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ABSTRACT
' COMPUTATIONAL GEOMETRY
Michael lan Shamos

Yale University, 1978

This thesis is a study of the computational aspects. of geometry
within the framework of analysis of algorithms. it develops the
mathematical techniques that are necessary for the deslgn of efficent
algorithims and applies them to a wide variety of theoreticai and
practical problems, Particular attention is given to proving lower bounds
on running time and to analyzing the average-case performance of
geometric algorithms. The approach taken is to isolate a computatlonall
feature that is common to a iarge class of problems, It turns out, for
example, that determining whether any two of N line segments in the
plane overlap is an essential step in many intersection applications. An
optimal algorithm . for this problem, . therefore, becomes an important
. geometric tool that can be used to build other, more complicated, fast
algorithms. This method is employed in a unified attack on the problem
~ of the convex hull, various geometric search ‘problems, finding the
' intersection of objects and questions invoiving the proximity of points in
the plane. What emerges is a modern, coherent discipline that is
successful at mergiig classical gecmetry with computational
compiexity., Among the major new results presented are a convex hull
algorithm with expected running time that is linear in the number of
input points, an O(N log N) algorithm for linear programming in two
variables (which Is superior to the Simplex method), and an O(N log N)
-algorithm for constructing a minimum spanning tree on a finite set of
points in the plane.
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Preface

This thesis Is a sprawling study of the iInteraction between geometry and
computing. It is an examination of the Issues that arise in solving geometric
problems by machine at high speed and the fact that such devices have only
recently been built obliges us to consider aspects of geometric computatlon that
simply do not occur in classical mathematics, and new methods are required.
Fortunately, Geometry Is a highly Intuitive subject, &t aslde from some technical
material on analysls of aigorlthm’s, the ideas of the thesis are accessible to high-
school students. While many a Ph.D, candidate would be unsettied by the Idea that
his work is so elementary, | consider it a distinct advantage because the thesls
argues for slmp!lclty and elegance in the design and constriction of algorithms. |
setting out to write this volume | had a story to tell. The tale is a long one, full of

 detours, intrigues and episodes, but it must be told fully. The reader who has the

energy to follow will see an ancient gem shine in contemporary light, with none of
her sparkle lost to Time.
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Chapter 1
Introduction

-~ "He who would know what geometry Is must
venture into its deptns.”
- dJd. Sylvester, A Probationary Lecture on Geometry

1.1. The Beginning

Geometry is a subject that has captured the imagination of Man for at least 2500

years. It is at the very foundatior of Art, Architecture, and Mathematics, and plays .

a central role in a host of other areas. Computer Science, by contrast, is a
newcomer among such established fields, and it has not yet had the opportunity to
benefit from thelr richness. By the same token, Geometry, developing as It did long
before the Invention of computers, is laden with ideas, results, and prescriptions
that are not easily translated into the modarn setting of Analysis of Algorithms. Itis
now recognized that solving problems on a coniputer does not merely involve
rewriting known formulas in some programming language, but that significant issues
arise in problem representation, data structures, algorithm design, and computational
complexity [Aho (74)]. It Is no surprise that straightforward transcription of
classical results does not necessarily produce the best algorithms. And why should
It, since until recently the only compu'tqtlons that were feasible were those that
could be performed with pencil and paper? The need for fast algorithms is apparent
only within the framework of high-speed computers and large quantities of data.
What ancient geometer could have imagined problems involving millions of points?
The purpose of this thesis is, therefore, to establish a discipline of "Computational"
Geometry by recasting classical resuits into explicit and efficient aigorithmic form.
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1.2. Thesis outline

The reader may expect three things from this thesis: the synthesls of a new
~discipline, an 'exposltion of its methods, and a large number of new results. The new
subject is Computational -Geometry, which is based on the premise, for which ample
justification will be given, that classical mathematics needs to be augmented in
order for us tc be able to solve geometric problems efficiently on a computer. We
address specifically the need for efficient algorithms and present and a set of
techniques for designing them. Our approach is simplistic, but powerful: it consists
of studying a class of geometric problems, isolating their common algorithmic
component, and analyzing that component completely. For example, we will see that
a large'number of Interseciicn problems can be solved rapldly if we are able to
_ determine whether any two of N line segments in the plane cross each other. To
develop a basic computational tool that will lead to tha solution of many problems,
we subject the line segment problem to the most exhausting scrutiny, eventually
obtaining an optimal algorithm (in Section 5.4). Considerable time is spent
in distilling out the fundamental problems, motivating the techniques used to solve
them, and in deriving methods for pruving lower bounds. Once this Is done, the
analyzed problem beccmes an instrument that is used to prove new results and build
other, more ccmplex, algorithms. Each chapter comprises an application of this
" paradigm to & new area of Computational Geometry.

The Introduction Inciudes a short review of the history of Geometry from an
algorithmic standpoint, to determine its strenghths and weaknesses.

Chapter Two Is an examination of such basic Issuas as problem specification,
representation of geometric objects, and computational models. All of these arise
as we attempt to treat an elementary problem: "Given a plane polygon, is It
convex?" The objective is to develop an efficient (and correct!) test for convexity.
The reader will see that even so simple-looking a problem has many non-trivial
ramifications.

Chapter Three Is a study of convex hull algorithms. We present and analyze the .
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algorithms of Graham and Jarvis, including some expected-time restults. We then
develop a divide-and-conquer hull algorithm that generalizes to three dimensions,

has linear average-case performance, and Is optimal in the worst-case sense. The

methods used in the expected-time analysis are of considerable interest, since
they involve unexpected theorems from stochastic. geometry. We show a lower
bcund on the convex hull problem by demonstrating that any hull algorithm must be
able to sort. A section Is devoted to some of the many applications of hull-finding,
including Loy and isotonic regression in statistics. We discuss the problem of finding
the farthest pair of points of a finite plane set and are able to pfoduce an
O(N log N) algorithm based on finding the convex hull. Analysis shows this algorithm
to run in linear expected time for a wide class of ipput distributions. This and all
succeeding chapters conclude with a list of unsolved problems.

Chapter Four, "Inclusion Problems", is an Introduction to geometric searching that
covers preprocessing methods, time-storage tradeoffs, and applications of blnary
search. The fundamental geometric query is to determine whether or not a new
point' lies in a given polygon. The complexity of the preprocessing depends on
whether the polygon Is convex or not, and on how quickly the query must be
answered. Star-shaped polygons are introduced as a speclal class for which the
inclusion question can be answered easily. '

Chapter Five is concerned with three central problems concerning the
intersection of geometric obje'cts. One is to form the intersection, ancther Is to
detect whether two objects intersect (this is easier, in general), and the third Is to
construct the common intersection of N objects. We give a linear algorithm for the
intersection of two convex polygons and use it as the merge step of a divide-and-
conquer algorithm for the Intersection of N half-planes. By exploiting the connection
between this problem and linear programming in two variables, we are able to show
that the Simplex algorithm is not optimal in two dimensions. We present It its place
an O(N log N) algorithm for two-variable linear programming whose expectet running
time is O(N) for certain input distributions. We prove that finding the intersectinn of
two piane N-gons may require quadratic time, while O(N log N) time suffices to
determine whether or not they intersect. Applications of the intersection probiems
to computer graphics and pattern recognition are also discussed.

It is in Chapter Six, "Closest-Point Problems", that genuine synthesis occurs. We
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pose eight seemingly unrelated problems, all involving the proximity of points in the
plane, and introduce a single geometric structure that solves all of them efﬂcﬁlently.
In so doing we make use of techniques from ail of the previous chapters. We obtain
an O(N log N) algorithm for finding a minimum spanning tree on N points In the plane.
Because the minimum spanning tree problem has been studied by many previous
investigators and has diverse applications, we consider this algorithm tc be the
most Important single result of the thesis. The two closest points of a set, the
nearest neighbor of each point, the smallest circle enclosing the set, and a
triangulation of the N points can all be found in O(N fog N) time by recourse to this
single structure, called the Voronol diagram. After giving an optimai algorithm for its.
construction, we show how It can be generalized to solve the k-nearest neighbors
problem and answer a nhumber of other important computational questions.

Each chapter contains a list of unsolved problems that suggest avenues for
further research. The last chapter indicates several ways in which the entire
subject of Computational Geometry can be generalized and extended. A short
Appendix details one of its early fallures -- an attempt to apply the methods of
algebraic complexity. '

1.3. Historical Perspective

This sectlon presents a computer scientist's view of the historical development
of geometry. We shail pay particular attentien to the germination of algorithmic and
complexity notions in the work of the early geometers and lament the fact that such
promising idexs were not destined to flower. Since this thesis proposes a major
reworking of ciassical geometry to make it explicitly computational, a short review
of traditional geometric thinking is not out of place. In particular, we take the view
that classical mathematics is not a computational discipline, and that computer
science must develop theoretica! and algorithmic foundations on its own.

Egyptian and Greek geometry were masterpieces of applied mathematics. It is
well established that'the original motivation for tackling geometric prqblems was the
~need to tax lands accurately and fairly and te erect bulldl'ng‘s" [Eves (72)]. As-oiten
happens, the mathematics that developed has permanence and slgnlflcahca'.that:farf
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transcends Pharaoh's original revenue prchlem. It Is a fleld In which Intultion
abounds and new discoveries are within the compass (so to speak) of amateurs.

It is popularly held that tuclid's chief contribution to geometry was his exposition
of the axiomatic method of proof, a notion that we will not dispute. More relevant to
this discussion, however, Is the invention cf Euclidean construction, a schema which
consists of an algorithm and its proof, intertwined in a highly stylized format. The
Euclidean construction satisfies all of the requirements of an algorithm: It is
unambiguous, correct, and terminating. After Euclid, unfortunately, geometry

. continued to flourish, while analysis of algorithms faced 2000 years of decline, This
can be explained in part by the success of reductio ad absurdum, a technique
which made It easier for mathematicians to prove the existence of an object by
J contradiction, rather than by giving an explicit const_ructlon for It (an algorithm).

The Ei;clldean construction is remarkable for other reasons as well, for it defines
a collection of allowable instruments (ruler and compass) and a set of legal
operations (primitives) that can be performed with them. The Anclents were most
interested In the closure of the Euclidean primitives under finite composition. In
particular, they wondered whether this closure contained all conceivable geometric
constructions (e.g., the trisection of an angle). This is a computer sclence question
-- do the Euclidean primitives suffice to perform aill geometric "computations"? In
an attempt to answer this question, various alternative models of computation were
considered by allowing the primitives and the instruments themselves to vary.
Archimedes proposed a (correct) construction for the trisector of a 60-degree
angle with the following addition to the set of primitives: Given two circles, A and B,
and a point P, we are allowed to mark a segment MN on a straightedge and position
it so that the straightedge passes through P, with i on the boundary of A and N on
the boundary of B [Eves (72)]. In some cases, restricted sets of instrumeants were
studied, allowing compasses only, for example. Such ideas seem almost a
premonition of the methods of automata theory, in which we examine the pcwer of
computational models under various restrictions. Alas, a proof of the insufficlency of
the Euclidean tools would have to await the development of Algebra. .

The influence of Euclid's E/lements was so profound that it was not until Descartes
that another formulatiors of geometry was proposed. His introduction of coordinates
enabled geometric problems to be expressed as algebraic ones, paving the way for
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the study of higher plane curves and Newton's calculus. Coordinates permitted a
vast increase in computational power, bridged the gulf between two great areas of
Mathematics, and led to a renaissance in constructivist thinking. It was now
possible to produce new geometric objects by solving the assoclated'algebralc-
equations. It was not long before computability questions arose once again. Géuss, ’
now armed with algebraic tools, returned to the problem of which regular polygons
with a prime number of sides could be constructed using Euclidean instrumen'ts, and
solved it completely [Kazarinoff (70)]. At this point a close connection between
ruler and compass constructions, field extensions, and algebraic equations became
apparent. In his doctoral thesls, Gauss showed that every algebraic equation has
at least one root (Fundamental Theorem of Algebra) [Courant (41)]. Abel, in 1828,
went on to consider the same problem /in a restricted model of computatfon. He
asked whether a root of every algebraic equation could be obtained using only
arithmetic operations and the extraction of nth roots, and proved that the answer
was negative. While all constructible numbers were known to be algebralc, this
demonstrated that not all algebraic numbers are constructible. Shortly thereafter,
he characterized those algebraic equations which can be solved by means of
radicals, and this enabled him to discuss the feasibility of specific geometric
problems, such as the trisection of the angle [Kazarinoff (70)].

1.3.1 Compiexity Notions in Classical Geometry

Euclidean constructions for any but the most trivial problems are very complicatad
because of the rudimentary primitives that are allowed. An apparently frequent
pastime of the post-Euclidean geometers was to refine his constructions so that
they could be accomplished in fewer "operations”. In was not until the twentieth
century, however, that any quantitative measure of the complexity of a
construction problem was defined. in 1867, Emile Lemolne established the science
of Geometrography by codifying the Euclidean primitives as follows [Lemoine (07)]:

1. Place one ieg of the compass at on a given point.
" 2. Place one ieg of the compass on a given line.

3. Produce a circle.

4. Pass the edge of the ruler through a given point.

5. Produce a line.
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The total number of such operations performed durlng a construction is called its
simplicity, although Lemoine reccgnized that the term "measure of complication"
might be more appropriate. This definition corresponds closely to our current Idea of
the time complexity of an algorithm, although in Lemolne's work there is no
functional connection between the size of the input (humber of given points and
lines) In a geometric construction and its simplicity. Indeed, Lemoine's Interest was
in improving cuclid's original constructions, not in developing a theory of complexity.
At the former he was remarkably successful -- Euclid's solution to the Circles of .
Appolonius problem requires 508 steps, while Lemoine reduced this to fewer than
two hundred [qulldge (16)]. Unfortunately, Lemoine did not see the importance of
proving (or perhaps was unable to prove) that a certain number of cperations were
necessary in a given construction, and thus the idea of a lower bound eluded him.

Hilbert, however, appreciated the significance of lower bounds. Worklhg' in a_
restricted model, he considered only those constructioris performable with
straightedge and scale, an instrument which Is used 'only to mark off a segment of
fixed Iehgth along a line. Not all Euclidean constructions can be accomplished with -

£ - this set of instruments. For those which can, we may view the coordir.ates of the

constructed points as a function F of the given points. Hilbert gave a hecessary

~and sufficlent condition for F to be computable using exactly n square root

operations, one cf the earliest theorems !n algebralc computational compiexity
[Hilbert (99)].

Further evidence suggests that many of our present-day techniques for analyzing
algorithms were anticipated by the geometers of previous centuries. In 1672,
Georg Mohr showed that any construction performable with ruler and comrass can ‘
be accomplished with compass alone, insofar as the given and required objects are -
specified by points [Eves (72)]. (Thus, even though a straight line cannot be drawn
with compass alone, two points on the line can each be specified by Intersecting
two circular arcs.) What is notable about Mohr's proof Is that it Is a simulation, in
which he demonstrates that any operation in which the ruler participates can be
replaced by a finite number of compass operations. Could one ask for a cioser
connection with autoinata theory? Along similar lines Is the result that the ruler
used In any construction may have any positive length, however small, and yet be
able to simulate a ruler of arbitrary length [Eves (72)].
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While Lemoine and others were occupled with the time complexity of Eucl!deén
constructions, the question of the amount of space needed for such constructions

‘was also ralsed. While the measure of space that was used does not colncide with,

our current definition as the amcunt of memory used by an algorithm, It comes
remarkably close and is a quite natural one: the area of the plane needed to
perform the construction. In general, the space used depends on the area of the |
convex hull of ihe given loci and on the size of the required result, as well as on
the size of any intermediate loci that need to be formed during the construction
[Eves (72)]. Our point here Is that time and space notlons are not entirely forelgn
to Geometry.

When the impossibility of certain Euclidean constructions was demonstrated by
Galois, It was realized that this prevented the exact trisection of an angle but said
nothing about the feasibility of an approximate constriuction. In fact, asymptotlcally
convergent procedures for the quadrature of the circle and duplication of the cube
were known to the anclent Greeks [Heath (21)]. The history of iterative algorithms
Is indeed a long one.

1.3.2 The Theory of Convex Sets, Metric and Combinatorial Geometry

Geometry in the nineteentt. century progressed along many lines. One of these,
promulgated by Klein, involved a comprehensive study of the behavior of geometric
objects under various transformations, and projective geometry formed an important
offshoot. While research on finite projective planes ieads to fascinating questions

. In combinatorial theory and discrete algorithms, this aspect of geometry will not be

pursued in this thesis, largely because such topics are at best distantly related tc
problems Involving the properties of point sets and location of ob jects.1

The growth of real analysis had a profound effect on geoﬁetw. resulting in formal
abstraction of concepts that had previously been only iIntuitive. Twe such
developments, metric geometry and convexity theory, provide the principal
mathematica! tools that we will exploit in |ate; chapters to aid in the design of fast
algorithms, ‘ :

1But for a modern treatment see [Karteszi (76)].
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Distance is the essential notion of geometry."vThe metric, its generalization, was
able to dlfaw geometric concepts and insights into analysis, where the idea of the
"distance" between functions gave rise to function spaces and other powerful
constructs. Unfortunately, much of what developed withdrew toward the
nonconstructive. Function spaces by their nature &re not computational objects.

The significance of convexity theory is that is deals analytically with global
pfopertles of objects and enables us to deal with extremal problems. Unfortunatel‘y_,‘
many questions In convexity are cumbersome to formulate algebraically, and the 5
subject tends to encourage nonconstructive methods.

Combinatorial geometry Is much closer in spirit to our goal of algorithmic geometry.
It Is based on characterizations of geometric objects In terms of properties of finite
subsets. For example, a set is convex iff the line segment determined by every
pair of its points lies entirely in the set. The inadequacy of combinatorial geometry
for our purposes lies in the fact that for most sets of interest the number of finite
subsets Is Itself infinite, which precludes algorithmic treatment. Cur job will be to
remedy these deficiencies and produce workable mathematics that will lead to good
algorithms,

1.4. Prior work in geometric algorithms

.Even though we plan to develop Computational Geometry from first principles, the
reader shouid realize that many geometric algorithms already exist. A large number
. of applications areas provide problems that are Inherently geometric and have been
examined by many researchers. These Include the Euclidean traveling salesman,
minimum spanning tree, hidden iine, and linear programming problems, among hosts of
others. .In order to demonstrate the broad scope of computational geometry in a
convincing way, we will defer presenting background material on such problems until
they occur in the text. ‘

A number of subjects and applications have been deliberately omitted because
the author feit that they had been adequately treated elsewhere or that he had
nothing intelligent to remark about them. One of these is geometric modeling by
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ne:zns of spline curves and surfaces, a topic that is closer In spirit to numerical
ar=iysis than it Is to geometry and has been dealt with In [Bezier (72)], [Forrest
(72)], and [Riesenfeld (73)]. We should note that Forrest refers to his discipline as
. "Computational Geometry". '

In a fascinating book called Perceptrons (of which the subtitle Is "Computational
Geometry”), Minsky and Papert deal with the complexity of predicates that
recognize certain geome'trlc properties, such as convexity. The intent of their work
was to make a statement about the possibility of using large retinas composed of
simple circuits to perform pattern recogniﬂon tesks. Their theory Is self-contained
and does not fall within the aigorithmic outlines of this thesis. ' '

_ We intentionally will not deal with graphics software or geometric editors. While
these systems are undoubtedly candidates for some of the algorithms we will
develop, they raise Issues that ere oriented more toward implementation details and
the user interface than toward analysis of algorithms. Included In the same class
are numerical control software for machine tools, support programs for graphic
plotters, map-drawing systemé, and software for architectural design and civit
-engineering.

On hearing the term "Computational Geometry", many people assume that it refers
to the problem of proving geometry theorems by computer. While this is a
fascinating study, it reveals much more about our theorem-proving heuristics and
understanding of proof procedures than it does about geometry per se, and will thus
not be treated here.
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Chapter 2
Towards Computational Geometry

The purpose of this chapter is to éxblore some of the basic Issues that arise as
we aftempt to solve geometric problems on a computer. For reasons of 'exposltion,' .
we will focus on the (apparently) simple problem of determining whether or not a
given polygon of N sides Is convex, and try to produce the fastest possible
algorithm. In solving this problem, we will be forced almost immediately to deal with
the following questions: ' ' 4

1. ‘Prdb'lem specification. What exactly Is the computational problem to be solved?‘
- What mathematical resuits are reievant? How can a convex polygor be
characterlzed?

2. Problem representatlon. How is the polygon to be represented? Preclsely
what Input will be provided and what output Is expected? '

3. Model of computation. What is the theoretical setting in which the algorithms
are to be analyzed? What primitive operations are to be allowed and how much
wiii be charged for them?

4. Lower bounds How can lower bounds be obtained for a problem that Is
inherently gecmetric (as opposed to algebraic) ? Are the bounds robust over
different models of computation?

5. Divide and conquer. Divide-and-conquer is a very powsiful algorithmic
technique. Does it find application in computational geometry?

6. On-line algorithms. In some problems the data points are not all avallable at
the outset, but arrive in real-time. Is there a fast algorithm that is able to
process the information as It is received?
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7. Average-case analysis. What is the expected-time behavior of geometric -
algorithms? What mathematics is necessary for this analysis?

The process of defining the problem begins in this case with elementary
definitions from convexity theory which lead to theorems characterizing convex
polygons. These theorems, hc_;_wevef. do not suggest efficient algorlthms,‘ and we
must derive equivalent characterizations which do. An iterative scheme ensues, In
which we prove new theorems, analyze the resulting algorithms, and compare them
with known lower bounds on running time. By following the development of a simple
but optimal algorithm from its raw beginnings, the reader will obtain a preview of the
spirit and methods of this thesis.

2.1. When is a polygon convex?

Figure 2.1: S is Convex, T is Not.

Let us start with one definition of a convex set:

Definition 2.1: A set S Is convex iff the line segment Joining every pair of points
of S lies wholly within S. ‘ :

In Figure 2.1, for ex_ample, S Is convex, whila T is not.
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This definition Is a very powerful one for the purpose of proving theorems. As an
algorithmic test to determine whether a set Is convex, however, the definition is not
immediately useful. In general, S will have an uncountabie number of points, sc a-
direct examination of all the line segments they determine iIs out of the question. A
line segment itself has an uncountable number of points, so it is not even clear how
one might verify that it is contained in 5. Are we therefore constrained to work only
with countable or finite sats? : '

Fortunately not; the only requirement Is that S be finitely speclflable. For
example, while the interior of a plane polygon contains uncountably many points, as
does its boundary, the polygon can nonetheless be specified by a finite sequence

4 of vertices.

2.2. Representation of geometric objects
Let us adopt some reasonable conventions regarding simple geometric ocbjects:

A point will be represented as a vector of variables containing its Cartesian -
coordinates. We assert thi:t the cholce of coordinate system cannot affect the
asymptotic runninn time of any geometric algorithm, provided- that the model of
computation (to be specified in the next section) allows the necessary
transformations. All this means Is that a vector of coordinates in one system can be
transformed Into any other system in time that depends possibly on the number of
dimenslons, but not on the number of points involved?.

Stated another way, a set of N points in k dimensions can be put into Cartesian
“form In O(Nk) time, so asymptotically no time Is lost by assuming that the points are

already given in Cartesian coordinates.

it Is now clear that a natura! rep:sentation for an unordered set of N points in k -

TNote that there must not be any "interaction" among the points, In center-of-
mass coordinates, for example, the required transformation cannot be performed in
constant time.
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dimenslons Is either an N x k array or a list of k-vectors. It is important to realize
that a polygon Is an ordered collection of points, and that a different polygon
results if any twn noints are lnterchanged.2 Specifying a polygon unambiguously
requires giving its vertices /n the order that they occur on the boundary. A number
of data structures are suitable for storing polygons. In mariy cases two vectors, for
x- and y-cocrdinates respectively, will suffice. Often, though, processing the
polygon will involve the insertion and deletion of vertices, in which case a doubly-
linked list will be more economical in terms of time.3 These representations can be
mutually transformed in linear time.

In éi{her the vector or linked-list representation, there are normally 2N different
realizations of the same N-gon, since the enumeration can begin with any vertex
and proceed either clockwise or counterclockwise. To avold this multiplicity of
representations, we define a canonical form:

Definition 2.2: A polygon Is simple iff no nonconsecutive sides Intersect and
consecutive sides intersect only at a single point..

Definition 2.3: A simple polygon Is In standard form If its vertices occur iIn
counterclockwise order4, with all vertices distinct and no three consecutive
vertices collinear, beginning with the vertex that has least y-coordinate. (If
two or more vertices are tied with least y-coordinate, we begin with the one

2Strlctly speaklng, a poiygon is a closed plane figure whose boundary is a polygonal
line. While the polygon and its boundary contain uncountably many points, they both
may be specified uniquely by listing the vertices of the polygon. We will often
deliberately make no distinction among a polygon, Its boundary, and this
representation.

3in such applications, the use of linked lists will reduce the order of the time
complexiiy at a cost of only a constant factor in space.

4“Counterclockwlse order" Is defined precisely in Appendix A.
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that has least x-coordinate.® See Figure 2.2). A non-simple polygon
Is in standard form if its first three vertices occur in counterclockwise order
and‘the first vertex Is lexicographically least. ' '

COUNTERCLOCKWISE

-7 ORDER

COLLINEARITY ELIMINATED

BEGINNING OF LIST __y,

Figure 2.2: A Polygon In Standard Form

Several aspects of the above definition of standard form require explanation.

First of all, the definition only applies t¢ simple polygons -- those that are not self-
lntérsectlng. This is because a single point in the plane may occur legitimately more
than once as a vertex of a non-simple polygon (Figure 2.3). As we shall
see, testing for simplicity is a non-trivial problem.
The requirement that the vertices be distinct is imposed in order to remove the
"degeneracy that arlses when an edge of the polygon has zero length. This will
mean that a quadrilateral with a null edge will be represented as a triangle, since
they are identical as polygons. Likewise, we eliminate conéecutlve collinear
vertices because to allow them would permit multiple representations of the same
plane figure. The counterclockwise orientation is chosen so that, as the boundary
of the polygon is traversed, the interior lies to the left. This and the insistence on
beginning with the lexicographically least vertex are designed to simplify the
presentation of later aigorithms and reduce thelr running time.

S5That Is, the first vertex is lexicographically least in y,x order. _


shamos
FullBlank


SRR Gt

R ARRRERNIN Rl

(BT
§>- P57

17

Figure 2.3: ‘The point x occurs three times as a vertex of P.

We now Indicate how to convert a simple polygon P to standard form In linear
time:

1.

2.

3.

4,

If P Is in vector form, convert it to circular doubly-linked list representation.

Perform a single pass through the list, eliminating duplicate and collinear
vertices. Since P Is simple, multiple copies of a vertex must be adjacent in the
list, which Is doubiy-iinked. to allow rapid deletion. To determine whether three
points are collinear, we need only compute the area of the triangle determined
by them. The points are collinear iff the area Is zero. During the same pass,
then, consecutive collinear points can be removed. We also record thie vertex
that Is lexicographically lowest. '

"We now need to decide whether the vertices are In clockwise or
counterclockwise orientation. Tils may be done in O(N) tims by evaluating the
signed area of P, as given by equation .(A.1). If the area Is positive, the
polygon is already in standard form; If it is negative, the representation needs
to be reversed. In either case the list pointers can now be modified in linear
time to yield P in linked-list standard form.

If vector form is now desired, the transformation is trivial.
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This detailed explanation of so elementary & process‘should convince the reader
that transformation to standard form is merely a bookkeeping procedure in which no
essential computation Is buried, '

2,2,1 Congruence and similarity

The prime gbjectlve of this thesis is to isolate and analyze fundamental geometric
pro’blems. Some of these fall into the mainstream of computational geometry, while
others are peripheral but ralse questions that are simply too tantalizing to ignore.
One of these Is the problem of congruence, which is included here because of its
close connection with representation issues.

Definition 2.4: Two polygons are congruent if they can be made to coincide.

Problem P2.1: (Congruence of Polygons) Given two polygons, are they
congruent?

The computational form of this question is really: Do two representations define the
same polygon up to rotation and translation? Because rotations are allowed, it does
not suffice to transform both polygons to standard form and verify that they are
identical.

Figure 2.4: Congruent polygons may have different standard forms.
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To solve this problem we need a representation for polygons that Is rotation- and
tra'nslatlon-Independent. We can satisfy this requirement by building a circular list
contalning the /engths of the sides of the polygon and its Internal angles, stored
ce\lternately.6 Deternining whether two polygons in this representation are congruent
then reduces to the question of whether two circular lists ‘diff'er only by a shift.
Glenn Manacher [Manacher (76)] realized that this is a simple pattern-matching
problem .that can be solved in linear time by the Knuth-Morris-Pratt algorithm [Knuth
(77)]. Since two polygons are similar i they are congruent up to a change in
scale, the same procedure can be used to test for similarity In linear time If we first
multiply the sides of one polygon by the ratio of their longeét (or shortest) edges.

2.3. Model of computation

A mode! of computation specifies the primitive operations that an aigorithm may

' | perform and the costs that will be charged for them. It Is essential that a model be

carefully specified befcre any attempt is made to prove upper and lower bounds on
execution time, since such results have meaning only within a particular
coimputational framework. In choosing one, we normally must make compromises
between realism and mathematical tractability, selecting a scheme that represents
actual computers as closely as possible, while still permitting thorough analysis.
What sort of model Is appropriate for geometric applications? Having finally fixed
ori a specific represéntatlon for a polygon, we must now decide which operations
may -reasonably be performed on that representation. We regularly encounter
several types of problems, each requiring a different sat of 'prlmltlves:

1. Subset selectlon. In this kind of problem we are given a collection of objects
and asked to choose a subset that satisfies a certain property. Examples are
finding the two closest of a set of N points or finding the vertices of its convex
hull. The essentlal feature of a subset selection problem is that no new objects
need be created; the solution consists entirely of elements that are glven as

BFor a purely technical reason we store a side of Iength L as the number L + 2,
and angles in radians. Then sides and angles can never be confused. It should be
clear that this representation can be obtained from standard form in linear time.
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input. In many cases such a problem can be solved using only comparisons and
the four arithmetic operations so that a decision-tree model Is appropriate.

2. Computation. Given a number of objects, we may need to compute the value
of some geometric parameter. The primitives allowed in the model must be
powerful enough to permit this calculation. Suppose, for example, that we are
working with a set of points having integer coordinates. i order to find the
distance between a pair of points, we not only need to be able to represent
irrational numbers, but to take square roots as well. In other problems we may
even require trigonometric functions. '

The model that we will adopt for most purposes is a random-access machine
{RAM) similar to that described in [Aho (74)] but in which each storage location Is
capable of holding a single real number. The following operations are available at
unit cost: '

1. The arithmetic 6perations =, %X,1/.

2. Comparisons between two real numbers. (¢, &, =, #, 2. >).

3. Trigonometric functions, EXP, and LOG. (In general, analytic functions.) While
we normally will not employ these functions, they are included in the model to
strengthen our lower bound resuits.

4, Indirect addressing of memory (Integer addresses only).7

This model Is an amalgam of useful features of the straight-line, computation tree,

and integer RAM models, and we shall refer tc it as a real RAM. It closely reflects
the kinds of programs that are typically written in high-level algebraic languages

"To allow the address calculation mechanism to truncate real values to integers
would add the FLOOR function to our set of primitives and make lower bounds almost
impossible to prove. The FLOOR cannot be computed in any constant number of
arithmetics and comparisons, as an Informatlon-theoretlc. argument will show,
although It Is often realistic to consider it a primitive on most machines.
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such as FORTRAN and ALGOL, in which it is common to treat variab!e of type REAL as
having unlimited precision. At this level of abstraction we may Ignore such
questions as how a real nhumber can be read or written in finite time.8

Knuth has recently popularized the use of £, a notational device that
distinguishes nicely between upper and lower bounds [Knuth (76)], and which we
will adopt. '

O(f(N)) denotes the set of ail functions o(N) such that there exist positive
constants T and Ng with |g(N)] £ Cf(N) for all N2 Ng.

Q(f(N)) denotes the set of all functions g(N) such that there exist positive
constants' C and Ngo with g(N)2 Cf(N) for all N2 Ng. '

Thus Q(f(N)) Is used to indicate functions that are at /east as /arge as some
constant times f(N), precisely the concept that one needs to describe lower
bounds.

It is often observed that a problem can be solved by transforming an instance of
it Into an Instance of a different problem, solving the transformed problem, and
translating the result back into the context of the original problem. If this is
possible, we say that one problem Is transiermable to the other. This Idea is so
useful for proving lower bounds that we formalize the process: Given two problems
A and B,

1. The input to problem A Is converted into a suitable input for 3.

2. Problem B Is solved.

3. The output =7 B is transformed into a correct solution to A.

If the above transformation steps 1 and 3 together can be performed in O(T(N)).

8This Is perfectly legitimate -- the same problem arises with straight-line programs
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time, then we say that A is T(N)-reducible to B, written A oLr(N) B 9 Reducibllity
is not necessarily a symmetric relation; in the case when A and B are mutually
reducible, we say that they are equivalent.

