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OPTIMAL ALGORITIIMS FOR STRUCTURING GEOGRAPHIC DATA 

Abs tract 

This paper combines new r:esults in computa tional geometry with 

a brief tutonal on the design and analysis of fast algorithms. W e 

show a no tt:rnl connection between t he recursive behavior of an 

ol £1ori thm and thP. data ~tru~ture t hat it opP.rates on, and use 

this correspondence to p roduce new methods of data 

orgnnization that fac ilit<4te rapid re trieval of geographic 

Informa tion . Algorithms for ronge searching, Thiessen polygons, 

triangulation, nearest-neighbor searching and various rectangle 

overlap problems ere p reson t ed and analyzed. ·The me thod of 

reducibility is used to prove lower bounds on the computation 

time required to solve thes e problems and demonstrat e that our 

algorithms ore opt imal. 
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1 • 1 . lntroduct.{on 

Analysis of algorithms has enjQyecl a brie.f but .intere·sting history. At one 
' . 

time, it was an accomplishment mer<·)I·Y·.tp b .e .able to devise any ai~Jorithm at 

. all for sOlving a problem 0~1 a COJllPUtc r. (It was even more of a cllallelige to. 

'get the resulting program worl<ii1~J and tested.) Computer sci·entlsts demand 

more today: the atgorithli1s must be ef.ficil:~nt in terms ·ot running time and 

storage us eel, clesi·gnecl so that tl~.ey can be. -prowamme,d_ re·aclily , and should 

be provably optimaL Thaf is, we IJHISt be nbi.G .to demonstrate thaf no 

a.lnorithm, regf:\rdless of how clever .It might be, can · possibly execute faster 

than the given one. It is easy to see that the game of algorithm design . . ,.. . ' . . ' 

.would never. end, in the abse.oce of ·such qll ·optrmality result -- th.e 

algorithm · builder~ ~oulcl nev~r . know ··when to stop · trying 'to improve his 

program. What is consid erably less obyious i.s hoyv · on~ ·might go about . . 
pr.ovlng th~t an algor_ithm .is· the best one pos::-dble.· In this paper we will 

.present some current design and ·a1wlysis te chniques within the framework 

9f proble.ms in ~eography and spatial analysis. I:J,op·efully1 the ·reader will qe . 

able to ·tailor thes_e methods . to his own applications. 

Tl1~ problems and algori'tl1rns ·w e ·s.hall discuss · are. part· of a wider 

discipline known as · comp~ltationa.l Geometry I which se-~ks .~? understan.d th~ 

Interaction .between .geo_rne~ry· ami computin9. Its task is ·. to isolate 

fundamental prob'lem~ a1fd develop optimal -algoritl_1rns ·to solve them·, buUcling, 

so to .speak, a set of computing tools thnt c:an· b.e. used In 'diverse 

applications. While we intend . to delve .. in~o S!=!Veral algorithm design 

·methods, by far the most important idea th c_~t we will discuss is that If 

divide-and-conq~ter, a p'rocess by which we are. able t~ solve a problem 

faster by dividing ·it into small.er parts, solving the s·ubproblems separately, 

then combining their solutions into a solution to the larger problelli. That this 
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splitting can actually result in any saving of· time is often - a source of 

rnystery to those WllO havB not seen the me.thi?d. expJain.ed. ciearly. For this 

'reason, we shall pres.~nt many .examples of the · qlvlde-~nd-conquer 

technique and show.how i·t achieves ·jts r.emarkable efficiet1cy. 

We belie ve that the user of algorithms should have some fan~lliarity with 
. . 

ctirr~nt design technology as . w_e ll as a knowledge of which · algorithms are 
. . ' 

actually_ available . . D.evelopment of _a new al~orithrn and. co_r.respondlng ·code 

can be, e'ven if s u.c;cessfui; a ·very expensive undertaking; · ·.we thus Intend 

to ocqualnt the . re~der with as many new results as possible. 

1 .2. Analysis of Algorithms 

The primary subject matter of ·the field of !'Analysis of Algorithms" Is 

obvious from its· name. Other ast:>eds of the field ~re inl;llcated by .such 

other n.ame s · as "Applied .. Comp.utational Com1~~exi:ty" · -and "Design ·of 

Algorithms''. Since our purpose in this· paper ·is to descr-Ibe .the application 

of this field to topological data ·structures,· we ' will. profi~- by briefly reviewing 

some of hs goals ·ancl methods. 

1 .2.1 Goals 

The immediate task of Anatysis of Al~orithiT)S Is to .de-$Cribe the difficulty 

.of computing the. answer to a · given problem 01:1 a given ·machine. As we 

further investigate. this seem!n~JIY simple goat;· ~e. will ~~e ·just how complex 

.it is. For ·exan)ple, when referring to i'difficulty''. do we . mean the amount. of 

time used or the amoui1t of storage reqtiired? (In some contexts, a more 

relevant measure ·might be the number of man-weeks needed to produce 

·.working code.) In practice, most algorithms are an{ilyzed for time and space 
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r~qulrements, but s_hould this be. for an H.P 65 or a CDC 76~0? Most current 

work In compu_ter science theor:y ·ignores differ-~nces amqn~J machines for 

s~ve~·al · good ··rea$ons: First,. an anf!.l'~tical reslllt is intendtkd to have wide 

appllc'abitify, 'and an ·analysi.~ tai.lored to tile chfir ac t e r·istics of any one 

machitie would neither· be ver·y u~eful nor would. 'reveal much about the 

struc t.ure of the problem. Anothe r' reason is that counting instructions at the . . 
machine-language· level is rarely profitable, be~:ause c le ver r'eprogramm.lng 

can re.ncler ·t!1e analysis useless.. In vieW of this , w e concentrate instea d on 

.a~ymptotic analysis, givlng . only t ile order · of magnitud~· of the number of 
. . ' . 

operations used. Such resulls are applicable over a wide range of computer . . . . 
mode ls and are otten quite' eas y to obt~in . We use tile notation O(f(N)) to_ 

stand for . tile ~et'· of all functions g(N) such .thnt tlJe re· e~ist positive 

consta~ts c and No with jg(N)I ~ Cf(N) for all N 2!: N0 . We wli.J adller~ to the 

common termlnolo'gical abuse which permits tile writing of s_uch statements 

-as 3N2 . - 6N + 5 = .O(N2'). · (The .error _Is t11nt O(N ? ) denotes a set, not a 

function.) Spec(al notation has been devisod to describe lower bouQds, In . . . . . . '' . 
Which Olle warits . to say that g(N) is -at l east as l a r ge 0S some function f(N) 

( See Knuth [1 976]), but its use does not s e em necessary ;,., th is overview. 

Another important distinction 'in ,analyZing an algorithm is whether we are 

describing (t~ avera·~Je (expected-time) or. worst-ca~ e be·flavior. For n1any 

applications we ar e concernecJ ·only with the average and car~ little If ti1e 

running time is occasionally lo.n_ger. On tl1e other · hand, ther.e are some 

·applications (Air Tra ffic Control is the most oft-cited example) in which o'rie . . . . . 
particularly time-.constlming operation could. bring about clis:astrous re~ults . 

. A most difficult concept ' to Qrasp initially is that the. gnal of Analysis of 

Algorithms is not .to.· s'tudy t l~e complexity o'f a .given algorithm but of a given 

problem . . This distinction oft en appears blurred because ·tile analysis of at 

least one al~torithm .is part of ti1C nnalysi::; of tl1e entire problem (to obtain a n 

Ul~per bound on running Ume).We can clarify. H1is · distinction .·by m~ans o f an . . . 
example: Consider the problem of sorting a set of N numbers by pairwise 
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comparls_ons . of elements of the .set . . In · the next. -section we give an 
- . . . 

al_gorithm (named.· MERGESORT} whic~l sorts· N .. · numbers in O(N lg N) 

comparisons (both in the worst 9a.se and. the average case)'. Thus far we · - . . . . 
have spoken about the problem 1)y -speaking about .the ··algorithm: . by the 
' . •. . ' . 

. exlsten~e ·of MEAGESOR~ we know_ tliat sortiriQ ·~e-quires no· more than O(N lg 

N) comparisons·. One .c:ar;,· however, speak ·directly .abot.lt the problem Itself. 
. . . { . . . . 

