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ABSTRACT 

COMPUTATIONAL GEOMETRY 

Michael Ian Shamos 

Yale University, 1978 

. . 
This thesis Is a study of the computational aspects of. geometry 

within the framew~rk of analysis of algorithms •. It develops the 

mathematical techniques that are necessary for the design of efflcent 

al~orithms and applies them to a wide variety of theoretical and 

practical problems. Particular attention Is given to proving lower bounds 

on _ running time and to analyzing the average-case performance of 

geometric algorithms. The approach taken Is to Isolate a computational 

feature that Is common to a large class of problems. It turns out, for 

example, that determining whether any two of N line segments In the 

plane overlap Is an e3sential step in many intersection applications. An 

optimal algorithm. for this problem,. therefore, becomes an Important 

geometric tool that can be used to build other, more ccmp!!cated, fast 

algorithms. This method Is employed in a unified attack on the problem 

of the convex hull, various geometric search problems, finding the 

Intersection of objects and ,",up-stlons Involving the proximity of points In 

the plane. What emerges Is a modern, coherent discipline that Is 

successful at merging classical geometry with computational 

compit!xity. Among the major new results presented are a convex hull 

algorithm with expected running time that Is linear In the number of 

input points, an O(N log N) algorithm for linear programming In two 

variables (which Is superior to the Simplex method), and an O(N log N) 

algorithm for constructing a minimum spanning tree on a finite set of 

points In the plane. 

- - ---_._._-_.---: 

I 

I 

ABSTRACT 

COMPUTATIONAL GEOMETRY 

Michael Ian Shamos 

Yale University, 1978 

. . 
This thesis Is a study of the computational aspects of. geometry 

within the framew~rk of analysis of algorithms •. It develops the 

mathematical techniques that are necessary for the design of efflcent 

al~orithms and applies them to a wide variety of theoretical and 

practical problems. Particular attention Is given to proving lower bounds 

on _ running time and to analyzing the average-case performance of 

geometric algorithms. The approach taken Is to Isolate a computational 

feature that Is common to a large class of problems. It turns out, for 

example, that determining whether any two of N line segments In the 

plane overlap Is an e3sential step in many intersection applications. An 

optimal algorithm. for this problem,. therefore, becomes an Important 

geometric tool that can be used to build other, more ccmp!!cated, fast 

algorithms. This method Is employed in a unified attack on the problem 

of the convex hull, various geometric search problems, finding the 

Intersection of objects and ,",up-stlons Involving the proximity of points In 

the plane. What emerges Is a modern, coherent discipline that Is 

successful at merging classical geometry with computational 

compit!xity. Among the major new results presented are a convex hull 

algorithm with expected running time that Is linear In the number of 

input points, an O(N log N) algorithm for linear programming In two 

variables (which Is superior to the Simplex method), and an O(N log N) 

algorithm for constructing a minimum spanning tree on a finite set of 

points In the plane. 

- - ---_._._-_.---: 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

" 

"""1',' , 
" 

I 
I 
I 

Preface II 

Preface 

This thesis Is a sprawling' study of the Interaction between geometry and 

computing. It is an examination of the Issues that arise In solving geometric 

problems by machine at high speed and the fact that such devices have only 

recently ,been built obliges us to consider ~~pects of geometric: computation that 

simply do not occur In classical mathematics, and new methods are required. 

Fortunately, Geometry Is a highly Intuitive subject, aiid aside from some technical 

material on analysis of algorithms, the Ideas of the thesis are accessible to high­

school students. While many a Ph.D. candidate would be unsettled by the Idea that 

his work Is so elementary, I consider It a distinct advantage because the thesis 

argues for simplicity and elegance In the design and constn:ctlon of algorithms. I 

setting out to write this volume I had a story to tell. The tale Is a long one, full of 

detours, Intrigues and episodes, but It must be told fully. The re~def' who has the 

e'nergy to follow will, see' an ancient gem shine In contemporary light, with none of 

her sparkle lost to Time. 

Acknowledgements 

"For tills relief. much thanks ... " 

- Shakespe·~.'!re, Hamlet. 

This thesis describes the results of four years of sustained work. During that 

timet many people have helped shape It, encouraged, begged, cajoled, dared, 

nagged, prodded, Implored and Inspired me to write. and some have sympathetically 

eased me through the pure physical hell of preparing It for publication. To all, a 

hearty "thank you". In some cases their contributions were greater than what I 

would expect out of fr~endshlp or scholarly Interest, and It Is a pleasure for me to 
acknowledge these Individually. 

My greatest debt by far Is to my wife, Julie. It Is customary to thank one IS' 
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Pn:r1ace III 

spouse for "putting up" with long hours, lost weekends, and the like, but mine 

carefully or-chestrated the entire performance! Having learned once In a course on 

. research and development management that the creative scientist Is "a curious 

admixture of the childlike and the ~aturell, she applied this principle to me. For 

continued sustenance, perpetual Inspiration and undying love, this w(,rk Is for You •. 

My academic Inheritance Is from my parents, who fostered my Inquisitiveness and 

Instilled In me a passion for the unknown. Dad, nothing can compare with the Joy of 

discovering something that no one else In the world has seen before, then telling 

them about It. So It was with Computational Geometry. 

It was my Grandfather, a civil engineer and our family patriarch, who showed me 

the beauty and simplicity of Geometry, the elegance and logic of Euclid, before I 

was old enough to understand. !hls early Indoctr!natlon had Its effect, though, and 

the weighty volume you are holding Is the result. 

lowe a great debt to John Wheeler, my undergraduate advisor at Princeton, for 
. I 

showing me that I could make discoveries by myself and that nothing more was 

required than books, pencils, peper and a quiet place to think. His geometric' view 

. of physics showed me the tremendous scope andl Influence of Geometry, and 

deepened my perception of tho sUbJect. 

It was not until I came to Yale as a graduate student that I acquired the tools to 

produce any new geometry. The atmosphere In the new Department of Computer 

Science was congenial and conducive to research: few' courses, lots of machine 

time, and an opportunity to work closely w!th the faculty. My thesis committee 

consisted of David Dobkin, Stan Elsenstat and Martin Schultz. David Insisted that I 

study the foundations of both geometry and computer science before commencing 

research. (I never learned Galois Theory, but It turned out not to be necessary.) 

He shaped the thesis by demanding a coherent the!)ry rather than a collection o~ 

. Isolated results. Stan taught me comblnatorlcs, dlvl~e-and-conquer, and the need 

for thoroughness and a command of the literature. H~ had an uncanny way knowing 

just what method to apply to a particular problem and many citations in the text 

testify to his Intuition. Martin was the first to suggest that the work I was doing 

might con~tltute a Ph.D. the8'~. it did, four years later. His encouragement at the 

~arly stage~ was crucial to me. 
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- , 
Many fellow students have made sUbstantiai contributions, either by suggesting 

their own solutions or criticizing mine. Fred Friedman, Rob Schreiber and Andy 

Sherman were always willing to tackle a geometry problem, and something 

. I.nterestlng always came out of our discussions. Dan Hoey was it true collaborator. 

We worked together, often at the strangest hours, and he .provlded the key Insights 

that led. to the most Important results In this thesis. How close can colleagues be 

unless they have discovered the generalized Voronol diagram together? 

After leaving Yale I found a most hospitable environment at Caroegle-Mellon. Joe 

Traub saw merit In this work and now Computational Geometry has a home. At eMU 

Jon Bentley and I are now studying higher-dimensional geometric and statistical 

problems. 

On the financial side! the IBM Corporation was a substantial benefactor. As a 
graduate student, I was on educatlonall~ave from IBM and was also the recipient of 

the IBM Fellowship at Yale. Bell Laboratories Invited me to spend a delightful three 

weeks with virtually no responsibilities other than the pursuit of geometry. My work 

has .been supported by the Office of Naval Research and by the Advanced 

Research Projects Agency of the Department of De,fense, while benefits from the 

Veterans Administration allowed me to devote all of .my energies to Geometry. My 

parents were also major contributors to this campaign. 

This document was prepared at Carnegie-Mellon using the PUB compiler and the 

SPACS graphic drawing system. So much of the effort was automated that toward 

the end I began to feel more like an I/O device than an author. Brian Reid and Mark 

Sapsford wrote macros and modified PUB ss I wentl along, gently persuading It to 

accept my demands (150 diagrams). The orthogr~phy was carefull checkd by 

SPEll, a program that detects and corrects spelling errors at high speed. Its 

knowledge of the outside world, though, Is somewhat limited. Seeing one of my 

references to, John Tukey, It Innocently suggest~d that "Turkey" was what I 

wantedl (I swear.) With such potent debugging tools at his disposal, the author Is 
able to deny all responsibility for mistakes In the final manuscript. Any residual 
errors are the result of hardware or softw 

71ll MEM REF at usei' PC 452306 

? Job aborted. 
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Chapter 1 

Introduction 

"He who would know what geometry Is must 

venture i nio its depths/' 

- J.J. Sylvester, A Probationary Lecture on Geometry. 

1.1. The Beginning 
r 

2 

Geometry Is a subject that has captured the Imagination of Man for at least 2500 

years. It Is at the very foundation of Art, Architecture, and Mathematics, and plays 

a central role In a host of other areas. Computer Science, by contrast, Is a 

newcomer among' such established fields, and It has not yet had the opportunity to 

benefit from their richness. By the same token, Geometry, developing as It did long 

before the Invention of computers, Is laden with Ideas, results, and prescriptions 

that are not easily translated Into the modern setting of Analysis of Algorithms. It Is 

now recognized that solving problems on a computer does not merely Involve 

rewriting known formulas In some programming language, but that significant Issues 

arise in problem representation, data structures, algorithm design, and computational 

complexity [Aho (74)]. It Is no surprise that straightforward transcription of 

classical results does not necessarily produce the best algorithms. And why should 

It,slnce until recently the only compu't~tlons that were feasible were those that 

could be performed with pencil and paper? The need for fast algorithms Is apparent 

only within the framework of high-speed computers and large quantities of data. 

What ancient geometer could have Imagined problems Involving millions of points? 

Th,e purpose of this thesis Is, therefore, to establish a discipline of "Computatlona'" 

Geometry by recasting classical results Into explicit and efficient algorithmic form. 
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Introduction 3 

1.2. Thesis outline 

The reader may expect three things from this thesis: the synthesis of a new 

discipline, an exposition of Its methods, and a large number of new results. The new 

subject Is Computational "Geometry, which Is based on the premise, for which· ample, 

Justification will be given, that classical mathematics needs to be ,augmented In 

order for us to be able to solv~ geometric problems efficiently on a computer. We 

address specifically the need for efficient algorithms and present and a set of 

I 
techniqu·es for designing them. Our approach is simplistic, but powerful: It consists 

I of studying a class of geometric problems,' Isolating their common algorithmic 

component, and analyzIng that component completely. For example, we will see that 

a large number of Jnterseci.h:m problems ~Bn be sohre'd rapidly If we are able to 

i 

, determine whether any two of N line segments In the plane cross each other. To 

develop a basic cOnljnltatlonal tool that will lead to the solution of many problems, 

we subject the line segment problem to the most exhausting scrutiny, eventually 

obtaining an optimal algorithm (In Section 5.4). Considerable time Is spent 

In distilling out the fundamental problems, motivating· the techniques used· to solve 

them, and In deriving methods for proving lower bounds. Once this Is done, the 

analyzed problem oecomes an instrument that is used to prove new results and build 

other, more c~mplex, algorithms. Each chapter comprises an application of this 

paradigm to 6 new area of Computational Geometry. 

The Introduction Includes a short review of the history of Ge~metry from an 

algorithmic standpoint, to determine Its strenghths and weakness~s. 

Chapter Two Is an examination of such basic Issues as problem specification, 

representation of geometric objects, and computational models. All of these arise 

as we attempt to treat an elementary problem: "Given a plane polygon, Is It 

convex?" The objective Is to develop an efficient (and correctl) test for convexity. 

The reader will see that even so simple-looking a problem has many non-trivial 

ram!f!catlons. 

Chapter Three Is a study of convex hull algorithms. We present and analyze thA 
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address specifically the need for efficient algorithms and present and a set of 

I 
techniqu·es for designing them. Our approach is simplistic, but powerful: It consists 

I of studying a class of geometric problems,' Isolating their common algorithmic 

component, and analyzIng that component completely. For example, we will see that 

a large number of Jnterseci.h:m problems ~Bn be sohre'd rapidly If we are able to 

i 

, determine whether any two of N line segments In the plane cross each other. To 

develop a basic cOnljnltatlonal tool that will lead to the solution of many problems, 

we subject the line segment problem to the most exhausting scrutiny, eventually 

obtaining an optimal algorithm (In Section 5.4). Considerable time Is spent 

In distilling out the fundamental problems, motivating· the techniques used· to solve 

them, and In deriving methods for proving lower bounds. Once this Is done, the 

analyzed problem oecomes an instrument that is used to prove new results and build 

other, more c~mplex, algorithms. Each chapter comprises an application of this 

paradigm to 6 new area of Computational Geometry. 

The Introduction Includes a short review of the history of Ge~metry from an 

algorithmic standpoint, to determine Its strenghths and weakness~s. 

Chapter Two Is an examination of such basic Issues as problem specification, 

representation of geometric objects, and computational models. All of these arise 

as we attempt to treat an elementary problem: "Given a plane polygon, Is It 

convex?" The objective Is to develop an efficient (and correctl) test for convexity. 

The reader will see that even so simple-looking a problem has many non-trivial 

ram!f!catlons. 

Chapter Three Is a study of convex hull algorithms. We present and analyze thA 
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al£orlthms of Graham and Jarvis, Including some expected-time results. We then 

develop a dlvlde-and-conquer hull algorithm that generalizes to three dimensions, 

has linear average-case performance, and Is optimal In the worst-case sense. The 

I methods used In the expected-time analysis are of considerable Interest, since 

they involve unexpected theorems from stochastic. geometry. We show a lower 

bound on the convex hull problem by demonstrating that any hull algorithm must be 

able to sort. A section Is devoted to some of the many applications of hull-finding, 

including loo and Isotonic regression in statistics. We discuss the problem of finding 

the farthest pair of points of a finite plane sst and are able to produce an 

O(N log N) algorithm based on finding the convex hull. Analysis shows this algorithm 

to run In linear expected time for a wide class of Ipput distributions. This and all 

succeeding chapters conclude with a list of unsolved problems. 

Chapter Four, "Inclusion Problems", Is an Introduct~on to, geometric searching that 

covers preprocessing methods, time-storage tradeoffs, and applications of binary 

search. The fundamental geometric query Is to determine whether or not a new 

point lies In a given polygon. The complexity of the preprocessing depends on 

whether the polygon Is convex or not, and on how quickly the query must be 

answered. Star-shaped polygons are Introduced as a special class for which the 

Inclusion question can be answered easily. 

Chapter Five Is concerned with three . central problems concerning the 

intersection of' geometric obJe'cts. One Is to form the Intersection, another Is to 

l detect whether two objects intersect (this Is easier, in genera!), and the third Is to 

construct the 'common Intersection of N objects. We give a linear algorithm for the 

Intersection of two convex polygons and use,lt as the merge step of a dlvlde-and­

conquer algorithm for the Intersection of N half-planes. By exploiting the connection 

between this problem and linear programming In two variables, we are i'ble to show 

that the Simplex algorithm is not optimal in two dimensions. We present In Its place 

an O(N log N) algorithm for two-variable linear programming whose expecteti running 

time Is O(N) for certain Input distributions. We prove that finding the Intersecti~n of 

two plane N-gons may require quadratic .tIme, while O(N log N) time suffices to 

determine whether or not they Intersect. Applications of the intersection problem~~ 

to cornputer gr~phlcs and pattern recognition are also discussed. 

It Is In Chapter Six, "Closest-Point Problems", that genuine synthesis occurs. We 
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pose eight seemingly unrelated problems, all Involving the proximity of points In the 

plane, and Introduce a single geometric structure that :solves all of them efficiently. 

In so doing we make use of techniques from all of the previous chapters. We obtain 

an O(N log N) algorithm for finding a minimum spanning tree on N points In the plane. 

Because the minimum spanning tree problem has been studied by many previous 

investigators and has diverse applications, we consider this algorithm to be the 

most Important single result of the thesis. The two closest points of a set, the 

nearest neighbor of each point, the smallest circle enclosing the set, and a 

triangulation of the N points can all be found In O(N log N) time by recourse to this 

single structure, called the Voronol diagram. After giving an optima; algorithm for Its 

construction, we show how It can be generalized to solve the. k-nearest neighbors 

problem and answer a number of other Important computational questions. 

Each chapter contains a list of unsolved problems that suggest avenues for 

further research. The last chapter Indicates several ways In which the entire 

subject of Computational Geometry can be generalized and extended. A short 

Appendix details one of Its early f~lIures -- an attempt to apply the methods of 

algebraic complexity. 

1.3. Historical Perspectl~e 

This section presents a computer scientist's view of the historical development 

of geom~try. We shall pay particular attention to the germination of algorithmic and 

I
i complex!ty notions iii the work of the early geometers and lament the fact that such 

I 
p~omlslng 'de~s were not destined to flower. Since this thesis proposes a major 

I 
u!worklng of ciassical geometry to make It explicitly. computational, a short review 

of traditional geometric thinking Is not out of place. In particular, we take the view 

I
· that classical mathematics Is not a computational discipline, and that computer 

science must develop theoretical snd algorithmic foundations on Its own. 

I Egyptian and Greek geometry were masterpieces of applied mathematics. It Is 

well established that the original motivation for tackling geomet~l~ problems was the 

ne'ed to t~x iands ac~urately and fairly and to erect buildings [Eves .(72)]. ·As:-often· . 

happens, the mathematics that developed has permanence and significance that· far: 
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transcends Pharaoh's original revenue problem. It Is a field In which Intuition 

abounds and new discoveries are within the compass (so to speak) of amateurs. 

It Is popularly held that Euclid's chief contribution to geometry was his exposition 

of the axiomatic method of proof, a notion that we will not dispute. More relevant to . . 

this discussion, however, Is the Invention of Euclidean construction, a schema whl~h 

consists of an algorithm and Its proo', Intertwined In a highly stylized format. The 

Euclidean construction satisfies all of the requirements of an algorithm: It Is 

I unambiguous, correct, and terminating. After Euclid, unfortunately, geometry 

. continued to flourish, while analysis of algorithms faced 2000 years of decline. This 

I can be explained In part by the success of reductio ad absurdum, a technique. 

W~lch made It easier for mathematicians to prove the existence of an object by 

contradlc~lon, rather than by giving an explicit construction for It (an algorithm). . 

The Euclidean construction Is remarkable for other reasons as well, for It defines 

a collection ,of allowable Instruments (ruler and compass) and a set of legal 

operations (primitives) that can be performed with them. The Ancients were most 

Interested In the closure of the Euclidean primitives under finite composition. In 

particular, they wondered whether this closure contained all conceivable geometric 

constructions (e.g., the trisection of an angle). This Is a computer science question 

-- do the Euclidean primitives suffice to perform all geometric "computations"? In 

an attempt to answer this question, various alternative models of computation were 

considered by allowing the primitives and the Instruments themselves to vary. 

Archimedes proposed a (correct) construction for the trisector of a 50-degree 

angle with the following addition to the set of primitives: Given two circles, A and B, 

and a point P, we are allowed to mark a segment MN on a straightedge and position 

It so that the straightedge passes through P, with M on the boundary of A and N on 

• the boundary of B [Eves (72)]. In some cases, restricted sets of Instruments were 

studied, allowing compasses only, for example. Such Ideas seem almost a 

premonition of the methods of automata theory, In which we examine the power of 

computational models under various restrictions. Alas, a proof of the Insufficiency of a 
i the Euclidean tools would have to await the development of Algebra. 

The Influence of Euclid's Elements was so profound that It wes not until Descartes 

that another formulatlor. of geometry was proposed. His Introduction of coordinates 

enabled geometric problems to be expressed as algebraic ones, paving the way for 
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the study of higher plane curve$ and Newton's calculus. Coordinates permitted. a 

vast Increase In computational power, bridged the gulf between two great areas of 

Mathematics, and led to a renaissance In constructivist thinking. It was n~w 

possible to produce new geometric objects by solving the associated' algebraic· 

equations. It was not long before computability questions arose once again. Gauss, 

now armed with algebraic tools, returned to the problem of which regular polygons 

I with a prime number of sides could be constructed using Euclidean Instruments, and 

I 

solved It completely [Kazarlnoff (70)]. At this point a close connection between 

ruler and compass constructions, field extensions, and algebraic equations became 

apparent. In his doctoral thesis, Gauss showed that every algebraic equation has 

at least one root (Fundamental Theorem of Algebra) [Courant (41 )]. Abel, In 1828, 

went on to consider the same problem In a restricted model of computation. He 

asked whether a root of every algebraic equation could be obtained using only 

arithmetic operations and the extraction of nth roots, and proved that the answer 

was negative. While all constructible numbers were known to be algebraic, this 

demonstrated that not all algebraic numbers are constructible. Shortly thereafter, 

he characterized th,ose algebraic equations which can be solved by means of 

radicals, and this enabled him to discuss the feasibility of specific geometric 

problem~, such as the trisection of the angle [Kazarlnoff (70)]. 

1.3.1 Complexity Notions in Classical Geometry 

Euclidean constructions for any but the most trivial problems are very complicated 

because of ihe rUdimentary primitives that are allowed. An apparently frequent 

rjBstime of the post-Euclidean geometers was to reflna his constructions so that 

they could be accomplished In fewer "operations". In was not until the twentieth 

century, however, that any quantitative measure of the complexity of a 

construction problem was defined. In 1907, Emile lemolne established the science 

of Geometrography by codifying the Eu~lIdean primitives as follows [Lemoine (07)]: 

1. Place one leg of the compass at on a given point. 

" 2. Place one leg of the compass on a given line. 

3. Produce a circle. 

4. 'Pass the edge of the ruler through a given point. 

5. Produce a line. 
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The total number of such operations performed during a construction Is c~lJed Its 

simplicity, although lemolne recognized that the term "measure of complication" 

might be more appropriate. This definition corresponds closely to our current Idea of 

the time complexity of an algorithm, although In lemoine's work there Is no 

functional connection between the size of the Input (number of given points and 

lines) In a geometric construction and Its simplicity. Indeed, lemoine's Interest was 

In Improving Euclid's original constructions, not In developing a theory of complexity. 

At the former he was remarkably successful -- Euclid's solution to the Circles of 

Appolonlus problem requires 508 steps, while lemolne reduced this to fewer than 

two hundred [~<?olldge (16)]. Unfortunately, lemolne did not see the Importance of 

proving (or perhaps was unable to prove) that a certain numbei of oparations war~ 

necessary In a given construction, and thus the Idea of a lower bound eluded hIm. 

Hilbert, however, appreciated the significance of lower bounds. Working In a . 

restricted model, he considered only those constructions performable with 

straightedge and scale, an Instrument which Is used only to mark off a segment of 

fixed length along a line. Not all Euclidean constructions can bo acpompllshed with" . 

this set of Indruments. For those which can, we may view the coordlr.ates of the .::.' 

constructed poll1ts as a function F of the given points, Hilbert gave a ~ecessary 

and sufficient. condition for F to be computable using exactly n square root 

operations, one oi' the earliest theorems !n algebraic computational compiexity 

[Hilbert (99)]. 

Further evidence suggests that many of our present-day techniques for analyzing 

algorithms were anticipated by the geometers of previous centuries. In 1672, 

Georg Mohr showed that any construction performable with ruler and com~flSS can 

be accomplished with compass alone, Insofar as the given and required objects are . 

specified by points [Eves (72)]. (Thus, even though a straight line cannot be drawn 

with compass alone, two points on the line can each be specified by Intersecting 

two circular arcs.) What Is notable about Mohr's proof Is that It Is a simulation, In 

which he demonstrates that any operation In which the ruler participates can be 

replaced by a finite number of compass operations. Could one ask for a closer 

connection with automata theory? Along similar lines Is the result that the ruler 

used In any construction may have any positive length, however small, and yet be 

a~le to simUlate a ruler of arbitrary length [Eves (72)]. 

------, ... 
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While lemolne and others were occupied with the time complexity of Euclidean 

constructions, the question of the amount of space needed for such constructions 

'was also raised. While the measure of space that was used does not colnc!de w'th. 

our current definition as the amuunt of memory used by an algorithm, It comes 

remarkably close and Is a quite natural one: the area of the plane needed to 

perform the construction. In general, the space used depends on the area of the 

convex hull of the given loci and on the size of the required result, as well as on 

the size of any Intermediate loci that need to be formed during the construction 

[Eves (72)]. Our point here IS,that time and space notions are not entirely foreign 

to Geometry. 

When the Impossibility of certain Euclidean constructions was demonstrated by 

Galois, It was realized that this prevented the exact trisection of an angle but said 

nothing about the feasibility of an approximate construction. In fact, asymptotically 

convergent procedures for the quadrature of the circle and duplication of the cube 

were known to the anclent.Greeks [Heath (21)]. The history of Iterative algorithms 

Is Indeed a long one. 

1.3.2 The Theory of Convex Sets, Metric and Combinatorial Geometry 

Geometry In the nlneteentt century progressed along many lines. One of these, i promulgated by Klein, Involved a comprehensive study of the beha,vlor of geometric 

I 
objects under various transformations, and projective geometry formed an Important 

OffS. hoot. While research on finite projective planes leads to fascinating questions 

.. In combinatorial theory and discrete algorithms, this aspect of geometry will not be 

pursued In this thesis, largely because such topics are at best distantly releted to 

problems Involving the properties of point sets and location of objects.1 

The growth of real analysis had a profound effect on geometry, resulting In formal' 

abstraction of concepts that had previously been only Intuitive. Two such 

developments, metric geometry and convexity theory, provide the principal 

mathematical tools that we will exploit In leter chapters to aid In the design of fast 

algorithms. 

1 But for a modern treatment see [Karteszl (76)]. 
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Distance Is the essential notion of geometry. The metric, Its generalization, was 

able to d~aw geometric concepts and Insights Into analysis, where the Idea of the 

"distance" between functions gave rise to function spaces and other powerful 

constructs. Unfortunately, much' of what developed withdrew toward the 

nonconstructive. Function spaces by their nature fire not computational objects. , 

The significance of convexity theory Is that Is deals analytically with global 
properties of objects and enables us to deal with extremal problems. Unfortunately,' 

many questions In convexity are cumbersome to formulate algebraically, and the 

subject tends to encourage nonconstructive methods. 

Combinatorial geometry Is much closer In spirit to our goal of algorithmic geometry. 

It Is based on characterizations of geometric objects In terms of properties of finite 

subsets. for example, a set Is convex Iff the line segment determined by every 

pair of Its points lies entirely In the set. The Inadequacy of combinatorial geometry 

for our purposes lies In the fact that for most sets of Interest the number of finite 

subsets Is Itself Infinite, which precludes algorithmic treatment. Our job will be to 

remedy these deficiencies and produce workable mathematics that will lead to good 

algorithms. 

1.4. Prior work in geometric algorithms 

. Even though we plan to' develop Computational Geometry from first principles, the 

reader should realize that" many geometric algorithms already exist. A large number 

of applications areas provide problems that are Inherently geometric and have been 

examined by many researchers. These Include the Euclidean traveling salesman, 

minimum spanning tree, hidden line, and linear programming problems, among hosts of 

others. ,In order to demonstrate the broad scope of computational geometry In a 

convincing way, we will defer presenting background material on such problems until 

they occur In the text. 

A number of subjects and applications have been deliberately omitted because 

the author felt that they had been 'adequately treated elsewhere or that he had 

nothing Intelligent to remark about them. One of these Is geometric modeling by 
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ri:e~(ns of spline curves and surfaces, a topic that Is closer In spirit to numerical 

al"'Jiysls than It Is to geometry and has been dealt with In [Bezler (72)],' [Forrest 

(72)], and [Rlesenfeld (73)]. We should note that Forrest refers to his discipline as 

II Computational Geometry". 

In a fascinating book called Perceptrons (of which the subtitle Is "Computational 

Geometry"), Minsky and Papert deal with the complexity of predicates that 

recognize certain geometric properties, such as convexity. The Intent of their work 

I was to make a statement about the possibility of using large retinas composed of 

simple circuits to perform pattern recognition tasks. Their theory Is self-contained 

and does not fall within the algorithmic outlines of this thesis. 

We Intentionally will not deal with graphics software or geometric editors. While 

these systems are undoubtedl:,' candidates for some of the algorithms we will 

develop, they raise Issues that f',re oriented more toward Implementation details and 

the user Interface than toward analysis of algorithms. Included In the same class 

are numerical control software for machine tools, support programs for graphic 

plotters, map-drawing systems, and software for arch!tectural design and civil 

, engineering. 

On hearing the term "Computational Geometry", many people assume that It refers 

to the problem of proving geometry theorems by computer. While this Is ~ 

fascinating study, It reveals much more about ou'" theorem-proving heuristics and 

understanding of proof procedures than It does about geometry per !!, and will thus 

not be treated here. 
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Chapfer2 

Towards Computational Geometry 

The purpose of this chRpter Is to explore some of the ~aslc Issues that arise as 

we attempt to solve geometric problems on a computer. For reasons of exposition,' 

we will focus on the (apparently) simple problem of determining whether or not a 

given polygon of N sides Is convex, and try to produce the fastest possible 

algorithm. In solving this problem, we will be forced almost Immediately to de~1 with 

the following questions: 

1. Problem specification. What exactly Is the computational problem to be solved? 

. What mathema'i:lcal results are relevant,. How can a convex polygon be 

characterized? 

2. Problem representation. How Is the polygon to be represented? Precisely 

what Input will be provided and what output Is expected? 

3. Model of computation. What Is the theoretical setting in which the algorithms 

are to be analyzed? What primitive operations are to be allowed and how much 

will be charged for them? 

4. Lower bounds How can lower bounds be obtained for a problem that Is 

Inherently geometric (as opposed to algebraic) ? Are the bounds robust over 

different models of computation? 

5. Divide and conquer. Dlvlde-and-conquer Is a very po .... ..riSrful algorithmic 

technique. ()loes It find application In computational geometry? 

6. On-line algorithms. In some problems the data points are not all avaUable at 

the outset, but arrive In real-time. Is there a fast algorithm that Is able to 

process the Information as It Is received? 

.. 
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7. Average-case analysis. What is the expected-time behavior of geometric 

algorithms? What mathematics Is necessary for this analysis? . 

The process of defining the problem begins In this case with elementary 

definitions from convexity theory which lead to theorems characterizing convex 

polygons. These theorems, h~wever, do not suggest efficient algorithms, and we 

I must derive equivalent characterizations which do. An Iterative scheme ensues, In 

which we prove new theorems, analyze the resulting algorithms, and compare them 

I with known lower bounds on running time. By following the development of a simple 

II but optimal algorithm from Its raw beginnings, the reader will obtain a preview of the 

spirit and methods of this thesis. 

I 
2.1. When Is a polygon convex? 

Figure 2.1: S Is Convex, T Is Not. 

I 
~ i Let us start with one definition of a convex set: 

I 

I 
I . 

Definition 2.1: A set S Is convex Iff the line segment Joining every pair of points 

of S lies wholly within S. 

In Figure 2.1, for example. S Is convex, whlls T Is not. 
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This definition Is a very powerful one for the purpose of proving theorems. As an 

algorithmic test to determine whether a set Is convex, however, the definition Is not 

Immediately useful. In general, S will have an uncountable number of points, so a· 

direct examination of all the line segments they determine Is out of the question. A 

line segment Itself has an uncountable number of points, so It Is not even clear how 

one might verify that It Is contained In S. Are we therefore constrained to work only 

with countable or finite sets. 7' 

Fortunately not; the only requirement Is that S be finitely specifiable. For 

example, whil~ the Interior of a plane polygon contains uncountably many points, as 

does Its boundary, the polygon can nonetheless be specified by a finite sequence 

of vertices. 

2.2. Representation of geometric objects 

let us adopt some reasonable conventions regarding simple geometric objects: 

A point will be represented as a vector of variables containing Its Cartesian 

coordinates. We assert thr:.'t the choice of coordinate system cannot affect the 

asymptotic runnlnn time of any geometric algorithm, provided· that the model of 

computation (to be specified In the next section) allows the necessary 

transformations. All this means Is that a vector of coordinates In one system can be 

transformed Into any other system In time that depends possibly on the number of 

dimensions, but not on the number of points Involved1• 

Stated anoth~r way, a set of N points In k dimensions can be put Into Cartesian 

form In O(Nk) time, so asymptotically no time Is lost by assuming that the points are 

already given In Cartesian coordinates. 

it Is now clear that a natura: iepr'3~entatlon i'or an unordered set of N points In k . 

1 Note that there must not be any "Interaction" among the points. In center-of­

mass coordinates, for example, the required transformation cannot be performed In 

constant time. 
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dimensions Is either an N x k array or a list of k-vectors.lt Is Important to r~allze 

that a polygon Is an ordered collection of points, and that a different polygon 

results If any two points are Interchanged.2 Specifying a polygon unambiguously 

requires giving Its vertices In the order that they occur on the boundary. A number 

of data structures are suitable for storing polygons. In many cases two vectors, for 

x- and y-coordlnates respectively, will suffice. Often, though, processing the 

polygon will Involve the Insertion and deletion of vertices, In which case a doubly­

linked list will be more economical In terms of tlme.3 These' representations can be 

mutually transformed In linear time. 

In elt,her the vector or linked-list representation, there are normally 2N different 

realizations of the same N-gon, since the enumeration can begin with any vertex 

and proceed either clockwise· or counterclockwise. To avoid this multiplicity of 

representations, we define a canonical form: 

Definition 2.2: A polygon Is simple Iff no nonconsecutive sides Intersect and 

consecutive sides Intersect only at a single point .. 

Definition 2.3: A simple polygon Is In standard form If Its vertices occur In 

counterclockwise order4, with all vertices distinct and no three consecutive 

vertices collinear, beginning with the vertex that has least y-coordlnate. (If 

two or more vertices are tied with 'least y-coordlnate, we begin with the one 

2Strlctly speaking, a polygon Is a closed plane figure whose boundary Is a polygonal 

line. While the polygon and Its boundary contain uncountably many points, they both 

may be specified uniquely by listing the vertices of the polygon. We will often 

deliberately make no distinction among a polygon, Its boundary, and this 
representation. 

aln such applications, the use of linked lists will reduce the order of the time 

complexity at a cost of only a constant factor In space. 

4"Counterclockwlse order" Is defined precisely In Appendix A. 
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that has least x-coordlnate.5 See Figure 2.2). A non-simple polygon 

Is In standard form If Its first three vertices occur In counterclockwise order 

and, the first vertex Is lexicographically least. 

~ 

COLLINEARITY ELIMINATED 

BEGINNING OF LIST ~ 

Figure 2.2: A Polygon In Standard Form 

COUNTERCLOCKWISE 
ORDER 

Several aS,pects of the above definition of standard form require explanation. 

First of all, the definition only applies to simple polygons -- those that are not self­

Intersecting. This Is because a single point In the plane may occur legitimately more 

than once as a vertex of a non-simple polygon (Figure 2.3). As we shall 

see, testing for simplicity Is a non-trivial problem. 

The requirement that the vertices be distinct is Imposed In order to remove the 

. degeneracy that arises when an edge of the polygon has zero length. This will 

mean that a quadrilateral with a null edge will be represented as a triangle, since 

they are Iden~lcal as polygons. likewise, we eliminate consecutive collinear 

vertices because to allow them would permit multiple representations of the same 

plane figure. The counterclockwise orientation Is chosen so that, as the boundary 

of the polygon Is traversed, the Interior lies to the left. This and the Insistence on 

beginning with the lexicographically least vertex are designed to simplify the 

presentation of later algorithms and reduce their running time. 

5That Is, the first vertex Is lexicographically least In y,x order. 
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x 

Figure 2.3: 'The point x occurs three times as a vertex of P. 

We now Indicate how to convert a simple polygon P to standard form In linear 

time: 

1. If P Is In vector form, convert It to circular doubly-linked list representation. 

2. Perform a single pass through the IIs.t, eliminating du!)lIcate and collinear 

vertices. Since P Is simple, multiple copies of a vertex must be adjacent In the 

list, which Is doubiy-iinked. to allow rllplll deletion. To determine whether three 

pol'1ts are collinear, we need only compute the area of the triangle determined 

by them. The points are collinear Iff the area Is zero. During the same pass, 

then, consecutive collinear points can be removed. We also record the vertex 

that Is lexicographically lowest. 

3. . We now need to decide whether the vertices are In clockwise or 

counterclockwise orientation. This may be done in. O(N) tlmG by evaluating the 

signed area of P, as given by equation .(A.1). If the area Is positive, the 

polygon Is already In standard form; If It Is negative, the representation needs 

to be reversed. In either case the list pointers can now be modified In linear 

time to yield P In linked-list standard form. 

4. If vector form Is now desired, the transformation Is trivial. 

' .. 

---.,:-

I 

I 

Towards Computational Geometry 17 

x 

Figure 2.3: 'The point x occurs three times as a vertex of P. 

We now Indicate how to convert a simple polygon P to standard form In linear 

time: 

1. If P Is In vector form, convert It to circular doubly-linked list representation. 

2. Perform a single pass through the IIs.t, eliminating du!)lIcate and collinear 

vertices. Since P Is simple, multiple copies of a vertex must be adjacent In the 

list, which Is doubiy-iinked. to allow rllplll deletion. To determine whether three 

pol'1ts are collinear, we need only compute the area of the triangle determined 

by them. The points are collinear Iff the area Is zero. During the same pass, 

then, consecutive collinear points can be removed. We also record the vertex 

that Is lexicographically lowest. 

3. . We now need to decide whether the vertices are In clockwise or 

counterclockwise orientation. This may be done in. O(N) tlmG by evaluating the 

signed area of P, as given by equation .(A.1). If the area Is positive, the 

polygon Is already In standard form; If It Is negative, the representation needs 

to be reversed. In either case the list pointers can now be modified In linear 

time to yield P In linked-list standard form. 

4. If vector form Is now desired, the transformation Is trivial. 

' .. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

---.... _-------

I 

Towards Computational Geometry 18 

This detailed explanation of so elementary a process should convince the reader 

that transformation to standard form Is merely a bookkeeping procedure In which no 

essential computation Is burled. 

