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We investigate problems and applications associated with computing 
the empirical cumulative distribution function of . N points in k­

dimensional space · and employ a multidimensional divide-and-conquer 

technique that gives rise to a compact data structure for geometric 
and statistical s·earch. problems. We are able to show how to 
compute a large number of important statistical quantities much 
faster than was previously possible. 
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A PROBLEM IN MULTIVARIATE STATISTICS: 

ALGORITHM. DATA STRUCTURE AND APPLICATIONS 

1'. INTRODUCTION 

.~he computational complexity of statistical procedures has just begun to be 

Investigated [Gonzalez 77] [Shamos 77]but prove~ to be a rich source of new 

theoretical problems and algorithm design questions. In this paper we conduct 

an exhaustive analysis of an important computational problem in statistics 

Involving a novel data structure that is a direct outgrowth of the divide-and­

conquer algorithm used to .solve the problem. We establish lower bounds on 

computation time. relate the problem to some searching ' and combinatorial 

questions. and ' present a variety of applications. 

A multivariate statistical sample of N observations on each of Ie variables can 

be regarded conveniently as a set of N points in Euclidean Ie-space. We say 

that a point X = (x1' ...• xle) dominates point Y. written X ~ Y, Iff xi ~ Yi for all I. 

That is, X dominates V iff it is greater than or equal to Y ~n all coordinates. The 

dominance relation is easily seen to define ~ .partial order on vectors. We 

assume for simplicity that all N point~ are distinct. but this will not affect the 

asymptotic running times of our algorithms. The ranle r(Z) of a point Z .(not 

necess~rily a sample point) is the num.ber of sample points dominated by Z. The 

normalized ranle. r(Z)/N. which is the frnction of points dominated by Z. is better 

known as the empirical cumulative distribution function (ECDF) and arises in a 

host of statistical applications. (The use of the word "ranle" in this context Is 

suggestive but is a slight misnomer because the points are not linearly ordered. 

A different definition of ranle is given in [Vao 74] but is unrelated to the ECDf). 

We now distinguish two computational problems: 

1. (All points ECDF) Given N points in Ie-dimensional space. find the number of 

·polnts dominated by each. 



2. (ECDF search) Given N points in k-.dimensional space, with preprocessing 

allowed, find r(Z) for a new arbitrary point Z (without adding Z to the data 

structure). 

The all-points ECDF problem is the crucial step in computirig the statistics 

associated with the Hoeffding, Kolmogorov-Smirnov (K-S), and Cramer-Von Mises 

tests [Hollander 73] [Hajek 67]. (These applications are discussed below.) It 
includes the vector maxima problem of [Kung, et al. 75] as a special case, since 

a maximum (In their parlance) Is defined as a vector that is not dominated by 

any other. The reflection Z .. -Z transforms a maximum into a vector whose 

rank is zero, so the ECDF problem can be used to find maxima. 

In · econometrics, it is· common to represent the yield of a combination of 

investments as a point in multidimensional space, and one is interested In 

strategies that are not dominated by any others. By this view, one · step in the 

selection of an investment portfolio Is an EDCF problem. 

The ECDF generalizes the notion of inversions of a permutation. Consider a 

two-dimensional set (xl'YI)' such that the Xi are in increasing ,order. Projecting 

the points on the y-axis and reading them in increasing y-order · induces a 

permutation 1r 1 ,·.·,1rN of {1, ... ,N}. Point I is dominated by point j iff i<j (that Is, 

xl<x j) and 1r1<1r j. (See Figure 1). 
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Figure 1: The connection between domination and inversions. 

The number of points domin.ated by (xi'Yi) is the number of inversions of 1r In 

which i participates. This shows that the ECDF Is fundamentally a discrete 
problem and is . based only on the ranks of the coordinates, not on their actual 

values. The generalization to higher dimensions is· now clear . . let P1' ... 'Ps be a 

collection of permutations of 1, ... ,N. Two integers i,j with l' ~ i,j, . ~ N will be said 

to' form a s-inverslon iff I < j but I follows j in each perrllutation. For example, 

the pair (2,5) is a 4-inversion in the following set: 

453126 561243 631452 531462 
(Because 2 follows 5 in each permutation). 



