is not too hard to see that, despite the apparent circularity of recursively 
defining M in terms of itself, the function M is uniquely determined by 
these equations and in fact M(u , v) = u X v. 

These equations for defining M from A conform to a scheme of 
recursive definition known as primitive recursion . Computable functions 
can be classified by the form of recursive schemes sufficient to define 
them, just as formal languages can be classified by forms of grammars or 
automata sufficient to generate them. 

One such classification was proposed by Grzegorczyk [53]. Grzegor
czyk's class 6? is defined by starting with the functions of addition and 
multiplication, and then constructing new functions by composing, sub
stituting constants and new variables, and applying primitive recursion to 
functions already obtained. The application of primitive recursion is con
strained so that only functions bounded above by functions already 
obtained may be constructed. A completely different description or" ~? is 
provided by the following result. 

1beorem 8: [Ritchie 63]. &? equals the class of functions on the nonnega
tive integers that are computable by Turing machines using space propor
tional to the length in radix notation (e.g., arabic numerals) of integers 
presented as inputs. 

Results similar to Theorem 8 can be proved about Grzegorczyk's classes 
£93, £94, ... , and other classes which have been studied such as the 
primitive recursive functions or the double recursive functions [Cobham 
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64, Meyer and Ritchie 72]. Such computational characterizations of recur
sive definitions help to clarify their expressive power and have contributed 
to the solution of some technical problems relating different classifications 
[Meyer and Ritchie , 67]. Thus we see another example of an independent 
line of research about recursive functions converging on underlying con
cepts of time and space. 

2.7. Boolean Networks and Table Look-Up Time 

Boolean networks (also called logical or combinational networks) are 
one of the standard models used by digital hardware designers. Such a 
network with n input lines and one output line provides a recipe for 
computing a boolean function from the n zeros or ones that are presented 
at the inputs to a single zero or one at the output. 

The number of "gates" at which atomic operations combining zeros and 
ones are performed in the network provides an obvious measure of the cost 
or size of a network (Fig. 4). The combinational complexity of a boolean 
function is defined to be the minimum size of any network that computes 
the function. 

This measure of complexity of boolean functions has an intuitive appeal 
beyond its familiarity in hardware design. Digital computation as currently 
understood means the manipulation of discrete symbols that ultimately 
can be coded as strings of zeros and ones. The basic operations by which 

Inputs 

... ~ 

Youtput = f (x l " . · ,Xn ) 

FIg. 4. An n-input boolean network with two-input gates. 
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such symbols are combined or compared must also ultimately reduce to 
the atomic operations performed on pairs of zeros and ones at gates. In ·· 
this sense one would expect the combinational complexity of a boolean 
function to reflect the irreducible minimum effort necessary to compute 
the function. 

A particular boolean function always has a fixed finite number of 
zero-one valued arguments and so only represents a finite computational 
problem. But it is a simple matter to extend the measure of combinational 
complexity to any infinite problem of interest- recognizing the infinite set 
of prime numbers, for example. Define the combinational complexity of 
the set of primes to be a function of N equal to the combinational 
complexity of the boolean function of N arguments, which has value one if 
and only if the values of the arguments comprise the N-bit representation 
in binary notation of a prime number. 

Notice that at first sight this formulation of the complexity of recogniz
ing languages is very different from the Turing machine approach. To 
recognize some formal language L we require a single Turing machine 
which correctly handles the possibly infinite whole of L. Moreover, the 
Turing machine time or space complexity of a language L may grow as 
rapidly as any recursive function of the input length N. On the other hand, 
the combinational complexity of L only reflects the complexity of larger 
and larger finite segments of L , since entirely different networks may be 
used for different values of N . The combinational complexity of any L can 
never be much greater than 2N / N because any boolean function of N 
arguments may be computed by a circuit of this size. (Remember that 
simply expanding a boolean function into disjunctive normal form would 
already yield an upper bound on combinational complexity of N2N

.) 

Furthermore, Turing machine complexity only makes sense for comput
able or at best recursively enumerable languages L , whereas combinational 
complexity has a perfectly definite meaning for any language L 
whatsoever. 

