
United States Patent [19J

Filepp et al.

[54) METHOD FOR STORING DATA IN AN
INTERACTIVE COMPUTER NETWORK

[75) Inventors: Robert Filepp, Springfield, N.J.;
Michael L. Gordon, Dobbs Ferry,
N.J.; Alexander W. Bidwell, New
York, both of N.Y.; Allan M. Wolf,
Ridgefield, Conn.; Francis C. Young,
Pearl River, N.Y.; Duane Tiemann,
Ossining, N.Y.; Kenneth H.
Appleman, White Plains, N.Y.; Sam
Meo, New York, N.Y.

[73) Assignee: Prodigy Services Company, White
Plains, N.Y.

[21] Appl. No.: 158,033

[22] Filed: Nov. 26, 1993

Related U.S. Application Data

[60] Division of Ser. No. 388,156, Jul. 28, 1989, Pat. No.
5,347,632, which is a continuation-in-part of Ser. No.
328,790, Mar. 23, 1989, abandoned, which is a con­
tinuation-in-part of Ser. No. 219,931, Jul. 15, 1988,
abandoned.

[51) Int. Cl.6 .. G06F 13/14
[52] U.S. Cl. 395/650; 395/497.02;

395/487; 395/154; 395/200.08; 395/600
[58] Field of Search 395/400, 425

[56) References Cited

U.S. PATENT DOCUMENTS

4,751,635 6/1988 Kret 364/200

Primary Examiner-David L. Robertson

210

Gateway
Systems

400

111
US005442771A

[11) Patent Number: 5,442,771
[45) Date of Patent: Aug. 15, 1995

Attorney, Agent, or Firm-Paul C. Scifo

[57] ABSTRACT

A method for storing data in an interactive computer
network is described. In preferred form, the method
features steps for establishing data stores of prescribed
capacities within a network for delivering an interactive
service. The stored data is used in presenting the appli­
cations that makeup the service. The method features
steps for associating storage control parameters with
the application data to be stored and supplying data to
the respective stores in excess of their respective capaci­
ties. The method includes steps for retaining data at the
stores based on the respective prescribed storage con­
trol parameters and the date usage experience at the
respective stores. In preferred form, the method fea­
tures steps for providing the data stores with a tempo­
rary cache for storing data during a data use session and
a variable-content, permanent, file for retaining data
between data use sessions. The method configures the
cache from available RAM and a prescribed disk file,
and the stage from a content-variable, permanent disk
file. Data is retained at the cache and subsequently at
the stage based on control parameters associated with
the data identification, storage candidacy and version,
as combined with a least-recently-used criterion. Ac­
cordingly, over multiple use sessions, the stage self-con­
figures with data tailored to use experience. Also in the
preferred form of the method described, the data is
arranged as objects having a header including the stor­
age control parameters.

20 Claims, 9 Drawing Sheets

200 20 10

U.S. Patent Aug. 15, 1995

Information Loyer

Switch/File Server

Cache/ Concentrator

Reception System

FIG. 1

Sheet 1 of 9

~10

-100

10

/

... r- 200

10

I
~300

400
/~

5,442,771

20

FIG. 2

210

Gateway
Systems

110

I High Function . I System

File Server

400

-120 1130

I Producer I I Business
System Support

System

100

200

~ 1 Reception
~

l "405·

(!}--426

~428

401

l
I

20 10

~ •
00
•
'""d
a
('t) = f""t-

~
1-l

"(JJ

1-l

~
(JJ

00
=­~
~
N
0

"""' \C

01
"' ~
~
"' -....l
-.....l
~

U.S. Patent Aug. 15, 1995 Sheet 3 of 9

(
255

Header Partition 250

Body Partition Body Partition
260 260

Window
Partition

275

AD Partition 280

I Next II Back II Path II Menu I!Actionll Jump II Help II Exit I
f

\ -,

5,442,771

c
8

ommand
or 290

l/
\ \ '· \., \.,

291 292 293 294 295 296 297 298

FIG. 3a

U.S. Patent

Header­
Partition # 1
250 ~

Body­
Partition #2
260

AD­
Partition #3
280

Aug. 15, 1995 Sheet 4 of 9

255

ABC APPLES

APPLES ARE GOOD FOR YOU
APPLES COST EACH
HOW MANY APPLES DO YOU
WISH TO ORDER ? L_ _ __:j---

AD
ACTION

NEXT EW:K PATH MENU JUMP HELP
291 292 293 294 295 296 297

Command Bar
Partition 290 SPECIFIC DISPLAY SCREEN EXAMPLE

FIG. 3b

5,442,771

414

Display
Field 1
270
(Input)

Display
Field 3
272

285

U.S. Patent Aug. 15, 1995 Sheet 5 of 9 5,442,771

OBJECT STRUCTURE

550

\ 551 552 552 552
((((.