Determining the number of k-Inversions in which each integer is Involved Is 
equivalent to a (k+1 )-dimensional ECDF problem. 

Finding the number of elements dominated by each member of a general partial 

order must take O(N2 ) time in tl~e worst case but the d'ominance relation we 
have defined is a partial order of a special type -- it is induced by the 
lexicographic product of k linearly ordered sets. This structure will lead to a 
fast algorithm. This algebraic view leads to interesting combinatorial questions, 

such as characterizing those posets that are isomorphic to a set of points In k­
space under the dominance ordering. 

The ECDF is, In a very · powerful sense, an excellent estimator of the 

underlying population CDF, which we often wish to determine. In order to be able 

to use this function we must be able to compute Its value r(Z) 'at an arbitrary 

point Z. A typical application is the multivariate Kolmogorov-Smirnov procedure 

for testing the hypothesis that two samples have come from the same underlying 

distribution. The test statistic K is equal to the maximum absolute difference 

between the ECDFs of the two samples. To compute K it suffices to evaluate 
the ECDF of sample A at each of the points in sample B, and vice-versa. This 
entails a search for each point of B to determine how many points in A It 
dominates. Below we discuss a number of search algorithms that illustrate 
various time-space tradeoffs and concentrate on one that runs in O(log2N) time 
:On two dimensions) and requires only O(N log N) spa·ce and preprocessing time. 

2. ECDF Algorithms 

It is easy to solve the all-points ECDF problem in O(kN2) time by comparing 

each of the N points against every other point to determine how many It, 

. dominates . . : While In a general partial order of N-vectors this would also be a 

trivial lower · bound on the time needed to compute the number of vectors 

dominated by each, we have seen that the dominance ordering is of special 

form. In the present case we will use this structure to improve on the naive 

algorithm. 

We employ a multidimensional divide-and-conquer scheme similar to the one 
described in [Bentley 76a] and [Bentley 76b], which at each level of recursion 

reduces the dimension of the problem by one and the number of points by a 
factor of two. 

Theorem 1: The all-points ECDF problem can be solved In O(N logk-1 N) time In 

the worst case. 
Algorithm: 

1. Let P be a hyperplane, normal to one of the coordinate axes, that divides 

the collection of points into two subsets A and B, each containing N/2 



points. Such a plane can be found in O(N) time by choosing P to pass 

. through a point that has med.ian first coordinate. 

2. Recursively solve the ali-points problem on subsets A and B. That Is, for 

each point in A we find the number of points in ~ that It dominates, · and 

similarly for B. If T(N,k) is the time required to solve the· entire problem, 

then the solution of these two subproblems ~an be accomplished In time 

2T(N/2,k). 

3. Without loss . of generality, let A be the set of points whose first coordinate 

does .not ex'ceed that of any point of B. Note that the ECDF values 

. obtained for set A in the recursive subproblem solution are the correct final 

values, since P was constructed so that no point of A can dominate any 

point of B. It remains only to update the B values to reflect the number of 

points in A that are dominated. 

4. We now observe that each point of B already dominates each point of A In 

at least ~ coordinate, namely, the coordinate whose axis is normal to the 

dividing plane P. This coordinate can thus be removed from further 

consideration in forming the corrected solution for B. The coordinate can be 

eliminated without changing any dominance relations by merely projecting all 

of the points onto P, which is a subspace of one lower dimension. This 

projection can be accomplished in O(N) time If pointers are used instead of 

copying lists of coordinates. (Otherwise, O(kN) time would be required.) 

The · projected subproblem can be solved in time T(N,k-1). Note that the 

"subproblem" Is of a somewhat special form, as we are only interested In 

learning for each point of B the number of points in .A that it dominates. 

