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1. Introduction

Divide-and-conquer is one of the most frequently
used methods for the design of fast algorithms. The
most common application of the technique involves
breaking a problem of size NV into two subproblems of
size N/2, solving these subproblems, then doing work
proportional to N to “marry” the partial answers into
a solution for the entire problem; this scheme leads to
algorithms of O(V log V) worst-case time complexity.
In this paper we investigate a similar divide-and-con-
quer technique which can be used to construct algo-
rithms with linear average-case time complexity.

The problem of determining the convex hull of a
set of points in two and three dimensions has pro-
duced a rash of recent papers [4,8,15,16}, all con-
taining algorithms with O(V log ') worst-case per-
formance. That this is optimal follows from the fact
that in the worst case all N points may be vertices of
the convex hull, and since the vertices of a convex
polygon occur in sorted angular order about each
interior point, any convex hull algorithm must be
able to sort [14,8]. If the boundlary of the convex
hull contains very few points, however, this lower
bound does not apply, and a faster algorithm may be
possible. The algorithm of Jarvis 5] runs in time
O(rN), where h is the number of actual hull vertices,

* This research was supported in part by the Office of Naval
Research under Contract N00014-76-C-0829.

1 R.W. Floyd is able to show that Eddy’s algorithm runs in
linear expected time for cert~*n symmetric distributions
(personal communication).

and thus takes advantage of the fact that & may be
small. Unfortunately, if A is not known in advance,
the algorithm may take quadiatic time. Eddy [2] has
developed a hull algorithm analogous to QUICKSORT
that has good empirical performance but also has a
quadratic worst case. ! In this paper we use informa-
tion about the probability distribution of i to sbtain
an algorithm with O(V) expected running time with-
out sacrificing O(V log N) worst-case behavior.

This new-convex hull algorithm leads to linear
expected-time solutions to a host of other geometry
problems that are related to hull-finding. Among these
are deternaining the greatest distance between two
points of a set, the smallest circle enclosing a set, . ud
constructing linear pattern classifiers. Analogous
techniques yield a linear average-case algorithm for
linear programming in two variables.

The divide-and-conquer scheme we use to achieve
the dbove results seems to be a general method suitable
for the construction of fast average-case algorithms,
It achieves fast expected time at the cost of making
only relatively weak assumptions about the under-
lying probability distribution of the inputs. Whereas
many fast average-case algorithms aisplay poor worst-
case behavior (QUICKSORT, for example; see [13]),
those that we give in this paper have optimal worst-
case performance. These algorithms are not merely
of asymptotic interest — they are faster than previous
methods even for very small problem sizes (V > 40,
for example).

In reading this paper, one must be very careful to
keep in mird the distin~tion between worst-case and
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sverage-case analyses. For example, while any convex
hull algorithm must run in time Q(N log N) for some
inputs 2, we will give an aigorithm with linear expected
running time (for some distribution of inputs). Notice
that there is no contradiction between a worst-case
lower bound of £3(Vlog N) and an average-case upper
bound of OV).

Basic results from stochastic geometry are described
in Section 2; these results form the basis of our p-obe-
bilistic analysis of the algorithms presented. In Sec-
tion 3 we give a fast expected-time algorithm for
finding convex hulls in the plane and investigats in
detail the schema used in the slgorithm. Section 4
thows how this method can be applied to other prob-
lems and used as a building block for developing addi-
tional fast expected-time algorithms. Section S con-
tains suggestions for further work along these lines.

2. Results from stochastic geometry

Stochastic geometry deals with the properties of
random sets of paoints, lines and other geometric ob-
jects and is an essential tool for analyzing the average
case of geometric algorithms. Many phenomena in
geometrical probability are counter-intuitive and dif-
ficult to explain without the tools of probabilistic
measure theory. For example, the statement, “Choose
N points ai random in the plane”, is meaningless
without a precise specification of distribution from
which the points are to be chosen. Furthermore, not
all conceivable distributions satisfy the axioms of
probability. Points can be chosen uniformly in the
plane only from a set of bounded Lebesgue measure
{6]. so the intuitively attractive notion of a uniform
random selection from the whole plane must be dis-
carded.