, Theoré}n 2.1: (Lower bounds via reduciblllty) If problem A is known to req'ulre
T(N) tlme and A Is R{N)-reducible to B (4 “R(N) B), then B requires at least
T(N) - O(R(N)) time,

Theorem 2.2: (Upper bounds via reduclbility) If problem 8 can be solved In T{N)
time and A oln(y) B, then A can be solved in at most T(N) + O(R(N)) time.

The real #AM Is so powerful (because of its transcendental functions and the
possibllity of encoding tricks) 10 that lower bounds are difficult to prove. We will
usually establish & lower bound for a probiem P by showing that another problem Q,
known to require T(N) time, is linear-time reducible to P. The most important known
lower bound is that for sorting, which requires Q(N log N) comparisons, worst-case,
on a real RAML11 This result is oer primary source of lower bounds.

The model of computation affects the assertions we may make about coordinate
systems. . If only arithmetic operations are allowed, for example, then a ‘point In
polar form cannot be transformed at all to Cartesian coordinates, because of the
trigonometric functions involved. This may not prove to be much of a restriction,
however. If we only need to compare the polar angles of two points given in

gneduclbillty '5s usually defined to be a relation on languages, in which case no
output transformation is necessary because the output of a string acceptor is
either zero or one. See [Karp (72)]. For geometry problems, we need the greater
flexibility afforded by the more general definition.

1oA single memory location can hold a potentially infinite amount of information, but
this is also true of the integer RAM model. '

Myhis is implied by a stronger theorem of [Friedman (72)], whose model even
permits the computation of arbitrary analytic functions. '
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Cartesian coordinates, for example, this can be done with arithmetics and
comparisons only. It Is not necessary to compute the r:mgles."2

2.4. Convexity Testing

We now have enough background to make computational sense of the geometric
" problem stated at the beginning of this chapter.

Problem P2.2: (Convexity Test) Given a plane polygon with N vertlces ln
standard form, find a real RAM algorithm to determine whether it is convex.

In order to proceed, we must search for properties of convex polygons that can be
used in an algorithmic test.

A diagona! of a polygon is a line segment joining two nonconsecutive vertices.
Property 2.1: A polygon P Is convex Iff every diagonal of P Is a subset of P. 13

While Property 2.1 says that we may restrict our attention to a finite number of line -
segments, it still does not yleid an algorithm because we have no finite test as yet
for whether a line segment lies within a polygon. Such a condition Is not difficult to
obtain: °

Property 2.2: A line segment L Is a subset of a polygon P iff at least one point of
L is Interior to P and the Interior of L Intersects no edge of P.

127his turns out to be very convenient in many algorithms, including that of Graham
(section 3.3).

13in this thesis the term "Property" is used to denote a elementary theorem from
plane geometry that is stated without proof. Except for the illustrative exampie in
this chapter, no new t_heorems or algorithms will be besed on such "Properties".


shamos
FullBlank


Towards Computational Geometry - 24

Figure 2.5: No Diagonal Intersects an Edge, yet P Is not Convex.

'We may now use Properties 2.1 and 2.2 to formulate an algorithm, Each \'(e_rt'e"x‘ '

of P Is the vertex of an Interlor wedge determined by the two edgeé of P that meet . -

at V.14 A diagonal D emanating from V can lie within P only if D lies within the
wedge. This can be tested in a constant number of operations by examining the
angles that D forms with the two coincident edges. It remains only to form each
diagonal, of which there are N(N-3)/2 = 0(N2) if P has N vertices, and test it
against each of the N edges of P for intersection. Each of these tests can be
performed in a constant number of operations, independent of N. 1t should be ciear
that this algorithm can be impiemented to run in O(Na) steps.

Property 2.1 is a perfectly good characterization in combinatorial geometry. In
traditional mathematics the value of such results Is judged by thelr conciseness,
elegance,‘ and the number of new theorems they enable us to prove. In
computational mathematics we must adopt a different measure of success, one
based on algorithmic efficiency. We will constantly strive to develop definitions and
theorems that will be of direct use in speeding up algorithms. This goal is both
practical and aesthetic since a procedure that uses the fewest possible nhumber of
steps makes a minimal demand on computational resources and at 2t the same time
satisfies the artistic requirement of simplicity that runs through all of Mathematics.

1“Slnce P is in standard form.
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How does our convexity test measure up? Could it be optimal in the sense that
any algorithm to determine whether a polygon:is convex must perform at least cN3
steps? Any correct aigorithm for a problem provides ‘an upper bound on the time
sufficlent to solve it, though not necéssarlly a least upper bound. To sho_w
obtimality of a specific procedure, we must prove a /ower bound. a theorem stating
that no algorithm could succeed using fewer operations. (That a single algorithm
suffices to establish an upper bound while lower bounds must apply to all
concelvable algorithms may account for the relative scarcity of optimality results.)

Definition 2.5: A lower bound on an algorithm is said to be trivial if it refers only
to the time necessary to read the input or write its output. '

For the problem of testing convexity only a trivial lower bound Is avalilable:

Theorem 2.3: Any algorithm that determines whether or not a polygon having N N
vertices Is convex must perform at least cN operations, for some constant c>0.

Proof: We show that each vertex must be examined. For suppose that the
algorithm reports that P is convex without having processed some vertex V. V
can be moved, without changing the outcome of the convexity test, so that P is
no longer convex. (See 'Flgure 2.6.) Thus the algorithm cannot answer
correctly without having examined V.

We now know that a linear number of operations dre required to perform a
convexity test and-that O(N3) operations suffice. Judging from the simplicity of the
lower bound proof, one might expect that a more refined argument could improve it.
Similarly, a more clever algorithm could concelvably test convexity in less than
cubic time. Because there is a gap between the bounds, at least one of them Is not
the best possible, and work still remains before we can be satisfied with the
analysis of this problem.

In an effort to find a better algorithm we must dispense with Property 2.1, While
succinct and elegant, It is based on inspection of all of the diagonals of a polygun,
and any algorithm which uses the theorem directly Is condemned to perform at Ieast
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If V is moved to position W,
P will no longer be convex,

Figure 2.6: Convexity Testing. Every vertex must be examined.

o(N2) operations, Just because there are that many diagonals. While O(N2) would:
be an lmprovement over N3 it provldes no hope of closing the gap entirely. At this
stage we must develop alternative characterlzatlons of convex polygons, use them
to find algorithms, and analyze the running times of these algorithms. The following -
attempt shows that even erroneous conjectures canh lead tc interesting and -
profitable research Ideas: '

Nontheorem. A polygon P is convex iff no interior angle !s reflex.

(Recall that an angle is reflex if It exceeds 180 degrees.) This ‘result, if true,
would lead to an easy linear-time test for convexlty, -= it would suffice to examine
N triples of consecutive vertices and compute the angle determined by each,
verifying that no angle Is reflex., Figure 2.7 shows, however, that the
‘characterization is incorrect.

The problem Is that, as showii in the figure, a nonsimple polygon may have no
reflex angles and still faill to be convex. However, we may make use of the
following:

Property 2.3: A polygon is convex Iff it is simple and has no reflex Interior
angles.
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Figure 2.7: No angle is teflex, but P is not convex,

If our polygon is known in advance to be simple, we may check its convexity in
linear time by examining each interior angle. If this is not known, though, we must
determine whether or not P is simple. This can be done by testing every pair of
nonconsecutive sides for intersection, but then we are back to a quadratic
algorithm! The issue of whether a polygon is simple arises in many other geometric
problems. (For example, the convex hull of a simple polygon can be found in linear
B time, but N log N time is required if the polygen Is not known to be simple.) This
B - problem is treated fully in Section 5.4. As far as the convexity test Is
concerned, thotjgh, the possibility of self-intersection makes Property 2.8 not as
useful as it might appear to be initially.

Rather than continuing with the simplicity idea, let us try an alternate approach,
based on the fact that the vertices of a convex polygon seem to occur in angular
order around its boundary. Traversing the boundary of P induces a direction on
each edge, converting it into a vector. (See Figure 2.8). We may then
speak uh‘amblguously of the angle defined by an edge as the angle it subtends with
the positive ;-axis.

Theorem 2.4: A poiygon P is convex Iff in standard form its edge angles are non-
decreasing.
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Figure 2.8 Defining edge angles of a polygon.

Proof: In standard form, the first vertex of a polygon Is lexicographically lowest
in y,x ofder, and the vertices occur in clockwise sequence. Thus the first edge
of P has positive angle. If the conditions of the theorem are met, then P Is
simple or it would not be a closed polygon. Similarly, P has no reflex angles so-
Property 2.3 applies! To show necessity, consider the first vertex V at which
monotonicity fails. Then either the interior angle at V is reflex or an edge at V
intersects some other edge of P. Monotonicity must be strict because in
standard form consecutive collinear vertices have been eliminated.

Our work is how done because Theorem 2.4 yields a linear-time algorithm: P can
be put into standard form i linear time, and monotonicity of angie can be verified in
a single pass through the vertex list.

Theorem 2.5: Whether a plane polygon is convex can be determined ln O(N) time,‘
and this Is optimal. ‘ -
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it is difficult to overemphasize the theoretical Importance of fower bound results,
for they put- a problem In perspective and reveal its Inherent complexity. The
computer scientist cannot rest until his upper and lower bounds colncide, for until
then his understanding of the problem is not complete. From a practical standpqlnt, ’

g though, lower bounds are not always as important as they may seem, since they

refer to the exact solution of a specific problem in ‘a p'osslbly unrealistic model of
computation. The system-bullder Is usually more interested in fast algorithms; in
fact, he wants algorithms that run quick!y on problems of a certaln size and Is often
unconcerned about asymptotic behavior. Of course, the true pragmatist would

| prefer an algorithm that his programmers can understand and code quickly. We will

try . in this thesis to strike a balance between theoretical and practical
considerations.

In our example the trivial lower bound was sharp and our original upper bound was
at fault. We will not always be so fortunate -- more powerful techniques will be
needed to prove better lower bounds. However, the example of this section is a
paradigm for the re~* of the thesis, and we will often begin with classical results,
probe their inédequacles, prove new theorems, develop algorithms, and establish
lower bounds.

If ad hoc techniques and t,héorems had to be developed for each new problem,
computational geometry would rapidly become unwieldy. Fortunately, we will often
be able to establish an equivalence between a geometric question and a solved
problem in computer science, reducing tremendously the number of new resuits that
need to be obtained. We shall spend considerable time exhibiting such
correspondences and deriving aigorithms from them.

Equivalences among problems are also important because the'y are a source of
iower bounds. It is easy to show by an adversary argument that any de'cls'lo'n tree
that determines whether or not a list of N elements Is sorted must make at least
N-1 cdmparisons, in the worst case. Since this problem can be transformed, using
no comparisons at all, into an instance of convexity testing. we know immediately
that coivexity testing must also require at least N-1 comparisons, worst case.
Reducibilities of this form are a powerful means of obtaining lower bounds.

Our goal, then, will be to reshape classical geometry Into a computational


shamos
FullBlank


Towards Computational Geometry | ' N 3‘0

discipline by manipulating definitions and theorems until they can be made to yleld

- fast algorithms, exploiting, whenever possible, analogles between geometric

problems and well-understood discréte algorithms.
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Chapter 3
Convex Hull Algorithms

3.1. The Problem of the Convex Hull

3.1.1 Background

Recalling Definition 2.1, a set S is convex iff the line segment joining every pair of
its points consists entirely of points of S. The convex hull of S Is the smallest
convex set contalning S.1 Intuitively, the concept of the convex hull is easy to
understand. To find the hull of a set of points in the plane, imagine surrot:nding the
set by a iarge. stretched rubber band. When the band Is released, it will assume

B the shape of the convex hull.2 (See Figure 3.1.)

The convex hull of a set can be viewed'lnformally in other ways. It is the shape
assumed: by the package when the set Is gift-wrapped. A physicist would say that,
from -infinity, a set "looks like" its convex hull, by which he means that from
sufficiently far away the closest point of the set is also a point of the hull (Figure
3.2).

1"Smallest" is In the sense of set inclusion. That is, H is the hull of S Iff H contains
S, H is convex, and no convex subset of H also contains S.

2Note that this algorithm operates in linear time! One need only drive nalls into a

! board (at constant cost per nail) and use a large rubber band. Of course, the model

of computation we will be using does not include such primitives. The point is that
the existence of a fast, intuitive, perceptual or analog procedure can sometimes
hinder our understanding of complexity issues. How are we to reconcile this

g ~ disarmingly efficient carpenter's algorithm with the N iog N lower bound to be proved

fater?
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Figure 3.2: At large distances the closest point of S Is a hull point. -

Unfortunately, such analog devices are‘ unavailable to a computer. and we will
need a cleém definition of the convex hull and a precise specification of how it Is to
be represented in the machine. We must then crystaliize all of our Informal notions
i about hulls into an explicit computational procedure. This Is the process of
" algorithm design, during which we combine our conceptual understanding of the
problem with knowledge about its mathematical structure in order to decide which
algorithmic techniques will be useful, It is by exploiting this structure that we
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obtain efficient algorithms.  For example, Theorem 2.4, which characteflées' convex
polygons, enables us to avoid examining all pairs of vertices in determining whether
a given polygon Is convex.

3.1.2 Mathematical preliminaries

The reader may be wondering at this point why we do not-slmply.consul't a
geometry textbook, obtain a suitable definition of the convex hull, and follow the
|  prescription for constructing it.3 Letus try this approach, for it reveals much about
the non-aigorlthmlc nature of classical mathematics. ’

Definition 3.1 [Valentine (64)] The convex hull of a set Is the Intersection of
all convex sets containing it. '

This definition is a formal characterization of the hull as the smallest convex -set
containing a given one. While It is elegant and very powerful for proving theorems,
it Is useless for computational purposes. In generai, the number of convex sets
lnvolved in the Intersection is uncountable, so there is no hope of applylng the

definition directiy -- It is constructive but not computational. This distinction, while

B often ignored, is of cruclal Importance as we undertake to fit geometry into
contemporary computer science.

Definition 3.1 Iis not the only way of defining the convex hull. The followlng
definition, based on a closure operation, corresponds to the intuitive idea of "fllling
hly a set until it becomes convex:

A convex combination of a set of points p; is a sum of the form

N N .
; wip; » where w;2 0 and Z w=1. (3.1)

3This would have the side benefit of shortening the thesls by S0 pages.
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Deflnition 3.2: [Stoer (70)] The convex hull of S consists of all convex
combinations of points of S.

B It Is easy to see that this definition will not help us find the hull by any obvious
method in less than exponential time. ‘ :
3.1.3 Statement of the problem

We are not quite ready to formulate the huli problem computationally because It is

~ still not clear what form the output of a hull algorithm will take. The Input Is an

unordered set of points but what of the result?

Theorem 3.1: [Benson (66)] The convex hull of a set of N points is a convex
polygon having at most N sides. s

Having specified In the last chapter a model of computation and a way of
representing both convex polygons qnd unordered sets of points, we are at last
ready to state two versions of the convex hull problem:

Problem P3.1: (Planar Convex Hull) Given a set of N points in the plane, find its
convex hull (that is, the standard form of the polygon that defines the hull). -

Problem P3.2: (Planar Extreme Points) Given N points in the plane, identify '
thoge that are vertices of the convex hull.

8  Both of these procblems can be generalized to k dimensions, but we shall work almost
entirely in the pl_ane for the remainder of this thesis.

It should be clear from our discussion of representations that Problem P3.1 Is
asymptotically at least as hard as P3.2, because the output of P3.1 becoires a
valid sclution to P3.2 if we merely recopy the polygon produced by the former as an
unordered list of points. In the notation of Chapter 2, P3.2 is O(N)-time reducible to
P3.1:

PLANAR EXTREME POINTS ofy PLANAR CONVEX HULL ,
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It is natural to ask whether the former Is asymptotically easier than the latter or if
they are in fact equal in complexity. This and many other questions will be
examined In the succeeding sections. The rest of this chapter Is devoted to a
study of the complexity of the pianar convex hull problem and to algof!thms for-

solving it.

3.2. Early development of a convex hull algorithm

Remembering our earlier nonconstructive, let us now seek mathematlcal results
that will lead to efficient algorithms.

Definition 3.3: A polﬁt p of a convex set S is an extreme point If no two points
a,b € S exist such that p lies on the open line segment (a,b).

Theorem 3.2: [Benson (66)] The set E of extreme points of a finite set S Is the
~ smallest subset of S having the property that hull(E) huli{$), and E is
precisely the set of vertices of hull(S).4 '

It follows that two steps are required to find the convex hull of a finite set:
1. ldentify the extreme points. (This ic Problem P3.2.)
2. Order these polints so that they form a convex polygon.

We need a theorem that will enable us to test whether a point is an extreme point.

Theorem 3.3: A point p Is an extreme point of a plane convex set § uhless it lies

4under our definition of standard form, every hull vertex Is an extreme point
because consecutive collinear vertices are disaliowed.
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in some trlangle whose vertices are in S and Is not a vertex of the trlangle.5

Figure 3.3: Point p Is not extreme because it lies inside ABC.

This theorem provides an algorithm for eliminating points that are not extreme.
There are O(N3) triangles determined by the N points of S. Whether a point lies ina
giveh trlangle can be determined in a constant number of operations (see Appendix
A), so we may learn if a specific point is extreme In O(Na) time.
Repeating this procedure for all N points of S requires O(N4) time. While our
algorithin is extremely inefficient, it is conceptually simple_and demonstrates that
determining whether a point is extreme is decidable. |

‘We have spent O(N%) time just to obtain the extreme points which must be
ordered somehow to form the convex hull. The nature of this order Is revealed by

the following theorems:

Theoiem 3.4: A rav emanating from an interior point of a bounded convex figure F

5This follows immediately from the proofs of Theorems 10 and 11 of [Hadwiger
{64)). The generalization to k dimensions is obtained by replacing "triangie® by
"simplex on k+1 vertices". '
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intersects the boundary of F In exactly one point.6

Theorem 3.5: Consecutive vertices of a.convex polygon occur In sorted angular
order about any interior point.

Proof: Given a' convex polygon P, assume that there exist three consecutive
vertices ABC of P such that the polar angle of B (measured with respect to
some Interior point z and line zA) Is greater than the polar angle cf C. Then any
ray from z which intersects edge BC aiso intersects AB, so by Theorem 3.4 P
cannot be convex as claimed. '

imagine a ray, centered at an interior point z of polygon P, that makes a
counterclockwise sweep over the vertices of P, starting from the positive x-axis.
As It moves from vertex to vertex, the polar anglc-:-7 subtended by the ray'lncreases
monotonically. This Is what we mean by the vertices of P being *sorted". (See
Figure 3.4.) :

Glyen the extreme points of a set, we may find its convex hull by constructing a
point z that is known to be Interior to the hull and then sorting the extreme points
by polar angle about z.

Definition 3.4: The centroid of a finite set of points iIs their arithmetic mean,

(Py + ... 4PN,

Thebrem 3.6: The centroid of a set Is interior to its convex huli.8

BThis is a consequence of [Valentine (64), Theorem 1.10] and the Jordan Curve
Theorem,

7Polar angles are measured in the usual way, counterclockwise from the x-axls.

8That Is, If the Interlor Is nonempty. [Benson (66), exercise 25.15]. "Interior"
refers to the relative (subspace) topology. The convex hull of two distinct points in
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2 Counterclockwise
order

Figure 3.4: The vertices of P occur in sorted order about x.

The centrold of a set of N points in k dimensions can be computed trivially in O(Nk)
arithmetic oberatlons.

A different method of finding an interior noint is due to Graham, who observes that
in the plane the centrold of any three non-collinear points will suffice [Graham
(72)]. He begins with two arbitrary points and examines the remaining N-2 points In
turn, iooking for one that is not on the line determined by the first two. This
process uses O(N) time at worst, but almost always takes only constant time -~ If
§ the points are drawn from an absolutely continuous distribution, then with probabl'llty
one the first three points are non-collinear [Efron (65)].

It is now evident how to proceed If we are given the extreme points of a set S.
g In O(N) time we may find a point r that Is interior to the hul.® 1t only remains tc sort
ii_ the extreme points by polar angle, using r as origin. We may do this by transforming
the points to polar coordinates in G(N) time, then using O(N log N) time to sort, but

RS is a line segment whose Interior is empty In the metric topology of Ra, but
nonempty In the relative topology. | '

9Thls point Is computed, so it is not necessarily one of the given points of S.
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the expiiclt conversion to polar coordinates Is not necessary. {This may be of some
comfort to those readers who are still uneasy about allowing trigonometric functions
in our model of compufatlon.) Since sorting can be performed by pairwise
comparisons, we need only determine which of two given angles Is greater; we do
not require their numerical values. Let us consider this problem in more detall
because it illustrates a simple but important geometric "trick" that Is _uséful in many
applications.

Problem P3.3: (Angle Comparison) Given two points A and B In the plane, which
one has greater polar angle? | '

i » |
;A B subtends a smaller angle than A
s iff it lies in the open wedge AOF.
, .
’
I’ - s B
: 7 PR -
/ P4
0 l’ e’ F
& ® >

Figure 3.5: Comparing Polar Angies Without Coordinate Conversion.

Let F be any point on the positive x-axis -- the point (1,0), for éxdmpléi Point B . .
subtends a smaller angle than A iff it lies in the open wedge AOF. (Refer to Figure
3.5.) To be in this wedge, B must lie both to the right of the directed line segment
OA and to the left of segment OF. Whether a point (x4,y4) lies to the right or left
of the directed segment frem (x,yp) to (x3,y3) can be determined in two
multiplications and five addition/subtractions by evaluating

AREA = (xq-X3)yp-yg) + (x5-x3)yq1-Y3) » (3.2)

which gives twlée the signed area of trlangle 123. (See Appendix A.)
AREA Is positive If i lies to the left of 23, negative if 1 lies to the right, and zero If

]
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the three points are collinear. The angle comparlsoh Involves just two of these
tests. Another Interpretation of the right-hand side of Equation (3.2) Is as the z-
compbnent of the cross product of the two vectors OP and OQ, where O = (xa,ys), P
= (x1 ,Y1 ), and Q = (Xz.Yz).

The detalls of our first convex hull algorithm are now complete. We have shown .
that the problem Is finite and that it can be solved in O(N?) time using oniy
arithmetic operations and comparisons.

3.3. Graham's algorithm

“An algorithm that runs in N4 time will not allow us to process very much data.
Assuming a processor speed of 106 operations per second, the solution of a 1000~
point problem would take almost twelve days. Our goal is to reduce this time to a
mlnlmum', but could it be that the algorithm of the previous sectlon is optimal? There
Is nothing in the mathematlcé so far 'presentedv to Indicate otherwise. If
improvements are to be made, they must come either by eliminating redundant
computation or by taking a different theoretical aopproach. In this section we
expiore the possibility that our algorithm may be doing unnecessary work.

E To determine whether a point lies in some triangle defined by a set of N points, is
’ it necessary to try all such triangles? If not, there is some hope that the extreme
points can be found in less than O(N%) time. R. L. Graham, In one of the first papers
specifically concerned with finding an efficient geometric algorithm [Graham (72)],
showed that performing the sort step first enables the extreme points to be found
in !near Yme. The method he used turns out to be a very powerful tool in
, computa;lona! geometry.

Suppose that we have already found an interior point and transformed the others
(uslng subtractions oniy) so that this point Is at the origin. We now sort the N
points lexicographically by polar angle and distance from the origin. In performing
this sort we do not, of course, compute the actual distance between two points,
since only a magnitude comparison Is required. We could work with distance
squared, avoiding the square root, but this case Is even simpler. If severai points
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share the same polar angle, only the one farthest from the orlgin need be retained
[Graham (72)]. Also, any points that are coincindent with the origin can be
eliminated. |

Vertex B is eliminated
when angle ABC is
fsund o be reflex,

--
- - -
- -
- -
-

Start >

Figure 3.6: Beginning the Graham Scan. '

After arranging the sorted points into a doubly-linked circular list and converting
the resulting polygon to standard form? 0, we have the situation depicted in Figure '
3.6. Note that if a point is' not an extreme point of the convex hull, then it is
interior to some triangle OAC, where A and C are consecutive hull vertices. The
# essence of Graham's algorithm is a single scan around the ordered points, during
i which the Iinterior points are eliminated. What remains are the hull vertices in the
required order.

The'scan begins at the point labelled START which, because of standard form, is
the lowest point of the set and hence is certainly a hull vertex. We repeatedly
examine triples of consecutive points in counterclockwise order to determine |
wh‘et'her or not they define a reflex angle, one that is 2 m. If angle ABC Is reflex,
then ABC Is said to be a right turn, otherwise it Is a left turn. This can be

107pe éonversion to standard form can be accomplished because the polygon is
simple. This point is covered more fully in Section 3.5.
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determined easily by applying equation (3.2). From Property 2.3, we know that in
traversing a convex polygon, we will make only left turns. If ABC is a left turn, we
may check BCD next and no vertices are eliminated. If ABC Is a right turn, then B
cannot be an extreme point because it Is Interior to triangle 04AC. Having eliminated -
8, we must back up the search to the vertex preceding 4. This Is how the scan
progresses, based on the outcome of each angle test:

1. ABC is a right turn. Eliminate vertex B and let Z be the predecessor of A. {f A
# START then check ZAC, otherwise check ACD.

2. ABC is a left turn. Advance the scan and check BCD.:

The scan terminates when It advances all the way around to A4 again. Note that 4 Is
néver eliminated because it is an extreme point. A simple argument shows that this
scan only requires linear time. An angle test can be performed In a constant number
of operations. After each test we either advance the scan (case 1), or delete a
point (case 2). Since there are only N points in the set, the scan can not advance
@ more than N times, nor can more than N points be deleted. This method of
i traversing the boundary of a polygon Is so elegant and useful that we shall refer to
it as the Graham scan. A more precise description of the algorithm Is given below.
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Algorithm A3.1: Graham's Algorithm ("Always go left") |

1. Find an interior point p.

2. Using p as the origin of coordinates, sort the points
lexicographically by polar angle and distance from p.

3. Arrange them into a circular doubiy-linked list in standard
form, with START pointing to the initial vertex. The RLINX
associated with a nnde points to its successor in the list.
and LLINK points to its predecessor (as in [Knuth (68)], page
278). LLINKISTART] = START.

4. (Scan)
YPTR«START;
" WHILE (RLINKIVPTR] = START) DO BEGIN
IF the 3 vertices beginning at YPTR form a left turn
THEN YPTRRLINK{VYPTR];
ELSE BEGIN
DELETE (RLINK[VPTR]);
VPTR « LLINKIVPTRI; (Back track.)
END
END

(DELETE is a procedure that removss an item from a
doubly-linked circular list,)

5. The list nou contains the hull vertices in sorted order.
Theorem 3.7: [Graham (72)] The convex hull of N points points in the plane can

be found in O(N log N) time and O(N) space using only arithmetic operations and
comparisons.
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Proof: From the above discussion, only arithmetics and comparisons are used in
Graham's algorithm. Steps 1, 2, and 4 take iinear time, while the sort step, 3,
which dominates the computation, requires O(N log N) time. O(N) storage

_ suffices for the linked list of points. | ‘ |

While this algorithm Is a vast improvement over our first N4 attempt, its optimality,
which was not considered by Graham, remains in doubt. It is this question that we
turn to in the next section. ' '

3.4. A convex huli iower bound

"Thou hast set a bound that they may hot pass
over." ' _
- Psalm 104.

; A lower bound on the complexity of a problem defines the minimum number of
operations, In a given model of computation, that suffice to solve it. The importance
| of obtalning such a result should not be underestimated because it may warn us
that a proposed line of research will be fruitless. Having found an O(N log N)
convex hull algorithm, how are we to proceed? In the absence of a lower bound we
have no way of knowing whether a faster algorithm Is possible and may spena

considerable time trying to find one. | |

The fact that Graham's algorithm contains a sort step does not imply an
QN log N) lower bound for the convex hull problem. It does not even exclude the
possibility that some clever implementor may find a way to perform the Graham scan
without the initial sort step. What this means is that we should not look at specific
algorithms for lower bound ideas, but concentrate instead on structural features of
the problem itself. Theorem 3.5 should give us pause, for it states that the
vertices of a convex polygon occur in sorted angular order. This seems to imply
that any convex hull algorithm must be able to sort, a conclusion that we must
demonstrate formally.
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Theorem 3.8: Sorting s linear-time reducible to the convex hull problem;
therefore, finding the convex hull of N points In the plane requires Q(N log N)

Proof: We exhibit the i'edut:lblllty; the conclusion follows from Theorem 2.1.
Given N real numbers xi,....xN all positive, we must show how a convex hull
algorithm can be used to sort them with only linear overhead. Corresponding to
the number Xi, we construct the point (x,.xlz) and assoclate the number | with
it. All of these points lie on the parabola y = x2, The convex hull of this set, in

" standard form, will consist of a list of the points sorted by abscissa. One pass
through the list will enable us to read off the x, In order.12

Because the transformation involves only arithmetic operations, Theorem 3.8 holds
g In many computational models; namely, those in which multiplication Is permitted and
: _sorting Is known to require §}(N iog N) time. It applies in all dimensions greater than
onew, as can be seen by considering any set of N distinct points on the
intersection of the hyperplane X = 0 and the unit hypersphere. Whils this lower
bound is quite elementary, it Is included here to Introduce reducibllity as a way of
establishing the connection between a geometric problem and a combinatorial one.

Suppose now that we are only interested in finding the extreme points of a set
(Problem P3.2). The reader should see iminediately that the above theorem falils to
provide a lower bound, since It Is based completely on the fact that the hull
vertices are sorted and Is of no use If we drop the orderinig requirement. It is stil
unknown whether PLANAR EXTREME POINTS is easier than CONVEX HULL.

11y similar result appeared as a question on the 1872 Yale Department of Computer
Science Qualifying Examination.

127he author originally proved this theorem by mapping the x; onto the unit circle.
The parabola mapping, suggested by Stan Eisenstat, Is superior because It Is
rational and requires only a single arithmetic operation. :

181he convex hull of a set of points in one dimension is the smallest interval that
contains them, which can be found in linear time.
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3.5. A diversicn -~ simple closed polygonal paths.

Before continuing with more convex hull material, let us look at an unexpected
dividend of Graham's algorithm.

Problem P3.4: (Simple Polygonal Path [Gemignani (66)]) Given N points In the
plane, are they the vertices of a simple polygon? If so, construct it.

@ The number of distinct polygons that result from all possible orderings of the points
is at most (N-1)!/2. In the set of N! a priori orderinns, each polygon appears N
o times because of cyclic shifts and twice because clockwise and counterclockwise
B orderings yleld the same polygon. In Chapter 5, an O(Nlog N) algorithm Is
s presented to test whether a polygon is simpie. Thus we could generate all of these
| polygons and test to see if any are simple, so the problem has a finite algorithm, but
its running time Is O(N! N log N).

Theorem 3.9: The shortest closed route through i points in the plane Is non self-
intersecting uniess all the points are collinear.14

Finding this shortest circuit is known as the Euclidean Traveling Salesman Problem
and is the subject of Section 6.1.5. The problem Is NP-complete, and the
@ best known algorithm requires 0(N22N) time [Beliman (62)]. Since a shortest circuit
always exists, iiowever, we now know that every set of points in the plane is the

vertex set of some simple polygon.'S A remarkably fast procedure for finding a

f?"-'; simple polygon on any set of points Is suggested by the first three steps of
¥ Graham's algorithm, in which we compute an interior point and sort the given points
by polar angle and radius. If the polar angles of all the points are distinct, the

14American Mathematical Monthly, Problem E880, April, 1950, page 261. [Sanders
(76)] contains a characterization of those metric spaces in which tha theorem
i remains true.

15Except for degenerate sets, as usual, in which all points are collinear.
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Figure 3.7: Constructing a simple polygon on a finite plane set.

resulting list forms a simple polygon, since the points occur In strictly increasing
angular order and thus edge intersections are precluded. If several points share a
common polar angle, It Is necessary to sort them Into a sequence by radlus.
Suppose that there are k distinct polar angles and that ny points share the jth
angle. Let these points be arranged Into a chain Cj such that the first point has
least radius and the last point has largest radius. Then concatenating the chains
C4...Ck In order and joining the last vertex of Cy to the first vertex of Cq will.
produce a simple polygon. (See Figure 3.7.)

Theorem 3.10: A simple closed polygonal path through N points In the plane can
be 7ound in O(N log N) time, and this is optimal,18

Proof: The algorithm described above is easily seen to run in O(N log N) time; the
fact that it always produces an SCPP follows from a slight modification of the
proof of Theorem 3.5. To demonstrate optimality, we show that

SORTING oty SCPP

16[F{elngold (72b)] contains a statement (without proof) of this theorem and a clalm
“that the problem cannot be solved at all if only comparisons are allowed.
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Consider an unordered set in the plane consisting of N points x; on the x-axis
and the single point (0,1). There is only one SCPP through these points, namely
the one that begins at (0,1), passes through all of the xj In Increaslng corder,
and returns to (0,1). Thus any algorithm which finds this SCPP must sort the x;.

3.6. Jarvis's Algorithm

Eveh though we have shown that Graham's aigorithm Is optimal, th_ere are still
many reasons for continuing to study the convex hull problem:

1. The algorithm Is optimal in the worst case sense, but we have not yet a‘nquzed"
its expected performance. '

2. Because it is based on Theorem 3.5 which applies only in the plane, the
algorithm does not generalize to higher dimensions.