5. Combining the subproblem solutions obtained in steps 2 and 4 can be 

accomplished in O(N) time, so the recurrence relation for T is 

T(N,k) = 2T(N/2,k) + T(N,k-1) + O(N) 

'By sorting the points In advance on each coordinate we may make use of 

the fact that T(N,2) = O(N log N) [Shamos 77] to' obtain ' 
, T(N,k) = O(N logk-1 N) + O(kN log N) 

In , ~nl,lsual circumsta~ces, the number of dimensions may greatly . exceed the 

number of sample ·.points, N, in · which case the above recursion is inefficient 

b~causelts ·.effort i,sconcentrated on reducing the number . of points in the 

. ~ubproblems . . If~ >N4, 'the .method of [Yao 74], which explicitly constructs the 

. matrix·' of the partial 'order,canbe used to compute the ECDF in O(kN2 /log N) 

time'; If only the vector maxima are desired, a slight modification of the above 

algorithm 'achieves theO(N logk-2N) performance attained (for k>2) in [Kung 

75]. It has been shown [Bentley 77a] [Bentley 77b] that this modified maxima 

algorithm runs in O(N) expected time for a very wide class of input distributions. 



3. ECDF Searching 

Once the all-points problem has been solved, we are in a position to arrange 

the solution into a data structure that will make it easy to determine the number 

. of points dominated by a new point X. The most simple algorithm requires no 

preprocessing at all and operates by comparing X to each of the N k-dim·enslonal 

sample points. This obvious approach requires O(kN) initialization time, O(kN) 

query time, and O(kN) storage. It Is somewhat surprising that the query time can 

'be significantly reduced with no asymptotic increase In the storage used. The 
method of · k-d trees [Bentley 75] achieves O(kN 1- 1 / k ) search time after 

O(kN log N) preprocessing, but still needs only O(kN) storage [Lee 77]. 

It is possible to perform ECDF searching extremely rapidly if sufficient storage 

and preprocessing time are available. The method Is based on · the ·fact that 

there exist k-dimensional rectangular parallelepipeds within which the number of . 

dominated points remains constant. We may easily see why this is true. 

Consider some point Z (not in the original set) for which r(Z) = 5 and imagine 

moving Z parallel to some coordinate axis. (Refer to Figure 2.) 

/\ 0 

0 

0 

0 

0 

0 

0 

1 2 3 

0 1 2 

0 1 2 

0 1 1 

0 1 1 

0 1 1 

0 0 0 

4 5 

3 4 

3 3 

2 2 

2 2 

1 1 

0 0 

6 

5 

·4 

3 

2 

1 

0 
... 

Horizontal and vertical lines 
are drawn through each 
sample point. Within each of 
the resulting rectangles the 
number of. dominated points 
(and hence the ECDF) is 
constant. 

Figure 2: The ECDF is constant within rectan$ular regions. 

The value of r(Z) cannot change until Z passes the projection of some point of 

the original set on that axis. This Is true of each coordinate. If we were to 

construct hyperplanes normal to the coordinate axes at each sample point (a 

total of ·Nk hyperplanes), these would divide space into (N+1)k rectangular 

regions within each of which the function r is constant. Such a structure can 

readily be queried In O(k log N) time by a binary search along each coordinate, 

so we have . 

Theorem .2: ECDF searching can be performed in O(k log N) time, with 

O(Nk + kN log N) storage and preprocessing time. 

The . storage used by this procedure is prohibitive. We propose a data 

structure and search algorithm that nearly achieves O(log N) search time, but 



which lIses less than quadratic storage. The data structure is "isomorphic" to 

the all:-points ECDf algorithm in the sense that it is a tree structure having a 

branch corresponding to each recursive call in the algorithm. The storage 

required by the search procedure and the time used by the ali-points algorithm 

are described by exactly the same recurrence relation. furthermore, the data 

structure for searching can be built conveniently during the solution of the all­

points problem at no asymptotic increase in running time. 

Let ' us first treat the two-dimensional case (refer to figure 3). The 

dividing line L is the two-dimensional instance of the hyperplane P described In 

the ali-points algorithm, and is used to define the first test. Let A be the set of 

N/2 points to the left of line L and let B be the set of points to the right. Given 

a new point Z we want to determine the number of points (In both A and B) that 

it dominates. In a single comparison against L we can determine w'tt,ether Z lies 

in A or in B. If Z lies in A (the diagram ' on the left in-Figure 3) I~ 
cannot possibly dominate any point of S, so we may confine our attention to a 

subproblem of half the size of the original. The recurrence describing this 

situation is just 
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figure 3: ' The two cases of ECDf searching in ~he plane. 

If we learn from the first comparison that Z lies in B then the problem is only 

slightly more complicated (the right diagram in figure 3). We, must find the 

number of points in B that are dominated by Z, which can be done in time T(N/2). 

