
IMAGE UNDERSTANDING 

Proceedings of a Workshop 
held at 

Pittsburgh, Pennsylvania 
November 14-15, 1978 

Sponsored by the 
Defense Advanced Research Projects Agency 

Science Applications, Inc. 
Report Number SAI-79-814-WA 

Lee S. Baumann 
Workshop Organizer and 

Proceedings Editor 

This report was supported by 
the Defense Advanced Research 
Projects Agency under DARPA 

Order No. 3456, contract No. MDA903-78-C-0095 
mom tored by the 

Defense Supply Service, Washington, D.C. 

APPROVED FOR PUBUC RELEASE 
DISTRIBUTION UNLIMITED 

The views and conclusions contained in this document are those of the authors and should not be interpreted as 
necessarily representing the official policies, either expressed or implied of the Defense Advanced Research 
Projects Agency or the United States Government. 



127 

ROBUST PICTURE PROCESSING OPERATORS AND THEIR IMPLEMENTATION AS CIRCUITS 

Michael Ian Shamos 

Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213 

ABSTRACT 

The increasing use of s atellites in image acquis

ition has made real-time data compression and summary 

essential. To reduce bandwidth and alleviate the 

load on land-based computers it is desirable to per

form as much picture processing as possible via LSI 

circuitry aboard the satellite. Such circuits must 

be able to deal with a wide variety of images and 

must exhibit a high degree of reliability. In this 

paper we use some results from the theory of selec

tion networks to produce a family of robust image 

smoothing operators suitable for LSI implementation. 

The circuits are (1) decomposable into small func

tional units, (2) easily testable, and (3) statist

ically insensitive to spikes or noise in the data. 

1. Introduction 

(The entire problem treated in this paper was 

suggested by Prof. Raj Reddy.) One technical diffi

culty in current image processing is that resolutions 

are so high that we literally are unable to see the 

forest for the trees. It is important to be able to 

"defocus" minute details to become aware of the 

larger obj ect of which they are a part. A separate 

problem is to compress or summarize the image to 

reduce the telecommunications burden. The encoded 

picture will then be reconstructed on the ground 

and it is crucial to extract statistics that suffice 

to perfonn this task. Our purpose here is to suggest 

a new method by which this defocusing and compres 

sion may be accomplished. 

2. Median Smoothing 

In what follows we will assume that an "image" 

consists of a rectangular array of grey-scale 

intensities. Our operators will operate on n-by-n 

square submatrices of the image, where n is odd and 

small (typically n = 3 or 5). The function of the 

operator is to compute a descriptive statistic of 

the n2 pixels on which it acts. Let F(i,j) denote 

the value of this statistic over the n-by-n sub

matrix centered at position (i,j) in the original 

image array I. One method of smoothing the image 

that is useful for detecting gross objects is to 

replace each element I(i,j) by F(i,j). (If F were 

the averaging operator, for example, then this 

would correspond to taking moving averages.) One 

may also effect data compression by a factor of n2 

by replacing the entire submatrix centered at I(i,j) 

by the single value F(i,j) whenever i and j are 

congruent to (n+l)/2 modulo n. This procedure can 

be applied recursively to produce a sequence of 

progressively defocused {bLurred) images. For 

example, if I is a 625-by-625 matrix, then applying 

this operation once will yield a 25-by-25 matrix 

and applying it a second time will give a 5-by-5 

result. 

Which choices for the smoothing operator Fare 

suitable for picture processing applications? It 

should possess at least the following properties : 

a) F should be robust, that is, it should be 
relatively insensitive to outlying values, or 
spikes. (These may correspond to bright spots, 
reflections, or damaged areas on the retina.) 

b) F(i,j) s hould equal at least one of the actual 
values in the submatrix on which it operates. 
This condition is imposed because if the submatrix 
contains parts of two or more objects, we would 
like F to serve as a descriptor for the object that 
occupies "most" of the submatrix. For example, 
1 1 1 3 3 in the sub image at the left we have 
1 1 3 3 3 pieces of two objects, with intens-
1 3 3 3 3 ities 1 and 3. We wish F to ref-
3 3 3 3 3 lect the fact that the sub image is 
3 3 3 3 3 composed primarily of part of 

object 3. 