3. It is not on-iine since all points must be sorted before processing begins.

4. For a parailel environment, we would prefer a recursive algorithm that allows
the data to be split into smaller subproblems.

Just as the study of sorting reveais that no single algorithm Is best for all
applications, we will find the same to be true of hull-finding. Let us continue to
"‘;’ explore combinatorial geometry, looking for ideas that may lead to other hull
& algorithms.

A polygon can equally well be specified by giving its edges in order as by giving
its vertices. In the convex hull problem, we have concentrated so far on isolating
& the extreme points. If we try instead to identify the hull edges, will a practical
'_f'f‘ algorithm result? Given a set of points, it Is fairly difficult to determine quickly
whether a specific point Is extreme or not. Given two points, though, it is
straightforward to test whether the line segment joining them is a hull edge.
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AB is a hull edge because
all points of the setl lie to
one side of it.

CD is not a hull edge because |
there are points on both
sides of it.

Convex
HU" —

’.._..___.....

Figure 3.8: A huil edge cannot separate the éet.

Theorem 3.11: [Sfoer (70), Thecrem 2.4.7] The line segment L defined by two
points of the set is an edge of the convex hull iff all other points of the set lie
on L or to one side of it.

There are ('é) = O(N2) lines determined by all pairs of N points. For each of these
lines we may examine the remaining N-2 points and apply eauation (3.2) to
determine in linear time whether the line meets the criteria of the theorem. Thus In
O(N3) time, we are able to find all pairs of points that define hull édges. Itis then a
simple matter to arrange these Into a list of consecutive vertices.

Jarvis has observed that this algorithm can be improved if we note that, once we
established that segment AB is a hull edge, then another edge must exist with B as
an endpoint [Jarvis (73)]. His paper shows how to use this fact to reduce the time
required to O(N2) and contains a number of other ideas that are worth treating in
detall.

Assume that we have found the lexicographically lowest point A of the set as in
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The algorithm of Jarvis
finds successive hull
vertices by repeatedly
turning angles.

Each new vertex is
discovered in O(N)
time.

Figure 3.9: The Jarvis March for Constructing the Convex Hull.

Section 2.2. (See Figure 3.9.) This point is certainly a hull vertex. We
now wish to find the next consecutive vartex B on the convex hull. This point will
be the one that has the least polar angle with respect to A as origin. If we now
take B as origin and let the vector AB define the direction of zero poiar angie, then
the next point C is the one that subtenés' the smallest polar angle about B, and
each successive point can be found similarly in linear time. Jarvis's algorithm
marches around the convax hull, finding extreme points in order, one at a time. This
process will be referred to as the Jarvis March. Each new point is found by
measuring angles with respect to the last direction traversed. As we have already
seen In Section 3.2, the smallest angle can be found with arithmetics and
comparisons alonhe, without actually computing any polar angies.

Since all N points of a set may lie on its convex hull, and Jarvis's algorithm
expends linear time to find each hull point, its worst-case running time is O(i\iz),
which is inferior to Graham's. However, if h is the actual number of vertices on the
convex hull, Jarvis's algorithm runs in O(hN) time which is very efficient If h is
known in advance to be small. For example, if the hull of the set is a polygon of any
constant number of sides, we can find It in iinear time. '
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| Finding successive huil vertices by repeatedly turning angles Is analogous to
 7 wrapping a two-dimensional package, but the idea generalizes to k dimensions.
. Such a "gift-wrapping" algorithm was given [Chand (70a,b)] even before the
appearance of Jarvis's paper. In three dimensions It suffices to identify all of the
hull edges. Given one edge E, we may find an adjacent edge F by rotating thé
| plane contalning E until a new point of the set is reached. If several points are
reached simultaneously, they all lie on the same hull face and a two-dimensional
problem results for that face. Since each rotation takes only linear time and a
R convex polyhedron on N vertices has at most 3N-B6 edges, the convex hull can be
8 found in O(N2) time. '

In dimensions higher than three, the distinction between finding the hull (Including
all hyperfaces) and just isolating the extreme points becomes Important because

i the convex hull of N points In k dimensions may consist of up to (ﬁ) = O(Nk).
hyperfaces. Thus any convex hull algorithm must, in the worst case, exhibit
W performance that Is exponentlal in dimension. The Chand-Kapur algorithm is a way
‘@ of organizing the search for hyperfaces so as to reduce overhead,

E 3.6.1 Average-case analysis

Graham's convex hull algorithm always requires O(N log N)‘tlmeﬂ'.- regardiess of
the data, because its first step is to sort the Input. Jarvis's algorithm, on the other
hand, uses time that varies between linear and quadratic, so it makes sense to ask
how much time it can be expected to take. The answer to this question will take us
into, the difficult but fascinating fieid of stochastic geometry, where we will see
some of the difficultles associated with analyzing the average case of gecmetric
algorithms.

Since Jarvis's algorithm runs in O(hN) time, where h is the number of hull vertices,
to analyze its average-case performance we need only compute E(h), the expected
value of h. In order to do this, we must make some assumption about the probability

17 any model of computation for which sorting Is known to require this much time.
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= distribution of the input points. This problem brings us into the province of
| stochastic geometry, which deals with the properties of random geometric objects
and Is an essential tool for dealing with expected-time analysls‘a. We would like
to be able to say, "Given N points chosen uniformly in the plane...", but technical
difficulties make this Impossible -- elements can be chosen uniformly only from a set
of bounded Lebesgue measure [Kendallh (63)] -- so we are forced to specify a
| particular figuré from which the points are to be selected. Fortunately, the problem
of calculating E(h) has received a good deal of attention Iin the statistical literature,
and we quote below a number of theorems that will be relevant to the analysis of a
number of geometric algorithms.

Theorem 3.12: [Renyi and Sulanke (63)] If N pglnts are chosen uniformly and
independently at random from a plane convex r-gon, then as N = 00,

E(h) = (2r/3) (7 + loggN) + O(1),

where ¥ denotes Euler's constant.

Theorem 3.13: [Raynaud (70)] if N points are chosen uniformly and
independently at random from the interior of & k-dimensional hypersphere, then
as N = 00, E(f), the expected number of hyperfaces of the convex hull, is given
_asymptotically by '

E(f) = o(ntk-1)/{k+1))

8§ This implies that

E(h) = O(NY/3) for points chosen uniformly in a circle, and

E(h) o(N1/ 2) for polnts chosen uniformly in a sphere.

18¢onsult [Santalo (76)] for a monumental compilation of results in this field,
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Theorem 3.14: [Raynaud (70)] If N points are chosen |ndependehtly from a
k-dimensional normal distribution, then as N - o, the asymptotic behavior of
E(h) Is glven by

: E(h) = Of (log N)(k=1)/2) |

Theorem 3.15: [Bentley (77c)] if N points in k dimensions have their
components chosen lﬁdependenﬂy from any set of continuous distributions
(possibly different for each component), then

E(h) = O( (log N)k=1) .

Many distributions satisfy the conditions of this theorem, including the uniform
distribution over a hypercube,

The surprising qualitative behavior of the hulls of random sets can be understco
intuitively as follows: For uniform sampling within any bounded figure F, the hull of a
random set tends to assume the shape of the boundary of F. For a polygon, points
- accumulating In the "corners" cause the resulting hull to have very few vertices.
Because the circle has no corners, the expected number of hull vertices is
comparatively high, a!though the author knows of no elemer{tary explanation of the
n1/3 phem::menon.19 '

19The expected number of hull vertices of a set of N points can be expressed as
the integral of the NP power of the integral of a probabllity density. [Efron (65)]

: What is of interest Is not the value of this quantity, but its asymptotic dependence

on N.
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it follows directly from these resuits that the expected time used by Jarvis's
| algorithm can be described by the following table:

Distribution Average-Case
Uniférm in a convex polygon O(N log N)
Uniform in a circle D(N4/3)

Normal in the plane OIN (log N11/2 )

Table 3.1. Average-Case Behavior of Jarvis's Algorllthm.

: Note that for the normal distribution, Jarvis's algorithm can be expected to take
$ slightly less time than Graham's.

B Al of the distributions considered in this section have the property that the
expected number‘_of extreme points in a sample of size N Is O(NP), for some
B constant p < 1. We shaii refer to these as NP-distributions.

Jarvis's original paper outiines some improvements tc his procedure that reduce
( ts running time 'conslderably.zo They are based on the fact that once a point has
7? been found to be interior to the convex hull, it can be eliminated from furthgr
i consideration. Suppose that.we have already found hull points A, B, and C and are
m Searching for vertex D, the successor of C. To do this we will examine N-3 points,
but all those interior to triangle ABC can be deleted during the search. Likewise,
when we scan for vertex E, all points within triangle ACD can be removed forever.
Note that the test for inclusion in triangle ACD reduces to asking on which side of
i line AD the point lies. Figure 3.10 illustrates this process.

20These modifications were not taken into account in our average-case analysis

because they do not affect the asymptotic average running time for centrally
symmetric distributions. |
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During the scan for vertex
D, all points interior to
triangle ABC are eliminated
from further consideration,

In the scan for E, the
points inside triangle
ACD are removed, efc.

Figure 3.10: Eliminating points that are interior to the hull

3.7. A linear expected-time algorithm

We now develop in detail a linear expected-time convex hull algorithm that is also
worst-case optimal, It is based on a divide-and-conquer idea that Is simple but
remarkably powerful, and which generalizes to higher dimensions.

A first step in applying the method of divide-and-conquer, which we shall refer to
from here on as D&C, is to invoke the principle of balancing [Aho (74), page 65],
which suggests that a computational problem should be divided into subproblems of
nearly equal size. Suppose that in the convex hull problem, we have split the input
into two parts, A and B, each containing half of the points. If we now find hull(A)
and hull(B) separately but recursively, how much additional work is needed to form
huli(A U B), that is, the hull of the original set? To answer this we may use the
relation ' :

hull(A U B) = hull(huli(A) U hull(B)) . | (3.3)
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HULL(S) =
HULL(HULL(A) U HULL(B))

By dividing S into two
subsets and finding their
hulls recursively we can
reduce the problem to
finding the hull of the

. union of two convex
polygons.

Figure 3.11: Forhing the hull by divide-and-conquer.

&  While at first glance equation (3.8) seeins to involve more work than Just finding
- - & the hull of the set directly, it is crucial to note that hull(A) and hull(B) are convex
® polygons, not just unordered sets of points. (See Figure 3.11.)

- Problem P3.5: (Hull of Union of Convex Polygons) Given two convex polygons,
v find the convex huli of their union. '

Algorithm A3.2: Convex Hull

1. Partition the original set S arbitrarily, but as equally
as possible, into tuwo subsets A and B.

2. Recursively find the convex hulls of A and B,

3. Merge the two hulls together to form hull(S).
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Let U(N) denote the time needed to find the hull of the union of two convex
polygons, each having N/2 vertices. If T(N) is the time required to ﬂ_nd the convex

hull of a set of N points, then applying equation (3.3) gives .
T(N) € 2T(N/2) +U(N) , T(1) = const., (3.9)

whose solution depends on the 'form of U(N):v

Lemma 3.1: If T(N) obeys the recurrence relation (3.4),

if  U(N) = O(N), then T(N) = O(N log N).

If  U(N) O(N/log N), T(N) = O(N log iog N).

Iif U(N) S O(NP), p < 1, then T(N) = O(N).

Proof: An easy Inductive exercise as in [Aho (74), Chapter 2].

It now remairs to develop an algorithm for forming the hull of the union of two
convex polygons. We will make use of the property that the vertices of a convex
polygon occur in sorted order about any interior point (Theorem 3.5) and the fact
that the Graham scan runs In linear time if presented with a list of va_rtlceé that are
sorted by polar angle.

Algorithm A3.3: Hull of the union of convex polygons

1. Find a point p that is interior to A. (For example, the ceﬁtrold of any three
vertices of A.) This point p will be interior to hull(A VU B).

2. Determine whether p Is Interior to B. This can be done in O(N) time by the
method of Section 4.2, If p is not interior, go to step 4.

3. (p Is Interior to B; see Figure 3.12.). By Theorem 3.5, the vertices of
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both A and B occur in sorted angular' order about p. We may then merge the
lists in O(N) time [Knuth (73)] to obtain a sorted list of the vertices of both A

and B. Go to step 5.

4, (p is not interlor to B; see Figure 3.13.) As seen from p, polygon B lies
in a'wedge whose apex angle is £ 7. This wedge Is defined by two vertices v
and v of B, which can be found in linear time by the following procedure:
Construct a horizontal line through p. If this line Intersects B to the right of p,
then B lies in the wedge determined by the vertices of B that have greatest
polar aﬁgle < /2 and least polar angle > 37/2. The case in which B lies to the
left of p Is similar. If the horizontal line through p does not intersect B and B
lies above it, the wedge Is determined by the vertices that subtend the largest
and smallest polar angles about p. (The case in which B lies below is
énalogous.) The two vertices defining the wedge B into two chains of vertices
‘that are monotonic In polar angle about p, one in‘creaslng in angle, the other
decreasing. Polygon A together with the two chains of B constitute three
sorted lists that contain a total of N elements. These can be merged in O(N)
time21 to form a list of the vertices of AV B; sorted about p.

5. Thé Graham scan (step 4 of Algorithm A3.1) can now be performed. This
~ requires only linear time to yield the hull of AU B. -

Theorem 3.16: [Shamos (75a)] Algorlthm A3.23 correctly finds the convex hull
of the union of a convex n-gon and a convex m-gon in O{n + m) time.

Proof: Once we have the vertices In sorted angular order about p, correctness
follows from Graham's algorithm. Step 1 requires only constant time and
correctly.ﬂnds an interior point of A by Theorem 3.6. Step 2 requires O(n) time
and its correctness Is a consequence of Theorem 4.2. Step 3 or 4
(whichever Is executed) requires O(n +m) time. Since only m + n vertices
remain at Step 5, O(n + m) time suffices for the Graham scan (Section 3.3).

2_1SInce two sorted lists of length N can be merged in O(N) time, the same Is true of
# three lists, '
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Since p lies inside both -
polygons, the vertices of
B A and B occur in sorted
order about p and can be
merged in linear time.

Figure 3.12: Point p lies inside B."
Theorem 3.17: Algorithm A3.2 runs in O(N log N) time, in the worst case.
"Proof: Lemma 3.1 and Theorem 3.16.

Tne recurrence relation: (3.4) describes the worst-case running time of our
convex hul algorithm In any dimension k, if U(N) is taken to be the time required to
form the hull of the union of two convex polytopes in Rk, each having N vertices.
a2 Preparata and Hong [Preparata (77b)] discovered a variant of Algorithm A3.3
i Independently and have used it to show that U(N) = O(N) even in three d!menslons,
R and they are thus able to obtain an O(N log N) convex hull algorithm in RS,

i We now show that Algorithm A3.3 runs in linear expected time over a wide class
I of probability distributions, if some care is taken in its impiementation. The proof is
based on the fact that the expected time needed to merge the two subproblem
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As seen from p, polygon B
lies in a wedge defined by
vertices u and v, which
partition B info {wo chains ,
of veriices that may be merged
with the vertices of A in -
linear tims.

Figure 3.13: Point p Is exterlor to B.

solutions s sublinear, requiring only O(NP) time for some p <1. Since the
expectation operator distributes over addition, we may rewrite (3.4) as

TY(N) € 2T7(N/2) + U*(N) (3.5)

where starred quantities denote expected values. This equation wili be correct for

; ':i'{ a particular probability distribution if we are able to guarantee that the subprobiems

are also from this distribution, which will justify writing the same function T* on both
sldes. This can be assured by assigning points randomly to the subproblems, so the

‘B analysis reduces to determining U™(N).

By Theorem 3.16, U(N) Is linear in the total number of vertices In the hulls to be
merged, so U*(N) is linear in the expected number of vertices involved. Al of the:

distributions discussed in Section 3.6.1 have the property that E(h) = O(NP), for

some p € 1. Thus, .
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T(N) S 2T7(N/2) + O(NP) = O(N) . (3.8)
Let us review the algorithm, this time including implementatior details:
Algorithm A3.4: Linear Expected-time Convex Hull .

1. Apply a random permutation to the Input points and arrange themin a 2 x N
array of x- and y-coordinates. Note that a subproblem may be specified by

sequence of points, and that each such subproblem Is random [Knuth (71)].

2. Recursively find the convex hulls of the first and last N/2 points. In the
recursive calls to the hull procedure, it Is essentlal to pass only two pointers to
the point array. Copying entire subproblems would use O(N log N) time overall.
It is essential to avoid this. '

3. The solutions obtained to the subproblems in Step 2 are expected to be small,
i.e., for a large class of distributions, only O(NF) points remain. These hulls can

small, the subproblem solutions may themselves be passed by copy to the hul_i-
union procedure, which Is not recursive.

The algorithm can also be implemented bottom-up to avolid explicit recursion by
‘@ working on sets of four points, then eight, etc. This would be the implementation of
B choice, but the algorithm is much easler to understand recursively.

Theorem 3.18: [Bentley and Shamos (77b)] For the distributions discussed In
Section 3.6.1, the convex hull of a sample of N points can be found in O(N)
expected time in both two and three dimensions.

B [Preparata (77b)].

giving two pointers into this array, denoting the teft and right indices of a . '

be merged in O(NP) expected time by using Algorithm A3.3. Because they are.

The result In three dimensions follows from the linear polyhedron merge of
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38 The On-Line Problem

Each of the convex hull algorithms we have examined thus far requires all of the '
data points to be present before any processing begins. In many geometric
-appilcations, particularly those that run in real-time, this condition cannot be met
and some computation must be done as the points are belng recelved. In general,
an algorithm that cannot look ahead at its input is referred to as on-line, while one '
that operates on all the data collectively Is termed off-/ine,

Problem P3.6: (On-Line Convex Hull) Given N points In the plane, py,..., P find
their convex hull in such a. way that after p; is processed, the hull of the first |
points can be output in O(i) time.

The algorithm must maintain some representation of the hull and update it as points
arrive; the question is whether this can be done without sacrificing O(M log N)
worst-case running tlme_for processing the entire set.

The answer was recently shown by Preparata to be affirmative:

3  Theorem 3.19: [Preparata (77e)] - The convex hull of N points in the plane can
’ be found on-line with an interpoint processing delay of at most C{iog N).

§ 3.9. The Hull of a Simple Polygon

Sklansky has shown that a scan similar to Graham’s can be applied to a simple
@ polygon, '

Theorem 3.20: [Sklansky {72)] The convex hull of a simple polygon can be
found in O(N) time.
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8 3,10. Convex Hull Applications

"You know my methods, apply them.”
- Sherlock Holmes.

'This section Is devoted to a discussion of applications that require computation of

the convex hull. New problems will be formulated and treated as they arlse In these

"B applications. Thelr varlety should convince the reader -that the hull problem is
important, both in practice and as a fundamental tool in computationai geometry.

3,10,1 Statistics

| The connection between geometry and statistics Is a close one because a
‘multivariate statistical sample can be viewed as a set of points in Euclidean space.

";_In this setting, many problems in statistics become purely geometric ones. For

example, linear regression asks for a hyperplane of best fit In a specified norm.
Certain problems in voting theory reduce to finding which k-dimensional hypersphere
B contains the most points of a set.22 A survey of geometric techniques in statistics
8 Is given In [Shamos (76a)]. Determining the convex hull is a basic step in several
?}_’ statistical problems which we treat separately in the next few paragraphs.

®3.10.2 Robusti Estimation

| A central problem In statistics is to estimate a population parameter, such as the
8 mean, by observing only a small sample drawn raﬁdomly from the population. We say
B that a function t Is an unbiased estimator of a parameter P if E[t] = P, that Is, the
g expected value of -t is precisely P [Hoel (71)]. While the sample mean is an
f unblased estimator of the population mean, it is extremely sensitive to outllers,

22[ Johnson (77)). The word "reduce" may be misleading here because the final
@ problem is NP-complete.
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observations that lie abnormally far from most of the others. It Is desirable to
reduce the effects of outliers because they often represent spurlous data that
would otherwise Introduce errors In the analysis. A related property that a good
estimator shqu_ld enjoy is that of robustness, or insensitivity to deviations from the
assumed population distribution. Many such estimators have been proposed
[Andrews (72a)]. An important class, known as the Gastwirth estimators [Gastwirth
(66)], are weighted means of symmetrically-placed order statistics and are based
on the fact that we tend to trust observations more the closer they ‘are to the
center" of the sample. '

Consider N points on the line. A simple method of removing suspected outliers Is
to remove the upper and lewer ot-fraction of the points and to take the average of

the remainder. This is known as the e«¢-trinmed mean, and is a special case of the
Gastwirth estimator, '

N N
T - Z w X . z W, = 1 s . (3.?)
& (Kl ()] = et .
where X(1) denotes the Ith smallest of the X} Thé ct-trimmed mean Is just the case

wp = 1/(1+(1-2N) ,  oNZIS (1-00N.

o« = 0.2 {(The upper and lower 207 of the points ;fo removed.)

tr—ﬁ7l\-- e

- -~ Only these points remain ---- -l

Figure 3.14: The ct-trimmed mean,

Any trimmed mean can be. computed in O(N) time (using a linear selection
algorithm) and ény Gastwirth estimator in O(N log N) time (by sorting), but what are .
their analogs In higher dimensions? Tukey has suggested a procedure known as
"shelling", or "peeling”, which involves stripping away the convex hull of the set,
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then rembving the convex hull of the remainder, and continuing until only (1f206)N'
points remain [Huber (72)] This procedure motivates our next definition and

problem:

Definition 3.5: The depth of a point p in a set S Is the number of convex hulls
that ‘-have to be stripped from S until p is removed. Points which lie on & hull
but are not extreme have the same depth as extreme points. The depth of S is .

the depth of its deepest point.

S~~< Depth 3

Point P is st depth 2

Figure 3.15: The Depth of a Point

Problem P3.7: (Depth of a Set) Given a set of N points In the plane, find the
depth of each point.

Theorem 3.21: Any algorithm that determines the depth of each point In a set
must make (N log N) comparisons in the worst case.

Proof: Consider a one-dimensional set. Knowing the depth of each point, we can
sort the set in only O(N) additional comparisons. In any dimension we can force
- a depth algorithm to sort and thus prove that
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SORTING ofy DEPTH .

Suppose we are glven N real numbers Xy 2 0. In two dimensions, create the set
of 4N points (x;,0) V (0,x;) V (~x;,0) V (0,-x;). It is easlly seen that the depth
number of a point Is the rank of its corresponding x;. The construction
generalizes to higher dimensions but requires 2kn points in dimenslon k.

The question remains as to whether the depth of a set can be found faster than
the depths of all of Its points. The following results show that under a restricted
model of' computation this is impossible even in one dimension. We will explore tha
connection between depth and a basic question in set theory.

Problem P3.8: (Element Uniqueness) Given N real numbers, are they all distinct?

The problem may be solved easily in O(N log N) comparisons by sorting, but there is
no obvious way to show that sorting Is required.

" Theorem 3.22: [Dobkin (76b)] Determining whether N real nurﬁbers are distinct
" requires (N log N) comparisons if only polynomial functions of bounded degree
can be computed. '

Theorem 3.23: Any algorithm which finds the depth of a one-dimenslonal set must
make at least (N log N) comparisons in the worst case.

Procf: We show that ELEMENT UNIQUENESS oty SET DEPTH, and the result
follows from Theorem 3.22. (See Section 5.4.2.) Given N real numbers -
xj, find the depth of the one-dimensional set S they determine. If N is odd,
then the x; are distinct iff DEPTH = (N-1)/2. If N is even, then let M be a
number that is larger than any element of S. Such an element can certainly be
found in O(N) time by computing 1 + max{S}. Now the x; are distinct Iff
DEPTH(S U M) = N/2. |
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Unfortunately, no known algorithm achieves the (N log N) lower bound in two or

more dimensions. The procedure below runs in O(Nz) time and operates by repeated
application of the Jarvis march (Section 3.8).

Algorithm A3.5: Set Depth

DEPTH « O; .
WRILE S. is nonempty DO BEGIN
DEPTH « DEPTH + 1;
Find Hull(S) using Jarvis' Algorithm;
Label all hull vertices with DEPTH and
delete them from S;
END

Begin depth 4 scan

»Begin depth 3 scan

Begin depth 2 scan —2

N\
Start —>

Flgure 3.16: Finding depths by repeating the Jarvis March.

Theorem 3.24: Algorithm A3.5 runs in O(N2) time in the worst case.
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Proof:

Let h; be the number of vertices of depth i. By the results of Section 3.6,
the ith iteration of the 'WHILE-loop can be performed in chN; time, where N; Is
the number of vertices remaining in S before the ith |teration and c Is a
constant independent of N:

i-1
N o= N- D b,
1=
The total run time Is given by
8
0 = 2 enly = 2 en(N- 2k ) < o).

To use this algorithm for peeling, we need run it only until 2&¢(N points have been
trimmed. An O(N log N) algorithm would be of great interest for this problem. There
are Indications that peeling may also be useful for detecting outliers [Frledman_

(78)].

3.10.3 Chebyshev approximation

In this section we study Chebyshev approximation of a finite set of points in the
plane and obtain a fast algorithm for the case in which the approximating function is
also linear. The distance between a point and the value of the approximating
function at the point is called the deviation. In the Chebyshev, or Loy, nori this is
the y-distance between the point and the apprc.dmating line y = ax + b. We want
to minimize the maximum deviation by finding parameters a and b defined by

in max -ax;=-%y . 3.8
min max |y -axi-ky (3.8)

The probiem is now completely geometric:
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Problem P3.9: (Chebyshev Approximation) Given N points In the plane, find the
line L that minimizes the maximum y-distance to any polnt.23

Naturally, this problem has been studied a great deal, and a combinatorial
characterization of the minimizing line exists: '

Theorem 3.25: [Rice (64), Corollary 3-5] A line L is the Chebyshev
approximant to a finite set S of points in the plane iff it maximizes the
deviation of a best Chebyshev approximation among all subsets consisting of 3
points of S. :

Any set of poinis satisfying Theoremx 3.25 will be known as Chebyshev points. The
best approximation to three points can be found by solving a system of linear
equatlons in the three variables a, b, and d, the deviatlon.24

ax; + b - y; = -d
an + b - Qj - d
axy + b - Ue = -d

Since this set of equations can be solved in a constant number of operations,
Theorem 3.25 provides us with an O(N3) algorithm for Chebyshev approximation.

We can do much better by exploring the relationship between the minimax
approximation and the convex hull of the given point sat.25 In this connection It
will be useful to define a different geometric device:

Definition 3.8: A line L is a line of support of set S Iif ltAmeets the boundary of S
and S lies entirely on one side of L.

23The required line is unique if all of the points have distinct x-coordinates, which
we assume throughout this section. See [Rice (64), page 60].

2""Agaln. only If x;, Xjs and Xy are distinct. This follows directly from the Chebyshev'
Equioscillation Theorem. [Davis (63), Theorem. 7.6.2].

257he author is indebted to Gideon Yuval for this suggestion.
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In Flgﬁre 3.17, line L supports the polygon, but lines M and N do ::ot.

L supports P,
_ M and N do not.

Flgure 3.17: Line L is a supporting line of P.

4/

Figure 3.18: The two lines of support parallel to L.
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Theorem 3.26: Every line of support of a closed and bounded convex set passes
through an extreme point. '

Proof: Let L support S. Consider the intersection T of L and S. élnce S Is closed
and bounded, T is either an interval or a single point. If T is a single point it
must be extreme or there wauld have to be points of S on both sides of L. If T
is an interval, its endpoints are extreme. '

. Theorem 3.27: [Yaglom (61), page 8] Parallel to a given direction, a bounded
convex figure possesses exactly two lines of support.

' Theorém 3.28: The supporting lines of P parallel to a given direction can be found ‘
in O(log N) time.

Proof:_Let the given direction lie at angle 3 witit respect to the x-axis. A line of
support through vertex v; lies between edges Vj-1V; and vjv, ¢ in angle. Since
the edges of a convex polygon occur in sorted angular order, we may find the
positions of angles B8 and 7 + 8 in O(iog N) time by binary search, if the
vertices are stored In a linear list or-balanced tree.

The following theorem enables us to work only with hull points, which is not the case
InL4 and L approximation [Shamos (76a)]:

Chebyshev triangie

Figure 3.19: The Chebyshev points are also hull vertices.
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Theorem 3.29: There exists a set of Chebyshev points of a finite set that are
vertices of its convex hull and two of these points are consecutive on the hull.

Proof: Let us call the three Chebyshev points the Chebyshev trlangle.26 '
Consider the lines of support of the Chebyshev triangle parzllel to the
Chebyshev line. We claim that they also support the original set, for if not,
then there Is some boint whose deviation from the approximating line exceeds
that of any Chebyshev point, which is impossible. This shows that at least two
of the Chebyshev points are extreme. By the equioscillation property, the third
point, C, must have a y-deviation equal to that of one of the other two points,
say A. Thus the line of support through A also passes through C, so C must be
extreme. It is immediate that segment AC Is an edge of the convex hull of S.

" (Figure 3.19.) ’

Theorem 3.29 is the basis of the following aigorithm:
Algorithm A3.6: Linear Chebyshev appioximatlon In two variables
1. Find the convex hull of the set in O(N log N) time.

2. Traverse each hull edge in order, finding the opposing vertex though which a
parallel supporting line passes, and record the y-distance from this vertex to
the extension of the hull edge. This scan requires only O(N) time. Tha hull
edge and opposing vertex that achieve maximum y-distance give the
Chebyshev points, from which the optimal approximating line can be found in
constant time.

. Theorem 3.30: O(N log N) time suffices to perform Chebyshev approximation on N
peints in the plane.

26Also an area in the Sea of Okhotsk into which Russian mathematicians have been
- known to disappear. See Durok, S., Zh. Nedostat. Mat. 7(1932), pp. 22-23.
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Proof: By constructing a parallel line of support, Algorithm A3.6 finds, for every
pair of consecutive hull vertices, a third point that maximizes the deviation. By
Theorem 3.29, this is sufficient to find at least one Chebyshev triangle.

Theoré‘m 3.37: [Cf. Theorem 3.18] Chebyshev approximation in the plane can
be performed in O(N) expected time;

3,104 Least-squares Isotonic regression

The problem of Isotonic regression Is to find a best isotone (that is, monotone

| non-increasing or non-decreasing) approximation to & finite point set. The error
norm "usually chosen iIs Ly, or least-squares, becau’ée of its connection with

maximum likeiihood estimation.27 In other words, we are seeklng an Isotone function
fthat minimizes

-~
o
P)
~

N
Z (y, - f(x))2 .

A best least-squares isotone fit is a step functlon,‘ as lIflustrated in Figure
3.20 [Barlow (72), Theorem 1.1]. It should be realized that the
approximating function is defined only at the x;, though for predictive purposes it
will often be useful to extend its domain to the entire real line. It "only" remains to .
determine the locations and heights of the steps. The following method Is taken
from [Barlow {72}].

Suppose the data have been ordered by x-coordinate. (In many experimental
situations, sorting Is not necessary because the independent variable is time or the
points are taken In order of increasing x.) Define the cumulative sum diagram (CSD)
to be the set of points Pj = (j, sj) y Pg = (0,0) , where s) is the cumulative sum of
the y's:

s 27)sotonic regression Is discussed at length in {Barlow (72)].
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The number of steps and the
points at which they break
must both be determined.

—
.
-
° : °
°
Figure 3.20: A best isotone fit Is a step function.
s; = 2; Y - ' (3.10)

" The slope of the line segment joining Pj_1 to Pj Is just Yy

The lower convex hull of a set is the lower of the two chains into which the
boundary of the hull Is partitioned by the points p and q of least and greatest x-
coordinate, respectively. It is the supremum of all convex functions whose graphs
lie below the set.28 it should be clear that, given the complete hUll, the lower hull
can be found in linear time. There is a close relationship between the hull problem
and Isotonic regression: The isotonic regression of a point set is given by the slope
of .the lower convex hull of its cumulative sum diagram [Barlov: (72)]}. Thus,

ISOTONIC REGRESSION o¢ CONVEX HULL .
.Theorem 3.32: Least squares isotonic-regression can be performed on a set of N

points in the plane in O(N log N) time. If the points are ordered by abscissa,
then O(N) time suffices.

28Another non-constructive definition.
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Figure 3.21: The lower convex hull of the CSD defines the Isotonic fit.

Proof: We show that once the dsata are ordered by abscissa, the lower convex

hull can be found in O(N) time. If the x; are ordered, the CSD points (x|,y|) c_ah

- be computed in O(N) time by Equation (3.10) and these are also ordered by

absclssa a fortiorl. Using any point on the positive v-axis as origin, the Graham

* scan of Section 3.3 can be run in O(N) time to construct the lower convex hull

of the CSD. If the data are not ordered, then, by a simple extension of
Theorem 3.8, (N log N) time will be required In the worst case.
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3.10.5 Clustering

To quote from [Hartigan (75)], clustering is the "grouping of similar objects". A
clustering of a set Is a partition of its elements that Is chosen to minimize some
measure of dissimilarity. Hartigan's book contains a large number of different such
measures and procedures for clustering using them. We will focus on point data in
" two dimensions, where w2 assume that the x and y variables are scaled so that
Euclidean distances are meaningful. A measure of the "spread" of a ciuster is the
maximum distance between any two of its points, called the diameter of the cluster.
We feel Intuitively that a cluster with small diameter has elements that are closely
related, while the opposite Is true of a large ciuster. One formulation, then, of the
clustering problem Is

Problem P3.10: (Minimum Diameter k-Clustering) Given N points in the plane,
partition them into k clusters Cq, .., Cy so that the maximum cluster diameter is
as small as possible. '

it is difficult to imagine how to solve this problem unless we at least have an
-algorithm for determining cluster diameter. This motivates

Problem P3.11: (Diameter of a Set) Given N points in the piane, find two that
are farthest apart.

