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1. Introduction 

Divide-and-conquer is one of the most frequently 
used methods for the design or” fast algorithms. The 
most common application of the technique involves 
breaking a problem of size N into two subproblems of 
size N/2, solving these subproblems, then doing work 
proportional to N to “marry” the partial answers into 
a solution for the entire problem; this scheme leads to 
algorithms of O(N log N) worstsasc time complexity. 
In this paper we investigate a similar divide-and-con- 
quer technique which can be used to construct algo- 
rithms with linear average-case time complexity. 

The problem of determining the convex hull of a 
set of points in two and three dimensions has pro- 
duced a rash of recent papers [4,8,15,16], all con- 
taining algorithms with o(N logA!) worst-case per- 
formance. That this is optimal follows from the fact 
that in the worst case all N points may be vertices of 
the convex hull, and since the vertices of a convex 
palygon occur in sorted angular order about each 
interior point, any convex hull dgorit.?m must be 
able to sort [ 14,8] e If the boundary of the convex 
hull contains very few points, however, this lower 
bound does not apply, and a faster algorithm ma:{ be 
possible. The algorithm of Jarvis [S] runs in time 
Q&N), where it is the number of actual hull vertices, 

* This research was supported in part by the Office of Naval 
Re~~ch under Contract NOM3l4~76-C-0829. 

1 R.W. Floyd is able to show that E,ddy’s dg6rithm runs in 
linear expected time for cert% symmetric distributions 
(personal communication). 

and thus takes advantage of the fact that h may be 
smah. Unfortunately, if k is not known in advance, 
the algorithm may take quadratic time. Eddy [2] has 
developed a hull algorithm analogous to QUKX§ORT 
that has good empirical performance but atso has a 
quadratic worst case. * In this paper we use informa- 
tion about the probability distribution of h to obtain 
an algorithm with O(N) expected running time with- 
out sacrificing O(N log N) worst-case behavior. 

This new convex hull algorithm leads to tinear 
expected-time solutions to a host of other geometry 
problems that are related to hull-finding. Among these 
are determining the greatest distance between two 
points of a set, the smallest circle’enclosing a set, ild 
constructing linear pattern classifiers. Analogous 
techniques yield a linear average-case algorithm for 
linear programming in two variables. 

The divide-and-conquer scheme we use to achieve 
the above results seems to be a general method suitable, 
for the construction of fast average-case algorithms, 
It achieves fast expected time at the cost of making 
only relatively weak assumptions about the under- 
lying probabifity distribution of the inputs. Whereas 
many fast average-case algorithms display poor worst- 
case behavior (QUICK:SORT, for example; see [ 13]), 
those that we give in this paper have optimal worst- 
case performance. These algorithms sre not merely 
of asymptoiic interest - they are faster than previous 
methods even for very small problem sizes (IV > 40, 
for example). 

in reading this paper, one must be very careful to 
keep in mind the distinrtion between worst-case and 
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murapcm andyaw. For emmpb, whiIe any camx 
huiIdgwithmmustrunintimeS&N~N)foraome 
*A= ldlgkm~thmwithlilKtuaxpecdsd 
nutnina time (for some d&tribution of inputs). Notim 
tlut there ir no contmdkdon betwean 8 wontsue 
lowetboundofSZQW~A’)8nd8n8ve~upper 
boundd0#. 

B8sic realIt8 from stochlrtic geometry am daabod 
inSection2;thcsaresulbformthebrrbofourp+a. 
bilistic wlysis of the 8lgorithma pre8ented. In Sw 
tion 3 we give 8 fast expected-time 8@&thm for 
findiryconwhulbInthepl8wndinvut&teb 
d&8ilthW&Jln8U8lIdlf0h4A@hm.SOCdon4 
ahow8howthismethodc8nbe8pplIedtootherprob= 
lean8 md wed IS 8 bullding block for developing 8ddk 
tionrl fast expected-time algorithms. Sect&ma 5 cuak 
t8ins su*ticns for further work 8lq the38 line& 