Suppose we knew of no _specific algorithm for s-orting· . . It would still' m'ake . . . . .· . . . ' . 
·sense to try to proye tha.t any algorithm must take som~ :definite minimum 

ti.me, and that. no · faster pro.cedure cou l<l. -possibly 'accomplish tlie ·task 
- - . .. . . 

correctly. ·. Such a . resuft' is known as a · lower bo.C/_nd.. f.ot the. surting 
. . ' 

problem, one can use arguments ·from lnformatioo theory to show that any - . . . 

algoritiJm mtlst use at 1 ~-a·st O(N lg ~) ~omparisons to sorf'N numbers (In both 

the worst and averag·e-ca~e senses). 111 brief, .. an · uppe-r bound is. norma·lly 
. . . . . ' 

demons~tr:ated by e).(h.lbltlng a.n algorltl1m with the. ·desired . fime ·behavior, a 

tower · boun~,.. often r.equkes more. sophisticate<.l . methods · s;nce it must app·fy 

to all ·conceivable algorithms. sin.ce the . Opper and :·lower .pound$ on 
' 

MERGESo'RT are identical,· w·e say th'at it is · an 'optimai algo~ithm. A ·common 

error is to show an algorithm which uses a sort step and to claim 'that this 
• . • I . 

establishes a 'lower bound of O(N lg. -N) for the · problem. This is not true . 

. unless one has shown the sort step ~0 be nece:ssary. 

' In summary, theh, th_e go.al of 'Analy.sls of Algorlthrr)sis .to analyze problems 

along the_ following dimensions: 

. Time re.qult·ed 

Storage requlre·<J 

wcii·st case b·ehavior 

Expected behavior 

Upper bounds 

. Lower bounds 

These dimensions are by no means lndepend~n~ .-- an a,lgorithm that Is 

allowed to use more storage may require !ess . time· .. · We . will see many 

examples of such .tra-deoffs in later sections. 
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1.2.2 Methods 

In the following .sections we will ' see· a qumbe.r of parti.cular a lgorithms, 

and the reader not familiar ,with their cjesi.gn a~d .analysis might fall to note . 

the analogies ttiat t?XIst b.et~een superfiCi{.llly ~isslmil.(lr ··algorithms. In this 

section we w ill ·review a number o'f prominent methods usetJ· In algorithm . . 
design In ,a fairly a.bstract ·manner; th€ reader· will :?ee concrete examples. of 

th.ese. method~ in the ·algorithms we hav~ c hose.n· to present. 

Let us start by· revieV~ill£1 two t echniques for constructing algorithms: 

lter~tion and · divlcfe .. and-·conquer.. Iteration Is perhaps · .the n.l.ost common . .. ' - . 

a l ~rorlthmic technique_. It consists of tll'e repetitive . performance of a block 

of code under the control of .a· loop variable. · Cont~ol structures ·for iteratioi1 

are Included in mo.st progra·mming l ang l.f.~ges and the 'resultil~g algorithms are 

usually .s.imple · to an.alyze :. if a . ~et of lt=~str.ucticms : .requirtng M steps is 

executed .N tl'mes,: then the t<;>tal cost of the iteration is MN. 
' . 

Dlvlcte-and-·conquer I~ a spec;ial case of ·recursion,· a .mor:e sophisticf,lted 
' . . . . . 

and. powerful t .echniqu.e: It takes .. advantage of _the_.· tact that solving s mal'l 

·problems is often mqcl1 more efffciemt, ·in rel.~tion · to th.ejr size, than solving 

large problems . For example, 'to ·sort~ list.of N n~1mbirs:, .we might split them 
' + • • • • ' 

arbitrarily _into two lists. sort each li~ t separately, and then. combine the two 

sorted lis t s into . a .sin~Jie one in. a merge. proced4re. In this c·ase there are . . . . .· 
two subproble ms,· ~ach .of hal·f th_e. size of 1:he original. The .. reason that' this 

me.thod is 'recurs;ve is that the subproblems themselves are· solved by 

splitting· Into further subprQblems, etc., until a point Is reached at w hich .we . . - . 
o nly have to sort. sets containing single. ef.ernents, which· is trivial. . It remains 

to be seen how all of the ov~rJ1ead involved in splitting and merging results 

In an efficient algorithm. 

.6 



The sorting procedure described above .Js known as MERGESORT and, as 

our first example of a divide-an9:.conquer · algorithm, it ·deserves a more 

formal description: 

Pr:ocedure MERGESORT {S): · 

1. ·If S. coi1tailis 0 or 1 elements, then return S . . (It Is already sorted.)' 

2. SplitS Into two lists A and B, each . contah~ln~ N/2 e,lements. 

3. Sort A ·and B by mak,ing recursive calls on MERGESORT (l'.e. CALL 
. . 

MERGESORT(A) and MERGESORT(B). 

4. Merge the sorted lists A and B together, and te turn the resulting 

sorted list. 

If the lists are. repres~nted as vec~ors or linked ·list s, the required 

OP.erations can be performed readify. · The · nierge of step 4 can be . . . 
· accomplished by simple i.teration: the next element of the sorted list is . . 

obtained. ~y cor~paritlg the first elements. of !lsts A and B, ~indlng ~he 

smallest e l'e rnent, and. deleting .!t. Finding each · eleme~t except the last 

requires one comparison, so 'the total number of comparisons performed .is· . . . . . ' . . : ' 

one less than the number of elements ill both lists. 

The running time of MERGESORT 011 .a set S of N ·.e lemetl t s is easy to 

analyze by the use of recurrenc·e re,lations. Assume (~ithout loss of 

generality, as It turns out) that N is a power of two.; this allows us to always . . . 

divide S Into A's and B's ·of equal ·size. Denote the numb.er of comparisons 

between list e lements ·required by MERGESORT on a list of N elements by 

T(N)i we now may obtain a . . recurrer1ce relation for T(N) directly from the 

recursive structure of the algoritl)m. No comparisons b.etween elements of 
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S are·. performed . in steps 1 or 2. f3y -tJ:l~ definition of _T, each call In Step_ 3 

·will require time T(N/2), so the total cost of Step 3 .is 2T(N/2). Step 4 

makes exactly N-f c~mparisons. Since no <?omparisons at all are needed to 

sort a list containing only a sing_le e_lement; the rec!Jrrence for ·J(N) Is 

T(N) = 2T(N/2) +.N-1 I T( 1) = 0 . 

(The initial conditlo1r, T( 1) = 0, Is an essenti~f · pnrt of the recurrence.) . ' . .. 

The ·constan~ term ''-1" somewhat cqmpli_c-ates th~ solution·, so we will. 

replace the re·currence .by T(N) = 2T(N/2) + 'N, whose solution Is surely 

gr~ater than or equal to that of the original. · We now. solve the m~djfied 

·equation by "Iteration", which· consists of repeated substitution for ·the 

unknown function T(N). 

T(N) = N .+ 2T(N/2) 

= N + 2[ N/2 + 2T(N/4)] 

= N+N+4T(N/4) 

= N + N + 4[ N/ 4 + 2'T(N/~) ] 

·= N .+ N + N.+ 8T(N/8) .... 

Since N can pe divfded ·by two on~y lg N times before one is reached, this . ' . . 
recurrence will iterate exactly lg N ·times, each step ·a~ding N operations to 

the total. Th-us we see. that' T(N-) = N lg N. Though ~his derivation Is quite 

Informal, there are many very· p.ow.erf~l formal tools cfipllb l ~ of 11anclling su.cl1 

recurrences. 

This example captures much of · the flavor of divide-and-conquer 

a lgorithms. It c'onslsts of three s-teps_: Divide, Solve Recursively, anq Marry. 

The resulting algorithm Is easily see'n to b.e correct (by Induction) and can 

be analyzed in a natural way by the use o.f recurrence ~elations. 

Let us Mow turn our attention to. the probl~m of structurl.ng data, for the 



performance ot an al.gorithm ·is hig.hly ·dependent on the manner In which Its 

data Is orga·n~zed . The simplest example that iUustrate~ this point is the . . . . 
. problem of searching for an . element ·In a vector. 'If the efe~nents have been . . . . . 

sorted ln .. advance (struct.ured), .it is always . pos.slble to accomplish the 

search In· O(lg n) comP.ariso,ns. If no ordering has' been ·done, as many a~ 

N-1 comparisons · may be needed, Two. structures· ·which we will use . . . . .· 
·repeatedly are Unke_d lists . an·d bina,ry trees; the re_ader unfamiliar · with 

these should. re_fer to Knuth ( 1 968]. As we present new structures that we 
: . . . 

· l,av.e develop·~.d .for topological probleins we will · often · show how they .a!e 
' related (iso.morphic, In a . certain sense) to a· given algorithm. In particular·, 

w·e wllf see many e.xamples in which a ·.dlvlde~a,t')d-conq.uer algorithm 

corresp~ncl~ directly to a binary. tree ir:~ the ~ay It re;;eat edly splits its 

' Input. Data structures are a.t the heart of time-spa·ce fradeoft'~ -- allowing 

more space In which to stor.e r.ed1.mdant· information often reduces .the time . . . ·. . . . 
needed to search a database. -~uppose, ' for- examr!-e, we· wanted to ·lear~ 

whether any english worcl · contains · tl)e . tour-:-lelter se.quence 11hipe11
• 

' . 