The averaging operator (mean) possesses neither of 

these two properties, but the median possesses both. 

In the next section we will attempt to design a 

circuit for computing the median but will compromise 

instead on an approximation to the median that is 

more suitable on several grounds for LSI implement

ation. 

3. Circuits for the median and approximations 

The chief difficulty in computing the median of 

M = n2 quantities is that it is not an algebraic 

function of the M inputs and cannot be calculated 

using arithmetic operations alone -- comparisons 

are required. It is possible, in fact to compute 

the median using only comparisons. To show how to 

implement such algorithms as circuits, we will make 

use of comparator modules and selection networks, 

as described in [1]. A comparator module is a 

device with two input lines, x and y, and two out

put lines, as shown below. The input signals are x---.-- max(x,y) 
y--*- min(x,y) 

compared and the larger is 

routed to the upper output 

line, while the smaller appears at the lower output 

line. In our diagrams of comparator networks, 

signals will be assumed to enter from the left and 

exit at the right. The following network finds the 

median of three inputs using three comparators and 

a time delay of three: 

: ~~~~:t::~~~~-:t.-~-_-_-_._:t::~- median(x,y,z) 

t=l t=2 t=3 

(The above circuit actually sorts its inputs.) It 

may not be readily apparent, but the next network 

finds the median of five inputs: 

; =--=::: ... i:::=~-tI~.-+I;::--=;.::--=="'I:~ -=:::;-4:; ... -==--=--- median 

t=l t=2 t=3 t=4 t=5 

The median-of-5 network exploits parallelism during 

the first two time steps to achieve an overall delay 

of five with seven comparators. It is shown in [1] 

that the number of comparators cannot be reduced. 

We have shown by exhaustion that a delay of five is 

optimal for comparator networks with fanout one. 

128 

There are analogous networks for larger sets of 

inputs but they become progres'sively more complex 

and difficult to design. We do not know how to 

construct networks that are optimal either with res

pect to time delay or number of comparators for any 

but the smallest values of M. Furthermore, the 

structure of near-optimal circuits is highly irreg

ular and not readily decomposable into simple func

tional units. A problem that looms larger, however, 

is that of testability. Once a network is con

structed, either theoretically or in practice, how 

can we verify that it works? If each of the M 

inputs can assume any of C possible distinct values, 

it would seem that C
M 

separate tests are required. 

For a circuit consisting solely of comparators, 

through, it suffices to verify its correctness when 

each input is restricted to be either zero or one. 

This result is known as the 0-1 Principle [1] and 

it reduces the number of tests required to just 2M 

While this is a significant improvement, even if we 

are able to design a median network for 5-by-5 sub

matrices, verifying all 2
25 possible binary inputs 

would be out of the question. To circumvent this 

difficulty, we will explore an alternative to the 

exact median which has excellent statistical prop

erties, is decomposable, and is easily tested. 

To obtain an approximation to the median we will 

generalize an idea due to Tukey [2]. For M = 9, let 

US cnmpute p = median(a,b,c), q = median(d,e,f), and 

r = median(g,h,i). Now let s median(p,q,r), that 

is, the median of the medians. If we implement this 

computation via a comparator network, it is easy to 

see that p,q, and r can all be found in parallel in 

three time steps using nine comparators by replic

ating the median-of-3 circuit at the left three 

times. The quantity s can then be found with three 

more comparators and three additional time steps by 

using a fourth copy of this circuit in an elegant 

cascade arrangement. The total number of compar~ 

ators is 12 and the time delay is six. (The number 

of comparators can be reduced to nine by re-using 

one of the first three median circuits.) For M = 25 

a similar partitioning into medians of five gives a 

circuit with 35 comparators and a delay of 10 that 

can be tested by trying only 5.2 5 = 160 different 
25 inputs as opposed to 2 . 