This problem Is seemingly so elementary that it Is difficult to perceive that there
Is any real Issue involved. After ail, we can compute the distance between each of
the N(N-1)/2 pairs of points in a completely straightforward manner2® and choose
the largest of these to define the diameter. What is left to Investigate? is it
possible that this 0(N2) procedure {s not the best possible algorithm?

297hat is, if the model of computation allows square roots. Even if it does, a better
way is to compute any monotonic function of distance, say the distance squared.
D(a,b) = (xa-xb)2 + (.ya-yb)2 can be computed in two multiplications and three
" ‘addition/subtractions. This suffices to find any order statistic among the distances.
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The only lower bound that suggests itself is the trivial one: We must spend O(N)
time just to examine .each point once, for we cannot be sure of the diameter
otherwise. (lt_ is tempting to believe that examination of all pairs of vertices is
necessary, but this is not the case.) Let us try instead to reduce the upper bound.

i Figure 3.22: Diam(S) = Diam(Hull(S)).

Theorem 3.33: [Hocking (61)] The diameter of a set Is equal to the diameter of
its convex hull. ~

In the worst case, of course, all of tiie original points of the set may be vertices of
the hull, so we will have spent O(N log N) time without eliminating anything. The
convex hull, h_oWever, is a convex polygon, not just a set of points, so we have a
different problem: '

Problem P3.12: (Diameter of a Convex Polygon) Given a convex polygon, ﬂnd its
diameter.

We have Immediately that

SET DIAMETER oy og N CONVEX POLYGON DIAMETER .
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Theorem 3.34: '[Yaglom (61), page 8] The diameter of a convex. figure Is the
greatest distance between parallel lines of support.

Parallel lines of SUﬁPOﬂ
cannot pass through D
and F simultaneously.

“Thus (D,F) cannot be
a diameter.

Figure 3.23: Not all vertex pairs are antipodal.

Consult Figure 3.23 and notice that parallel lines of support cannot be made to pass
through every pair of pciiits. For example, no lines of support through vertices D
and F can be parallel. This means that DF Is not a diameter. A pair of points that
does admit parallel supporting lines will be called antipodal. Because of Theorem
3.34, we need only consider antipodai pairs. The problem is to find them without
examining all pairs of points.

‘Referring now to Figure 3.24, observe that lines L and M are parallel lines
of support through vertices A and D, respectively. This means that (A,D)> is an
antlpddal pair. As the lines are rotated slightly counterclockwise about these
vertices, they remain lines of support. This is true until one of the lines becomes
coincident with an edge of the polygon. ‘Here M, when rotated to position M', hits
vertex E before L reaches B, so (A,E) becomes an antipodal pair.

_Now M' will rotate about E while L' continues to rotate about A, and the next

antipodal pair produced is (B,E). Continuing in this way, we will certainly generate. o

all antipodal pairs, since the parallel lines will move through all possible angles.
Determining the new pair at each step involves only a simple angle comparison.
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Figure 3.24: Generating antipodal pairs of vertices.

Algoritbm A3.7: Antipodal Pairs

Input: A convex polygon P, in standard form.
Output: All antipodal pairs of vertices cf P.

We assume that all indices are reduced modulo N

(so that N+1 = 1) and that ANGLE(m,n) is a procedure that
returns the clockuise angle suept out by a ray as it rotates
from a position parallel to the directed segment PusPpsl

to a position parallel to pmpn+1'

1. (Find an initial antipodal pair by locating the vertex
opposite pq.)

l « 1 J e 2

WHILE (ANGLE(I,J' < x) DO JeJ +1;

CURRENT « I;

OUTPUT (1,J) as an antipodal pair;

79
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- 2. Nou proceed around the polygon, taking account of possibly
parallel edges. Line L passes through py,py,1: M passes

Loop on J until all of P has been scanred:
WHILE (J = N) DO BEGIN
IF (ANGLE (CURRENT, 1+1) < ANGLE (CURRENT, J+1))
THEN BEGIN '
Jed+1; (Move line M)
CURRENT « J;
END
ELSE BEGIN
Il +1i; (Move line L}
CURRENT « I
END

OUTPUT (1, J); . (Report an antipodal pair)
(Nou take care of parallel edges)

IF (ANGLE (CURRENT,I+1) = ANGLE (CURRENT,J+1))
THEN BEGIN ‘
OUTPUT(I+1,J); OUTPUT(I,J+1); OUTPUT(I+1,J+1);
IF CURRENT = 1

THEN J « J + 1:
ELSE I « 1 + 13
END
END
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Theorem 3.35: Algorithm A3.7 produces all antipodal pairs of an N-vertex polygon
P in O(N) time. '

Proof: Suppose that a pair of parallel lines of support of P pass "chrough vertices
A and B. We show that there also exists a pair of parallel supporting lines
through A and B in which one of the lines coincides with an edge of P. Since
Algorithm A3.7 finds all pairs of supporting lines with _this property It

! successfully produces all antipodal pairs of vertices. Let L and M be parallel

lines of support through A and B, respectively. If neither is coincldent with an

édge of P, rotate both counterclockwise simuitaneously until one reaches an
edge. L and M still pass through A and B and the support pfoperty has not

been lost. That the algorithm runs in O(N) time follows from the fact that either |
| or.d or both are incremented during each execution of the WHILE-loop and we
always have | < J <N. '

Because enumeration of all antipodal pairs suffices to flnd the dlameter of a polygon
(by Theorem 3.34), we have the following: '

Corollary 3.1: The diameter of a convex polygon can be found In O(N) time.

~ Corollary 3.2: [Cf. Theorem 3.20] The dlameter of a sim'ple polygon can be
found in O(N) time.

Theorem 3.36: [Cf. Theorem 3.7] The diameter of a set of N points in the plane
can be found in O(N log N) time.
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Theorem 3.37: [Cf. Theorem 3.18] The diameter of a set of N points chosen
from an NP-distribution in the plane (Section 3.6.1) can be found In O(N)
expected time,

3.11. Unsolved problems

1. What Is the complexity of the k-dimensional hull problem? That ﬁs, how does
the number of operations required to find all vertices, edges, and faces of the
hull depend on N and k?

2. How quickly can the extreme points of a k-dimensional set be found? See
[Dobkin (76b)].

3. What is the behavior of the higher-order moments of E(h) under various
probability distributions. This would enable us to analyze the expected .
behavior of algorithms naving a worst-case performance that is not linear in N.

4. How difficult is it to determine whether two polytopes are congruent? If the
polytopes are three-dimensional and convex, this is related to isomorphism of
planar graphs (by Steinitz's theorem [Grunbaum (67)]).

5. What is the complexity of Chebyshév approximation In higher dimensions?
(Even k = 3 would be interesting, and it appears to be a difficult problem.) .

6. How difficult is it to find the diameter of a set In k dimensions? (Agaln, k=3
ls a significant challenge)

7. Isotonic regression in two independent variables? {Assume the regression
function is to be monotenic in each variable separately.) What about other
norms?

8. Find a depth algorithm that runs in less than quadratic time. What about the
depth of a three*dimensional set?
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9. Is there a fast algorithm for the convex hull of & simple polyhedron?
k-dimensional polytope? ’

10. Problem P3.10.

3.12. Summary

The convex hull problem affords us the opportunity to develop computational
geometry from its foundations, for we must deal directly with the non-constructive
nature of combinatorial geometry. Three major convex hull algorithms are pfesented
in this chapter. Graham's algorithm operates by sorting the points of a set by polar
angle about an interior point and then eliminating vertices not on the boundary of
the hull in a linear-time scan. It always requires O(N log N) time. Jarvis's algorithm
is based on the principle of "gift-wrapping" and finds each successive hull vertex
~In O(N) time by repeatedly turning angles about the boundary of the set. While this
may'requlre 0(N2) time in the worst case, it runs very quickly if the number of hull
vertices is small. By using a fast algorithm for forming the hull of the union of two
. polygons as the recursive step of a divide-and-conquer procedure and exploiting a
prbperty of random point sets, we are able to produce an algorithm that runs In O(N)
expacted time without sacrificing O(N log N) worst-case behavior.

A lower bound. of Q(N log N) for the hull problem Is shown by demonstrating that
sorting is reducible to hull-finding. This also provides a lower bound on the time
necessary to find a simple closed polygonal path through N points in the plane, a
bound which can be achieved by a variant of Graham's algorithm. The last section
indicates some of the applications of hull-finding. We have been able to combine
the earlier methods of this chapter with additional geometric tools to produce
efficient algorithms for trimming, Chebyshev approximation in the plane, and various
diameter problems. The diameter of an unordered plane set can be found In
~O(N iog N) time, while the diameter of a simple polygon can be found in linear time.
This result makes use of the fact that the convex hull of a simple polygon can be:
formed in finear time. By merging these resuits with our linear expected-time hill’
algorithm of the last section, we are able to produce a Hnsar average-case
diameter algorithm. ’
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"have worn me out with several -applications ..."
- Shakespeare, All's Well That Ends Well.

'8.4
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Chapter 4
Inclusion Problemns

4.1. introduction to Geometric Searching

"He prepared it, yea, and searched it."
- Job 28:27.

Among the most important of geometric problems are those that involve searching,
or, in the most elementary language, determining the location of an object. This
chapter develops the basic tools of geometric search that will be used in the
succeeding chapters. We begin with a general discussion of searching and relevant
complexlty measures, then treat in detall the problem of /nclusion:

Problem P4.1: (Polygon Inclusion) Given a simple polygon1 P and a new point 2,
determine whether or not z is interior to P.

The difficulty of solving P4.1 depends on whether P Is convex and whether
preprocessing Is allowed. The importance of the probiem stems from the fact that
aimost all geometric searching, at some level, can be reduced to testing polygon’
Inclusion,2 C

We will discuss a general search paradigm called, informally, a query. Given a
collection of geometiiric data, we want to know If it possesses a certain property
(say, convexity). In the simplest case the question will only be asked once, in which
event it wouid normally be wasteful to do any preconditioning in the hope of

Titpis not simple, the problem may not be well-defined.

2For. example, we will see in Chapter 6 that determining the nearest
~ heighbor of a point Is equivalent to finding which of a set of polygons contains it.
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speeding up future queries. A one-time query of this type wliil be referred to as
single-shot. Many times, however, queries will be performed repeatedly on the
same database, and It may be worthwhile to arrange the information Into an
orgénlzed structure to facilitate searching. This can be accomplished only at some
expense, though, and our analysis must focus on four separate cost measures:

'1. Query time. How muc'h time Is required, in both the average and worst cases,
to respond to a single query? ' '

2. Siorage. How much memory is required for the data structure?

3. Preprocessing time. How much time Is needed to arrange the data for
searching?

4. Update time. Given a new plece of data. how long will it take to add it to the
data structure?

The varlous tradeoffs among query time, preprocessing time, and storage are
well-illustrated by the problem of range searchlnga, which arises frequently in
geographic applications and database management:4

Problem P4.2: (Range Searching) Given N points in the plane, how many lie in a
given rectangle?5 That Is, how many points (x,y) satisfy
asx<b, c<y<d ?

It Is clear that a single-shot range query can be performed in linear tlmé, since
we need oniy examine each of the N points to see whether it satisfles the

8{Knuth (73)], page 550.

“The work described In this section was performed jointly by the author and Jon
Bentley and Is reported in [Bentley (77a)].

- SThe rectangle is assumed to have its sides parallel to the coordinate axes.
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Figure 4.1: A Range Query. How many points lle in the rectangle?

inequalities defining the rectangle. Llkewise, linear space suffices because only .
the 2N coordinates need to be saved. There Is no preprocessing time and the
update time for a new point is just a constant.

What kind of data structure can be used to speed the processing of multiple
queries? It seems to difficult to organize the points so that an arbitrary new
feétangle can be accomodated easily. We also cannot solve the problem in
advance for all possible rectangles because of their infinite number. The foilowlng
‘solution is an example of the Jocus method of attacking geometry problems, one in
which we look for critical regions within which the answer does rot vary and store
these compactly.

A rectahgle Itself is an unwieldy object; we would prefer to deal with points. This
suggests that we might replace the rectangle QUery by four subproblems, one for
each vertex, and combine their solutions to obtain the final answer. In this case
the subproblem assoclated with a point p is to determine the number of points Q(p)
of the set that satisfy both x £ Xp and y < Ypr that is, the number of points Iin the
southwest quadrant determined by p. (See Figure 4.2.)

The concept we are deéllng with here Is that of vector domination:
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Figure 4.2: How many points lie to the southwest of P? -

Definition 4,1: Given two points 4 and B8 in the plane, we say that A dominates B
if xp2xg and yp 2 yg; that is, A Is greater than or equal to B in both
coordinates. :

In the plane, W is dominated by'V iff it lies in V's southwest quadrant. Q(p) is thus
the number of points dominated by p. -The connection between domination and
range querles is apparent in Figure 4.3. The number N(ABCD) of points
contained in rectangle ABCD Is given by '

N(ABCD) = Q(A) - Q(B) - Q(D) + Q(C) - (4.1)

This follows from the combinatorial principle of inclusion-exclusion [Liu (68)]. All
points in the rectangle are certainly dominated by A. We must remove those
dominated by B and also those dominated by D, but this will cause some points to be
eliminated twice -~ specifically, the ones dominated by both B and D -- and these
are just the points lying In C's southwest quadrant.
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Figure 4.3: A range search as four domination gueries.

~ We have thus reduced the problem of range searchlng to one of perfdrmlng four
point domination queries. The property that makes these queries easy Is that there
are nicely-shaped regions of the plane within which the domination number Q Is
constant. ' '

Suppose we drop perpendiculars from the points to the x-and y-axes, and extend
the resulting lines indefinitely, This produces a mesh of (N-H)2 rectangles, as
*shown In Figure 4.4.

~ For ail points p In any given rectangle, Q{p) is a constant. This means that
domination searching is Just a matter of determining which region of a rectilinear
mesh a given point lies in. This question is particularly easy to answer. Having
sorted the points on both coordinates, we need only perform two binary searches,
one on each axis, to find which rectangie contains the point. Thus the query time Is
only O(log N). Unfortunately, there are O(N2) rectangles, so quadratic storage is
required. We must now compute the domination number for each rectangle. This
can readily be done for any single rectangle in O(N) time, which would lead to an
O(Na) algorithm overall for preprocessing, but this can be reduced to O(Nz) [Bentley
(77a)].

While the above procedure answers queries rapidly, the storage and
preprocessing time required can be prohibitive. To address this problem, we nhow
sketch an algorithm from [Bentley (77a)].
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Figure 4.5: The two cases of ECDF searching in the plane.

let L be a line having median x-coordinate among the points (Figure
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45.). (Degenerate cases can be handled by the methods of Section
6.4.) L can be found in O(N) time. Let A be the set of N/2 points to the left

_ of L and B the set of points to the right. Given a new point Z we want fo determine
the number of points (in both A and B) that it dominates. In a single comparison
~ against L we can determine whether Z lies in Aor in B. If Z lies in A (the diagram on
the left In Figure 4.5) It cannot possibly dominate any point of B, so we may confine
our attention to a subproblem of half the size of the original. The recurrence
describing this situation Is just ~ ' '

T(N) = T(N/2) + 1 .

If we learn from the first comparison that Z liec In B then the problem is only slightly
more complicated (the right diagram in Figure 4.5). We must find the number of
points in B that are dominated by Z, which can be done In time T(N/2). We then add
to that the number of points in A dominated by Z. Since, however, the x-coordinate
of Z Is known to be greater than that of any point of A, this number is merely the
number of points of A that lie below Z. If we project the points of A onto L and sort
them in advance (as part of the preprocessing) we will be able to locate Z in this
ordering in O(log N) time by binary search. Thus the recurrence that results when Z
IsinBlis '

T(N) € T(N/2) + O(log N) .

It is immediate that T(N) = O(log2N), even if the second case arises after each
comparison.

" The storage requirement of this algorithm Is easy to analyze Iin view of its
recursive structure. in two dimensions we need to store two data structures on
N/2 points and one lineer list of length N/2. Thus,

S(N,2) = 25(N/2,2) + O(N) = O(N log N).

The preprocessing time Is described by precisely the same relation.

Theorem 4.1: [Bentley (77a)] Range searching ir the plane can be performed
uslhg any of the following combinations of resources:
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uer Storagse Efegrocgsslng time

OClog N)  0(N2) 0(N2)

O(Clog?N)  O(N fog N) O(N log N)

 O(N) 0(N) 0 (N)
Table 4.1. Resources Required for Range Seérchlng.

The time-storage-preprocessing tradeoffs illustrated in this theorem are typlcal of
many geometric search problems.

4.2. Inclusion in a convex polygon
We now return to inclusion problems, the simplest of which Is

Problem P4.3: (Convex Inclusion) Given a convex polygon P and a new point 2,
is z interior to P ?

We can dispose of the single-shot problem immediately, and the result holds for
non-convex polygons as well:

Theorem 4.2: Whether a polint z is interior to a simple N-gon can be determined in
O(N) time, without preprocessing.

Proof: The Jordan Curve  Theorem for Polygons [Courant (41)] states that a
simple polygon partitions the plane into two disjoint regions, the interior and
the exterior, that are separated by the boundary of the polygon. Conslider a
horizontal line H that passes through z. (See Figure 4.6). Since the
polygon is bounded, the extremities of H must lie in the exterior region. In
general, H will intersect the polygon P. (If it does not, then z is exterior.) Let R
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be the number of points to the right of z in which H Intersects the boundary of
P, Consider moylng a point x left on H from +00 towards z. Initially, x lies
outside P. As an edge of P is crossed, x becomes Interior. The test point z Is
thus inside or outside P as R Is either odd or even. R can be determined by
comparing H with each of the N edges of P, but some care Is require to count
the number of intersections properly. Two difficulties arise. First, if H
coincides with an edge of P then two intersections are to be counted unless z
lies on the edge, in which case the algorithm terminates. The other problem Is
that H can intersect an edge without cressing it, as shown in Figure
4.7. This can only occur at a vertex of P, and it is necessary to
determine whether both edges incident with the vertex lie on the same side of
H. If so, the intersection must be counted twice (or not at all).

There are 3 intersections to the
right and one to the left, s
2 is inside the polygon. -

Figure 4.6: Single-shot inclusion in a simple polygon.

For repeated queries with preprocessing allowed, we develop a speclal method
that relies on the convexity of the polygon. Recalling Theorem 3.5, the vertices of
a convex polygon occur in angular order about any interior point. Find such a point
0 and consider the N rays from O that pass through the vertices of P. (Figure

4.8) These rays partition the plane into N ple-shaped wedges. Each
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The mountain range illustrates that care must be

taken in counting intersections. There are three P
intersections to the right of z and one to the

left, but this time z is outside!

The resolution is that
the intersections at
A and B must be
counted twice.

Figure 4.7: Intersections must be counted properly. "

1. By binary search we
learn that z iies in wedge
COD.

2. By comparing z
against edge CD we
find that it is exterior.

Figure 4.8: Division into wedges for the convex inclusion problem.

84


shamos
FullBlank


Inclusion Problems 05

wedge is divided into two pleces by a single edge of P, One of thase pleces is
whoily interior to P, the other wholly exterior. Treating O as the origin of polar
coordinates, we may find the wedge in which z lies by a single binary search, since
the rays occur in angular order. Given the wedge, we need only compare z to the
unlque edge of P that cuts it, and we will learn whether z Is Interior.

Algorithm A4.1: Convex inclusion

Preprocessing:
1. Find an interior point 0.
2. Arrange the vertices of P in a structure suitable for
binary searching. (A vector, for example.) '

Search:
1. Given a neu point z, determine by binary search the
wedge in uhich it lies. Point z lies betueen the rays
defined by p; and p;,; iff angle z0p;,; is
a right turn and z0p; is a left turn. In this way
We can find the uedge uithout computing any polar angles.
2. Once p; and p;,3 are found, then z is interior
iFf p;p;412 is a left turn,

Theorem- 4.3: The inclusion question for a convex N-gon can be answered In
O(log N) time and O(N) space, given O(N) preprocessing time.

Proof: It is clear that aiter O(N) preprocessing, Algorithm A4.1 runs in O(log N)
time. We now show that it decides inclusion correctly. A polnt z is only
reported to be interior to P If a vertex p; has been found such that the
directed path PiPj+12 Is a ieft turn. In this case z is interlor to triangle Op|p|.,,1
and thus Is interior to P. Point z is only reported to be exterior to P if no
vertex p; is found such that z is Interior to or on the boundary of trlangle
Op‘b,H. Since these triangles partition P, z cannot be Interior to or on the
boundary of P. Thus in both cases the algorithm answers correctly.
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4,3. Star-shaped Inclusion

What property do convex polygons possess that enable them to be searched
quickly? In order to be able to apply binary search, the vertices must occur in
sequence about some point. This property Is also shared by some hon-convex
polygons, as shown by Figure 4.9, Maruyama was inspired to call these
polygons "angularly simple" [Maruyama (72)]}, but we will adhere to classical

terminology:

z can "see"” all other points of P.

Figure 4.9: A Star-shaped Polygon.

Definition 4.2: A polygon P Is said to be star-shaped If there exists a point z
such that, for all points p of P, the line segment zp lies entirely within P.

Casually speaking, P Is star-shaped if there exists a point that can "see" all of the
other points. |

Theorem 4.4: [Penney (72)] A polygon P is star-shaped iff there exists some
point z € P such that, for all vertices v of P, zv C P, '
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This theorem suggests that a finite algorithm may exist to determine whether or not
p is star-shaped since it is a criterion that depends only on the vertlces of P (rather
than on all polnts of P).

Definition 4.3: A polygon P Is sald to be star-shaped with respect to a point z iff
zp € P for all points p of P.

Note that a star-shaped polygon is not necessarily star-shaped with respect to all
of its interior points. In Figure 4.9, for example, the segment joining A and B does
not lie within P, so P is not star-shaped with respect to A (or B, for that matter).

 To'determine whether or not a point is interior to a star-shaped polygon, we may
use Algorithm A4.1 directly if an approprlaté origin O from which to base the search
can be found. The set of feasible origins within P Is also the locus of points with
respect to which P Is ster-shaped and Is called its kernel:

Definition 4.4: The kernel of a polygon P is the locus of polnts z¢eP such that
zp < P for all points p of P.

Thus, any point in the kernel will serve as origin. - The kernel of a polygon Is shown
In Flgure 4.10.

Any goml in the kernel can
"see" all other poinis of the

polygon.

Figure 4.10: The Kernel of a Polygon
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The hext theorem shows why we need not be very particular In selecting the
origin if P Is convex.

Theorem 4.5: Kernel(P) = P iff P is convex.

Proof: 1. (P convex => Kernel(P) = P). If P is convex, then by Definition 2.1,
zpc P for all points z,p € P. But then each point z of P lles In Kernel(P) by
Definition 4.4.

2. (Kernel(P) = P => P convex). Consider any two points x,y of P. if
Kernel(P) = P, then In particular x ¢ Kernel(P) and thus xy € P by Definition 4.4,
so P is convex;

Thus convex polygons are star-shaped with respect to all interior points.

Theorem 4.6: The kernel of a star-shaped polygon is itself a convex polygon
havlng no more vertices than the original. 6

Problem.P4.4: (Kernel of a Polygen) Given a polygon, how quickly can its kernel
be found?

We will return to this problem in' " Section 5.5.1, where we show that the
kernel can be found in O(N) time. We thus have a fast way of finding a reference
point about which to create wedges for inclusion searching.

Theorem 4.7: The inclusion question for a star-shaped polygon can be answered
In O(log N) time and O(N) storage, given O(N) preprocessing time.

Proof: Given a star-shaped polygon P, a point O In its kernel can be found in O(N)
time by Theorem 5.14. Now execute Algorithm A4.1 with the point O as
Just obtained, and the proof of Theorem 4.3 applies, with minor modifications.

. 6p proof is given in Section 5.5.1.
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4.4. inciusion in a Simple Polygon
Plane polygons can be arranged In a hierarchy that is strictly ordered by the
subset relaticn:

CONVEX © STAR-SHAPED € SIMPLE (4.2)

Suppose we know that a polygon is not star-shaped. How difficult Is it to solve the
inclusion problem? One approach Is motivated by the fact that every polygon is a
union of some number of star-shaped poiygons.7 For example, the polygdn in Figure
4.11 is a union of four star-shaped ones.

Figure 4.11: A Simple Polygon as a Union of Star-Shaped Polygons.,

7,[Maruyam'a (72)] has used this idea to define the complexity of a polygon as the
least k for which it can be decomposed into a union of k star-shaped polygons.
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We may then apply the search algorithm for star-shaped polygons k times to
obtain an O(k log N) inclusion procedure for simple polygons: The test point z Is
compared with each of the k origins in turn, until it is found to be interlor to some
star-polygon or until all k polygons have been searched. Unfortunately, Chvatal has -

shown.that k may be as large as In/al , S0 the search may take as much aé linear
time. [Chvatal (75)]. (See Figure 4.12.) Even though k can be O(N), the
maximum time required for such a search is O(N), not O(N log N). Here Is the reason:
Once the polygon P has been partitioned into disjoint star-shaped subsets, a planar
graph results. If we partition using only chords of P, then the total humber of edges
in all resulting polygons cannot exceed 6N-12, since no segment lies in more than
two polygons and there are at most 3N-6 segments in all. If the number of edges in
polygon i is n;, then we have '

The totai search time Is given by

K
Z; logn

which we want to maximize sﬁbject to the above constraints. The sum attains a
maximum when Kk Is as large as possible and the n; are as equal as possible, l.e.
when k = N/3 and nj = 3, in which event the sum is O(N). (See [Hardy (67)].) Thus,
in the worst case, the search will be no better than the single-shot algorithm of
Section 4.2.

The difficulty with the above method is that Is does not make effective use of
binary search because there Is no way to decide which of the star-shaped subsets
should be searched. Furthermore, it is not clear how to obtain a minimal
'decomposltlon.s Just as for range queries, we would like to be able to define
regions that are either entirely inside or outside the polygon, but ones that can be
searched quickly. This fundamental idea of creating new objects to permit binary -

8in fact, - we know of no polynomlal-time algorithm.
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M

Figure 4.12: The Alligator Counterexample.

searching Is due to Dobkin and Lipton. [Dobkin {76a)]. They realized that
constraining oneself to work with only the original data (in this case the edges of
the polygon) Is unnecessarily restrictive. We use their methods, combined with the
locus approach, to devise a fast algorithm.

Given a simple polygon P, consider drawing a horizontal line through each of its
vertices, as in Figure 4,13. This divides the plane into N+1 horizontal slabs.
If we sort these slabs by y-coordinate as part of the preprocessing, we will be able
to find in O(log N) time the slab in which a new point z lies.

-Regions within a slab are
---------------------- ---- alternately outside and
our < inside P. 4

To determine whether 2
is inside or oulside, we
SN S ' S P need only find which
region it lies in.

- e as - - e Eh W Gn ws T YD UY W e D E e s e we e e e WS

Figure 4.13: The vertices of a polygon define horlzontal slabs.
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Now consider the situation within a slab, which contains segments of the edges of
p. These segments define trapezolds that are either inside or outside of P.2 Since
P Is simple, its edges intersect only at vertlces, and, since each vertex defines a
slab boundary, no segments Intersect within a slab. (See Figure 4.14.)

Figure 4.14: Within a slab, segments do not intersect.

~ The ségments can thus be totally ordered by the LEFT-RIGHT relation, and we
may use binary search to determine in O(log N) time' the trapezoid in which z falls.
This will give a worst-case query time of O(log N). .

It only remains to analyze how much work is done in preconditioning the polygon
and storing it. Naively, it sqems that we must sort all of the line segments in svery
slab. Furthermore, each slab méy have O(N) segments, so It appears that
0(N2log N) time and O(N2) storage will be required. We will show how to reduce the
preprocessing time to o(N2). Nothing can be done (In this algorithm) to reduce the
storage used since there exist polygons that need -quadratic space (Figure
4.15).

Notice that a given edge of the polygon may pass through many slabs. This

8The trapezoids can degenerate into triangles, as Figure 4.14 shows.
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<— Number of edges in slab

. Figure 4.15: The slabs'may contain a total of O(Nz) segments. -

observation is the key that allows us to reduce the preprocessing time. We will
process the slabs in ascending order, beginning with the lowest, having first sorted
the vertices of P by y-coordinate. The segments belonging in a given siab can be
found In O(N) time. Enter them into a balanced binary tree, based on the left-right
ordering, in O(N log N) time. Moving up to the next slab boundary L, some edges of
P (at least one) will terminate, while the others continue into the next slab. As we
enter the next higher slab from below, additional edges may be Introduced.
Because P is simple, all continuing edges will retain theﬁ' same respective positions
in left-right order. It is only necessary to delete from the tree those edges that
terminate at L and introduce the ones that begin at L. Since each of the N edges is
inserted in the balanced tree exactly once and deleted once, O(N log N) time
suffices for these operations. To create the slab data structure, however, It Is
necessary to output the segments of each slab in order. This can be done in linear
time for each slab, for a total of O(N2) time. Here is the preprocessing algorlthm:
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Algorithm A4.2: Preprocessing for Polygon Inclusion

1. Sort the vertices of P by y-coordinate.
VERTEX{I] witl be the I’'th louest vertex.

2. Set up the siabs. The I'th slab from the bottom is
just a list of edges of P. (Slab 8 is empty.)
The edges are maintained as leaves of a balanced tree.
INSERT is a procedure that makes tree insertions.
DELETE performs deletions.

FOR I « 1 UNTIL N DO BEGIN
(Case 1; VERTEXI[I] is the louer endpoint of edges E and F)
' INSERT{E); |INSERT(F); GO TO READOUT;

(Case 2: VERTEXI[I] is the upper endpoint of edges E and F)
DELETE(E); DELETE(F); GO TO READOUT;
(Case 3: VERTEXII] is the upper endpoint of edge E

and the louwer endpoint. of edge F)
DELETE(E); INSERT(F};
AEADOUT:  Output the edges inte the I'th siab list

without deleting them from the tree.
END '

Thus we have

Theorem 4.8: The inéluslon question for a simple polygon can be answered In
O(log N) time using O(Nz) storage, given O(Nz) preprocessing time.

In earlier work [Shamos (75b)], the author conjectured that the storage
requirement for simple Inclusion could be reduced to O(N) while increasing the query
time to only 0('092N). This was verified by Lee and Preparata, who also showed
that the’ preprocessing time Is only O(N log N) [Lee (76b)].

Thelr.methc':d is based on a simple but elegant idea. A polygonel line will be said
to be a monotone chaln with respect to line L iff its vertices retain the same order
~ when projected onto L. Monotone chains are of interest beceuse they can be

Inclusion Problems : ' ' 104
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searched in O(log N) time by binary search. A set of chains will be called monotone
iff they are all monotone with respect to some line L. The Lee-Preparata algorithm
constructs a monotone set of chains for a polygon P such that the region between
adjacent chains is either wholly inside or wholly outside of P. At most N chains are
created and these have a total of O(N) edges. The Inclusion search Is
accomplished by finding the pair of chains between which the test point lies. This
Is done by a binary search of the chains and each chain may require O{log N) time
to examine. Thus O(lDQZN) time suffices. For future reference, we staté their
result as a theorem:

Theorem 4.9: inclusion in a simple polygon can be determined in O(IogzN)’tlme
using O(N) storage, given O(N log N) time for preconditioning.

44,1 Location in a planar embadding

A problem that is intimately related to polygon inclusion concerns planar stralght-
line graphs, planar graphs that have been drawn in the plane using only stralght line
segments as edges. 10 :

Problem P4.5: (Planar Graph Search) Given a planar straight-line graph and a
new point z, how quickly can the region containing z be found?

If N is the number of vertices of the graph, then both the number of edges and
regions are O(N) [Harary (71)]. Algorithm A4.2 can be applied essentiaily without
modification to yield an O(log N) slab search method, because the non-intersection
property of ségments within a slab is retained. The analog of Theorem 4.8 is

Theorem 4.10: Location in a planar straight-line graph can be determined In
O(log N) time and O(N2) storage, given O(Nz) preprocessing time, 11

105 theorem of [Fary (48)] states that every planar graph can be embedded Iin the
plane as a planar straight-line graph.

. 11[Dobk’ln (76a)] contains a simiiar result but with O(Nzlog N) preprocessing time.
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‘Figure 4.16: A planar straight-line graph. In which region does z lie?

leew!se, Lee and Preparata demonstrate that their method also carries oVéi‘:

Theorem 4.11: [Lee (76b)] Location in a planar straight-line graph can be
determined iIn 0(l092N) time and O(N) storage, given O(N log N) preprocessing
time.