stoch8atic @wmary de& with the propartia of 
mndcxn sets of p&ts, lines urd other mtric ob. 
jectsurdirmeasentWoolforMJydnlthe8ve~ 
c8se of guomehic 8lgorithm& M8ny phenomenr in 
g8ometlic8l prob8bility M counter-intuitivd 8nd dir* 
&Uh to explrin Without ti took Of pmb8buhtrc 
mea theory. For tutam*, the strtement, “Clmom 
~pdnh8rr8ndomintheplura”,bme8ninlkr, 
without 8 predw sp8ciflc8tion ofdistribution from 
which the points ~IU to be chosen. Furthermom, not 
rU conceiv8ble distributions utisfy the axioms of 
probrbility. Points c8n be choa8n unifomdy in the 
@n43 Only from 8 Mt Of bOUItd8d Ldb88@BC mduw6 
[6 ] , So the ilktUitiVC&’ 8ttnctiVe not&on Of 8 uniform 
mndom selection from the whole plum must be dis 
CudHI. 

The problem of determ~&Q3), the expected 
number of wrtica of the cawex hull of N pdntr, 
hW@UJiWd8lpoddWiOf8ttenti~ [1$,9,11);8 
8Umm8ryofthisworltm8ybefoundin[I2).Wenow 
quoteaever8ire8&8th8twiubeumdl8terh8n8lyB 
fnlour~thms: 
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Note thr’ 8 wtcx of tke OQ~BW. huil cf a iJni& 
&&nerIr anti set ir m&Am& f@l suw assipmnt of 

piur8llb dw8~ttorll~~&utiec OfI!¶points. 
TMa implica that fw diat?“butio~ trt&wng the Me- 
p@nW ~rs~ption of ‘J’Morem 4, &ho cxpcctcd 
m&et of vertices of tba convex hull ;u bounded by 

IF@)< 2*(Jo&.*-* - 2(2 Jo&A+’ . 

lh mdtivuiate normal of Theorem 3, the multi= 
tite exponendxl, and the uniform distribution over 
a kypcrcubc rl\ satiafy the Ladcpc ndcnca-okomp 
lltnts Maumptkn. The qualltrtivc bchuvior of the ’ 
huIla of rxndom sets may be understood intuitively 
a I- fw unifovm sampling within any bounded 
~~,,h~of!~nndomsetwilltendtorssume 
the shape of the boundary of F. if F is a polygon, 
points accumul8tin~ m the “Comers” will WUW the 
muldng huiI to have very few vcttkcs. Because the 
circle haa no comers, ~Jw expc;tcd number of hull 
vcrtic~ h comparetJveJy high. it Is reasonable that 
onJy lome err&J fraction of the sampIe points shouid 
aurvivc as hull vertices, but in all of the above theo- 
rums the osdar of A&‘) is 8 subhnear. 1nformalEy wt? 
may account for thJa by aoti~g &et the hull is o 
manifold of &J&y tower c& UBJ~~ than the we 
from U&h the point¶ UC kib I>; &Wn. Jf t& b 3Ot 

true,wemayhave~Q)1=c);-kj f~exarn~ ! .iiN 
pointsare~tedunifomLh~o.~ trekut -/ofa 
circle, then rcgv) - fv. As we &‘k *.; irl the next 
sectioa, the onJy xsumption A. Jut ?hc dirtnbution 
of p&u &at needr to be made i.u o. :Icr to obtain a 
linexr expected-t&ne elgorithm is that I::J) = Q(P), 
forsomep<l. 

3.CotwxhaltaCtkplme 

‘Ihe fiia convex huJJ al~~orithm is easily dcsc:ikd 
Y 8 recursJ* procedure: Jf IV, the number of given 
poinh, fa 4es.s then 8omc conWnt C, then the pm 
durc caki4atao the hull by some strrightforwrni 
method and returns. If N k !arge, though, the procc- 
ckue Arat .ti %lec &e N p&(s into two subfets: of 
qrpFcufaan. ‘. I,$ N/2 points :“ach by I methcti. which 
etstxee tzs 8s~ teauJ@~~ ~&problem8 M rxndom 
It &eat &nds the coarwt hulia 9 the random attbj t 
lua8mmtdvdy,whkhwiEt8keexpeWdtime 
~j&M24itheubploblsratareofdma8mcfW. 