The connection between these complexities can be made by providing 
Turing machines with oracles. An oracle Turing machine has, in addition 
to the usual paraphernalia of input and work tapes, an oracle tape on 
which an infinite sequence of zeros and ohes may be presented. The oracle 
tape has a single read-only two-way head, which may move between 
adjacent squares on the oracle tape. The same pattern on the oracle tape is 
preserved for each input given on the input tape. In this way the oracle 
Turing machine can be thought of as having a fixed infinite table of 
answers or subresults available on its oracle tape. Of course, if the head on 
the oracle tape is far away from a desired entry in the table, the lookup 
may take a long time. 
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Let Combinational(T(N» denote the family of languages whose combi
national complexity is at most proportional to T(N). Let Oracle TM
time(T(N» denote the family of languages that can be recognized within 
time T(N) by some oracle Turing machine provided with some ap
propriate oracle tape. 

Theorem 9: [Pippenger and Fischer 77, Schnorr 75). For T(N) ;;;. N , 

OracleTMtime( T (N» c Combinational( T (N) log T (N)) , 

and 

Combinational( T(N)) c OracleTMtime(poly(T(N))). 

Thus the time measure for oracle Turing machines, which models the 
time required to perform computations by table look-up, matches well with 
another intuitively appealing concept of complexity based on boolean 
networks. 

If we regard the size of a network as being analogous to storage space, 
then Theorem 9 provides still another example in which a space measure 
for one model corresponds to a time measure on another. Curiously, a 
reverse correspondence also holds in this case. The time required by a 
network is usually defined to be the maximum depth of the network, that 
is, the length of the longest path from any input wire to the output wire. 
Using this definition, Borodin [75] has observed that the network-time 
complexity of any language corresponds (to within a quadratic poly
nomial) to the oracle Turing machine space required to recognize the 
language. 

As an aside it seems worth mentioning that the first containment given 
in Theorem 9 provides an interesting technique for hardware design. In 
some cases it is easier to see how to program a Turing machine to perform 
certain computations efficiently than it is to design a small circuit. The 
proof of Theorem 9 provides a simple means of translating an efficient 
Turing machine into a comparably economical circuit. 

2.8. Tapes and Heads 

Thus far, time has proved to be invariant from machine to machine to 
within a polynomial of low degree. But for accurate guidance in concrete 
cases, we need to have a much more exact idea of the effect of machine 
structure on speed of computation. Unfortunately such results are few and 
difficult to obtain; we shall mention two. 

Turing machines as we have defined them with several one dimensional 
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tapes but only one head per tape can obviously be simulated without time 
loss by Turing machines with only a single tape but with several indepen
dent heads on the tape. (Simply divide the single tape into "tracks" and let 
each head attend to only one track.) The converse, that multitape 
machines can simulate multihead machines without time loss, is also true 
but seems to require an intricate simulation requiring nine times as many 
tapes as heads to be simulated [Fischer et al. 72]. It is not known whether 
the number of tapes can be kept down to the number of heads. Neither is 
it known if the result can be extended to two-dimensional tapes.t 

Recently Aanderaa [74] settled the question posed by Hartmanis and 
Steams [65] of whether k + lone-dimensional tapes are faster than k 
one-dimensional tapes. By means of a sophisticated analysis, Aanderaa 
was able to show that there are languages recognizable in time exactly N, 
so called "real-time" recognizable languages, on k + I tape Turing 
machines that cannot be recognized in time N + constant on machines 
with only k tapes. It remains open whether three tapes are more than a 
constant multiple faster than two tapes. It is also not known whether 
Aanderaa's results extend to two-dimensional tapes. In the one-dimen
sional case, we at least know that many tapes cannot be too musch faster 
than two tapes: Hennie and Steams [66] have shown that TMtime(T(N» 
c Two-tape TMtime(T(N) log T(N». 

2.9. Auxiliary Pushdown Machines 

Rounding out the menagerie of machine variants is the auxiliary push
down automaton (APDA) of Cook [71 b], which is made up of the follow
ing: 

(1) A Turing machine, possibly nondeterministic, with a two-way 
read-only input tape and a finite number of work tapes. 

(2) A pushdown stack subject to the same restrictions as those on a 
conventional PDA. 

Since an APDA (Fig. 5) has an embedded Turing machine, it is clear 
that the pushdown store is unnecessary in that it does not expand the class 
of languages recognizable by an APDA. In fact, the pushdown store is less 
powerful than a single additional work tape, but its inclusion will be 
justified by Cook's measure of APDA space. He counts only the number 
of work tape squares scanned during the computation-space on the stack, 
potentially unbounded, is free! 

t(Added in proof.) A solution to this problem has recently been announced by Seiferas and 
Leong at Penn State. 
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Theorem 10: [Cook 7tb). If T(N) ;;;. N, then 
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Cook's theorem thus asserts that any language recognizable in time Ton 
a Turing machine can be recognized in space log T on an APDA, and 
conversely space S on an APDA can be simulated in time exponential in S 
on a Turing machine. These results apply, it turns out, equally well to 
nondeterministic APDAs. 