Recently, Lipton and Tarlan nroved a very powerful resuit which they termed the
"Planar Separator Theorem":

Theorem 4.12: (Planar Separator) [Lipton (77a)] The vertices of any N-vertex
planar graph G can be partitioned in O(N) time into three sets A, B, and C such
that no edge of G joins a vertex in A with a vertex In B, nelther A nor B
contains more than 2N/3 vertices, and C contains O{N” 2) vertices.

They were able to use this fact to obtain a planar graph searching algorithm with
asymptotically optimal time and space performance:
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. Theorem 4.13: [Lipton ‘(77b)] Location in a planar straight-line graph can be
determined in O(log N) time and O(N) storage, using O(N log N) preprocessing

time.
Method Query Storage  Preprocessing Time
| Slabs . OllogN) O(N2)  O(N2)
| Lee & Preparata O(log2N) O(N) O(N log N)
Lipton & Tarjan O(log N) O(N) O(N log N)
Slﬁgle-shot O(N) O(N) O(N)

Table 4.2. Summary of resources required for simple polygon
incluslon and planar graph searching.

4.5. Unsolved problems

1. How difficult is it to determine whether a point is inside or outside a convex
polytope? (We know that O(log N) time suffices and is necessary, but suppose
we only allow storage that Is linear in the number of edges of the polytope?)
[Lee (7éb)] achleves C{log2N) search time and O(N) storage for the three-
dimensional case. '

2. Give an algorithm to find the least number of convex polygons whose union is
"a given simple polygon.

3. Give an algorithm to determine the least number of star-shaped polygons
whose unicn is a given simple polygon.

4, Complications arise if a collection of figures is given whose members are not
pairwise disjoint, For example, given N rectangles in the plane, find al/l the
ones that inciude a new point z.
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4.6, Summary

This chapter introduces geometric searching and notions relating to it. All known
techniques of geometric search involve restructuring a problem so that blnary
search may be applied. This often Involves the creation, either explicitly or
implicitly, of new objects that must be arranged in a data structure. Whether this
preprocessing is justified depends on the query response time that must be
achieved, the amount of storage available, and the number of queries that are to be

handled.

We have shown that one of the fundamental problems of geometric search is
Inclusion in a polygon and the complexity of answering it depends sensitively on
the structure of the nolygon. Determining whether a point Is interior to a convex
polygon Is directly equivaient to binary search. We introduce the kernel of a
polygon as the locus of points suitable as origin for searching a star-shaped
polygon. Simple polygons and polytopes in any dimension can always be searched in
O(log N) time if sufficient storage and preprocessing time are available, there being .
an apparent tradeoff between speed of search and storage and preconditioning
expense.

The problem .of the range query tygrifies advanced search applications, in which
ore must reorganize the input considerably in order to develop an efficient
algorithm. [Knuth (73)] remarks that "no really nice data structures seem to be
available" for this problem. The key to such a data structure Is In reducing a -
rectangle query to four sing'e-point queries and applying the principle of inclusion-
exclusion.
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Chapter 5
intersection Problems

5.1. introduction

Much of the motivation for studying intersection problems stems from the simple

fact that two objects cannot occupy the same place at the same time. An

architectural design program must take care not to place doors where they cannot

- be opened or have corridors that pass through elevator shafts. In computer
graphics, an object to be displayed obscures another If their projections on the

viewing piane intersect. A pattern can be cut from a single ple:e of stock oniy ifit
can be laid out so that no two plieces overlap. The Iimportance of developing
efficient algorithms for detecting intersection Is becoming -apparent as industrial
applications grow increasingly more ambitious. A single Integrated circuit may
contain tens of thousands 6f compbnents, a complicated graphic image may involve
one hundred thousand vectors and an architectural database often contains
uowards of a million elements. In such cases even algorithms that are only
quadratic in the number of objects are unacceptable.

~ Another reason for delving Into the complexity of Intersection algorithms Is that
they shed light on the Inherent complexity of geometric problems and permit us to

- address some fundamental questions. -For example, how difficult is it to tell whether

a polygon Is simple? One would be justified in investigating such a topic even if it
had no practical applications, but we will find no shortage of uses for the algorithms
of this chapter. Because two figures intersect only if one contains a point of the
other‘, it is natural that intersection algorithms should involve Inclusion testing. We
may thus consider intersection problgms to be natural extensions of Inclusion
problems. '

1De;‘)ending on how boundary intersections are defined.
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6.1.1 The Hidden-Line Problem

A plvotal problem in computer graphics, and one that has absorbed the energy of.
many researchersz, Is the hidden-line problem. A two-dimensional image of a
three-dimensional scene Is necessarily a projection. We may not, however, merely
project each object onto the plane of the observer, for some objects may be
partially or totally obscured from view. In order to produce a faithful display, those
lines which a real observer cannot see must be eliminated from the picture. Figure
5.1 shows a scene before and after hidden lines have been removed.

A LT .
g2 ¢

Figure 5.1: Elimination of Hidden Lines.

One object obscures another If their projections intersect, so detectlng'and
forming intersections is at the heart of the hldden-line problem. A considerable
‘investment has been made in developing hardware to perform this task, which is
particularly difficult in practice because of the real-time requirements of graphic
display systems and the fact that objects are usually in motion. There Is no
commercial system available that Is able to display a moving scene with hidden lines
re.moved, [Andries Van Dam, personal communication, April, 1977]. In view of the

2[Desens (69)], [Freeman '(67.)], [Galimberti (69)], [Loutrel (70)], [Matsushita
(89)], [Newman (73)], [Sutherland (66)], [Warnock (69)], [Watkins (70)].
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effort that has gone into graphic hardware development, it is surprising that the
complexity of the hidden-line problem has received so little study, for it is here that
the potential gains are the greatest. Building a box with a program implemented in
‘ mlcroéodé can, at best, achieve a speedup of a constant factor over software.8 An
improvement in the algorithm, though, can reduce the order of the running time, so
fhat the speedup improves with increasing problem size. '

It Is important to keep in mind, however, that optimality In computer sclence Is
usually taken to mean asymptotic optimality, and it may occur that an "optimal"
algorlthm runs more slowly than a naive one for all practical problems.4 Careful
implementation and examination of the relevant constants of proportionality must be
performed before one algorithm can be said to be superior to another. Machine
experiments performed by Steven Relss, Dan Hoéy, Kevin Brown, and the author
- indicate that the O(Nlog N) algorithms in this thesis begin to surpass the
perfofmance of their 0(N2) counterparts for problem sizes in the range of S0-100
points.

In many cases, particularly for vector graphic devlces; scene components are
represented as polygons. If the projections of two objects are the polygons A and
B, and A lles nearer to the viewer than B, what must be displayed Is A and
B - (AN B). A basic computational problem in hidden line removal .ls thus to form the
intersection of two polygons. In practice we must do more then this since the Image
will consist of marny separate polygons, all of which must be displayed, but one of
the fundamental operations Is pairwise Intersection [Sutherland (66)]. In this
chapter we obtain tight bounds for intersecting convex, star-shaped, and simple
polygons. The polygon problem Is an example of the first type of intersection
problem we will consider:

Problem P5.1: (Form Intersection) Given two objects, form their intersection.

3In some cases, of course, a constant factor is all that is needed.

% or example, this is the case for Schonhage-Strassen integer multiplication [Aho

. (74)].
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§.1.2 Pattern Recognition

One of the inajor techniques of pattern recognition Is classification by supervised
Iearnlng.5 Given N points, each of which is identified as belonging to one of m
samples, we wish to preprocess them so that a new (unidentified) point can be
correctly classified. Figure 5.2 is a two-dimensional example In which the
axes represent the weights and heights of a group of people of the same age.
Males are designated by "M", females by "F". The point "u" represents a person
whose weight and height are known. Can we classify "u" based on these quantities
alone? What sort of decision rule should be used?

A « | *M
" N Me
E Fo . *M
I . M
G Fo N
H \ i

° ®
T o F OB MM M

F b J
° \
o F N
F V. <— A linear classifier

>
WEIGHT '

Figure 5.2: A Two-Variable Classification Problem

It is desirable, If possible, to obtain a linear classifier [Melse! (72)], that is, a
linear function f such that a single comparisan will suffice to determine the sample
to which "u" belongs:

IF f(x,y,) > T THEN uéM; ELSE ueF;

S[Andrews (72b)], [Duda (73)], [Meisel (72)].


shamos
FullBlank


‘m.t'ersectlon Problems 113

In the above expression, T is a threshold value. In k dimensions, the locus
!(x1,...,xk) =T is a hyperplane; in two dimensions, it is a stralght line. A linear
classifier performs well If it separates the two samples such that all points of M lie
on one side and all points of F lie on the other.

Definition 5.1: Two sets are sald to be linearly separable Iff there exists a
: 'hyperplane H that separates them.

Determining the existence of a linear classifier Is thus a matter of deciding whether
the training samples are separable.

6.1.2.1 Separability

Separability is a classical question In combinatorial geometry. in 1903, P.
Kirchberger proved the foliowing elegant theorem, which resembles Theorem 3.3 in
spirit:

Theorem 5.1: [Kirchberger (03)] Two finite plane sets P and Q are linearly
separable Iff every subset of four or fewer points of PU Q is separables.

Since there are O(N%) such subsets, any algorithm based on this characterization Is
likely to be extremely inefficient. The theorem does not suggest a method for
constructing the separating line, but merely gives a criterion for its existence.

Theorem 6.2: [Stoer (70), Theorem 3.3.8.] Two sets are linearly separable iff
their convex hulls do not intersect.

This theorem is Hlustrated in Figure 5.3.

In developing a geometric algorithm, we have no a priorl basis for preferring one
of these theorems to the other. Only analysis will enable us to decide which will
yleld the faster procedure. Fortunately, we already know how difficult it is to form
convex hulls. We must now solve a special case of

6The, generalization to k dimensions Involves the separability of every subset of
_ k+2 or fewer points. See [Rademacher (50)].
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Separable S Non-separable

- Figure 5.3: Two sets are separable iff their convex hulls_are disjoint.

Problém P5.2: (Intersection Test) Given two polygohs, do they Intersect?

While‘ this is no harder than actually forming the intersection, it may turn out to be
easler In certain cases. ' '

56.1.3 Wire and Component Layout

With microminiaturization proceeding at a fantastic pace, the number of
components on chips, conductors on boards, and wires in circuitry has_grown to the
point that such hardware cannot be designed without the aid of machines. The
number of elements in a single Integrated circuit may easily exceed ten thousand,
and each must be placed by the designer subject to a variety of electroric and
physical constraints. The programs that assist in this process are largely heuristic
" and often produce solutions that are not feasible because twe cemponents overlap
or twe conductors cross.” Heuristic methods are used because some of the
problems Iinvolved in component placement are NP-complete [Garey (76b)] The
designs must therefore be subjected to exhaustive verification that.lnvolv'es

"See [Akers (72)], [Hanan (72)], and [Hanan (75)].
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palrwise comparisens of all items on the chip, an expensive and tlme-consumlng
operatlon This motivates the followlng theoretical problem-

Problem P5.3: (Pairwise Intersection) Given N objects, determine whether any

two intersect.
we will, of course; be iooking for an algorithm that avoids testing each object
against every other. The solution to this problem, which we develop In Section
5.4, has extensive practical and theoreticai applications.

5.1.4 Linear Programming

Linear programming can be viewed as a third type of Intersection problem. The

feasible ruglon of a linear program Is the intersection of the half-spaces determined

by its constraint set. The objective function is maximized at some vertex of this

“convex polyhedral region. This is a convex hull problem of an entirely different

nature than that studied in Chapter 3. Here we are given not the vertices of th_e
set, but a collection of haif-spaces that bound it, and are asked to find the
vertices. We must find the common intersection of N objects. How difficult is this?

In one dimension linear programming Is trivial. 1t may be formulated as
Maximize ax +b subjectto ax+b<0, i=1,.N. (5.1)

The feasible region Is either null, an interval, or a half-line because It Is an
Intersection of half-lines: Each half line extends either to minus. infinity or plus
infinity. Let L be the leftmost point of the positively oriented half-lines and let R be
the rightmost point of the negative ones. If L ) R, the feasible reglon is null. If L =
R it is the Interval [L,R]. Clearly L and R can be found in lincar time, so linear
programming in one dimension is an O(N) process. The complexity of linear
programming in higher dimensions is going to depend on how quickly we are able to

form the intersection of haif-spaces. This auestion is taken up in greater depth in

Section 5.5.1, and is mentioned here only to introduce the problem of common
Intersection.
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5.2. Intersection of Convex Polygons

Problem P5.4:. (Convex Intersection) Given two polygons, P with m vertices and
Q with n vertices, form thelr intersection. '

We assume without loss of generality that m € n.

" Llemma 5.1: The Intersection of N half-planes Is a convex polygonal region having
at most N sides. '

Proof: That the Intersection Is a convex polygonal reglon is Theorem 6.5 of
[Benson (66)]. We must show that the number of sides does not exceed N,
which is easily established by induction. For N=1 the theorem is true, since &
half-plane Is bounded by a single edge. Assume the result to be true for N = k
and consider the effect of intersecting one more half-plane with the existing
region R. If this last half-plane coincides with one of the first k, nc new sides
are Introduced. Otherwise, the half-plane intersects the boundary of R In at
most two points, each of which creates a new vertex of R. However, the
complement of H contains at least one vertex of R (since H coincides with no

other half-plane), so at most one new vertex is added to R for each new half- .

plane.

(This completes the proof of Theorem 4.8 because we have shown that the kernel
Is an Intersection of at most N half-planes and thus has at most N sides.)

Theorem 5.3: The iIntersection of a convex m-gon and a convex n-gon is a
" convex polygon having at most m + n vertices.

Proof: The intersection of P and Q is the intersection of the m + n Interior half
planes determined by the two polygons. By Lemma 5.1, this Intersection Is a
convex polygonal region having at most m + n sides. Since P and Q are both
bounded, so Is their intersection, which must therefore be a closed polygon.

or T
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Figure 5.4: Intersection of Convex Polygons

.,We present an algorithm due to Dan Hoey that is based on the following
observations: Let a and b be the leftmost and rightmost points of P, respectively.
These points partition P into two chains of vertices, each of which Is sorted by x-
coordinate. The upper chain P, consists of those vertices that occur in the
counterclockwise sequence from b to a and the lower chain Py consists of the
sequence from a to b. Similarly, Q:is partitioned into upper and lower chains Q,, and
Q. . Since the vertices in all four chains occur.in sorted order, the chains can be
merged in O(m + n) time to obtain a sorted list of all the vertices of ¥ and Q
together. Vertical lines drawn through _these m + n vertices divide the plane into at
most m+ n+ 1 slabs as in Figure 55. They are already ordered. The same
Is true of Q. We need only merge these four chains to yield a sorted list of all the
vertices. (This is analogous to the procedure employed in Theorem 4.2.)

The intersection of a slab and either of the polygons is a trapezold. Thus, within
any single slab, the intersection of P and Q is an intersection of trapezcids, which
can be found in constant time. We now show that all of the pleces can be found
and fitted together in O(m+n) .time. Let the vertical lines described above be
denoted LINE[1:m+n] and for each element of LINE let us set up pointers to all
edges of P and Q intersected by that line. If a line passes through a vertex of one
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! Inside 2 slab, each
' rolygon orms a
apezo d.

VA

- Figure 5.5: Slabs Defined by fhp Vertices of Two Convex Paiygons.

of the polygons we set up a pointer only to the right-hand edge so Intersected.
Since a line can Intersect a convex polygon in at most two points, no line will have
more than four associated pointers, one each for edges in Pu' P|, Qu, and Q. Let

“the pointers be called PU, PL, QU, and QL, respectively. In other words, PU[I]
~ designates that edge of the upper chain P, that is intersected by the vertical line

LINE[1]. If no intersection occurs, the corresponding pointer is NIL. All the pointers
can be created in O(m+n) time by "merging" each chain with the sorted array LINE.

We now process the slabs sequentially by passing through LINE. The P trapezoid
lying to the right of LINE[I] is bounded by LINE[I], LINE[I+1], and the edges
Indlpated by PU[I] and PL[lI]. The Q trapezoid Is found in the same way. The
Intersection of these trapezoids has at most six vertices, two of wich lle on LINE[1],
two on LINE[I1+1], and two within the slab. LetR be the intersection of P and Q. We
will form the upper and lower chains of R during the pass through the slabs by
appendlng vertices of the intersection to the appropriate chain. When this

-procgdure is finished, R can be put into standard form. We thus have
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Theorem 5.4: (Dan Hoey, private communication) The intersection of a convex
"~ m-gon and a convex n-gon can be found in O(m + n) time.

56.3. Intersection of'Star-Shaped Polygons

Because star-shaped polyQons have the property, which they share with convex
polygons, that there exists a point about which the vertices occur In angular order,
we might suspect that their intersection can also be found qUIckly. This Is not the
case, as Figure 5.6 shows.

Figure 5.6: Chicken Feet. The Intersection of Two Star Polygons.

The intersection of P and Q is not a polygon itself, but is a union of many
polyguns. P and Q both have N vertices, and every edge of P Intersects every
edge of Q, so the intersection has N2 vertices. This gives a (trivial) lower bound:
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Theorem 6.5: Finding the Intersection of two star-shaped polygons must require '
Q(N2) time in the worst case. S

This means that the hidden line problem for polygons must also take quadratic time,
since merely drawing the intersect'on requires that N2 vectors be drawn. In the
next section we shall explore the .. ssibility that it may not be necessary to spend
this much time if we only want to know whether P and Q intersect at all. '

5.4. Intersection of Line Segments

" One of the major themes of this thesis is that a large collection of seemiingly .
unrelated problems can be solved by the same method If only their common

. algorithmic features can be Isolated. The present section shows how a diverse set

of applications can be unified and reduced to determining‘whether or not a set of N

line segments In the plane are pairwise disjoint. We will always regard a line
1

segment as a closed interval, that is, one which includes its endpoints. .

Problem P5.6: (Segment Intersection Test) Given N line segments In the plane,
determine whether any two intersect.

Below we discuss a number of applications of this problem.

6.4.1 Applications

5.4.1.1 When do two polygons Intersect?

Problem P5.6: {Polygon Intersection Test) Given two simple polygons P and Q, do
they intersect?

If P and Q intersect, then either P contains Q, Q contains P, or some edge of P
Intersects an edge of Q. (Figure 5.7.)

Since both P and Q are simple, any edge intersections that occur must be . -
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P

Edge
o Intersection

Q < P. No edge intersection.

Figure 5.7: Either P € Q, Q< P, or there Is an edge Intersection.

b‘etWe_en edges of different polygons. Let T(N) be the time required to sblve
Problem P5.5. We can then detect any edge Intersection between P and Q in
T(m + n) operations. If no intersection is found, we still must test whether PC Qor -
Qc P,

If P is Interior to 0, then every vertex of P is interior to Q, so we m'ay apply the
single-shot point inclusion test of Theorem 4.2 in O(n) time, using any vertex of P.
If this vertex is found to lie outside Q, we can learn by the same method In O(m) .
time whether Q € P. Therefore we have |

Theorem 5.6: Intersection of simple polygons is linear-time reducible to line-
segment intersection testing:

POLYGON INTERSECTION oy LINE-SEGMENT INTERSECTION

Proof: Let polygons P and Q both have N vertices. In O(N) time we will reduce
_the problem of determining whether P and Q intersect to four line-segment
intersection problems, each involving at most N/2 points. Assume that N is
even; If N is odd the argument is only sllghtly'more involved. Partition P Into
.two edge sets Py and P, consisting of iis even- and odd-numbered edges,



shamos
FullBlank


3 Iﬁtersectlon Problems . | - 122

respectively. Likewise, partition Q into edge sets Qy and Q,. In each of the
four sets thus created there are no edge intersections. Now solve the line-

 segment intersection problem on each of the four sets {Po V Qg}, {PgV G.},
{Po VU Qg}, and {P, VU Q,}. If any intersections are found during the solution of
these subproblems, then P and Q intersect. If no intersections are fouhd. then
either P and Q are disjoint or one ccntalns the other. The latter case can be
decided jn G(N) time by the method described above.

We have already seen that the complexity of algorithms that deal with polygons
can depend on whether the polygons are known to be simple or not. For example,
. the convex hull of a simple polygon can be found in O(N) time (Theorem 3.20), but
'(l(N log N) Is a lower bound for non-simple polygons. It would be useful therefore,
to have an algorithmic test for simplicity.

Problem P5.7: (Simplicity Test) Given a polygon, is it simple?

ot
R, |
~

Simple Non-gimple

Figure 5.8: Simple and Non-simple Polygons.
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6.4.2 A Segment Intersection Algorithm

A reliable guideline for the development of geometric algorithms Is to start in one
dimension and achieve a complete understanding of the problem in that setting,
including lower bounds. This principle seems self-ev(dent, yet it is often Ignored by
researchers who feel that "elementary" problems are not worth solving. The result
is frequently a poorly-understood heuristic algorithm whose performance is attested
to by volumes of experimental evidence and timing graphs, but no analysis. While
such an ‘approach may produce a quick answer to the problem at hand, it does little
to advance our knowledge of algorithm design or complexity. With this in mind, we
will proceed to build an intersection algorithm starting at the most basic level.

~ Suppose we are given N intervals on the real line and wish to know whether any
two overlap. This can be answered in O(Na) time by inspecting all pairs of intervals,
but a better aigorithm based on sorting comes to mind almost immediately. Let us
desighate each of the 2N endpoints as either "eft" or "right" and sort them
lexicographically as follows. A left endpoint at x will be represented by the ordered
pair (X, L) and a right endpolnf by the pair (x, R). We may ensure that, among all
points sﬁering a given coordinate x, the left endpoints precede the right ones by
taking (x, L) < (x, R) In the lexicographic ordering. Now, the intervals themselves
are disjoint iff the endpoints occur in alternating order: LRLR..RLP and no two
consecutive points have the same x-value. This check can be performed in O(N)
time, once the points have been sorted, so the total time required is O(N log N). '
The two questions we will want to deal with are whether this algorithm can be
improved and whether it generalizes to two dimensions. ‘

To show a lower bound, we will exhibit a correspondence between the segment
overlap problem and a basic question In set theory.

Theorem 5.7: O(N log N) comparisons are necessary and sufficient to determine
whether N intervals are disjoint, if only polynomial functions of the inputs can
be computed. '
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Fe=T===="= A r===" r==" reo======- 9
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L and R alternate. No overlap.
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L and R do not alternate.

Figure 5.9: Detecting Interval Overlap.

Proof: We show that ELEMENT UNIQUENESS oy INTERVAL OVERLAP. Given a
.collection of N real numbers Xj, these can be converted in linecar time to N
(closed but null) intervals [x;,x;], which o.erlap iff the original points were not
distinct, '

How severe Is the restrlciion to polynomia! functions? For one thing, it forbids the
use of the FLOOR function, which, as we shall see In Section 6.1.8, is .a very
powerful operation. No technicues are known that would enable us to prove
Theorem 5.7 if the floor function were allowed, but we conjecture that the lower
bound would not change. Theorem 5.7 applies a fortiori In all dimensions. '

65.4.2,1 Two Dimensions

Let us explore what really happens when we sort to detect overlap. The
motivation for doing this is that there is no natural liner ordering on line segments in
the plane, so a generalization based solely on sorting will have to fail. If we are
“able to understand the essential features of the algorithm, though, we may be able
10 extend it to the plane.
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overlap occurs if and only If two segments contain some common point. Each
point on the real line has assoclated with it a set consisting of the intervals that
cover it. This defines a function C: R = 2N trom the reals to subsets of 1,.4N. The
,valué of C function can change only at the 2N endpoints of the Intervals. If the
cardinality of C(x) ever exceeds one, an overlap has occurred. To detect this, we

first sort the endpoints and then set up a highly primitive data structure that

contains Just a single object, the "current" interval. Scanning the endpoints from
left to right, we INSERT an interval into the data structure when Its left endpoint Is
encounteréd and DELETE it when its right endpoint ls' passed. If an attempt is ever
made to INSERT when the data structure is already occupied, an overlap has been
found; otherwise, no overlap exists. Since the processing of each endpoint in this
wéy takes only constant time after sorting, the checking process requires no more
than linear time.

in two dimensions we are obliged to define a new order relation and make use of
~ a more sophisticated data structure.8. Consider two non-intersecting line segments
A and B in the plane. We will say that A and B are comparable if there exists a
vertical line through some point on the x-axis that passes through both of them.
We define the relation above at x In this way: A is above B at x, written A >, B, if A

.and B are comparable at x and the intersection of A with the vertical line lies above
the intersection of B with that ine.® In Figure 5.10, we have the following

relgtlonshlps among the line segments A, B, C and D:

Segment C is not comparabie with any other segment.

- BFor purposes of discussion, we will assume that no segment is vertical and that no
three segments meet in a point. If either of these conditions is not met, the
algorithms we develop will be longer in detail, but not in asymptotic running time.

Bthis order relation and the algorithm derived from it were developéd by Dan Hoey.
The author provided a proof of correctness of the algorithm and supplied the
applications discussed above. These results were reported jointly in [Shamos
+(76b)]. '
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Figure 5.10: An Order Relation Between Line Segments.

Note that the relation >, Is a total order, which changes as x sweeps from left to
* right. Segments enter and lease the ordering, but it always remains total. The
ordering can change in only three ways:

to the ordering.

2. The right endpoint of A is encountered. A must be removed from the ordering
because it Is no longer comparabie with any other segment. .

3. g\_n intersection point of two segments A and B l_s_ reached. Here, A and B .
exchange places In the ordering.

Notice that if segments A and B intersect, then there is some x for which A and B
are consecutive in the ordering >,. Were we able to maintain the ordering as x
moves along, we would be able to report all intersections. Since there may be as
many as N(N-1)/2 intersections (if every pair of segments cross), this procedure
might take O(Nz) time. Below we describe an algorithm which finds an intersection
if one exists, but does not go to the expense of keeping complete information about
the ordering.
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~ Once we abandon the idea of finding all intersections, things become greatly

simplified. Since the segments involved in an intersection must first become
neighbors in the total order, we may proceed as In the one-dimensional algorithm.
Instead of holding just a single object, however, the data structure must be able to
retain a total ordering on as many as N objects and must permit fast updating. After
sbr'iing the 2N endpoints, we scan from left to right, Iinserting a segment into the
data structure when iis left endpoint is encountered and deleting it when its right
endpoint is passed, checking segments for Intersection when they become
consecutive in the total order. This will require a structure T on which we can
perform the following operations:

1, INSERT(A;T). Insert segment A into the total order maintained by T.

2. DELETE(A,T). Delete segment A from T.

3. ABOVE(A,T). Return the name of the segment immediately above A in the
crdering.

4. BELOW(A,T). Return the name of the segment immediately below A in the
ordering.
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Algorithm AS.1: Intersection of Line Segments

1. Sort the 2N endpoints lexicographicaily by % and y and
place them in the real array POINTI1:2N].

2. FOR i « 1 UNTIL 2N DO BEGIN
P « POINTLil;
Let S be the segment of which POINTLi) is an endpoint;
IF P is the left endpoint of S THEN
. BEGIN
INSERT({S,7};
A « ABOVE(S,T);
B « BELOUW(S,T);
IF A intersects S THEN OUTPUT(A,S);
IF B intersects S THEN OUTPUT(B,S);
END
ELSE (P is the rlght endp0|nt of S)
BEGIN
A « ABOVE(S,T);
B « BELOW(S,T);
IF A intersects B THEN OUTPUT(A,B);
DELETE(S,T);
END
END

Theorem 5.8: Algorithm A5.1 finds an intersection If one exists.

Proof: Since the algorithm only reports an intersection if It finds one, it will never
falsely claim that two segments cross, and we may turn our attention to the
possibility that an intersection exists but remains undetected. We will show
that the algorithm correctly finds the leftmost intersection point, L. (See Figure
5.11.) If several leftmost intersection points exist, let L be the one
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with least y-coordinate. Suppose that L is the Intersection of segmehts E and
F, and consider the leftmost point at which E and F become consecutive in the
total order. Three cases arise:

1. One of the segments Is inseried and the other lies Immediately above or
- below it in the ordering. This case is detected by the first IF block in

Algorithim AS.1.

2. Both segments are already in T and an intervening segment is dgleted,
leaving them consecutive. This Is detected by the ELSE block.

3. An intervening segment crosses either E or F. This posslblllty Is ruled out
_by the fact that L is leftmost and that no three segments Intersect in a
point.

Thus in any event the Intersection Iis found.

-~

Intersection is found when Intersaction is found when
segmant F is inserted. segment D is deleted,
leaving E and F consecutive.

Figure 5.11: Finding the Leftmost Intersection.

Though sin;ple, Aigorithm A5.1 has some curious properties. Even though the
leftmost intersection is always found, it is not necessarily the first intersection to
be found. (The reader may test his understanding of the algorithm by characterizing
exactly which intersection /s found first.) Also, since the algorithm only performs
O(N) intersection tests, It may fall to find some intersections. Figure 5.12
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flustrates the operation of the algorithm, showing exactly how an Intersection Is
found. .
A E

Intersection is found
here, when A and C

<— become consecutive
in the total order.

b - SR

'
'
'
'
'
'
'
'
'
A
B

oa@w>» ~°
QOUP-~—--
COD>»m
Om>»m
o»m

Figure 5.12: The Intersection Algorithm in Operatiom.

Theorem 5.9: Whether any two of N line segments In the plane intersect can be
determined in O(N log N) time, and this is optimal.

Proof: We show that Algorithm A6.1 can be implemented in O(N log N) time. The
sorting of the 2N endpoints In Step 1 can be accomplished in O(N log N) time.
Using a bal_anced tree scheme, we may Iimplement the operations INSERT,
DELETE, ABOVE, and BELOW so that each of them can be performed in O(log N)
time, worst-case [Aho (74)]. The FOR-loup of Step 2 contains only a constant
number of these operations and the loop is executed 2N times, so O(N iog N)
tim: suffices. Optimality was shown in Theorem §.7. O(N) storage suffices
because we need only store a balanced tree with at most N leaves.
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Corollary 6.1: [Cf. Theorems 5.6, 5.9] Whether two simple polygons P .and Q
Intersect can be determined in O(N log N) time, where N is the total number of
edges in both P and Q.

Further results have been obtained using variations of Aigorlthm A5.1 and can be
found in [Shamos (76b)]:

Coro_llary 5.2: Whether a given polygon is simple can be determined in O(N log N)

time.

Corollary 6.3: Whether a planar straight-line graph on N vertices contains
crossing edges can be determined in O(N log N) time.

The algorithnis that achieve both of the above results are modifications to the basic

intersection algorithm A5.1 that take into account multiple edges that share a

common vertex. ‘

Theorem 5.10: Whether any two of N simple (but possibly non-convex) k-gons -

intersect can be determined in O(Nk log Nk) time.

Theorem 5.11: Whether any two of N convex k-gons intersect can be determined
in O(N(k + log N log k)) time.

- 8.8, ' Common Intersection
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6.5.1 lqterSectlon of Half-Planes
‘ _ | |
" itrash', he said, 'but with a kernel In it'.*
- Tennyson, The Princess.

‘In Section 4.3, we showed that finding a point in the kernel of a star-shaped
polygon Is an essential step in the preprocessing needed to answer the inclusion
questiori. At that time, we postpcned the development of a kernel algorithm until
the necessary tools were available. In this section we transform the kernel problem
into one of finding the common intersection of N half-planes, and produce a divide-
and-conquer algorithm for its solution.

" Each edge of a star-shaped polygon determines a half-plane in which the kernel
must Nle. (Figure 5.13.) These half-planes are known as the interior half-
planes or, if the polygon Is in standard form, the /eft half-planes.

”’

The ferbidden half-plane.

”

. o ] 4

The allowed (interior) v,
half-plane determined —\J <
by edge VW.

Ve In this re%on, vertex V

‘. is not visible, so the

27 kernel cannot fie hore.
If P is in standard form, :, 7

the interior hali-plane
defined b* an edge lies
to its LEFT.

Figure 5.13: Each edge of P determines an allowed hailf-plane.
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Theorem 5.12: [Yaglom (61)] The kernel of a polygqn Is the Intersection of its
left half-planes. .

fhus immediately we have
' KERNEL oty HALF-PLANES

These lines are radundant
because they do not -
define edges of the

kernel. ~

-
-
-
ha T

Figure 5.14: The Kernel of a Polygon Is the Intersection of Its Left Half-Planes.

Possibly the most famlliar setting in which the intersection of half-planes arises is
In linear programming [Gass (69)]. A two-variable linear program can be formulated
as: '

Maximize ax + by +¢c , subjectio ax+by+c<0 , I= 1..;.,N . {(6.2)



shamos
FullBlank


s g e

Intersection Problems ' . 134

The feasible region is the set of points (x,y) which satisfy the constraints In (5.2).
Each constraint determines a half-plane in which the feasible region must lie. The

I reglon itself is the intersection of these half-planes. The objective function

ax + by + ¢ defines a family of parallel lines. The /ines of this family that support
the feasible region pass through the vertices that minimize and maximize the
objective function [Gass (69)]. (See Figure 5.15.)