2.2.1 Congruence and similarity 

The prime objective of this thesis Is to Isolate and analyze fundamental geometric 
• 

prohlems. Some of these fall Into the mainstream of computational geometry, while 

others are peripheral but raise questions that are simply too tantalizing to Ignore. 

One of these Is the problem of congruence, which Is Included here because of Its 

close connection with representation Issues. 

Definition 2.4: Two polygons are congruent If they can be made to coincide. 

Problem P2. 7: (Congruence of Polygons) Given two polygons, are they 

congruent? 

The computational form of this question Is really: Do two representations define the 

same polygon up to rotation and translation? Because rotations are allowed, It does 

I 
not suffice to transform both polygons to stand~rd form and verify that they are 

Identical. 

3 
1~ ---~ 

I 
2 

2 

I 

I Figure 2.4: Congruent polygons may have different standard forms. 
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To solve this problem we need a representation for polygons that Is rotatlon- and 

translation-Independent. We can satisfy this requirement by building a circular list 

containing the lengths of the sides of the polygon and Its Internal angles, stored 

alternately.6 Deterr/linlng whether two polygons In this representation are congruent 

then reduces to the question of whether two circular lists differ only by a shift. 

Glenn Manacher [Manar.her (76)] realized that this Is a simple pattern-matching 

problem .that can be solved In linear time by the Knuth-Morrls-Pratt algorithm [Knuth 

(77)]. Since two polygons are similar If they are congruent up to a change In 

scale, the saine procedure can be used ~o test for similarity In linear time If we first 

multiply the sides of one polygon by the ratio of theIr longest (or shortest) edges. 

2.3. Model of computation 

A model of computation specifies the primitive operations that an aigorlthm may 

perform and the cost.s that will be charged for them. It Is essential that a model be 

carefully specified before any attempt Is made to prove upper and lower bounds on 

execution time, since such results have meaning only within a particular 

computational framework. In choosing one, we normally must make compromises 

between realism and mathematical tractability, selecting a scheme thet represents 

; actual computers as closely as possible, while stili permitting thorough analysis. 

~ What sort. of model Is appropriate for geometric applications? Having finally fixed 

on a specific representation for a polygon, we must now decide which operations 

may. reasonably be performed on that representation. We regularly encounter 

several types of problems, each requiring a different sat of 'prlmltlves: 

I 
I 

1. Subset selection. !n this klnd of problem we are given a collection of objects 

and asked to choose a subset that satisfies a certain property. Examples are 

finding the two closest of a set of N points or f!ndlng the vertices of Its convex 

hull. The essential feature of a subset selection problem Is that no new objects 

need be c,reatedj the solution consists entirely of elements that are given as 

6For a purely technical reason we store a side of length L as the number L + 2", 

and angles In radians. Then sides and angles can never be confused. It should be 

clear that this representation can be obtained from standard form In linear time. 
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Input. In many cases such a problem can be solved using only comparisons and 

the four arithmetic operations so that a decision-tree model Is appropriate, 

2. Computation. Given a number of objects, we may need to compute the value 

of some geometric parameter. The primitives allowed In the model must be 

powerful enough to permit this calculation. Suppose, for example, that we are 

working with a set of points .~aving integer coordinates. h. order to find the 

distance between a pair of points, we not only need to be able to represent 

Irrational numbers, but to take square roots as well. In other problems we may 

even require trigonometric functions. 

The model that we will adopt for most purposes Is a random-access machine 

(RAM) similar to that described in [Aha (74)] but In which each storage location Is 

capable of holding a single real number. Th'S following operations are available at 

unit cost: 

1 •. The arithmetic operations +, - • X , I . 

2. Comparisons between two real numbers. «,~, =, ;., ~: ». 

This model Is an amalgam of useful features of the straight-line, computation tree, 

and Integer RAM models, and we shall refer t.o It as a real RAM. It closely reflects 

the kinds of programs that are typically written In high-level algebraic languages 

7To allow the address calculation mechanism to truncate real values to Integers 

would add the FLOOR function to our set of primitives and make lower bounds almost 

Impossible to prove. The FLOOR cannot be computed In any constant number of 

arlthmetlcs Bnd comparisons, as an Information-theoretic. argument will show, 

although It Is often realistic to consider It a primitive on most machines. 
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such as FORTRAN and ALGOL, In which It Is common to treat varlab!e of type REAL as 

having unlimited precision. At this level of abstraction we may Ignore such 

questions as how a real number can be read or written In finite tlme.8 

Knuth has recently popularized the use of 51, a notational device that 

distinguishes nicely between upper and lower bounds [Knuth (76)], and which we 

will adopt. 

O(f(N» denotes the set of ail fUnctions g(N) such that there exist positive 

constants C and No with Ig(N)1 S Cf(N) for all N ~ ~O. 

n(f(N» denotes the set of all functions g(N) such that there exist positive 

constants' C and NO with g(N) ~ Cf(N) for all N ~ NO' 

Thus n(f(N» Is used to Indica~e functions that are at least as large as some 

constant times feN), precisely the concept that one needs to describe lower 

b9unds. 

It Is often observed that a problem can be solved by transforming an Instance of 
It Into an Instance of a different problem, solving' the transformed problem, and 

translating the result back Into the cOI'\l:ext of the original problem. If this Is 

possible, we say that one problem Is transformable to the other. This Idea Is so 

useful for proving lower bounds that we formalize the process: Given two problems 

A and 8, 

1. The Input to problem A Is converted Into a suitable Input for 8. 

2. Problem B Is solved. 

3. The output of B Is transformed Into a correct solution to A. 

If the above transformation steps 1 and 3 'together can be performed In O(T(N» 

I 8Thls Is perfectly legitimate -- the same problem arises with straight-line programs 
II!!! 
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time, then we say that A Is T(N)-reduclb/e to B, written A oGT(N) B.9 Reducibility 

Is not necessarily a symmetric relatlonj In the case when A and B are mutually 

reducible, we say that they are equivalent. 

Theorem, 2.1: (Lower bounds via reducibility) If problem A Is known to require 

T(N) tlm~ and A Is R(N)-reduclble to B (A oGR(N) B), then 13 requires at least 

T(N) - O(R(N» time.' 

Thtl1urem 2.2: (Upper bounds via reducibility) If problem 8 can be solved In TeN) 

time and A oGR(N) 8, then A can be solved In at most leN) + O(R(N» time. 

The real r1AM Is so powerful (because of its transcendental functions and the 

possibility of encoding tricks) 10 that lower bounds are difficult to prove. We will 

usually establish {I lower bound for a problem P by showing that another problem Q~ 

known to require T(N) time, Is linear-time reducible to P. The most Important known 

lower bound Is thai for sorting, which requires .n(N log N) comparisons, worst-case, 

on a real RAMI.11 This ,result Is O,nr primary source of lower bounds. . 

The model of computation affects the assertions we may make about coordinate 

systems.· If only arithmetic operations are allowed, for ~xample, then a "point In 

polar form cannot be transformed at all to Cartesian coordinates, because of the 

trigonometric functions Involved. This may not prove to be much' of a restriction, 

however. If we only need to compare the polar angles of two points given In 

9Reduclblllty '3 usually defined to be a relation on languages, In which case no 

output transformation Is necessary because the output of a string acceptor Is 

either zero or one. See [Karp (72)]. For geometry problems, we need the greater 

flexibility afforded by the more general definition. 

10A single m'emory location can hold a potentially Infinite amount of Information, but 

this Is also true of the Integer RAM model. 

11 This Is Implied by a stronger theorem of [Friedman (72)], Whos~ model even 

permits the computation of arbitrary analytic functions. 
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_ Cartesian coordinates, for example, this can be done with arlthmetlcs and 

comparisons only. It Is not necessary to compute the angles.12 

I 
I 

I 

I 

I • 

2.4. Convexity Testing 

We now have enough bar.kgrot,md to make computatIonal sense of the geometric 

problem stated at the beginning of this chapter. 

, , 

Problem P2.2: (Convexity Test) Given a plane polygon with N vertices In 

standard form, find a real RAM algorithm to determine whether It Is convex •. 

In order to proceed, we must search for properties of convex polygons that c8'n be 

used In an algorithmic test. 

A dlagona! ot a polygon Is a line segment Joining two nonconsecutive vertices. 

Property 2.1: A polygon P Is convex Iff every diagonal of P Is a subset of P. 13 

While Property 2.1 says that we may restrict our attention to a finite number of line 

segments, It stili does not yleid an algorIthm because we have no finite test as yet 

for whether' , line segment lies within a polygon. Such a condition Is not difficult to 

obtain: .' 

Property 2."2: A line segment L Is 8 subset of 8 polygon ~ Iff at least one p,olnt of 

L Is Interior to P and the Interior of L Intersects no edge of P. 

12Thls turns out to be very convenient In many algorithms, Including tht!t of Graham 

(section 3.3). 

131n this thesis the term "Property" Is used to denote a elementary theorem from 

plans geometry that Is stated without proof. Except for the illustrative example Iii 

this chapter, no new theorems or algorithms will be based on such "Properties". 
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Figure 2.5: No Diagonal Intersects an Edge, yet P Is not Convex. 
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We may now use Properties 2.1 and 2.2 to formulate an algorithm. Each ~e.rte~ 
of P Is the vertex of an Interior wedge determined by the two edges of P that meet 

at \/.14 'A diagonal 0 emanating from V can lie within P only If 0 lies within' the 

wedge. This can be tested In 8 constant number of operations by examining the 

angles that 0 forms with the two coincident edges. It remains only to f~rm each 

diagonal, of which there are N(N-3)/2 = O(N2) If P has N vertlce~, and test It 

against each of the N edges of P for .Intersection. Each of these tests can be 

performed In a constant number of operations, Independent of N. It should be ciear 

that this algorithm can be Implemented to run In O(N3) steps. 

Property 2.1 Is a perfectly good characterization In combinatorial geometry. In 

traditional mathematics the yalU6 of such results Is judged by their conciseness, 

elegance, and the number of new theorems they enable us to prove. In 

r.omputatlonal . mathematics we must adopt a different measure of success, one 

based on algorithmic efficiency. We will constantly strive to develop definitions and 

theorem~ that will be of direct use In speeding up algorithms. This goal Is both 

practical and aesthetic since a procedure that uses the fewest possible number of 

steps makes a minimal demand on computational resources and at ~t the same tim~ 

satisfies the artistic requirement of simplicity that runs through all of Math~matlc;s. 

1 4SInce P Is In standard form. 

./ 
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How does our convexity test measure up? Could It be optimal In the sen'se that 

any algorithm to determine whether a polygon: I~ convex must perform. at least cN3 

steps? Any correct algorithm ~ for a problem provides 'an upper bound on the time . ". ' 

sufficient to solve It, though not necessarily a least upper bound. To show 
, ' 

optimality of a specific procedure, we must prove a lower bound, a theorem stating 

tha't no algorithm could succeed using fewer operations. (That a single algorithm 

suffloes to establish an upper bound while lower bounds must apply to a!1 

conceivable algorithms may account for the rel~tlve ,scarcity of optimality results.) 

Definition 2.5: A lower bound on an algorithm Is said to be trivial If It refers only 

to the time necessary to read the Input or write Its output. 

For the problem of testing convexity only a trivial lower bound Is available: 

Theorem 2.3: Any algorithm that determines whether or not a polygon' having N 

vertIces Is convex must perform at least cN operations, for some constant e)O. 

Proof: We shew that each vertex must be examined. For suppose that the 

algorithm reports that P Is convex without having processed some vertex V. V 

can be moved, without changing the outcome of the convoxlty test, so that P Is 

no longer convex. (See Figure 2.6.) Thus the algorithm cannot answer 

correctly without having examined V. 

We now know that a linear number of operations tire required to perform a 

convexity test and -that O(N3) operation,s suffice. Judging from the simplicity of the 

lower bound proof, one might expect that a more refined argument could Improve It. 

Similarly, a more clever algorithm could conceivably test cunvexlty In less than 

cubic time. Because there,ls a gap between the bounds, at least one of them Is not 

the best possible, and 'work stili remains before we can be satisfied with the 

analysis of this problem. 

In an effort to find a better algorithm we must dispense with Property 2.1. While 

succinct and elegant, It Is based on Inspection of all of the diagonals of a polygon, 

and any algorithm which uses the theorem directly Is condemned to perform at least 
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If V is moved to position W, 
P will no longer be convex. 
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Figure 2.6: Convexity Testing. Every vertex must be examined. 
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O(N2) op~ratlons, just because there are that many d!~gonals. Whll·e O(N2) would· 

be an Improvement over Na, It provides no hope of closing the gap entirely. At this , . 

stage we must develop alternative characterizations of convex polygons, use them. 

,to find algorithms, and analyze the running times of these algorithms. The following 

attempt shows that even erroneous conjectures can lead to Interesting and 

profitable research Ideas: 

Nontheorem. A polygon P Is convex Iff no Interior angle Is reflex. 

(Recall that an angle Is reflex If It exceeds 180 degrees.) This result, If true, 

would lead to an easy linear-time test for convexity, -- It would suffice to examine 

N triples of consecutive vertices and compute the angle determined by each, 

verifying that no angle Is reflex. Figure 2.7 shows, however, that the 

characterization Is Incorrect. 

The problem Is that, as shown in the figure, a nonslmple polygon may have no 

reflex angles and stili fall to be convex. However, we may make use of the 

following: 

Property 2.3: A polygon Is convex Iff It Is simple and has no reflex Interior 

angles. 
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Figure 2.7: No angle Is reflex, but P Is not convex. 

If our polygon is known in advance to be simple, we may check Its convexity in 

linear time by examining each Interior angle. If this Is not known, though, we must 

determine whether or not P Is simple. This can be done by testing every pair of 

nonconsecutive sides for Intersection, but then we are back to a quadratic 

algorithm! The Issue of whether a polygon Is simple arises In many other geometric 

,problems. (For example, the, convex hull of a simple polygon can be found In linear 

time, 'but N log N time Is required If the polygon Is not known to be simple.) This 

_ 'problem Is treated fully In Section 5.4. As far as the convexity test Is 

concerned, though, the possibility of self-Intersection makes Property 2.3 not as 

useful as It might appear to be Initially. 

Rather than continuing with the simplicity Idea, let us try an alternate approach, 

I
~' based on the fact that the vertices of a convex polygon seem to occur In angular 

order around Its boundary. Traversing the boundary of P Induces a direction on 

each edge, converting It Into a vector. (See Figure 2.8). We may then 

speak unambiguously of the angle defined by an edge as the angle It subtends with. 

the positive x-axis. 

Theorem 2.4: A poiygon P Is convex Iff In standard form Its edge angles are non­

decreasing. 

.~ 
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Figure 2.7: No angle Is reflex, but P Is not convex. 
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Figure 2.8: Defining edge angles of a polygon. 

Proof: In standard form, the first vertex of a polygon Is lexicographically lowest 

In Y,x order, and the vertices occur In clockw!se sequence. Thus the first edge 

of P has positive angle. If the conditions of the theorem are met, then P Is 

simple or It would not be a closed polygon. Similarly, P has no reflex angles so' 

Property 2.3 applies! To show necessity, consider the first vertex V at which 

monotoniclty falls. Then e!ther the interior angle at V Is reflex or an edge at V 

Intersects some other edge of P. Monotonlclty must be strict because In 

standard form consecutive collinear vertices have been eliminated. 

Our work Is now done because Theorem 2.4 yields a linear-time algorithm: P can 

be put Into standard form 10' lineat time, and monotonlclty of angle can be verified In 

a single pass through the vertex list. 

Theorem 2.5: Whether a plane polygon Is convex can be determined In O(N) time, 

and this Is optimal • 
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It Is difficult to overemphasize the theoretical Importance of lower bound results,' 

for they put· a problem In perspective and reveal Its Inherent complexity. The 

computer scientist cannot rest until his upper and lower bounds coincide, for until 

then his understanding of the problem Is not complete. From a practical standpoint, 

, though, lower bounds are not always as Important as they may seem, since they 

refer to the exact solution of a specific problem In :a possibly unrealistic model of 

computation. The system-builder Is usually more Interested In fast algorithms; In 

fact, he wants algorithms that run quickly on problems of a certain size and Is often 

unconcerned' about asymptotic behavior. Of course, the true pragm~tlst would 

prefer an algorithm that his programmers can understand and code quickly. We will 

I, try, In this thesis to strike a balance between theoretical and practical 

conslderatlo'1s• 

iii 

In our example the trivial lower bound was sharp and our original upper bound was 

at fault. We will not always be so fortunate -- more powerful technIques will be 

needed to prove better lower bounds. However, the example of this section Is a 

paradigm for the ref:>· of the thesis, and we will often begin with classical results, 

probe their Inadequacies, prove new theorems, develop algorithms, and establish 

lower bounds. . 

If ad hoc techniques and theorems had to be developed for each new problem, 

• computational geometry would rapidly become unwieldy. Fortunately, we will often 
I 

I 
be able to establish an equivalence between a geometriC question and a solved . 
problem In computer science, reducing tremendously the number of new resuns that 

need to be' obtained. We shall spend considerable time exhibiting such 

correspondences and deriving algorithms from them. 
." ." . .' ' 

Equivalences among problems are also Important because the'y are, Ii source of 

lower bounds. It Is easy to show by an adversary argument that any d~clslon tree 

that determines whether or not a list of N elements Is sorted must ma:k,~ at least 

N-1 comparisons, In the worst case. Since this problem can be transformed, using' 

no comparisons at all, Into an Instance of convexity testing, we know Immediately 

that convexity ~estlng must also require at least N-1 comparisons, worst case. 

Reducibilities of this form are a powerful means of obtaining lower bounds. 

Our goal, then, will be to reshape classical geometry' Into a computational 
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discipline by manipulating definitions and theorems until they can be made 'to yield 

fast algorithms, exploiting, whenever possible, analogies between geometric 

problems and well-understood discrete algorithms. 

'"~~ : :·~·r·.· .. 
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Chapter 3 

Convex Hull Algorithms 

3.1. The Problem of the Convex Hull 

3.1.1 Background 

31 

Recalling Definition 2.1, a set 8 Is convex Iff the line segment Joining every pair of 

Its points consists entirely of points of S. The conI/ex hull of S Is the smallest 

convex set containing 8.1 Intu!tlvely, the concept of the convex hull Is easy to 

understand. To find th~ hull of a set of points in the plane, Imagine surrounding the 

set by a large, stretched rubber band. When the band Is released, It will assume 

the shape of the convex hull.2 (See Figure 3.1.) 

The convex hull of a set can be viewed Informally In other ways. It Is the shape 

assumed! by the package when the set Is gift-wrapped. A physicist would say that, 

from, Infinity, a set "looks like" Its convex hull, by which he means that from 

sufficiently far away the closest point of the set Is also a point of the hull (Figure 

3.2). 

1 "Smallest" Is In the sense of set Inclusion. That Is, H Is the: hu!! of S Iff H contains 

S, H Is convex, and no convex subset of H also contains S. 

2Note that this algorithm operates In linear time! One need only drive nails Into a 

, board (at constant cost p'er nail) and use a large rubber band. Of course, the model 

of computation we will be using does not Include such primitives. The point Is that 

the existence of a fast, Intuitive, perceptual or' analog procedure can sometimes 

hinder our understanding of complexity Issues. How are we to reconcile this 

disarmingly efficient carpenter's algorithm with the N log N lower bound to be proved 
later? 
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Figure 3.1: A Rubber Band Assumes the Shape of the Convex Hull. 

Figure 3.2: At large dlstai1ces the closest point of S Is a hull point •. 

Unfortun~tely, such analog devices are unavailable to a computer and we will 

need a clean definition of the convex hull and a precise specification of how It Is to 

be represented In the machine. We must then crystalll~e a!! of our Informal notions 

about hulls Into an explicit computational procedure. This Is the process of 

algorithm design, during which we combine our conceptual understanding of the 

problem with knpwledge about Its mathematical structure In order to decfde which 

I algorithmic techniques will be useful. It Is by exploiting this structure that we 
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obtain efficient algorithms. ' For example, Theorem 2.4, which characterlze~' convex 

polygons, enables us to avoid examining all paIrs of vertices In determining 'whether 

a given polygon Is convex. 

3.1.2 Mat .. ematlcal preliminaries 

The reader may be wondering at this point why W6 do not, simply consult a 

geometry textbook, obtain a suitable definition of the convex hull~ and follow the 

prescription for constructing it. ~ Let us try this approach, for It reveals much about 

the non-algorithmic nature of classical mathematics. 

Definition 3.1: [Valentine (64)] The convex hull of a set Is the Intersect"lon of 

all convex sets containing It. 

Thls'deflnitlon is a formal characterization of the hull as 'the' smallest conve~ ,set 

containing a given one. While It Is elegant and very powerful for proving theorems, 

It Is useless for computational purposE:s. In general, the number of convex sets 

Involved In the Intersection Is uncountable, so there Is no hope of applying the 

definition directly -- It Is constructive but not computational. This dIstinction, while 

often Ig~ored, Is of crucial Importance as we undertake to fIt geometry Into 

contemporary computer science. 

Definition 3.1 Is not the only way of defining the convex hull. The following 

definition, based on a closure operation, corresponds to the Intuitive Idea of "filling 

Inti a set until It becomes convex: 

A convex combination of a set of points PI Is a sum of the form 

N N f:1 w,PI ' where w, ~ 0 and ~ wI = 1 • (3.1 ) 

3Thls would have the side benefit of shortening the thesis by 50 pages. 
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Definition 3.2: [Stoer (70)] The convex hull of S consists of all convex 

combinations of points of S. 

It Is ·easy to see that this definition will not help us find the hull by any obvious 

method In less than exponential time. 

3.1.3 Statement of the problem 

We are not quite ready to formulate the huli problem computationally because It Is 

stili not clear what form the output of a hull algorithm will take. The Input Is an 

unordered set of points but what of the result? 

• Theorem 3.1: [Benson (66)] The convex hull of a set of N points Is a convex 

polygon having at most N sides. 

Having specified In the last chapter a model of computation and a way of 

representing both convex polygons and unordered sets of points, we are at last 

ready to state two versions of the convex hull problem: 

Problem P3.l: (Planar Convex Hull) Given a set of N points In the plane, find Its 

convex hull (that Is, the standard form of the polygon that defines the hull). 

Problem P3.2: (Planar Extrf?me Points) Given N points In the plane, Identify 

those that are vertices of the convex hull. 

Both of these problems can be generalized to k dimensions, but we shall work almost 

entirely In the plane for the remainder of this thesis. 

It should be clear from our discussion of representations that Problem P3.1 Is 

asymptotically at least as hard as P3.2, because the output of P3.1 becomes a 

valid solution to P3.2 If we merely recopy the polygon produced by the former as an 

unordered list of points. In the notation of Chapter 2, P3.2 Is O(N)-tlme reducible to 
P3.1 : 

PLANAR EXTREME POINTS cGN P~ANAR CONVEX HULL , 
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It is natural to ask whether the former Is asymptot!cally easier than the latter or If 

they are In fact equal In complexity. This and many other questions will be 

examined In the succeeding sections. The rest of this chapter Is devoted to a 

study of the complexity of the pianar convex hull problem and to algo"'~thms for· 

solving It. 

3.2. Early development 01 a convex hull algorithm 

Remembering our earlier nonconstructive, let us now seek mathematical results 

that will lead to efficient algorithms. 

Definition 3.3: A point p of a convex set S Is an extreme point If no two points 

a,b E S exIst such that p lies on the open line segment (a,b). 

Th!?'orem 3.2: [Benson (66)] The set E of extreme points of a finite set S Is the 

smallest subset of S having the property that hull(E) = hull(S), and E rs 

precisely the set of vertices of hull(S).4 

It follows that two steps are required to find the convex hull of a finite set: 

1. Identify the extreme polnt-s. (This Ie Problem P3.2.) 

I
- 2. Order these points so that they form a convex polygon. 

We need a theorem that will enable us to test whether a point Is an extreme point. 

II 
Theorem 3.3: A point p Is an extreme point of a plane convex set S unless It lies 

4Under our definition of standard form, every hull vertex Is an extreme point 

because consecutive collinear vertices are disallowed. 
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In some triangle whose vertices are In S and Is not a vertex of the trlangle.5 

• • ., 
A r--___ c 

• • 

'. • • 
B • • 

Figure 3.3: Point p Is not extreme because It lies Inside ABC. 

This theorem provides an algorithm for eliminating points that are not extreme. 

There are O(N3) triangles determined by the N points of S. Whether a' point lies In' a 

given triangle can be determined In a constant number of operations (see Appendix 

A), so we may learn If a specific point is extieme In O(N3) time. 

Repeating this procedure for all N points of S requires O(N4) time. While our 

algorithm Is extremely Inefficient, It Is conceptually simple. and demonstrates that 

determining whether a point Is extreme Is decidable. 

We have spent O(N4) time Just to obtain the extreme points which must be 

ordered somehow to form the convex hull. The nature of this order Is revealed by 

the following theorems: 

Theorem 3.4: A fay emanating from an Interior point of a bounded convex figure F 

5This follows immediately from the proofs of Theorems 10 and 11 of [Hadwiger 

(64)]. ,The generalization to k dimensions Is obtained by replacing "triangle" by 

"simplex on k+1 vertices". 
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Intersects the boundary of F In exactly one polnt.6 

Theorem 3.5: Consecutive vertices of a ·convex polygon occur In sorted angu.lar 

order about any Interior point. 

Proof: Given a convex polygon P, assume that there exist three 'consecutive 

vertices ABC of P such that the polar angle of B (measured with respect to 

some Interior point z and line zA) Is greater than the polar angle of C, Then any 

ray from z which Intersects edge BC also Intersects AB. so by Theorem 3.4 P 

cannot be convex as claimed. 

Imagine a ray. centered at an Interior point z of polygon P, that makes a 
counterclockwise sweep over the vertices of p. starting from the positive x-axis. 

As It moves from vertex to vertex. the polar angle 7 subtended by the ray Increases 

monotonically. This Is what we mean by the vertices of P being !lsorted". (See 

Figure 3.4.) 

Given the extreme points of a set, we may find Its convex hull by constructing a 

point z that Is known to be Interior to the hull and then sorting the extreme points 

by polar angle about z. 

Definition 3.4: The centroid of a finite set of points Is their arithmetic mean. 

{P" + ••• +PN)/N • 

Theorem 3,6: The centroid of a set Is Interior to Its convex huli.8 

I
i 6Thls Is a consequence of [Valentine (64), Theorem 1.10] and the Jordan Curve 

Theorem. 

7 Polar angles are measured In the usual way. counterclockwise from the x-axis. 

aThat Is. If the Interior Is nonempty. [Benson (66). exercise 25.15]. "Interior" 

refers to the relative (subspace) topology. The convex hull of two distinct points In 
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I
I 6Th Is Is a consequence of [Valentine (64), Theorem 1.10] and the Jordan Curve 

Theorem. 

7 Polar angles are measured In the usual way. counterclockwise from the x-axis. 
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2 ~ Counterclockwise 

" order 

4 p 1 

---------e--------
X-AXIS z 

Figure 3.4: The vertices of P occur In sorted order about x. 

j The centroid of a set of N points In k dimensions can be computed trivially In O(Nk) 

arithmetic operations. 

A different me~hod of finding an Inter!or point Is due to Graham, who observes that 

In the plaite the centroid of any three non-collinear points will suffice [Graham 

(72)]. He begins with two arbitrary points and examines the remaining N-2 points In 

turn, looking for one that Is not on the line deterlTllned by the first two. This 

process uses O(N) time at worst, but almost always takes only constant time -- If 

the points are drawn from an absolutely continuous distribution, then with probabl""ty 

one the first three points are non-collinear [Efron (65)]. 

It Is now evident how to proceed If we are given the extreme points of a s~t S. 

In q(N) time we may find a point r that Is Interior to the hull.9 It only remains to sort 

the extreme points by polar angle, using r as origin. We may do this by transforming 

the points to polar coordinates In O(N) time, then using O(N log N) time to sort, but 

R3 Is a line segment whose Interior Is empty In the metric topology af R3, but 

non empty In the relative topology. 

9Thls point Is computed, so It Is not necessarily one of the given points of S. 
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I 
II 

the expiiclt conversion to polar coordinates Is not necessary. (This may be of some 

comfort. to those readers who are stili uneasy about allowing trigonometric functions 

In our model of computation.) Since sorting can be performed by pairwise 

comparisons, we need only determine which of two given angles Is greater; we do 

not require their numerical values. let us consider this problem In more detail 

because It Illustrates a simple but Important geometric "trick" that Is .usefulln many 

applications. 

Problem P3.3: (Angle Comparison) Given two points A and B In the plane, which 

one has greater polar angle? 

"A I B subtands a smaller angle than A 
iff it lias In the open waage AOF. 

Figure 3.5: Comparing Polar Angles Without Coordinate Conversion. 

Let F be any point on the positive x-axis -- the point (1,0), for exa~pla"~ Point B 

subtends a smaller angle than A Iff It lies In the open wedge AOF. (Refer to Figure 

3.5.) To be In this wedge, 8 must lie both to the right of the directed line segment 

OA and to the left of segment OF. Whether a point (x1 'Y1) lies to the right or left 

of the directed segment from (x2'Y2) to (x3'Y3) can be determined In two 

multiplications and five addition/subtractions by evaluating 

(3.2) 

which gives twice the signed area of triangle 123. (Se.e Appendix A.) 

AREA Is positive If 1 lies to the left of 23, negative If 1 lies to the right, and zero If 
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the three points are collinear. The angle comparison Involves just two of these 

tests. Another Interpretation of the right-hand side of Equation (3.2) Is as the z .. 

component of the cross product of the two vectors OP and OQ, where 0 = (x3'Y3)' p 

= (x1 'Y1)' and Q = (x2'Y2)' 

The details of our first convex hull algorithm are now complete. We have shown , 

that the' problem Is finite and that It can be solved In O(N4) , time using only 

arithmetic operations and comparisons. 

3.3. Graham's algorithm 

, An algorithm that runs In N4 time "vIII not allow us to process very much data. 

Assuming a processor speed of 106 operations per second, the solution of a 1000-

I point problem would take almost twelve days. Our goal Is to reduce this time to a 

minimum, but could It be that the algorithm of the previous section Is optimal? There 

Is nothing In the mathematics so far presented to Indicate otherwise. If 

Improvements are to be made, they must come either by eliminating redundant 

computation or by taking a dlffp.rent theoretical a!3proach. In this section we 

explore the possibility that our algorithm may be doing unnecessary work. 

J 

'To determine whether a point lies In some triangle defined by a set of N points, Is 

It necessary to try all such triangles? If not, there Is some hope that the extreme 

points can be found In less than O(N4) time. R. L Graha~, In one of the first papers 

specifically concerned with finding an efficient geometric algorithm [Graham (72)], 

showed that performing the sort step first enables the extreme points to be found 

In Unear time. The method he used turns out to be a very powerful tool In 

computational geometry. 

Suppose that we have already found an Interior point and transformed the others 

(Using subtractlonsoniy) so that this point Is at the origin. We now sort the N 

points lexicographically by polar angle and distance from the origin. In performing 

this sort we do not, of course, compute the actual distance between two points, 

since only a magnitude comparison Is required. We could work with distance 

squared, avoiding the square root, but this case Is even simpler. If several points 

", 
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share the same polar angle, only the one farthest from the orlgl.n need be retained 

[Graham (72)]. Also, any points that are colnclndent with the origin can be 

eliminated. 

Vertex B is eliminated 
when angle ABC is 
found to be reflex •. 

c 
I 
I 
I 
I , 

• I 
\ I 

. \ I , ,.. 
\ I , ,.. .... 

...... \\1,.. .... .-...... .,.,. .-
.---- ---~-------'O"""" . , .... 

Start ~ 

, , , 

A 

Figure 3.6: Beginning the Graham Scan. 

) 
SCln 

After arranging the sorted points Into a doubly-linked circular list and converting 

the resulting polygon to standard form1 0 I we have the situation depicted In figure . 

3.6. Note that If a point Is' not an extreme point of the convex hull, then It Is 

Interior to some triangle OAC, where A and C are consecutive hull vertices. The 

essence of Graham's algorithm Is a single scan around the ordered points, during 

which. the Interior points are eliminated. What remains are the hull vertices In the 

required order. 

Th€ scan begins at the point labelled START which, because of standard form, Is I. the lowest point of the set and hence Is certainly a hull vertex. We repeatedly 

I examine triples of consecutive points In counterclockwise order to determine 

whether or not they define a reflex angle, one that Is ~ '". If angle ABC Is reflex, 

then ABC Is said to be a right turn, otherwise It Is a left turn. T~ls can be 

I 
10The ~onverslon to standard form can be accomplished because the polygon Is 

simple. This point Is covered more fully In Section 3.5. 
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determined easily by applying equation (3.2). From Property 2.3, we know that In 

traversing a convex polygon, we will make only left turns. If ABC Is a left turn, we 

may check BCD next and no vertices are eliminated. If ABC Is a right tum, there B 

cannot be an extreme point because It Is Interior to triangle OAC. Having eliminated 

B, we must back up the search to the 'Jertex preceding A. This Is how the scan 

progresses, based on the outcome of each angle test: 

1'. ABC Is a right turn. Eliminate vertex B and let Z be the predecessor of A. If A 

~ START then check ZAC, otherwise check ACD. 

2. ABC is a left turn. Advance the scan and check BCD.' 

The scan terminates when It advances all the way around to A again. Note that A Is 

never eliminated because It Is an extreme point. A simple argument shows that this 

scan only requires linear time. An angle test can be performed In ,a constant number 

of operations. After each test we either advance the scan (case 1), or delete a 

point (case 2). Since there are only N points In the set, the scan can not advance 

more than N times, nor can more than N points, be deleted. This method of 

traversing the boundary of a polygon Is so elegant and useful that we shall refer to 

It as the Graham scan. A more precise description of the algorithm Is given below. 
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Algorithm A3.1: Graham's Algorithm ("Always go left") 

1. Find an interior point p. 

2. Using p as the origin of coordinates, sort the points 
I~xicographically by polar angl~ and distance from p. 

3. Arrange them into a circular doubly-linked list In standard 
form, ~ith START pointing to th~ initial vertex. The RLINK 
associated uith a node points to its successor in the list· 
and LLINK points to its predecessor (as in [Knuth (S8)], page 
278). LLINK[STARTl a STARTo 

4. (Scan) 
VPTR+-START; 

WHILE (RLINK[VPTRl _ START) 00 BEGIN 
IF the 3 vertices beginning at VPTR for. a lefi turn 

THEN VPTR+-RLINK[VPTR1; 
ELSE BEGIN 

OELETE(RLINK[VPTR1'; 
VPTR +- LLiNK [VPTR!; (Back track.) 
END 

END 

(DELETE is a procedure that remOV9S an 'tem from a 
doubly-linked circular list.) 

s. The list nou contains the hull vertices in sorted order. 

43 

Theorem 3.7: [Graham (72)] The convex hull of N points points In the plane can 

be found In O(N log N) time and O(N) space using only arithmetic operat~ons and 
comparisons. 
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Proof: From the above discussion, only arlthmetlcs and comparisons are used In 

Graham's algorithm. Steps 1, 2, and 4 take iinear time, while the sort step, 3, 

which domlnstes the computation, requires O(N log N) ~Ime. O(N) storage 

suffices for the linked list of points. 

While this algorithm Is a vast Improvement over our first N4 attempt, Its optlmanty. 

I which was not considered by Graham, remains In doubt. It Is this question that we 
turn to In the next section. 

I 

3.4. A convex hull IG~er bound 

"Thou hast set a bound that they· may not pass 

over." 
- Psalm 104. 

A lower bound on the complexity of a problem defines the minimum number of 

operations, In a given model of computation, that suffice to solve It. The Importance 

of obtaining such a result should not be underestimated because It may warn us 

that a proposed line of research will be fruitless. Having found an O(N log N) 

convex hun algorithm, how are we to proceed? In the absence of a lower bound we 
have no way of knowing whether a faster algorithm Is possible and may spend 

c~nslderable time trying to find one. 

I The fact that Graham'S algorithm contains a sort step does not Imply an 

, n(N log N) lower bound for the convex hull problem. It does not even exclude the 

possibility that some clever Imp!ementor may find a way to perform the Graham scan 

without the initial sort step. What this means Is that we should not look at specific 

algorithms for lower bound Ideas, but concentrate Instead on structural features of 

the problem Itself. Theorem 3.5 should give us pause, for It states that the 

vertices of a convex polygon occur In. sorted angular order. This seems to Imply 

that any convex hull algorithm must be able to sort, a concluslcin that we must 

demonstrate formally. 
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Theorem 3.8: Sorting Is linear-time reducible to the convex hull problem; 

thereforeD finding the convex hull of N points In the plane requires n(N log N) 

tlme.1 ~ 

Proof: We exhibit the reduclbllitYi the conclusion follows from Theorem 2.1. 

Given N real· numbers x1, ... ,xN all positive, we must show how a convex hull 

algorithm can be used to sort them with only linear overhead. Corresponding to 

the number XI' we construct the point (xl,XI2) and associate the number I with 

It. All of these points lie on the parabola y = x 2• The convex hull of this set, In 

standard' form, will consist of a list of the points sorted by abscissa. One pass 

through the list will enable us to read off the XI In order.12 

Because the transformation Involves only arithmetic operations, Theorem 3.8 holds 

In many computational modelsi namely, those In which multiplication Is permitted and 

. sorting Is known to require n(N log N) time. It applies In all dimensions greater than 

one 13, as can be seen by considering any set of N distinct points on the 

Intersection of the hyperplane x = 0 and the unit hypersphere. . 'Nhlle this lower 

bound Is quite elementary, It Is Included here to Introduce reducibility as a way of 

establishing the connection between a geometriC problem and a combInatorial one'. 

Suppose now that we are only Interested In finding the extreme points of ~ set 

(Problem P3.2). The reader should see Im.nedlately that the above theorem falls to 

provide a lower bound, since It Is based completely on the fact that the hull 

vertices are sorted and Is of no usc If we drop the ordering requirement. It Is stJII 

unknown whether PLANAR EXTREME POINTS Is easier than CONVEX HULL. 

11 A similar result appeared as a question on the 1972 Vale Department of Computer 

I Science Qualifying Examination. 

I
I 12The author originally proved this theorem by mapping the XI onto the unit circle. 