Certainly all ~he information 1,1ecessary_ ~o answer this qu~stion Is contail~ed 

in an unabridged dictionary, but ' finding the answer •. will involv.e reading 

every word be'cam~e the qictionary is not organiz(!d to facilitate this l<ind of . . . . 
search. Its alf?habetical·ord_e_r-ls ~seful for a . . Ellfferent:.type of query: What 

is th_e alterna-tive? ~iven · sufficient foresight (an? c_omputer time) we cout.d 

have produced a sorte:d list ·of all four-character strlng$ that occ-ur In . . 
english. This Hst would be much long'er than the dictionary and. would· take 

' . . ' . 
some time to prepare, but'·would . allo\!lf. our type qf query to be handled 

, ' . 
· efficiently. (lncidental,ty,·there are t.welve words that contaitJ the sequence 

"hlp.e 11
, of yvhich the only familiar one is ".archipelogo11

. ) 

There are many standard operations on ·se.ts .wh_1ch algori~hm designers 

· pe_rform repeatedly, such as Insertion (put x in set S), lnclus_lon (Is x in S ?), 
Dele~lon (remove X from s~. Minim~lnl (what i_s the· Sfll allest et.ement In S}, 

etc. These oper~tlons have beet~ t horoughly analyzed and algorithms for 

perfo~ming them are availapte· ~s primitive tqols for the . ~lgorithm designer 
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(often as lan guage pril11itiv.es) .. We wiH occaslonally .. ·m~ke. \ISe of some ·of 

these st~ndard Cll)erati.ons withoUt .·specifying: exactly h<>.W · they C{m be 

imj) lemented; Aho., Hopcroft and Ullman (197 4] wfll .ser.ve as· a reference . . 

Further tools which we will e.!nploy ill the·' f~llowilig sectiOilS .are . some 

basiq lo~er · b~und. · · technique~. Specificai.Jy, we '· will borr:ow previously · 

~.stablished results through the method ·of 11 reducibUity 11 • The .follo\Nin·g 

example 'is · take~1 f rom Shnmos [·1 975]. . The . .el~ment . . wifqueness (EU) 

problem is to · determine whGt!ler ther-e are any dui)licates in a set .of · N real 

lltimbers, and · has been shown (by rather advanced n1ethods) tq re·quire ·o(N 

lg N) ~omparisons. The closest pair prol)le~l .{CP) i~. to. ftnd . .tile· differeno~. 
• • • j • .• • • • • • - • • 

·between the ~.two .clos~st numbers In· the set : We.·can sliow ·a ~lower ·bound, 

of O(N Jg N') .for· CP by ·. r-educibiUty. Suppes~· ·cp r'an SupposE;!. ·th~t . the~e 
e~lsts an algorith~l :for CP that.· runs in less t ,ha.n. O(N .Jo_g N) time. ·Tiils 

algorithm. can be nsed to . solve EU in less than .O.(N ig N) time, which Is · 

irl1j)ossible bec ause or' tile ·known l.ower bound. · Given a ' set of t:~umbers 1: . ' ' . .. . 
solve CP. If til e cfifferer~ce between tile two closesJ nurnbers· is zero, there 

is some element that .is repeated: otherwise,· they. are all dls.tlnct. In 'this 

way CP solves EU at."'d must b~ at .least as 'difficult:· Ail .. of the fower bo.urrds : 

hi this pop·er will be obtain.ed' in exactly_ thf! .same· maJ1;ner, 
+ ' + • • 

1.3. Range searching. 

Supp.osa:: that we h~nie a fire repre~enting ·a , niap_ of . all the cities in the 

Continenta} Vnit~d Stat~s. ·o'rJe .·search wh,lch Ln.iQht well arise-Is · of tiTe .form 

"How many cities· are between l.atitucle lines c and ·d and also between 
.. . . . . •. 

meridians a and ·b?''.(Such n search would be usefulln counting the number 
' . . : ' ' . '• 

of· .cities in Wyoming or Colorado!) This is an exampJe of a range search) in 

which we are giVen a set of points in the piane and 'wish to know how many 

lie in a given ·rectangle . . In this. sectlon we will study several different 

algorithms for answering this type of query. 
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A search algorithm normally consl.sts of two -phases: the preprocessing, 

during which the input . data is _organi2ed into a structure that will facilitate 

the eventual qu·ery, and the search Itself, based on. the· data structure 

selected. In analyzing the complex~ty of a search .algorithm there ore thre·e 

components to discuss: · the preprocessing time, .the search time, and the 

amount of storage used by the data stmcture. If tt:le original data can be 

modified b-etween searches (for example, by adding new po!nts or deleting 

old ones), then one must also describe the cost of such . modifications. In 

this paper we will ustlally not treat the matter of upelnting because It Is 

extremely Involved and is the object of much current research. 

In this section we will examine range searching in detail. In addition to 

the problem of finding the nur:nber of points in a given rectangle, we will also 

examine such relat.ed pr<?blems as listin9 all points In a given range and 

various weigllted range queries. In some applications weights are 

associated with the points (population figures, for example ) and we wish to 

know not just how many points lie in the range, but )low much weight It 

contains. We . proceed by first examining a few relatively simple 

approaches to ' ~he prob~em, and then lnve~tigate In detail two data 

strue;tures _particularly designed for range searching. 

The simJ>Iest searching algoritl1m possible is 'often called, for obvious 

reasons, "brute force". Jn this search strategy no preprocessing time and 

no extra storage a_re required. The search must, however, Investigate 

every Item In the s-ot, which take~ O(N) time. This technique is appropriate 

If there are going .to be very few searches and f.ast response time Is not 

required. It may happen that a large .expenditure' in preprocessing time Is 

not justified. For most applications, however, this approach Is not 

acceptable. 

A slightly more sophisticated technique for range searching Is known as 
11projection" or, In data base terminology, the "inverted file". The 
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preprocessing consists of sorting the points by, say, the X coordinate 

(hence "projectlngit the tile onto the X-axis). A search then uses binary 

search to locate the particular X range reques ted then searches aU the 

points in that X range to find those which ate also In the desired Y range. 

The preprocessing requires O(N lg N) time for the sort ('recall that we have 

upper and lower bounds for sorting) and O(N) memory locations. 

Unfortunately, n the worst case a search might look at the entire set 

without finding ony points in the ronge, so the worst-ca~e complexity of 

searching is O(N). The average search tlmo is difficult to analyze; one has 

to know the probability distributions of both tJ1e points and the ranges that 

will be queried in order to mal<e ony precise statement. For ·most 

applications, however, this method also requires too much ·search time. 

Two teclmiques which we wil l next Investigate solve the l'roblem of range 

searching by transforming it to an qquivalent problem called "ECDF 

searching". Given a set S of N points In the X-Y plane, the point P Is said to 

dominate Q Iff Xp. ~ x0 and Yp .~ Y0 . The empll'ica l cumulative distribution 

function (ECDF) at a point R is defined as the number of points in S that R 

dominates. If we could design an algorithm to perform ECDF searching 

quickty· it would allow range searching to he clone quickly. (Re fer to Figure 

1 .) let ECDF(P) denote the ECDF of point P. · we· now observe 

that the number of points in rectangle ABCD is 

RANGE(ABCD) = ECDF(A) ~ [ECDF(B) + ECDF(D)] + ECDF(C). 

Thus If the .time required for an ECDF search Is S(N), ~ range search c~n 

be performed In at most 4S(N) operations. (ln _ad<lition to Its use In range 

searching, the ECDF Is also of Interest In statistics.) 

We will now examine a strutegy for ECDF searching IJ~sed on what can 

be called the ••Locus Method". In this technique we attempt to characterize 

the locus of oil points that have the same ECDF In such o way as to allow 
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Flg4re 1·: A range search as four ECDF queries. 

fast ECDF senrchtng. Imagine a point P that moves through the point set S 

horizontally and note that P's ECOF can change only when It assumes the X 

v alue of one of the points In S. This same phenomenon holds for vertical 

lines and Y-values. Thus, If we were to divide the plane Into boxes cte flned 

by vertic al lines and horizontal lines through ev ery point In the set, then all 

points in any box would have the sarne ECDF. We illus trate this In Figure 

2. 

The number in each box is the ECDF for points within that box. 

It Is clear that the ECDF v.alues con be stored. as a matrix and searched 

quickly. To find t.he ECDF of a new point, we must first locate the vertical 

s lo.b In whfch ft lies by binary ~eorch, Ulen find t he pmticular box In that 

s lab by another binary search. The cost of these two searches Is O( lg N). 

Unfortunf,lte ly, this method requires O(N2) preprocessJng time and storage to 

create ond store .the boxes. Such a high cost (particulat ly of storage) 

usually prohibits the use of such a structure in practice. We have shown, 

however, that logarithmic ECDF searching (and therefore range set~rching) is 

possible, given that one Is willing to pay o sufficiently high price. 
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figure 2: Regi.ons wilhin _which the ECDF Is constant. 

None of the approacl1es we have described so far is really appropriate In 

practice. We turn now to lnvesligote in det<.til two struc tures specifically 

designed for ECOF searching which will provo more attractive. 