as the originaL The nsult of each of the recursive 
calls is a convex polygon whose expected number o 
wztkcs is O(No), w&h p < 1. The hull of th.2 @en 
set is now just the hti of the union of the hulls found 
in the subproblems. Shames [ 1 S] has given an a& 
rfthm to find the hull Gf the union of two convex 
polygons in tkt ” prop1 tionel to the total number of 
vertices of botl? ‘4c n:ay WC this algorithm to merge 
the results of ti crlbpr&,,tiL:ls in expected time 
o(N*). ‘!%c aW @? ~anircg time of this algorithm 
thy obeys the -erurrcn~ 

m32aN2)+0@9, (1) 

whose sdution, for p < 1, is Tvv) = (YNL Thus we 
have shcwn that the algorithm runs in linear expected 
Ymz for point sets satiiying the assumpttons made in 
Section 2. 

WC lrwumd above two important pro:)erMes about 
the division step of the divide-andtonqur?r algorithm: 
ihrt it can be accomplishce in cvnstant time and that 
the points in the subproblems obey the rWrrne proba- 
rl’ity distribution as do the origins! pohts. A division 
.~cp with thcsc proportics can easily be i n:aemcnted 
3;i a TUM by *to&g the I- Ants in a tw< by V array 
c’ Y i*artcJan coordinate.,. Each point is kit: Iy as- 
* pad a rand,.n locati m in tise array and L subset of 
tite points is rcgif_sent‘;_d as a pair of’ in*>:gcrs which 
define the left an ;I right endpoints of a ~gmcna of 
the array. Dlvisicv into further subs& :.A PC sccom- 
plishctd by taking the arithmetic mean “^ the crtd- 
points as deftnmg two new segments, e’ 2.; note that 
the division preserves randomless. In i;.~ple~ncr ting 
this 3lgorithm recursively, it ,z; crucial 1.) pas 0; tly 
poin!crs in the subroutine calls. JC entire subprr blems 
are Fessed, ccrlation (1) no lonsr apylics and an 
A ioqN algorithm will result, no matter how few 
~~oin.s a.re on the convex hull. 

Let us now note the featurcs of the above algo- 
nthm that giw it linear expected time. Firs!. the 
expected size of the output :s small. Scconti, solutions 
.s J we random subproblems fan be married quickly 
10 form a solutior, to the total problem. Note that 
the &orithm rrlso has optimel worsttasc pcrfor- 
mmcc. !&cc the largest hulJ that can be returned by 
a subproblem is of size N, we always have 

2739<2R?W)+W, (2) 

~oaosdutianisTvJ)<o(NiogN).V~ecnnusc 
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this algorithm as a paradigm by which to create others 
with linear expected time and optimal worst-case 
behavior. 

4. Further examples 

The first simple extension of the algorithm of 
Section 3 gives a linear expected-time algorithm for 
the convex hull of a set of points in three dimensions. 
Preparata and Hong, in an important recent paper [S], 
have shown that the hull of the union of two disjoint 
convex three-dimensional polyhedra can be found in 
time that in the worst cast is only linear in the total 
number of vertices. Their algorithm makes no essen- 
tial usi: of the fact that the polyhedra are disjoint and 
can be readily modified to include the case in which 
the intersection is nonempty. If the points are drawn 
f’rom a distribution satisfying the assumptions of 
Section 2, then the recurrence relation (1) applies 
and we again have a linear exFe:.::ed-time algorithm. 

Many geometric algorithms are based on finding 
convex hulls. For example, the diameter of a set 
(distance between its two farthest points) is always 
realized by two vertices of the hull. Furthermore, 
these points can be found in linear time (in two 
dimensions) once the convex hull is available [ 141. 
We&us immediately have a linear expected-time dia- 
meter algorithm. Somewhat more complicated is the 
problem of determining the smallest circle enclosing 
a plane set of points. This is a classical problem with 
an extensive literature. f%3 O(NlogN) worst-case 
algorithm is given in [ 161. It is elementary to show 
that the two or three points determining this circle 
are vertices of the convex hull. If we first find the 
hull with a linear expected-time algorithm, the time 
required for the remaining step (finding the circle) is 
not linear in the number of hull vertices. If E(h) is the 
expected number of hull vertices, we need to know 
E(h !og h) to complete the analysis. Note that we 
always have 1 < h < AJ and 

N 

E(h) = c ipr , 
i=l 

where pi is the probability that h = i. Now, since 
log i < log Iv, 
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E(?l logh)= c (ilogf-)pj - - 
t=i 

Thus, if E@) = O@‘), p < 1, then E@ log h) = O(JV), 
for some (I < 1. We may therefore find the smallest 
circl!e enclosing a plane set irr linear average time. 