The parabola mapping, sl!Qgested by Stan Elsenstat, Is superior because It Is 

rational and requires only a single arithmetic operation. 

13The convex hull of a set of points In one dimension Is the smallest Interval that 

contains them, which can be found In linear time. 
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3.5. A diversion -- simple closed polygonal paths. 

Before continuing with more convex hull material, let us look at an unexpected 

dividend of, Graham's algorithm. 

Problem P3.4: (Simple Polygonal Path [Gemignani (66)])' GIven N points In the 

plane, are they the vertices of a simple polygon? If so, construct It. 

The ':lumber of distinct polygons that result from all possible orderings of the points 

Is at' most (N-1 )!/2. In the set ofN! a priori orderln,.,s, each polygon appears N 

times because of cyclic shifts and twice because clockwise and counterclockwise 

orderings yield the same polygon. In Chapter 5, an O(N log N) algorithm Is 

I presented to test whether a polygon Is simple. Thus we could generate all of these 

polygons and test to see If any are simple, so the problem has a finite algorithm, but 

Its running time Is O(N! N log N). 

Theorem 3.9: The shortest closed route through N points In the plane Is non 8elf­

Intersecting unless all the points are colllnear.14 

Finding this shortest circuit Is known as the Eucllffean Traveling Salesman Problem 

and Is the subject of Section 6.1.5. The problem Is NP-complete, and the 

best known algorithm requires O(N22N) time [Bell",an (62)]. Since a shortest circuit 

always exists, however, we now know that every set of points In the plane Is the 

vertex set of some simple polygon.15 A remarkably fast procedure for finding a 

simple polygon on any set of points Is suggested by the first three steps of 

Graham's algorithm, Cn which we compute an Interior point and sort the' given points 

by polar angle and radius. If the polar angles of all the. points are distinct, the 

14American Mathematical Monthly, Problem E880, April, 1950, page 261. [Sanders 

(76)] contains a characterization of those metric spaces In which the theorem 
remains true. 

15Except for degenerate sets, as usual, In which all points are collinear. 
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Figure 3.7: Constructing 8 simple polygon on a finite plane set. 

resulting list forms a simple polygon, since the points occur In strictly Increasing 

angular order and thus edge Intersections are precluded. If several points share 8. 

common polar angle, It Is necessary to sort them Into a sequence by radius. 

Suppose that there are k distinct polar angles and that nJ points share the Jth 

angle. Let these points be arranged Into a chain C j such that the first point has 

least radius and the last point has largest radius. Then concatenating the chains 

C1",Ck In order and joining the last vertex of Ck to the first vertex of C1 will. 

produce a simple polygon. (See Figure 3.7.) 

Theorem 3.70: A simple closed polygonal path through N points In the plane can 

be found In O(N log N) time, and this Is optlmal.16 

Proof: The algorithm described above Is easily seen to run In O(t~ log N) time; the 

fact. that It always produces an SCPP follows from a slight modification of the 

proof of Theorem 3.5. To demonstrate optimality, we show that 

SORT!NG etN SCPP 

16[Relngold (72b)] contains a statement (without proof) of this thaorem and a claim 

that the problem cannot be solved at all If only comparisons are allowed. 
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Consider an unordered set In the plane consisting of N points xI on the x-axis 

and the single point (0,1). There Is only one SCPP through these points, namely 

the one that begins at (0,1), passes through all of the XI In Increasing order, 

and returns to (0,1). Thus any algorithm which finds this SCPP must sort the xI'· 

3.6.· Jarvis's Algorithm 

Even though we have shown that Graham's algorithm Is optimal, there are stili 

many reasons for continuing to study the convex hull problem: 

1. The algorithm Is optimal In the worst case sense, but we have not yet an~IY2ed. 

Its expected performance. 

2. Because It Is based on Theorem 3.5 which applies only In the plane, the 

algorithm does not generalize to higher dimensions. 

3. It Is not on-line since all points must be sorted before processing begins. 

4. For a parallel environment, we would prefer a recursive algorithm that allows 

the data to be split Into smaller subproblems. 

Ju~t as the study of sorting reveals that no single algorithm Is best for all 

appllqatlons, we will find the same to be true of hull-finding. let us continue to 

explore combinatorial geometry, looking for Ideas that may lead to other hull 

algorithms. 

A polygon can equally well be specified by giving Its edges In order as by giving 

Its vertic;es. In the convex hull problem, we have concentrated so far on Isolating 

the extreme points. If we try Instead to Identify the hull edges, will a practical 

algorithm result? Given a set of points, It Is fairly difficult to determine quickly 

whether a specific point Is extreme or not. Given two points, tl1ough, It Is 

straightforward to test whether the line segment joining them Is a hull edge • 
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• 
Convex 
Hull ~ • 

AB is II hull edge beceuse 
all points of the set lie to 
one side of it. . 

49 

CD is not II hull edge because 
there Ire points on both 
sides of It. 

Figure 3.8: A hull edge cannot separate the set. 

Theorem 3.71: [Stoer (70), Theorem 2.4.7] The line segment L defined by two 

points of the set Is an edge of the convex hull Iff all other points of the set lie 

on L or to one side of It. 

There are (~) = O(N2) lines determined by all pairs of N points. For each of thes~ 
lines we may examine the remaining N-2 points and apply equation (3.2) to 

I 
determine In linear time whether the line meets the criteria of the theorem. Thus In 

O(N3) time, we are able to find all pairs of points that define hull edges. It Is then a 

simple matter to arrange these 'Into a list of consecutive vertices. 

Jarvis has observed that this algorithm can be Improved If we note that, once we 

established that segment AB Is a hull edge, then another edge must exist with B as 

an endpoint [Jarvis (73)]. His paper shows how to use this fact to reduce the time 

required to O(N2) and contains a number of other Ideas that are worth treating In 

detail. 

Assume that we have found the lexicographically lowest point A of the set as In 

" 
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The algorithm of Jarvis 
finds successive hull 
vertices by repeatedly 
turning angles. 

Each new vertex is 
discovered In O(N) 
time. 

Figure 3.9: The Jarvis March for Constructing the Convex Hull. 

50 

Section 2.2. (See Figure 3.9.) This point Is certainly a hull vertex. We 

I 
now wish to find the next consecutive vertex B on the convex hull. This point will 

be the one that has the least polar angle with respect to A as origin. If we now 

take B as origin and let the vector AB define the direction oi zero pOlar angie, then 

the next point C is the one that subtends the smallest polar angle about B, and 

; each successive point can be found similarly In linear time. Jarvis's algorithm 

marc!1es around the convex hull, finding extreme points In order, one at a time. This 

process will be referred to as the Jarvis March. Each new point Is found by 

measuring angles with respect to the last direction traversed. As we have already 

seen hi Section 3.2, the smallest angle can be found with arlthmetlcs and 

comparisons alone, without actually computing any polar angies. 

Since all N points of a set may lie on Its convex hull, and Jarvls's algorithm 

expends linear time to find each hull point, Its worst-case running time Is O(N2), 

which Is Inferior to Graham's. However, If h Is the actual number of ~ertlces on the 

convex hull, Jarvis's algorithm runs In O(hN) time which Is very efficient If h Is 

known In advance to be small. For example, If the hull of the set Is a polygon of any 

constant number of sides, we can find It In ilnear time. 
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Finding successive hull vertices by repeatedly turning angles Is analogous to 

wrapping a two-dimensional package, but the Ide~ generalizes to k dimensions. 

Such a "gift-wrapping" algorithm was given [Chand (70a,b)] even before the 

appearance of Jarvis's paper. In three dimensions It suffices to Identify all of the 

hull edges. Given one edge E, we may find an adjacent edge F by rotating the 

plane containing E until a new point of the set is reached. If several points are 

reached simultaneously, they all lie on the same hull face and a two-d!menslonal 

problem results for that face.. Since each rotation takes only linear time and a 

convex polyhedron on N vertices has at most 3N-6 edges, the convex hull can be, 

found In 'O(N2) time. 

In dimensions higher than three, the distinction between finding the hull (Including 

all hyperfaces) and just Isolating the extreme points becomes Important because 

the convex hull oiN points In k dimensions may consist of up to (~) = O(Nk) 

hyperfaces. Thus any, convex hull algorithm must, In the worst case, exhibit 

performance that Is exponential In dimension. The Chand-Kapur algorithm Is a way 

of organizing the search for hyperfaces so as to reduce overhead. 

3.6.1 Average-case analysis 

Graham'S convex hull algorithm always requires O(N log N) time 17,. regardless of 

the data, because Its first step Is to sort the Input. Jarvls's algorithm, on the other 

hand; uses time that varies between linear and quadratic, so It makes sense to ask 

how much tlrrie It can be expected to take. The answer to this question will take us 

Into, the difficult but fascinating field of stochastic geometry, where we will see 

some of the difficulties associated with analyzing the average case of geometric 

algorithms. 

Since Jarvls's algorithm runs In O(hN) time, where h Is the number of hull vertices, 

to analyze Its average-case performance we need only compute E(h), the expected 

value of h. In order to do this, we must make some assumption about the probability 

I 

1 71n any model of computation for which sorting Is known to require this much time. 
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distribution of the Input points. This problem brings us Into the province of 

stochastic geometry, which deal~ with the properties of random geometric objects 

and Is an essential tool for dealing with expected-time analysis 18, We would like 

to be able to say, "Given N points chosen uniformly In the plane ••• ", but technical 

difficulties make this Impossible -- elements can be chosen uniformly only f:·iom a set 

of bounded tebesQue measure [Kendall (63)] -- so we are forced to specify a 

particular figure from which the points are to be selected~ Fortunately, the problem 

of calculating E(h) has received a good deal of attention In the statistical literature, 

and we quote below a number of theorems that will be relevant to the analysis of a 

number of geometric algorithms. 

Theorem 3.12: [Renyl and Sulanke (63)] If N points are chosen uniformly and 
I . 

Inrtependently at random from a plane convex r-gon, then as N ~ 00, 

E(h) = (2r/3) (1 + logaN) + 0(1), 

where "( denotes Euler's constant. 

Theorem 3.13: [Raynaud (70)] If N points' are chosen uniformly and 

Independently at random from the Interior of e k;-dlmenslonal hypersphere, then 

as N'" 00, E(f), the expected number of hyperfaces of the convex hull, Is given 

asymptotically by 

E(f) = on~(k-1 )/(k+1» 

This Implies that 

E(h) = OCN1/3) for points chosen uniformly In a circle, and 

E(h) = O(N'1/2) for points chosen uniformly In a sphere. 

18Consult [Santalo (76)] for a monumental compilation of results In thIs field. 
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:';. Theorem 3.14: [Raynaud (70)] If N points are chosen Independently from a 
k-dlmenslonal normal distribution, then as N -+ 00, the asymptotic behavior of 

E(h) Is given by 
E(h) = O( (log N)(k-1 )/2) • 

Theorem 3.15: [Bentley (77c)] If N points In k dimensions have the~r 

components chosen Independently from any set of continuous distributions 

(possibly different for each component), then 
E(h) = O( (log N)k-1 ) • 

Many distributions satisfy the conditions of this theorem, Including the uniform 

distribution over a hypercube. 

The surprising qualitative behavior of the hulls of random sets can be understood 

Intuitively as follows: For uniform sampling within any bounded figure F, the hull of a 

random set tends to assume the shape of the boundary of F. For a polygon, points 

accumulating I~ the "corners" cause the resulting hull to ,have very few vertices. 

Because the circle has no corners, the expected number of hull vertices Is . . 
comparatively high, although the author knows of no elementary explanation of the 
N1/3 phenomenon.19 

19 . 
The expected number of hull vertices of a set of N points can be expressed as 

the Integral of the Nth power of the Integral of a probability density. [Efron (65)] 

What Is of Interest Is not the value of this quantity, but Its asymptotic dependence 
on N. 
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It follows directly from these results that the expected time used by Jarvis's 

algor!thm can be described by the following table: 

Distribution Average-Case 

Uniform in a conveK polygon D(N log N) 

Uni form in a circle D(N4/3) 

I 

(log N) 1/2 ) Normal in the plane D(N 

Table 3.1. Average-Case Behavior of Jarvts's Algorithm. 

Note that for the normal distribution, Jarvls's algorithm csn be expected to take 

slightly less time than Graham's. 

All of the distributions consIdered In this section have the property that the 

expected number of extreme points in a sample of size N Is O(NP), for somoe 

constant p < 1. We shall refer to these as NP-dlstributions. 

Jarvis's original paper outlines some improvements to his procedure that reduce 

olts running tlmeconslderably.20 They are based on the fact that once a point has 

been found to be Interior to the convex hull, It can be eliminated from further 

consideration. Suppose that .. we hl:1Ve already found hull points A, S, and C and are 

searching for vertex 0, the successor of C. :0 do this we will examine N-3 points, 

but all those Interior to triangle ABC can be deleted during the search. Likewise, 

when we scan for vertex E, all points within tr!angle ACD can be removed forever. 

Note that the test for Inclusion In triangle ACD reduces to asking on which side of 

line' AD the point lies. Figure 3.10 Illustrates this process. 

20These modifications were not taken Into account In our average-case analysis 

because they do not affect the asymptotic average running time for centrally 

symmetric distributions. 

Convex Hull Algorithms 54 

It follows directly from these results that the expected time used by Jarvis's 

algor!thm can be described by the following table: 

Distribution Average-Case 

Uniform in a conveK polygon D(N log N) 

Uni form in a circle D(N4/3) 

I 

(log N) 1/2 ) Normal in the plane D(N 

Table 3.1. Average-Case Behavior of Jarvts's Algorithm. 

Note that for the normal distribution, Jarvls's algorithm csn be expected to take 

slightly less time than Graham's. 

All of the distributions consIdered In this section have the property that the 

expected number of extreme points in a sample of size N Is O(NP), for somoe 

constant p < 1. We shall refer to these as NP-dlstributions. 

Jarvis's original paper outlines some improvements to his procedure that reduce 

olts running tlmeconslderably.20 They are based on the fact that once a point has 

been found to be Interior to the convex hull, It can be eliminated from further 

consideration. Suppose that .. we hl:1Ve already found hull points A, S, and C and are 

searching for vertex 0, the successor of C. :0 do this we will examine N-3 points, 

but all those Interior to triangle ABC can be deleted during the search. Likewise, 

when we scan for vertex E, all points within tr!angle ACD can be removed forever. 

Note that the test for Inclusion In triangle ACD reduces to asking on which side of 

line' AD the point lies. Figure 3.10 Illustrates this process. 

20These modifications were not taken Into account In our average-case analysis 

because they do not affect the asymptotic average running time for centrally 

symmetric distributions. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

I 

Convex Hull Algorithms 55 

D c 
, 

During the scan for vertex , • • 
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" 
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In the scan for E, the • ' , , • , , 
points inside triangle • \ . , ACD Ire removed, etc. • , , , , , , , 

Figure 3.10: Eliminating points that are Interior to the hull 

3.7. A linear expected-time algorithm 

We now develop In de,tall a lineaf expected-time convex hull algorithm that Is also 

worst-case optimal. It Is based on a divide-and-conquer Idea that Is simple but 

remarkably powerful, and which generalizes to higher dimensions. 

A fl,rst step In applying the method of divlde-and-conquer, which we shall refer to 

from here on as D&C, Is to Invoke the prlnclplecq:f. balancing .[Aho (74), page 65], 

which suggests that a computational problem should be divided !nto subproblems of 

nearly equal, size. Suppose that In the convex hull problem, we have split the Input 

Into two parts, A and B, each containing half of the points. If we now find hull(A) 

and hull(S) separately but recursively, how much additional work Is needed to form .1 hull (A U B), that Is, the hull of the original set? To answer this we may use the 

relation 

hull(A U B) = hull(hullCA) U hull(B» (3.3) 
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HULl(S) = 
HULL(HUlL(A) U HUll(B» 

By dividing S into two 
subsets and finding their 
hulls recursively we can 
reduce the problem to 
finding the hull of the 
union of two convex 

. polygons. 

-----------

--
• • 

• • 
B 

• 
~ -_ ...... --_ .. 

Figure 3.11: Forming the hull by dlvlde-snd-conquer. 
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While at first glance. equation (3.3) seems to involve more work than just finding 

the hull of the set directly, It Is crucial to note that hull (A) and hull(B) are convex 
polygons, not just unordered sets of points. (See Figure 3.11.) 

Problem pa.5: (Hull of Union of Convex Polygons) Given two convex polygons, 

find the convex hull of their union. 

Algorithm A3.2: Convex Hull 

1. Partition the original set S arbitrarily, but as equally 
as possitile, into tuo subsets A and B. 

2. Recursively find the conveK hulls of A end B. 

3. Merge the. two hulls together to form hull(S).· 
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let U(N) denote the time needed to find the hull of the union of two convex 

polygons, ea~h having N/2 vertices. If T(N) Is the time required to find the convex 

hull of a set of N points, then applying equation (3.3) gives. 

I 

T(N) :S 2T(N/2) + U(N) T( 1) = const., (3.4) 

whose solution depends on the form of U(N): 

Lemma 3.1: If T(N) obeys the recurrence relation (3.4), 

If U(N) = O(N) , then T(N) = O(N log N). 

If U(N) = O(N/log N), T(N) = O(N log log N). 

If U(N) S O(NP), p < 1, then T(N) = O(N). 

Proof: An easy Inductive exercise as In [Aho (74), Chapter 2]. 

It ·:lOW remains to develop an algorithm for forming the hull of the union of two 

convex polygons •. We will make use of the property that the vertices of a convex 

polygon occur In sorted order about any Interior point (Theorem 3.5) and the fact 

that the Graham SC8n nms In linear time If presented with a list of vertices that are 

sorted by polar angle. 

Algorithm A3.3: Hull of the union of convex polygons 

1. Find a point p that Is Interior to A. (For example, the centroid of any three 

vertices of A.) This point p will be Interior to hull(A U B). 

2. Determine whether p Is Interior to B. This can be done In O(N) time by the 

method of S*:!ctlon 4.2. If p Is not Interior, go to step 4. 

3. (p Is Interior to B; see Figure 3.12.). By Theorem 3.5, the vertices of 
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both A and B occur In sorted angular order about p. We may then merge the 

lists In O(N) time [Knuth (73)] to obtain a sorted list of the vertices of both A 

and B. Go to step 5. 

4. (p Is not Interior to B; 'see Figure 3.13.) As seen from p, polygon Biles 

In a'wedge whose apex angle Is ~ 71'. This wedge Is defined by two vertices u 
and v of B, which can be found In linear time by the following procedure: 

Construct a ho'rlzontal line through p. If this line' Intersects B to the right of p, 

then B lies In the wedge determined by the vertices of B that have greatest 

p.olar angle < 71'/2 and least polar angle) 371'/2. The case In which B lies to the 

left of p Is similar. If the horizontal line through p does not Intersect Band B 

lies 'above It, the wedge Is determined by the vertices that subtend the largest 

and smallest polar angles about p. (Tt-e case In which B lies below Is 

analogous.) The two vertices defining the wedge B Into two chains of vertices 

that are monotonic In polsr angle about p, one Increasing In angle, the other 

decreasing. Polygon A together with the two chains of S constitute three 

sorted lists that contain a total' of N elements. These can be merged In O(N) 

tlme2l to form a list of the vertices of A U S, sorted about p. 

5. The Graham scan (step 4 of Algorithm A3.l) can now be performed. This 

requires only linear time to yield the hull of A U B. 

Theorem 3.16: [Shamos (75a)] Algorithm A3.3 correctly finds the convex hull 

of the union of a convex n-gon and a convex m-gon In O(n + m) time. 

Proof: Once we have the vertices In sorted angular order about p, correctness 

follows from Graham's algorithm. Step 1 requires only constant time and 

correctly, finds an Interior point of A by Theorem 3.6. Step 2 requires O(n) time 

and Its correctness Is a consequence of Theorem 4.2. Step 3 or 4 

(whichever Is executed) requires O(n + m) time. Since only m + n vertices 

remain at Step 5, O(n + m) time suffices for the Graham scan (Section 3.3). 

21 Since two sorted lists of length N can be merged In O(N) time, the same Is true of 
three lists. 
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A 
8 

Figure 3.12: Point p lies Inside B •. 
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Since p lies Inside both . 
polygons, the vertices of 
A and B occur In sorted 
order about p and can be 
merged in linear time. 

Theorem 3.17 : Algorithm A3.2 runs In O(N log N) time, In the worst case • 

. Proof: lemma 3.1 and Theorem ~.16. 

The recurrence relation· (3.4) describes the worst-case. running time of our 

convex hull a!gorlthm In any dimension k, If U(N) Is taken to be the time required to 

form the hull of the union of two convex polytopes In Rk, each having N vertices.· 

Preparata and Hong [Preparata (77b)] discovered a variant of Algorithm A3.3 

Independently and have used It to show that U(N) = O(N) even In three dimensions, 

and they are thus able to obtain an O(N log N) convex hull algorithm In R3. 

We now show that Algorithm A3.3 runs In linear expected time over a wide class 

of probability distributions, If some care is taken in its impiementation. The proof Is 

based on the fact that the expected time needed to merge the two subproblem 

-' 
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As seen from p, polygon B 
lies in II wedge defined by 
vertices u and y which 
partition B into lwo chains . 
of vertices that may be merged 
with the vertices of A in 
linear tima. 

Figure 3.13: Point p Is exterior to B. 

sol ... tlons Is subllnear, requiring only O(NP) time for some p (1. Since the 

expectation operator distributes 'over addition, we may rewrite (3.4) as 

where starred quantities denote expected values. This equation wI!! be correct for 

a particular probability distribution If we are able to guarantee that the subproblems 
. ~ 

are also from this distribution, which will justify writing the same function T on both . 

sides. This can be assured by assigning points randomly to the subproblems, so the 

" analysis reduces to determining U (N). 

By Theorem 3.16, U(N) Is linear In the total number of vertices In the hulls to be 

merged, so U~(N) Is linear In the expected number of vertices Involved. All of the 

distributions discussed In Section 3.6.1 have the property that E(h) = O(NP), for 

some p (1. Thus, . 
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T"(N) ~ 2T"(N/2l + O(NP) = O(N) (3.6) 

Let us review the algorithm, this time Including I.mplem.entat.lon details: 

Algorithm A3.4: LInear Expected-tIme Convex Hull, 

1. Apply a random permutation to the Input points and arrange them In a 2 x N 

array of x- andy-coordinates. Note that a sU,bprob,lem may be specified by 

glvl~.9 . two pointers Into this array, denoting the left and right Indices of a 

sequence of points, end that each such subprobl~m Is random [Knuth (71 )]. 

2. Recursively find the convex hulls of the first and last N/2 points. In the 

recursive calls to the hull procedure, It Is essential to pass only two pointers to 

the point array. Copying entire subproblems would use O(N log N) time overall. 

It Is essential to avoid this. 

3. The solutions obtained to the subproblems In Step 2 are expected to be smal/, 

I.e .• for a large class of distributions, only O(NP) points remain. These hulls can 

be merged In O(NP) expected time by using Algorithm A3.3. Because they are· 

small, the s!.!bproble~ solutions may themselves be passed by copy to the hull­

union procedure, which Is not recursive. 

The algorithm can also be Implemented bottom-up to avoid explicit recursion by 

working on sets of four points. then eight. etc. This would be the ImplementatIon of 

choice. but the algorithm Is much easier to understand recursively. 

Theorem 3.78: [Bentley and Shamos (77b)] For the distributions discussed In 

Section 3.6.1, the convex hull of a sample of N points can be found In O(N) 

expected time In both two and three dimensions. 

The result In three dimensions follows from the linear polyhedron merge of' 
[Preparata (77b»). 

'J Convex Hull Algorithms 61 

T"(N) ~ 2T"(N/2l + O(NP) = O(N) • (3.6) 

Let us review the algorithm, this time Including l,mplem,entat,lon details: 

Algorithm A3.4: Linear Expected-tIme Convex Hull, 

1. Apply a random permutation to the Input points and arrange them In a 2 x N 

array of x- andy-coordinates. Note that a sU,bprob,lem may be specified by 

glvl~.9 . two pointers Into this array, denoting the left and right Indices of a 

sequence of points, end that each such subprobl~m Is random [Knuth (71 )]. 

2. Recursively find the convex hulls of the first and last N/2 points. In the 

recursive calls to the hull procedure, It Is essential to pass only two pointers to 

the point array. Copying entire subproblems would use O(N log N) time overall. 

It Is essential to avoid this. 

3. The solutions obtained to the subproblems In Step 2 are expected to be smal/, 

I.e .• for a large class of distributions, only O(NP) points remain. These hulls can 

be merged In O(NP) expected time by using Algorithm A3.3. Because they are· 

small, the s!.!bproble~ solutions may themselves be passed by copy to the hull­

union procedure, which Is not recursive. 

The algorithm can also be Implemented bottom-up to avoid explicit recursion by 

working on sets of four points. then eight. etc. This would be the ImplementatIon of 

choice. but the algorithm Is much easier to understand recursively. 

Theorem 3.78: [Bentley and Shamos (77b)] For the distributions discussed In 

Section 3.6.1, the convex hull of a sample of N points can be found In O(N) 

expected time In both two and three dimensions. 

The result In three dimensions follows from the linear polyhedron merge of' 
[Preparata (77b»). 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

,----._-----_. --_ .. __ . ._-_ ... __ ...... 

Convex Hun Algorithms 62 .. 

3.S. The On-Line Problem 

Each of the convex hull algorithms we have examined thus far requires all of the 

data points to be present before any processing begins. In many geome~rlc 

'applications, particularly those that run In real-time, this condition cannot be met 

and some computation must be done as the points are being received. In general, 

an algorithm that cannot look ahead at Its Input Is referred to as on-line, while one 

that operates on all the data collectively Is termed off-line. 

Problem P3.6: (On-LIne Convex Hull) Given N points 111 the plane, pi , ... , PN' find 

their convex hull In such a· way that after Pi Is processed, the hull of the first I 

pol,nts can be output In O(i) time. 

The algorithm must maintain some representation of the hull and update It as points 

arrive; the question Is whether this can be done without sacrificing O(tJ log N) 

worst-case running time for processing the entire set. 

The answer was recently shown by Preparata to be affirmative: 

. Theorem 3.79: [Preparata (77e)] The convex hull of N points In the plane can 

be found on-line with an Interpolnt processing delay of at most 0(109 N). 

3.9. The Hull of a Simple Polygon 

. Sklansky h.8s shown that a scan similar to Grahamis can be applied to a simple 
polygon. 

Theorem 3.20: [Sklansky (72)] The convex hull of a simple polygon can be 
found In O(N) time. 
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3.1 O. Convex Hull Applications 

"You know my methods, apply them." 

- Sherlock Holmes. 

This section Is devoted to a discussion of applications that require computation of 

the convex hull. New problems will be formulated and treated as they arise In these 

applications. Their variety should convince the reader· that the hull problem Is 

Important, both In practice and as a fundamental tool In computational geometry. 

3.10.1 Statistics 

The connection between geometry and statistics Is a close one because ~ 

multivariate statistical sample can be viewed as a set of points In Euclidean space. 

In this setting, many problems In statistics become purely geometric ones. For 

example, linear regression asks fot a hyperplane of best fit In a specified norm. 

Certain problems In voting theory reduce to finding which k-dlmenslonal hypersphere 

contains the most points of a set.22 A survey of geometric techniques In statistics 

Is given In [Shamos (76a)]. Determining the convex hull Is a basic step In several 

statistical problems which We treat separately In the next few paragraphs. 

3.10.2 Robust Estimation 

A central problem In statistics Ie to estimate a population parameter, such as the . .' 
mean, by observing only a small sample drawn randomly from the population. We say 

that a function t Is an unbiased estimator of a parameter P If E[t] = P, that Is, the 

expected value of· t Is precisely P [Hoe I (71 )]. While the sample' mean Is an 

unbiased estimator of the population mean, It Is extremely sensitive to outliers, 

22[Johnson (77)]. The word "reduce" may be misleading here because the final 

problem is NP-complete. 
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observations that lie abnormally far from most of the others. It Is desirable to 

reduce the effects of outliers because they often represent spurious data that 

would' otherwise Introduce errors In the analysis. A. related property that a good 

estimator sho~Id enjoy Is that of robustness, or Insensitivity to deviations from the 

assumed population dlstrlbutlor.. Many such estimators have been proposed 

[Andrews (72a)]. An Important class~ known as the Gastwlrth estimators [Gastwlrth 

(66)], are weighted means of symmetrically-placed order statistics and are based 

on the fact that we tend to trust observations more the closer they are to the 

"center" of the sample. 
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Any trimmed mean can be. computed In O(N) time (using a linear selection 

algorithm) and any Gastwlrth estimator In O(N log N) time (by sorting), but what are 

their analogs In higher dimensions? Tukey has suggested a procedure' known as 

"shelling", or "peellngil, which Involves stripping away the convex hull, of the set, 
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then removing the convex hull of the remainder, and continuing until only (1-2oG)N 

points remain [Huber (72)] This procedure motivates our next definition and 

problem: 

Definition 3.5: The depth of a point p In a set S Is the number of convex hulls 

that "have to be stripped from S until p Is removed. Points which lie on a hull 

but are not extreme have the same depth as extreme points. The depth of S Is 

the depth of Its deepest point. 

Depth 2 Depth I 

--._-- ----... -~~------

Dept~ 3 .... --
Depth 4 

Point P Is It depth 2 

figure 3.15: The Depth of a Point 

Problem P3.7: (Depth of a Set) Given a set of N points .In the plane, find the 

depth of each point. 

Theorem 3.21: Any algorithm that determines the depth of each point In a set 

must make n(N log N) comparisons In the worst case. 

Proof: Consld~r a one-dimensional set. Knowing the depth of each point, We can 

sort the set In only O(N) additional comparisons. In any dimension we can force 

a depth algorithm to sort and thus prove that 
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SORTING otN DEPTH • 

Suppose we are given N real numbers xI ~ O. In two dimensions, create the set 

of 4N points (xl'O) U (O,xl) U (-xl'O) U (O,-xl)' It Is easily seen that the depth 

number of a point Is the rank of Its corresponding xI' The o::ol1structlon 

generalizes to higher dimensions but requires 2kN points In dimension .k. 

The question remains as to whether the depth of a set can be found faster than 

the depths of till of Its points. The following results show that under a restricted 

model of computation this Is Impossible even In one dimension. We will explore thd 

connection between depth and a basic question In set theory. 

Problem P3.8: (Element Unlquenessj Given N real numbers, are they all distinct? 

The problem may be solved easily in O(N log N) comparisons by sorting, but there Is 

no obvioUS way to show that sorting Is required. 

Theorem 3.22: [Dobkin (76b)] Determining whether N ~eal numbers are distinct 

requires n(N log N) comparisons If only polynomial functions of bounded degree 

can be .computed. 

Theorem 3.23: Any algorithm which finds the depth of a one-dimensional set must 

make at least n(N log' N) Icomparlsons In the worst case. 

Proof: We show that ELEMENT UNIQUENESS otN SET DEPTH, and the result 

follows from Theorem 3.22. (See Section 5.4.2.) Given N real numbers 

XI' find the depth of the one-dimensional set S they determine. If N Is odd, 

then the XI are distinct Iff DEPTH = (N-1 )/2. If N Is even, then let M be a 

number that Is, larger than any element of S. Such an element can certainly be 

found In O(N) time by computing 1 + max{S}. Now the XI are distinct Iff 

DEPTH(S U M) = N/2. 
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Unfortunately, no known algorithm achieves the .n(N log N) lower bound In two or 

more dimensions. The procedure below runs In O(N2) tIme and operates by repeated 

. applicatIon of th~ JarvIs march (SectIon 3.6). 

Algorithm A3.5: Set Depth 

DEPTH 4- 9; 
WHILE S. is nonempty 00 BEGIN 

DEPTH 4- DEPTH + 1; 
Find Hull(S) using Jarvis' Algorithm; 
label all hull vertices ~ith DEPTH and 

delete them from S; 
END 

Begin depth 4 sean 

Begin depth 3 scan 

Begin depth 2 sCln 

Start ~ 

Figuie 3.16: FIndIng depths by repeatIng the Jarvis March. 

Theorem 3.24: AlgorIthm A3.5 runs In O(N2) tIme In the worst case. 
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Proof: 

Let hi be the number of vertices of depth I. By the results of S!3ctlon 3.6, 
the Ith Iteration of the ·WHILE-Ioop can be performed In chlNI time, where N, Is 

the number of vertices remaining In S before the Ith Iteration and c Is a 
constant Independent of N: 

The total run time Is given by 

T(N) ) 

To use this algorithm for peeling, we need rUil It only until 2cGN points have been 

trimmed. An O(N log N) algorithm would be of great interest for this problem. There 

are Indications that peeling may also be useful for detecting outliers [Friedman 

(78)]. 

3.10.3 Chebyshev approximation 

In this section we study Chebyshev approximation of a finite set of points In the 

plane and obtain a fast algorithm for the case In which the approximating function Is 

also linear. The distance between a point and the value of the approximating 

function at the point Is called the deviation. In the Chebyshev, or Loo ' nOim this Is 

the Y-dlstance between the point and the apprc..dmatlng line y = ax + b. We want 

to minimize the maximum deviation by finding parameters a and b defined by 

min max I YI - aXi - t: I • 
a,b I 

(3.8) 

The problem is now completely geometr!c: 
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Problem P3.9: (Chebyshev ApproxImation) Given N points In the plane, find the 

line l that minimizes the maximum y-dlstance to any polnt.23 

Naturally, this problem has been studied a great deal. and a combinatorial 

characterization of the minimizing line exists: 
'" 

Theorem 3.25: [Rice (64), Corollary 3-5] A line L Is the Chebyshev 

approximant to a finite set S of points In the plane Iff It· maximizes th~ 

deviation of a best Chebyshev approximation among all subsets consisting of 3 

points of S. 

Any set of points satisfying Theore~ 3.25 will be known as Chebyshev poInts. The 

best approximation to three points can be found by solving a system of linear 

equations In the three variables a. b. and d. the devl~tlon:24 . 

aXi + b - Yi • -d 
aXJ + b - YJ • d 
aXk .+ b - Yk • -d 

Since this :;et of equations can be solved In a constant number of operations, 

Theorem 3.25 provides us with an O(N3) algorithm for Chebyshev approximation. 

We can do much better by exploring the relationship between the minimax 

approximation and the convex hull of the given point set.25 In this connection It 

will be useful to define a different geometric device: 

DefinItion 3.6: A line lis a line of support of set S If It meets the boundary of S 

and S lies entirely on one side of L 

23The required line Is unique If all of the points have distinct x-coordinates. which 

we assume throughout this section. See [Rice (64), page 60]. 

24Agaln, only If XI' x j' and xk are distinct. This follows directly from the Chebyshev' 

Equiosclllation Theorem. [Davis (63), Theorem. 7.6.2]. 

·.25The author Is Indebted to Glde.on Yuval for this suggestion. 
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In Figure 3.11, line L supports the polygon, but lines M and N do not. 

L supports P, 
M and N do not. 

Figure 3.17: Line L Is a supporting line of P. 

Figure 3.18: The two lines of support parallel to L. 
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Theorem 3.26: Every line of support of a closed and bounded convex set passes . 
through an extreme point. 

Proof: Let L support S. Consider the Intersection T of Land S. Since S Is closed 

and bounded, T 15 either an Interval or a single point. If T Is a single point It 

must be extreme Oi there wuuld have to be points of S on both sides of L. If T 

15 an Interval, Its endpoints are extreme • 

. Theorem 3.27: [Yaglom (61), page 8] Parallel to a given direction, a bounded 

convex figure possesses exactly two lines of support • 

. Theorem 3.28: The supporting lines of P parallel to a given direction can be found 

In O(log N) time. 

Proof:. Let the given direction lie at angle {J. with respect to the x-axis. A line of 

support through vertex VI lies between edges vl-1 VI and vlvl+ 1 In angle. Since 
the edges of a convex polygon occur In sorted angular order, we may find the 

positions of angles (J and .". + (J In O(log N) time by binary search, If the 

vertices are stored In a linear list or· balanced tree. 

The .followlng theorem enables us to work only with hull points, which Is not the case 

In L1 and L2 appro~lmatlon [Shamos (76a)]: 

B 

• 
• • 

11 __ ----- Chebyshev triangle 

Figure 3.19: The Chebyshev points are also hull vertIces. 
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Theorem 3.29: There exists a set of Chebyshev points of a finite set that are 

vertices of Its convex hull and two of these points are consecutive on the hull. 

Proof:. Let .us call the three Chebyshev points the Chebyshev trlangle.26 

Consider the lines of support of the Chebyshev triangle parallel to the 

Chebyshev line. We claim that they also support the original set, for If not, 

then there Is some point whose deviation from the approximating line exceeds 

that of an'y Chebyshev point, -which Is Impossible. This shows that at least two 

of the Chebyshev points are extreme. By the equlosc!!!atlon property, the third 

point, C, must have a y-devlatlon equal to that of one of the other two 'polnts, 

.say A. Thus the line of support through A also passes through C, so C must b~ 

extreme. It Is Immediate that segment AC !s an edge of the convex hull of S. 

(Figure 3. 1 ~.) 

Theorem 3.29 Is the basis of the following algorithm: 

Algorithm A3.6: LInear Chebyshev approximation In two variables 

1. Find the convex hull of the set In O(N log N) time. 

2. Traverse each hull edge In order, finding the opposing vertex though which a 

parallel supporting line passes, and record the y-dlstance from this vertex to 

the extension of the hull edge. This scan requires only O(N) time. The hull 

edge and opposing vertex that achieve maximum y-dlstance give the 

Chebyshev points, from which the optimal approximating line can be found In 

constant time. 

. Theorem 3.30: O(N log N) time suffices to perform Chebyshev approximation on N 

points In the plane. 