1 .3.1 ECOF Trees 

In this section we will examine a data structur~ designed by Bentley and 

Shamos [ 1977a] specifically to solye· the problem of ECOF searching . It Is a 

tree data structure, built by a divide- an<l conquer algorithm, so we will 

LJescrlbe It recursively. 

Suppose that we draw a vertical line L through the point .set S such that 
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half th e points lie on ench side of .L. The li.ne l divid~s th~ .Plane Into two 

half-planes, the left halt-plane A ar~d the rl.ght half-plane B . .yv'hat we have 

described so · far Is the root of a tree .data structure representing the point 
. . 

set S. The points in A will l)e stored in A's.rlght $Ubtree. and · the points In B 
• • • • • + 

wi ll be stored in the left subtree (and then these subt"rees will be ston~d In 

the same way, e tc., ·rectlrsively). there {l re now two kinds of ECDF 

searches that we l)ave to do: those for .p.oints to ·the left and right of l. · We 

illustrate these cases in Figure 3. 

L 

___ .... ___ ... 
. . pI . 

I 
I 
I 
I 
I --------,-----------n--- · . I . . . . Q I 

.. I 
I . . I . 
I 
I 
I 

· I • . 
I ., 

Flgur? 3: A Divi~e.:and-Conqu:er ECOF: Query 

A query which falls in ·. A' lsuch a·s P) is easy to .handle. Since P can 

do.mlnate no points in 13, th~ ECDF of P Is ju.st its ECDF among the poll:,ts In A. 

Tha t value can be found by recursive ly doing an ECDF. search In the left 

s ubtree of the root. The case represented by Q .is. more difficult to handle, 

but Is made muc'h ·easier as· we ·note that the total ECDF of Q Is the sum of 

the numb er of points lt. dominates in A ond in B. We · can find the number of 
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points dominated In B .recursively by seqrchlng the tree. To find the number . . . 
of points In A whtch Q dominates we observe )h~t Q's ·X:-vnlue Is greater 

than the X-value o.f every point In A. Therefore Q domJnates a point In A Iff 
. ' 

Q's Y-valtle Is gr~ater than that point's Y-value. 4/je will st9re in the binary 

tree node representing S all the points of A. sorted . J~y Y-value. Tt;> find how . . 
many .points in A the point Q domin~tes. we find ·Its Y-value in that set by 

binary search. and. note how many points· have a smaller Y-value. In Figure 

4 we illustrate the · root · node of an ECDF tree. The horizontal 

lines from each point to L represent the sorted list (by Y) of the points In A. 
. I 

To find the E'CDF of Q we do a binary search in the sorted list to count the 

points in A it dominates then recur_sively search B 'to find ths number of 

points dominated there. 

A L 8 

·--
·----- • • 

- - -- - - - - - - - ·- - - - - - - - - - ·- - - • ·Q 

·-------' ·--·---~ -----

• 
• 

• 
I 
I 
I 
I 
I . 
I 
I 
I 
I 

Figure 4: Root Node · of the ECDF Tree 

• 

Now that we know how a search will be petformed, we can describe 

precisely the data ~tructUI'e· required. The point set S will be represented 
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by a binary t ree. At each node in the tree we s tore the X-value defining l, 

pointers to the left son (the subtree which represents A) and the right son 

(represents 13), ond on .nrrny of the points Y-vnlues of the points In A sorted 

Into Increasing order. Wo now define SEARCH, · a procedure which returns 

the ECOF of P. 

17 



Procedure SEARCH (point P, tree T): 

1 . If T contalons only one point, return zero or one according to whether or 

not P dominat es _that point: 

2 . If P Is to the right of t he L value ofT, re turn SE/\RCH(P, left son of T). 

3. (We know that P .i ~ to the left of L). Perform a binary searc h in the 

sorted array associated with T, and let P's rank in that set be R. 

Return R t SEARCH(P,rigllt son of r). 

The worst-casfi! analysis of SEARCH Is made .simple by · the use of 

recurre nce re la tions. Let S( N) · be the worst - case cost of searching an 

ECOF tree of N nodes. If N ~ 1, 11w n SE/\RCII will take only two comparisons 

to see if the point is dominate d, giving S( 1 )==2. For larger N the wors t case 

occurs when P Is to t he right of L, forcing .us to do a binary searGh (of cos t 

lg N) and then recur down the subtree (costing S(N/2)). The res ulting 

recurrence Is 

S(N) .= S(N/2) + lg N I S( 1) = 2 . 

This recurrence is well known to have solut ion S(N) = 0( (lg N)2 ). 

The ECOF tree is built recursively. To construc t the nod e representing 

the set S we find the median X-value in S and use that as L. W e then sort 

all the points in A by Y-coorcllnate and associate the resulting sorted vector 

with the node. Then we recursively c reate subtrees by applying the same 

algorithm to sets A and B (a <li vlcle -and-conquer algorithm). Analysis of this 

preprocessing shows that It reqtdres O(N lg N) time and the tree It produces 
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needs o.nly ·O(N lg N) spoce . The recursive n~ture of 'the algorithm makes It 

unnecessary for us _to consider more than one level of the. tree at a time, 

which Is very helpful conceptually'. A finished ECDF tree Is shown .In Figure 

5. 

... 

---A-

Hqrizontal dotted and J;Oiid 
lines indi'cate values that are 
stored at each level in the tree . 

•· 

.. - -·--

Figure 5: A Comp.lete EC,DF Tree 

. The basic 'ECDf tree can be extende~ In cert<iln ways by ossignin~ to 

each t>olnt a weig!'lt. We then ask for the sum of the weights that a new 

·point P dominates. If the points were cities on a map, an appropriate weight 

might be the population of each city. A range search based on such an· 

ECDF algorithm could then tell the populatio.n of a given range. A different . . . 
weighting scheme would allow the ex1stence of different ~lasses of points 

(say, relics dating before or after a .certain ~ime period) and a· range search 

could tell how many of each class of points were in· a given range. 

19 



In summary, the ECDF t ree allows ECDF sesrchJng (and therefore range 

~earching) t 'o be performed in 0( (lg ~)2 ) time after O(N lg N) preprocessing. 

The storage cost Is O(N lg N) and weighted problems ·can be solved by a 

straightforward generalizatiQn. 

1 .3 . 2 j(-d Trees 

The multidimensional binary se~rch 'ree (abbreviated .k-d tree) was 

In troduced by ·Ben tley [1975]. It is a data 's tructure · suitable for use In 

many multidimensional problems; in this d~scussion · we will only mei1tlon its 
. , 

planar applications. A k -d _tree is a binary ~ree str'ucturaliy s imilar to ECDF 

trees. To build a k-d tree representing a s-e t ·s of points one pro<?eeds by 

first drawing a vertical line L thaf partitions S Into two sets A and B of equa l 

size. (This s t ep is exactly like that for ECDF trees.) In the next step one 

partitions A (and likewise B) into equal - sized subsets, except this time 

using a vertical line. This part itioning continues, simultaneously partitioning 

the space and constructing a tree. The root of the tree represent s the 

wi1ole set, its left . subtree represents t he points . in A, and its right subtree 
. . 

represents the points in .B. In Figure· 6 we show a k-ef tree, 

represented on the left py a binnr,Y tree · and on the right by a partitioning of 

the plane. 

A r an~t e search in. a k-d tre~. is easUy des~rihed recursively. Start by 

searching the root. At each node, t€lst to see If the range Intersects the 

regions of both sons. If .so, then the s·e·arch must procee.d dqwn both nodes; 

otherwise t he search visits only the intersecting son. 

The preprocessing necessary to build a k-d tree is O(N lg N) and the 

struc t ure requ i~es O(N) storage. The search algorit hm Is rother difficult t o 

analyze becouse it is highly dependent oq lhe slzo of t he range. Lee and 

Wong [ 1 9 76] showed a highly pessimistic worst-case bound of O(N·5 ) for 
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Figure 6: A k-d :fr:ee on Eight Points. 

range searching. Bent-ley anct Stanat [1975] analyzed the average time 

r equired for searching when tile points were · drawn from a uniform. 

distribution and showed that the average search 'time was much less than 

predicted by the worst-case analysis. 

l.n addition to counting . the number of points In the region, tho k -d tree 

also soJves weighted problems (as did ' the £CDF tree) and actually listing 

the points In the desired region (which is not possible with the ECDF tree). 

Also cjf in.terest is the fact t hat the k-d tree f~cilitates other operations, 

such as finding nearest neighbors (see Friedman, Bentley · and Finkel 

(1975]). 

In this section we have seen four prhnary strategie$ for rang.e searching. 