An objective function

. ) A is a family of parallel
./ - lines. .
A ,’ FEASIBLE
e 1N, REGION
S \h’ - \’

!
N\,
Redundant AN N TR
constraints , ~a

& 3 \ ;o A \ J
Y N " T30 N\ The maximizing vertex is defined
v e . by a line of support of the
' feasible region.

Figure 5.15: A Two-Variable Linear Program.
We aiready know how to find lines of support of a convex polygon in O(log N time
(Theorem 3.28). Thus,

2-VARIABLE LiNEAR PROGRAMMING oty HALF-PLANES

There is a simple quadratic algorithm for forming the intersection of N half-planes.

“Let us assume that we already have the intersection of the first i half-planes. This

is a convex polygonal region of at most | sices, though It is not necessarl‘ly closed.
Intersecting this region with the next half-plane is a matter of slicing the region
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. with a line and retaining either the right or left piece. This can be done in O(l) time
in the obvious way. The total work required is O(N2). but the algorithm has the
advantage of being on-line.

Let us see If any improvement is possible with a divide-and-conquer approach.10
given N haif-planes Hl' we want to form the Intersection

H1nH2“-..nHN .

Because the intersection operator is associative, the terms may be parenthesized
in any way we wish:

(H1 n...n Hle) N (HN/2+1 Nn...nN HN) . (5.3)

The term in parentheses on the left is an intersection of N/2 half-planes and hence
is a convex polygonal region of at most N/2 sides. The same Is true of the term on
the right. Since two convex polygonal regions each hvavlng k sides can be
intersected in O(k) time by Theorem 5.4, the middle intersection operailon in {(5.3)
can he performed in O(N) time. This suggests the following recursive algorithm:

Algorithm A5.2: Intersection of Half-Planes

INPUT: N hal f-planes defined by directed |ine segments
OUTPUT: Their intersection, a convex polygonal region.

1. Partition the half-planes into tuo sets of equal size.

2. Recursively form the intersection of the half-planes
in each subproblenm.

3. Merge the solutions to the subprobliems by intersecting
the tuo resulting convex polygonal regions.

10Stan ElSenstat taught me the value of D&C, and, in particular, suggested that it
would work here.
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If T(N) denotes the time sufficlent to form the Intersection of N half-planes by
this algorithm, we have .

T(N) = 2T(N/2)+O(N) = O(NlogN) . : (5.4)
This is a "classical" example of D&C.

Theorein 5.13: The intersection of N half-planes can be found in O(N lcg N) time,
and this is optimal.

Proof: The upper bound follows from equaticn (5.4). To prove the lower bound,
we show that

SORTING ol HALF-PLANES .

leéh N real numbers x4,.., Xy, let H; be the half-plane containing the origin

that is defined by the line of slope x; tangent to the parabola y = x2, The

intersection of these half-planes is a convex polygonal region whose

successive edges are ordered by slope. Once this region is formed, we may
~ read off the x; in sorted order.

“Corollary 6.4: The kernel of an N-gon can be found in O(N log N) time.

Note, though, that the fower bound of (N log N) proved in Theorem 5.13 does not
apply to the kernel probiem because the edges of a simple polygon cannot be In
arbltrary positions and tha reducibility from sorting faills. There Is no reason to
belleve than any more than linear time Is required to find the kernel. In fact, by
clever manipulation of edge lists Lee and Preparata [i.ee (77a)] have shown:

Theorem 5.14: The kernel of a simple N-gon can be found in O(N) time.

Returning to poiygon intersection problems, we have
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Theorem 5.15: The common Intersection of N convex k-gons can be found in
O(Nk fog N) time.

_Proof: It Is stralghtforward to achleve O(Nk log Nk) time by Intersecting the Nk
left half-planes of the polygons. To reduce this, we will treat the polygons as
N units rather than as a collection of Nk edges. Let T(N,k) be the time
sufficient to solve the problem. The intersection of N/2 convex k-gons is a
convex polygon of at most Nk/2 sides. Two of these can be Intersected In
time ckN, for some constant ¢. So by recursiveiy splitting the problem as In
Algorithm A5.2, we have '

T(NK) = 2T(N/2k) +ckN = O(Nk log N) ,

since T(2,k) = O(k) by Theorem 5.3.

Theorem 5.16: A linear program In two variables and N constraints can be solved
in O(N log N) time. Once this hcs been done, a new objective function can be
maximized or minimized in O(log N) time.

Proof: ‘The Nlog'N resuit Is an Immediate consequence of Theorem 5.13.
Minimizing or maximizing an cbjective function is just a search for supporting
lines, and Theorem 3.28 applies. '

Let us compare this performance with the that of the Simplex algof-lthm [Gass
(69)]. Simplex operates by moving from vertex to vertex on the feasible region,
spending O(N) time for each move (the time required to select the new entering
variable). It is easy to see that, in the worst case, Simplex will have to visit every
vertex, for a total of O(Nz) time. (in this respect it is very similar to Jarvis's
algorithm In Section 3.6.) Furthermore, In order to maximize a new objective
function, Simplex must Inspect every constraint, so it will use O(N) time. In other
words, Simplex Is not optimal. This is not altogether a surprise, but no other
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algorithm is known that Is superior to Simplex in any number of dimensions. 11
6.6.1.1 Expected Time to Intersect Half-Planes

. One.of the striking features of the Simplex algorithm Is that, while its worst case
Is known to be exponential in dimension (an_d quadratic in two variables), its
behavior Is almost always excellent in practice [Klee (65)]. No explanation for this
phenomenon is known, but we could hardly claim that Algorithm A5.2 Is better than
Simplex If it Is faster only for some highly unrealistic worst case. To demonstrate
once again the power of ivide-and-conquer algorithms, we prove that the
expected running time of Algorithm A5.2 s linear for a wide class of InpUt

distributions.12 The average case of Simplex in the plane Is easy to analyze. if r '
of the n constraints are relevant (non-redundant), then Simplex requires O(rn) time

because it spends O(n) time at each iteration. To obtain a faster algorithm, we

invoke the same principle that was presented in Section 3.7, namely, If the

expected sizes of the subproblem solutions are small, then the merge step of the

D&C algorithm can be performed in sublinear time. This wili be the case If many of
the half-planes are redundant, i.e., do not form edges of the intersection polygon.:
We now show that most of the half-planes in a raridom problem can be expected to
be redundant.

it is fairly easy to exiiibit a reasonable probability distributicn for random points in
the plane; it is far less obvious how to model a random selection of half planes.
 [Ziezold (70)] proposes the following. Let Ko be a bounded convex region of the
plane that contains another convex region Kq. If i lines L; are drawn Independently
-and at random to meet Ko but not K4, and we define H; to be the closed half-plane
bounded by Lj that contains K4, consider E(v), the expected number of vertices of
the intersection of all the H;. (See Figure 5.16.)

11We must point out that explicit construction of the féaslble 'polytope is not a
viable approach to linear programming in higher dimensions because the number of
vertices can grow exponentially with dimension. It is already known, however, that
Simplex can be beaten in three dimensions [Preparata (77¢c)].

12Tliese resuits were obtained jointly with Jon Bentley and have appeared in
. [Bentley (77b)]. ’
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Figure 5.16: A Method of Choosing Random Half-Planes.

Preliminary results were obtained by [Renyi (64)], and Ziezold has shown by
duality that E(v) is of the same asymptotic order as the expected number of points
on the hull of a set of N points drawn uniformly within Kq. If K4 shrinks to a point,
then E(v) approaches the constant 72/2, In any event we wiil have E(v) = O(NP),
p{1, and a linear average-case algorithm for intersecting N half-planes results.
This leads immediately to an O(N) expected-time algorithm for linear programming in
I two variables. ' )

We see that the expecied number of redundant half-planes -- those that do not
define faces of the feasible region -~ Is very large, which may, in part, account for
the excellent observed behavior of the Simplex Method.
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5.6. Unsolved problems

1. Suppose that the Intersection of two simple' N-gons has k edges. (This
 Intersection may consist of disjoint regions.) Does there exist an
O(max(k,N log N)) algorithm to construct it? -

2. Given N line segments in the plane, how much tlme'!s required to count the
number of pairs that intersect?

3. Of N line segments, suppose that k pairs Intersect. Does there exist an
O(max(k,N log N)) algorithm to list them? '

4. Prove that solving a linear program in two variables requires (N log N) tims.
(Theorem 5.13 implies that (N log N) time Is necessary to form the feasible
region, but this may not be required to maximize a single objective function.)

5. What is the comiplexity of intersecting two k-dimensional convex polytopes?
That is, what Is its asymptotic dependence on n and k? How difficult Is it to
determine whether two (possibly non-convex) polyhedra intersect?

6. A large class of problems concerns thc unlon of figures. How difficult is It to
find the area of the union of N rectangles whose sides are not necessarily
paraliel to the coordinate axes? Straighforward application of the principie of

. Inclusion-exclusicn vields a 2N algorithm! What about the area of the union of
N circles??3 Are the various union problems dual to any intersection problems?

13The union problems were brought to my attention by Stuart Feldman of Bell
Laboratories. '
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§.7. Summary

The Importance of Iintersection problems stems both from their frequent

occurrence in applications and their use as basic tools in computational geometry .

 |tself. We divide the problems into three classes, each of which requires a
different approacﬁ. Forming the intersection of two objects is an essential element,
in‘ the hidden-line problem and pattern recognition, The intersection of convex
polygons can be found in linear time, but, for star-shaped and simple polygons
quadratic time may be required. Detecting the intersection of objects is 'easler, for
determining whether two general polygons intersect requires orly O(N log N) time.
We accomplish this by isolating and solving the problem of detecting whether any
two of N line segments intersect. A lower bound of (N log N) follows by showing
that element uniqueness is linear-time reducible to line-segment intersection. By
making use of a partial order on'line segments in the plane, we are able to detect
an intersection in O(N log ) time, while finding all intersections could require O(N2)
time. This optimal algorithm is used to test whether a polygon is simple, whether a
plane embedding of a graph has any Intersecting edges, and whether two simple
polygons overlap. '

Finally, we use the divide-and-conquer method to find the common intersection of
N half-planes. The merge step of this algorithm Is the linear-time procedure for
intérsectlng convex polygons developed earlier. The common Intersection of half-
planes is shown to require Q(N log N) time In the worst-case, and our algorithm
achieves this bound, yielding an O(N log N) kernel algorithm and a fast procedure for
solving linear programs in two variables. This iatter algorithm, and the one due to
Preparata cited earlier, are the only procedures known to be faster than the
Simplex method in any number of dimensions. By appealing to recent resuits in
stochastic geometry, we are able to demonstrate that the half-planes algorithm is
even better In an average-case sense, running in O(N) expected time.
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Chapter 6
Closest-Point Problems

In Section 3.10, we gave an O(N log N) algorithm for finding the two farthest
points of a plane set. Finding the two closest points would seem to be a simple
extension, but it is not. The two farthest points are necessarlly hull vertices, and
we may exploit convexity to give a fast algorithm; the two closest points do not
necessarlly bear any relation to the convex hull, so a new technlque must be
" developed, which is the subject of this chapter. We will be concerned with a large
class of problems that involve the proximity of points in the plane, and our goal wiii
be to deal with all of these seemingly unrelated tasks via a single algorithm, one
which discovers, processes, and stores compactiy' all of the relevant proximity
information. To do this, we revive a classical mathematical object, the Voronoi
diagram, and turn It Into an efficient computational structure that perr:is
considerable improvement over the best presently-known algorithms. While all of
the problems to be treated here involve Euctidean distance, all of the exampie could
profitably be analyzed in the Ly and Ly, norms. In this chapter ali of the geometrlc
tools we have developed, including hull-finding, searching, and polygon Intersection,
will be brought to bear on these "closest-point“ problems.

6.1. The Problems

6.1.1 Closest Pair

Problem P6.1: (Closest Pair) Given N points in the plane, find two that are
closest together. 1

1More than one pair may be closest. We will consider finding any such pair as a
. solution to this problem.
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This problem is so easlly stated and important that we must regard It as one of the
fundamental questions of computational geometry, both from the point of view of
applications and pure theoretical interest. ‘

The central algorithmic issue is whethér it is necessary to examine every pair of
points to find the minimum distance thus determined. This can be done in 0(kN2)
time in k dimensions, for any k. In one dimension a faster algorithm Is possible,
based on the fact that any pair of closest points must be consecutive In sorted
order. Thus we may sort the given x; in O(N log N) steps and perform a linear-time
scan that computes Xj,4 = X;, 1SiKN. This algorithm, obvious as It Is, Is nonetheless
optimakh: ' '

Theorem 6.1: O(N log N) comparisons are necessary and sufficient to find the two
closest of N points on a line, if comparisons are aliowed only between linear
functions of the inputs.

Proof: We show that ELEMENT UNIQUENESS oty CLOSEST PAIR, whence the

~ lower bound follows from Theorem 3.22. Given a set of real numbers xp treat
them as points on the real ine and find the two closest. If the distance
between them Is non-zero, the points are distinct. Since a set in one dimension
can always be embedded in k dimensions, the lower bound generalizes.

!h Section 6.2, we produce an algorithm that achieves this bound.

6.1.2 All Nearest Neighbors

"Better is a nelghbor that Is near."”
- Proverbs 27:10.

Problem P6.2: (All Nearest Neighbors) Given N points in the plane, find a
nearest neighbor of each. Two points y and z are both nearest neighbors of x
iff d(x,y) = d(x,2).2

g’ 2Notta that a point need not have a unique nearest neighbor. It has at most six,

}
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A solution to this problem Is a collection of N ordered palrs {a,b), in which b is a
nearest neighbor of a. Since one of these N pairs is a closest pair, we have

CLOSEST PAIR oty ALL NEAREST NEIGHBORS ,

so Theorem 6.1 implies that this problem must require (N log N) comparisons as
weli. in one dimension the same sorting algorithm yields all nearest neighbors, but

“what happens in higher dimensions? Is it conceivable, for example, that P6.2 is

asymptotically no more difficult than P6.1?

The set of neighbdk pairs defines a binary relation "-»" on the set of pdints,
where we write a = b iff b is a nearest neighbor of a. The graph of this relation is
pictured in Figure 6.1. Note that it is not necessarily symmetric, that Is,
a= b does not necessarily imply b = a.

Figure 6.1: The Nearest-Neighbor Relation

A pair which does satisfy symmetry (a = b and b = a) Is called a reciprocal pair. In
mathematical ecology, the number of reclprocal pairs Is used to detect whether

though, in two dimensions, and at most twelve in three dimensions. This maximum
number of nearest neighbors in any dimension k Is the same as the maximum number
-of unit spheres that can placed so as to touck a given one. ([Saaty (70)] states
~ that this number Is not known for k greater than twelve.)
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members of a specles tend to occur in Isolated coupies {Pielou (77)). The actual
humber of reciprocal pairs is computed, and the result compared with the number
expected under the null hypothesis. Other studies Involving nearest-neighbor
computations arise in studying the territoriality of specles [Pielou (77)], in which
the distribution of nearest-neighbor distances is of interest, as well as in
geography [Kolars (74)] and molecular physics [Brostow (77)]. These distances
can also be used for testing the randomness of spatiai paiterns: a collection of
points is random iff the distribution of distances from a random point (x,y) in the
plane to the nearest pattern poini p; is identical to the distribution of nearest-
neighbor distances among the p; themselves [Hopkins (54)]. The latter Information

comes from solving P6.2, and the need for the former motivates our next problem.

6.1.3 Nearest-Neighbor Search

Problem P6.3: (Nearest-Neighbor Search) Given N points in the plane, with
preprocessing allowed, how quickly can the one nearest to a new given point p
be found?

This prcblem is posed in [Knuth (73)].

Figure 6.2: To Which Point is P Closest?

We may solve it in O(kN) time in k dlmenslons, but we are interested in using
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preprocessing to speed the search. There are a multitude of applications for such

fast searching, one of which is the classification problem, which we spoke of as
nsypervised learning" in our discussion of linear separability In Section 5.1.2.

A

Figure 6.3: The Nearest;Nelghbor Rule

An important classification method Is the nearest-nelghbor rule [Duda (73)], which
states that when an object must be classified as being in one of a numbker of known
populations, it should be placed in the population corresponding to its nearest

neighbor. For example, in Figure 6.3 the unknown point U would be classified "B". If

many objects "are to be classified against a fixed training set, as is the case in
such problems as speech recognition, elementary particle identification, and related
pattern ‘recognition problems [Tou (76)], we must be able to perform nearest-
neighber searching quickly. '

In one dimension, nearest-neighbor searching is easily seen to be ordinary binary
search, and vice-versa. Given N points x;, we sort them and arrange them In a
vector. To find the nearest neighbor of a new point p, we perform a binary search,
learning, for example, that p lies between X and Xi+1. Whichever of these two
points is closer to p Is its nearest neighbor. Likewise, once we have learned that
the nearest neighbor of p Is xj, then we are certain that p lies either between x;_4
and x; or between x; and x;,4. These cases can be distingulshed in a single
comparison, and we have performed a binary search. As usual, there is no
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immediate generalization to two dimensions because there Is no metrically-induced
‘total order on points In the plane, and binary search cannot be applied directly. (For
a technique that involves the construction of new search objects, see [Dobkin
(76a)].) Previous algorithms based on projections have been observed to run in
expected time O(N” 2) on test data, but have linear worst-case search time
[Friedman {75)]. The reader should consider how apparently unstructured is the
configuration of points in Figure 6.2. One of our goals will be to find a structure on
these points that will facilitate rapid search. '

Since we have seen that in one dimension,
BINARY SEARCH of NEAREST NEIGHBOR ,
we have by the standard information-theoretic argument [Borodin (73)]:

Theorem 6.2: S2(log N) comparisons are necessary to find the nearest nelghbbr of
-a point (in the worst case) in any dimension.

In Section 6.5, we give an algorithm. that achieves this lower bound for all
dimensions. In a model which allows comparisons only between linear functions of
the inputs, iIf we assume that p is equally likely to fa!l in any of the N+1 intervals
determined by . the x;, then Theorem 6.2 bounds the expected behavior of any
nearest-nelghbor search algorithm. This is not true for imodeis of computation which
allow non-analytic functions, such as FLOOR, which can be used to compute Indices
for hashing or direct array access. If FLOOR is allowed and the distribution from
which the points are drawn is known and continuous, then interpolation search [Yao
(76)] can be used to find nearest neighbors in O(log log N) expected tlme
However, no generallzation to two or more dimensions Is apparent.

. Problem P6.4: (K-Nearest Neighbors) Given N points in the plane, with
preconditioning allowed, how quickly can the k points nearest to a new given
point be found? o

The k nearest neighbors have been used for interpolation and contouring [Davis
(75)] and for classification [Andrews (72b)] (the k-nearest neighbor rule Is more
robust than just looking at a single nelghbor). Though the problem seems to be more
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difficult that P6.3, the structure we shall develop in Section 6.3 is capable
of solving It.

6.1.4 Euclidean Minimum Spanning Tree
Problem P6.5: (Euclidean Minimum Spanning Tree) Given N points in the plane,
construct a tree of minimum total length whose vertices are the given points.

By a solution to this problem we will mean a list of N-1 pairs of points comprising the
edges of the tree. 3 Such a tree Is shown in Figure 6.4,

i

T

Figure 6.4: A Minimum Spanning Treeben a Plane Set

The EMST problem is a common component in applications involving networks. If
one desires to set up a communications system among N nodes requiring
interconnecting cables, using the EMST wili result in a network of minimum cost [Prim
(57)]. .A curious facet of Federal law lends added importance to the problem. When
the Long Lines Department of the Bell System establishes a communications hookup
for.a customer, federal tariffs require that the billing rate be proportional to the
length of a minimum spanning tree connecting the customer's terminl, the distance

%A tree on N vertices must have exactly N-1 edges [Harary (71)].
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to be measured on a standard flat projection of the Earth's surface. This is true
regardiess of the fact that the Earth is not flat and the Bell System may not choose -
{o. set up the actual network as an MST. Nonetheless, the billing Is based on a real
Euclidean problem, one which must be solved hundreds of times dally, as network
configurations are constantly changing.4

This law Is a Solomon-like compromise between what Is desirable and what is
practical to compute, for the minimum spanning tree is not the shortest possible
interconnecting network if new vertices may be added to the original set. With this
restriction lifted, the shortest tree is called a Steiner Tree (Figure 6.5).5

o Steiner points

Mimumum Spanning Tree ~ Steiner Tree
Figure 6.5: A Steiner Tree May Be Shorter Than the MST.

The cbmputptlon of Steiner trees has been shown by Garey, Greaham, and Johnson to
be NP-complete [Garey (76a)], and we are unable with present technology to solve
problems with more than about 15 points [Boyce (75)]. It is therefore unreasonable
for the FCC to require billing to be by Steiner tree. This situation Is somewhat
reminiscent of the Indiana Bill that, for expediency, fixed the value of pl to be

hanks go to Stefan Burr for providing this information.

~ Sthe Stelner tree in Figure 6.5 is taken from [Melzak (73)].
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exactly 4. 6

The minimum spanning tree has been used as a tool in clustering [Gower (69)],

[Johnson (67)], [Zahn (71)], determining the Intrinsic dimension of point sets

[schwartzmann (75)], and in pattern recognition [Osteen (74)], as well as in
minimizing wire length In computer circuitry [Lobermann (57)] and in obtaining
approximate solutions to the Traveling Salesman Problem (Section 6.1.5). ‘

‘The Eui:lfdean Minimum Spanning Tree problem is usually formulated as a problem
in grabh, theory: Given a graph with N nodes and E weighted edges, find the
shortest subtree of G that includes every vertex. This problem was solved
independently by [Dijkstra (5§9)], [Kruskal (56)], and [Prim (57)], and the existence
of a polyncmial-time algorithm (which they  all demonstrated) Is a considerabie
surprllse, because a graph on N vertices may contain as many as NN-2 sparinlng
éubtrees_?, A great deal of work has been done In an attempt to find a fast
algorithm for this general problem [Nijenhuis (75)], [Yao (75)], and the best resuit

to date Is that O(E) time suffices if E > N1*¢, for any ¢ > O [Cheriton (76)].

In the Euclidean problem, the N vertices are defined by 2N coordinates of points
in the plane, and the asscciated graph has an edge joining every pair of vertices.
The welght of an edge Is the distance between its endpoints. Using the best known
MST algorithm for this problem will thus require O(E) = 0(N2) time, and It is easy to
prove that this is a lower bound in an arbitrary graph because the MST always
contains a shortest edge of G. 8 Since the edge weights in a general graph are
unrestricted, an MST algorithm that ran in less than O(N2) time couid be used to find
the minimum of N2 quantities in less than 0(N2) time, which is impossible. it follows
that any algorithm that treats a Euclidean MST problem as being embedded in the
complete graph on N vertices is docmed to take quadratic time.

Bup bill for an act introducing a new mathematical truth”, House Bill 246, Legislature
of the State of Indiana, 1897.

"Moo (67)]. This was first proved by Cayley in 1889.

8This was shown in [Kruskal (56)] and [Prim (57)].
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. ' l. )
What would then lead us-to suspect that less time Is sufficient? For one thing,

the Euclidean problem only has 2N inputs (the coordinates of the points), while the

graph problem has N(N-1)/2 inputs (the edge lengths). The Euclidean problem is
therefore highly constrained, and we may be able to use its metric properties to
give a fast algorithm,

Even if improvement is possible, how fast an algorithm can we expect to obtaln?
Since the closest-pair problem is linear-time reducible to EMST, Theorem 6.1 implies
an'.Q,(N log N) lower bound, but in a restricted model of computation. We can
strengthen this result by showing that

SORTING oty EMST .

Consider a set of N points x; in one dimension. This set possesses a unique EMST,
namely, there Is an edge from x; to X iff they are consecutive in sorted order. A
solution to the EMST problem consists of -a list of N-1 pairs (i,}), giving the edges of
the tree. We now show how to process this list in O(N) additional time to produce a

vsorted list of the Xj.

\Algorlthm A6.1: Linear-Time ‘SOrt from Consecutive Pairs

Input N real numbers XI[1:N] and N-1 edges specified
by tuwo vectors, FROMI1:N-1] and TO[1:N-1].
It is assumed that X has a unique least element.
Output A permutation vector PERMI1:N] such that XIPERMII]]
is the I'th smallest value.

BEGIN
FOR I « 1 UNTIL N DO SUCCII] « 8;
FOR I « 1 UNTIL N-1 DO SUCCIFROMII]) « TOI[I2;

Nou find LOWEST, the unique point with no predecessor.

LOWEST « 1;
FOR I « 2 UNTIL N DO

IF XII] < XILOWEST] THEN LOUEST « I;
PERMI[1) « LOUWEST;
FOR I « 2 UNTIL N DO PERMII] « SUCCIPERMII 11]-

END . )
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This reducibllity, together with the sorting lower bound of Section 2.3, proves
Theorem 6.3: Construction of‘ a minimum spanning tree on N points in any

dimension requires (N log N) comparisons, even: if analytic functions of the
-Inputs may be computed. ' '

6.1.5 Euclidean Traveling Salesman Problem

Problem P6.6: (Euclidean Traveling Salesman) Find a shortest closed path
‘through N given points In the plane.

A shortest tour is shown in Figure 6.6.9

Figure 6.6: A Traveling Salesman Tour

. This problem differs from the ordinary traveling salesman problem in the same way
that Euclidean minimum spanning tree differs from the MST problem !n araphs: The

81 fact, the tour was obtained by applying the Christofides heuristic (described
below) severai times and selecting the best result. it is not known to be a shortest
tour for the given set of points.


shamos
FullBlank


closest-Point Problems | 153

“Interpoint distances are not arbitrary, but are Inherited from the Euclidean metric.
The general TSP s NP-complete.10 Untll recently, no geometry problems were
known to be NP-complete, and the possibility existed that properties of the
Euclidean metric could be used to produce a polynomial-time élgor&hm in the plane.
Motivated partially by this observation, Garey, Graham, and Johnson [Garey (76)]
undertook to prove the NP-completeness of a number of metric problems, with great
success, for they succeeded in showing that ETSP is NP-complete, a result that
was also proven independently in [Papadimitriou (76)).. We w ' therefore not
attempt an efficlent worst-case ETSP algorithm, but will concentrate on the
relationship between ETSP and other closest-point problems, with a view toward
developing good approximate or probabilistic methods.

Theorem 6.4: A minimum spanning tree can be used to obtain an approximate TSP
tour whose length Is not more than twice the length of a shortest tour.

~ Proof: Let MST be the length of a mininum spanning tree, and let TSP be the
length of an optimal tour. We show that 2 MST < 2 TSP, which means that, by
traversing each edge of the MST twice, we can visit each vertex and return to
the starting point without traveling as much as twice the necessary distance.
(See Figure 6.7.) Consider removing the longest edge In a TSP tour.
The resuit Is a chain thicugh the N points which Is a spanning tree, so its length
cannot be less than MST. Thus we have '

MST £ (TSP-E) ¢ TSP .
N'lul.tiply'lng both sides by two gives the necessary inequallty.11

The next approximate result makes use of a minimum welghted matching on a
set of points.

10For deftiitions relating to NP-complete problems and a proof of the NP-
completeness of the TSP, see [Karp (75)].

11Thls result is well-known, and seems to have been discovered independently by
- many authors (R. M. Karp, private communication).
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Figure 6.7: An Approximate Traveling Salesman Tour

Problem P6.7: (Minimum Euclidean Matching) Given 2N points In the plane, join
them in pairs by line segments whose total length is a minimum.

Such a matching is shown In Figure 6.8.

"Edmonds has shown that a minimum weight matching in an arbitrary graph can be
obtained in polynomial time [Edmonds (65)], and an O(Na) implementation Is given in
[Gabow (72)]. The following result relates minimum spanning trees, matchings, and
the traveling salesman problem.

Theorem 6.5: [Christofides (76)] An approximation to the traveling salesman
problem whose length Is within 3/2 of optimal can be obtained in O(N3) time If
the interpoint distances obey the triangle inequality.
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Figure 6.8: A Minimum Euclidean Matching

Proof : [Christofides (76)] The following algorithm achleves the desired result:
i. Find a minimum spanning tree.

2. Find a minimum Euclidean matching on the set of vertices of the MST that
are of odd degree. (There are always an even number of such vertices in
any graph [Harary (71)].) The total length of the edges in this matching is
not greater than half the length of the MST.

. 3. To obtain a TSP tour, traverse the MST, but instead of repeating MST
edges, use edges of the matching. This results in a tour that Is no longer
than 1.5 MST € 1.5 TSP.

In the above algorithm, which is a truly exquisite one, Christofides has used fast
-procedures (MST and matching) to attack the inherently difficult Traveling Salesman
problem.
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6.1.6 Triangulation

Problem P6.8: (Triangulation) Given N points in the plane, join them by non-}A
intersecting straight line segments so that every region interior to the convex
hull is a triangle.

Being a planar graph, a triangulation on N vertices has at most 3N-6 edges [Harary
(71)]. A solution to the problem consists of a list of these edges. A trlangulation is
shown in Figure 6.9,

)

Figure 6.9: Triangulation of a Point Set

This problem arises in the finite element method [Strang {73)], and in numerical
‘lnte'rpolation of bivariate data when function values are avallable at N irregularly-
spaced data points (x;, y;) and an approximation to the function at a new point (x,
y) Is desired. In piecewise linear interpolation, the function surface Is represented
by a network of planar triangular facets.Each point (x, y) lies in a unique facet, and
the function value f(x, y) is obtained by interpolating a plane through the three
facet vertices. Triangulation is the process of selecting triples that will define the
facets, '
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Many criterla have beeen proposed as to what constitutes a "good" triangulation
for numerical purposes [George (71)], some of which involve minimizing the largest
angle‘ or minimizing the length of the iargest side. Later in this chapter we proposs
a new method of triangulation based on proximity of polnts and show that it can be
found as rapidly as any triangulation on N points. [Lawsen (77)] has recently shown
that It is equivalent to a contouring procedure due to [McLain (76)], although our
method Is considerably faster computationally. The method itself is postponed until
section 6.5, when we shall have the tools necessary to present It.

| Meanwhile, we will content ourseives with another lower bound:

Theorem 6.6: $L(N log N) comparisons are necessary to trlangulate N points in the
- plane, even if analytic functions may be computed.

- Proof;: ‘We show that SORTING o) TRIANGULATION. Consider the set of N pblnts
x; pictured in Figure 6.10, which consists of N-1 collinear points and
another not on the same line. This set possesses only one triangulation, the
one shown in the figure. The edge list produced by a triangulation can be used
to sort the x; in O(N) additional operations as In the proof of Theorem 6.3, so
(N log N) comparisons must have been made.

Figure 6.10: Triangulation Lower Bound
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6.1.7 Smallest Enciosing Circle

, Problem P8.9: (Smallest Encloslng Circle) Given N polints In thé plane, f;nd the
smallest circle that encloses them.

This Is a classlca_l problem with an immense literature, the search for an efficient
élgorlthm having apparently begun in 1869 [Sylvester (69)]. The smallest enciosing
circle is unique and Is either the circumcircle of some three points of the set or
defined by two of them as a diameter [Rademacher (57), Chapter 16]. Thus there
éxléts a finite algorithm which examines all pairs and triples of points, and chooses
the smallest circle determined by them which still encloses the set. The obvious
implementation of this procedure would run in O(N4) time. This rote method has
been improved by Eizinga and Hearn [Elzinga (72a)] [Elzinga (72b)] to run In O(N2)
time and is the best algorithm to date [Francis (74)].

The enclosing circle prohlem ie familiar in Operations Research as a minimax
facllities location problem in which we seek a point p (the center of the circle)
whose greatest distance to any point of the set is a minimum. We may characterize
p by |

min max  (x-p?ely-p)® . (6.1)
The minimax criterion is used in siting emergency facilities, such as police stations
and hospitals, to minimize worst-case response time [Toregas (71)]. It has also
been used to opﬂmlze the location of a radio transmitter serving N discrete
receivers so as to minimize the RF power required [Nair (71)]. Minimization in other
metrics Is treated in [Shames (75b)].

A generalization of the smallest enclosing circle brings us into the domain of
coverage problems: .

Problem P6.10: (k Police Stations) Given N points in the plane, locate k circles
such that each point is in some circle and the maximum radius of any circle is a
minimum.
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A solution for k = 3 Is shown In Figure 6.11. This Is agalri a discrete problem, .
of which the smallest enclosing circle Is the special case k = 1,

o indicates a minimax location

Figure 6.11: Minimax Lacation of Three Police Stations

A different generallzathn is:

. Problem P6.11: (Smallest Bomb) Given N points in the plane, find the smallest
circle that encloses at least k of them.

Another, more belligerent, statement of the problem is: Given N targets of equatl:
strategic.- importance, what Is thé smallest bomb that will destroy at least k of them,
and where should it be deployed? Or, where should a radio transmitter be set up so -
that it reaches at least k receivers and-uses as little power as possible?--Certainly -
O(Na) time suffices for all values of k simultaneously, for it is oﬁly necessary to
construct the circles determined by all subsets of two or three points to determine
how many points thay contain. There are o(N3) such circles.

Another set of coverage problems arises if we fix the radius r and ask for the

least number of circles of radius r that suffice to cover a finite set. See [Shamos
(75b)].