26Also an area In the Sea of Okhotsk Into which Russian mathematicians have been 

,known to disappear. See Durok, S., Zh. Nedostat. Mat. 7(1932), pp. 22-23. 
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Proof I By ~onstructlng a parallel line of support, Algorithm A3.6 finds, for every 

pa~r of consecutive hull vertices, a third point that maximizes the deviation. By 

Theorem 3.29, this is sufficient to find at least one Chebyshev trlangle~ 

• 
Theorem 3.31: [Cf. Theorem 3.18) Chebyshev approximation In the plane can 

, be performed In O(N) expected time; 

3.10.4 Least-squares Isotonic regression 

The problem of Isotonic regression Is to find a best Isotone (that Is, monotone 

non-Increasing or non-decreasing) approximation to a finite point set. The error 

norm . usually chosen Is l2' or least-squares, bec,aLise of Its connection with 

maxlm~m likelihood estlmatlon.27 In other words, 'we .'are,se'eklng an Isotone function 

f that ~Inlmlzes 

I", "' \v.OI 

A best least-squares Isotone fit Is a step function, as Illustrated In Figure 

3.20 [Barlo~ (72), Theorem 1.1]. It should be realized that the 

appioxlmatlng function Is d,eflned only at the xI' though fQr predictive purposes It 

will often be useful to extend Its domain to the entire real line. It "only" remains to ' 

determine the locations and heights of the steps. The following method Is taken 

from [Barlow (72)]. 

Suppose the data have been ordered by x-coordinate. (In many experimental 

situations, sorting Is not necessary because the Independent variable Is time or the 

points are taken In order of increasing x.) Define the cumulative sum diagram (CSD) 

to be the set of, points Pj = (j, Sj) , Po = (0,0) , where sJ Is the cumulative sum of 
the y's: 

, 271sotonlc regression Is discussed at length in [Barlow (72)]. 
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The number of steps and the 
points at which they break 
must both be determined. 

• 
• • • • 

Figure 3.20: A best Isotone fit Is a step function. 

The slope of the line segment Joining Pj-1 to Pj Is just YJ. 

74 

• 

> 

(3.10) 

The lower convex hull of a set Is the lower of the two chains Into which the 

boundary of the hull Is partitioned by the points p and q of least and greatest x­

coordinate, respectively. It Is the ·supremum of all convex functions whose graphs 

lie below the set.28 It should be clear that, given the complete hull, the lower hull 

can be found In linear time. There Is a close relationship between the hull problem 

and Isotonic regression: The Isotonic regression of a point set Is given by the slope 

of the lower convex hull of Its cumulative sum diagram [Barlow (72)]. Thus, 
• 

ISOTONIC REGRESSION cG CONVEX HULL • 

Theorem 3.32: least squares Isotonic-regression can be performed on a set of N 

points In the plane In O(N log N) time. If the points are ordered by abscissa, 

then O(N) time suffices. 

28Another non-constructive definition. 

conv~x Hull AlgorIthms 

The number of steps and the 
points at which they break 
must both be determined. 

• 
• • • • 

Figure 3.20: A best Isotone fit Is a step function. 

OJ = t Y{I) • 

The slope of the line segment Joining Pj-1 to Pj Is just YJ. 
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Figure 3.21: The lower convex hull of the CSD defines the Isotonic fit. 

Proof: We show that once the data are ordered by abscissa. the lower convex 

hull can be found In O(N) time. If the XI are ordered. the CSD points (xl'YI) can 

be computed In O(N) time by Equation (3.10) and these are also ordered by 

abscissa ! fortiori. Using any point on the positive y-axis as origin, the Graham 

scan of Section 3.3 can be run In O(N). time to construct the lower convex hull 

of the CSD. If the data are not ordered. then, by a simple extension of 

Theorem 3.8. fi(N log N) time will be required In the worst case. 
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3.10.5 Clustering 

To quote from [Hartigan (75)], clustering Is the "grouping of similar objects". A 

clustering of a set Is a partition of Its elements that Is chosen to minimize some 

measure of dissimilarity. Hartigan's book contains a large number of different such 

measures and procedures for clustering using them. We will focus on point data In 

two dimensions, where W'!3assume that the x and y varl'ables are scaled so that 

Euclidean distances are meaningful. A measure of the "spread" of a cluster Is the 

maximum distance between any' two of Its points, called the diameter of the cluster. 

We feel,lntultlvely that a cluster with small diameter has elements that are closely 

related, while the opposite Is true of a large cluster. Ona formulation, then, of the 

clustering problem Is 

Problem P3.l0: (Minimum Diameter I<-Clusterlng) Given N points In the plane, 

partition them Into k clusters C1' ... , Ck so that the maximum cluster diameter. Is 

as small as possible. 

It Is difficult to Imagine how to solve this problem unless we at least have an 

algorithm for determining cluster diameter. This motivates 

Problem P3.ll: (Diameter of a Set) Given N pOints In the piane, find two that 

are farthest apart. 

This problem Is seemingly so elementary that It Is dlfflcu~t to per~elve that there 

Is any real Issue Involved. After all, we can compute the distance between each of 

. the N(N-1 )/2 pairs of points In a completely straightforward manner29 and choose 

the largest of these to define the diameter. What Is left to Investigate? Is It 

possible that this O(N2) procedure Is not the best possible algorithm? 

29Th at Is, If the model of computation allows square roots. Even If It does, a better 

way Is to compute any monotonic function of distance, say the distance squared • 

. D(a,b) = (Xa-Xb)2 + (Ya-Yb)2 can be computed In two multiplications and three 

addition/subtractions. This suff~ces to find any order statistic among the distances. 
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The only I.ower bound that suggests Itself Is the trivial one: We must spend O(N) 

time just to examine ,each point once, for we cannot be sure of the diameter 

otherwise. (It. Is tempting to believe that examination of all pairs of vertices Is 

necessary, but this Is not the case.) let us try Instead to reduce the upper "ound • 

• 
e • • . .-'.,..,. .... -_ ..... ---

• 

• 
... --

Figure 3.22: D!am(S) = Dlam(Hull(S». 

Theorem 3.33: [Hocking (61)] The diameter of a set Is equal to the diameter of 

Its convex hull. 

In the worst case, of course" all of the original points of the set may be vertices of 

the hull, so we will have spent O(N log N) time without eliminating anything. The 

convex hull, however, Is a convex polygon, not just a set 'of points, so we have a 

different problem: 

Problem P3.12: (Diameter of a Convex Polygon) Given a convex polygon, find Its 

diameter. 

We have Immediately that 

SET DIAMETER c(N log N CONVEX POLYGON DIAMETER • 
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Theorem 3.34: [Yaglom (61), page 9] The diameter of a convex figure Is the 

greatest distance between parallel lines of support. 

Parallel lines of support 
cannot pass through 0 
and F simultaneously. F 

. Thus (D1F) cannot b. 
a diamel.r. G 

E o 

Figure 3.23: Not all vertex pairs are antipodal. 

8 

Consult Flgur~ 3.23 and notice that parallel lines of support cannot be made to pass 

through every pair of poInts. For example, no lines of support through vertices 0 

and F .can be parallel. This means that DF Is not a diameter. A pair of points that 

does admit parallel supporting lines will be called antipodal. Because of Theorem 

3.34, we need only consider antipodal pairs. The problem is to find them without 

examining all pairs of points. 

Referring now to Figure 3.24, observe that lines land M are parallel lines 

of support through vertices A and 0, respectively. This means that (A,D) Is an 

antipodal pair. As the lines a~e. rotated slightly counterclockwise about these 

vertices, they remain lines of support. This Is true until one of the lines becomes 

coincident with an edge of the polygon. Here M, when rotated to position M', hits 

vertex E before l reaches B, so (A,E) becomes an antipodal pair. 

Now M' will rotate about E while L' continues to rotate about A, and the next 

antipodal pair produced Is (a,E). Continuing In this way, we will certainly generate. 

all antipodal pairs, since the parallel lines will move through all possible angles. 

Determining the new pair at each step Involves only a simple angle comparison. 

, •• 'r· 
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Figure 3.24: Generating antipodal pairs of vertices • 

. . 
Algorithm A3.7: Antipodal Pairs 

Input: A conveK polygon P, in standard for •• 
Outputl, All antipodal pairs of vertices of P. 

We assume that all Indices are reduced modulo N 
(so that N+l B 1) and that ANGLE(M,nJ is a procedure that 
returns the clockuise angle Buept out by a'ray as it rotates 
frum a position parallel to the directed segment P.,Pm+1 
to a position parallel to Pn,Pn+1' 

1. (Find an initial antipodal pair by locating the verteK 
opposite Pl') 

I .. 1; J ... 2; 
WHILE (ANGLE(I,Jl < n) 00 J ... J + 1~ 
CURRENT .. I; 
OUTPUT (I,J) as an antipodal pair; 
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2. No,", proceed ar-ound the polygon, taking account of possibly 
parallel edges. Line L passes through PI,PI+l; M p2sses 

. through PJ,PJ+l-

Loop on J until all of P has been scanned: 
WHILE (J ~ N) DO BEGIN 

IF (ANGLE(CURRENT,I+l) ~ ANGLE(CURRENT,J+l)) 
THEN BEGIN 

J .... J + 1; 
CURRENT 4- J; 
END 

ELSE BEGIN 
i 4- I + 1; 
CURRENT 4- I; 
END 

(Move line M) 

(Move line l) 

OUTPUT (I ,J).; . (Report an antipodal pair) 

(No,", take care of parallel edges) 

IF (ANGLE(CURRENT,I+l). ANGlE(CURRENT,J+l)) 
THEN BEGIN 

END 

OUTPUT(I+l,J); DUTPUT(I,J+1J; DUTPUT(I+l,J+1J; 
I F CURRENT. I 

THEN J 4- J + 1: 
ELSE I 4- I + 1; 

END 
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Theo;em 3.35:· Algorithm A3.7 produces all antipodal pairs of an N-vertex polygon 

p In O(N) time. 

Proof: Suppose that a pair of parallel lines of support of P pass through vertices 

A and B. We show that there also exists a pair of parallel supporting lines 

through A and B In which one of the lines coincides with an edge of .P. "Since 

Algorithm A3.7 finds all pairs of supporting lines with this property It 

successfully produces all antipodal pairs of vertices. Let Land M be parallel 

lines of support through A and B, respectively. If neither Is coincident with an 

edge of P t rotate both counterclockwise simultaneously until one reaches an 

edge. Land M stili pass through A and B and the support property has not 

been lost. That the algorithm runs In O(N) time follows from the fact that either 

I or.d or both are Incremented during each execution of the WHILE-loop and we 

always have I ( J ~N. 

Because enumeration of all antipodal pairs suffices to find the diameter of a polygon 

(by Theorem 3.34), we ha"ve the following: 

Corollary 3.7: The diameter of a convex polygon cen be found In O(N) time. 

Corollary 3.2: [Cf. Theorem 3.20] The dlametei of a simple polygon can be 

found In O(N) time. 

Theorem 3.36: [Cf. Theorem 3.7] The diameter of a set of N points In the plane 

can be found In O(N log N) time. 
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Theorem 3.37: [Cf. Theorem 3.18] The diameter ~f a set of N points chosen 

from an NP-dlstrlbutlon In the plane (Section, 3.6.1) can be found In O(N) 

expected tIme. 

3.11. Unsolved problems 

1. What Is the complexity or the k-dimensional hull problem? That Is, how does 

the number of operations required to find all vertices, edges, and faces of the 

hull depend on Nand k? 

2. How quickly can the extreme points of a k-dlmenslonal set be found? See 

[Dobkin (76b)]. 

3. What Is the behavior of the higher-order moments of E(h) under various 

probability distributions. This would enable us to analyze the expected 

behavior of algorithms having a worst-case performance that Is not linear In N. 

4., How difficult Is It to datermlne whether two polytopes are congruent? If the 

polytopes are three-dimensional and convex, this Is related to Isomorphism of 

planar graphs (by Stelnltz's theorem [Grunbaum (67)]). 

5. What Is the complexity of Chebyshev approximation In higher dimensions? 

(Even k = 3 would be Interesting, and It appears to be a difficult problem.) 

6. How difficult Is It to find the diameter of a set In k dimensions? (Again, k = 3 
Is a significant challenge.) 

7. Isotonic regression In two Independent variables? (Assume the regression 

function Is to be monotonic In each variable separately.) What about other 

norms? 

8. Find a depth algorithm that runs In less than quadratic time. What about the 

depth of a three.tdlmenslonal set? 

.".' 
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9. Is there a fast algorithm for the convex hull of a simple polyhedron? 

k-dlmenslonal polytope? 

10. Problem pa.1 o. 

3.12. Summary 

The convex hull problem affords us the opportunity to develop computational 

g~ometry from Its foundations, for we must deal directly with the non-constructive 

nature of combinatorial geometry. Three major convex hull algorithms are presented 

In this chapter. ~raham's algorithm operates by sorting the points of a set by polar 

angle about an Interior point and then eliminating vertices not on the boundary of . . 

the hull In a linear-time scan. It always requires O(N log N) time. Jarvis's algorithm 

Is based on the principle of "gift-wrapping" am:! fInds each successive hull vertex 

In O(N) time by repeatedly turning angles about the boundary of the set. While this 

may require O(N2) time In the worst case, It runs very quickly If the number of hull 

vertices Is small. By using a fast algorithm for forming the hull of the union of two 

. polygons as the recursive step of a dlvlde-and-conquer procedure and exp,oltlng a 

property of random point sets, we are able to produce an algorithm that runs In O(N) 

exr-ected time without sacrificing O(N log N) worst-case behavior. 

. ).: 

A lower bound, of .n(N log N) for the hull problem Is shown by demonstrating that 

sorting Is reducible to hull-finding. This also provides a lower bound on the tlm~ 

necessary to find a simple closed polygonal path through N points In the plane, a 

bound which can be achieved by a variant of Graham's algorithm. The last section 

Indicates some of the applications of hull-finding. We have been able to combine 

the earlier methods of this chapter with additional geometric tools to produce 

efficient algorl,thms for trlmm!ng, Chebyshev approximation In the plane, and various 

diameter problems. The diameter of an unordered plane set can be found In 

O(N log N) time, while the diameter of a simple, polygon can be found In linear time. 

This re~ult makes use of the fact thiiit the convex hull of a simple polygon can t>~: 

fQrmed In linear time. By merging these' results with our linear expected-tlin~ ;~un 
algorithm of the last section, we are able to produce a linear average-c~s~' 

diameter algorithm • 
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"have worn me out with several·appllcatlons ... " 

- Sh8kespe8r~, All's Well That Ends Well. 
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Inclu&lon Problems 

Chapfer4 

Inclusion Problems 

4.1. Intiuductlon to Geometric Searching 

"He prepared It, yea, and searched It." 

- Job 28:27. 

85 

Among the most Important of geometr'c problems are those that Involve searching, 

or, In th'e most elementary language, determining the location of an object. This 

chapter develops the basic tools of geometric search that will be used In the 

succeeding chapters. We begin with a general discussion of searching and relevant 

complexity measures, then treat in detail the problem of Inclusion: 

Problem P4.1: (Polygon Inclusion) Given a simple polygon 1 P and a new point z, 

determine whether or not z Is Interior to P. 

The difficulty of solving P4.1 depends on whether P Is convex and whether 

preprocessing Is allowed. The Importance of the problem stems from the fact that 

aimost all geometric searching, at some level, can be reduced to testing polygon' 

Inclusion.2 

We w,ltI discuss a genera,' search paradigm called, informally, a query. Given a 

collection of geometilc data, we want to know If it possesses a certain property 

(say, convexity). In the simplest case the question will only be asked once, In which 

event It wouid ,normally be wasteful to do any preconditioning In th~ hope of 

, 'If P Is not simple, the problem may not be well-defined. 

2For, example, we will see In Chapter 6 that determining the nearest 

neighbor of a point Is equivalent to finding which of a set of polygons contains It. 
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speeding up future queries. A one-time query of this type will be referred to as 

single-shot. Many times, however, queries will be performed repeatedly on the 

same database, and It may be worthwhile to arrange the Information Into an 

organized structure to facilitate searching. This can be accomplished only at some 

expense, thou~h, and our analysis must focus on four separate cost measures: 

1. Query time. How much time Is required, In both the average and worst cases, 

to respond to a single query? 

2. Storage. How much memory Is required for the data structure? 

3. Preprocessing time. How much time Is needed to arrange the data for 

searching? 

4. Update time. Given a new piece of data, how long will It take to add It to the 

data structure? 

The various tradeoffs among query time, preprocessing time, and storage are 

well-Illustrated by the problem of range searchlng3, which arises frequent'y In . --..;;...;;....;.;.;....;;..;.;.;,;..~ 

geographic applications and database management:4 

Problem P4.Z: (Range SearchIng) Given N points in the plane, how many lie In a 

given rectangle?5 That is, how many. points (x,y) satisfy 

a S x ~ b, C ~ y ~ d ? 

It is clear that a single-shot range query can be performed in linear time, since 

we need oniy examine each of the N points to see whether It satisfies the 

3[Knuth (73)], page 550. 

4The work described In this section was performed Jointly by the author and Jon 

Bentley and Is reported In [Bentley (77a)]. 

'. 5Therectangle Is assumed to have Its sides parallel to the coordinate axes. 
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Figure 4.1: A Range Query. How many points lie In the rectangle? 
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" ' 

Inequalities defining the rectangle. likewise, linear space suffices because only , 

the 2N coordinates need to be saved. There Is no preprocessing time and the 

update time for a new point Is just a constant. 

What kind of data structure can be used to speed the processing of multiple 

queries? It seems to difficult to organize the points so that an arbitrary new 

rectangle can be accomodated easily. Vie also cannot solve the problem In 

advance for all possible rectangles because of their Infinite number. The following 

: solution Is an example of the locus method of attacking geometry problems, one In 

which we look for critical reglo,ns within which the answer does Ijot vary and store 

these compactly. 

, A rectangle Itself Is an unwieldy object; we would prefer to deal with points. This 

suggests that we might replace the rectangle query by four subproblems, one for 

each vertex, and combine their solutions to obtain the final answer. In this case 

the subproblem associated with a point p Is to determine the number of points Q(p) 

of the set that satisfy both x ~ xp and y ~ yp' that Is, the number of points In the 

southw,est quadrant determined by p. (See Figure 4.2.) 

The concept we are dealing with here Is that of vector domination: 
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Figure 4.2: How many points lie to the southwest of P?, ' 

88 

Definition 4! 1: Given two points A and B In the plane, we &ay that A dominates 8 

If xA ~xB and YA ~ YBi that l,s, A Is greater than or equal to 8 In both 

coordinates. 

In the plane, W Is dominated by V iff It lies In V's southwest quadrant. Q(p) Is thus 

the number of points dominated by p.-The connection between domination and 

range queries Is apparent In Figure 4.3. The number N(ABCD) of points 

contained In rectangle ABCD Is given by 

N(ABCD) = Q(A) - Q(B) - Q(D) + Q(e) (4.1 ) 

This follows from the combinatorial principle of inclusion-exclusion [llu (68)]. All 

points in the rectangle are certainly dominated by A. We must remove those 

dominated by B and also those dominated by D, but this will cause some points to be 

eliminated twice -- specifically, the ones dominated by both Band D -- and these 

are just the points lying In C's southwest quadrant. 
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Figure 4.3: A range search as four domination queries. 

89 

. We have thus reduced the problem of range searching to one of performing four 

point domination queries. The property that makes these queries easy Is that there . 

are nicely-shaped regions of the plane within which the domination number Q Is 

constant. 

Suppose we drop perpendiculars from the points to the x-and y-axes, and extend 

the resulting lines Indefinitely. This produces a mesh of (N+1)2 rectangles, as 

. shown In Figure 4.4. 

For all points p In any given rectangle, Q(p) ~s a constant. This means that 

domination searching Is Just 8 matter of determining which region of a rectilinear 

mesh a given point lies in. This question Is particularly easy to answer. Having 

sorted the points on both coordinates, we need only perform two binary searches, 

one on each axis, to find which rectan·gle contains the point. Thus the query time Is 

only O(log N). Unfortunately, there are 0(N2) rectangles, so quadratic storage Is 

reqUired. We must now compute the domination number for each rectangle. . This 

can readily be done for any single rectangle In O(N) time, which would lead to an 

O(N3) algorithm overall for preprocessing, but this can be reduced to O(N2) [Bentley 

(77a)]. 

While the above procedure answers queries rapidly, the storage and 
preprocessing time required can be prohibitive. To address this problem, we now 

sketch an algorithm from [Bentley (77a)]. 
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If Z lies to the right we need Its rank 
in B and Its y-rank in A. 

Figure 4.5: The two cases. of ECDF searching In the plane. 
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Let L be a line having median x-coordinate among the points (Figure 
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4.5.) • (Degenerate cases can b~ handled by the methods of Section 

6.4.) L can be found In O(N) time. let A be the set of N/2 poInts to the left 

of Land B the set of points' to the right. Given a new poInt Z we want to determIne 

the number of poInts (In both A and B) that It dominates. In a single comparison 

, against L we can determine whether Z lies In A or In B. If Z lies In A (the dla'gram on 

the left In Figure 4.5) It cannot possIbly domInate any poInt ofB, so we may confine 

our attentIon to a subproblem of half the size of the original. The recurrence 

describing this situation Is just ' 

T{N) = T{N/2) + 1 • 

If we learn from the first comparison that Z lIes In B then the problem Is only slightly 

more complicated (the right diagram In FIgure 4.5). We' must find the number of 

poInts In B that are domInated by Z, whIch can be done In time T(N/2). We then add 

to that the number of points In A dominated by Z. Since, however, the x-coordinate 

of Z Is known to be greater than that of any point of A, this number Is merely the 

number of points of A that lie below Z. If we project the points of A onto L and sort 

them In advance (as part of the preprocessing) we will be able to locate Z In this 

ordering In O(log N) time by binary search. Thus the recurrence that results when Z 

Is In B Is 

T(N) :S T{N/2) + O{log N) • 

It Is Immediate that T(N) = 0(Jog2N), even If the second case arises after each 

comparison. 

The storage requIrement of thIs a!gorlthm Is easy to analyze In view of Its 

recursive structure. In two dimensIons we need to store two data structures on 

N/2 points and one linear list of length N/2. Thus, 

, S{N,2) = 2S(N/2,2) + O{N) = O(N log N). 

The pre~rocesslng tlm& Is described by precisely the same relation. 

Theorem 4.1: [Bentley (77a)] Range searching In the plane can be performed 

using any of the following combinations of resources: 
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Query Storage Preprocessing time 

O(log N) 

O(N log NJ O(N log NJ 

O(N) O(N) O(N) 

Table·4.1. Resources Required for Range Searching. 

The tlme-storage-preprocesslng tradeoffs Illustrated In this theorem Bre typical of 

many geometric search problems. 

4.2. Inclusion In a convex polygon 

We. now return to Inclusion problems, the simplest of which Is 

Problem P4.3: (Convex Inclusion) Given a convex polygon P Bn" a new point z, 
Is z Interior to P ? 

We . can dispose of the single-shot problem Immediately, and the result holds for 

non-convex p~lygons as welf: 

Theorem 4.2: Wheth~r a point z Is Interior to a simple N-gon can be determined In 

O(N) time, without preprocessing. 

Proof: The Jordan Curve' Theorem for Polygons [Courant (41)] states that a 

simple polygon partitions the plane Into two disjoint regions, the Interior and 

the exterior, that are separated by the boundary of the polygon. Consider a 

horizontal line H that passes through z. (See Figure 4.6). Since the 

polygon Is bounded, the extremities of H must lie In the exterior region. In 

general, H will Intersect the polygon P. (If It does not, then z Is ~xterlor.) Let R 
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be the number of points to the right of z In which H Intersects the boundary of 

P. Consider moylng a point x left on H from +00 towards z. Initially, x lies 

outside P. As an edge of P Is crossed, x becomes Interior. The test point ~ Is 

thus Inside or outside P as R Is either odd or even. R can be determined by 

comparing H with each of the N edges of P, but some care Is require to count 

the number of Intersections properly. Two difficulties arise. First, If H 

coincides with an edge of P then two Intersections are to be counted unless z 
lies on the edge, In which case the algorithm terminates. The other problem Is 

that H can Intersect an edge without crossing ~t, as shown In Figure 

4.7. This can only occur at Q vertex of P, and ii: is r,ecessary to 

determine whether both edges Incident with the vertex lie on the same side of 

H. If so, the Intersection must be counted twice (or not at all). 

p 
There are 3 intersections to the 
ri~ht Ind one to the left, so 
Z IS Inside the polygon .. 

Figure 4.6: Single-shot Inclusion In a simple polygon. 

for repeated queries with preprocessing allowed, we develop II special method 

that relies on the convexity of the polygon. Recalling Theorem 3.5, the vertices of 

a . convex polygon occur In angular order about any Interior point. Find such a point 

o and consider the N rays from 0 that pass through the vertices of P. (Flg'ure 

4.8.) These rays partition the plane Into N pie-shaped wedges. Each 

Inclusion Problems 93 

be the number of points to the right of z In which H Intersects the boundary of 

P. Consider moylng a point x left on H from +00 towards z. Initially, x lies 

outside P. As an edge of P Is crossed, x becomes Interior. The test point ~ Is 

thus Inside or outside P as R Is either odd or even. R can be determined by 

comparing H with each of the N edges of P, but some care Is require to count 

the number of Intersections properly. Two difficulties arise. First, If H 

coincides with an edge of P then two Intersections are to be counted unless z 
lies on the edge, In which case the algorithm terminates. The other problem Is 

that H can Intersect an edge without crossing ~t, as shown In Figure 

4.7. This can only occur at Q vertex of P, and ii: is r,ecessary to 

determine whether both edges Incident with the vertex lie on the same side of 

H. If so, the Intersection must be counted twice (or not at all). 

p 
There are 3 intersections to the 
ri~ht Ind one to the left, so 
Z IS Inside the polygon .. 

Figure 4.6: Single-shot Inclusion In a simple polygon. 

for repeated queries with preprocessing allowed, we develop II special method 

that relies on the convexity of the polygon. Recalling Theorem 3.5, the vertices of 

a . convex polygon occur In angular order about any Interior point. Find such a point 

o and consider the N rays from 0 that pass through the vertices of P. (Flg'ure 

4.8.) These rays partition the plane Into N pie-shaped wedges. Each 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Inclusion Problems 

The mountain range illustrates that care mud be 
taken in counting intersections. Thera are three 
intersections to the right of z and one to the 
left, but this time z is outsidel 

The resolution is that 
the Intersections at 
A and B must be 
counted twice. 

z 

94 

p 

Figure 4.7: Intersections must be counted properly. 

I. By binary search we 
learn that z lies In wedge 
COD. 

2. By comparing z 
against edge CD we 
find that it is exterior. 
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wedge Is divided Into two pieces by a single edge of P. One of these pieces Is 

whoily Interior to P, the other wholly exterior. Treating 0 as the origin of polar 

coordinates, we may find the wedge In which z lies by a single binary search, since 

the rays occur In angular order. Given the wedge, we need only compare z to the 

unique edge of P that cuts It, and we will learn whether z Is InterIor. 

Algorithm A4.1: Convex InclusIon 

Preprocessing: 
1. Find an interior point O. 
2. Arrange the vertices of P in a structure suitable for 
binary searching. (A vector, for example.) 

Search: 
1. Given a ne~ point z, determine by binary eearch the 
wedge in ~hich it lies. Point z lies bet~een the raye 

defined by Pi and Pi+l iff angle zOPI+l Is 
a right turn and zOPi Is a left turn. In this way 
we can find the wedge without computing any polar angles. 
2. Once Pi and Pi+l are found, then z Is interior 
iff PjPi+lz is a left turn. 

Theorem- 4.3: The Inclusion question for a convex· N-gon can be answered In 

O(log N) time and O(N) space, given O(N) preprocessing time. 

Proof: It Is clear that aHer O(N) preprocessing, Algorithm A4.1 runs In O(log N) 

tIme. We now show that It decides Inclusion correctly. A poInt z Is only 

reported to be Interior tD P If a vertex PI has been found such that the 

directed pa th PIPI+ 1 z Is a left turn. In this case z Is Interior to triangle OPIPI+ 1 

and thus Is Interior to P. Point z Is only reported to be exterior to P If no 

vert~x PI Is found such that z Is Interior to or on the boundary of triangle 

OPIPI+l' Since these triangles partition P, z cannot be Interior to or on the 
boundary of P. Thus In both cases the algorithm answers correctly. 
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4.3. Star-shaped Inclusion 

What property do convex polygons possess that enable them to be searched 

quickly? In order to be able to apply binary search, the vertices must occur In 

sequence about some point. This property Is also shared by some non-convex 

polygons, as shown by Figure 4.9. Maruyama was InspIred' to call these 

polygons "angularly simple" [Maruyama (72)], but we will adhere to classical 

terminology: . 

p 

z can "se." all other points of P. 

Figure 4.9: A Star-shaped Polygon. 

DefinItion 4.2: A polygon P Is saltj to be star-shaped If there exists a point z 

such that, for all points p of P, the line segment zp lies entirely within P. 

CaslOally speaking, P Is star-shaped If there exists a point that can "see" all of the 

other points. 

Theorem 4.4: [Penney (72)] A polygon P Is star-shaped Iff there exists some 

point z E P such that, for all vertices v of P, zv C P. 

~ 1 . 
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This theorem suggests that a finite algorithm may exist to determine whether or not 

P Is star-shaped since It Is a criterion that depends only on the vertices of P (rather 

than on all points of P). 

Definition 4.3: A polygon P Is said to be star-shaped with respect to a point z Iff 

zp C P for all points p of P. ' 

Note that a star-shaped polygon Is not necessarily star-shaped with respect to all 

of Its Interior points. In Figure 4.9, for example, the segment joining A and B' does 

not lie within P, so P Is not star-shaped with respect to A (or B, for that matter). 

To'determlne YJhether or not a point Is Interior to a star-shaped polygon, we may 

use Algorithm A4.1 directly If an appropriate origin 0 from which to base the search 

can' be found. The set of feasible origins within P Is also the locus of points with 

respect to which P Is star-shaped and Is called Its I<erne/: 

Definition 4.4: The I<ernel of a polygon P Is ,the locus of points z£p such that 

zp c P for all points p of P. 

Thus, any point In the kernel will serve as origin.· The kernel of a polygon Is shown 

In Figure 4.10. 

Any Coint in the kernel cln 
··see III other pointe of the 
polygon. 

Figure 4.10: The Kernel of a Polygon 
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The next theorem shows why we need not be very partIcular In selecting the 

origIn If P Is convex. 

Theorem 4.5: Kernel(P) = P iff P Is convex. 

Proof, 1. (P convex =) Kernel(P) = Pl. If P Is convex. then by DefInItIon 2.1, 

zp c P for all points Z,p E P. But then each point Z of P lies in Kernel(P) by 

Definition 4.4. 

2. (Kernel(P) = P =) P convex). Consider any two points x,V of P. If 

Kernel(P) = P, then In particular x E Kernel(P) and thus xy c P by Definition 4.4, 

so Pis conveXj 

Thus convex polygons are star-shaped wIth respect to all InterIor poInts. 

Theorem 4.6: The kernel of a star-shaped polygon Is Itself ~ convex polygon 

having no more vertices than the orlglnal.6 

Problem.P4.4: (Kernel of a Polygon) Given a polygon, how quickly can Its kernel 

be found? 

We will return to this problem In'' Section 5.5.1, where we show that the 

kernel can be found In O(N) time. We· thus have a fast way of finding a reference 

point about which to create wedges for Inclusion searching. 

Theorem 4.7: The Inclusion question for a star-shaped polygon car, be answered 

In O(log N) time and O(N) storage, given O(N) preprocessing time. 

Proof: Given a star-shaped polygon P, a point 0 In Its kernel can be found In O(N) 

tIme by Theorem 5.14. Now execute AlgorIthm A4.1 wIth the poInt 0 as 

Just obtaIned, and the proof of Theorem 4.3 applies, wIth mInor modIficatIons. 

,6A proof is given In Section 5.5.1. 
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4.4. it,~iusion in a Simple Polygon 

Plane polygons can be arranged In a hierarchy that Is strictly ordered by the 

subset relation: 

CONVEX C STAR-SHAPED C SIMPLE (4.2) 

Suppose we know that a polygon Is not star-shaped. How difficult Is It to solve the 

Inclusion problem? One approach Is motivated by the fact that every polygon Is a 

union of some number of star-shaped polygons.7 For example, the polygon In Figure 

4.11 Is a union of four star-shaped on'3s. 

r-Igure 4.11: A Simple Polygon as a Union of Star-Shaped Polygons. 

7[Maruyam'a (72)] has used this Idea to define the complexity of a polygon as the 

least k for which It can be decomposed Into a union of k star-shaped polygons. 

, . 
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We may then apply the search algorithm for star-shaped polygons k times to 

obtain an O(k log N) Inclusion procedure for simple polygons:' The test point z Is 

'. compared with each of the k origins In turn, until It Is found to be Interior to some 

star-polygon or until all k polygons have been searched. Unfortunately, Chvatal has· 

shown that k may be as large as LN/aJ ,so the search may take as much as linear 

time. [Chvata! (75)]. (See Figure 4.12.) Even though k can be O(N), the 

maximum time required for such a search Is O(N), not O(N log N). Here Is the reason: 

Once the polygon P has been partitioned Into disjoint star-shaped subsets, a planar 

graph results. If we partition using only chords of P, then the total number of edges 

In all resulting polygons cannot exceed 6N-12, since no segment lies In more than 

two polygons and there are at most 3N-6 segments In all. If the number of edges In 

polygon I Is nl' then we have 

. n 1 + n 2 + • • • + nk ~ 6N-1 2 , nl ~ a, k ~ N • 

The total search time Is given by 

k 

~ log nl 

which we want to maximize subject to the above constraints. The sum attains a 

maximum when k Is as large as possible and the nl are as equal as possible, I.e. 

when k = N/3 and nl = 3, In which event the sum Is O(N). (See [Hardy (67)].) Thus, 

In the worst case, the search will be no better than the single-shot algorithm of 
Section 4.2. 

The difficulty with the above method Is that Is does not make effective use of 

binary search because there Is no way to decide which of the star-shaped subsets 

shOUld be searched. Furthermore, It Is not clear how to obtain a minimal 

. decomposition. 8 Just as for range queries, we would like to be able to define 

~eglons that are either entirely Inside or outside the polygon, but ones that can be 

searched quickly. This fundamental Idea of creating new objects to permit binary 

81n fact, 'We know of no polynomial-time algorithm • 

.. ~"i·~··;· 
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figure 4.12: The Alligator Counterexample. 

searching Is due to Dobkin and lipton. [Dobkin (76a)]. They realized that 

constraining oneself to work with only the original dats (In this case the edges of 

the polygon) Is unnecessarily restrictive. We use their methods, combined with the 

locus approach, to devise a fast .algorlt~m. 

Given a simple polygon P, consider drawing a horizontal line through each of Its 

vertices, as in Figure 4.13. This divides the plane Into N+ 1 horizontal slabs. 

If we sort these slabs by y-coordinate as part of the preprocessing, we will be able 

to. find In O(log N) time the slab In wtilch a new point z lies • 

f· .... 

p 

. Regions within I slab are 
- - - - alternately outside and 

<Eo- inside P. l 

~ To determine whether z 
ie inside or outside, we 
need only find which 
region it lie I in. 

Figure 4.13: The vertices of a polygon define horizontal slabs. 
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Now consider the situation within a slab, which contains segments of the edges of 

P. These segments define trapezoids that are either Inside or outside of p.9 Since 

P Is siinple, Its edges Intersect only at vertices, and, since each vertex defines a 

slab boundary, no segments Intersect within a slab. (See Figure 4.14.) 

Figure 4.1 4: Within a slab, segments do not Intersect. 

The segments can thus be totally ordered by the LEFT-RIGHT relation, and we 

may use binary search to determine In OOog N) time: the trapezoid In which z falls. 

This will give a worst-case query time of O(log N).. 

It only remains to analyze how much work Is done In preconditioning the polygon 

and storing It. Naively, It se.ems that we must sort all of the line segments In avery 

slab. . Furthermore, each slab may have O(N) segments, so 'It appears that 

O(N2'og N) time and O(N2) storage will be required. We will show how to reduce the 

preprocessing time to O(N2). Nothing can be done (In this algorithm) to reduce the 

storage used since there ex!st polygons that need 'quadretlc space (Figure 

4.15). 

Notice that, a given edge of the polygon may pass through many slabs. This 

9The trapezoids can degenerate 'Into triangles, as Figure 4.14 shows. 
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----------------------2 
- - -,- - - - - - - - - - - - - - - - -4-- . --- ~==~~~~=~~==~(= ~Number of edges In slab 

10 ------

12 

-------~-------

Figure 4.15: The slabs may contain a total of O(N2) segments. 

observation I~ the key that allows us to reduce the preprocessing time. We will 

process the slabs In ascending order, beginning with the lowest, having first sorted 

the vertices of P by y-coordlnate. The se~ments belonging In a given slab can be 

found In O(N) time. Enter them Into a balanced binary tree, based on the left-right 

ordering, In O(N log N) time. Moving up to the next slab boundary L, some edges of 

P (at least one) will terminate, while the others continue Into the next slab. As we 

enter the next higher slab from below, additional edges may be Introduced. 

Because P Is simple, all continuing edges will retain their same respective positions 

In left-right order. It Is only necessary to delete from the tree those edges that 

terinlnate at l and Introduce the ones that begin at L Since each of the N edges Is 

Inserted In the balanced tree exactly once and deleted once, O(N 109 N) time 

suffices for these operations. To create the slab data structure, however, It Is 

necessary to output the segments of each slab In order. This can be done In linear 

time for each slab, for a total of O(N2) time. Here Is the preprocessing algorithm: 
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Algorithm A4.2: Preprocessing for POi'ygon Inclusion 

1. Sort the vertices of P by y-coordinate. 
VERTEX[ll will be the I'th lowest verte~. 

2. Set up the slabs. The I'th slab from the bottom is 
just a list of. edges of P. (Slab 8 is empty.) 

The edges are maintained as leaves of a balanced tree. 
INSERT is a procedure that makes tree insertions. 
DELETE performs deletions. 

FOR I ~ 1 UNTIL N DO BEGIN 
(Case h 

(Case 2: 

(Case 3: 

;lEAOOUT: 

END 

Thus we have 

VERTEX [I] Is the lower endpoint of edges E 
JNSERT(E); INSERT(F); GO TO READOUT, 

VERTEX [11 is the upper endpoint of edges E 
DELETE (E); DELETE (F); GO TO READOUT; 

VERTEX [I] is the upper endpoint of edge E 
and the .Iower endpo i nt. of edge F) 
DELETE(E); INSERT(F); 

Output the edges into the I'th slab list 
without deleting the. from the tree. 

and FJ 

and F) 

Theorem 4.8: The Inclusion question for a simple polygon can be answered In 

O(log N) time using 0(N2) storage, given 0(N2) preprocessing time. 