·our analyses of th~se algorithms ~re Sl!mmmized in 
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A I gorl thm Sear.c.h 

Time 

Brute ForceO(N) 
k-d trees 0 IN· 5) 

ECOF trees DC ( lg Nl2> 
. Locus . 0( lg Nl 

Preproces~ing 

Time 

e 
D<N. fg N) 
O.<N I g N) 

OtN2> 

Sforage 

OCN) 

O<N> 
OCN l·g N> 
O<N2} ' 

This table makes clear the tradeoffs in choosing a particular algorithm 

over the others. Notice that just as the colwnn describing search time Is . . . . 
decreasing, so the columns describing ·preprocessing times · and storage 

• + 

requirements ·are i~creasing . Evidently, if one wants faster searches, then . . 
-he must p~y for them with Increased storage .and preprocessinQ costs . 

Lower bounds are known for many of the problems in .this section, and can 

be found in the original references. It is. ·e~sy to show a lower ·bound of O(lg 

N) on the range searching problem, so the Locus Method Is optimal. The 

preprocessing algorithms for ECDF trees ~nd k-d .·trees h~ve ··also been 

shown to ·be optimal. 

1.4. · Th~ Thiessen· Diagram 

A gre·at m~ny problems Involve the notion of proximity, or "closeness" of 
' . 

points. Some of these are single-shot, such as finding .~ tr.ee of shortest 

total length on a given finite set,. Others involve $earching, such as the 

nearest-neighbor problem; "Given N Pc;>ints In \he plane, preprocess them so 

that the point closest to a new given point can be found quickly." The . . . 
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problem that we will concentrat e on In this section Involves both s ingle-shot 

processing and s~archin g, and affor~s us the opport t.'mity of . introducing a 

geographic struc ture of .great theoretical and algorithmic Import ance. the 

Th iessen diagram. This problem is triangulati~n : Given N poln~s in the plane, 
. . 

connect them w it h non-intersecting straight-line segment s so .fhat each 

re~1lon Inter io r to t he convex hull is a triangle. Being a plarrar graph, a 

trian£t~la tion on N vertices . has at most 3N-6 edges. A solution - to the 

proble m cons ists of _a Hst of these. ~d~Jes. _f!' t ri_anguiatlon Is shown In Figure 

7. 

Figure 7.: Triangulation ot a Poin t Set 

This problem arl.ses In contouring ·and 'in numerlcql Inte rpolation of 
. . 

bivariate data when func tion values are avajlable at N Irregularly-spaced . . 
data points (x1, y 1) ancl an approximation to the function at a new point (x, . ' ' 

y ) is desired. One ' m~t~ocl of doing this Is by piecewise linear Inte rpolation, 

In which the func tion· surface Is represented by a network of planar 

triangular f acets. The ·projection of each point (x, y) lies in a unique facet 

and the functio t,l value f(x ; y) is obtained by interpofatfng a plane tli rough 
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the · three facet vertices .. . Triangulation is .tf)e process of selecting triples 

that will define the facets. _Many criteria have beeen p_rOp?sed as to what 
. . 

constitutes a '.'good" trian~tulation for numerical purposes, some of which 
+ ' ~ • • • 

lnyolve maximizing · the smallest an~le or _minimizing the total edge length. 

'These co-nditi.ons are .chosen IJ.ecause th~y lea'c~ to convenient . proof; of 

error bounds on the Interpolant, not because · they necessa_rily result ln. the 

best tr.iangulation. Later we will propose a new method of trjangulation and 

shpw that it can be found as rapidly ·as any tr_iangulati<;>n on N p.oints . 

. Meanwhile, we will content ourse1ves with another lower ·bou.nd:. by showing· 

~hat O(N log N) c<;>rnparisons are necessary to trlangul.ate N points in · the 

plane, even ·if no restriction is placed on tlie properties the triang'utation 

,must poss·ess. : We will prove that any triangulation plgodthm can be used to 

sort. Consider . the . set of N · points · x·1 pictured in ' Figure . 8, which 

consist~ of N-1 .collinear p~ints 'and anotl.,er not on the same line . This set 

-possesses ·only one . tr.ian~tulatlon, the. one shown ill the fig\.lre. The edge list 

produc~d by a . tri~ngul~tio.n can be used . to sort the xi in 'o(N) adclitl~nal 
operations. by simple list ~nanipulation, ·.so O(N log N) cornpari~ons must have 

been made. Now that we have a lower bound, how can we {JO about 

constructing a triangulatioq? 

· Fi.gure 8: Trlangulo.tion Lower Bound 

A valuable heuristic for designing geometric algorithms · Js ·to look at the 
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defining loci and try to organize theni 1nto n data structure. In this case we 
. . 

are given N points Ill the plane and want to find the locus of points {x, y) 'In 

the plane that are closer ~o Pt than to any other point? 

If we knew these loci we would be able to solve tlie nearest neighbor 

problem directly, since determining the closest point to (x, y) Is the same as 

Qsklng which locus It lies Jn. Given two .points, p1 and Pj• the set of points 

closer to Pt than to p j is just the haff ... plano. containing Pt that is defined by 

the perpe~d l<:ular bisector of Pj and ; Pj· l e t ~s denote tl1is ha lf -plane by . 

H(pJ,P j). The locus of points cioser to Pt than to any other point, which we 

d e note by V(l), is an int e rsection of half-pla.nes. This means that V(l) Is a 

convex polygonal regto11 having no more than N-1 s ides, defined by 

{ 1 .1 ) 

V(l) Is called the T hlesset) polygon associated with Pt· A Thiessen polygon 

Is s hown in Figure 9. (These polygons are also called Dirichle t 

regions , Voronol polygons, or Wigner-Seitz cells. Dan Hoey has sugges ted 

the more descrlp.tlve term, "pr~xlmal polygon".) 

• • • • • 
• G • • 

• • • • • 
• • 

Figure 9: A Thiessen Polygon. 
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These N rettions partition the rrane ln.to a 'cqnvex · ne~ ·which we shall refer 

to. :· as . the Thiessen_ cllagr_am, which _Is s.hown In . Flgur:~ ·1 0 . . T.he 
vertices .of the . diagram are ThiesseiJ p.olnts, and Its line· segments ·are 

T_hlessen edges. 

Figvra .1 0 !'· The Thiessen·. Oia.gr~m . 

Each of th e orlginol N .points l)elongs to a Ulilq~e "fhl.essen polygon, th_u~ If 
(x,y) E. V(l), . then Pi ls·.a nearest nel ~t l ~bor of (x, ·.y). The Thiessen dlagr.am 

c9ntaln~;· 1n a ·powerf.ul sense, atl ··ot th.e proximity lnforrna.tion def.lned by .tlle 

gJvefl-set. 
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We now list a number of Important properties ~f _ t:he Thiessen diagram. 

We will assume throughout · that no four points of the original set are 

cocircular. If this Is not true, Inconsequential b~1 t lengthy details must be 

added to the treatment below. E.vcntually, we will want to use . the Thiessen 

diagram to solve a ntmtber of other construction :and search problems: This . ' . 

will only be successful if it can .be constructed rapidly, , A trivial lower bound 
. . 

on the time necessary to do _tl'li$ is .the total number of Thiessen points and 

edges that are· present. At first ~Jiance : the diaoram seems very 

complicated~ but the m.1mber of elements it CQntalns turns out to be small, as 

we now show. 

Every edge of the Thiessen cliagrom is a segment . of the perpendicular 

bisector of a pa1r of points and· is · thus cor!1mon to exa·ctly two polygons. 
. . 

We may form the strafgllt-line dual of the Thiessen dl~gram by adding a 

-straight ·line segment between each pair of 1~oints whose ·Thiessen polygons 

share an edge. The result is a graph on the original N points. (Figure 

11 .) 

The dual may appear to be unusunl at first glance, since an edge and its 

dual many llot even Intersect (look ~t the edges joi.ning consecutive hull 

vertices .. ) It importance ·is largely ~lue to· tile following ·theorem of Oelalll~ay, 

which states that the straight-line du~l of the Thi'eS$en diagram is a 

trillngula tion. (An account of this result may be found in Rogers, Packing 
. . 

and Cov.~ring.) This means that the Tllie$sen diagram con be used to 

construct a trian{lulation, but tho theorem has a much more ~ignificant 

consequence: we· will prove that the Tlli~ssen diawam on N points has at 

111ost 2N .. 4 vertice~ ond 3N-6 edges. Each c<lge In the straight-line clual 

corresponds to a unique Thiessen e<loe. 13eing a triangulo~ion, the dual is a 

planar graph on N points, and thus has at mos t 3N-6 .edges. Therefor~. 'the 

numbe r of Thiessen edg.es is at nio5t 3N-6. ·Since it Is the cltlal of a planar 

graph, which we shall call the Dc/a(lnay graph, the Thiessen diagram Is Itself 

a planar graph, a'nd con be stored in only linear space. The makes possible 
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FlgLtre 11.: . The Straight-Uno Dual of. the Thiessen Diagram. 

an extremely compact representalion of the proximity data. While any 

given Thiess-en polygon may have as many as N-1 edges, thefe are at most 

3N-6 edges overall, each of whlch .ls shared by exactly two polygons. This 

means that the average number of edges in a Thiessen polygon does not 

exceed six. 