In general, determining expectation values of func- 
tions of h is a difficult problem and we often must be 
satisfied with upper bounds. The largest area triangle 
determined by three points of a set ofl\r points in the 
plane can be found in time that is quadratic in the 
number of vertices of the huil [ 1 S] . In order to he 
able to calculate the average-case behavior of the algo- 
rithm, we must compute E(?z*). If E@) := O(A!J”), then 
certainly E(h*) G O(V+l). Applying Theorem 2, we 
may find the largest determined triangle in 0(YV4’3) 
expected time in two dimensions, and this bound is 
highly pessimistic. 

Theorem 4 leads directly to a linear expected-time 
algorithm for fuJing the maxima of J/ &dimensional 
vectors whose coordinates are chosen independently. 
It is only necessary to remark that the marriage step 
of the divide-and-conquer algorithm finds the com- 
mon maxima of two subproblems of size N/2, each of 
whiclh has very few maxima, on the average. 

Wje often obsepe that the performance of an a& 
rithm is much better than its worst-case lower bounds 
w&d lead us to expect; the Simplex algorithm for 
linear programming is a striking example of this 
phenomenon. Fast as Simplex is, however, it is known 
not to be optimal for problems with small numbc,s 
of variables, and a diyride-and-conquer approach can 
be used to advantage [ 171: the feasible region of a 
two-variable problem is the intersection of the half- 
planes determine11 by the linear constraints. If we 
&note the ifh haLpla,le by Hi, then wle want to form 

Since the intersection operator is associative, this may 
be rearranged as 

Each term is an intersection of N/2 half-planes, and is 
thus a convex polygonal region of at most N/2 ver- 
tices. The intersection of two such Qures can be 
found in linear time at worst [ 141, so equation (2) 
describes the worst-case behavior of the algorithm. 
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We may thus find the intersection of N half-planes in 
aNlog N) time. If many of the half-planes are redua j 
dant, though the final intersection will have vere’y 
few vertices, and we may take advantage of dti, I,c: 
to develop a better algorithm. Suppose that Ke is a 
bounded convex region of the plane that contains 
another convex region X1. If 3v lines Li are drawn 
independently and at random to meet Ke but not Kt, 
and we define Hi to be the closed half-plane bounded 
by Lt that contains Kr, consider E(u), the expected 
number of vertices of the intersection of all the Hi. 
Preliminary results were obtained by Renyi and 
Sulanke (lo] and Ziezold 1181 has shown by duality 
that E(u) is of the same asymptotic order as the ex- 
pected number of points on the hull of a set of N 
points drawn uniformly within Kr. If K1 shrinks to a 
point, then E(u) approaches the constant n2/2. In any 
event, under fairly conservative assumptions we will 
have E(u) = O(w), p < 1, and a linear average-case 
algorithm for intersecting N half-planes results. This 
leads immediately to an O(N) expected-time algorithm 
for linear programming in two variables and for find- 
ing the kernel of a polygon [ 141. 

5. Suggestions fur further work 

It is natural to try to extend the results of this 
paper to higherdimensional problems in geometry 
and to other problem domains. The limiting factor, 
however, is not the technique but our inadequate 
knowledge of the properties of random sets and our 
inability to develop efficient merge procedures to 
make divide-and-conquer productive. As an example, 
no method is now known to fmd the hull of the union 
of four-dimensional polyhedra in less than quadratic 
expected time. (Quadratic time is required in the 
worst case. See [8] J Likewise, the expected value of 
the square of the number of vertices of 2.~ hull of N 
points chosen uniformly in a four-dimensional hyper- 
sphere in not known to be less than O(Na/‘). We are 
thus unable to give an algorithm for the four-dimen- 
sional convex hull whose expected running time is 
provably less than 0(Na/5). 
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