The problem of determining AQV), the expected
number of vertices of the convex hull of N points,
has received a good deal of attention [1,3,9,11};a
summary of this work may be found in [12}. We now
quote several results that will be used later in analya-

ing our algorithms:

2 Wo sy that fIN) = Wg(V)) if fIN)EN) & bounded bekow
by some nonzero constant Caa N = =,

Febreary 1971

Theorer: 1 (Rényl and Sulanke [11]). I N poinss
are chosen uniformly and independently at random

in e picne from a convex rgon, thenas N = =,
AN) = (23)y +logeN) + O(1) .
{7 = Ealer’s constant)

Theorem : (Raynaud 19)). If N points ere chosen
wuniformly end independently a: rendom from the
wrerior of & k-'ly ‘ensionsl Rypersphere, then a3
N> o fIN), the #:pected mimber of faces . the
convex hull, s ghen azymg toticelly by

AN) = OV~ 1N 1)y

Since with probability one each face of the hull
is simplicial and thus is determined by & vertices,
Theorem 2 implies that
R(N) = O(N'/3), for points chosen uniformly i a

circle, and
AQV) = O(NV'/2), for points chosen uniformly in a

sphere.
Thus in any dimcenasion, for points in a hypersphere,
the expected aumber of hull vertices is bounded
above by N'®, for some p < 1.

Theorem 3 (Raynaud [9]). If N points are chosen
independently from a normal distridution in k dimen-
sions, then as N - o the agymplotic dbehavior of

} N)is given by

}N) = O(Qog M*-1¥2)

A ussful connection can be established between
the stochastic properties of convex hulls and the ex-
pected number of maximal vectors in a random set.
A maximel vector is one that is not less than any
other in all components. Under very general condi-
tions the expected number of maximal vectors in a
st is quite small:

Tieorem 4 (Kung, Schkalnick, Thompeon (7)) If N
k- ‘mensional vectors are chosen such that their com-
P v-ents ave distridbuted independently, then AN, k),
th  expected mumber of maximal vectors, is bounded
:

AN, D<Qog M for N> 8.
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Note the* a rertex of the convex. hull of a finite
k-dimer : onui set is musima: for some assignment of
p.as and e us signs to all coordinates of its points.
This implies that for distrloutionas satisfying the inde-
pendence rssumption of Throrem 4, the expected
number of vertices of tha convex hull is bounded by

EQ) < 2*(og, V)* ! = 2(2 log M.

The multivariate normal of Theorem 3, the multi-
variate exponential, and the uniform distribution over
2 ‘aypercube all satisfy the indep ndence-0i-compo-
nents assumption. The qualitative behavior of the
huils of random sets may be understood intuitively
a8 follows: for unifonr: sampling within any bounded
figure F, the hull of . random set will tend to assume
the shape of the boundary of F. If F is & polygon,
points accumulating in the *comers” will cruse the
resulting hull to have very few vertices. Because the
circle has no corners, the expected number of hull
vertices is comparatively high. [t is reasonable that
only scme small fraction of the sample points should
survive as hull vertices, but in all of the above theo-
rems the order of AQY) is ‘ublinear. Informally we
may account for this by roting that the hull is ¢
manifold of strictly lower o nsion than the s:t
from which the points are bet .5 chosza. If this is not
true, we may have A(V) = V) Forexam; ¢ (N
points are selected unifors b o Lie boanc .y of a
circle, then AQV) = N. As we .. e in the next
section, the only assumption & dut <he distnibution
of points that needs to be made in o::Jer to obtain a
linear expected-time algorithm is that 4:.V) = O(NP),
for some p < 1.