We then ~dd to that the number of points in A dominated by Z. Since, however, 

the ,x-coordinate of Z is known to be greater than that of point of A, this number 

Is merely the number of points of A that lie below Z. If we project the points of 

A onto L and sort them in advance (as part of the preprocessing) we will be able 

to locate Z in this ordering in O(log N) time by binary search. Thus the 

recurrence that results when Z is in B is 

T(N) = T(N/2) + O(log N) . 



It Is immediate that T(N) = O(log2N), even if the second case arises after each 
comparison. 

The generalization to k dimensions is completely straightforward. The line l Is 

replaced by a hyperplane and the sorted list by a (k-1 )-dimensional ECDF 

search structure. The search time Is given by the recurrence 

T(N,k) = T(N/2,k) + T(N,k-1), T(N,1) = O(log N), 

of which the solution is T(N,k) = O(logkN). The storage requirement of this 

algorithm is easy to analyze in view of Its recursive structure. In two dimensions 

we need to store two data structures on N/2 points and one linear list of length 

N/2. Thus, S(N,2) = 2S(N/2,2) + O(N) = O(N log N). In k dimensions, we have 
S(N,k) = 2S(N/2,k) + S(N/2,k-1) = O(N logk-1 N) . 

The prepro?~ssing time is described by .precisely the same relation, giving · 

Theorem :3: ECDF searching can be accomplished in O(logkN) time, using 

O(N logk-1 N) storage and O(N logk-1 N) time for preprocessing. 

4. Applications 

We now will present some new applications of the ECDF algorithms ' and 

elaborate on some of those presented in the introduction. 

4.1 Range Queries 

An inconvenient but common type of geometric search problem is the range 
query [Knuth 73]. Given a set of N points in the plane, with preprocessing 

allowed, how many lie In the rectangle ' defined by a ~ x ~ band c ~ y S d ? 
Within the framework of the ECDF problem, range searching becomes 

elementary. In · two dimensions, (see Figure 4) we may ' find the 
number of points lying In rectangle ABCD by computing 

ECDF(A) - [ECDF(B) + ECDF(C)] + ECDF(D) 

This is a simple application of the combinatorial principle of inclusion-exclusion. 

We are thus able to respond to a range query by evaluating the distribution 
. function at four points. 

In . k dimension.s We need to evaluate the ECDF at 2k points, but this stili only 

requires O(Jogk~~. time and O(N logk-1 N) storage (or, O(2k 'og N) time and O(Nk) 

storage.) The range query example provides a /ink between the empirical 

distribution function and the empirical density function. The fraction of a set 

contained in a plane region F is a consistent estimator of the probability content 
of that region (the probability density Integrated over F) [loftsgaarden 65]. 
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figure 4: Range searching as an ECOf problem. 

4.2 Kolmogorov-Smirnov Statistic 

, , Because of its intimate relation to the ECOF, we point out an anomaly between 

the K-S one- and two-sample tests. The K-S one-sample statistic is the 

maximum deviation between the ECDf of a finite point set and a given 

hypothetical CDf (which we assume can be evaluated at>~ , single point In 

constant time). · A linear-time one-sample K-S algorithm in one dimension has 

been given by [Gonzalez 77]; It makes use of the fact that any CDf must be a 

monotonic function. ,While the situation in higher dimensions is unclear, the ECDF 

algorithm of thi~ paper can be used to compute the K-S statistic in O(N logk-1 N) 

time; The K-S two-sample statistic is the maximum deviation between the 

ECDfs of two given finite point sets. 

~ Theorem 4: The Kolmogorov two-sample statistic must take O(N log N) time to 

compute, in the worst case. 

P(oof: The K-S two-sample statistic is zero iff the point sets are identical. 

Set equality is shown to require O(N log N) comparisons in [Reingold 72]. 
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Summary 

We ' see that the empirical cumulative distribution function, a ubiquitous 



quantity in statistical analysis, can be computed quickly at the given sample 

points and can be evaluated quickly at other points. The data structure for 

ECDF searching was arrived at directly from the ECDF algorithm itself. The 

problems we have considered Impinge on many others In different applications 

areas, all of which may be solved by the t~chniques developed here . . 
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