I

HEADER SEGMENT SEGMENT SEGMENT

TYPE LENGTH DATA

)
553 554

)
555

)

FIG. 4a

551

BYTE 1 BYTES 2-7 BYTES 8-11 BYTE 12 BYTE 13 BYTES
BYTE 16 14-15

----·--

OBJECT ACCESS OBJECT OBJECT OBJECT OBJECT OBJECT
10 CONTROL SET LOC. TYPE LENGTH STORAGE

LENGTH IN SET CONTROL

FIG. 4b

BYTE 17 BYTE 18

NUMBER OBJECT
OF VERSION

OBJECTS CONTROL
IN SET

~ •
rJJ.
•
1-C
~
(t)

a

~
~

"'01
~

~
01

00
I:T'
ttl
ttl
0\
0
'"'+>
\0

01 ... s ...
'-l
'-l
~

FIG. 4c

OBJECT TYPES
/500

I PAGE-TEMPLATE OBJ I
r-506

I WINDOW OBJECT I
SEGMENT TYPES

/512

[-CUSTOM CURSOR I

r5o2

1 PAGE FORMAT oBJ-1
r50B

I PROGRA~fOBJECT -I

(514

C:clisr6M TEXT nH- I
,..,._. 518 r-520

I FLO LEVL PGM CALL I I KEYWORD/NAVIGAT'N I
c524 c526

I PG ELMNT SELECTOR CALL II PAGE FORMAT CALL I
r-530

[PRESENTATION DATA I
;-5.13

(- COMPRESSION DES. I
,-519

(custoM -CURSOR TYPE--2)
,-525

[-- IMBEDDED ELE. --]
,- 531

C -TABLE ___ srRucrl.JRE: J
,- 537

[-- svsfEMfABLf-cJ\Cr- J

r532
I PROGRAM CALL .,

;-515
I ARRAY DEF.-- -I

~521
1 cusToM GRAPHic 1

r-527
[INVENTORY CONTROL I

r 533
I IMBEDDED OBJECT I

/504

I PAGt ELEMENT OBJ I
,r-510

[ADVERTISEMENT OBJ I

/516

I FIELD DEFINITION I

r---522

[PAGE ELEMENT CALLI

/528
I PARTITION DEF'N I

L"534
I PROGRAM DATA I

r- 517
[FIELD DEF. TYPE 2 I

r-523
,--- EXTERNAL REF. I

r-529
I ----PAGE FORMAT DEF. I

~535 r-- - TABLE ENTRY 1
r- 540

I -PAGEDEF AULT I

L: •
C/)
•
~ a
(I)

= f"'t-

~
""'" ,.Ul

""'" \C
\C
(JJ

00.
g'
sa.
......
0
\C

01

t
N
-.1
-.1
I-'

U.S. Patent

~

420

/
450

...