Again the proof involves clever simulations of APDAs by Turing 
machines and vice versa, and again the simulations cannot be carried out 
by "step-by-step" simulations since, for example, an APDA operating 
within space log N may actually run for 2N steps, whereas Theorem 10 
asserts that such an APDA can be simulated by a Turing machine running 
in time poly(N). Giuliano [72] and Ibarra [71] extend Cook's methods to 
define auxiliary stack automata and obtain similar results; a combination 
stack-PDA is the basis for further generalizations by van Leeuwen [76]. 

While the addition of free pushdown storage may seem contrived, it 
motivates an important unanswered question in automaton theory. Theo
rem 1 says that, for Turing machines, space is bracketed between T and 
log T. For an APDA, space is equal to log T. The open question is whether 
or not the containment holds when the pushdown store is removed and 
only an ordinary Turing machine remains. This is tantamount to asking 
whether any Turing machine that uses time T(N) can be "reprogrammed", 
or transformed, into another Turing machine that uses only space 
log(T(N) but possibly more time. (Theorem I implies that as ltlilch as 
poly(T(N)) time might be used after such reprogramming.) In the next 
section we discuss some of the implications of such a time-space tradeoff. 
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3. INCLUSION RELATIONS AMONG COMPLEXITY CLASSES 

Although we do not know whether TMtime(T) is contained in 
TMspace(log T), or vice versa, or even whether the classes are compar
able, there is nothing to prevent our examining the several alternatives. 

POSSIBLE RESULT I: TMtime( T) C TMspace(1og T). 

If PRI is true, then by Theorem I it is actually the case that TM
space(log T) and TMtime(poly(T» are the same. Hence the two funda
mental complexity measures of time and space would be measures on 
different scales of the same underlying 'quantity. Further"if PRI is true, an 
immediate consequence is a positive solution of the LBA problem men
tioned in Section 2.3. 

On another front, PRI might provide some help in certain mechanical 
theorem-proving tasks. For example, a new mechanical procedure signifi
cantly improving Tarski's decision method for the theory of the real field 
has recently been developed [Collins 75]. This procedure requires time and 
space that both grow doubly exponentially (like 2

2N
). PRI would imply 

that space for this procedure could at least be reduced to ordinary 
exponential growth, and since space, not time, is often the limiting factor 
in practical mechanical theorem proving, such a reduction might make a 
few more short theorems accessible to the method. 

We cannot pass by this example of mechanical theorem proving without 
also mentioning one of the triumphant results of complexity theory: within 
the past four years ways have been found to prove that most of the 
classical theorem-proving problems of mathematical logic, even if they are 
solvable in principle by Turing machines, are of exponential time complex
ity or worse. (See Meyer [75] for a summary of these results.) This includes 
the above problem of proving theorems about the real field, so that the 
general task of proving such theorems mechanically is inherently intract
able [Fischer and Rabin 74] . 

To speculate on a speculation, let us remark that if PRI is true, it might 
be possible to refine the correspondence between Turing machine 
measures and boolean network measures mentioned in Section 2.7, to show 
that network depth is the logarithm of network size. This would imply the 
existence of fast boolean circuits of depth proportional to log N for finding 
shortest paths in graphs, parsing context-free languages, inverting matrices, 
and dividing binary numbers [Csanky 76, Valiant 75]. For each of these 
problems the best currently known networks require depth proportional to 
(log N)2. 
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Since PRI is a very powerful conjecture, let us consider instead some 
weaker possibilities: 

POSSIBLE RESULT 2: TMtime(poly(N)) cTMspace(N). 

Here we assume not a logarithmic reduction but only that polynomial time 
algorithms can be run in linear space (on a possibly different Turing 
Machine). If PR2 is true, then, in a very general and far-reaching sense, 
any computer program using time N k (which might simultaneously be 
using space N k as well) can be rewritten to use only space linear in N. The 
cost of this improvement is that the resulting program may use exponential 
time. Such an effective transformation would be a programming technique 
of vast importance, leading potentially to optimizing compilers of great 
power. We confidently expect that it would be an idea fully as useful as 
such fundamental computer science concepts as recursion and iteration. 

POSSIBLE RESULT 3: TMspace(N) - TMtime(poly(N)) is nonempty. 