The Thiessen points are vertices shared by three Thiessen potygons, and 

honea are equ~dlstant from tht·ee of the ori~Jinal. N pofnts. They are thus 

clrcumcentens of the Delaunay trfang/es, whl'ch explains why the Thiess·en 

diagram is regular of degree three. (In graph-theor:etlcal parlance, a graph . . . 
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fs regular if all Its vertices have the same degree.) A crucia l property for 

purposes of numerical interpolation is .that the circumcircl e o·f a Del aunay 

triangl e c ontains no other points of the set. (For proof, see Sharnos 

[1 977].) This Is illt~stratecl ill Flg~re 12. 

I 
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Fig~~re 12': Th~ Cl~cumdrcie' of .a Delaunay Triangle Is Empty. 

~ 
.; 

..; 

' ' ' ' ' 

This means that €ach point ·interior to the convex hull lies in .a triangle 

composed of the three neat'est p~ints that s~rround it (as distinguished, of 

course, from its thr~e nearest neij ghbors, which may or nray not enclose It). 

Notice that certain of the p.o1ygons are unbounded. These correspond to 
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po~nts on the convex hull of S.. The semi-Infinite· ray~ of the diagr.am are · 

defined by pairs of adjacent hull vertices. 

Even thpugh we wil l be usfng it for oth~r purposes, it is well to note that 

construction of Thiessen <lfa[lrnms is a·n enc.l In Itself in o number of fields. 
. . 

In ecology, the survival of an organism depends on the number of neighbors 

t't rnust compete wi.tti for food and. light, flnd th~ Thiessen diagram of forest 

species and territorial animals is · used to investigate the effect ·of 
. . 

overcrowding. The structure of a mole-cule is determined by the combined 

Influence of electrical and short-range forces, which hav.e been probed by 

constructing elaborate Thiessen clipgrams . . 

Since each ·Thiessen polygon is {ln. intersection. of N-1 half-planes, It can . . 
be constructed In O(N log N) tim~ by an al·gorithm due to Shamos [ 1 97 7]. 

.(This is optimal for producing any single poly ~Jon . ) Thero are N polygons to 

be formed, so the entire construction can be a_ccomplished in O(N21og N) 

time. While we will b.e Able to improve this rosult e.nqrrnous ly In a moment, 

let us first obtain a lower bound in order 'to have a clearer view of the 

eventual goal. We have already shown that the element uniqueness 

prob'lem can b~ solved if we find the two closest points .of a set, and that 

both of tliese prolllerns req.uire O(N· lg N) operations: It 'is a simple matte r to 

show that that the ·Thiessen diagrarn can be used to find the two closest 

points In O(N) time (once the diagram has been c_onstructed). This pair is 

joined by- an edge of the dual and the dual c~ntains ·at most 3N-6 edges. 

We need only examine each dual edge once, looking for the shortest. This 

imp'lies that ~onstructing q Thiessen diagram on N polr.lts In the plane must . . 
take 0(~ lg N) operations, In tho \VOrst case, or we would be able to fincl the 

closest pair of points faster. ln. the next section we show that this lower 

bound can be achieved, which means that constructtng the ·entire diagram Is 

no more difficult than finding a single one of Its polygons! 



1.4.1 A Fast _AigO¥itl1m for Thies.sen Diagrams 

Even though :the Thiessen diagra~ appears 'to .be a complex object, it js 

eminently suited to attack by divide-ard-conquer. The method we employ 

depends for Its success on various structural properties of the diagram that 

enables us to merge subprobl.ems i~1 linear time. 

By "flnclii1g" the 'Thiessen diagram" of ·a set of points · we shall mean 

obtaining all of the following data: 

1 . The coordinates-of the Thiessen points .. 

2. The Thiessen edges (pairs of Thiessen p~ints) Incident with each 

Thiessen point. 

3. Th·e two original points that determine each Thiessen edge. 

4. A list of the· edges of each polygon in cyclic order. 

Let us suppose that' we have divicled a set S, containing ·N points, into two 

subsets, L and R, by a v ertical median line M. This .means that every point 

In L lies to tile left of every potnt in R, and every point ot R lies to the right 

of every point in L. (Unless, of cour~e, two or h10r!3 points fie on the median 

line, In which case we assi·gn them all to set L arbitrarily.) Let us now find 

the Thiessen diagrams V(L) and V(R) of each ·subset · recursively. If these 

can be merged somehow in linear time to form the Thiessen diagram V(S) of 

the enti r e set, we will have an . O(N log N) algorithm. Bltt wliat reason Is . . . 
there to believe that V(L) and V(R) ~ear any relation to V(S)? 

Consider the. locus P of po~nts that are equidistant from a point of L and a 
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point of R. This · is just the set of · edges of V(S~ that are shared between 
.. . ... . 

polygons V(i) .and .V(j), with Pi ( Land Pj < R. Thus, Pis a polygon al line. ( It 

is · a union of segments and is obviously · connecte~L) This line· P has the 

property that any point to the left of"!:> is close.st to some point of L and any 

point to the right is closest to some point of R. (~igure '13.) 
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Figure 1 3: The Locus of Points ·Eq~Jitlistant. f.rom L and R. 

V(L) and V(R) are shown separnte.ly in .Figures 

1 5. V(L), \~(R) and P are suporimpos.ecl in Figure 1 6. 

R 

14 and · 

Let z be any point to th e left of P, so it is closest to some point of L. 
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:Figure 14: The. Thiessen Diagi·am of the. l..eft Set. 

' . 
Thc:>se s_egments Qf V(R) that lie to ·the left of P ·play' no rC?I 'e .. in ·disc.riminatlng· .· 

pr·o~im1ty between . point~ of L sir~ce ·:th~y perta~n only to R.: Thl; means tl~at · 
the ·portion of \t(S) thot lies to ·the left of P is precise.ly the subset of V(L) .. . . . . 

that lies to· the left of ·P. Similarly, V(S) to the .right of P .is the same as V(R) , 

to the ri.ght of p. 

Here is a sketch .of the .emerg.ing algorithm~ 

1. Divide S .into 'two .sqbsets L and R by median .x-coordinate. This can 

be· done in Unear time. 
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Figure 15: Thiessen Diagra·m of the Rigl~t Set. 

2. Find V(L) and V(R) recursively. Time: 2T(N/2). 

3. Construct P, t he locus equidistant from a point In L ·and a pollit in R. 
' ' . . ' . . . . \ . 

4 . Discard .all segments of.V(R) that lie to the left £?f P, ·and a ll segments. 
. . . . 

of V(L) that lie to the right of P. The result~ ng . Is· V(S), the Thiessen · 

diagram 'of the ·entire set. 

. . 
The success of this proce'dure depends on how rapidly we are able t o find . . . . 
the dividing line P. 
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V(R) 

ln Sh~mos· [ 1 9,7 7] a . linem-time · algorithm is given for producing P: Tlils 

means ~hat T(N), the time needed to produce the Thiessen diagram, Is· given 

by_ T(N) = 2T(N/2) + O(N) = O(N lg·N). 

in nearest-neighbor ·searching', we are given a set of points, we wish to 

p.reproce·ss them so tl~at given a new point z, Its n~arest neighbor can be 
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found quickly. However, finding the nearest neighbor of z Is. equivalent to 
.1" 
finding the Thiessen polygon In which ir lies. The preprocessing just 

consists of creating the Thiessen diagram ! The diagram Is· a plAnar graph 

whose edges are straight-line segments. Two different methods for 

searching such graphs are given in Shomos [1 977], and they Imply the 

following result ~: 

1. Nearest-neighbor search can be performed in O(log N) time, using 

· O(N2) storage and O(N2) preprocessing tjme. 

2 . Neares t -neighbor search Cul1 be performed tn O(log2N) time, using 

O(N) storage and O(N log N) preprocessing time. 

(=The second s~arch (llgor~thm is due to Lee and Preparata [19761.) 

. Thus we see that the Thiessen diagram is a useful object Indeed. 

1.5. GQnerali.z4ltion of the Thi.essen Diagram 

The Th.iessen diog.ram, while very powerful, has no means of dealing with 

tarth~st points, /<-closest points and other d(stance relationships. The 

dlfflculty Is that we have bee~ working with the Thiessen polygon 

assooioted with a single point but such a restriction Is not necessary and it 

will be usoful to speak of the · generalized Thiessen polygon V~(T) of a 

subset T of points, defined by 

lit 

V (T) = {x: Vy<T V z<S-T d(x,y) < d(x,z)) ( 1.2) 

"' That Is, V (T) Is the locus of points p such that all points of T are nearer to 

p than Is any point not In T. An equivalent de finition Is 
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V~(T) = n H(I,J) , I<T, J<S-T (1.3) 

where H(i,j) Is the half plane containing I that ts· defined by the 

perpendicular bisector of I ilnd j, This shows tr1at a ge-neralized Thiessen 

polygon is still convex. It may, of cours~, happen that V~(T) Is empty. In 

Figure 1 7, for example, ihere Is no point with the property that Its 

two nearest neighbors are 5 and 7-. Even though a set S of N points has 2N 

subsets, Shamos and Hoey [1 975) ·have shown that no more than O(N~) of 

these possess non-empty Thiessen ·polygons. 