In earlier work [Shamos (75b)], the author conjectured . that the storage 

requirement for simple Inclusion could be reduced to O(N) while Increasing the query 

time to only O(Iog2N). This was verified by Lee and Prep arata, who also showed 

that the' preprocessing time Is only O(N log N) [Lee (76b)]. 

Their method Is based or. a simple but elegant Idea. A polygonel line will be said 

to be a monotone chain with respect to line L Iff Its vertices retain the same order 

when projected onto L Monotone chains are of Interest because they can be 
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VERTEX [I] Is the lower endpoint of edges E 
JNSERT(E); INSERT(F); GO TO READOUT, 

VERTEX [11 is the upper endpoint of edges E 
DELETE (E); DELETE (F); GO TO READOUT; 

VERTEX [I] is the upper endpoint of edge E 
and the .Iower endpo i nt. of edge F) 
DELETE(E); INSERT(F); 

Output the edges into the I'th slab list 
without deleting the. from the tree. 

and FJ 

and F) 

Theorem 4.8: The Inclusion question for a simple polygon can be answered In 

O(log N) time using 0(N2) storage, given 0(N2) preprocessing time. 

In earlier work [Shamos (75b)], the author conjectured . that the storage 

requirement for simple Inclusion could be reduced to O(N) while Increasing the query 

time to only O(Iog2N). This was verified by Lee and Prep arata, who also showed 

that the' preprocessing time Is only O(N log N) [Lee (76b)]. 

Their method Is based or. a simple but elegant Idea. A polygonel line will be said 

to be a monotone chain with respect to line L Iff Its vertices retain the same order 

when projected onto L Monotone chains are of Interest because they can be 
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searched In O(log N) time by binary search. A set of chains will be called monotone 

Iff they are all monotone with respect to some line L The Lee-Pre,.,arata algor~thm 

constructs a monotone set of chains for a polygon P such that the region between 

adjacent chains Is either wholly inside or wholly outside of P. At most N chains .are 

created and these have a total of O(N) edges. The Inclusion search Is 

accomplished by finding the pair of chains between which the test point lies. This 

Is done by a binary search of the chains and each chain may require 0(109 N) time 

to examine. Thus O(log2N) time suffices. For future reference, we state their 

result as a the,orem: 

Theorem 4.9: Inclusion In a simple polygon can be determined In O(log2N) time 

using O(N) storage, given O(N log N) time for preconditioning. 

4.4.1 Location in a planar embedding 

A problem that Is Intimately related to polygon Inclusion concerns planar stralght­

line graphs, planar graphs that have been drawn In the plane using only straight line 

segments as edges. 10 ' 

Problem P4.5: (Planar Graph Search) Given a planar straIght-line graph and a 

new point z, how quickly can the region containing z be found? 

If N Is the number of vertices of the graph, then both the number of edges and 

regions are O(N) [Harary (71 )]. Algorithm A4.2 can be applied essentially without 

modification to yield an O(log N) slab search method, because the non-Intersection 

property of segments within a slab Is retained. The analog of Theorem 4.8 Is 

Theorem 4.10: Location In a planar straight-line graph can be determined In 

O(log N) time and 0(N2) storage, given 0(N2) preprocessing tlme.11 

10A theorem of [Fary (48)] states that every planar graph can be embedded In the 

plane as a· planar straight-line graph. 

11[Dobk'ln (76a)] contains a similar result but with O(N210g N) preprocessing time. 
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. Figure 4.16: A planar straight-line graph. In which region does z lie? 

LikewIse, lee and Preparata demonstrate that their method also carries over: 

Theorem· 4.11: [Lee (76b)] location In a planar straight-line graph can be 

determined In O(log2N) time and O(N) storage, given O(N log N) preprocessing 

time. 

Recently, Upton and TarJe" I)roved a very powerful result which they termed the 

"Planar Separator Theorem": 

Theorem 4.12: (Planar Separator) [Upton (77a)] The vertices of any N-vertex 

planar graph G can be partitioned In O(N) time Into three sets A, B, and C such 

that no edge of G Joins a vertex In A with a vertex In B, neither A nor B 
contains ~ore than 2N/3 vertices, and C contains C(N1/2) vertices. 

They were able to use this fact to obtain a planar graph searching algorithm with 

asymptotically optimal time and space performance: 
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Theorem 4.13: [lipton (77b)] location In a planar straight-line graph can be 

determined In O(log N) time and O(N) storage, using O(N log N) preprocessing 

time. 

Method Query Storage Preprocessing Time 

Slabs O(log N) O(N2) 0(N2) 

Lee & Preparata O(log2N) O(N) O(N log N) 

lipton & TarJan O(log N) OeN) OeN log N) 

Single-shot OeN) O(N) O(N) 

Table 4.2. Summary of resources required for simple polygon 

Inclusion and planar graph searching. 

4.5. Unsolved problems 

1. How difficult Is It to determine whether a point Is Inside or outside a convex 

polytope? (We know that O(log N) time suffices and Is necessary, but suppose 

we only allow storage that Is linear In the number of edges of th~ polytope?) 

[lee (76b)] achieves O(log2N) search time and O(N) storage for the three­

dimensional case. 

2. Give an algorithm to find the least number of convex polygons whose union Is 
" a given s!mple polygon. 

a. Give an algorithm to determine the least number of star-shaped polygons 

whose union Is a given simple polygon. 

4. Complications arise if a collection of figures Is given whose members are not 

pairwise disJoint. For example, given N rectangles In the plane, find all the 

ones that include a new point z. 
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4.6. Summary 

This chapter Introduces geometric searching and notions relating to It. All known 

techniques of geometric search Involve restructuring a problem so that binary 

search may be applied. This often Involves the creation, either explicitly or 

Implicitly, of new objects that must be arranged In a data structure. Whether this 

preprocessing Is justified depends on the query response time that must be 

achieved, the amount of storage available, and the numbe~ of queries that are to be 

handled. 

We have shown that one of the fundamental problems of geometric search Is 

Inclusion In a polygon and the complexity of answering It depends sensitively on 

the structure of the polygon. Determining whether a point Is Interior to 8 convex 

polygon Is directly equivalent to binary search. We Introduce the "ernel of a 

polygon as the locus of points suitable as origin for searching a star-shaped 

polygon. Simple polygons and polytopes In any dimension can always be searched In 

O(log N) time If sufficient storage and preprocessing time are available, there being 

an apparent tradeoff between speed of search and storage and preconditioning 

expense. 

The problem .of the- range query -typlf!es advanced search applications, In which 

one must reorganize the Input considerably in order to develop an efflc,lent 

algorithm. [Knuth (73)] remarks that "no really nice data structures seem to be 

available II for this problem. The key to such a data structure Is In reducing a 

rectangle query to four single-point queries and applying the principle of Incluslon­

exclusion. 
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5.1. introduction 

Chapter 5 

intersection Problems 

109 

Much of the motivation for studying Intersection problems stems from the simple 

,fact that two objects cannot occupy the same place at the same time. An 

archItectural design program must take care not to place doors where they cannot 

be opened or have corrldor,~ that pass through elevator shafts. In computer 

graphics, an object to be displayed obscures another If their, projections on the 

viewing plane Intersect. A pattern can be cut from a single ple::e of stock only If It 

can be laid out so that no two pieces overlap. The Importance of developing 

efficient algor~thms for detecting Intersection Is becoming' apparent as Industrial 

applications grow Increasingly more ambitious. A single Integrated circuit may 

contain tens of thousands of components, a complicated graphic Image may Involve 

one hundred thousand vectors' and an architectural database often contains 

upwards of ,a million elements. In such cases even algor!thms that are only 

quadratic In the number of objects are unacceptable. 

Another reason for delving Into the complexity of Intersection' algorithms Is that 

they shed light on the Inherent complexity of geometric problems and permit us to 

, address some fundamental questions. For example, how difficult Is It to tell whether 

a polygon Is simple? One would be justified In Investigating such a topic even If It 

had no practical applications, but we will find no shortage of uses for the algorithms 

of this chapter. Because two figures Intersect only If one contains a point of the 

other 1, It is natural that intersection algorithms should Involve Inclusion testing. We 

may thus consider Intersection problems to be natural extensions of Inclusion 

problems. 

1 Depending on how boundary intersections are defined. 
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5.1.1 The Hidden-Line Problem 

A pivotal problem In computer graphics, and one that has absorbed the energy of 

many researchers2 , Is the hidden-line problem. A two-dimensional Image of a' 

three-dimensional scene Is necessarily a projection. We may not, however, merely 

project each object onto the plane of the observer, for some objects may be 

partially or totally obscured from view. In order to produce a faithful display, those 

lines which a real observer cannot see must be eliminated from the picture. Figure 

5.1 shows a scene before and after hidden lines have been removed. 

Figure 5.1: Elimination of Hidden Lines. 

One object obscures another If their projections Intersect, so detecting' and 

forming Intersections Is at the heart of the hidden-line problem. A considerable 

Investment has been made In developing hardware to perform this task, which Is 

particularly difficult In practice because of the real-time requirements of graphic 

display systems ~nd the fact that objects are usually In motion. There Is no 

commercial system available that Is able to display a moving scene with hidden lines 

removed, [Andries Van Dam, personal communication, April, 1977]. In view of the 

2[Desens (69)], [Freeman (67)], [Galimbertl (69)], [loutrel (70)], [Matsushita 

(69)], [Newman (73)J, [Sutherland (66)J, [Warnock (69)], [Watkins (70)]. 
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effort that has gone Into graphic hardware development, It Is surprising that the 

complexity of the hidden-line problem has received so little study, for it Is here that 

the potential gains are the greatest. Building a box with a program Implemented In 

microcode can, at best, ~chleve a speedup of a constant factor over software.a An 

Improvement In the algorithm, though, can reduce the order of the running time, so 

that the speedup Improves with Increasing problem size. 

It Is Important to keep In mind, however, that optimality In computer science Is 

usually taken to mean asymptotic optimality, and It may occur that an "optimal" 

algorithm runs more slowly than a naive one for all practical problems.4 Careful 

Implementation and examination of the relevant constants of propllrtionality must be 

performed before one algorlth~ can be said to be superior to another. Machine 

experiments performed by Steven Reiss, Dan Hoey, Kevin Brown, and the author 

Indicate that the D(N log N) algorithms In this thesis begin to surpass the 

performance of their O(N2) counterparts for problem sizes In the range of 50-1 00 

points. 

In many cases, particularly for vector graphic devices, scene components are 

represented as polygons. If the projections of two objects are the polygons A and 

B, and A lies nearer to the viewer thim B, what must be displayed Is A and 

B - (A n B). A basic computational problem In hidden line removal.'·:s thus to form the 

Intersection of two polygons. In practice we must do more then this since the Image 

will consl,at of· many separate polygons, all of which must be displayed, but one of 

the fundamental operations Is pairwise Intersection [Sutherland (66)]. In this 

chapter we ~btaln tight bounds for Intersecting convex, star-shaped, and simple 

polygons. The polygon problem Is an example of the first type' of Intersection 

problem we will consider: 

Problem P5.1: (Form Intersect/on) Glv~n two objects, form their fntersectlon. 

31n some cases, of course, a constant factor Is all that Is needed. 

4For example, this Is the case for Schonhage-Strassen Integer multiplication [Aho 
.J74)]. . 
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6.1.2 Pattern Recognition 

One of the major tf:!chn1ques of pattern recognition Is classification by supervised 

learnlng.5 Given N points, each of which Is Identified 8S belonging to one of m 

samples, we wish to preprocess them so that a new (unidentified) point can be 

correctly classified. Figure 5.2 Is a two-dimensional example In which the 

axes represent the weights and heights of a group of people of the same age. 

Males are designated by "M", females by "F". The point "u" represents a person 

whose weight and height are known. Can we classify "U" based on these quantities 

alone? What sort of decision rule should be used? 

, 'M 
H· , M, 
E 

, 
, M F , , , 

I 
, M , 

G F, , , 
H , 1M 
T 

, ® ' 'M I F , 
M. F 

, , 
• , 

• F 
F , 

~ A linear classifier , 

WEIGHT 

Figure 5.2: A Two-Variable Classification Problem 

It Is desirable, If possible, to obtain a linear classifier [Meisel (72)], that Is, a 

linear function f such that a single comparison will suffice to determine the sample 

to which· "U" belongs: 

IF f(Xu'yu) > T THEN u E M; ELSE U E F; 

5[An~rews (72b)], [Duda (73)], [Meisel (72)]. 
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In the above expression, T Is a threshold value. In k dimensions, the locus 

f(X1, ... ,xk) = T Is a hyperplane; In two dimensions, It Is a straIght line. A linear 

classifier performs well If It separates the two samples such that all points of M lie 

on one side and all points of F lie on the other. 

Definition 5.1: Two sets are said. to be linearly separable Iff there ex!sts a 

, hyperplane H that separates them. 

Determining the existence of a linear classifier Is thus a matter of deciding whether 

the training samples are separable. 

5.1.2.1 Separability 

Separability Is a classical question In combinatorial geometry. in 1903, P. 

Klrchbeiger proved the following elegant theorem, which resembles Theorem 3.3 In 

spirit: 

Theorem 5.1: [Klrchberger (03)] Two finite plane sets P and Q are linearly 

separable Iff every subset of four or fewer points of P U Q Is separable6• 

Sln~e there are O(N4) such' subsets: any algorithm based on this characterization Is 

likely to be extremely Inefficient. The theorem does n~t suggest a method for 

constructing the separating line, but merely gives a criterion for Its exlstenc'e. 

Theorem 5.2: [Stoer (70), Theorem 3.3.9.] Two sets are linearly separable Iff 

their convex hulls do not Intersect. 

This theorem Is Illustrated In Figure 5.3. 

In developing a geometric algorithm, we have no a priori basis for preferring one 

of these theorems to the other. Only analysis will enable us to decide which will 

yield the faster procedure. Fortunately, we already know how difficult It Is to form 

convex hulls. We must now solve a special case of 

6The. generalization to k dl~enslons Involves the separability of every subset of 

k+2 or fewer points. See [Rademacher (50)]. 
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6The. generalization to k dl~enslons Involves the separability of every subset of 

k+2 or fewer points. See [Rademacher (50)]. 
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. Figure 5.3: Two sets are separable Iff their convex hulls are disjoint. 

Problem PS.2: (IntersectIon Test) Given two polygons, do they Intersect? 

While this Is no harder than actually forming the Intersection, It may turn out to be 

easier In certain cases. 

6.1.3 Wire and Component Layout 

With microminiaturization proceeding at a fantastic pace, the number of 

components on chips, conductors on boards, and wires In circuitry has .. Qr.owl') to the 

point that such hardware cannot be designed without the aid of machines. The 

number of elements In a single Integrated circuit may easily exceed ten thousand, 

and each must be placed by the designer subject to a variety of electronic and 

physical constraints. The programs that assist in this process are largely heuristic 

and often pr~duce solutions that are not feasible because two components overlap 

Qr two conductors cross.7 Heuristic methods are used because some of the 

problems Involved In component placement are NP-complete [Garey (76b)] The 

designs must therefore be subjected to exhaustive verification that Involves 

7See [Akers (72)], [Hanan (72)]. and [Hanan (7&)]. 
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pairwise comparisons of all Items on the chip, an expensive and time-consuming 

operation. This motivates the following theoretical problem: 

Problem P5.3: (Pairwise Intersection) Given N objects, determine whether any 

two Intersect. 

We will, of course, be looking for an algorithm that avoids testing each object 

against every other. The solution to this problem, which we develop In Section 

5.4, has extensive practical and theoretIcal applications. 

6.1.4 Linear Programming 

linear programming can be viewed as a third type of Intersection problem. The 

feas~ble foglon of a linear program Is the intersection of the half-spaces determined 

by Its constraint set. The objective function is maximized at some vertex of this 

. convex polyhedral region. This Is a convex hull problem of an entirely different 

nature than that studied In Chapter 3. Here we are given not the vertices of the 

set, but' a collection of haif-spaces that bound It, and are asked to find the 

vertices. We must find the common Intersection of N objects. How difficult Is this? 

In o~e dimension linear programming Is trivial. It may be formulated as 

Maximize ax + b subject to alx + bl S 0, 1= 1, ... ,N • (5.1 ) 

The feasible region Is either null, an Interval, or a half-line because It Is an 

Intersection of half-lines; Each half line extends either to minus· Infinity or plus 

Infinity. Let L be the leftmost point of the positively oriented half-lines and let R be 
the rightmost point of the negative ones. If l > R, the feasible region Is nUll. If L = 
R it is the Interval [l,R]. Clearly land R can be found in !!ncitr tlm~, so linear 

programming In one dimension Is an O(N) process. The complexity of linear 

programming In higher dimensions Is going to depend on how quickly we are able to 

form the Intersection of hajj-spaces. This question Is taken up In greater depth In 

Section 5.5.1, and Is mentioned here only to Introduce the problem of common 

Intersection. 
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6.2. Intersection of Convex Polygons 

Problem P5.4:. (Convex Intersection) Given two polygonst P with m vertices and 

Q with n vertices, form theIr Intersection. 

We assume without loss of generality that m ~ n. 

Lemma 5.7: The Intersection of N half-planes Is a convex ·polygonal region having 

at most N sides. 

Proof: That the Intersection Is a convex polygonal region Is Theorem 6.5 of 

[Benson (66)]. We must show that the number of sides does not exceed N, 

which Is easily established by Induction. For N=1 the theorem Is true, since a 

half-plane Is bounded by a single edge. Assume the result to be true for N = k 

and consider the effect of Intersecting one more half-plane with the existing 

region R. If this last half-plane coincides with one of the first k, no new sides 

are Introduced. Otherwise, the half-plane Intersects the boundary of R In at 

most two pointE., each of which creates a new vertex of R. However, the 

complement of H contains at least one vertex of R (since H coincides with no 

other half-plane), so at most one new vertex Is added to R ·for each new half­

plane. 

(This completes the proof of Theorem 4.6 because we have shown that the kernel 

Is an Intemectlon of at most N half-planes and thus has at most N sides.) 

Theorem 5.3: The Intersection of a convex m-gon and a convex n-gon Is a 

convex polygon having at most m ~ n vertices. 

Proof: The Intersection of P and Q Is the Intersection of the m + n Interior half 

planes determined by the two polygons. By lemma 5.1, this Intersection Is a 

convex polygonal region having at most m + n sides. Since P and Q are ~oth 

bounded, so Is their intersection, which must therefore be a closed polygon. 

--------------;; 
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p 

Q 

PnQ 

Figure 5.4: Intersection of Convex Polygons 

,We present an algorithm due to Dan Hoey that Is based on the following 

observations: let a and b be the leftmost and rightmost points of P, respectively. 

These points partition P Into two chains of vertices, each of which Is sorted by x­
coordinate. The upper chain Pu consists of those vertices that occur In the 

counterclockwise sequence from b to a and the lower chain P, consl~ts of the 

sequence from a to b. Similarly, Q·ls partitioned Into upper and lower chains Qu and 

QI" .sln~e the vertices In all four chains occur-In sorted order, the chains can be 

merged In Oem + n) time to obtain a sorted list of all the vertices oj p' and Q 

together. Vertical lines drawn through -these m+ n vertices divide the plane Into at 

most m + n + 1 slabs as In Figure 5.5. Th~ are already ordered. The same 

Is. true of Q. We need only merge these four chains to yield a sorted list of all the 

vertices. (This Is analogous to the procedur.e employed In Theorem 4.2.) 

The Intersection of a slab and either of the polygons Is a trapezoid. Thus, within 

any single slab, the Intersection of P and Q Is an Intersection of trapezoids, which 

can be found In constant time; We now show that all of the pieces can be found 

and fitted together In Oem+n) ,time. let the vertical lines described above be 

denoted lINE[1 :m+n] and for each element of LINE let us set up pointers to all 

edges of P and Q Intersected by that line. If a line passes through a vertex of one 
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Figure 5.5: Slabs Defined by the Vertices of Two Convex Polygons. 
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of the polygons we set up a pointer only to the right-hand edge so Intersected. 

Since a line can Intersect a convex polygon In at most two points, no line will have 

more than four associated pointers, one each for e~ges In Pu' P" Qu' and Q" let 

the pointers be called PU, Pl, QU, and Ql, respectively. In other words, PU[I] 

designates that edge of the upper chain Pu that Is Intersected by the vertical line 

LlNE[I]. If no Intersection occurs, the corresponding pointer is NIL. All the pointers 

can be created In O(m+n) time by "merging" €!ach chain with the sorted array LINE. 

We now process the slabs sequentially by passing through LINE. The P trapezoid 

lying to the right of lINE[I] Is bounded by LlNE[I], lINE[I+1], and the edges 

Indl,cated by PU[I] and Pl[I]. The Q trapezoid Is found In the same way. The 

Intersection of these trapezoids has at most six vertices, two of wlch lie on L1NE[I], 

two on lINE[I+ 1]. and two within the slab. let R be the Intersection of P and Q. We 

will form the upper and lower chains of R during the pass through the slabs by 

appending vertices of the Intersection to the appropriate chain. When this 

'procedure Is finished, R can be put into standard form. We thus have 
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Theorem 5.4: (Dan Hoey, private communication) The Intersection of a convex 

. m-gor. and a convex n-gon can be found in Oem + n) time. 

5.3. Intersection of· Star-Shaped Polygons 

Because star-shaped polygons have the property, which they share with convex 

polygons, that there exists a point about which the vertices occur In angular order, 

we might suspect that their Intersection can also be found quickly. This Is not the 

case, as Figure 5.6 shows. 

Figure 5.6: Chicken Feet. The Intersection of Two Star Polygons. 

The Intersection of P and Q Is not a polygon Itself, but Is a union of many 

polygt,ns. P and Q both have N vertices, and every edge of P Intersects every 

edge of Qp so the Intersection has N2 vertices. This gives a (trivial) lower bound: 
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. . 
"Theorem 5.5: Finding the Intersection of two star-shaped polygons must require ' 

n(N2) time In the worst case. 

This means that the hidden line problem for polygons must also take quadratic time, 

since merely drawing the Intersect'on requires that N2 vectors be 'drawn. In the 

next section we shall explore the i.~ ... slblllty that It may not be necessary to spend 

this much time If we only want to know whether P and Q Intersect at all. 

5.4. ,Intersection of Line Segments 

, One of the major th~mes of this thesis Is that a large collection of seemingly, 

unrelated problems can be solved by the same method If only their common 

. algorithmic features can be Isolated. The present section shows how a diverse set 

of applications can be unified and reduced to determining, whether or not a set of N 

line segments In the plane are pairwise disJoint. We will always regard a line , 
segment as a closed Interval, that Is, one which Includes Its endpoints. ' 

Problem P5.5: (Segment Int~rsectlon Test) Given N line segments In the plane, 

det7rmlne whether any two Intersect. 

Below we discuss a number of applications of this problem. 

6.4.1' Appllcaiions 

6.4.1.1 When do ~wo polygons Intersect? 

Problem P5.6: (Polygon Intersection Test) Glvsn two simple polygons P and Q, do 

they Intersect? 

If P and a Intersect, then either P contains a, Q contains P, or some edge of P 
Intersect~ an edge of Q. (Figure 5.7.) 

Since both P and Q erg simple, any edge Intersections that occur must be . . 
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Edge 
V" Intersection 

Q c P. No edge intersection. 

figure 5.7: Either pea, a c P, or there Is an edge Intersection. 

between edges of different polygons. Let T(N) be the time required to solve 

Problem P5.5. We can then detect any edge Intersection between P and Q In 

T(m + n) operations. If no Intersection Is found, we stili must test whether P c Q or . 

QC P. 

If P Is Interior to a, then every vertex of P Is Interior to a, so we may apply the 

single-shot point inclusion test of Theorem 4.2 In O(n) time, using any vertex of P. 

If this vertex· Is found to lie outside a, we can learn by the same method In Oem) 

time whether a C: P. Therefore we have 

Theorem 5.6: Intersection of simple polygons Is linear-time reducible to IIne­

segment Intersection testing: 

POLYGON INTERSECTION cGN LINE-SEGMENT INTERSECTION 

P;uuf: let polygons P and a both have N vertices. In O(N) time we will reduce 

the problem of determining whether P and a Intersect to four line-segment 

Intersection problems, each Involving at most N/2 points. Assume that N Is 

even; If N Is odd the argument Is only slightly more lJ1volved. Partition Pinto 

two edge sets P e and Po consisting of Its even- and odd-numbered edges, 
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respectively. likewise, partition Q Into edge sets Qe and Qo' In each of the 

four sets thus created there are no edge Intersections. Now solve the IIne­

segment Intersection problem on each of the four sets {P e U 0e}, {P e U Ga}, 
{Po UQe}, and {Po U Qo}' If any Intersections are found during the solution of 

thes~ subproblems, then P and Q Intersect. If no Intersections are found, then 

either Pand Q are disjoint or one contains the other. The latter case can be 

decided In O(N) time by the method descrlb,ed above. 

We have already seen that the complexity of algorithms that deal with polygons 

can depend on whether the polygons are known to be simple or not. For example, 

the convex hull of a simple polygon can be found In O(N) time (Theorem 3.20), but 

. n(N log N) Is a lower bound for non-simple polygons. It would be useful, therefore, 

to have an algorithmic test for simplicity. 

Problem PS.7: (SImplicity Test) Given a polygon, is It sl~ple? 

No"-slmple 

Figure 5.8: Simple and Non-simple Polygons. 

.. ---_ ... _----------- -, 

Intersection Problems 122 

respectively. likewise, partition Q Into edge sets Qe and Qo' In each of the 

four sets thus created there are no edge Intersections. Now solve the IIne­

segment Intersection problem on each of the four sets {P e U 0e}, {P e U Ga}, 
{Po UQe}, and {Po U Qo}' If any Intersections are found during the solution of 

thes~ subproblems, then P and Q Intersect. If no Intersections are found, then 

either Pand Q are disjoint or one contains the other. The latter case can be 

decided In O(N) time by the method descrlb,ed above. 

We have already seen that the complexity of algorithms that deal with polygons 

can depend on whether the polygons are known to be simple or not. For example, 

the convex hull of a simple polygon can be found In O(N) time (Theorem 3.20), but 

. n(N log N) Is a lower bound for non-simple polygons. It would be useful, therefore, 

to have an algorithmic test for simplicity. 

Problem PS.7: (SImplicity Test) Given a polygon, is It sl~ple? 

No"-slmple 

Figure 5.8: Simple and Non-simple Polygons. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

------------- .. --.. -- _. ---.. -. 

Intersection Problems 123 

5.4.2 A Segment Intersection Algorithm 

,~' reliable guideline for the development of geometric algorithms Is to start In one 

dimension and achieve a complete understanding of the problem In that setting, 

Including lower bounds. This principle seems self-evl.dent, yet It Is often Ignored by 

researchers who feel that "elementary" problems are not worth solving. The result 

Is frequently a poorly-understo~d heuristic algorithm whose performance Is attested 

to by volumes of experimental evidence and timing graphs, but no analysis. While 

such an approach may produce a quick answer to the problem at hand, It does little 

to advance our knowledge of algorithm design or complexity. With this In mind, we 

will proceed to build an Intersection algorithm starting at the most basic level. 

Suppose we are given N Intervals on the real line and wish to know whether any 

two overlap. This can be answered In O(N2) time by Inspecting all pairs of Intervals, 

but a better algorithm based on sorting comes to mind almost Immediately. Let us 

designate each of the 2N endpoints as either "left" or "right" and sort them 

lexicographically as follows. A·left endpoint at x will be represented by the ordered 

pair (x, ,L) and a right endpoint by the pair (x, R). We may ensure that, among all 

points sharing a given coordinate x, the left endpoints precede the right ones by 

taking (x, L) < (x, R) In the lexicographic ordering. Now, the Intervals themselves 

are disjoint Iff the endpoints occur In alternating order: L R L R ... R L R and no two 

consecutive points have the same x-value. This check can be performed In O(N) 

time, once the points have been sorted, so the total time required Is O(N log N). 

The two questions we will want to deal with are whether· this ~Igorlthm can be 

Improved and whether it generalizes to two dimensions. 

To show a lower bound, we will exhibit a correspondence between the segment 

overlap problem and a basic question In set theory. 

Theorem 5.71 O(N log N) comparisons ai'e necessary and sufficient to determine 

whether N Intervals are disjoint, If only polynomial functions of the Inputs can 

be computed. 
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Figure 5.9: Detecting Interval Overlap. 
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Proof: We show that ELEMENT UNIQUENESS ~N INTERVAL OVERLAP. Given a 

collection of N real numbers Xi' these can be converted In linear time to N 

(closed but null) intervals [AI,xl]' which o .. erlap 11f the original points were not 

distinct. 

How severe Is the restriction to polynomial functions? For one thing, It forbids the 

use of the FLOOR function, which, as we shall see In Section 6.1.8, Is -II very 

powerful operation. No techniques are known that would enable us to prove 

Theorem 5.7 If the floor function were allowed, but we conjecture that the lower 

bound would not change. Theorem 5.7 applies a fortiori In all dimensions. 

6.4.2.1 Two Dimensions 

let us explore what really happens when we sort to detect overlap. The 
- . 

motivation for doing this is that there Is no natural liner ordering on line segments In 

the plan-e, so a generalization based solely on sorting will have to fall. If we are 

able to understand the essential features of the algorithm, though, we may be able 

to extend It to the plane. 
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Overlap occurs If and only If two segments contain some common polnt~ Each 

point on the real line has associated with It a set consisting of the Intervals that 

cover It. This defines II function C: R -+ 2N from the raals to subsets of l, ... ,N. The 

. value of C function can change only at the 2N endpoints of the Intervflls~ If· the 

cardinality of C(x) ever exceeds one, an overlap has occurred. To detect this, we 

first sort ths endpoints and then set up a highly primitive data structure that 

contains Just a single object, the "current" Interval. Sc~nnlng the endpoints from 

left to right, we iNSERT an interval Into the data structure when Its left endp'olnt Is 
r 

encountered and DELETE It when Its right endpoint Is passed. If an attempt Is ever 

made to INSERT when the data structure Is already occupied, an overlap has been 

found; otherwise, no overlap exists. Since the processing of each endpoint In this 

way takes only constant time after sorting, the checking process requires no more 

than IInesr time. 

In two dimensions we are obliged to define a new order relatIon and make use of 

a more sophisticated data structure.8. Consider two non-Intersecting line segments 

A and B In the plane. We will say that A and B are comparable If there exists a 

vertical line through some point on the x-axis that passes through both of them. 

We define the relation above at x In this way: A Is above B at x, written A >x a, If A 

.,endB are comparable at x and the Intersection of A with the vertical line lies above 

the Intersection of B with that line. 9 In Figure 5.1 0, we have the' following' 

relationships among the line segments A, B, C and D: 

B >u 0, A >v B, B >v 0, and A >v 0 • 

~egment C Is not comparable with any other segment • 

. 8For purposes of discussion, we will assume that no segment Is vertical and that no 

three segments meet In a point. If either of these conditions is not met, the 

algorithms we develop will be longer In detail, but not In asymptotic running tI~e. 

9Th Is order relation and the algorithm derived from It were developed by Dan Hoey. 

The author provided a proof of correctness of the algorithm and supplied the 

applications discussed above. These results were reported Jointly In [Shamos 
" (76b)]. 
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Figure 5.10: An Order Relation Between Line Segments. 
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Note ~hat the relation >x Is a total order, which changes as x sweeps from left to 

right. Segments enter and lea'/e the ordering, but It always remains total. The' 

ordering can change In only three ways: 

1. The left endpoint of segment ~ Is encountered. In this case A must be added 

to the ordering. 

2. The right endpoint of ~ Is encountered. A must be removed from the ordering 

because It Is no longer comparable with any other segment. 

3. An Intersection point of two segments ~ and ! Is reached. Here, A and B 

exchange places In the ordering. 

Notice that If segments A and B intersect, then there is some x for which A and B 

are consecutive In the ordering >x' Were we able to maintain the ordering as x 

moves along, we would be able to report all Intersections. Since there may be as 
many as N(N-1 )/2 Intersections (If every pair of segments cross), this procedure 

might take O(N2) time. Below we describe an algorithm which finds an Inters~ctlon 
If one 'exists, but does not go to the expense of keeping complete Information about 

the ordering. 
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Once we abandon the Idea of finding all Intersections, things become greatly 

simplified. Since the segments Involved In an Intersection must first become 

neighbors In the total order, we may proceed as In the one-dimensional algorithm. 

Instead of holding just a single object, however, the data structure must be able to 

retain a total ordering on as many 8S N objects and must permit fast updating. After 

sorting the 2N endpoints, we scan from left to right, Inserting a segment Into the 

data structure when its left endpoint Is encountered and, delet!ng It when Its right 

endpoint Is passed, checking segments for Intersection when they bf'come 

consecutlile In the total order. This will require a structure t on which we can 

perform the following operations: 

1. lNSERT(A,T). Insert segment A Into the total order maintained by T. 

2. DELETE(A,T). Delete segment A from T. 

3. ABOVE(A,T). Return the name of the segment Immediately above A In ttie 

ordering. 

4. BELOW(A,T). Return the name of the segment Immedl~tely below A In the 

ordering. 

Intersection Problems 127 

Once we abandon the Idea of finding all Intersections, things become greatly 

simplified. Since the segments Involved In an Intersection must first become 

neighbors In the total order, we may proceed as In the one-dimensional algorithm. 

Instead of holding just a single object, however, the data structure must be able to 

retain a total ordering on as many 8S N objects and must permit fast updating. After 

sorting the 2N endpoints, we scan from left to right, Inserting a segment Into the 

data structure when its left endpoint Is encountered and, delet!ng It when Its right 

endpoint Is passed, checking segments for Intersection when they bf'come 

consecutlile In the total order. This will require a structure t on which we can 

perform the following operations: 

1. lNSERT(A,T). Insert segment A Into the total order maintained by T. 

2. DELETE(A,T). Delete segment A from T. 

3. ABOVE(A,T). Return the name of the segment Immediately above A In ttie 

ordering. 

4. BELOW(A,T). Return the name of the segment Immedl~tely below A In the 

ordering. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

---- --- ----------------

Intersection Problems 

Algorithm A5.1: Intersection of Line Segments 

1. Sort the 2N endpoints leKlcographlcal'y by ~ and y and 
place them in the real array POINT[l:2Nl •. 

2. FOR i ~ 1 UNTIL 2N DO BEGIN 
P 4- POINT(il; 

128 

Let S be the segment of which POINT[il is an endp'oint, . 
IF P is the left endpoint of S THEN 

BEGIN 
INSERHS, T); 
A ~ ABOVE(S, n; 
B ~ BELO,", (S, n; 
IF A intersects S THEN OUTPUT(A,S); 
IF B intersects S THEN OUTPUT(B,S), 

END 
ELSE (P Is the right endpoint of S) 

BEGIN 
A 4- ABOVE (S, n ; 
B ~ BELO,", (S, n; 
IF- A intersects B THEN OUTPUT(A,B); 
DELETE (S, n.J 

END 
END 

Theorem 5.8: Algorithm AS.1 finds an Intersection If one exists. 

Proof: Since the algorithm only reports an Intersection If It finds one, It will never 

falsely claim that two segments cross, and we may turn our attention to the 

possibility that an Intersection exists but remains undetected. We will show 

that the algorithm correctly finds the leftmost Intersection point, L. (See Figure 

5.11.) If several leftmost Intersection points exist, let L be the one 
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with least y-coordlnate. Suppose that L Is the Intersection of segments E and 

F, and consider the leftmost point at which E and F become consecutive In the 

total order. Three cases arise: 

1. One of the segments Is Inserted and the other lies Immediately above or 

below It In the ordering. This case Is detected by the" first IF block In 

Algorithm AS.1. 

2. Both segments are al:"eady In T and an Intervening segment Is deleted, 

leaving them consecutive. This Is detected by the ELSE block. 

3. An Intervening segment crosses either E or F. This possibility Is ruled out 

"by the fact that L Is leftmost and that no three segments Intersect In a , 

point. 

Thus In any event the Intersection Is found. 

Intersection is found when 
segmant F is insertad. 

E 

Intersection is found whan 
sagmant D is dalatad, 
laaving E and F consacutive. 

Figure 5.11: Finding the Leftmost Intersection. 

Though simple, Algorithm A5.1 has some curious properties. Even though the 

leftmost Intersection Is always found, It Is not necessarily the first Intersection to 

be ,found. (The reader may test his understanding of the algorithm by characterizing 

exactly which Intersection Is found first.) Also, since the algorithm only performs 

O(N) Intersection tests, It may fall to find some Intersectlons~ Flgu~e 5.12 
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Illustrates the operation of the algorithm, showing exactly how an Intersection Is 

found. 

A E 

B 
.... 
I " I I ro-+-., I ----I 
I I I 

I I I 

I I I I 

I I 
, 

I 
I I 
I I E E E Intersedion "is found 
I I A here, when A and C A A A A A A 
B B B B B C ~ become eonsecutiv. 

C 0 0 C 
in the total order. 

C C 

Figure 5.12: The Intersection Algorithm In Operatlom. 

Theorem .5.9: Whether any two of N line segments In the plane Intersect can be 

determined In O(N log N) time, and this Is optimal. 

Proof: We show that Algorithm A5.1 can be Implemented In O(N log N) time. The 

sorting of the 2N endpoints In Step 1 can be accomplished In O(N log N) time. 

Using a balanced tree scheme, we may Implement the operations INSERT, 

DELETE, ABOVE, and BELOW so that each of them c~n be performed In O(logN) 

tlme,worst-case [Aha (74)]. The FOR=loop of Step 2 contains only s" constant 

number of these operatl<?ns and the loop Is executed 2N times, so O(N log N) 

tim.) suffices. Optimality was shown In Theorem 5.7. O(N) storage suffices 

because we need only store a balanced tree with at most N leaves. 
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":"i Corollary 5.1: [Cf. Theorems 5.6, 5.9] Whether two simple polygons P .and Q 

. ',' Intersect C'ln be determined in O(N log N) time, where N Is the total number of 

edges In both P and Q. 

Further results have been obtained using variations of Algorithm A5.1 and can be 

found in [Shamos (76b)]: 

Corollary 5.2: Whether a given polygon Is simple can be determined In O(N log N) 

time. 

Corollary 5.3: Whether a planar straight-line graph on N vertices contains 

crossing edges can be determined In O(N log N) time. 