That is, there may exist some problem that can be solved in linear space 
but not in polynomial time. PR3 would imply that many problems for 
which no fast algorithms are known are, in fact, computationally infeasible 
because they cannot be done in polynomial time. Among these are (1) 
minimizing the number of states in a nondeterministic finite automaton 
and deciding the equivalence of regular expressions [Meyer and 
Stockmeyer 72], (2) deciding first-order predicate calculus in which equal
ity is the only predicate [Stockmeyer 76], and (3) determining which player 
has a winning strategy in some simple games on graphs such as generalized 
versions of HEX and the Shannon switching game [Even and TaIjan 76]. 

All of the above possibilities are implied by PRI. Let us see what would 
happen if the inclusion in PR2 were reversed. 

POSSIBLE RESULT 4: TMspace(N) c TMtime(poly(N)). 

This is an electrifying possibility, since it would mean that P = NP, that 
deterministic and nondeterministic Turing machines operating in poly
nomial time accept the same set of languages. PR4 would also imply that 
all the apparently infeasible problems mentioned after PR3 could in fact 
be solved in polynomial time. 

If any of the possibilities PRI- PR4 are true, then interesting conclusions 
follow. Pessimistically, however, there is a fifth choice. It may be that there 
is a problem in TMtime(poly(N)) that cannot be solved in linear space. 
Some work of Cook [74], Cook and Sethi [74], and Jones and Laaser [76] 
suggests that this "uninteresting" possibility may be the correct one, and 
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our intuition (albeit a faulty barometer) about difficult problems tends to 
support this view. 

It is disappointing that we know so little about time and space as to be 
unable to distinguish between the blatantly contradictory hypotheses PR3 
and PR4. It is positively irksome, though, that we know definitely that the 
classes of polynomial time and linear space are not the same [Book 72). We 
can prove this by showing that there exist transformations that preserve 
polynomial-time recognizability but not linear-space recognizability, but 
no example is known of a problem that belongs to one class and not the 
other. Yet such a problem must exist!t 

3.1. Space Is More Valuable Than Time 

We come now to the recent result of Hopcroft et at. [75], which is the 
strongest theorem known regarding time and space. Informally, it says that 
having space T is strictly more valuable than having time T : 

Thorem 11: TMtime(T log T) C TMspace(T) . 

This theorem is the first solid example we know that guarantees the 
existence of a mechanical procedure for reducing space. It asserts, for 
example, that programs that run in time N log N, even if they use space 
N log N, can be reprogrammed to use only linear space. The price we pay 
is that the time required for the new algorithm may be exponential. A 
weakness of the result is that it appears to apply only to ordinary multitape 
Turing machines with one-dimensional tapes, and not to VTMs, but the 
theorem is a very good beginning. It was proved by means of a particularly 
clever simulation on one-dimensional tapes and will undoubtedly be a 
focal point of future work on space and time. 

For completeness we mention an earlier result of this kind, which applies 
to the highly restricted model of classical Turing machines with only a 
single one-dimensional tape: for these machines time T2 can be simulated 
in space T [Paterson 72]. 

3.2. Space-Time Tradeoff 

The central question at this point is whether there are any inherent 
time-space tradeoffs. Theorem 11 shows how to reduce space in certain 
cases, but it does not claim that the time must increase. It may be that 

t(Added in proof.) Some further surprising connections between time and space have 
recently been observed by Kozen (76) and Chandra and Stockmeyer (76). 
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minimal time and space are achievable by the same program. At present, 
there is only one known counterexample to this enticing possibility, due to 
Cobham [66] : 

1beorem 12: If a Turing machine that performs palindrome checking 
uses time T(N) and space S(N), then T(N) X S(N) is at least propor
tional to N 2

, and this bound is achievable in each of these cases: 

(a) T(N) = 2N, 
(b) T(N) = N 2/ log N , 
(c) T(N ) = N ( I +r>, where r is a rational between zero and one. 

This quadratic lower bound for the product of time and space actually 
applies more generally to all manner of machine models besides Turing 
machines. The proof rests on analyzing the number of different internal 
configurations which a palindrome-checking automaton must assume as it 
crosses boundaries between tape squares on its input tape. The proof does 
not apply, however, if the input head can jump between non-adjacent 
input tape squares in a single step. The ideas of the proof do not seem to 
extend to yield larger than quadratic lower bounds. 

Nonetheless, Cobham's theorem is the only instance in which we can 
prove the existence of a tradeoff that most programmers (and theorists) 
believe occurs in some form or other. Thus the palindrome problem, which 
we first explored in order to develop an intuitive feeling for computational 
time and space, provides the first piece of evidence that we must give up 
one in order to reduce the other. 
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