Let us define the Thi~ssen diagram of order I<; denoted Vk(S) as the 

collection of all generalized Thiessen polygpns of k-subsets of S, so 

(1.4) 

In this notation, the ordinary Thiessen diagram is just v1 (S). It Is proper to 

speak of Vk(S) as a "diagram" because its polygons· partition the plane. 
' . 

Given Vk(S), the k points closest to a new given point z ,can be determined 

by finding the polygon In which z lies. Figure 1 7 shows a Thiessen 

diagram of order two, the ·set of loci of ne<Hest pair-s of points. 

lp order to obtain bounds on the time and st.iace required to perform k

ne~rest·noighboT searching, we must compute the number of edges In the 

order k diagram. The number of regions in Vk(S) Is O(k(N·k)). This result 

appears in Shomos nncl Hoey '[ 1 Q75). A complete proof may l>e found In lee 

[ 1 976]. Because each vertex is of denrce three, this means that the 

number of Thiessen edges is also O(k(N-k}). The union of the Thiessen 

polygons of all orders Is precisely the set of perpendicular bisectors of 

poirs of points of S. 
# 

By starting with the order one cliagrom and successively updating lt 

through orders 2,3, ... ,k, lee has been al)lo to prove that ·the order k 
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• (5,6) 

(G,8) 
Some Votonoi polygon• 
of ordor two are empty. 
For example, there is no 
(5,7) polygon. . ' ' For a set of N points there 

1 are N(N-1 )~2 possible 
polygon~ . ereh N•8 but · 
only 1 5 out of t • 28 

(7,8) ' poly&ons are non•empty. 

(1,3) 

(3,7) 

Figure. 1'7: A Thiessen Dingram of Order· Two. 

Thiessen diagram on a set of N points can De obtained In O(kf2N log N) time, 

uslflg O(k2(N-k) storage. The next two results follow from. our earlier 

results on planar graph searching: 
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1. The k nearest out of ·N neighbors of a point can be found In 

O(max(k, log kN) search time and O(k2(N-k).2) s torage, after 

O(k2 (N-k)2) preprocessing. (Note that the sear ch always requires at 

least O(k) time since k objects are being retdeved.) 

2. The k nearest out of N neighbors of a point can be found In 

O(max(k,(log k(N-k))2)) time and O(k2(N;-k)) storage, after O(k2N log N) 

pre processing. 

The generalized Thiessen diagram unifles closest- and farthest-point 

problems sJnce the locus. of points whose k nearest neighbors are the set T 

Is also the locus of points whoso N-k farthest neighbors a re · the set S-T. 

Thus , the order k closes t -poJnt diagram Is exactly 1:he order N-k farthest

point cll a grnm. Let us examlna one of these more c losely, the order N- 1 

closest-point diagram, or the order 1 fc;~rthest-point diagram (Figure 

18.) 

Associated with each point Pi is a convex polygonal region VN_ 1 (I) such 

that Pi is the farth~st neighbor of every point in tt1e region. This diagram Is 

determined only by points on the convex hull, and there are no bounded 

regions . Tbe f ar thes t-point dingram -can be constructe(,~ In O(N l.og N) time 

·by a procedure analogous to the algorithm for the closest-point diagram: 

Having found the farthest-point diagrams of the left anti right halves of the 

set, the polygonal dividing line i::, exoctly t l1~ same as in the closest-point 

case. This time, howeve1·, we cli sc nrtl all sewnents of VN_ 1 (L) that lie to the 

left of P, and also remove those segments of VN_ 1 (R) that lie to t he right. 

It is di fficult not to marve l at the power of djvide - and-conquer. 

39 



V(4) • 
This region is the locus of 
po ints whose most distant 
neighbor is point 4. 

8 • 

V(6) 

• 
• 

• 

V(7) 

• 

• • 

• 6 

V(2) 

3 

• 
• 

V{8) 

Points that are not on 
the hull are unnumbered 

,. "' and do not have regionac 
,. "' associated with them, 

4 
• 

• 5 

V{l) 

Figure 18: The Farthest-Point·Thlessen Diagram. 
' . 
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1 .6 . . Rectangle Pr~bloll1S 

The problems that we have discussed so far ltnve all de.alt with points, 

and thus have th.e most s imple geometric structurP. possible . . In this section 

w~ deal with rectangles whose sides we assume to be parallel to the 

coordinate axes. There ore many applic&t ions which immediately Involve 

rectangles, such as pJ'OIJiems dealin g with rna p ··sectors ar.~ct other 

rectangular ge?graphic regions. In acfclition to tl1 ese applications, It is fairly 

easy to appJoxim.ate other ~Jcomctric sllnpes by rectangles. In this section 

we will deal with t:wo classes of rectangle proble"1s: problems in ·which we 

are given a set of rectangles and asked to determine some prope rty of the 

set such, as_ its area, and problems involving searcl1ing. 

1.6.1 Single-shot pr~blems 

Given N rectangles In the· plane, wl1nt is the area of their union? This 

problem Is an example of a t'ask that IHHnans cc;111 s'olve verY easily (due to 

the power of visual perception), ~o 11 is difficult to see how a computer 

would have any dlf·flculty. One way to attack thin problem by. machine is to . . 
make use of the principle of inclusion ?\nd exclus ion, which, in tl.lis context, 

states that the . area of the ·union Is the sum of the a·reas of · the Individual . . . 
rectangles minus the area covered by a_t least two rectangles plus the area 

covered by at least three rectongles, etc. The complete formula 

unfortunately Involves 2N . terms, one for each possible sllbset ·of 

rectangles. A different, n1ore succe3sful, strote~JY is to view the set of 

overlapping r~ctangles as a planar gnwh; this lends to an O(N 2 ) solution. ln. 

this section we will describe on O(N lg N) algortthm -due to Bentley and 

'shames [1977b]. 
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The best way to visualize the working of our algorithm Is to imagine a 

v ertical line being sw Gpt from the le ft rnos l rec t angle thro~1gh the set to the 

rfghtmos l rectangle. At every Instan t during the sweep we keep track of 

the total le ngth of line tha t Is covered. If C inches of the line are covered . 
for 'a distance of D inches during the swn cp, an area of CD square inches 

has been passed over. Oy repeat edly finding tho length that Is covered we 

Wil l be able to 11 inte~1ra tc " in t his nHltmc r l o find the area of the union. 

Suppos e we are given N rec.tanales. wllo~ c~ sides are specified by L1, R1, Bi, 

and T1 (for lhe coordinates of l hn left, ni£JIIt, Oo ttom, and Top). We will first 

give t he a lgorithm f ormally, the11 clescrlbe it more casually betow. 

4 2. 



Procedure AreaOtUnlon: 

1. Sort the set {L1,R1 , 1 S I S N} and call It Vertlca.Jllnes. 

2. Sort the set {B1,T1 , 1 .S I .S N} anct t hen build this set Into Tree {a 

special da l a s truc ture which we describe b elow). 

3 . Go t hrough the set Vor llcollincs in inc reasing X-order. Take the last 

v a lue of LongthCove red, mulllply lt by the distance between this 

v ertical line and the los t, and odd that. produc t to TotalArea . . 
{LengthCovcred t e lls how much of a vertical line passing throug h the 

s e t Is currently cov ered by rectangles; w.e update It now.) If this 

ele ment o f Vert icaiLine:> Is L1 {for some t), then we are currently . 
e nte ring o ne w roc tanulo, so insert L1 into the tree. Otherwise (the 

e leme nt Is n1 and w e are leaving a rectangle we previously vis ited), 

d e le te R1 f rom the t ree. Moc.l.ify the Tree and update LengthCove red 

accordingly . 

To explain this algorithm w e - show Its progress through a s et of 

rectangles in Figure 1 9. The v ert ical lines In the figure represent 

the set Ve rtlc<llllnes ; be low each we show the values of both 

l e ngthCove re d and of TotaiAraa. 

The only part of the algorithm remaining to be specified Is the 

imple me nta tion o f Tree. We mus t be able to Insert segments Into It and 

d e le t e segments from It, being able to t e ll at Qny time the total length 

covered by t he segments currently s tored. To accomplish this w e use a 

perfec tly balanced binary tree in which oac'h leaf node- represents one of 

the hori zontal s labs defined I:> Y the r 1 and Bi. An Internal node of the tree 

repres ents a contiguous se t of such horizontal slabs.. Each node contains · 
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Figure 1 9; C.ompuling tile Area of Overlapping Rectangles. 

three fi e lds (asicle from tree maintennnce items): the number o f segments 

~holly containin9 this s lab, the total length 'of the slab, and the length of 

L11e s lab currently occupied by rectan9les. Us ing this s tru c ture It is 

possible to give a recurs ive algorithm wllich will accomplish each insertion or 

delet ion in time O(l'g N), worst-case. 