The algorlthn.s that achieve both of the above results are modifications to the basic 

Intersection algorithm AS.1 that take Into accour:tt multiple edges that share a 

common vertex. 

iheorem 5.10: Whether any two of N simple (but possibly non-convex) k-gons .' 

Intersect can be determined In O(Nk log Nk) time. 

Theorem 5.7'7: Whether any two of N convex k-gons Intersect can be determined 

In O(N(k + log N log k» time. 

6.5. Common Intersection 
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6.5.1 Intersection of Half-Planes 

" 'trash', he said, 'but with a I<ernel In /t'." 
- Tennyson, The Princess. 

·1" Section 4.3, we showed that finding a point In the, kernel of a star-shaped 

polygon Is an essential step In the preprocessing needed to answer the Inclusion 

question. At that time, we postponed the development of a kernel algorithm until 

the necessary tools were available. In this section we transform the kernel problem 

Into one of finding the common Intersection of N half-planes, and produce a dlvlde­

and-conquer algorithm for Its solution. 

Each edge of a star-shaped polygon determines a half-plane In which the kernel 

must lie. (Figure 5.13.) These half-planes are known as the Interior half­

planes or', If the polygon Is In standard form, the left half-planes. 

The allowed (interior) ~_ 
half-plane determined ~ 
by edge VW. 

If P is in standard form, 
the interior half-plane 
defined bl-'. an edge lies 
to its LEFT. 

The forbidden half-prane. 

In this region, vertex V 
is not visible so the 
kernel cannollie hore. 

Figure 5.13: Each edge of P determines an allowed half-plane. 
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Theorem 5.12: [Yaglom (61)] The kernel of a polygon Is the Intersection of Its 

left half-planes. 

Thus Immediately we have 

KERNEL cGN HALF-PLANES 

These lines are I"sdundanl 
because they do not ........ 
define edges of the 
kernel. --... 

, , 

, I 
, I 

I 
I 

,- ....... , 

I 
I 

---, , 
... , ...... , , 

...... 

Figure 5.14: The Kernel of a Polygon Is the Intersection of Its Left Half-Planes. 

Possibly the most familiar setting In which the Intersection of half-planes arises Is 

In linear programming [Gass (69)]. A two-varIable linear program can be formulated 
as: 

Maximize ax + by +0 , subject to a,x + b,y + 0, ~ 0 , , II 1, ... ,N. (5.2) 
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The feasible region Is the set of points (x,y) which satisfy the constraints In (5.2). 

Each constraint determines a half-plane in which the feasible region must lie •. The 

region Itself is the Intersection of these ha!f-planes. The objective function 

.1' ax + by + c d~flnes a family of parallel lines. The lines of this family that support 

the feasible reg/on pass through the vertices that mInimize and maximize the 

objective function [Gass (69)]. (See Figure 5.15.) 
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Figure 5.15: A Two-Variable linear Program. 

We already know how to find IInes·of support of B convex polygon In O(log NJ time 

(Theorem 3.28). Thus, 

2-VARIABLE LINEAR PROGRAMMING cGN HALF-PLANES 

There Is a simple quadratic algorithm for forming the Intersection of N half-planes • 

. Let us assume that we already have the Intersection of the first I half~planes. This 

is a convex polygonal region of at most , slcles, though It Is not necessarily closed. 

Intersec.tlng this region with the next half-plane Is 8 matter of sliCing the region 
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with a '!ne and retaining either the right or left piece. This can be done In 0(1) time 

In the obvious way. The total work required Is 0(N2), but the algorithm has the 

advantage of be,lng on-line • 

, Let us see If any Improvement Is possible with a dlvlde-and-conquer approach.1 0 

Given N half-planes H" we want to form the Intersection 

Because the Intersection operator Is associative, the terms m'ay be parenthesized 

In any way we wish: 

(5.3) 

The term In parentheses on the left Is an Intersection of N/2 half-planes and hence 

Is a convex polygC?nal region of at most N/2 sides. The same Is true of the term on 

the right. Since two convex polygonal regions each having k sides can be 

Interse9ted In O(k) time by Theorem 5.4, the middle Intersection operation In (5.3) 
can be performed In O(N) time. This suggests the following recursive algorithm: 

Algorithm A5.2: Intersection of Half~Planes 

INPUT: 
OUTPUT: 

N half-planes defined by directed line segments 
Their intersection, a conve~ polygonal region. 

1. Partition the half-planes into t~o sets of equal size. 

2. Recursively form the intersection of the half-planes 
in each subproblem. 

3. Merge the solutions to the subproblems by Intersecting 
the t~o resulting conve~ polygonal regions. 

10Stan Elsenstat taught me the value of D&C, and, In particular, suggested that It 

would work here. 
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';~iv If T(N) denotes the time sufficient to form the Intersection of N half-planes by 
> , ~hls algorithm, we have 

~ '\ ; '. 

T(N) = 2T(N/2) + O(N) = O(N log N) (5.4) 

This Is a i'classical" exarr.;Jle of D&C. 

Theorem 5.13: The Intersection of N half-planes can be found In O(N log N) time, 

and this Is optimal. 

Proof: The upper bound follows from equation (5.4). To prove the lower bound, 

we show that 

SORTING oGN HALF-PLANES 

. . 
Given N real numbers x1"'" xN' let HI be the half-plane containing the origin 

that Is ~efined by the line of slope xI tangent to the parabola y = x2. The 

Intersection of these half-planes is a convex polygonal region whose 

successive edges are ordered by slope. Once this region Is formed, we may 

read off the xI In sorted order. 

-Corollary 5.4: The kernel of an N-gon can be found In O(N log N) time. 

Note, though, that the lower bound of n(N log N) proved In Theorem 5.13 does not 

apply to the kernel probiem because the edges of a simple polygon cannot be In 

arbitrary positions and tha reducibility from sorting falls. There Is no reason to 

believe than any more than linear time Is required to find the kernel. In fact, by 

clever manipulation of edge lists lee and Preparata [lee (77a)] have shown: 

Theorem 5.14: The kernel of a simple N-gon can be found In O(N) time. 

Returning to polygon Intersection problems, we have 
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Theorem 5.15: The common Int.ersectlon of N convex k-gons can be found In 

. '~l O(Nk log N) time. 

Proof: It Is straightforward to achieve O(Nk log Nk) time by Intersecting the Nk 

, Jeft half-planes of the polygons. To reduce this, we will treat the polygons as 

N units rather than as a collection of Nk edges. Let T(N,k) be the time 

sufficient to solve the problem. The Intersection of N/2 convex k-gons Is a 

convex polygon of at most Nk/2 sides. Two of these can be Intersected In 

time ckN, for some constant c. So by recursively splitting the problem as In 

Algorithm A5.2, we have 

T(N,k) ::; 2T(N/2,k) + ckN = O(Nk log N) 

since T(2,k) = O(k) by Theorem 5.3. 

Theorem 5.16: A linear program In two variables and N constraints can be solved 

In O(N log N) time. Once this t:os been done, a new objective function can be 

maximized or minimized In O(log N) time. 

Proof:-The N log-Nresult Is an Immediate consequence of Theorem 5.13. 

Minimizing or maximizing an objective function Is just e search for supporting 

lines, and Theorem 3.28 applies. 

-. 
Let us compare this performance with the that of the Simplex algorithm [Gass 

(69)]. Simplex operates by moving from vertex to vertex on the feasible region, 

spending O(N) time for each move (the time required to select the new entering 

variable). It Is easy to see that, In the worst case, Simplex will have to visit every 

vertex, for a total of O(N2) time. (In this respect It Is very similar to Jarvls's 

algorithm In Section 3.6.) Furthermore, In order to maximize a new objective 

function, Simplex must Inspect every constraint, so It will use O(N) time. In other 

words, S-Implex Is not optImal. This Is not altogether a surprise, but no other 
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~Igorlthm Is known that Is superior to Simplex in any number of d!menslons.11 

6.5.1.1 Expected Time to Intersect Half-Planes 

One of the striking features of the Simplex algorlt~m Is that, while Its worst case . 

Is known to be exponential In dimension (and quadratic In two variables), its 

behavior Is almost always excellent In practice [Klee (6S)]. No explanation for this 

phenomenon Is known, but we could hardly claim that Algorithm AS.2 Is batter than 

Simplex If It Is fastt:!r only for some highly unrealistic worst case. To demonstrate 

once again the power of '.IIvlde-and-conquer algorithms, we prove that the· 

expected running time of Algorithm AS.2 Is linear for a wide class of Input 

dlstrlbutlons.12 The average case of Simplex In the p!ane !s easy to analyze. If r . 

of the n constraints are relevant (non-redundant), then Simplex re.qulres O(rn) time 

because It spends O(n) time at each iteration. To obtain a faster algorithm, we 

Invoke the same principle that was presented In Section 3.7,· namely, If the 

expected sizes of the subproblem solutions are small, then the merge step of the 

D&C algorithm can be performed In subllnear time. This will be the case If many of 

the half-plan,es are redundant, I.e., do not form edges of the Intersection polygon. 

We now show that most of the half-planes in a random problem can be expected to 

be redundant. 

It Is fairly easy to exhibit a reasonable probability distribution for random points In 

the planej It Is far less obvious how to model a random selection of half planes. 

[Zle2oid (70)] proposes the following. Let KO be a bounded convex region of the 

plane that c~ntalns another convex region K1' If N lines LI are drawn Independently 

. and at ·random to meet KO but not K1' and we define H, to ,be the closed half-plane 

bounded by II that contains K1' consider E(v), the expect~d number of vertices of 

the Intersection of all the HI' (See Figure S.16.) 

11 We must point out that explicit construction of the f~aslble· polytope Is not a 

vlabl.e approach to linear programming In higher dimensions because the number of 

vertices can grow exponentially with dimension. It is already known, however, that 

Simplex can be beaten In three dimensions [Preparata (77c)]. 

12These results were obtained jointly with Jon Bentley and have appeared In 
. [Bentley (77b)]. 
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figure 5.16: A Method of Choosing Random Half-Planes. 

Preliminary results were obtained by [Renyl (64)], and Ziezoid has shown by 

duality that E(v) Is of the same asymptotic or'der as the expected number of points 

on the hull of a set of N points drawn uniformly within K1'· If K1 shrinks to a point, 

then E(v) approaches the constant ,"2/2. In any event we will have E(v) = O(NP), 

p( 1, and a linear average-case algorithm for Intersecting N half-planes results,· 

This leads Immediately to an O(N) expected-time algorithm for linear programming ~n 

two variables. 

We see that the expected number of redundant half-planes -~ those that do not 

define faces of the feasible region -- Is very large, which may, In part, account for 

the excellent observed behavior of the Simplex Method. 
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5.6. Unsolved problems 

1. Suppose that the ·Intersectlon of two simple N-gons has k edges. (This 

Intersection may consist of disjoint regions.) Does there exist an 

O(max(k,N log N» algorithm to construct It? . 

2. GlvenN line segments In the plane, how much time !s required to count the 

number of pairs that Intersect? 

. 3. Of N line segments, suppose that k pairs Intersect. Does there exist an 

O(max(k,N log N» algorithm to list them? 

4. Prove that solving a linear program In two variables requires n(N log N) tlma. 
(Theorem 5.13 Implies that n(N log N) time Is necessary to form the feasible 

region, but this may not be required to maximize a single objective function.) 

5. What Is the I;omplexlty of Intersecting two k-dlmenslonal convex polytopes? 

Th~t Is, what Is Its asymptotic dependence on nand k? How difficult Is It to 

determine whether two (possibly non-convex) polyhedra Intersect? 

6 •. A large class of problems' concerns the union of figures. How difficult Is It to 

find the area of the union of N i'ectangles whose sides are not necessarily 

parallel to the coordinate axes? Stralghforward application of the principle of 

. Inclusion-exclusion yIelds a 2N algorithm! What about 'the area of the unIon of, 

N circles? 13 Are the various union problems dual to any Intersection problems? 

13The union problems were brought to my attention by Stuart Feldman of Bell 

laboratories. 
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5.7. Summary 

The Importance of Intersection problems steR)s both from their frequent 

occurrence In applications and their use as basic tools In computational geometry . 

Itself. We divide the problems Into three classes, each of which requires a 

dl,fferent approach. Forming the Intersection of two objects Is an essential element, 

in the hidden-line problem and pattern recognition. The Intersection of convex 

polygons can be found In linea:" time, but, for star-shaped and simple polygons 

quadratic time may be required. Detecting the intersection of objects Is easler, for 

determining whether two 'general polygons Intersect requires only O(N log N) time. 

We ~ccomplls~ this by Isolating and solving the problem of detecting whether any 

two of N line segments Int~rsect. A lower bound of .n(N log N) follows by showing 

that element uniqueness Is linear-time reducible to line-segment Intersection. By 

making use of a partial order on'lIne segments In the plane, we are able to detect 

an Intersection In O(N log Nj time, while finding all intersections could require O(N2) 

tIme. This optimal algorithm Is used to test whether a polygon Is simple, whether a 

pllme embedding of a graph has any Intersecting edges, and whether two simple 

polygons overlap. 

Finally, we use the divide-and-conquer method to find the common Intersection of 

N half-planes. The merge step of this algorithm Is the linear-time procedure for 

Intersecting convex polygons developed earlier. The common Intersection of half­

planes Is shown to require .n(N log N) time In the worst~case, and our algorithm 

achieves this bound, yielding an O(N log N) kernel algorithm and a fast procedure for 

solving linear programs In two variables. This latter algorithm, a/Jd the one due to 

Preparata cited earlier, are the only procedures known to be faster than the 

Simplex method In any number of dimensions. By appealing to recent results In 

stochastic geometry, we are able to demonstrate that the half-planes algorithm Is' 

even better In an average-case sense, running In O(N) expected time. 
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Simplex method In any number of dimensions. By appealing to recent results In 

stochastic geometry, we are able to demonstrate that the half-planes algorithm Is' 

even better In an average-case sense, running In O(N) expected time. 
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In Se9.tlon 3.10, we gave an O(N log N) algorithm for finding the two farthest 

points of a plane set. Finding the two closest points would seem to be a simple' 

extension, but It Is not. The two farthest points are necessarily' hull vertices, and 

we may exploit convexity to give a fast algorithm; the two closest points do not 

necessarily bear any relation to the convex hull, so a new technique must be 

developed, which Is the subject of this chapter. We will be concerned with a large 

class of problems that Involve the proximity of points In the plane, and our goal will 

be to deal with all of these seemingly unrelated tasks via a single algorithm, one 

which discovers, processes, and stores compactly' all of the relevant proximity 

Information. To do this, we revive a classical mathematical object, the Voronol 

diagram, and turn It Into an efficient computational structure that perr:,;~s 

considerable Improvement over the best presently-known algorithms. While all of 
the problems to be treated here Involve Euclidean distance, all of the exampte could 

profitably be analyzed In the l1 and leo norms. In this chapter all of the geometric 

tools we have developed, Including hull-finding, searching, and polygon Intersection, 

will be brought to bear on these "closest-point" problems. 

6.1. The Problems 

8.1.1 Closest Pair 

Problem PB.1: (Closest Pair) Given N points In the plane, find two that are 
, closest togeth~r.1 

1 More than one pair may be closest. We will consider finding any such pair as a 

solution to this problem. 
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This problem Is so easily stated and Important that we must regard It as one of the 

fundamental questions of computational geometry, both from the point of view of 

applications and pure theoretical Interest. 

The central algorithmic Issue !s whether It Is necessary to examine every pair of 

points to find the minimum dlstam:~e thus determined. This can be done In O(kN2) 

time In k dimensions, for any k. In one dimension a faster algorithm Is possible, 

based on the fact that any pair of closest points must be consecutive In sorted 

order. Thus we may sort the given xI In O(N log N) steps and perform a linear-time 

scan that computes xl+1 - xI' 1~I<N. This algorithm, obvious as It Is, Is nonetheless 

optimal: 

Theorem B. 1: O(N log N) comparisons are necessary and sufficient to find the two 

closest of N points on a line, If comparisons are allowed only between linear 

functions of the Inputs. 

Proof: We show that ELEMENT UNIQUENESS oGN CLOSEST PAIR~ whence the 

lower bound follows from Theorem 3.22. Given a set of real numbers xI' treat 

them as points on thE: real I:ne and find the two closest. If the distance 

between them Is non-zero, the points are distinct. Since a set In one dimension 

can always be embedded In /( dimensions, the lower bound generalizes. 

!n Section 6.2, we produce an algorithm that achieves this bound. 

6.1.2 All Ne':lrest Neighbors 

"Better Is a neighbor that Is near." 

- Proverbs 27: 1 O. 

Problem PB.2: (All Nearest Neighbors) Given N points In the plane, find a 

nearest neighbor of each. Two points y and z are both nearest neighbors of x 
Iff d(x,y) = d(x,z).2 

" 2Note th~'t a point need not have a unique nearest neighbor. It has at most six, 
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',0: A solution to this problem Is a collection of N ordered pairs (a,b), In which b Is a 

nearest neighbor of a. Since one of these N pairs Is a closest pair, we have 

CLOSEST PAIR cGN ALL NEAREST NEIGHBORS , 

so Theorem 6.1 Implies that this problem must requIre n(N log N) comparisons as 

weli. in one dimension the same sorting algorithm yields all nearest neighbors, but 

. what happens in higher dimensions? Is It conceivable, for example, that P6.2 Is 

asymptotically no more difficult than P6.1? 

The set of neighbor pairs defines a binary relation "-." on the set of points, 

where we write a ~ b iff b Is a nearest neighbor of a. The graph of this relation Is 

pictured In Figure 6.1. Note that It Is not necessarily symmetric, that Is, 

a'" b does not necessarily Imply b -+ a. 

Figure 6.1: The Nearest-Neighbor Relation 

A pair which does satisfy symmetry (a -. band b -+ a) Is called a reciprocal pair. In 

mathematlca; ecology, the number of reciprocal pairs Is used to detect whether 

though, In two dimensions, and at most twelve In three dimensions. This maximum 

number of nearest neighbors In any dimension k Is the same as the maximum number 

. of unit spheres that can placed so as to touch a given one. ([Saaty (70)] states 

that this number Is not known for k greater than twelve.> 
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, A members of a species tend to occur In Isolated cO!Jpies [PJelou (77)]. The actual 

. ,n number of reciprocal pairs Is computed, and the re~ult 'compared with the number 

expected under the null hypothesis. Other studies Involving nearest-neighbor 

computations arise In studying the territoriality of species [Pie lou '(77)], In which 

the distribution of nearest-neighbor distflnces Is of Interest, as well as In 

geography [Kolars (74)] and molecular physics [Brostow (77)]. These distances 

can also be used for testing the randomness of spatial patterns: Ii collectIon of 

points is random Iff the dl~~ribution of distances from a random point (x,y) In the 

plane to the nearest pattern poln~ PI Is Identical to the distribution of nearest­

neighbor distances among the PI themselves [Hopkins (54)]. The latter Information 

comes from solving P6.2, and the need for the former motivates our next problem. 

6.1.3 Nearest-Neighbor Search 

Problem P6.3: (Nearest-Neighbor Search) Given N points In the plane, with 

preprocessing allowed, how quickly can the one nearest to a new given point p 
be found? 

This problem Is posed In [Knuth (73)]. 

• • 
•• 

• • 
• • 0 • • 

• p 
• 

• • 
• • • 

Figure 6.2: To Which Point Is P Closest? 

We may solve It In O(I<N) timE.; In I< dimensions, but we are Interested In using 
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.;:i preprocessing to speed the search. There are a multitude of applications for such 

. '; !1 fast searching, one of which is the classification problem, which we spoke of as 

., ':. "supervised learning" In our discussion of linear separability In Section 5.1.2. 

A B 

B 
A A 

A 

A '@ 
B B B B 

A 

B A A 
A B 

Figure 6.3: The Nearast-Nelghbor Rule 

An Important classification method Is the nearest-neighbor rule [Duda (73)], which 

states that when an object must be classified as being In one of a number of known 

populations, It should be placed In the population corresponding to Its nearest 

neighbor. For example, In Figure 6.3 the unknown point U would be classlfl~d liB". If 

many objects -are to be classified against a fixed training set, as Is the case In 

such problems as speech recognition, elementary particle Identification, and related 

pattern-recognition problems [Tou (76)], we must be able to perform nsarest­

neighbar searching quickly. 

In one dimension, nearest-neighbor searching Is easily seen to be ordinary binary 

sear.ch, and vice-versa. Given N points xI' we sort them and arrange them In. a 

vector. To find the nearest neighbor of a new point p, we perform a binary search, 

learnlng,for example, that p lies between xi and xl+1. Whichever of these two 

points is closer to p is Its nearest neighbor. Likewise, once we have learned that 

the nearest neighbor of p Is xI' then we are certain that p lies either between xl-1 

and xI or between xI and xl+ 1. These cases can be distinguished In a single 

comparison, and we have· performed a binary search. As usual, there Is no 
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Immediate generalization to two dimensions because there Is no metrically-Induced 

total order (in points In the plane, and binary search cannot be applied directly. (For 

a technique that Involves the construction of new search objects, see [Dobkin 

(76a)].) Previous algorithms based on projections have been observed to run In 

expected time OeN 1/2) on test data, but have linear worst-case search ~Ime 
[Friedman (15j]. The reader should consider how apparently unstructured Is th.e 

configuration of points In Figure 6.2. One of our goals will be to find a structure on 

these points that will facilitate rapid search. . . . . 

Since we have seen that In one dimension, 

BINARY SEARCH oG NEAREST NEIGHBOR , 

we have by the standard Information-theoretic argument [Borod!n (73)]: 

Theorem 6.2: .o.(log N) comparisons are necessary to find the nearest neighbor of 

. a point (In the worst case) In any dimension. 

In Section 6.5, we give an algorithm. that achieves this lower bound for all 

dimensions. In a model which allows cornparlsons only between linear functions of 

the Inputs, If we assume that p Is equally likely to fan In any of the N+ 1 Intervals 

determined by .. the xI' then Theorem 6.2 bounds the expected behavior of any 

nearest-neighbor search algorithm. This Is not true for rnodeis of· computation which 

allow non-analytic functions, such as FLOOR, which can be used to compute Indices 

for hashl!1g or direct array access. If FLOOR Is allowed and the distribution from 

which the points are drawn is known and continuous, then Interpolation search [Yao 

(76)] can b,e used to find nearest neighbors In O(log log N) expected time. 

However, no generalization to two or more dimensions Is apparent • 

. . Problem P6.4: (K-Nearest Neighbors) Given N points In the plane, with 

preconditioning allowed, how quickly can the .1< points nearest to a new given 

point be found? 

The I< nearest neighbors have been used for Interpolation and contourhig [Davis 

(75)] and for classification [Andrews (72b)] (the I<-nearest neighbor rule Is more 

robust than just looking at a single neighbor). Though the problem seems to be more 
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.,:j difficult that P6.3, the structure we shall develop In Section 6.3 Is capable 

'I.', of solving It. 

8.1.4 Euclidean Minimum Spanning Tree 

Problem P6.5: (Euclidean Minimum Spanning Tree) Given N points In the plane, 

construct'a tree of minimum total length whose vertices are tho given points. 

By a solution to this problem we will mean a list of N-1 pairs of points comprising the 

edges of the tree.3 Such a tree Is shown In Figure 6.4. 

Figure 6.4: A Minimum Spanning Tree on a Plane Set 

The EMST problem Is a common component In applications Involving networks. If 

one desires to set up a communications system among N nodes requiring 

Interconnecting cables, using the EMST will result in a network of minimum cost [Prim 

(57)]. A curious facet of Federal law lends added Importance to the problem. When 

the long lines Department of the Bell System establishes a communications hookup 

fora customer, federal tariffs' require that the billing rate be proportional to the 

length of a minimum spanning tree connecting the customer's termini, the distance 

3A tree on N vertices must have exactly N-1 edges [Harary (71 »). 
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to be measured on a standard flat projection of the Earth's surface. This is true 

regardless of the fact that the Earth Is not flat and the Bell System may not choose 

to. set up the actual network as an MST. Nonetheless, the billing Is based on a real 

Euclidean problem, one which must be solved hundreds of times dally, as network 

.\ configurations are constantly changing.4 

This law Is a Solomon-like compromise between what Is desirable and what Is 

practical to compute, for the minimum spanning tree Is not the shortest possible 

Interconnecting network If new vertices may be added to the original set. With this 

restriction lifted, the shortest tree Is called a Steiner Tree (Figure 6.5).5 

a Steiner points 

,.t. S·· T ... ~n,umum panning ree steiner Tree 

Figure 6.5: A Steiner Tree May Be Shorter Than the MST. 

The computation of Steiner trees has been shown by Garey, Graham, and Johnson to 

be NP-complete [Garey (76a)], and we are unable with present technology to solve 

problems with more than about 15 points [Boyce (75)]. It Is therefore unreasonable 

for the FCC to require billing to be by Steiner tree. Th!s situation Is somewhat 

reminiscent of the Indiana Bill that, for expediency, fixed the value of pi to be 

4Thanks go to Stefan Burr for providing this Information. 

Srhe Steiner tree In Figure 6.5 is taken from [Melzak (7a)J 
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, '" exactly 4. 6 

)j The minimum spanning tree has been used as a tool In clustering [Gower (69)], 

[Johnson (67)], [Zahn (71)], determining the Intrinsic dimension of point set~ 

,f':J [Schwar~zmann (75)], and In pattern recognition [Osteen (74)], as well as In 

minimizing wire length In computer circuitry [lobermann (57)] and In obtaining 

approximate solutions to the Traveling Salesman Problem (Section 6.1.5) • 

. The Euclidean Minimum Spanning Tree problem Is usually formulated as a problem 

In graph. theory~ Given a graph with N nodes and E weighted edges, find the 

shortest subtree of G that Includes every vertex. This problem was solved 

Independently by [Dljkstra (59)], [Kruskal (56)], and [Prim (57)], and the existence 

of a polynomial-time algorithm (which they all demonstrated) Is a conslderao.a 

surprise, because a graph on N vertices may contain as many as NN-2 spanning 

subtrees ~ ~ A great deal of work has been done In an attempt to find a fast 

algorithm for this general problem [Nljenhuls (75)], [Yao (75)], and the best result 

to date Is th~t O(E) time suffices If E ) N1 +e, for any e > 0 [Cheriton (76)]. 

11:1 the Euclidean problem, the N vertices are defined by 2N coordinates of points 

In the plane, and the associated graph has an edge joining every pair of vertices. 

The weight of an edge Is the distance between Its endpoints. Using the best known 
MST algorithm for this problem will thus require O(E) = O(N2) time, and',t Is easy to 

prove that this is a lower bound In an arbitrary graph because the MST always 

contains a shortest edge of G. 8 Since the edge weights In a general graph are 

unrestricted, an MST algorithm that ran In less than O(N2) time couid be used to find 

the minimum of N2 quantities In less than O(N2) time, which is Impossible. It follows 

that any algorithm that treats a Euclidean MST problem as being embedded In the 

complete graph on N vertices Is doomed to take quadratic time. 

611A bill for an act Introducing a new mathematical truth", House Bill 246, legislature 

ofthe State of Indiana, 1897. 

7[Moon (67)]. This was first proved by Cayley In 1889. 

8Thls was shown In [Kruskal (56)] and [Prim (57)~. 
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shortest subtree of G that Includes every vertex. This problem was solved 

Independently by [Dljkstra (59)], [Kruskal (56)], and [Prim (57)], and the existence 

of a polynomial-time algorithm (which they all demonstrated) Is a conslderao.a 
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611A bill for an act Introducing a new mathematical truth", House Bill 246, legislature 

ofthe State of Indiana, 1897. 

7[Moon (67)]. This was first proved by Cayley In 1889. 
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-: ,:;~.','( What would then lead us ·to suspect that less time Is sufficient? For one thing, 

the Euclidean problem only has 2N Inputs (the coordinates of the points), while the 

graph problem has N(N-1 )/2 Inputs (the edge lengths). The Euclidean problem Is 

"<\ therefore highly constrained, and we may be able ~o use Its metric properties to 

",:0:': give a fast algorithm. 

Even If Improvement Is possible, how fast an algorithm can we expect to obtain? 

Since the closest-pair problem Is linear-time reducible to EMST, Theorem 6.1 Implies 

an n(N log N) lower bound, but In a restricted model of computation. We can 

strengthen this result by showing that 

SORTING cGN EMST • 

Consider a set of N points xI In one dimension. This set possesses a unique EMST, 

namely, there Is an edge from xI to Xj Iff they are consecutive In sorted order. A 
solution to the EMST problem consists of 'a list ofN-1 pairs (I,J), giving the edges of 
the tree. We now show how to process this list In O(N) additional time to produce a 
sorted list of the xI' 

\ 
Algorithm A6. 7: Linear-Time Sort from Consecutive Pairs 

Input N real numbers X[l:Nl and N-l edges specified 
by tuo vectors, FROM[1:N-1J and TO[I:N-I]. 
It is assumed that X has a unique least element. 

Output A permutation ~ector PERM[l:N] such that X[PERM[I)) 
is the I'th smallest value. 

BEGIN 
FOR I ~ 1 UNTIL N DO 5UCC[ll ~ 8; 
FOR I ~ 1 UNTIL N-l DO SUCC[FROM[lll ~ TO[11; 

Nou find LOWEST, the unique point ulth no predecessor. 
LOWEST 4- 1; 
FOR I 4- 2 UNTIL N DO 

IF X[I) < X[LOWESTl THEN LOWEST ,4- I; 
PERM[I] 4- LOWEST; 
FOR I 4- 2 UNTIL N 00 PERM[I] 4- SUCC[PERM[I-l]]; 

END . 
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This reducibility, together with the sorting lower bound of Section 2.3, proves 

Theorem 6.3: Construction of a minimum spanning tree on N points In any 

dimension requires n(N log N) comparisons, even· If analytic functions of the 

. Inputs may be computed. 

6.1.5 Euclidean Traveling Salesman Problem 

Problem PS.S: (Euclidean Traveling Salesman) Find a shortest closed path 

through N given points In the plane. 

A shortest tour Is shown In Figure 6.6.9 

Figure 6.6: A Traveling Salesman Tour 

This problem differs fro~ the ordinary traveling salesman problem In the same way 

that Euclidean minimum spanning tree differs from the MST problem !n graphs: The 

91n fact, the tour was obtained by applying the Chrlstofldes heuristic (described 

below) several times and selecting the best result. It Is not known to be a shortest 

tour for the gh,en set of points. 

Closest-Point Problems 152 

This reducibility, together with the sorting lower bound of Section 2.3, proves 

Theorem 6.3: Construction of a minimum spanning tree on N points In any 

dimension requires n(N log N) comparisons, even· If analytic functions of the 

. Inputs may be computed. 

6.1.5 Euclidean Traveling Salesman Problem 

Problem PS.S: (Euclidean Traveling Salesman) Find a shortest closed path 

through N given points In the plane. 

A shortest tour Is shown In Figure 6.6.9 

Figure 6.6: A Traveling Salesman Tour 

This problem differs fro~ the ordinary traveling salesman problem In the same way 

that Euclidean minimum spanning tree differs from the MST problem !n graphs: The 

91n fact, the tour was obtained by applying the Chrlstofldes heuristic (described 

below) several times and selecting the best result. It Is not known to be a shortest 

tour for the gh,en set of points. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ciosest-Polnt Problems 153 

Interpolnt distances are not arbitrary, but are Inherited from the Euclidean metric. 

The general TSP Is NP-complete.10 Until recently, no geometry problems were 

known to be NP-complete, and the possibility existed that properties of the 

Euclidean metric could be used to produce a polynomial-time algorithm In the plane. 

Motivated partially by this observation, Garey, Graham, and Johnson [Garey (76)] 

undertook to prove the NP-completeness of a number of metric problems, with great 

success, for they succeeded in showing that ETSP Is NP-complete, a. resu~t that 

was also proven independently In [Papadlmltriou (76)].. We w·' therefore not 

attempt an efficient worst-case ETSP algorithm, but will concentrate on the 

relationship between ETSP and other closest-point problems, with a view toward 

developing go~d approximate or probabilistic methods. 

Theorem 6.4: A minimum spanning tree can be used to obtain an approximate TSP 

tour whose length Is not more than twice the length of a shortest tour. 

Proof: Let MST be the length of a minimum spanning tree, and let TSP be the 

length of an optimal tour. We show that 2 MST ( 2 ·TSP, which means that, by 

traversing each edge of the MST twice, we can visit each vertex and return to 

, the starting point without traveling as much as twice the necessary distance. 

(See Figure 6.7.) Consider removing the longest edge In a TSP tour. 

The result Is a chain through the N points which Is a spanning tree, so Its length 

cannot be less than MST. Thus we have 

MST S (TSP - E) < TSP • 

M~I~I~ly·'ng both sides by two gives the necessary Inequallty.11 

The next approximate result makes use of a minimum weighted matching on a 

set of points. 

1 0For deffp\~Jons relating to NP-complete problems and a proof of the NP­

completeness of the TSP, see [Karp (75)]. 

11Thls result Is well-known, and seems to have been discovered Independently by 

. many authors (R. M. Karp, private communication). 
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Figure 6.7: An Approximate Traveling Salesman Tour. 

Problem P6.7: (Minimum Euclidean Matching) Given 2N points In the plane, join 

them in pairs by line segments whose total length is a "minimum. 

Such a matching is shown In Figure ~.8. 

-Edmonds has shown that a minimum weight matching In an arbitrary graph can be 

obtained In polynomial time [Edmonds (65)], and an O(N3) Implementation Is given In 

[Gabow (72)]. The following result relates minimum spanning trees, matchlngs, and 

the traverlng salesman problem. 

Theorem 6.5: [Chrlstofldes (76)] An approximation to the traveling salesman 

problem whose length Is within 3/2 of optimal "can be obtained In O(N3) time ~f 
the Interpolnt distances obey the triangle Inequality. 

------~ ... -~ . 
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Figure 6.8: A Minimum Euclidean Matching 

155 

Proof: [Chrlstofldes (76)] The following algorithm achieves the desired result: 

1. Find a minimum spanning tree. 

2. Find a minimum Euclidean matching on the set of vertices of the MST that 

are of odd degree. (There are always an even number of such vertices In 

any graph [Harary (71 )].) The total length of the edges In this matching Is 

not greater than half the length of the MST. 

3. To obtain" a TSP tour, traverse the MST, but instead of repeating MST 

edges, use edges of the matching. This results In a tour that Is no longer 

than 1.5 MST ( 1.5 TSP. 

In the above algorithm, which Is a truly exquisite one, Chrlstofldes has used fast 

procedm"es (MST and matching) to attack the Inherently difficult Traveling Salesman 

problem. 
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6.1.6 Triangulation 

Problem P6.8: (TrIangulation) Given N points in the plane, Join them by non­

intersecting straight line segments so that every region Interior to the convex 

hull is a triangle. 

Being a planar graph, £\ triangulation on N vertices has at most 3N-6 edges [Harary 

(71 )]. A solution to the problem consists of a list of these edges. A triangulation Is 

shown In Figure 6.9. 

Figure 6.9: Triangulation of a Point Set 

This problem arises In the finite element method [Strang (73)], and In numerical 

Interpolation of bivariate data when function values are available at N Irregularly­

spaced data points (xI' YI) and an approximation to the function at a new point (x, 

y) Is desired. In piecewise linear Interpolation, the function surface Is represented 

by a network of planar triangular facets.Each point (x, y) lies In a unique facet, and 

the function value (x, y) Is obtained by Interpolating a plane through the three 

facet vertices. Triangulation is the process of selecting triples that will define the 
facets. 
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Many criteria have beeen proposed as to what constitutes a "good" triangulation 

for numerical purposes [George (71 )], some of which Involve minimizing the largest 

angle or minimizing the length of the largest side. Later In this chapter we propOSG 

a new method of triangulation based on proximity of points and show that It can be 

found as rapidly as any trlanculatlon on N points. [lawson (77)] has recently shown 

that It Is equivalent to a contouring procedure due to [McLain (76)], although our 

method Is considerably faster computationally. The method Itself Is postponed until 

Section 6.5, when we shall have the tools necessary to present It. 

Meanwhile, we will content ourselves with another lower bound: 

Theorem 6.6: n(N log N) comparisons are necessary to triangulate N points In the 

. plane, even If analytic functions may be computed. 

Proof: We show that SORTING cGN TRIANGULATION. Consider the set of N points 

XI pictured In Figure 6.10, which consists of N-1 collinear points and 

another not on the same line. This set possesses only one triangulation, the 

one shown In the figure. The edge list produced by a triangulation can be used 

to sort the XI In O(N) additional operations as In the ~roof of Theorem 6.3, so 

n(N log N) comparisons must have been made. 

Figure 6.10: Triangulation Lower Bound 
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8.1.7 Smallest Ench)slng Circle 

Problem P6.9: (Smallest Enclosing Circle) Given N poln'ts In the plane, find the 

, smallest circle that encloses them. 

This Is a classlc~1 problem with an Immense literature, the search for an efficient 

algorithm having appaiently begun In 1869 [Sylvester (69)]. The smallest enclosing 

circle Is unique and Is either the circumcircle of some three points of the set or 

defined by two of them as a diameter [Rademacher (57), Chapter 16]. Thus there 

'exists a finite algorithm wtllch examines all pairs and triples of polnts j and chooses 

the sm.,lIest circle determined by them which stili encloses the set. The obvious 

Implementation of this procedure would run In O(N4) time., This rote method has 

been Improved by Elzinga and Hearn [Elzinga (72a)] [Elzinga (72b)] to run In O(N2) , 

time and Is the best algorithm to date [Francis (74)]. 

The enclosing circle p!'ob'~m !! familiar In Operations Research as a minimax 

facilities location problem In which we seek a point p (the center of the circle) 

whose greatest distance to any point of the set Is a minimum. We -may characterize 

p by 

min max 
p I 

(6.1 ) 

The minimax criterion Is used In siting emergency facilities, such as police stations 

and hospitals, to minimize worst-case response time [Toregas (71 )]. It has also 

been used to optimize the location of a radio transmitter serving N discrete 

receivers so 8S to minimize' the RF power requ!red [Nair (71 )]. Minimization In other 

metrlcs Is treated In [Shamos (75b)]. 

A generalization of the smallest enclosing circle brings us Into the domain of 

coverage problems:-. 