3. Convex hulls in the plane

The fast convex hull algorithm is easily desc:ibed
a8 a recursive procedure: If NV, the number of given
points, is iess than some constant C, then the proce-
dure calculates the hull by some straightforward
method and returns. If N ix large, though, the procs-
dure first . ‘ides the N poin®s into two subrets of
approxims: . |7 N/2 points zach by a methoc which
ensures Ly ine resulting 8:>probloms are random
It then finds the coavex hulls >f the random subj - ¢
lema recurdvely, which will take expected time
27(N/2), since: the subproblems are of the same fo:
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as the original. The result of each of the recursive
calls is a convex polygon whose expected number o.
vertices is O(MP), with p < 1. The hull of the given
set is now just the hul: of the union of the hulls found
in the subproblems. Shamos {15] has given an algo-
rithm to find the hull of the union of two convex
polygons in tiv; -~ proportionel to the total number of
vertices of botl» Ve n:ay use this algorithm to merge
the results of ti  subprok..ciuis in expected time
O(NF). The ave a8 ruaning time of this algorithm
thus obeys the “ecurrence

TQV) = 27(N/2) + ONP) )

whose solution, for p < 1, is TQV) = (V. Thus we
have shown that the algorithm runs in linear expacted
dme for point sets satisrying the assumpt:ons made in
Seciion 2.

Ve assumed above two important properties about
the division step of the divide-and-conquer algorithm:
that it can be accomplishied in cunstant time and that
the points in the subproblemns obey the sume proba-
' ity distribution as do the origina' poit:ts. A division
sep with these properties can easily be i n:1emented
951 & RAM by =toring the rsints in a twe by V array
¢ cartesian coordinate. £ack point is init’ ly as-

« gred & rand.vm locad mn in tre array and o subset of
tite points is representsG as a pair of in*-gers which
define the left and right endpoints of a segment of
the array. Divisic'1 into further subset: . .a he accom-
plished by taking the arithmetic mean - the erd-
points as defining two new segments, ¢ :.; rote that
the division preserves random:iess. In ivapleiner ting
this algorithm recursively, it . crucial 1o pass oily
poin‘ers in the subroutine calls. If entire subprcblems
are passed, ecuation (1) no longer apglies and an
Nlog N algorithm will result, no matter how few
rioin.s are on the convex hull.

Let us now note the features of the above algo-
rithin that give it linear expected time. Firs:. the
vxpected size of the output s small. Second, solutions
+» tne random subproblems can be masried quickly
1o form a solution to the total problem. Ncte that
the algorithm also has optimal worst-case perfor-
mance. Since the largest hull that can be returned by
a subproblem is of size N, we always have

TV) < 2T(N/2) + ON) , ()
whose solution is (V) € O(N iog N). Ve can use
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this algorithm as a paradigm by which to create others
with linear expected time and optimal worst-case
behavior.

4, Further examples

The first simple extension of the algorithm of
Section 3 gives a linear expected-time algorithm for
the convex hull of a set of points in three dimensions.
Preparata and Hong, in an important recent paper [8],
have shown that the hull of the union of two disjoint
convex three-dimensional polyhedra can be found in
time that in the worst case is only linear in the total
number of vertices. Their algorithm makes no essen-
tial use of the fact that the polyhedra are disjoint and
can be readily modified to include the case in which
the intersection is nonempty. If the points are drawn
from a distribution satisfying the assumptions of
Section 2, then the recurrence relation (1) applies
and we again have a linear expe«ted-time algorithm.

Many geometric algorithius are based on finding
convex hulls. For example, the diameter of a set
(distance between its two farthest points) is always
realized by two vertices of the hull. Furthermore,
these points can be found in linear time (in two
dimensions) once the convex hull is available [14].
We thus immediately have a linear expected-time dia-
meter algorithm. Sumewhat more complicated is the
problem of determining the smallest circle enclosing
a plane set of points. This is a classical problem with
an extensive literature. An O(NV log V) worst-case
algorithm is given in [16]. It is elementary to show
that the two or three points determining this circle
are vertices of the convex hull. If we first find the
hull with a linear expected-time algorithm, the time
required for the remaining step (finding the circle) is
not linear in the number of hull vertices. If E(h) is the
expected number of hull vertices, we need to know
E(h log h) to complete the analysis. Note that we
always have 1 <h < N and

N
E()=27 ip,
i=1

where p; is the probability that & = i. Now, since
logi<logN,
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N
E(rlogh) = ;‘; Glogi)p;

S(ogME®).