Since each of the 2N insertions and deletions ·requires only O(lg N) time, 

the totnl running time of 1\renOfUnion will be O(N lg N). We w ill see shortly 

that tllis is optimal. The algorithm uses two common techniques: Iteration (in 

the left-to-right scan) ancl th'e perfectly balanced binary tree. It is 

Interesting to note tha t although the union of the N rectangles could consist 

.o f O(N2 ) separate rectC\IlUI.es · (consider N/2 thin vertical rectangles each 

inters~cting N/2 narrow horizontal r.ectangles ) , the area of thei r union can 

be found in less t han O(N2) time. 
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We turn our attention now to a different problem with rectangles: given N 

rectaJlgl~s In the plane, do any two Intersect? ··o.n_e way to dete·rmlne this . . . 
would be t'o compute the ar~-a of each and s1:1m them; comparing the result 

with the a~ea of the lmion. . If the sums· -are ·equal, then none of the 

rectangles intersect (ex~ept. Jlosslbly on a set of . measure zero). Both 

problems require at' least O(N lg N) time (S.hamos and Hoey [1976]). l_n this 

.section we will investigate a divide-!ind-conquer lllgoritllm for the overlap 
\ . . . 
·problem, because it will suggest a data structure for . a related search 

probiem. 

- Let S be the set of N rectangles which we want to_ ch.eck for overlap. 

Draw a vertical tine L such that exactly hatf of the rectangles are entirely . . . . 
to_ the rtgf1t of L. Call the area to the· left of the li.ne A, and let B be · the 

• ' • • t ' 

area .to ·the right of L. The si.tuatio.n which we have described is illustrated 

In Figure 20. 

- If ~n lnte.rsection occurs in S, it will occur either between two rectangles 

In A, two In £3, or one in A · and one in _' B. We can· check whether ~octangles 

Intersect in A anc' B recursively· (these qre 'the subproblems in· divide-and-. . . 
conqu~r)_. . The m·arriage step Is to see If, any' rectangle in A- intersects any 

In· B. We use a 1'sk,yline" to accomplish this: The s~.y~ines of A and B. ~re 

shown' In Figure 21 by heavy lines. 

Given two skylines (stored in either an array or ·a linked list) we can see 

It' they int~rsect In linear time. Al so,· glvcll the (left and right) 'skylines of A 

and B, we can construct the (left and right) skylines of S in line ar time. 
~ . ' 

Thus the marriage step takes linear . time, and . the resulting divide and 

conquer algorithnr check~ for overlap In a total of .O(N Jg N) time and O(N) 

stora£Je . . 
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1.6.2 Searching Problems 

In this section we will investigate a number.of search problems related to 

rectangles. Our task is to preprocess a set S of N· r-ectangles Into an 
• . • • o • o I 

efficie nt · data s tnicture for searching. The first type of . query we will 

Investigate assumes ·that S consists · of non-overl.applng rectangles and 

asks in which ·(If any) of the rectangles a new ·point lies. To do this we will 

use ·a data structure suggested by an · earller a lgor.ithm. Refer again to 

Figure 20; if a point P Is to the left of L, then it can only intersect one of. 

the rectangles in A. If P is to the right of ,L, then it can intersect only a 
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_rectangle In B or one of the rectangl~s In 1\ whiC.I! overlap_s L. W e may store 

the re-ctangles whi-ch overlap L as a so.rted ·array, ~n~ then determine if P 

(on the right of L) · intersects any rectangle in· B by a s ingle binary searc h. 

This approach (w hich was ce_rtainly' sug_gested !)y the last algori thm) is very 

similar to the ECDf! tree presented earlier. The· analysis Is Ide ntical, and 

shows that the stru~~ure r~qu i~es O(N lg N). tin~e to build, 0.( (lg N)2 ) time to · 

search, but only .O(N) ~ tora. ge, which is achi.eved b.y storing each rectangle 

only once. 

A more difficult searching problem · a.sk~ us to s tate the N rectang les . ' 

(wl1ic h may now overlap) in st1ch ·n woy th ot w e can quic.kly determine if a . ' . ' 

new rectangle intersects any of the othC:ns. We solve this In a way that is 
. . 

analogous to . the algorithm for the point pro.blem, but which uses a more 

complicated· d-ata structure. · In the tree: · lnstef.ld of storin_g the rectang les 

~hich rntersect L, we mus t s tore the left skyline of A and the ri ght skylin e 

of B so to allow us to quickly det~rmine if a new recta-ngle overlaps either 

skyline. We do· this by using a perfectl:y bal«nced t ree, w ith information in 

the nocles v ery sirnila r to the Tree in tile 1\r_caOfUnion algorithm. Such an 

apt,roac!l costs O(N lg N) preprocessin9 tirne and s torage, but permits 

searching In only 0( (lg N)2) time. 

The proble ms that we have desct;ib~d arise in many a'pplications, but we 

will foc us on one particular application to ~ee wl,l e re our ·algoritllms migllt be 

e mployed. Consider a computer program designed to place machines on the 

floor of a shop (those familia r with computer rooms can easily e nvision the 

machines as a se t of·rectangles !). To insnre tha t we have not assigned t wo 

machines to the same location we can check to see whether any of the 

rectangles Intersect. It we ulready have f ixed positions· · tor N of the 

machines, then we can store them in a data s tructure and decide very 

quic kly If the potential placement 9f a new machine conflicts with any of 

the old. If we want to know Which machine. (if any) occupies a given SI)Ot, 

we can simply p erform a point-in rectangle search. 
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. -
A number of other problems with re_ctangles· · have been solved. For 

instance, given N points and N disjoint. rectangles ·iri the pl~ne, we can tell in 

·which rect.angle every point lies in O(N. lg N) .time. ·Many of the algorithms 

which we .have described are .easily generalized to points In a.:.space (or 

higher dimensional_ spa,ces). 

·1 .7. Applications of Computational Geome.~ry 

Computational Geometry provides ·the ~heoretical and practlc.al tools of 

automated carto{traphy, computer ftraphics, image processing, and many 

other field~ in which .th~ data is inh~rently geo.metri~. As such,· It is a . . . 
comprehensive disc.iplinc that is able to 'deal .coheret.lt1y witl1 ~he automation 

of .many .computational p roblems. A good example is st~tistical g-eography. 
. . . 

We begin with geometri c data, are compelled to 9ev elop e'fficient algorithms . ~ . . . . . 

fqr handling and summarizing a, and are· left with a problem In computational . . 
statistics, to which .the m etho~l s of this paper. also apply! Suppose we .wish 

·to · study the randompes$ of_ spntinl poiot patt~rns. According to the 

crlteri01.1 .of Hppkins [ 1 954 ], a. · pattern is r{lndom If the distribution of 

distances from .a random point (x,y)· to the ne.arest pattern point p-1] is 

~dentical to the dis tribution· o-f nearest-neighbor distances among the p·1 
themselves. This can be -determined {)y using tlie ·Thiessen diagram for . . . . . - . 

finding .the lnterpofnt (Jistances . and for finding_ the .neare.st ' nel9hbor of a 

given -point, then by us illg a fast statistical algorithm to a1:talyze the results. . ' - . 
Thus the techniqtJes we proJ)Ose are quite powerful and wlqe in scope. 

Other. examples .of the interplay_ between geometric ·and statistical problems 

occur' in . numerical taxononly, anthropology· and · archaeology (see, for . . 

example, Hoclcler [ 1 976]). Thiessen diagrams ·have been used to study thE! 
. . . . 

growth of .technology in ancient cultures, t he ris~ of tra.de centers, and the 

spread of disease, all of which are both stat isticnl and geometric in natur!3. 
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1 . 8. Conclus·ions 

Wl1ile a larg€ m1mber of algorithms have been developed here, the reader 

should l:?e abl-e to 'see that very feVJ techniques were Involved. We have 

used divide-a-nd-conquer, combined with various · geometric ide~s, to 

produce fast algor.ithms for diverse problems. It is often a useful exercise 

for the _algorithm designer to fo r ce hims8lf to use divide-and-conquer, even 

i.f ·there see~1s to be no obvious W«Y of apply_in~j it. It' Js norn.wlly the merge 

· step that c:auses ·difficulty, but great effort must be expendeo to make lt 

run as quickly as possible, 'for only then will a truly ef'flclent procedure 

resu lt . 

We stress ·again that it Is esse11tial to . is~lu..te com~)utational problems that 

are trufy f undamental and «te com1non to many· applications, and to 

concentr9t€ on them, proviJl~l lower . hot~nds nnd developing. fast algoritl1ms. 

Only then are they ready to be a<lclecl to the designer's too'l box. 
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