Problem P6.10: (I< Police Stations) Given N points In the plane, locate I< circles 

such that e~ch point Is In some circle and the maximum radius of any circle Is a 

minimum. 

• 
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A solution for 1<= 3 Is shown In Figure 6.11. This' Is a~aln a discrete problem, . 

of which the smallest enclqslng circle Is the special case 1<= 1 • 

• • • • 
• • • • • • • 

• • • • • • 
• 

o indicates a minimax location 

Figure 6.11: Minimax location of Three Police Stations 

A different generalization Is: 

. Prf?blem PB.11: (Smallest Bomb) Given N points In th~ plane, find the smallest 

circle that encloses at least I< of them. 

Another, more belligerent, statement of the problem Is: GlvenN targets of equal· 

strategl9·importance, what Is the smalle'st bomb that wll! destroy at least I< of them, 

and where should It be deployed? Or, where should a radio transmitter be set up so' 

that It reaches at least I< receivers and uses as little power as possible?· Certainly 

O(N4) time suffices for all values of I< simultaneously, for It Is only necessary to 

construct the' circles determlned by' all subsets of two ()r three points to determine 

how many points thay contain. There are 0(N3) such circles. 

Another set of coverage problems arises If we fix the radius r and ask for the 

teast number of circles of radius r that suffice to cover a finite set. See [Shamos 
(75b)]. 

There Is good reason to believe that many of these problems are NP-complete 

since boolean satlsflablllty Is reducible to certain coverage pro~lems, even In the 
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. ,: f~ Euclidean metric. In fact, we know of no case In which properties of the metric can 

,. ki be used to make a problem which Is NP-complete without the metric run In 

polynomial time. (If the problem is already polynomial time-bounded, we have seen 

humerous examples In which metric properties serve to reduce the running time.) 

8.1.8 Largest Empty Circle 

Problem PB.12: (Largest Empty Circle) Given N points In the plane, find a largest 

circle that contains no points of the set yet whose center is Interior to the 

convex hull. 

The restriction on the center Is necessary,' for otherwise the problem would be 

unconstrained and would not possess a bounded solution. This problem Is dual to 

P6.9 In that it Is maximin. In other words, we want p as defined by 

The point p Is not necessarily unique. Figure 6.12 Illustrates a solution. 

o Center of larillt 
wmpty circle 

.Flgure 6.12: A Largest Empty Circle Whose Center Is Interior to the Hull. 

(6.2) 

This Is another facilities location problem, but one In which we would like to 
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unconstrained and would not possess a bounded solution. This problem Is dual to 
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o Center of larillt 
wmpty circle 

.Flgure 6.12: A Largest Empty Circle Whose Center Is Interior to the Hull. 

(6.2) 

This Is another facilities location problem, but one In which we would like to 
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positIon a new facility so that It Is as far as possible from any of N existing ones. 

The new site may be a source of pollution which should be placed as to minimize Its 

effec:t on the nearest residential neighborhood, or It may be a new business that 

does not wish to compete for territory with established outlets., Such problems 

arise frequently in Industrial engineering [Francis (74)]. For the present problem, an 

algorithm has been given [Dasarathy (75)] whose worst-case running ~Ime Is 

O(N3). 12 

,In one dimension the problem reduces to finding a pair of consecutive poInts that 

are farthest apart, since a "circle II In one dimension Is just a line segment. To show 

a lower bound, we Introduce a new problem called GRID. 

Problem PS.la: (Grid) Given N real numbers XI' are they In fact the set of one­

dimensional grid points {lIN}, 1 ~ I~N? 13 

It Is a stralghforward to showb~l the methods of [Reingold (72a)] that the height of 

any linear tree' program which decides GRID must be n(N log N). This leads to 

Theorem 6.7: If comparisons ,are allowed only between linear functions of the 

'Inputs, then n(N log N) comparisons are required to find the two farthest 

adjacent points of N points on a line. 

Proof:- We -show-1:hat GRID cGN FARTHEST ADJACENT POINTS; Given N numbers XI' 
determine whether they all lie In the Interval [l1N,1]. If so, consider them as 

points on the line and find the farthest adjacent ones. The answer to GRID Is 

affirmative Iff the distance between them Is Gxactly 1/N. 

12A tantalizing problem. Why should we be able to do better for Its dual, the 

smallest enclosing circle? Is convexlt~· helping again? No. We shall see later that 

the contrast between O(N2) and O(N3 ) only reflects our poor state of knowl.edge 

abo~t both problems, and O(N log N) time suffices In each case. 

13Thls problem and the theorem follwlng It were generously contributed by Jon 
Bentley. 
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Unexpectedly, [Gonzalez (75)] has demonstrated convincingly the weakness of this 

';f\[ lower'bound by giving a linear-time algorithm! His method, of course, uses non-linear 

',::: functions (actually, non-analytic ones), so there, Is 'no contradiction, but his 

aigorlthm Is a gem: ' 

Algorithm A6.2: Max Gap [Gonzalez (75)1 

Input: N real numbers XI1:Nl (unsorted). 
Output: MAXGAP, the length of the largest gap bet~gen 

consecutive numbers in sorted order. 

1. Find the MAX and MIN values of X. This can be done in O(N) 
time. S~ap so that X[l] contains MIN and X[N] contains MAX. 

2. Create N-l buckets by dividing the interval from MIN to MAX 
~jth N-2 equally-spaced points. In each bucket ue ulll retain 
HIGH[I} and LOWII1, the largest and smallest values In bucket I. 

FOR 1~2 UNTIL N-2 DO COUNT III ~ 8; 
COUNT [lJ ~ 1; COUNT IN-ll ~ 1; 

3. (Hash into buckets) 
FOR i~2 UNTIL N-l DO BEGIN 

END 

BUCKET ~ 1 + (N-lJ * FLOOR ( (X [Il-MIN) I (MAX-MIN) ) 
COUNTIBUCKETl ~ COUNT[BUCKETl + 1, 
IF COUNTIBUCKETl • 1 THEN BEGIN 

LOW[BUCKETl ~ X[I], HIGH [BUCKETl -~ X[ll. END 
ELSE BEGIN 

IF XII] < LOUIBUCKETl THEN LOUIBUCKET] ~ Xl}]; 
IF XIIl > HIGH[BUCKETl THEN HIGH[BUCKETl ~ X[I]; 

END 
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4. Since N-2 points have been placed in N-l buckets, by the 
~igeonhole principle some bucket must be empty. This means that 
the largest gap cannot occur between two points In the same 
bucket, uhich justifies our keeping only HIGH and LOW. We now 
make a single pass through the buckets, keeping the largest 
gap betueen each HIGH and the next LOW In a nonempty bucket. 

MAXGAP ... 0; 
LEFT ... HIGH [1]; 

FOR I ... 2 UNTIL N-1 DO BEGIN 

END 

IF COUNTlll ~ 0 THEN BEGIN 
THISGAP ... LO~[I) - LEFT; 

END 

IF THISGAP > MAXGAP THEN M~XGAP, ... THISGAP; 
LEFT ... HIGH [I); 

In view of the similarity between MAXGAP and CLOSEST PAIR In one dimension, It Is 

remarkable that a linear algorithm Is possible. Unfortunately, no generalization to 

two dimensions seems to be possible. 

, 6.2. A Divide-and-Conquer Algorithm for Closest Pair 

The lower bound of Theorem 6.1 challenges us to find an O(N log N) algorithm for 

ctosest palr.14 There seem to be two reasonable ways to achieve such behavior: 

sorting and divide-and-conquer. The sorting approach does not appear to lead to 

anything useful, for the only way to apply It seems to be to project all the, points 

onto one of the axes. One would like to appeal to the p~'lnclple ("hope" Is a better 

word) that in, this projection very few points will separate A and its nearest 

neighbor.' In the worst case, of course, this is not true, as Illustrated In Figure 

6.13. Points A and B are closest, but they are farthest when projected on 

the y-axis. 

, 14Thls section Is based almost entirely on an Idea due to H. R. Strong, for which we 

are most appreciative. 
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Figure 6.13: The Failure of Projection Methods 

164 

A second way to achieve O(N log N) performance Is to split the problem Into two 

subproblems whose solutions can be combined In linear time to give a solution to the 

entire problem. In this case, the obvious way of applying D&C does not lead to any 

Improvement, and It is Instructive to explore why It falls. 

We would like to split the set Into two subsets, A and B, each having N/2 points, 

and obtaIn a closest pair In each set recursively. The problem Is how to make use 

of the Information so obtained. The possibility stili exists that the closest pall' In 

the set consIsts of one element of A and one element of B, so that there Is no clear 

way to ayold making N2/4 additional comparisons. This leads to a recurrence of the 

form 

T(N) = 2T(N/2) + O(N2) , 

whose solutIon Is T(N) = O(N2). let us try to remedy the difficulty by retreating 

to one dimension. 

The only O(N log N) algorithm we know on the line Is the one which sorts the 

points and performs B linear-time scan (Section 6.1.1). Since sorting will not 
generalize to two dimensions, let us try to develop a one-dImensional dlvlde-and-
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conquer scheme that will. ~uppose we partition a set of points on the line by their 

median M Into two sets A and B with the property that a ( b for all a e A and b e B. 

Solving the closest pair problem recursively on A and B separately gives us two 

pairs of points, {c,d} and {e,f}, the closest pairs In A and B. respectively. Let 3 be 

the smallest separation found thus far: 

3 = min (d-c, f-e) • 

(See Figure 6.14.) 

A B 

c d h • f 

• • • • • • • • • • 

Flgur~ 6.14: Dlvlde-and-Conquer In One Dimension 

The closest pair In the whole set Is either {c,d}, {e,f}, or some {g,h}, where g e A 

and h e B. Notice, though, and this Is the key observation, that both g and h must be 

within distance 3 of M If (g,h) Is to have a separation smaller than 3.15 How many 

points of A can lie In the half-open Interval (g,M]? - Since every half-open Interval of 

length 3 contains at most one point of A, (g,M] contains at most one point. Similarly, 

[M,h) cont~lns at most one point. The number of pairwise comparisons that must be 

made between points In different subsets Is thus at most~. We can certainly 

-find· all points In the Intervals (g,M) and (M,h) In linear time,· 80 an O(N log N) 

algorithm results. 

151t Is clear that 9 must be the rightmost point In A and h the leftmost point In B, 

but this notion Is not meanlngfu! In higher dimensions so we wish to be somewhat 

more general. 
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AlgorIthm A6.3: Closest Pair In One DimensIon 

Input: X[I:Nl, N points in one diMension. 
Output: DELTA, the distance bet~een the tuo closest. 

RECURSIVE PROCEDURE CPAIR(X,DELTA); 
IF' IX! ~ 2 THEN BEGIN 

DELTA ~ X[2] - X[l]; RETURN; END 
ELSE 

IF IXI - 1 THEN-BEGIN 
DELTA ~ .; RETURN; END 

M ~ MEDl AN (X); 
let A be the points < M, 
and R the points ~ H. 

CPAIR(A,ADELTA); 
CPAIR(B,BDELTA); 

Find the (unique) point G of A that is within ADELTA of M. 
Find the (unique) point H of B that Is within BDELTA of M. 

DELTA ~ MIN(ADELTA, BDELTA, H - G); 
RETURN; 

END CPAIR 

166 

This algorithm, while apparently more complicated than the -simple sort and scan, 

-provides the necessary transition to two dimensions. 

. Generalizing as directly' as possible, let us partition a two-dimensional set S Into 

two subsets A and B of equal size such that every point of A nes to the left of 

every point of B.- That Is, we cut the sat by a vertical nne l defined by the median 

x-coordinate of S. Solving the problem on A and B recursively, we obtain 'A and 'B' 
the minimum separations In A and B, respectively. Now let' == mln("A' "B). (See 

Figure 6.15.) 

If the closest pair consists of ~ome 9 e A and some h eB, then surely 9 and hare 

both within distance" of L. Thus, 9 • P Gnd h e Q. At this point complications arise 

that were not present In the one-dimensional case. On the line we found at most 

one candidate for 9 and at most one for h. In two dimensions every point can be a 

candidate because It Is only necessary for a point' to lie within distance , of l. 
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p Q 

Figure 6.15: Divide-and-Conquer 1111 the Plane 

Figure 6.16 shows a set w!th this property. It again seems that N2/4 

distance comparisons will be required to find the closest pair, ,but we will now show 

that the points lying within the &-slabs around l have special structure • 

. Referring to Figure 6.1 7, 'consider any point g In P. . We must find all points, 

h In Q that are within 3 of 'g, but how many of these can tJlere, be? They must lie In 

the' x 2& rectangle R, and we know that no two points In R are closer together 

than 0.16 The maximum number of poInts of separation at least & that can be 

packed Into such a rectangle Is six, as shown In the figure. This follows from the 

fact that at most four points with s~p~r~t!!)n at least' can be packed In a square 

of side & and means that, for each point of P, we need only examine sIx points of Q, 

not N/2 points. In other words, only 6 x N/2 = 3N distance comparisons are needed 

In the sUbproblem merge step Instead of N2/4. 

16The author Is deeply grateful to H. R. Strong for this observation, which cleared 

the way for research on closest-point problems. He developed an O(N log2N) 

closest-pair algorithm, which we have improved here to O(N log N). 
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We do not yet have an O(N log N) algorithm, however, because even though we 

know that only six points of Q have to be examined for every point of P, we do not 

know which six they are! 

Suppose we project g and all the points of Q onto l. To find the six points of Q 

that were In rectangle R, we need only look within an Interval' of twelve points that­

surround g In this projection. If we sort all the points Initially by y-coordlnate, this 

Interval can be found for every 9 e P In a single pass through the sorted list. The 

mel'ge step will then run In linear time. Here Is the algorithm so far: 

1. If 181=1, set' to 00, and return. If 181=2, set' to the distance between the 

. points. Otherwise, sort the points of 8 by both x- and y-coordlnate. 

2. Partition 8 into two subsets, A and B, about the median line M. 

3. Flrid the closest pair separations 'A and 'B recursively. 
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Figure 6.17: For every point In P, only a constant number In Q are examined. 

5. let P be the set of points of A that are within' of the dividing line l, and let Q 

be the corresponding set of points of B. Project P and Q onto l. 

6. For every point of P, find Its six nearest neighbors In the l projection of Q. 

let 'l be the shortest distance between any pair thus obtained. 

Theorem 6.8: The shortest distance determined by N points In the plane can be 

'found In O(N log N) time, and this Is optimal. 
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Proof, We show that the above algorithm always finds a closest pair. If 151 = 2, 

the algorithm works correctly; we now argue Inductively based on the 

partitioning performed In step 2. Assume the closest pair to be unique so there 

are three cases to consider. Either both points lie In A, both In B, or one In 

each. In the first two cases the algorithm works correctly by the Inductive 

hypothesis. In the third case, by the above discussion the algorithm non­

recursively. find the C?Iosest pair of the set with the property that one point lies 

In A and the other In B. The running time can be computed as follows: Step 1 

requires O(N log N) time, but Is only performed once. Steps 2 and 6 take O(N) 

time, Steps 4 and 7 take constant time, Step 3 takes 2T(N/2) time, and Step 5 

takes O(N log N) time. The total running time Is described by the recurrence 

T(N) = 2T(N/2) + O(N) = O(N log N) • 

Optlmailty was shown In Theorem 6.1. 

With Dan' Hoey, we Implemented this algorithm and observed a curious 

phenomenon: the number of distance computations made was always strictly less 

than N. That this Is always the case was later proved In [Bentley (76a)]. Of 

course, the behavior of the algorithm 'Is stili dominated by the sort step. The 

structure of this divide-and-conquer scheme. has some noteworthy features: 

1. The method of division forces the subproblems to have a special property, 

namely, sparsity. 

2. The step at which the subproblem solutions are merged takes place In one 

lower dimension. 

3. The merge time Is reduced by preprocessing which takes place outside the 

recur$lve structure of the algorithm • 

. Together with Bentley, we have shown [Bentley (76b)] that a straightforward 

. generalization of this algorithm to k dimensions runs In O(N logk-1 N) time, but that 

this can be reduced to O(N log N) by Imposing constraints on the choice of cut-
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,,'::, planes. Bentley has made a thorough study of multldlmenslonaldlvlde-and-conquer 

'algorithms In his Ph.D. thesis [Bentley (76a)]. and has formulated a number of . 

heuristic design principles for discovering new ones. The Idea of recurring both on 

dimension and problem size simultaneously Is an especially powerful one. 

Theorem 6.1 Is significant because It provides hope that all of the closest-point 

problems discussed above (except the ETSP) can be solved In O(N log N) time. We 

'already knew that CLOSEST PAIR was reducible to P6.2-P,6.6, so a quadratic lower 

bound for CLOSEST PAIR would Imply a quadratic lower bound Oil all of the others. 

Now that we have a fast algorithm for P6.1, It Is reasonable to suppose that the 

other problems can be solved quickly. 

6.3. The Voronoi Diagram 

It Is one thing to suspect the existence of fast algorithms, but quite another to 

actually dlspover them. While our D&C algorithm for finding a closest pair may be 

encouraging, It doe~ not solve even the all nearest neighbors problem, which wouh:J 

seem to be a simple extension. If we try to set up the analogous recursion for all 

nearest neighbors, we find that the natural method of splitting the problem does not 

Induce sparsity, and there Is no' apparent way of accomplishing the merge step In 

less than quadratic time.· To get around this difficulty, let us abandon dlvlde-and­

conquer temporarily' and study some geometry. 

A valuable heuristic for designing geometric algorithms Is to look at the defhllng 

loci and try to organize them Into a data structure. In the case of the closest-point 

problems we want to solve 

Problem P6.14: (Loci of Proximity) Given N points In the plane, for each point 

PI' what Is the locus of points (x, y) In the plane that are closer to PI than to 

any other point? 

If we knew these loci, we would be able to solve the nearest neighbor problem 

directly, since determining the closest point to (x, y) Is the same as asking which 

locus'lt lies In. 

, 
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:',;' Given two points, PI and PJ' the set of points closer to PI than to PJ Is just the 

,I';,: half-plane containing PI that is defined by the perpendicular bisector of PI and Pj' 

:' Let u~denote this half-plane by H(PI,PJ)' The locus of points closer to PI than to 

any other point, which we denote by V(I), Is then Intersection of such half-planes, a 
problem we studied In Chapter 5. Thus V(I) Is a convex polygonal region having no 

more than N-1 sides, defined by 

V{I) = n H(PI' P j) • 
j~1 

V(i) Is called the Voro~ol polygon associated with PI' (See Figure 6.18.) 17 • 

• • • • • 
• G • • 

• • • • • 
• • 

Figure 6.18: A Voronol Polygon. 

(5.3) 

These N polygons partition the plane Into a convex net which we shall refer to as 

the Voronol diagram. See Figure 6.19.) . The vertices of the diagram are 

Vo~onol points, and Its line segments are Voronol edges. 

Each of the original N points belongs to a unique Voronol polygon. Thu$ If 

17These polygons were first studied seriously by the emigre Russian mathematician 

G. Voronol,. who used them In 6 treatise on qUBdratlc forms [Voronol (08)]. They are 

also called Dirichlet regions [Loeb (76)], mosaics (Matern (60)], or Thiessen 

polygons [Hodder (76)]. Dan Hoey has suggested the more des~rlptlve (and 

Impartial) term "proximal polygon". 
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Flgure,6.19: The Voronol Diagram. 

(x,y) E V(I), then PI Is a nearest neighbor of (x, y). The Voronol diagram contains, In 

a powerful sense, all of the proximity Informistlon defined by the given set. 

6.3.1, A Catalog of Voronoi Properties 

In this section we list B number of important properties of the Voronol diagram. 

We assume throughout that no four points 011 the original set are coclrcular. If this 

Is not true, Inconsequential but lengthy dett"'s must be added to the proofs and . 
statements of the theorems. Eventually, we will want to use the Voronol diagram to 

solve the closest-point problems. This will only be successful !f It can be 

constructed rapidly. A trivial lower bound on the time necessary to do this Is the 

. total number of Voronol points and edges that are present. At first glance the 

diagram ,seems very complicated, but the number of elements It contains Is small. 

-------------
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Every edge of the Voronol diagram Is a segment of the perpendicular bisector of a 

pair of points and Is thus common to ,exactly two polygons. 

Definition 6.1: The straight-line dual of a Voronoi'dlagram on a set S of N points 

. Is a graph whose N vertices correspond to the points of S, In which there Is an 

edge from s to t Iff the Voronol polygons V(s) and Vet) share an edge. (See 
figure 6.20). 

As an abstract graph, the straight-line dual Is the geometric dual of the Voronol 

graph [Ore (62)]. 

--- ---- .... -----... ... 
...... ...... 

figure 6.20: The Straight-line Dual of the Voronol Diagram. 

The dual may appear to be unusual at first glance, since an edge and Its dual may 

not even Intersect (look at the edges joining consecutive vertices of the convex 

hull In figure 6.20). It Importance Is due largely to the following theorem of 

Closest-Point Problems 174 

Every edge of the Voronol diagram Is a segment of the perpendicular bisector of a 

pair of points and Is thus common to ,exactly two polygons. 

Definition 6.1: The straight-line dual of a Voronoi'dlagram on a set S of N points 

. Is a graph whose N vertices correspond to the points of S, In which there Is an 

edge from s to t Iff the Voronol polygons V(s) and Vet) share an edge. (See 
figure 6.20). 

As an abstract graph, the straight-line dual Is the geometric dual of the Voronol 

graph [Ore (62)]. 

--- ---- .... -----... ... 
...... ...... 

figure 6.20: The Straight-line Dual of the Voronol Diagram. 

The dual may appear to be unusual at first glance, since an edge and Its dual may 

not even Intersect (look at the edges joining consecutive vertices of the convex 

hull In figure 6.20). It Importance Is due largely to the following theorem of 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

.~ ~ .-.. -----.--.-.-~----

Closest-Point Problems 175 

Delaunay: 18 

Theorem 6.9: The straight-line dual of the Voronol dlagr~m Is a trlangulatlon.19 

This means that the Voronol diagram can be used to solve the Triangulation problem, 

P6.8, but the theorem has a mu(::h more significant co~sequence: 

Theorem 6.10: A Voronol diagram on N points has at most 2N-4 vertices and 3N-6 

edges. 

Proof: Each edge In the straight-line dual corresponds to a unique Voronol edge. 

Being a triangulation, the dual Is a planar graph on N points, and thus has at 

most 3N-6 edges [Harary (71 )]. Therefore, the number of Voronol edges Is at 

most aN-6. To compute the number of Voronol vertices, ws cbserve that there 

Is one such vertex for each face of the dual. The number of faces of any 

planar graph Is given by Euler's relation: F = E - V + 2. For e given value of V, F 

will be maximized when E ·Is maximized. Applying this to the dual graph, V = N 

and E :S 3N - 6, whence F ~ 2N -4. 

Since It Is the dual of 8 planar graph, which we shall call the De/aunay graph, the 

Voronol diagram Is Itself a planar graph [Harary (71)], and can be stored In only 

linear space. This makes possible an o;'lxtremely compact representation of the 

proximity data. Any given Voronol polygon may have as many as N-1 edges, but 

there are at most aN-6 edges overall, each of which Is shared by exactly two 

polygons. This means that the average number of edges In a Voronol polygon does 

not exceed six. 

18[Delaunay (34)]. A readable account appears In [Rogers (64)]. 

191n this simple for~, the theorem falls when certain subsets of four or more points 

are coclrcular. In this case, however, completing the triangulation will be 

straightforward. (Recall that If the points are chosen from an absolutely continuous 

probability distribution, the probability of a coclrcularlty Is zero. A statistician would 

, .flnd It amusing that we are so concerned with events of probability zero.) 
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. We will refer to the faces of the Delaunay grf!ph as De/aunay triangles and, since 

the degree of 8 vertex t of the Voronol diagram Is equal to the number of edges of 

the face to which t corresponds In the dual, each vertex of the Voronol diagram 

(except the verte~ et Infinity) Is of degree three. 

Theorem 6.11: Every nearest neighbor of PI defines an edge of the Voronoi 

polygon V(I). 

Proof: Let P J be 8 nearest neighbor of PI' and let M be., the midpoint of pr:.: i' M 

cannot be Interior to VO) since It Is equidistant from both PI and P j' SUt~~~ :Jse 

that M does not lie on the boundary of V(I). Then the Une segment PiM 

Intel'sects some edge of V(I), say the bisector of PI and Pk' at N. (Figure. 

6.21.) Then PIN < PIM, so 

and we would have Pk closer to PI than P J' which Is Impossible. 

u- Bisector of p ~.i) •• 
, J 

Figure 6.21: Every Nearest Neighbor of PI Defines an Edge of V(I). 

The clrcumcenter of a triangle Is the center of the (unique) circle that passes 
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through the vertices of the triangle. The clrcumcenter Is equidistant from these 

'!ertlces. Since a Voronol vertex Is of degree three, It Is equidistant from three of 

the original points and Is In fact the clrcumcenter of a Delaunay triangle. 

Theorem 6.12: The circumcircle ~f a Delaunay triangle contains no other points of 

the set.20 

Proof: (See Figure 6.22.) ,Consider the triangle abc whose clrcumcenter -Is x. (Note that x Is not necessarily Interior to abc.) If the circumcircle C 

contains some other point d, then' x Is closer to d than to any of a, b, or 0, In 

which case, by the definition of a Voronol polygon, It must lie ,In V(d) and not In 

. an'y of Veal, V(b). or Vec). by the definition of a Voronol polygon. This Is a 

contradiction. since x Is common to all of Veal, V(b), and V(c). 

Theorem 6.13: The polygon V(i) Is unbounded Iff PI lies on the boundary of the 

convex hull. 

Proof: This follows from the proof of the more general Theorem 6.26 and 

the .fact" that the only' singleton exposed subsets (Cf. Definition 6.2 

are hull vertices. Since only unbounded polygons can have rays as edges, the 

rays of the Voronol diagram correspond to pairs of adjacent vertices on the 

convex hull. 

In the next section we will use these properties to construct the Voronol diagram 

quickly and employ it solve the closest-point problems. Even though we will be 

uS,!ng !t for other purposes, It Is well to note that construcllon of Voronol diagrams Is 

an end I~ Itself In a number of fields. In archaeology, Voronol polygons are used to 

map the spread of the use of tools In ancient, cultures and for studying the 

liifluence of r,lval centers of commerce [Hodder (76)]. In eCQlogy, the survival of an 

organism depends on the number of neighbors It must compete with for food and 

20Th Is phenomenon was first observed by Dan Hoey. 
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Figure 6.22: The Circumcircle of a Delaunay Triangle Is Empty. 
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, light, and the Voronol diagram of forest species and territorial animals Is used to 

Investigate the effect of overcrowding [Plelou '(77)]. The 'structure of a molecule Is 

determined by the combined Influence of electrical and short-range forces, which 

have been probed by constructing elaborate Voronol diagrams [Brostow (77)]. 

6.4. Constructing the Voronoi Diagram 

We will now see that even though the Voronol diagram appears to be a complex 

object, It Is eminently suited to attack by dlvlde-and-conquer. The method we 

employ depends for Its success on various structural properties of the diagram that 

enables us to merge subproblems In linear time. 
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6.4. Constructing the Voronoi Diagram 

We will now see that even though the Voronol diagram appears to be a complex 

object, It Is eminently suited to attack by dlvlde-and-conquer. The method we 

employ depends for Its success on various structural properties of the diagram that 

enables us to merge subproblems In linear time. 
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By "finding" the Voronol diagram of a set of points, we I mean obtaining all of' the 

following data: 

1. The coordinates of the Voronol points. 

2. The Voronol edges (a pair of Voronol points) Incl,dent with each Voronol point. 

3. The two original points that determine each Voronol' edge. 

4. A list of the edges of each polygon In cyclic order. -. 

Since each Voronol polygon Is an Intersection of N-1 half-planes, It can be 

constructed In O(N log N) time by Algorithm A5.2. (This Is optimal for producing any 

single polygon.) There are ~ polygons to be formed, so the entire construction can 

be accomplished In 0(N210g N) time. On the other hand, 

Theorem 6.14: Constructing a Voronol diagram on N points In the plane must take 

.(l(N log N) operations, In the worst case. 

Proof: We will see Ister that the closest-point problems are all linear-time 

reducible to VORONOI DIAGRAM so many proofs of this theorem are' possible. 

,We content ourselves here with a very simple one. The Voronol diagram of a 

set of points In one dimension consists of N-1 bisectors separating adjacent 

points on the line. From these consecutive pairs, we can obtain a sorted list of 

the points In linear time by Algorithm A6.1. 

We now show that this lower bound can be achieved, which means that constructing 

the entire diagram Is no more difficult than finding a single !one of Its polygons! 

Let us suppose that we have divided a set S, containing N points, Into two 

subsets Land R by a vertical median line M. This means that every point In L lies to 

the left of every point In R, and every point of R lies to the right of every point In 

l,21. let us now find the Voronol diagrams Vel) and VCR) of each subs at 

21Unless, of co,:,rse, two or more points lie on the median line, In which case we 

aSSign the upper half to set l and the others to set R. 

-_._-----
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. :; recursively. If these can be merged in linear time to form the Voronol diagram V(S) 

1:;:;\ of the entire set, we will have an O(N log N) algorithm. But what reason Is there to 

believe that Vel) and VCR) bear any relation to V(S)? 

Consider the locus P of points that are simultaneously closest to a point of Land 

a point of R. This Is Just the set of edges of V(S) that are shared between 

polygons V(I) and VOl, with PI E' Land p j E R. We will now show that the locus P Is a 

polygonal Une. 

Lemma 6.1: Every horizontal lin'": Intersects P In at least one point. -. 

Proof: Consider a horizontal line H and any pair of points u ELand v E R not both 

on the median line M. Let the perpendicular bisector of uv intersect H at z. 

This Interse!Jtlon exists because uv cannot be a vertical line. Denote by 
lEFT(H,u,v) the set of all points of H that lie to the left of z and by RIGHT(H,u,v) 

the points that lie to the right. Now examine the Intersection LL of lEFT(H,u,v) 

over all pairs u,v that satisfy the conditions above. ~ach element of LEFT Is a 

negative half-line, so the Int~:·sectlon Is n,on~empty.lIkewlse RR, the 

Intersection of the RIGHT(H,u,v)Is nonempty. SlnceH Is now known to contain· 

some points that are closest to some point of L and some that are closest to a . 
point -of R, by continuity It must also contain at least one point that Is 

equldlst~nt from Land R and which thus belongs to P. 

Theorem 6.15: The locus P Intersects each h,orlzontal line In at most one point. 

That Is, P is monotonic In y. 

Proof: P consists only of segments and rays since It is composed of lines of the 

Voronol diagram. We show that In traversing P from +00 the y-coordlnate never 

Increases. For assume the contrary, and let w be the first point at which P 

turns upward. (See Figure 6.23.) Edge uw Is the bisector of a and b, vw 
Is the bisector of band c. Since by construction P separates Land R, we have 

that a and c are In R, and b Is In l, or a and c are In Land b In In R. In either 

case we have 8 contradiction. which Is a 

'. :, 
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Figure 6.23: Proof That P Is Monotonic. 

181 

R 

We now know that P Is a monotonic polygonal line, so It Is meaningful to speak of 

a point being to the "right" or "left" of P. P has the property that any point to Its 

left Is closest to some point of l and any point to the right Is closest to some point 

of R. (See Figure 6.24.) 

C"'slder superimposing the Voronol diagrams Vel) and VCR). (V(L) and VCR) are 

shown separately In Figures 6.25 and 6.26, and are superimposed In 

Figure 6.27.) 

. These --segments -of -V(R)- -that :lIe --to. the Jeft- of -Pplay-no -I'ole.-In -discriminating 

proximity between points of L since they pertain only to R; and are thus absent from 

the final diagram V(S). likewise, those segments of Vel) that I:e to the right of P 

are also absent from V(S). Given, P, the merge step Is completed by removing these 

sets of fldges and "stitching" P Into the remnants of Vel) and VCR). Here Is a rough 

sketch of the emerging algorithm: 

1. Divide S Into two subsets Land R by median x-coordinate. This can be done 

In O(N) time. 

2. Find Vel) and VCR) recursively. Time: 2T(N/2). 
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R 

3. Construct P, the locus simultaneously closest to a point In L and a point In R. 

4. Discard all segments of VCR) that lie to the left of P, and all segments of Vel) 

thet lie to the right of P. The result Is V(S), the Voronol dlagr&m of the entire 

set. 

The success of this procedure depends on how rapidly we are able to find the 

dividing line P. We will use the monotonlclty property of P to enable us to scan Vel) 

and VCR) downward, without backtracking. Since Vel) and VCR) each contain only 

O(N) edges, we will be able to find P In linear time. 
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6.4.1 .. Construction of the Dividing Line 

"stepplng down by zigzag paths ••• " 

- Tennyson 

"To right or left eternal swervln / They zig-zag 

on." 

- Robert Burns. To J. S. 

V(R) 

The first step In the construction of P Is to find Its Infinite rays. Since rays of 
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the VoronrJI diagram correspond to pairs of adjacent hull vertices, we must find the 

two edges of Hull(l U R) that are not present In either Huli(L) or Hull(R). 

Theorem 6.16: Given the Voronol diagram on N points In the plane, their convex 

hull can be found In linear time. 

Proof: Examine the Voronol edges until a ray r Is found. let us say that the 

polygon to the left of r (in the directed sense) Is V(i). Then PI Is a hull vertex. 

Scan the edges of V(i) until another ray Is found. This will give another hull 

" point p J' and we now scan V(j), etc., until we return to V(I). An edge Is 

examined only when one of the polygons containing It Is scanned. Since each ' 

edge occurs In exactly two polygons, no edge Is examined more than twice, 

and linear time suffices. 

To find the Infinite rays of P we use Vel) and VCR) to obtain HuU(l) and Hull(R) In 

linear time, then the hull of the union can be found using Algorithm A3.3. (Figure 

6.28.) The rays are then the perperdlcular bisectors of the segments 

joining Hull(L) and Hull(R). 

It will now be useful to refer to the example In Figure 6.29. The upper ray 

of p, Is the bisector of points 7 and 14. Imagine a point z on the ray, moving down 

from Infinity. Initially z lies In polygor,s V(7) and V(14). It will continue to do so until 

It cr?sses an edge of one of these polygons, when It will follow a zigzag course In e 

different direction. In this case, z encounters an edge of V(14) before It hits any 

edge of V( 7). This means that z is now closer to point 11 than It Is to point 14; so 

It ~ust move off along the 7-11 bisector. It c~ntinues until the 6-7 edge of V(7) Is 

reached, and moves off along the 6-11 bisector. Eventually It hits the 10-11 edge 

of V(11) and proceeds via the 6-10 bisector. This Jagged walk continues until the 

bottom ray of P Is reached. 

It Is straightforward now to show that P can be found In linear time, and we make 

use of the property that It always moves downward. The moving point z always lies 

In two Voronol polygons, one In the left set and one In the right set. (This Is because 

both Voronol diagrams partition the plane.) To find the next point at which P 

changes direction, It Is only necessary to examine these two polygons. If we were 
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: ~ The Infinite rays of Pare 
\~ the perpendicular bisectors 
r of the segments joining 

Hull(L) and Hull(R). 

Hull(L) 

• 
HulleR) 

, 
A , , 

Figure 6.28: Finding the Infinite 'Rays of P. 

able to argue that no Voronol edge Is scanned more than twice, It would follow 

Immediately that only O(N) time Is required. If we were to scan all of V(I) e,ach time, 

far too many edge examlnatlo~s would be performed; In fact, this proced~re could 

take as much as quadratic time. 

The solution Is to organize the polygon scanning more sensibly, using the fact that 

P Is monotonlc.22 Say that P begins In polygons V(I) and V(J), with I £ land J £ R. 

We;:wlll continually maintain two' polnters;-,, and" to the edges el and er that P 

would Intersect In Vel) and VCR) If It continued In Its present direction. We may find 

the Initial values of , and, In a single scan of V(I) and V(j). let ez be the edge that 

P Intersects first. If ez = el' p will bend toward the right as It passes through the 

edge. To find th~ next edge that P Intersects, we move , counterclockwise In the 

new polygon In Vel) shared by ez and , clockwise In the current polygon In V(R), 

starting from the last examined edge. likewise, If ez = er, we move the pointer, 

22Materlal provided by D. T. lee [lee (76a)] helped considerably to clarify this 

paragraph. 
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Figure 6.29: A Zigzag Walk to Construct P. 

clockwise through the edges of the polygon In VCR) that shares ezand , 

counterclockwise In Its polygon, beginning from the last edge examined. Note that 

the polygons In Vel) are always scanned counterclockwise and those In VCR) 
clockwise. 

The scan In any polygon always proceeds from the last edge examined. so no 

backtracking Is ever necessary. At each step In this process, we always do one of 
the following: 

1. Examine a new edge of Vel) and Increment I (If It does not Intersect P). 
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2. Examine a new edge of V(R) and Increment r (If It does not Intersect Pl. 

3. Create a new Voronol point (where P Intersects an edge). 

Since there are at most 3N-6 edges In V(l) and V(R) together and at most N 

vertices In P '0 the entire construction of P takes only linear time. A complete 

Implementation and formal proof of this procedure appears In [lee (76a)]. Such a 

proof can bOe given only for a specific data structure. 

Recall that to form the final Voronol diagram we must discard flll edges of- V{l) 

that lie to the right of P and all edges of V(R) that lie to'1t1e left. The edges that 

are Inter~ected by P form cutsets In both V(l) and V(R) that partition these graphs 

Into two components. The components can be determined by breadth-first traversal 

In time that IS proportional to the number of edges Involved. It follows 0 that the 

process of merging V(l) and V(R) to form V(S) takes only linear time. 

Theorem 6.17: The Voronol diagram of a set of N points In the plane can be 

constructed In O(N log N) time, and this Is optimal. 

Proof: For a detailed specification of a data structure, algorithm, and proof of 

. correctness,-the reader~'s referred to the Master's-1hesisof -D. -T. Lee [lee 

(7tia)]. The time required _ by the recursive merge procedure Is described by 

the recurrence relation T(N) = 2T(N/2) + O(N) = O(N log N). Optimality was 

shown In Theorem 6.14. 
r 

.6.5. Voronol Appllc:ations 

I 
We now show how the Voronol diagram can be used to solve all of the closest-

polflt problems efficiently. 