There is good reason to believe that many of these problems are NP-complete
since boolean satisfiability is reducible to certain coverage prob_lems, even In the
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tuclidean metric. In fact, we know of no case in which properties of the metric can
| pe used to make a problem which is NP-complete without the metric run in
polynomial time. (if the problem is already polynomial time-bounded, we have seen
numerous examples in which metric properties serve to reduce the running time.)

6.1.8 Largest Empty Circle

Problem P6.12: ( Largest Empty Circle) Given N points in the plane, find a largest
circle that contains no points of the set yet whose center Is Interior to the
convex hull.

The-i'estrlctior_t on the center is necessary,'for otherwise the problem would be
unconstrained and wouid not possess a bounded solution. This problem Is dual to
P6.9 in that it is maximin. In cther words, we want p as defined by

- 2 PN
pelaltsy) M (i PIT (v - py)® (8.2)

The point p Is not necessarily unique. Figure 6.12 illustrates a solution.

Center of largest
swply circle

Flgure 6.12: A Largest Empty Circle Whose Center Is Interior to the Hull.

This is ancthsr facilities location problem, but one In which we would like to
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position a new facllity so that It Is as far as possible from any of N éxlstlng ones.

~ The new site may be a source of pollution which should be placed as to minimize its

effect on the nearest residential neighborhood, or it may be a new business that
does not wish to compete for territory with estabiished outlets. Such problems .
arise frequently in Industrial engineering [Francis (74)]. For the present problem, an
gigorithm has been given [Dasarathy (75)] whose worst-case running time Is
O(Na). 12 ,

.In one dimension the problem reduces to finding a palir of consecutive points that
are farthest apart, since a "circle" in one dimension is just a line segment. To show
a lower bound, we introduce a new problem called GRID.

Problem P6.13: (Grid) Given N real numbers x;, are they in fact the set of one-
dimensional grid points {i/N}, 1 < iSN?13 |

ltis a straighforward to show by the methods of [Reingold (72a)] that the helght of
any linear tree program which decides GRID must be (N log N). This leads to
. ' |
Theorem 6.7: If comparisons are allowed only between linear functions of the
‘inputs, then (N log N) comparisons are required to find the two farthest
adjacent points of N points on a line.

Proof:- We show-that GRID oty FARTHEST ADJACENT POINTS.  Given N numbers x;,
determine whether they all lie in the interval [1/N,1]. If so, consider them as
points on the line and find the farthest adjacent ones. The answer to GRID Is
affirmative Iff the distance between them Is sxactly 1/N.

125 tantalizing problem. Why should we be able to do better for its dual, the
smallest enclosing circle? Is convexity helping again? No. We shall see later that
the contrast between O(N2) and O(NS3) only reflects our poor state of knowledge
abcut both problems, and O(N log N) time suffices in each case.

13‘rhis problem and the theorem follwing it were generously contributed by Jon

. Bentley,
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Unex'pectedly, [Gonzalez (75)] has demonstrated convincingly the weakness of this
lower bound by giving a linear-tiiee algorithm! His method, of course, uses non-linear
functions (actually, non-analytic ones), so there Is no contradiction, but his

' higorlthm is a gem:

Algofithm A6.2: Max Gap [Gonzalez (75)]

Input: N real numbers X[1:N] (unsorted). .
Output: HMAXGAP, the length of the largest gap betueen
consecutive numbers in sorted order.

1. Find the MAX and MIN values of X. This can be done in DO(N)
time. Swap so that X(1] contains MIN and XIN] contains MAX.

2. Create N-1 buckets by dividing the interval from MIN to MAX

with N-2 equally-spaced points. In each bucket ue uill retain

HIGHII} and LOWII}l, the iargest and smallest values in bucket I.
FOR 1«2 UNTIL N-2 DO COUNTII] « B; .
COUNTI1] « 1; COUNTIN-1! « 1;

3. (Hash into buckets)
FOR i«2 UNTIL N-1 DO BEGIN
BUCKET « 1 + (N-1) x FLOOR( (XCI1-MIN) /7 (MAX-MIN) )
COUNT [BUCKET] « COUNTIBUCKET] + 1j
IF COUNT [BUCKET] = 1 THEN BEGIN
LOWIBUCKET) « XI[I); HIGHIBUCKET] -« XI[I1; END
ELSE BEGIN
IF XUl < LOWIBUCKET] THEN LOWIBUCKET) « XIIl;
IF X[I) > HIGHIBUCKET] THEN HIGHIBUCKET) « X[I1;
END
END
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4. Since N-2 points have been placed in N-1 buckets, by the
‘pigeonhole principle some bucket must be empty. This means that
the largest gap cannot occur betueen two points in the same
bucket, uhich justifies our keeping only HIGH and LOW. MWe nowu
make a single pass through the buckets, keeping the largest

gap betueen each HIGH and the next LON in a nonempty bucket.

MAXGAP « B;
LEFT « HIGHI1];
FOR I « 2 UNTIL N-1 DO BEGIN
IF COUNTII] » 8 THEN BEGIN
THISGAP « LOWII] - LEFT;
IF THISGAP > MAXGAP THEN MAXGAP « THISGAP;
LEFT « HIGHI1];
END
END

In view of the similarity between MAXGAP and CLOSEST PAIR in one dimension, It is
remarkable that a linear algorithm is possible. Unfortunately, no generalization to
two dimensions seems to be possible,

' 6.2. A Divide-and-Conquer Aigorithm for Closest Pair

_The lower bound of Theorem 6.1 challenges us to find an O(N log N) algorithm for

closest palr.’f‘ There seem to be two reasonable ways to achieve such behavior:
sorting and divide-and-conquer. The sorting approach does not appear to lead to
anything useful, for the only way to apply it seems to be to project all the points
onto one of the axes. One would like to appeal to the principle ("hope" is a better
word) that in this projection very few points will separate A and its nearest
neighbor.” In the worst case, of course, this is not true, as illustrated In Figure
6.13. Points A and B are clbsest, but they are farthest when projected on
the y-axis.

MThIs section Is based almost entirely on an idea due to H. R. Strong, for which we
are most appreciative.
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Figure 6.13: The Failure of Projection Methods

A second way to achieve O(N log N) performance is to split the problem into two
subprbblems whose solutions can be combined in linear time to give a solution to the
entire problem. In this case, the obvious way of applying D&C does not lead to any
improvement, and it is instructive to explore why it falls.

We would like to split the set into two subsets, A and B, each having N/2 points,
and obtain a closest pair in each set recursively. The problem Is how to make use
of the information so obtained. The possibility still exists that the closest pair in
the set consists of one element of A and one element of B, so that there is no clear
way to avoid making N2/4 additional comparisons. This leads to a recurrence of the
form

T(N) = 2T(N/2) + O(N2) ,

whose solution is T(N) = O(N2). Let us try to remedy the difficuity by retreatlhg
to one dimension. '

The only O(N log N) algorithm we know on the line Is the one which sorts the
points and performs a linear-time scan (Section 6.1.1). Since sorting will not
gener;illze to two dimensions, let us try to develop a one-dimensional divide-and-


shamos
FullBlank


Closest-Point Problems - » 165

conquer scheme that will. Suppose we partition a set of points on the line by their

median M into two sets A and B with the property that a<b for all a¢ A and b ¢ B.
s_élvtng the closest pair problem recursively on A and B separately gives us two

pairs of points, {c,d} and {e,f}, the closest pairs in A and B, respectively. Let 8 be
the smallest separation found thus far:

8 = min (d-c, f-e).

(See Figure 6.14.)

Figure 6.14: Divide-and-Conquer in One Dimension

The closest pair in the whole set is either {c,d}, {e,f}, or some {g,h}, where g € A
and h ¢ B. Notice, though, and this is the key observation, that both g and h must be

within distance 8 of M If (g,h) Is to have a separation smaller than 8.5 How many
points of A can lie in the half-open interval (g,M]?- Since every half-open interval of
length 8 contains at most one point of A, (g,M] contains at most one point. Similarly,
[M;h) contains-at most one point. The number of pairwise comparisons that must be
made between points in different subsets Is thus at most one. We can certainly
find ‘all points In the Intervais (g,M) and (M) in linear time, so an O(N log N)
algorithm results.

15|t is clear that g must be the rightmost point in A and h the leftmost point in B,
but this notion is not meaningfu! In higher dimensions so we wish to be somewhat
more general.
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Algorithm A6.3: Closest Pair in One Dimenslon

input: X{1:N) , N points in one dimension. A
Output: DELTA , the distance betueen the tuo closest.

RECURSIVE PROCEDURE CPAIR(X,DELTA);
IF IX! = 2 THEN BEGIN
DELTA « X[2] - XI[1]; RETURN; END
ELSE
IF |X] = 1 THEN BEGIN
DELTA « » 3 RETURN; END
M « MEDIAN(X);
Let A be the points < N,
and B the points 2 M.
CPAIR(A,ADELTA);
CPAIR(B,BDELTA); :
Find the (unique) point G of A that is within ADELTA of M.
Find the (unique) point H of B that is within BDELTA of M.
DELTA « MIN(ADELTA, BDELTA, H - G);
RETURN;
END CPAIR

This algorithm, while apparently more complicated than the-simple sort and scan,
provides the necessary transition to two dimensions.

" Generalizing as directly as possible, let us partition a two-dimensional set S into
two subsets A and B of equal size such that every point of A lies to the left of
every point of B.” That is, we cut the set by a vertical line L defined by the median

x-coordinate of S. Solving the problem on A and B recursively, we obtain 6A and 88,

the minimum separations In A and B, respectlvel_y. Now let & = mln(GA, 68). (See
Figure 6.15.)

If the closest pair consists of some g ¢ A and some h ¢B, then surely g and h are

both within distance 8 of L. Thus, g ¢ P and h¢ Q. At this point complications arise
that were not present in the one-dimensional case. On the line we found at most
one candidate for g and at most one for h. In two dimensions every point can be a

candidate because It Is only necessary for a point to lle within distance S of L.
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Figure 6.15: Divide-and-Conquer in the Plane

Figure 6.16 shows a set with this property. It again seems that N2/4
distance comparisons will be required 'to find the closest pair, but we will now show

that the points lying wlthln.tiie 6-slabs around L have special structure.

- Referring to Figure 6.17, consider any point g In P. . We must find all points
hIn Q that are within 8 of ‘g, but how many of these can there be? They must lie in
the § x 28 rectangle R, and we know that no two points. in R are closer together
than 6,16 The maximum number of points of separation at least § that can be
packed Into such a rectangle iIs six, as shown in the figure. This follows from the
fact that at most four points with separation at least § can be packed In a square
of side 8 and means that, for each point of P, we need only examine six points of Q,
not N/2 points. In other words, only 6 x N/2 = 3N distance comparisons are needed
In the subproblem merge step instead of N2/4.

161he author is deeply grateful to H. R. Strong for this observation, which cleared
the way for research on closest-point problems. He developed an O(N IogzN)
closest-pair algorithm, which we have improved here to O(N log N).
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Figure 6.16: All Points May Lie Within 8 of L

We do not yet have an O(N log N) algorithm, however, because even though we
know that only six points of Q have to be examined for every polnt of P, we do not
know which six they are!

Suppose we project g and all the points of Q onto L. To find the six points of G
that were In rectangle R, we need only look within an interval of twelve points that -
surround g in this projection. If we sort all the points initially by y-coordinate, this

Interval can be found for every g ¢ P in a single pass through the sorted list. The
merge step will then run in linear time. Here is the aIgorithm so far:

1. If |S]=1, set § to o, and return. If |S|=2, set & to the distance between the
- points. Otherwise, sort the points of S by both x~ and y-coordinate.

2. Partition S into two subsets, A and B, about the median line M.

3. Fird the closest pair separations 6A and 68 recursively.
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Figure 6.17: For every point in P, only a constant number in Q are examined.

q, 6 - mln(-aA. '63);

5. Let P be the set of points of A that are within & of the dividing line L, and let Q
be the corresponding set of points of B. Project P and Q onto L.

6. For every point of P, find its six nearest neighbors in the L projection of Q.
Let GL be the shortest distance between any pair thus obtained.

7. 85~ min 8y, 05, %)) .

Theorem 6.8: The shortest distance determined by N points In the plane can be
“found In O(N log N) time, and this is optimal.
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Proof: We show that the above algorithm always finds ‘a closest palr. If |[S] = 2,
the algorithm works correctly; we now argue Inductively based on the
partitioning performed in step 2. Assume the closest pair to be unique so there
are three cases to consider. Either both points lie in A, both in B, or one in
each. In the first two cases the algorithm works correctly by the Inductive
hypothesis. In the third case, by the above discussion the algorithm non-
recursively find the closest pair of the set with the property that one point lies
in A and the other in B. The running time can be computed as follows: St"ep 1
requires O(N log N) time, but is only performed once. Steps 2 and 6 take O(N)

time, Steps 4 and 7 take cciistant time, Step 3 takes 2T(N/2) time, and Step 5 -

takes O(N log N) time. The total running time is described by the recurrence

T(N) = 27(N/2)+ O(N) = O(NlogN) .
Optimaiity was shown in Theorem 6.1.

with Dan Hoey, we Implemented this algorithm and observed a curious

phenomenon: the number of distance computations made was always strictly less .

than N. That this is always the case was later proved in [Bentley (76a)]. Of
course, the behavior of the algorithm 'is still dominated by the sort step. The
structure of this divide-and-conquer scheme has some noteworthy features:
1. The method of division forces the subproblems to have a special property,
namely, sparsity.

2, The step at which the subproblem solutions are merged takes place In one
lower dimension.

3. The merge time is reduced by preprocessing which takes place 'outslde the
recursive structure of the algorithm.

- Together with Bentley, we have shown [Bentley (76b)] that a straightforward
" generalization of this algorithm to k dimensions runs in O(N Iog""N) time, but that
this can be reduced to O(N log N) by Imposing constraints on the cholce of cut-
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planes. Bentley has made a thorough study of multidimensional divide-and-conquer
. aigorithms in his Ph.D. thesis [Bentley (76a)]. and has formulated a number of
heuristic design principles for discovering new ones. The idea of recurring both on
dimension and problem size simultaneously Is an especially powerful one.

Theorem 8.1 is significant because it provides hopé that all of the cldsest-polnt
problems discussed above (except the ETSP) can be solved in O(N log N) time. We
-glready knew that CLOSEST PAIR was reduclble to P6.2-P6.6, so a quadratic lower
bound for CLOSEST PAIR would imply a quadratic lower bound on all of the others.
Now that we have a fast algorithm for P6.1, it is reasonable to suppose that the
other problems can be solved quickly.

6.3. The Voronoi Diagram

It is one thing to suspect the existence of fast algorithms, but quite another to
actually discover them. While our D&C aigorithm for finding a closest pair may be
encouraging, it does not solve even the all nearest neighbors problem, whkich would
seem to be a simple extension. If we try to set up the analogous recursion for all
nearest neighbors, we find that the natural method of splitting the problem does not
Induce sparsity, and there is no apparent way of accomplishing the merge step in
less:than quadratic time. To get around this difficulty, let us abandon divide-and-
conquer temporarily and study some geometry.

A valuable heuristic for designing geometric algorithms Is to look at the defining
loct and try to organize them Into a data structure. In the case of the closest-point
problems we want to solve

Problem P6.14: (Locl of Proximity) Given N points in the plane, for each point
P;, what is the locus of points (x, y) in the plane that are closer to P than to
_any other point?

If we knew these loci, we would be able to solve the nearest neighbor problem
drectly, since determining the closest point to (x, y) is the same as asking which
locus'it lies in.
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Given two points, b, and Py the set of points closer to p; than to Pj is just the
half-plane containing p; that is defined by the perpendicular bisector of pi'and P
let us-denote this half-plane by H(p,,pj). The locus of points closer to p; than to
any other point, which we denote by V(i), is then intersection of such half-planes, a
problem we studied in Chapter 5. Thus V(i) is a convex polygonal region having no
more than N-1 sides, defined by ‘

Vi = N Hepep . . {8.3)
J#i , .
V(i) is called the Voronol polygon associated with pi- (See Figure 6.18.) 17,
°
)
°
¢ °
0
0 °
. °
o * i
°

Figure 6.18: A Voronoi Polygon.

These N poiygons partition the plane into @ convex net which we shall refer to as
the Vorono/ diagram. See Figure 6.19.) . The vertices of the diagram are
Vo;onol points, and its line segments are Voronoi edges.

Each of the original N points belongs to a unique Voronol polygon. Thus Iif

17Th.ese polygons were first studied seriously by the emigre Russian mathematician
G. Voronol,. who used them In a treatise on quadratic forms [Voronol (08)]. They are
dlso called Dirichlet regions [Loeb (76)], mosalics [Matern (60)], or Thiessen
polygons [Hodder (76)]. Dan Hoey has suggested the more descriptive (and
impartial) term "proximal polvgon".
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Figure 6.19: The Voronoi Diagram.

(x,y) € V(i), then p; Is a nearest neighbor of (x, y). The Voronol diagram contalins, in |
a powerful sense, all of the proximity information defined by the given set.

6.3.1. A Catalog of Voronoi Properties

In this section we list 8 number of important properties of the Voronol diagram.
We assume throughout that no four points of the original set are cocircular. If this
Is not true, Inconsequential but lengthy detalls must be added to the proofs and
statements of the theorems. Eventually, we will want to 'use the Voronol diagram to
solve the closest-point problems. This will only be successful ¥ it can be
constructed rapidly. A trivial lower bound on the time necessary to do this Is the
“total number of Voronol points and edges that are present. At first glance the
diagram seems very complicated, but the number of elements It contains is small.
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Every edge of the Voronoi diagram is a segment of the perpendicular bisector of a
pair of points and is thus common to exactly two polygons.

Definition 6.1: The stralght-line dual of a Voronol diagram on a set S of N points
.Is a graph whose N vertices correspond to the points of S, in which there Is an
edge from s to t Iff the Voronol polygons V(s) and V(t) share an edge. (See
Figure 6.20).

As an abstract graph, the straight-line dual is the geometric dual of the Voronoi
graph [Ore (62)]. )

Figure 6.20: The Straight-Line Dual of the Voronol Dlagrqm.

The dual may appear to be unusual at first glénce, since an edge and its dual may
not even intersect (look at the edges joining consecutive vertices of the convex
hull in Figure 6.20). It importance is due fargely to the following theorem of
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Delaunay: 18

Theorém 6.9: The straight-line dual of the Voronol dlagrém is a trlangulatlon.19

| This means that the Voronoi diagram can be used to solve the Trlangulation problem,
P6.8, but the theorem has a much more significant consequence:

Theorem 6.10: A Voronoi diagram on N points has at most 2N-4 vertices and 3N-8
edges. '

Proof: Each edge in the straight-line dual corresponds to a unique Voronol edge.
Being a triangulation, the dual is a planar graph on N points, and thus has at
most 3N-6 edges [Harary (71)]. Therefore, the number of Voronol edges Is at

~ most 3N-6. To compute the number of Voronol vertices, wis cbserve that there
is one such vertex for each face of the dual. The number of faces of any
ptanar graph is given by Euler's relation: F=E -V + 2, For a given value of V, F
will be maximized when E is maximized. Applying this to the dual graph, V = N
and E £ 3N - 8, whence F £ 2N -4,

Since it Is the dual of a planar graph, which we shall call the Deiaunay graph, the
Voronol diagram is itself a planar graph [Harary (71)], and can be stored in only
near space. This makes possible an axtremely compact representation of the
proximity data. Any given Voronol polygon may have as many as N-1 edges, but
there are at most 3N-8 edges overall, each of which Is shared by exactly two
polygons. This means that the average number of edges in a Voronol polygon does
not exceed six.

18[Delaumaly (34)]. A readable account appears in [Rogers (64)].

19In this simple fortﬁ, the theorem fails when certain subsets of four or more points
are cocircular, In this case, however, completing the triangulation will be
- straightforward. (Recall that if the points are chosen from an absolutely continuous
probsbility distribution, the probability of a cocircularity Is zero. A stetisticlan would
+ find It amusing that we are so concerned with events of probability zero.)
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. We will refer to the faces of the Delaunay graph as Delaunay triangles 'and. slnce'
the degree of a vertex t of the Voronol diagram is equal to the number of edges of
the face to which t corresponds in the duai, each vertex of the Voronol dlagram
(except the vertex at Infinity) is of degree three.

Theorem 6.11: Every nearest neighbor of p; defines an edge of the Voronoi

polygon v(i). :

Proof: Let pj be a nearest neighbor of P and let M be, the mldpolnt of p: % M
cannot be interior to V(i) since it is equidistant from both p; and P Suy.: use
that M does not lie on the boundary of V(I). Then the line segment pM
intersects some edga of V(i), say the bisector of p; and py, at N. (Figure
6.21.) Then pN < pM, so .

PPk = 2PN < 2pM = ppj ,
and we would have p, closer to p; than Py which Is impossible.

« Bisector of p i“ﬁj'

Figure 6.21: Every Nearest Nelghbor of p; Defines an Edge of v(i).

The circumcenter of a triangle is the center of the (unique) circle that passes
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,through the vertices of the triangle. The circumcenter Is equidistant from these
vertices. Since a Voronol vertex Is of degree three, it is equidistant from three of
the original points and Is in fact the circumcenter of a Delaunay trlangle.

Theorem 6.12: The circumcircle of a Delaunay triangle contains no other points of
the set,20

Proof: (See Figure 6.22.) Consider the trlangle abc whose circumcenter
is x. (Note that x is not necessarily interior to abc.) If the circumcircle €
contains some other point d, then x Is closer to d than to any of a, b, or ¢, In
which case, by the definition of a Voronol polygon, It must lie in V(d) and not in

"~ -any of V(a), V(b), or V(c), by the definiticn of a Voronol polygon. This Is a
contradiction, since x is common to all of V(a), V(b), and V(c).

Theorem 6.13: The polygon V(i) is unbounded iff p; lles on the boundary of the
convex hull. '

Proof: This follows from the proof of the more general Theorem 6.26 and
the .fact that the only  singleton exposed subsets {(Cf. Definition 6.2
are hull vertices. Since only unbounded polygons can have rays as edges, the
rays of the Voronol diagram correspond to pairs of adjacent vertices on the
convex hull, ’

In the next section we will use these properties to construct the Voronoi diagram
quickly and employ it solve the closest-point problems. Even though we will be
using it for other purposes, it Is well to note that construction of Voronc! diagrams Is
an end in itself in a number of fields. In archaeology, Voronol polygons are used to
map the spread of the use of tools In ancient cuitures and for studying the
ifluence of rival centers of commerce [Hodder (76)]. In ecology, the survival of an

~ organism depends on the number of neighbors it must cdmpate with for food and

: 2°Thls phenomenon was first obsarved by Dan Hoey.
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Figure 6.22: The Circumcircle of a Delaunay Triangle Is Empty.

* fight, and the Voronol diagram of forest species and territorial animais is used to

Investigate the effect of overcrowding [Pielou (77)]. The structure of a molecule is
.determlned by the combined influence of electrical and short-range forces, which
have been probed by constructing elaborate Voronol diagrams [Brostow (77)].

6.4. Constructing the Voronoi Diagram
‘We will now see that even though the Voronol diagram appears to be a complex

chject, it is eminently sulted to attack by divide-and-conquer. The method we
employ depends for its success on various structural propertles of the dlagram that

enables us to merge subproblems in linear time.
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]

| By "finding" the Voronol diagram of a set of points, we,mean obtalning all of the

following data:
1. Thé coordinates of the Voronol points.
2. The Voronoi ‘edges (a pair of Voronoi points) Iﬁcl,dent with each Voronol point. .
3. The two original points that determine each Voronol ' edge.

4, A ilist of the edges of each polygon in cyclic order. =
Since each Voronol polygon is an Intersection of N-1 half-planes, it can be
constructed in O(N log N) time by Algorithm A5.2. (This Is optimal for producing any
single polygon.) There are N pclygons to be formed, so the entire construction can
be accomplished in O(Nalog N) time. On the other hand,

Theorem 6.14: Constructing a Voronol diagram on N points In the plane must take
Q(N log N) operations, in the worst case. '

Proof: We will see later that the closest-point problems are all linear-time
reducible to VORONOI DIAGRAM so many probfs of this theorem are possible.
.We content ourselves here with a very simple one. The Voronol diagram of a
set of points in one dimension consists of N-1 bisectors separating adjacent
points on the line. From these consecutive pairs, we can obtain a sorted list of
the points in linear time by Algorithm A8.1. ‘

We now show that this lower bound can be achleved, which means that constructing
the entire diagram is no more difficult than finding a single one of its polygons!

Let us suppose that we have divided a set S, containing N points, into two
subsets L and R by a vertical median line M. This means that every point In L lies to
the left of every point in R, and every point of R lies to the right of every point In

L21 Let us now find the Voronol diagrams V(L) and V(R) of each subs=2t

21Unless. of course, two or more points lie on the median line, in which case we

+ assign the upper half to set L and the others to set R.
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recursively. If these can be merged in linear time to form the Voronol diagram V(S)
of the entire set, we will have an O(N log N) algorithm. But what reason Is there to
belleve that V(L) and V(R) bear any relation to V(S)?

Consider the locus P of points that are simultaneously closest to a point of L and
a point of R. This Is just the set of edges of V(S) that are shared between .
polygons V(1) and V(j), with p; €L and p j € R. We will now show that the locus P is a
polygonal line.

Lemma 6.7: Every horizontal lin~ intersects P in at least one point.
-~

Proof: Consider a horizontal fine H and any palir of pblnts u €Ll and v € R not both
‘on the median line M. Let the perpendicular bisector of uv intersect H at z.
This intersection exists because uv cannot be a vertical line. Denote by
LEFT(H,u,v) the set of all points of H that lie to the left of z and by RIGHT(H,u,v)
the points that lie to the right. Now examine the intersection LL of LEFT(H,u,v)
over ali pairs u,v that satisfy the conditions above. Each element of LEFT is a
negative half-line, so the intersection Is non-empty. Likewise RR, the
_Intersection of the RIGHT(H,u,v) is nonempty. Since H is now known to contain-
some points that are closest to some point of L and some that are closest to a
point ‘of R, by continuity it must also contain at least one point that Is
equidistant from L and R and which thus belongs to P.

Theorem 6.15: The locus P intersects each horizontal line in at most one point.
That is, P is monotonic in y.

Proof: P consists only of segments and rays since it is composed of fines of the
Voronol diagram. We show that in traversing P from +00 the y-coordinate never
increases. For assume the contrary, and let w be the first point at which P
turns upward. (See Figure 6.23.) Edge uw is the bisector of a and b, vw
Is the bisector of b and ¢, Since by construction P separates L and R, we have
‘that @ and ¢ are In R,and bisintL,oraandc are in L and b In in R. In elther
case we have a contradiction. which is a
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Figure 6.23: Proof That P is Monotonic.

'We now know that P is a monotonic polygonal line, so it is meaningful to speak of
~ a point being to the "right" or "left" of P. P has the property that any point to its
left Is closest to some point of L and any point to the right Is closest to some point
of R. (See Figure 6.24.)

Crasider superimposing the Voronoi diagrams V(L) and V(R). (V(L) and V(R) are

shown separately In Figures 6.25 and 6.26, and are superimposed In
Figure 6.27.)
Those ~segments -of . V(R) -that :lie .to. the Jeft of -P play -no role in "discriminating -
proximity between points of L since {hey pertain only to R, and are thus absent from
the final diagram V(S). Likewise, those segments of V(L) that ke to the right of P
are also absent from V(S). Given P, the merge step is completed by removing these
sets of edges and "stitching" P into the remnants of V(L) and V(R). Here Is a rough
sketch of the emerging algorithm:

1. Divide S intoc two subsets L and R by median x-coordinate. This can be done
in O(N) time.

2. Find V(L) and V(R) recursively. Time: 2T(N/2).
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< Vertical median line

Figure 6.24: The Locus of Points Equidistant from L and R.

3. Construct P, the locus simultaneously closest to a point in L and a point in R.

4. Discard all segments of V(R) that lie tc the ieft of P, and all segments of V(L)
I that lie to the right of P. The result is V(S), the Voronol dlagram of the entire .
set. : '

The success of this procedure depends on how rapidly we are able to find the
dividing line P. We will use the monotonicity property of P to enable us to scan V(L)
and V(R) downward, without backtracking. Since V(L) and V(R) each contaln only
O(N) edges, we will be able to find P In linear time.
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Figure 6.25: The Voronol Diagram of the Left Set.
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Figure 6.26: Voronol Diagram of the Right Set. .
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Figure 6.27: V(L), V(R) and P superimposed.

6.4.1. Construction of the 'Dividing Line -

"stepping down by zlgzag paths ... "
- Tennyson

"To right or left eternal swervin / They zig-zag
on.”

- Robert Burns. To J. S.

The first step in the construction of P Is to find its Infinite rays. Since rays of
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the Voronol diagram correspond to pairs of adjacent hull vertices, we must find the
two edges of Hull(L V R) that are not present in either Huli(L) or Hull(R).

Theorem 6.16: Given the Voronol dlagram on N points in the plane, their convex
hull can be found in linear time. "

Proof: Examine the Voronol edges until a ray r Is found. Let us say that the
polygon to the left of r (in the directed sense) is V(I). Then p; is a hull vertex.
Scan the edges of V(i) until another ray is found. Thls wili give another hull
point Pj and we now scan V(j), etc.,, until we return to V(). An edge is
examined only when one of the polygons containing it Is scanned. Since each
edge occurs in exactly two polygons, no edge is examined more than twice,
and linear time suffices.

To find the infinite rays of P we use V(L) and V(R) to obtain Hull(L) and Hull(R) in
linear time, then the hull of the union can be found using Algorithm A3.3. (Figure
6.28.) The rays are then the perperdicular blsectors of the segments
Joining Hull(L) and Hull(R).

It will now be useful to refer to the example in Figure 6.29. The upper ray
of P is the bisector of points 7 and 14. Imagine a point z on the ray, moving down
from infinity. Initially z lies in polygons V(7) and V(14). it will continue to do so until
it crosses an edge of one of these polygons, when it will follow a zigzag course In a
different direction. In this case, z encounters an edge of V(14) before it hits any
edge of V(7). This means that z Is now cioser to point 11 than it is to point 14, so
it must move off along the 7-11 bisector. It continues until the 6-7 edge of V(7)is
reached, and moves off along the 6-11 bisector. Eventually it hits the 10- 11 edge
of V(11) and proceeds via the 6-10 bisector. This jagged walk continues until the
bottom ray of P is reached.

It is straightforward now to show that P can be found in linear time, and we make '
use of the property that it always moves downward. The moving point z always lies
in two Voronol polygons, one in the left set and one in the right set. (This is because
both Voronol diagrams partition the piane.) To find the next point at which P
changes direction, it is only necessary to examine these two polygons. If we were
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,' <— The infinite rays of P are

% the perpendicular bisectors
of the segments joining
Hull{L) and Huli(R).

!