Thus, if EG) = O(VY), p < 1, then E(h log h) = O(N9),
for some g < 1. We may therefore find the smallest
circle enclosing a plane set in linear average time.

In general, determining expectation values of func-
tions of A is a difficult problem and we often must be
satisfied with upper bounds. The largest area triangle
determined by three points of a set of N points in the
plane can be found in time that is quadratic in the
number of vertices of the huil [15]. In order to »e
able to calculate the average-case behavior of the algo-
rithm, we must compute E(1?). If EQr) = Q(NP), then
certainly E(h?) < O(V*!). Applying Theorem 2, we
may find the largest determined triangle in O(V%/3)
expected time in two dimensions, and this bound is
highly pessimistic.

Theorem 4 leads directly to a linear expected-time
algorithm for fir.ding the maxima of N k-dimensional
vectors whose coordinates are chosen independently.
It is only necessary to remark that the marriage step
of the divide-and-conquer algorithm finds the com-
mon maxima of two subproblems of size N/2, each of
which has very few maxima, on the average.

We often observe that the performance of an algo-
rithm is much better than its worst-case lower bounds
would lead us to expect; the Simplex algorithm for
linear programming is a striking example of this
phenomenon. Fast as Simplex is, however, it is known
not to be optimal for problems with small numbs.s
of variables, and a divide-and-conquer approach can
be used to advantage [17]: the feasible region of a
two-variable problem is the intersection of the half-
planes determincd by the linear constraints. If we
denote the i hal-plaae by H;, then we want to form

H NHyO . .NHy.

Since the intersection operator is associative, this may
be rearranged as

HyN ... nHle) N (HN/2+1 N..NHy).

Each term is an intersection of N/2 half-planes, and is
thus a convex polygonal region of at most N/2 ver-
tices. The intersection of two such figures can be
found in linear time at worst [14], so equation (2)
describes the worst-case behavior of the algorithm.
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We may ihus find the intersection of NV half-planes in
O(V log N) time. If many of the half-plenes are redun-
dant, though, the final intersection will have ve:y

few vertices, and we may take advantage of il ie!
to develop a better algorithm. Suppose that K is a
bounded convex region of the plane that contains
another convex region Ky. If NV lines L; are drawn
independently and at random to meet K but not Ky,
and we define H; to be the closed half-plane bounded
by L; that contains K, consider E(v), the expected
number of vertices of the intersection of all the Hj.
Preliminary results were obtained by Rényi and
Sulanke [10] and Ziezold {18] has shown by duality
that E(v) is of the same asymptotic order as the ex-
pected number of points on the hull of a set of N
points drawn uniformly within K ;. If K shrinks to a
point, then E(v) approaches the constant 7%/2. In any
event, under fairly conservative assumptions we will
have E@v) = O(N?), p < 1, and a linear average-case
algorithm for intersecting N half-planes results. This
leads immediately to an O(N) expected-time algorithm
for linear programming in two variables and for find-
ing the kernel of a polygon {14].

5. Suggestions fur further work

It is natural to try to extend the results of this
paper to higher-dimensional problems in geometry
and to other problem domains. The limiting factor,
however, is not the technique but our inadequate
knowledge of the properties of random sets and our
inability to develop efficient merge procedures to
make divide-and-conquer productive. As an example,
no method is now known to find the hull of the union
of four-dimensional polyhedra in less than quadratic
expected time. (Quadratic time is required in the
worst case. See [8].) Likewise, the expected value of
the square of the number of vertices of &:s hull of N
points chosen uniformly in a four-dimensional hyper-
sphere in not known to be less than O(V®/%). We are
thus unable to give an algorithm for the four-dimen-
sional convex huil whose expected running time is
provably less than O(V®/5).
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