Theorem 6.78: The ALL NEAREST NEIGHBORS problem ~8n be solved In O(N log N) 

time, and this Is optimal. 
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Figure 6.30: The Nearest-Neighbor Rel.atlon. 

Proof: By Theorem 6.11, every nearest neighbor ~f a p.~Int P, defines an edge of 

V(t). To find a nearest neighbor of PI' It Is only necessary to scan each edge of 
V(I). Slnc'e every edge belongs to two Voronol polygons, no edge will be 

examined more than twice. Thus, gl~~n the Voronol diagram, all. nearest 

neighbors can .be ·found··in linear time •. Optimality·was shown In Section ·6.1.2. 

In nearest-neighbor searching, we are given a set of points, and we wish to 

preprocess them so that given a new point z, Its nearest neighbor can be found 

quickly. However, finding t.he nearest neighbor of z Is equivalent to finding the 

Voronol polygon In which It lies. The preprocessing just consists of creating the 

Voronol diagram! Since the diagram Is a planar straight line graph, It can be 

searched using any of the methods given In Section 4.4.1. 
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Theorem 6.19: [Ct. Theorem 4.10] Nearest-neighbor search can be performed 

In O(log N) time, using 0(N2) storage and 0(N2) preprocessing time. 

Theorem 6.20: [Ct. Theorem 4.11] Nearest-neighbor search can be performed 

In 0(log2N) time, using O(N) storage and O(N log N) preprocessing time. 

Theorem 6.21: [Cf. Theorem 4.12] Nearest-neighbor search can be performed 

In O(log N) time, IJslng O(N) storage and O(N log N) preprocessing time. 

J 

To show how to construct a Euclidean minimum spanning tree, we review Prim's 

algorithm: 

Algorithm A6.4: Minimum Spanning Tree [Prim (57)1 

1. B,eg in .... i th a II po i nis un I abe I ed except some 
arbitrary point P. 

2. WHILE (Some point is unlabeled) 00 BEGIN 

END 

Find the shortest e~ge joining a labeled point P 
.... ith an unlabeled point Q; 
Add edge (Pta) to the spanning tree; 
Label Q; 

Tlss for the shortest edge may be resolved arbitrarily. 

We now use the correctness of Prim's algorithm (not the algorithm Itself) to ,show 

that the minimum spanning tree on a set of points In the plane Is a subgraph of the 

Varonol dual. 

Theorem 6.22: Every Euciidean minimum spanning tree of a set of points Is a 

subgraph of the Voronol dual. 
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Proof: We need only show that each edge added In Step 2 of Algorithm AB.4 Is 

an edge of the dual. Consider any subset U of points of S. It will suffice to 

prove that a shortest segment joining a point u of U and a point v of S-U Is a 

dual edge. It Is clear that uv Intersects at least one edge of V(S),· since It 

begins In V(u) and terminates In V(v). However, uv cannot Intersect more than 

one edge of V(S) (except possibly at a Voronol vertex) because In so doing It 

would enter some other polygon Vet) and we would then have either tu < uv or 

tv < uv, which contradicts the hypothesis that uv Is shortest. Thus V(u) and 

V(v) are adjacent polygons, so uv Is a dual edge. 

, 
Given the Voronol diagram, the straight-line dual can be constructed easily In OeN) 

time by merely joining the pair of points that define each Voronol edge. Since the 

MST Is a sub graph of the dual, It Is a,so a minimum spanning tree of the dual. The 

dual, however, Is a plali3r graph for which a minimum spanning tree can be found In 

O(N) time [Cheriton (76)], 80 we have 

Theorem 6.23: A minimum .spannlng tree on N points In· the plane can be found In 

O(N log N) time, and this Is optimal. 

Let us say that a figure 15 empty with respect to a point-set S If It contains no 

points o~ S. Since -we have already seen that the Voronol dual Is a triangulation 
(see Figure 6.20), It follows that . 

Theorem 6.24: A triangulation with the property that the circumcircle of every 

triangle Is empty can be found In O(N log N) time, and this Is optimal for any 

triangulation. 

Theorem 6.25: The largest empty circle problem can be solved In O(N log N) time. 

Proof: Given N points In the plane, consider the function f(x,y), the distance from 

(x,y) to the nearest given point. Within a Voronol polygon, f Is convex so It 

attains a maximum at an extreme point of the polygon. For each Voronol point 
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Figure 6.31: The MST Is a sub graph of the Voronol Dual. 
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... 

P, the value of f Is just the distance from the point to the "owner" of any of 

the three .polygons that meet at P. Since we have constrained the center of 

the largest empty circle to lie within the convex hull of the set, this center 

must occur either at a Voronol point or at an Intersection of a Voronol edge and 

ahultedge. (If-(x~y).ls an Interior point of aVoronol·polygon, the·convexlty of f 

Implies- that .f(x,y) can-be' Increased by' moving In one of the two directions 

determined by any line through (x,y).) All of the Voronol points can be found In 

O(N log N) time, and each one can be checked for hull Inclusion In O(log N) time, 

so It' only remains to show that the hull intersections can be found quickly. 

Consider any edge E of the hull. Corresponding to E Is a ray r which coincides 

with the perpendicular bl.sector of E (Theorem 6.13). Each such r either 

Intersects E or Intersects· both Varonol edges adjacent to E, depending on 

whether or not the clrcumcenter associated with r lies Inside or outsld~ of Its 

Delaunay triangle. In examining each ray and Its two neighbors, no edge will be 

scanned more than twice, so O(N) time suffices. 
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Figure 6.32: The Voronol Diagram locates a largest empty circle. 
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It Is remarkable that such a diverse collection of problems can be solved by a 

single unifying structure. 

6.6. Generalization of the Voronol Diagram 

The Voronol diagram, while very powerful, has no means of dealing with farthest 

points, k-closest points, clustering, and other distance relationships. As such, It Is 

unable to deal with the remainder of the problems we have posed. The difficulty Is 
that we have been working with the Voronol polygon associated with a single point 

but such a rEstriction Is not necessary and It will be useful to speak of the . 
II 

generalized Voronol polygon V (T) of a subset T of points, defined by 

-- ---------------------- ---
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~' 

V (T) = {x: VYET V z~5-T d(x,y) < d(x,z)} (6.4) 

That Is, V~(T) Is the locus of points p such that all points of T are nearer to p than Is 

any point not In T. An equivalent definition Is 

~ 
V (T) = n H(I,j) , lET, j£5-T , (6.5) , 

where H(I,j) Is the half plane containing I that Is defined by the perpendicular 

bisector of I and J. This shows that a generalized Voronol polygon Is stili convex. It 
lit 

may, of course, happen that V (T) is empty. In figurEf 6.29, for example, there Is !!5! 
point with the property that Its two nearest nelghbor~ ar~5 and 13. A set S with N 

points has 2N subsets. How many of these cao po~sess non-empty Vorono" 

polygons? If the number Is not large, there will be some hope of performing /(­

nearest-neighbor searching without excessive stora~e. 

let us define the Voronol diagram of order 1<, denoted Vk(S) as the collection of 

all: generalized Voronol polygons of k-subsets of S~ so 

III 
Vk(S) = U { V (T) }, T C 5.1TI = k ., 

In this notation, the ordinary Voronol diagram Is just V1(5). It Is proper to speak 9~ 

Vk(S} as a "diagram" because Its polygo'ns partition the plane (by the' s'ame . 

argument as In [Rogers (64)] .for the first-order Voronol diagram). Given Vk(S), the 

k points close~t to a new given point z can be determined by finding the polygon In 

Which z lies. Figure 6.33 shows a Voronol diagram of order two, the set o~ 

loci of nearest pairs of points. 

,In erder to obtain bounds on the time and space required to perform k-nearest­

neighbor searching, we must compute the number of edges In the order k diagram. 

Definition 6.2: A nonempty subset T C 5 Is exposed Iff T and S - Tare 

separable, that Is, they lie In complementary half-planes. 

Theorem 6.26: The number of unbounded Voronol polygons (of all orders) of a set 

of N points Is N(N-1). 
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(6,8) 
Some Voronoi polygons 
of order two are empty. 
For example, there is no' 
(5,7) polygon. 

• 8 
For I set of N points there 

1 , are N(N-I )~2 possible 
polygons; ere

h 
N=8 'but , 

only 15 out of t e 28 ' 
(7,8) polygons Ire non-empty. , 

(1,3) 

(3,7) 

Figure 6.33: A Voronol Diagram of Order Two. 

Proof: We fIrst show that VCT) Is unbounded Iff T Is exposed, and then count the 

number of exposed subsets. (This generalizes the Idea of the ordinary Voronol 

property that unbounded polygons correspond to hull vertices.) If T Is exposed, 
I ' 

then T and 5 -T lie In disJoint half-planes which we 't'ay take (by rotating and 

translating the points, If necessary) to be' the tialf-pl&nes x)O and rlO, 

respectively. Points on the x-axis with sufficiently large coordinates era 
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closer to some point of T than to any point of SooT, so VeT) must be unbounded. 

Conversely, if veT) is unbounded, we can force It to contain all of the positive 

x-axis (again by rotation and translation) since It mU$t contain a ray. This 

Implies that no vertex of SooT can lie to the right of any vertex of T (as was 

shown In Section 6.4), so the sets lie In complement~ry half-planes. 

We now exhibit an Isomorphism between complementary pairs of exposed 

subsets and unordered pairs of vertices of S. Given a complementary pair of 

exposed subsets P and Q, they can be separated by some line L (by definition). 

Rotate and translate L counterclockwise until It imeets some point p oj P and q 

of Q. Since no three points are collinear,. p and q are unique. We associate the 

pair {P,Q} with the vertex pair {p,q}. (See figure 6.34.) Conversely, 

given a pair of vertices {p,q}, we can recover the associated subset pair 

uniquely: Let p lie above or to the right of'q 'and let L be the line passing 

through p and q. Define P to be the subset conslstln~ of p and the set of 

points lying to the left of l. Q is the complement of P. Since two exposed 

subsets are associated with every unodered pair of vertices of S, so there 
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Theorem 6.27: 

The number of bounded Voronol polygons (of all orders) of a set of N points Is 

(Na1) • 

Proof: We first show that each triple of points of S determines two generalized 

Voronol vertices. Given points a,b, and e, let x be their circum center and let R 

be the set of points lying strictly Inside their circumcircle. (R may be empty.) 

Define k = IRI, the number of points in the circle centered at x. Consider the 

order k+1 Voronol diagram. The point x Is common to the polygons VCR U a), 
VCR U b), and VCR U e). In the order k+2 diagram, x's common to VCR U a U b), 

VCR U b U c), and VCR U c U a). Since no four points are coclrcular, x cannot be 

8 vertex of any diagram of order greater than k+2. Thus there are two Voronol 

. vertices for every triple of points. 

Except for degeneracies, which can only reduce the number of dlstln~t 

polygons, each Voronol vertex has degree three (excluding the vertex at 

Infinity). If a planar graph has F faces, V vertices of degree three, and one 

vertex of degree 0, then 2F = 2 + V + 0 (by Euler's Formula). Letting Fk 

denote the number of non-emptyVoronol polygons In the order k diagram, Vk the 

number of Voronol vertices, and Ok the number of unbounded regions, then 

summing over k from 1 to N-1 we have 

But, by Theorem 6.13, 

so we obtain 

L Ok = 2 (~) and 
k 

L Fk = N-1 +(~)+(~) :: N(N-1) + (Na1) 
k 

Since the number of unbounded polygons Is N(N-1), the result follows. 
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Thus, the total number of polygons In all of the Voronol diagrams combined Is O(N3), 

not 2N. 

Theorem.6.28: The number of regions In Vk(S) Is O(k(N-k». 23 

Because each vertex Is of degree three, this means that the· number of Voronol 

~dges Is also O(k(N-k». The union of the Voronol polygons of all orders Is precisely 

the set o,f perpendicular bisectors of pairs of points of S. 

By starting with tlie order one diagram and successively updating It through 

. orders 2,3, ••• ,k, Lee has been able to prove [lee (76a)] ,. 

Theorem 6.29: The order k Voronol diagram on a set of. N .polnts can be obtaln.~d . 
: In O(k2N log N) time, using O(k2(N-k» storage. . 

The next theorem follows from an earlier result on planar graph searching: 

Theorem 6.30: [Cf. Theorem 4.12] The k nearest out of N neighbors of a point. 

can be found in O(max(k,log kN) search time and O(k(N-k» storage, after 

O(k2N log .N) preprocessing. 

Note that the search always requires at least'O(k) time since k objects are- being .­

retrieved. 

The generalized Voronol diagram unifies closest- and farthest-point problems 

'slnce the locus of points whose ~~ nearest neighbors are the set T Is also the locus 

of points whose N-k farthest neighbors are the set S - T. Thus, the order k closest­

point diagram Is exactly the order N-k farthest-point diagram. let us examine one 

of these more closely, the order N-1 closest-point diagram, or the order 1 rarthest­

point diagram (Figure 6.35.) 

Theorem 6.31: Given a set S of N points In the piane, all farthest points of S from 

an arbitrary point z of the plane lie on Hull(S). 

23Thls result was ~Aated without proof In [Shamos (75e». A proof may be found In' 
" [Lee (760)]. 
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Figure 6.35: The Farthest-Point Voronol Diagram. 

Proof: let p be some point of S that Is farthest from z. Consider L, the straight 

.lIne that Is perpendicular to pz at p. Every point on the opposite side of L from 

z Is far~her from z than Is p. Thus no point of S can lie In the far half-plane 

determined by L, or p would not be farthest from z. it follows that L is. a 

supporting line of S and thus p lies on Hull(S). 
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Associated with each point PI Is a convex polygonal region VN-1 (I) such that PI Is 

the farthest neighbor of every point In the region. By Theorem 6.31, this diagram Is 

determined only by points on the convex hull and these are an exposed, su thGre 

are no' hounded regions. The farthest-point diagram can be constructed In. 

O(N log N) time by a procedure analogous to the algorithm for the closest-po.lnt 

diagram. Having found the farthest-point diagrams of the left and right halves of 

the set, the polygonal dividing line P Is exactly the same as In the closest-point 

case. This time, however, we discard all segments of VN-1 (l) that lie to the left of 

P, and those segments of VN- 1 (R) that lie to the right of P. 

Definition 6.3: IHarary (71)] A graph Is outerplanaf' If~ 't Is planar and all faces 

are adjacent to one common face. 

An outerplanar graph on N vertices has at most 2N-3 edges [Harary (71 )]. 

Theorem 6.32: Given a finite set of points S In the plane ~nd an additional point 

z, any point of S that Is farthest from z lies on the convex hull of S. 

Proof: let s be a farthest-neighbor of z and consider the perpendicular P to line 

sz at s. Any point that lies on the opposite side of P from z Is farther from z 

than s Is, so no such points can exist and P Is a line of support of S (Definition 

3.6). But then 5 lies on Hun(S). 

It follows from Theorem 6.32 that a farthest-point Voronol diagram possesses no 

closed regions because the only regions correspond to hull vertices and thus must 

be unbounded by the proof of Theorem 6.26. As a ?onsequence, the straight-line 

dual of the farthest-point diagram Is outerplanar and thus has at most 2N-3 edges. 

The farthest-point diagram provides another algorithm for set diameter. The two 

farthest points of S correspond to some edge of the diagram, and we can find them 

In only O(N) add!tlonal time. 

Theorem 6.33: The smallest circle encioslng a set of N points In the plane can be 

found In O(N log N) ~Ime. 
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Figure a.36: The Dual of the Farthest-Point Diagram. 

Proof: We know from Section 6.1.7 that the required circle Is determined either 

by the diameter of the set or by three of Its points. We can find the diameter 

I~ O(N log N) time from the farthest-point diagram and determine whether It. 

encloses the set. If so, we are done. Otherwise, we claim that the center C of 

... ' 
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the circle will lie at a vertex of the farthest-point diagram. Let the circle pass 

through points P, a, and R .. These must be farthest neighbors of C, since If 
I there were a mO,re distant point 0 from C, th~ circle would not enclose It. 

Therefore, C Is a common point of the polygons VN-1 (P), VN-1 (a), and VN-1 (R) 

and must be a vertex of the diagram. The diagram contains only O(N) points 

and the clrcumradlus associated with each vertex Is the distance from It to any 

of the three points of whose polygons It Is the Intersection. The maximum over 
all vertices of this distance Is the radius of the circle. 

, , 
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The center of the smallest 
enclosing circle is I vertex 
of the farthest-point 
Voronoi diagram. 

Figure 6.37: The Smallest Enclosing Circle and the Farthest-Point Diagram •. 
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6.6.1. Voronol Extensions 

It Is natural to try to extend the Varonol Idea to solve closest-point problems In 

higher dimensions. Theoretically, there Is no dlfflcu:lty: Voronol polytopes exist In 

every dimension, are convex, and partition the entire space. Furthermore, the 

stralght-line dual Induces a simplicial partition. For exampl~, In three dimensions the 

dual partitions space Into tetrahedra. From a practical standpoint, though, these 

polyhedra are not very useful. Preparata has shown that the Voronol diagram on N 

points In a-space may have 0(N2) vertices [Preparata ()7a)]. A set which realizes 

. this bourd Is one having N = 2k points, k of which lie on the unit circle Iii the x-y 
plane and the remaining k at the locations (0,0,21), 1=1, ••• ,k, on the z:-axls. This 

Implies a trivial lower bound of n(N2) time for ar:'lY aigorllthm based on. Voronol 

polyhedra. 

lee and Wong [lee (77b)] have shown that our Voronol construction algorithm In 

the plane generalizes to the L1 and Leo metrics, again yielding O(N log N) algorithms 

. for the closest-point problems. 

~6.7. Unsolved problems 

1. Is there a simple dlvlde-and-conq\ler algorithm for diameter analogous to 

Strong's D8cC for closest-pair? 

2. Is there a fast expected-time algorithm for nearest-neighbor searching In the 

plane? In particular, can O(log log N) average search time be achieved for 

reasonable distributions? 

3. Can one find the MST for N 'polnts In the plane without forming the entire 

Voronol diagram? (D&C with a fancy merge step?) 

4. Are the edges of a minimum Euclidean matching necessarily edges of the 

Voronol dual? 

• 

- ------------
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5. How much time Is required to construct an order k Voronol diagram directly? 

6. Is a traveling salesman tour necessarily a subgraph of the Voronol dual? 

. 7. Even though the Voronol diagram In three-space may have O(N2) edges, Is It 

stili possible to find the minimum spanning tree quickly? (It seems as though 

one would have to generalize the solution to Problem 3, however.) 

8,' (Minimum spanning forest) Find a forest of least total length on N points 

such that each point Is Incident' with at least one edge. (This Is not the same 

problem as minimum matching.) 
J 

9. A triangulation of a polygon Is a decomposition of Its Interior Into disjoint 

triangles. Preparata has shown that a simple poiygon ca" be triangulated In 

O(N log N) time. n his does not follow from Theorem 6.9.) Is O(N) time 

achievable? 

10. For every set of points 'In the plane, there Is an MST on that set having 

maximum degree five. If we restrict the maximum degree to be two, the 

traveling salesman path problem results, which Is NP-complete. At what point 

does the degree-constrained MST problem become NP-complete? Degree 2, 3, 

or 4? 

11. (Maximum spanning tree) Given N points In the plane, find a spanning tree 

of greatest total length. (This Is not an Idle problem. Maximum s~!!nn!ng trees 

have been used In clustering by S. C. Johnson.) Unfortunately, the MXST Is not 

a subgraph of the duai of the farthest-point Voronol diagram. Can the MXSr be 

found tn O(N log N) time? (Any efficient Implementation of Prim's algorithm will 

find It In O(N2) tlme~) 

12. Given the vertices (In order) of a convex polygon, how quickly can the MST 

be found? D.-T. lee has shown that the two closest points of a convex 

po!ygon can be found in O(N) time. 

-----_._-------------
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6.8. Summary 
,-

This chapter unifies the whole of computational ge,ometry by combining all of the 

m~thods we have developed for searching and Intersection Into a coherent set of 

tools for solving problems based on the proximity of points ..:.- the closest-point 

problems: closest-pair, all nearest neighbors, minimum spanning tree, triangulation, 

smallest,' enclosing circle, and largest empty ,circle. We Investigate the 

computational properties of the Voronol diagram, a planar graph whose regions are­

the loci of proximity surrounding each point, and find that the structure can be 

created, manipulated, and stored efficiently, yielding O(N log N) algorithms for ~II of 

the problems. The Voronol construction Is an elementary but complex application of 

divide-and-conquer, with an involved merge step that is based on geometric 

features of the diagram. The straight-line dUl~1 of the Voronol diagram Is 8 planar 

graph that Is of special interest because it is a triangulation of the g;ven point set 

and contains the nearest-neighbors graph and minimum spanning tree as sub graphs. 

, ,A lower bound on the Voronol construction and most of the closest-point problems 

follows from reducibility with either sorting or the element uniqueness problem. 

We complete the connection between closest-point and farthest-point problems 

I by defining the Voronol diagram of order ~, which consists of r~glons that are loci of 

all, points x such that a given k points are the I( nearest neighbors of x. this 

generalization allows efficient solution of the k-nearest neighbors and smallest 

enclosing ::Irele problems. 

Close~t-Polnt Problems 207 

6.8. Summary 
,-

This chapter unifies the whole of computational ge,ometry by combining all of the 

m~thods we have developed for searching and Intersection Into a coherent set of 

tools for solving problems based on the proximity of points ..:.- the closest-point 

problems: closest-pair, all nearest neighbors, minimum spanning tree, triangulation, 

smallest,' enclosing circle, and largest empty ,circle. We Investigate the 

computational properties of the Voronol diagram, a planar graph whose regions are­

the loci of proximity surrounding each point, and find that the structure can be 

created, manipulated, and stored efficiently, yielding O(N log N) algorithms for ~II of 

the problems. The Voronol construction Is an elementary but complex application of 

divide-and-conquer, with an involved merge step that is based on geometric 

features of the diagram. The straight-line dUl~1 of the Voronol diagram Is 8 planar 

graph that Is of special interest because it is a triangulation of the g;ven point set 

and contains the nearest-neighbors graph and minimum spanning tree as sub graphs. 

, ,A lower bound on the Voronol construction and most of the closest-point problems 

follows from reducibility with either sorting or the element uniqueness problem. 

We complete the connection between closest-point and farthest-point problems 

I by defining the Voronol diagram of order ~, which consists of r~glons that are loci of 

all, points x such that a given k points are the I( nearest neighbors of x. this 

generalization allows efficient solution of the k-nearest neighbors and smallest 

enclosing ::Irele problems. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

,Epilog 

7.1. New Directions 

Chapter 7 

Epilog' 

, : 

208 

The pres""nt work, broad though It may be, has barely scratched the surface In 

several important areas, and I have lived with It long enough to see Its 

shortcomings. Here Is list of topics that seem promising for future research. 

1. Higher dimensions. This thesis might well have been titled "Computational 

Geometry In the Plane", but I did not feel compelled to be so restrictive. T~~ 

:' transltl~n from two dimensions to N Is so easy In linear algebra, why should, It' , 

not be &0 in computational geometry? In many apP"c,atlons, even three, 

dimensions would suffice. One difficulty Is that a problem may have in:a~y 
solutions In the plane, only one of which generalizes to higher dimensions. It Is 

not easy to'Tecognize-such 'a solution. For 'example'; the' only convex hun 

algorithm In two dimensions that gives rise to an efficient algorithm In three- , 

space Is our dlvlde-and-conquer algorithm based on finding the hun of the I,In'lon 

of convex polygons. EVen D&C has Its limitations In multiple dimensions. While 

Bentley and Shamos [Bentley (76b)] have shown that the two closest of N 

points can be found In O(N log N) time In any dimension k, the constant of 

proportionality grows exponentially with k. This Is because no D&C scheme has 

yet, been devised which does more than reduce the dimension by one at each 

step of the recurslo..... On~ ordinarily works with recurrences of the form 

T(N,k) = 2T(N/2,k) + T(N,k-1) + O(N) = O(N'log kN) , (7.1 ) 

For the closest-pair problem we were able to reduce this to O(N log N) only 

through a drastic reduction In the number of points remaining at each level of 

recursion. Bentley's thesis contains a number of valuable heuristics for 

decomposing higher-dimensional problems [Bentley (76a)]. 
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2. Average-case analysis. The amount of effort being devoted to analyzing the 

expected behllvlor of algorithms Is Increasing dramatically, and the general 

conclusion seems to be that many algorithms' perform much better on the 

average than worst-case analysis would suggest. Unfortunately, average­

case ana!ysls In geometry Involves fairly ponderous mathematics that will 

probably remal~ Inacce~slble to many researche~s [Santalo (76)]. 

3. 'Geometric lower bounds We often exploit th~ spe~lal structure of geometry 

problems to produce efficient programs; why can we not derive lower bounds 
, I 

from this same structure? One problem Is that many geometric questions 

Involve auxiliary functions such as square roots and trigonometric functions 

which present methods of algebraic complexity will not handle, so new 

techniques are required. Shamos and Yuval [Shamos' (76c)] have shown that 
, 

determining, the average distance between N points In the plane must take 

n(N2) operations, even If arbitrary single-valued functions are allowed In 

addition. This lower bound Is non-trivial because the problem has only 2N 

Inputs and a single output. 

4. NP-complete problems All of the effort in this thesis was concentrated on 

studying problems for which efficient algorithms could be derived. When It was 

begun, no geometric problem was known to be NP-complete, although some 

were suspected of :belng dlfflcult·(ETSP,-:Stelner-Tree). Garey, Graham and 

Johnson have made tremendous strides, proving the NP-completeness of 

optimal linear arrangement, densest hemisphere, :C;~clldean TSP, and Steiner 

tree In various metrics. Hopefully, the fact that metric properties do not make 

these problems tractable will shed some light on the structure of the class NP. 

5. Approximation algorithms One way of circumventing NP-completeness Is to 

accept an approximate answer to a problem rather than an exact one. F. K. 

Hwang has obtained bounds on how well a minimum spanning tree approximates 

a, Steiner tree ,In different metrlcs. The Chrlstofldes heuristic [Chrlstofldes 

(76)] for the traveling salesman problem discussed In Chapter 6 typifies' 

current work In approximate algorithms. The goal Is to produce a solution that 

Is always within some multiplicative factor of the true or optimal solution; the 

cost of obtaining the app;oox!met!on normally depends on how close an answer 

Is desired. Other apprOXimation schemes for the TSP have been given by [Kim 

'Epilog 209 

2. Average-case analysis. The amount of effort being devoted to analyzing the 

expected behllvlor of algorithms Is Increasing dramatically, and the general 

conclusion seems to be that many algorithms' perform much better on the 

average than worst-case analysis would suggest. Unfortunately, average­

case ana!ysls In geometry Involves fairly ponderous mathematics that will 

probably remal~ Inacce~slble to many researche~s [Santalo (76)]. 

3. 'Geometric lower bounds We often exploit th~ spe~lal structure of geometry 

problems to produce efficient programs; why can we not derive lower bounds 
, I 

from this same structure? One problem Is that many geometric questions 

Involve auxiliary functions such as square roots and trigonometric functions 

which present methods of algebraic complexity will not handle, so new 

techniques are required. Shamos and Yuval [Shamos' (76c)] have shown that 
, 

determining, the average distance between N points In the plane must take 

n(N2) operations, even If arbitrary single-valued functions are allowed In 

addition. This lower bound Is non-trivial because the problem has only 2N 

Inputs and a single output. 

4. NP-complete problems All of the effort in this thesis was concentrated on 

studying problems for which efficient algorithms could be derived. When It was 

begun, no geometric problem was known to be NP-complete, although some 

were suspected of :belng dlfflcult·(ETSP,-:Stelner-Tree). Garey, Graham and 

Johnson have made tremendous strides, proving the NP-completeness of 

optimal linear arrangement, densest hemisphere, :C;~clldean TSP, and Steiner 

tree In various metrics. Hopefully, the fact that metric properties do not make 

these problems tractable will shed some light on the structure of the class NP. 

5. Approximation algorithms One way of circumventing NP-completeness Is to 

accept an approximate answer to a problem rather than an exact one. F. K. 

Hwang has obtained bounds on how well a minimum spanning tree approximates 

a, Steiner tree ,In different metrlcs. The Chrlstofldes heuristic [Chrlstofldes 

(76)] for the traveling salesman problem discussed In Chapter 6 typifies' 

current work In approximate algorithms. The goal Is to produce a solution that 

Is always within some multiplicative factor of the true or optimal solution; the 

cost of obtaining the app;oox!met!on normally depends on how close an answer 

Is desired. Other apprOXimation schemes for the TSP have been given by [Kim 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

" . Epilog 210 

(75)] and [Rosenkrantz (74)]. Most work in approximate algorithms centers on 

Intractable problems for obvious reasons, although this need not be the case. 

If N Is large, a quadratic algorithm may be as useless as an exponential one. 

With this in mind, Shamos and Yuval [Shamos (76c)] derived a linear-time 

approximation for the mean distance between points In the plane and 

suggested a general method by which such results can be obtained. 

6~ Probabilistic algorithms Another alternative to NP-completeness Is to drop the 

requirement that an algorithm always produce the correct, or even an 

approximate, answer. Richard Karp has given an algorithm that almost always 

produces a traveling salesman tour that Is within a factor of 1 + E of optimal 

and almost always runs In O(N log N) time [Karp (76)]. (Here, "almost always" 

Is to be taken In its precise probabilistic sense.) Rabin has shown, using . 
probabilistic arguments, that If the FLOOR function Is allowed, the two closest 

of N points In the plane can be found In expected time O(N) [Rabin (76)]. This 

approach seems to be able to yield geometric algorithms of startling efficiency. 

·7. Parallel algorithms An area of study that has barely been touched Is the 

decomposition of geometric problems for par:allel,hardware. Suppose that 1024 

processors are available. How should one proceed to find a minimum spanning 

tree? Many geometry problems are Inherently local -- Prim's algorithm, for 

example, shows that one can construct· minimum spanning trees via 

neighborhood search alone, up to 8 point.' The nearest-neighbors graph Itself 

provides at least half of the edges of the MST. This locality suggests a way of 

splitting the MST problem. Divide the problem Into rectangles, find the MST 

recursively In eac.h, then perform a flxup step to produce the global solution. A 

large number of other problems have similar local features. The hidden n!'le 

problem cen be divided conveniently among as many processors as are 

available because the Intersections of objects that occur In one region do not 

affect other regions (modulo such global information as which objects obscure 

others, etc.) There seem to be many profitable avenues of research In parallel 

geometric algorithms. 
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7.2. A Final Note 

We have set out to estabiish a new discipline by asking very elementary 

questions and being satisfied with nothing short of complete answers to them. 

These "questions" are in actuality fundamental computational prob~ems that arise 

throughout geometry, and their "answers" are optimal algorithmic tools used to 

construct more complicated programs. We achieve great unification by using one 

structure or algorithm to solve many problems and by using one reducibility Idea to 

prove several lower bounds. 

The approach justifies Itself by enabling us! to derive fast algorithms for a host of 

problems that were previously treated by le'ss efficient· ad hoc methods. Will It 

work In areas other than geometry? We have applied the precepts expounded In 

this thesis to computational problems In statistics [Shamos (76a)] with extremely 

satisfying res.dts. Not only are new results produced, but they come quickly, once 

the basiC problems are Isolated. A companion volume titled Computational Statistics 

Is In preparation, and It provides even more evidence of the soundness of our 

technique. 

"Anyone who has studied geometry Is Infinitely 

qulcl<er of apprehension." 

- Plato, Republic. 

Epilog 211 

7.2. A Final Note 

We have set out to estabiish a new discipline by asking very elementary 

questions and being satisfied with nothing short of complete answers to them. 

These "questions" are in actuality fundamental computational prob~ems that arise 

throughout geometry, and their "answers" are optimal algorithmic tools used to 

construct more complicated programs. We achieve great unification by using one 

structure or algorithm to solve many problems and by using one reducibility Idea to 

prove several lower bounds. 

The approach justifies Itself by enabling us! to derive fast algorithms for a host of 

problems that were previously treated by le'ss efficient· ad hoc methods. Will It 

work In areas other than geometry? We have applied the precepts expounded In 

this thesis to computational problems In statistics [Shamos (76a)] with extremely 

satisfying res.dts. Not only are new results produced, but they come quickly, once 

the basiC problems are Isolated. A companion volume titled Computational Statistics 

Is In preparation, and It provides even more evidence of the soundness of our 

technique. 

"Anyone who has studied geometry Is Infinitely 

qulcl<er of apprehension." 

- Plato, Republic. 

shamos
FullBlank



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

The Algebraic Approach 

Appendix A 

The .. Algebralc Approach 

"Equatlons are Expressions of Arithmetical 

Computation, and properly. have no place In 

Geometry. " 

- Newton, On the Linear Construction of Equations. 

. . . 

212 

The theory of algebraic complexity is now well-developed [Borodln (73)]. Since 

analytic geometry allows us to formulate any geometric problem as an algebraic one, 

does It not stand to reason that that computational geometry should be an offshoot 

of algebraic complexity? Believing this to be true, the author set off some years 

ago to study complexity questions In analytic geometry, but was quickly stymied. 

The chief reason was that none of the problems treated In this thesis can be 

expressed In a purely algebraic way. One cannot, f~r example, write the 

coordinates of the convex hull of a set S as a simple function of the coordinates of 

the points of S. This is true because the convex hull Is described by inequalities 

among the .-varlables, .not .by. equalities •... Thus .one . has no explicit formula to 

evaluate,so such prc)blems cannot-be analyzed by--the-1:echnlques ·of 'algebralc 

comp·lexity. This Is exactly analogous to the Inability of differential calculus to deal 

With constrained optimization prooiems, In which a maximum can occur on the 

boundary of a region. The effort must then be concentrated on fJndlng that 

boundary. This Appendix Is devoted to a short description of the one success we 

did have In applying algebraic complaxlty to geometry. 

The area of a triangle Is. given classically by half the ab$oiute value of the 

determinant of the three vectors (x1' x2' x3)' (Y" Y2' Ya). and (1, 1, 1). which can 
be evaluated In a completely straightforward manner In three multiplications and 

five addltlon/subtractlons. Should we have any reason to believe that this me~hod 
Is optimal? 

The corresponding formula for the area of a general polygon Is 
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N 

2 x AREA = I ~ xl(YI+1-YI-1) I , (A.1 ) 

where subscripts are ,reduced modulo N. (N + I e I). If this form Is evaluat~d as 

, written, N multiplications and 2N-1 addition/subtractions are required, for a total of 

aN-1 arithmetic operations. We may Inquire as to whether this optimal by using In 
~ 

, Independence technique due to [Winograd (70)]. 

Equation (A.1) Is already In the form of an Inner product, one of whose factors Is 

the vector of Indeterminates xI' By Winograd's, the~re~, the num~er of 

multlpllca~ions' .requlred to evaluate (A.1) Is at least ,as' iarge ,as the rank 'of the 

'other factor over the real field extended by the indeterminates YI; This other 

factor Is just the row vector 

The elements of this vector sum to zero since each YI appe,ars exactly twice, once 

with a positive sign and once with a negative sign. Thus the rank Is at most N-1. If 
N Is even, the sum of the odd-numbered terms Is also zero, and the rank Is ~t most 

N-2. 

These bounds ,are achievable as follows: 

N odd: 

N even: 

~ 
,2xAREA = If 

These formulas are r.:, 
multiplicatively. 

N-1 
2xAREA = I f:1 (xrxN) (YI+1-YI-1) I (A.2) 

(A.3) 

.. , oi.illder the assumption that the xI and YI do not commute 
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N= 3 4 5 6 7 8 N odd N even 

Mults (old) 3 4 5 6 7 8 N N 
Mults (new) 2 2 4 4 6 6 N-1 N-2 

Adds (old) . 5 7 9 11 13 15 2N-1 2N-1 . 

Adds (new) 5 5 11 11 17 17 3N-4 3N-7 

Total (old) 8 11 14 ' 17 20 23 3N':'1 3N-1 

Total (new) 7 7 15 15 23 23 4N-5 4N-9 

Table A.1. Operation Counts for Area Computation 

Thus we find a reduction In total arlthmetlcs for N=3. 4. and 6. The case of the 

quadrilateral Is quite unexpected, since Its area can be found Just as easily as that 

of a triangle. The explicit formula Is : 

(A.4) 

which save four operations ove,r the eleven required claSSically. 

Davld~·Klrkpatrlckj 'hasobtal~ed lower bounds-on-the'numberof"addltlons 'requlred'­

to evaluate (A.1): 2N-2 for N odd, and 2N-3 ...... N even. Thus a lower bound on the 

total number of ar!thmetlcs Is 3N-3 for N odd and 3N-5 for N e'len. Since the 

classical form can be computed In 3N-1 operations; It Is never more than four 

operations away from optimality. The case N=4 Is the only known example of a 

saving of four operations. 

The "new" method of calculating area$ (Equations (A.2) and (A.3», has a simple 

Interpretation. The coordinates are transformed by subtraction so that one vertex 

Is at the origin. This enables It to be eliminated from any subsequent multiplications 

and additions. Unfortunately, the transformation requires O(N) subtractions In order 

to save only a constant number of multiplications, and so It Is asymptotically Inferior 

to the classical expression (A.1). 

'~Prlvate communication to S. C. Elsenstat. March. 1974. 

-- ._-_._---
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What Is the significance of a saving of one or two multiplications? .. . .. 
... 10 

conceivable that there are applications In which the Breas of triangles must be 

computed rapidly, but what Is more significant is that we have been finding the 

. areas of small polygons for hundreds of years without knowing that the triangle and 

quadrilateral are of equal complexity and that the determinant formula Is not optimal. 

One need only scratch the surface of computational geometry to encounter the 
I 

unexpected. 

Without the absolute value signs, Equation : (A.1) computes a quantity known as 

the signed area of polygon P [lopshlts (70)], which Is positive If the vertices of P 

are In counterclockwise sequence and negative If they are clockwise. We may use 

these property to define the notions of "clockwise" and "counterclockwise" and 

apply. (A.1) to determine the orientation of P In linear time. 

Equation ! (A.1). may also be used to determine whether a point 0 lies Insida or 
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CAD are all positive, then 0 lies Inside ABC. If any of the areas Is zero, then 0 lies 
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1. Give another example of a geometric problem that can be solved using 
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