-
-~
-
= -

Hull(R)

~~~~~

Figure 8.28: Finding the Infinite Rays of P.

Aable to argue that no Voronoi edge is scanned more than twice, it would follow
immediately that only O(N) time is required. If we were to scan all of V(i) each time,
far too many édge examinations would be performed; in fact, this procedure could
teke as much as quadratic time.

The solution is to organize the polygon scanning more sensibly, using the fact that
P is monotonic.22 Say that P begins in polygons V(i) and V(J), with 1 € L and j € R.
We=will continually maintain two- pointers;./ and .r, to the edges e and e, that P
would intersect in V(L) and V(R) if it continued in its present direction. We may find
the initial values of / and r in a single scan of V(i) and V(j). Let e, be the edge that
P Intersects first. If e, = e), P will bend toward the right as it passes through the
edge. To find th_e next edge that P intersects, we move / counterclockwise in the
new polygon in V(L) shared by e, and r clockwise In the current polygon in V(R),
starting from the last examined edge. Likewise, if e, = e, we move the pointer r

22Material provided by D. T. Lee [Lee (76a)] helped considerably to clarify this
paragraph.
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Figure 6.29: A Zigzag Walk to Construct P.
clockwise through the edges of the polygon in V(R) that shares e,and /

counterclockwise In its polygon, beginning from the last edge examined. Note that
the polygons In V(L) are always scanned counterclockwise and those In V(R) -
clockwise. ‘ '

The scan In any polygon always proceeds from the iast edge examined, so no
backtracking Is ever necessary. At each step in this process, we aiways do one of
the following:

1. Examine a new edge of V(L) and increment / (if it does not intersect P).
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" 2, Examine a nhew edge of V(R) and Increment r (if it does not Intersect P).
3. Create a new Voronoi point (where P intersects an edge).

Since there are at most 3N-6 edges In V(L) and V(R) together and at most N
vertices in P, the entire construction of P takes only linear time. A complete
implementation and formal proof of this procedure appears in [Lee (76a)]. Such a
proof can be given only for a specific data structure.

Recall that to form the final Voronoi diagram we must discars &ll edges of-V{L)
that lie to the right of P and all edges of V(R) that lie to the left. The edges that
are intersected by P form cutsets in both V(L) and V(R) that partition these graphs
Into two cbmponents. The components can be determined by breadth-first traversal
in time that i»s proportional to the number of edges involved, It follows that the
- process of merging V(L) and V(R) to form V(S) takes only linear time.

Theorem 6.17: The Voronol diagram of a set of N points in the plane can be
constructed Iin O(N log N) time, and this is optimal.

Proof: For a detailed specification of a data structure, algorithm, and proof of
- correctness,~the reader:is referred to the Master's-thesis-of -D. T. Lee [Lee
(76a)]. The time required by the recursive merge procedure is described by
the recurrence relation T(N) = 27(N/2) + O(N) = O(N log N). Optimality was

shown in Theorem 6.14.
: Vs

8.5. Voronol Applications

We now show how the Vorono! diagram can be used to' solve all of the closest-
point problems efficiently.

Theorem 6.18: The ALL NEAREST NEIGHBORS problem can be solved in O(N log N)
time, and this is optimal.
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Figure 6.30: The Nearest-Nelghbor Relation.

Proof: By Theorem 6.11, every nearest neighbor qf a point p; defines an edge of
V(1). To find a nearest neighbor of p;, it Is only necessary to scan each edge of
V(i). Since every edge belongs to two Voronol polygons, no edge will be

-examined more than twice. Thus, gi\gen the Voronol diagram, all nearest
neighbors can be found in linsar time. - Optimality was shown in Section-8.1.2,

. In nearest-neighbor searching, we are given a set of points, and we wish to
preprocess them so that given a new point z, its nearest neighbor can be found
quickly. However, finding the nearest neighbor of z is equivalent to finding the
Voronol polygon in which it lies. The preprocessing just consists of creating the
Vorqhol diagram ! Since the diagram is a planar straight line graph, It can be
searched using any of the methods given in Section 4.4.1.
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Theorem 6.19: [Cf. Theorem 4.10] Nearest-neighbor 'search can be performed
in O(log N) time, using O(N2) storage and O(N2) preprocessing time.

Theorem 6.20: [Cf. Theorem 4.11] Nearest-neighbor search can be performed
in O(IogzN) time, using O(N) storage and O(N log N) preprocessing time. '

Theorem 6.21: [Cf. Theorem 4.12] Nearest-neighbor search can be performed
~ In O(log N) time, using O(N) storage and O(N log N) preprocessing time.

!

To show how to construct a Euclidean minimum spanning tree, we review Prim's
algorithm:

Algorithm A6.4: Minimum Spanning Tree [Prim (57)]

1. Begin with all points unlabeled except some
arbitrary point P.

2. WHILE (Some point is unlabeled) DO BEGIN
' Find the shortest euge joining a labeled point P
Hith an unlabeled point Q;
Add edge (P,Q) to the spanning tree;
Label Q;
END

Ties for the shortest edge may bs resolved arbitrarily.

We now use the correctness of Prim's algorithm (not the algorithm itself) to "show

that the minimum spanning tree on a set of points in the plane Is a subgraph of the
Voronoi dual.

Theorem 6.22: Every Euciidean minimum spanning tr_eé of a set of points is a
subgraph of the Voronoi dual.
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Proof: We need only show that each edge added in Step 2 of Algorithm AB.4 Is
an edge of the dual. Consider any subset U of points of S. !t will suffice to
prove that a shortest segment joining a point u of U and a point v of S-U is a
dual edge. It Is clear that uv intersects at least one edge of V(S), since it
begins In V(u) and terminates in V(v). However, uv cannot intersect more than
one edge of V(S) (except possibly at a Voronol vertex) because in so doing it
would enter some other polygon V(t) and we would then have either tu < uv or
tv < uv, which contradicts the hypothesis that uv is shortest. Thus V(u) and
-V(v) are adjacent polygons, so uv is a dual edge.

. Given the Voronoi diagram, the straight-line dual can be’constructed easily in O(N)
time by merely joining the pair of points that define each Voronol edge. Since the
MST Is a subgraph of the dual, it is also a mininum spanning tree of the dual. The
dual, however, Is a planar graph for which a minimum spanning tree can be found In
O(N) time [Cheriton (78)], so we have

Theorem 6.23: A minimum .spanning tree on N points in.the plane can be found in
O(N log N) time, and this is optimal. .

Let us say that a figure is empty with respect to a point-set S If it contains no
points of S. Since-we have already seen that the Voronol dual is a triangulation
(see Figure 6.20), it follows that ' |

Theorem 6.24: A triangulation with the property that the circumcircle of every
.vtrlangle is empty can be found in O(N log N) time, and this is optimal for. any
~ trlangulation. h

Theorem 6.25: The largest empty circle problem can be solved in O(N log N) time.

Proof: Given N points in the plane, consider the function f(x,y), the distance from
(x,y) to the nearest given point. Within a Voronol polygon, f is convex so it
attains a maximum at an extreme point of the polygon. For each Voronol point
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Figure 6.31: The MST is a subgraph of the Voronol Dual.

P, the value of f is just the distance from the point to the "owner" of any of
the three .polygons that meet at P. Since we have constrained the center of
the largest empty circle to lie within the convex hull of the set, this center
must occur either at a Voronci point or at an intersection of a Voronoi edge and
a hull.edge. (If.(x,y) is an interior point of a Voronol-polygon, the -convexity of f
impliesthat f(x,y) can~be increased by'movlng'in one of the two directions
determined by any line through (x.y).)‘AII of the Voronol points can be found in
O(N log N) time, and each one can be checked for hull inclusion in O(log N) time,
so it only remains to show that the hull intersections can be found quickly.
Consider any edge E of the hull. Corresponding to E is a ray r which coincides
with the perpendicular bisector of E (Theorem 6.13). Each such r either
intersects E or Intersects both Voronol edges adjacent to E, depending on
whether or not the circumcenter assoclatied with r lies inside or outsidz cf its
Delaunay triangle. In examining each ray and its two neighbors, no edge will be
scanned more than twice, so O(N) time suffices.
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Figure 6.32; The Voronoi Diagram locates a !argest empty circle.

It is remarkable that such a diverse collection of problems can be solved by a
single unifying structure.

6.6. Generalization of the Voronoi Diagram

The Voronoi diagram, while very powerful, has no means of dealing with farthest

points, k-closest points, clustering, and other distance relationships. As such, it is

* Unable to deal with the remainder of the problems we have posed. The difficulty Is

that we have been working with the Voronol polygon assoclated with a single point
but such a restriction is not necessary and it will be useful to speak of the -
generalized Voronol polygon V'(T) of a subset T of points, defined by
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VIT) = {x: Yyer Vgesar dixy) < d(x,2)) (6.4)

That ls.'V'(T) Is the locus of points p such that all points of T are nearer to p than is
any point not in T. An equivalent definition is

V(T) = NH()), IET, JeS-T j (6.5) -

where H(l,J) is the half plane containing | that is defined by the perpendicular
bisector of | and J. This shows that a generalized Voronol polygon is still convex. It
may, of course, happen that vi(T) is empty. In Figure 6.29, for example, there is no
point with the property that its two nearest neighbors are\5 and 13. A set S with N
points has 2N subsets. How many of these can possess non-empty Voronol
polygons? If the number is not large, there will be some hope of performing k-
'nearest-nelghbor searching without excessive storaqe.

Let us define the Voronoi diagram of order k, denoted V| (S) as the collection of
alt generalized Voronol polygons of k-subsets of S, so ’

V(8) = U{V(D), Tcs|T=k . ' (6.6)
In this notation, the ordinary Voronoi diagrem Is just V4(S). Itis proper to speak of

Vi(8) as a "diagram" because its polygons partition the plane (by the same
argument as in [Rogers (64)] for the first-order Voronol diagram). Given Vi (S), the

k points closest to a new given point z can be determined by finding the polygon in .-

which z lies. Figure 6.33 shows a Voronol diagram of order two, the set of
locl of nearest pairs of points. '

In crder to obtain bounds on the time and space required to perform k-nearest-
neighbor searching, we must compute the number of edges in the order k dlagram.

Definition 6.2: A nonempty subset TC S is exposed iff T and S - 7 are

separable, that is, they lie in complementary half-planes.

Theorem 6.26: The number of unbounded Voronoi polygons (of all orders) of a set
of N points Is N(N-1).
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Some Voronoi polygons
of order two are empty.
For example, there is no-
(5,7) poiygon.

For a set of N points there
are N(N-1)/2 possible
polygons. Here, N=8 but
only 15 out of the 28 -
polygons are non-empty. .

- Figure 6.33: A Voronol Diagram of Order Two.

Proof: We first show that V(T) is unbounded iff T is exposed, and then count the
number of exposed subsets. (This generalizes the idea of the ordinary Voronoi
property that unbounded polygons correspond to hull \{ertlces.) If T Is exposed,
then T and S -T lie in disjoint half-planes whlch' we may take (by rotating and
translating the points, if necessary) to be the half-planes x >0 and x<0,
respéctlvely. Foints on the x-axis with sufficiently large coordinates &ars
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closer to some point of T than to any point of S - T, so V(T) must be unbounded.
Conversely, if V(T) is unbounded, we can force it to contain all of the positive

'~ x-axis (again by rotation and translation) since it must contain a ray. This -

implies that no vertex of S - T can lie to the right of any vertex of T (as was
shown In Section 6.4), so the sets lie in complementary half-planes.

We now exhibit an isomorphism between complementary pairs of exposed
subsets and unordered pairs of vertices of S. Given a complementary pair of
exposed subsets P and Q, they can be separated by some line L (by definition).
Rotate and translate L counterclockwise until it meets some point p of P and q
of Q. Since no three points are collinear, p and q are unique. We assoclate the
pair {P,Q} with the vertex palr {p,q}. (See Figure 6.34.) Conversely,
given a pair of vertices {p,q}, we can recover the assoclated subset pair
uniquely: Let p lie above or to the right of 'q ‘aind let L be the line passing
through p and gq. Define P to be the subset consisting of p and the set of

‘points lying to the left of L. Q is the complement of P. Slnce two exposed

' subsets are associated with every unodered pair of vertices of S, so there

‘must be N(N-1) exposed subsets.

Flgdre 6.34: Enumerating Exposed Subsets
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Theorem 6.27:

The number of bounded Voronol polygons (of all orders) of a set of N points is
N-1
"3').

Proof: We first show that each tripie of points of S determines two generalized:
" Voronol vertices. Given points a, b, and ¢, let x be their circumcenter and let R
be the set of points lying strictly Inside their circumcircle. (R may be empty.)
Define k = |R], the number of points in the circle centered at x. Consider the
order k+1 Voronol diagram. The point x is common to the polygons V(R V a),
V(RU b), and V(RV ¢). In the order k+2 diagram, x ¥s common to V(R U a U b),
V(RU bV c), and V(RU c V a). Since no four points are cocircular, x cannot be
a vertex of any diégram of order greater than k+2. Thus there are two Voronol
. vertices for every triple of points.

Except for degeneracies, which can only reduce the number of distinct
polygons, each Voronoi vertex has degree three (excluding the vertex at
infinity). If a planar graph has F faces, V vertices of degree three, and one
vertex of degree D, then 2F =2 +V +D (by Euler's Formula). Letting Fy
denote the number of non-empty Voronol polygons I the order k diagram, Vi the
number of Voronol vertices, and D, the number of unbounded regions, then
~ summing over k from 1 to N-1 we have

2 F, = 2N-2+ Vip * Dy.
%k %k‘ % k

But, by Theorem 6.13,
% Dk = 2(2) and % Vk = 2(%) ’
so we obtain

X nc=n-1e (B - Nv-1) + (N51)

Since the number of unbounded polygons is N(N-1), the result follows.


shamos
FullBlank


‘Cldse;t-Po!nt Problems 199

Thus, the total number of polygons in all of the Voronol diagrams combined is O(Na), '
not 2N

Theorem.6.28: The number of reglons In V| (S) Is O(k(N-k)). 23

Because each vertex is of degree three, this means that the number of Voronol
gdges Is also G{k(N-k)). The union of the Voronol polygons of all orders Is precisely
the set of perpendicular bisectors of pairs of points of S.

éy starting with the order one diagram and successively updating it through
‘orders 2,3,...,k, Lee has been able to prove [Lee (76a)] - '

Theorem 6.29: The order k Voronol diagram on a set of N polnt can be obtained "
In O(k2N log N) time, using O(k2(N-K)) storage. Co S

The next theorem follows from an earlier resuit on planar graph searching:

Theorem 6.30: [Cf. Theorem 4.12] The k nearest out of N neighbors of a polﬁt '
can be found in O(max(k,og kN) search time and O(k(N-k)) storage, after
O(k2N log-N) preprocessing.

Note that the search a'lways requires at least O(k) time since k objects are being -
retrieved.

The generalized Voronoi diagram unifies closest- and farthest-point probiems
since the locus of points whose k nearest neighbors are the set T Is also the locué
of points whose N-k farthest neighbors are the set S - T. Thus, the order k closest-
point diagram Is exactly the order N-k farthest-point diagram. Let us examine one
of these more closely, the order N-1 closest-point diagram, or the order 1 farthest-
point diagram (Figure 6.35.)

Theorem 6.31: Given a set S of N points in the 'piane, all farthest points of S from
an arbitrary point z of the plane lie on Hull(S).

zaThls result was utated without proof in [Shamos (75c)). A proof may be found in’
+ [Lee (764a)].
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/
V(5) Vi)

V(8)

Points that are not on

3 , th%‘ lcmjull artehunnumbgred
1 : and do not have regions
via) -, . .\,'/ associated with them.
° , :
This region is the locus of o oF 4
points whose most distant PY

neighbor is point 4.

7 A ®e |
V(1)
V(3)
A
. . Figure 6.85: The Farthest-Point Voronol Diagram,

Proof: iLet p be some point of S that is farthest from z. Consider L, the straight
line that is perpendicular to pz at p. Every point on the opposite side of L from
z Is farther from z than is p. Thus ho point of S can lie in the far half-plane
determined by L, or p would not be farthest from z. it follows that L is.a

" supporting line of S and thus p lies on Hull(S),
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Assoclated with each point p;j Is a convex polygonal region VN_.'(I) such that p; is
the farthest nelghbor of every point in the region. By Theorem 6.31, this dlagram is
determined only by points on the convex hull and these are ail exbosad, so thare
are ho “bounded reglons. The farthest-point diagram can be constructed in
0(M log N) time by a procedure analogous to the algorithm for the closest-point
diagram. Ha\}ing found the farthest-point diagrams of the left and right halves of
the set, the polygonal dividing line P Is exactly the same as in the closest-point
cqsé. This time, however, we discard all segments of VN,;"(L) that lie to the /eft of
P, and those segments of Vy_4(R) that lie to the right of P.

Definition 6.3: [Harary (71)] A graph Is outerplanar If{ it is planar and all faces
are adjacent to one common face.

An outerplanar graph on N Vertices has at most 2N-3 edges [Harary (71)].

Theorem 6.32: Given a finite set of points S in the plane and an additional point
z, any point of S that is farthest from z lies on the convex hull of S.

Proof: Let s be a farthest-neighbor of z and consider the perpendicular P to line
sz at 5. Any point that lies on the opposite side of P from z is farther from 2
than s Is, so no such points can exist and P is a line of support of S (Definition
3.6). But then s lies on Huii(8).

It follows from Theorem 6.32 that a farthest-point Voronol diagram possesses no
closed regions because the oniy regions correspond to hull vertices and thus must
be unbounded by the proof of Theorem 6.26. As & consequence, the straight-line
dual of the farthest-point diagram is outerplanar and thus has at most 2N-3 edges.

The farthest-point diagram provldes another algorithm for set diameter. The two
farthest points of S correspond to some edge of the dlagram, and we can find them
In only O(N) additional time.

1
Theorem 6.33: The smallest circle enciosing a set of N points In the plane can be
found in O(N log N) time. ‘ :
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v(7)

V(6)

V()

There is an edge between
oints 4 and 8 because
(4) and V(8) share an edge.

V(5)
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The straight-line dual
of the farthest-point
diagram triangulates
the convex hull.
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Figure 6.36: The Dual of the Farthest-Polnt Diagram.

N\

Proof: We know from Section 6.1.7 that the required circle Is determined either
. by the diameter of the set or by three of its points. We can find the diameter
l{i O(N log N) time from the farthest-point diagram and determine whether it.
encloses the set, If so, we are done. Otherwise, we claim that the center C of
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s

the circle wiil lie at a vertex of the farthest-point diagram. Let the circle pass
through points P, Q, and R.. These must be farthest nelghbors of C, since if
there were a more distant point D from C, the circle would not enclose It.
Therefore, C Is a common point of the polygons Vy.1(P), Vy.1(Q), and Vy_4(R)
and must be a vertex of the diagram. The diagram contains only O(N) points
and the circumradius assoclated with each vertex Is the distance from It to any
of the three points of whose polygons it is the intersection. The maximum over
all vertices of this distance is the radius of the circle. '
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The center of the smallest
enclosing circle is a vertex
of the farthest-point
Yoronoi diagram.

204

/

Figure 6.37: The Smallest Enclosing Circle and the Farthest-Point Diagram.
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6.6.1. Voronol Extensions

it is natural to try to extend the Voronol idea to solve closest- -point problems in
higher dimensions. Theoretically, there is no dlfﬂculty \}oronol polytopes exist in
every dimension, are convex, and partition the entire space. Furthermore, the
stra!ght-line dual induces a simplicial partition. For ekxample, In three dimensions the
dual partitions space into tetrahedra. From a practical standpoint, though, these
‘polyhedra are not very useful. Preparata has shown that the Voronol diagram on N
. points In 3-space may have o(N2) vertices [Preparata (5?&)]. A set which realizes
.this bound Is one having N = 2k points, k of whidh lie on the unit circle in the x-y

plane and the remalning k at the locations (002), i=1,..,k, on the z-axis. This
‘ Implles a trivial lower bound of Q(N2) time for any augonlthm based on. Voronol
polyhedra.

Lee and Wong [Lee (77b)] have shown that our Voronol construction algorithm In
the plane generalizes to the L4 and L, metrics, again yielding O(N log N) algorithms
~ for the closest-point problems.

:8.7. Unsolved problems

1. Is there a simple divide-and-conquer algorithm for diameter analogous to
Strong's D&C for closest-pair?

2. Is there a fast expected-time algorithm for nearest-neighbor searching in the
plane? In particular, can O(log log N) average search time be achieved for
reasonable distributions?

3. Can one find the MST for N poliats In the plane without forming ths entira
Voronol diagram? (D&C with a fancy merge step?)

4. Are the edges of a minimum Euclidean matching necessarily edges of the
Voronol duai?



shamos
FullBlank


. Closest-Point Problems 2086

6, How much time Is required to construct an order k Voronol diagram directly?

6. Is a traveling salesman tour necessarily a subgraph of the Voronol dual?

7. Even though the Voronol diagram in three-space may have O(Nz) edgés, is it

- still possible to find the minimum spanning tree quickly? (it seems as though
one would have to generalize the splution to Problem 3, however.) '

8. (Minimum spanning forest) Find a forest of least total Iengthb on N points
such that each point iIs incident with at least one edge. (This Is not the same
problem as minimum matching.) r

8. A triangulation of a polygon is a decomposition of its interlor into disjoint
triangles. Preparata has shown that a simple poiygon car be triangulated in
O(N log N) time. (ihis does not follow from Theorem 6.9.) Is O(N) time
achievable? '

10. For every set of points in the plane, there is an MST on that set having
maximum degree five. [f we restrict the maximum degree to be two, the
traveling salesman path problem results, which is NP-complete. At what point
does the degree-constrained MST problem become NP-complete? Degree 2, 3,
or 47

~ 11. (Maximum spanning tree) Given N points in the plane, find a spanning tree

of greatest total length. (This is not an idle problem. Maximum spanning trees
have been used in clustering by S. C. Johnson.) Unfortunately, the MXST is not
a subgrapi of the duai of the farthest-point Voronol diagram. Can the MXST be
found in O(N log N) time? (Any efficient implementation of Prim's algorithm will
find it In O(N2) time.) |

12. Glven the vertices (in order) of a convex polygon, how quickly can the MST
be found? D.-T. Lee has shown that the two closest points of a convex
pciygon can be found in O(N) time.
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6.8. Summary

This chapter unifies the whole of computational geometry by combining all of the
methods we have developed for searching and intersection into a coherent set of
tools for solving problems based on the proximity of points -- the closest-point
problems: closest-pair, all nearest nelghbors, minimum spanning tree, triangulation,
smallest . enclosing circle, and largest empty wcircle. We Investigate the

_ computational properties of the Voronol diagram, a planar graph whose regions are

the loci of proximity surrounding each point, and find that the structure can be
created, manipulated, and stored efficiently, yielding O(N log N) algorithms for all of
the problems. The Voronoi construction is an elementary but complex application of
divide-and-conquer, with an involved merge step that is based on geometric
features of the diagram. The straight-line duel of the Voronol diagram is & planar
graph that is of special interest because it is a triangulation of the g.ven point set
and contains the nearest-neighbors graph and minimum spanning tree as subgraphs.

" A lower bound on the Voronoi construction and most of the closest-point problems

follows from reducibility with either sorting or the element uniqueness problem.,

We complete the connectioh between closest-point and fafthest-polnt problems
by defining the Voronol diagram of order k, which consists of r2gions that are loci of

all points x such that a given k points are the k nearest neighbors of x. This

generalization allows efficient solution of the k-nearest neighbors and smallest
enclosing circle problems.
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Chapter 7
Epilog -

7.1. New Directions

" The pres~nt work, broad though it may be, has barely scrétched the surface in
several important areas, and | have lived with it long enough to see its
shortcomings. Here is list of topics that seem promising for future research.

1. Higher dimensions. This thesis might well have been titled "Computational
Geometry In the Plane", but | did not feel compelled to be so restrictive. The

‘ -_"transltio,n from two dimensions to N is so easy in linear algebra, why shoU!&, it
ot be so in computational geometry? In many applications, even .three;
dimensions would suffice. One difficulty Is that a probiem may have many

solutions in the plane, only one of which generalizes to higher dimensions. It Is

not easy to recognize-such a solution. For ‘example, the only convex hi:ll ;
algorithm in two dimensions that gives rise to an efficient algorithm in three- -

space is our divide-and-conquer algorithm based on finding the hull of the union
of convex polygons. Even D&C has its limitations in multlpleAdImenslons. While
Bentley and Shamos [Bentley (76b)] have shown that the two closest of N
points can be found in O(N log N) time in any dimension k, the constant of
proportionality grows exponentially with k. This is because no D&C scheme has
yet been devised which does more than reduce the dimension by one at each
step of the recursion. One ordinarily works with recurrences of the form

T(NK) = 2T(N/2K) + T(Nk-1)+ O(N) = O(NlogkN) .  (7.1)

For the closest-pair problem we were able to reduce this tc O(N log N) only
through a drastic reduction in the number of points remalning at each level of
recursion. Bentley's thesis contains a number of valuable heuristics for
decomposing higher-dimensional probiems [Bentley (76a)].
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2. Average-case analysis. The amount of effort 'being devoted to analyzing the
expected behavior of algorithms is lncreaslng'dramhtlcally, and the general
conclusion seems to be that many algorithms= perform much better on the
average than worst-case analysis would suggest. Unfortunately, average-
case a'na!ysis in geometry involves faltly ponderous mathematics that will
probably remain inaccessible to many researchers [Santalo (76)].

3. Geometric lower bounds We often exploit the speéial structure of geometry
problems to produce efficient programs; why can we not derive lower bounds
from this same structure? One problem is that m‘any geometric questions
involve auxiliary functions such as square roots and trigonometric functions
which present methods of algebraic complexity will not handle, so new
techniques are required. Shamos and Yuval [Shamos (76c)] have shown that
determining .the average distance between N boints in the plane must take
Q(N2) operations, even if arbitrary single-valued functions are allowed In
addition. This lower bound is non-trivial because the problem has only 2N
inputs and a single output.

4. NP-complete problems All of the effort in this thesis was concentrated on

studying problems for which efficient algorithms could be derived. When it was
begun, no geometric problem was known to be NP-complete, although some
were suspected of -being dlfﬂcult:(ETSP,‘:Stelner:T.reé). Garey, Graham and
Johnson have made tremendous strides, proving the NP-completeness of
optimal linear arrangement, densest hemisphere, i:clidean TSP, and Steiner -
tree In various metrics. Hopefully, the fact that metric properties do not make
these problems tractable will shed some light on the structure of the class NP.

5. Approximation algorithms One way of circuinventing NP-compléteness‘ is to
accept an approximate answer to a problem rather than an exact one. F. K.
Hwang has obtained bounds on how weli a minimum spanning tree approximates
a Steiner tree in different metrics. The Christofides heuristic [Christofides
{76)] for the traveling salesman problem discussed in Chapter 6 typifies
current work in approximate algorithms. The goal is to produce a solution that
Is always within some multiplicative factor of the true or optimal solution; the
cost of obteining the approximation normally debends on how close an answer
Is desired. Other approximation schemes for the TSP have been given by [Kim
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(75)] and [Rosenkrantz (74)]. Most work in approximate algerithms centers on
intractable problems for obvious reasons, although this need not be the case.
If N is large, a quadratic algorithm may be as useless as an exponential one.
With this in mind, Shamos and Yuval [Shamos (76c)] derived a linear-time
approximation for the mean distance between points in the plane and
suggested a general method by which such results can be obtained.

8. Probabilistic algorithms Another alternative to NP-completeness Is to drop the
requirement that an algorithm aiways produce the correct, or even an
approximate, answer, Richard Karp has given an algorithm that aimost always
produces a traveling salesman tour that is within a factor of 1 + € of optimal
and almost ‘always runs in O(N log N) time'[Karp (76)]. (Here, "almost always"
is to be taken in its precise probabilistic sense.) Rabin has shown, using
probabilistic arguments, that if the FLOOR function is allowed, the two closest
of N points in the plane can be found in expected time O(N) [Rabin (76)]. This
approach seems to be able to yield geometric algorithms of startling efficiency.

7. Parallel algorithms An area of study that has barely been touched is the
decomposition of geometric problems for parallei.hardware. Suppose that 1024
processors are available. How should one proceed to find a minimum spanning
tree? Many geometry problems are inherently local -- Prim's algorithm, for

i example, shows that one can construct ~minimum spanning trees via
neighborhood search alone, up to a point. The nearest-neighbors graph itself
provides at least half of the edges of thie MST. This locality suggests a way of
splitting the MST problem. Divide the problem into rectangles, find the MST
recursively in each, then perform a fixup step to produce the global solution. A
large number of other problems have similar local features. The hidden line
problem can be divided conveniently among as many processors as are
available because the intersections of objects that occur in one region do not
affect other regions (modulo such global information as which objects obscure
others, etc.) There seem to be many profitable avenues of research in parallel
geometric algorithms. '
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7.2. A Final Note

We have set out to estabiish a new discipline by asking very elementary
questions and being satisfied with nothing short of complete answers to them.
These "questions" are in actuality fundamental computational problems that arise
throughout geometry, and their "answers" are optimal algorithmic tools used to
construct more complicated programs. We achieve great unification by using one
structure or algorithm to solve many problems and by using one reducibllity idea to
prove several lower bounds. '

The approach justifies itself by enabling us,to derive fast algorithms for a host of

problems that were previously treated by less efficient- ad hoc methods. Will it
work in areas other than geometry? We have applied the precepts expounded in
this thesis to computational problems in statistics {Shamos (76a)] with extremely
satisfying resnits. Not only are new results produced, but they come quickly, once

the basic problems are Isolated. A companion volume titled Computational Statistics

is in preparation, and it provides eéven more evidence of the soundness of our
technique.

"Anyoné who has studied geometry is infinitely
quicker of apprehension."
- Plato, Republic.
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Appendix A
The 4lgebraic Approach

"Equations are Expressions of Arithmetical
Computation, and properly have no place In
Geometry."

- Newton, On the Linear Construction of Equations.

|

The theory of algebraic complexity is now well-deVeloped [Borodin (73)]. Since
analytic geométry allows us to formulate any geometric problem as an algebraic one,
does it not stand to reason that that computationai geometfy should be an offshoot
of algebraic complexity? Believing this to be true, the author set off some years
ago to study complexity questions in analytic geometry, but was quickly stymied.
The chief reason was that none of the problems treated in this thesis can be
expressed in a purely algebraic way. One cannot, for example, write the
coordinates of the convex hull of a set S as a simple function of the coordinates of
the points of S. This Is true because the convex hull Is described by inequalities
among the..variables, not by equalities... Thus .one has no explicit formula to
evaluate, so such problems cannot-be analyzed by-1he—*technlques"of algebraic
coshplexity. This Is exactly analogous to the inability of differential calculus to deal

- with constrained optimization probiems, in which a maximum can occur ‘on the

boqndary of a region. The effort must then be concentrated on finding that
boundary. This Appendix Is devoted to a short description of the one success we
did have in applying &lgebraic complaxity to geometry.

The area of a triangle is _given classically by half the absoiute value of the
determinant of the three vectors (x4, X5, x3) (¥4, Y2, ¥3), and (1, 1, 1), which can
be evaluated in a completely straightforward manner in three multiplications and
five addition/subtractions. Should we have any reason to belleve that this method
is optimal? ‘

- The corresponding formula for the area of a general polygon Is
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N .
2 x AREA = |; XYis1Yi-) | » (A.1)

where subscripts are reduced modulo N. (N + i = i). If this form is evaluated as
- written, N multiplications and 2N-1 addition/subtractions are required, for a total of
3N-1 arithmetic operations. We may inquire as to whather this optimal by using in
" Independence technique due to [Winograd (70)]. )

Equation (A.1) is already in the form of an inner product, one of whose factors is
the vector of Indeterminates x;. By Winograd's. theqrem, the number of
multl’plldations' required to evaluate (A.1) is at least _as-'iarge as the rank of the
‘other factor over the real field extended by the Indetermlnates-y..' This other
factor is just the row vector '

(Yo= + Ya3"¥1, Y4¥2s -« Y9-¥N-1)

The elements of this vector sum to zero since each Y app'e_ars exactly twice, once
with a positive sign and once with a negative sign. Thus the rank is at most N-1. If
N is even, the sum of the odd-numbered terms is aiso zero, and the rank is at most
N-2.

These bounds are achievable as follows:

N odd:
N-1
2xAREA = | ; ) V4 17Y-1) | < (A-2)
N even:
/2 _ « -
2xAREA = | 2 X9) (y2i-¥2j-2) * (Xzj-2-xy) (Y2i-1-Y2i-3) | (A.3)
These formulas are ¢, . .. under the assumption that the xj &nd y; do not commute

multiplicatively.
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4 § 6 7 8 Nodd Neven

_Mults(old) - 3 4 5 6 7 8 N N
'Mults (new) 2 2 4 A 5 6 N-1 N-2
Adds (old) 5 7 9 11 13 15 2N-1 2N-1 -
Adds (new) 5 5 %1 11 17 17 3N-4  3N-7
Total (old) 8 11 14°17 20 23 G8N-1  3N-1
Total (new) 7 7 15 15 23 23 4N-5 4N-9

Table A.1. Operation Counts for Area Computation

Thius we find a reduction in total arithmetics _for N=3, 4, and 6. The case of the
quadrilateral is quite unexpected, since its area can be found just as easily as that
of a triangle. The explicit formula is :

2 x AREA = | (xg-Xq) (Y4-¥2) + (X2-X4) (¥3-Y1) | - (A.8)
which save four operations over the eleven 'required classically.

‘Davld;KlrkpatrlckJ ‘has obtained lower bounds-on the -number of-additions required -
to evaluate (A.1): 2N-2 for N odd, and 2N-3 ... N even. Thus a lower bound on the
total number of arithmetics is 3N-3 for N odd and 3N-5 for N even. Since the
classical form can be computed In 3N-1 operations, it Is never more than four
operations away from optimality. The case N=4 is the only known example of a
saving of four operations. ’ '

The "new" method of calculating areas (Equations (A.2) and (A.3)), has a simple
Interpretation. The coordinates are transformed by subtraction so that one vertex
Is at the origin. This enabies it to be eliminated frdm any subsequent multiplications
and additions. Unfortunately, the transformation requires O(N) subtractions in order
to save only a constant number of multiplications, and so it Is asymptotically inferior
to the classical expression (A.1). '

~!Prlvate communication to S. C. Eisenstat, March, 1974.
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What Is the significance of a saving of one or two multiplications? !t is
conceivable that there are applications in which the areas of trlangles must be
computed rapidly, but what Is more significant is that we have been finding the
.areas of small polygons for hundreds of years without knowing that the trlangle and
quadrilateral are of equai complexity and that the determinant formula is not optimal.
One need only scratch the surface of computational geometry to encounter the
unexpected.

Without the absolute value signs, Equation :(A.1) computes a quantity known as
the signed area of polygon P [Lopshits (70)], which Is positive If the vertices of P
are in counterclockwise sequence and negative if they are clockwise. We may use
these property to define the notions of "clockwise" and "counterclockwise" and
apply .(A.1) to determine the orientation of P in linear time.

Equation ((A.1). may also be used to determine whether a point D lies inside or
outside a triangle ABC that Is in standard form. If the signed areas of ABD, BCD, and
CAD are all positive, then D lies inside ABC. If any of the areas Iis zero, then D lies
on the boundary of ABC. Otherwise, D lies outside.

A.1. Unsolved problem

1. Give another example of a geometric problem that can be solved using
algebraic technigues.
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