The cascade median circuit can be generalized 

directly for arbitrary odd values of n, the number 

of tests required being n2n for n2 inputs. However, 

it must be emphasized that these circuits do not 

compute the median, but only some approximation to 

the median. We will no~~ investigate how good this 

approximation is. Let A denote the cascade median 
n 

as found above. If n = 3, then we are trying to 

find the median of nine elements, that is, the 

element that has rank five. It is shown in [2J that 

if all 9! permutations of the inputs are equally 

likely then A3 is the exact median (rank 5) with 

probability 4/7, or approximately 0.571. A3 will 

have rank four or rank six with equal probabilities 

3/14. Determining the distribution of An' even 

under the assumption of equal probability for each 

permutation (an assumption that can be relaxed some

what), is a difficult combinatorial problem. For 

n = 5 (25 elements) it was easier to obtain the 

distribution by simulating 100,000 cases than by 

attempting an exact calculation. The results of the 

simulation are given below. The exact median has 

rank 13 out of 25. 

P(rank 

P(rank 

P(rank 

P(rank 

9) 

10) 

11) 

12) 

P(rank 

P(rank 

P(rank 

P(rank 

P(rank 

l3) 

17) :::l 

16) :::l 

15) :::l 

14) :::l 

0.0052 

0.03l3 

0.1023 

0.2162 

0.2900 

Distribution of A5 (obtained by simulation) 

Thus A5 is the exact median with probability 0.29 

and has rank that is within one of the correct med

ian with probability> 0.72. We see that A5 is 

strongly peaked about the true median. It is clear 

also from the symmetry of the algorithm that the 

expected rank of A is (n 2+l)/2, that is, the true 
n 

median. We now show that An is guaranteed to filter 

out the upper and lower quartiles of the data com

pletely. 

Theorem. rank(A ) 
n 

~ (n2 + 2n + 1)/4 

rank(An) :5 On 2 - 2n + 3) /4 

and 

Proof: To obtain the first inequality we need only 

observe that An surely exceeds (n + 1)/2 of the 

values in (n - 1)/2 of the n-sets and (n - 1)/2 of 

the values in its own n-set. The proof of the 

129 

second inequality is analogous. D 
In summary, An has the following desirable prop

erties: 

a) It is unbiased for the median. 

b) It is strongly concentrated about the median. 

c) It is outlier-resistant because the upper 
quarter and lower quarter of the data are eliminated 
completely. 

\~e contend that An is an easily~computable and 

admirable substitute for the median in picture 

processing applications. 

4. Extensions and Unsolved Problems 

The mean and variance are sufficient statistics 

for normally-distributed data. Their robust analogs 

are the median and interquartile range, respectively. 

(The interquartile range is the difference between 

the first and third quartile values.) It would be 

useful to generalize the cascade circuits so that 

they produce an estimate of the interquartile range. 

One would also like to obtain the exact distribution 

of An and the interquartile range estimate. 

The comparator modules discussed in this paper 

are not ideal for LSI implementation and the median 

computation can be performed using more suitable 

primitives. The methods presented here, however, 

at least illustrate the theoretical tools that one 

might use to design and test an actual implement

ation. Other probabilistic approaches are suggested 

in [3]. 

5. Acknowledgements 

The author wishes to thank Professors JOn 

Bentley and Bruce Weide for engaging discussions. 

This research was supported in part by the Office 

of Naval Research under Contract N000014-76-C-0373. 

REFERENCES 

[1]. Knuth, D. E., The Art of Computer Programming, 
Volume III: Sorting and Searching, Addison-Wesley 
(1973). Section 5.3.4. 

[2]. Tukey, J. W., The ninther, a technique for low 
effort robust(resistant) location in large samples, 
in David, H. A., ed., Contributions to Survey Samp
ling and Applied Statistics, Academic Press (1978), 
pp. 251-257. 

[3]. Weide, B. W., Statistical Methods in Algorithm 
Design and Analysis, Ph.D . Thesis, Department of 
Computer Science, Carnegie-Mellon University (1978), 
unpublished. 