Aug. 15, 1995 Sheet 8 of 9

PARTmONED APPUCATIONS

• UNKED PAGE TEMPLATE OBJECTS

• PAGE ELEMENT OBJECTS

• PROGRAM OBJECTS AND PROCESSORS

• TRANSACTION MESSAGE

SERVICE SOFTWARE KERNAL

LOGICAL OPERATING SYSTEM

PC SPECIFIC MULTI - TASKER

PC SPECIFIC OPERATING SYSTEM

I
400

RECEPTION SYSTEM LAYERS

FIG. S

5,442,771

410

v
43 0

/
4 32

_/

/4 33

v4 51

U.S. Patent Aug. 15, 1995 Sheet 9 of 9 5,442,771

F t' Key Echo/ unc 1on
Keyboard Cursor Movement Display Data I--
Manaaer Manager

434 Open/Close - 461/ Window Presentation
Navigate Data

Object -
Interpreter

Object Response Object Request
Processor _,. ..-436 pre-

Object (Build PPT- ~ and
open/close Request post-Request firing of

Object
window process-

437-r.. t ~
TBOL or

Storage filters & firing
Facility Object Scanner post-

./(parse segments) process-

4' 435 ors

Application level
Record TBOL Object

Local
object request Data - Interpreter

Store
Non-local 441

Object "-438
Field

44! object
J Data

request id return

Data
Ad

Manager Collection
Object Manager Object id

{442 Return Data Collection request
messages

Receive Queue
Object Manager/
Communications Request Next Queue

Manaaer Interface

Send DIA ~
Receive DIA

Messages Messages; 469 -
TOCS Objects

Fatal
Unk Communications Send Fatal Error Data Error

Manager
-. -444 FIG. 6 I Manager

5,442,771
1

METHOD FOR STORING DATA IN AN
INTERACTIVE COMPUTER NETWORK

2
costs will have to be held low, content made interesting
and response times reduced in order to attract and hold
both users who would subscribe to the service and
merchandisers who would rely on it as a channel of

RELATED APPLICATIONS 5 distribution for their good and services. Accordingly,
and as will be appreciated, the ability of the network to
rapidly satisfy large numbers of user requests with mini­
mal resources is fundamental to the ultimate success of

This is a division of application Ser. No. 388,156 filed
Jul. 28, 1989, which issued Sep. 13, 1994, as U.S. Pat.
No. 5,347,632, application Ser. No. 388,156 being a
continuation in part of application Ser. No. 328,790,
filed Mar. 23, 1989 now abandoned, which itself was a 10
continuation in part of application Ser. No. 219,931,
filed Jul. 15, 1988 now abandoned.

the network.
As pointed out in our parent application, Ser. No.

BACKGROUND OF THE INVENTION

1. Field of Use
This invention relates generally to a method for stor­

ing data in a distributed processing, interactive com­
puter network intended to provide very large numbers

388,156 filed Jul. 28, 1989, now issued as U.S. Pat. No.
5,347,632, breakthrough performance improvement,
essential to the feasibility of broad-based, interactive
services can be realized by storing application data local

15 to the user sites and relying on the user site computing
resources to manage the interactive session. As more
fully described in our parent application, by locating
application data closer to the user, for example, at the

of simultaneous users; e.g. millions, access to an interac­
tive service having large numbers; e.g., thousands, of 20
applications which include pre-created, interactive
text/graphic sessions; and more particularly, to a
method for storing data used in generating such applica­
tions, the method featuring steps for establishing data
stores, the stores including first store portions main- 25
tained during data usage sessions and second store por­
tions maintained during and between data usage ses­
sions, the method also featuring steps for associating
storage control parameters with the data, steps for sup­
plying data to the stores in excess of store capacity, and 30
steps for deleting data from the stores on a least-recent­
ly-used basis, so that data is retained at the stores depen­
dent on the storage control parameters and data usage

user terminal configured as a reception system and/ or a
concentrator facility hierarchically disposed between
the reception system and the service host, line traffic
and associated response time that would otherwise be
required to retrieve data from a conventional, time­
share host can be substantially reduced. Further, since
the host and concentrator computers of the reception­
system based systems we described can be configured as
server facilities, they can be provided substantially less
expensively than conventionally time-share hosts,
thereby, reducing the capital and operating costs re­
quired for the service.

However, formulating storage facilities for use in
such a network is not without significant problems. As
will be appreciated, the amount of storage capacity experience.

2. Prior Art 35 available at conventional user sites, and for that matter,
concentrator facilities, is limited. Accordingly, because
of capacity limitations, it would not be physically and
economically practical to attempt to store the entire
service database at the reception system or concentrator

Interactive computer networks are not new. Tradi­
tionally they have included conventional, hierarchical
architectures wherein a central, host computer re­
sponds to the information requests of multiple users. An
illustration would be a time-sharing network in which 40
multiple users, each at a remote terminal, log onto a host
that provides data and software resource for sequen­
tially receiving user data processing requests, executing
them and supplying responses back to the users.

While such networks have been successful in making 45
the processing power of large computers available to
many users, problems have existed with them. For ex­
ample, in such networks, the host has been required to
satisfy all the user data processing requests. As a result,
processing bottlenecks arise at the host that cause net- SO
work slowdowns and compel expansion in computing
resources; i.e., bigger and more complex computer fa­
cilities, where response times are sought to be held low
in the face of increasing user populations.

Host size and complexity, however, are liabilities for 55

sites. Further, even if storage capacity sufficient to ac­
commodate substantial portions, if not all, of the service
database could be provided, the need to maintain the
application data current would foreclose storing all data
locally or at the concentrator. As will be appreciated,
the data for numerous applications of a successful inter­
active service must remain current for the service to be
commercially viable. News stories, stock quotes, prices
of goods, as well as items like airline and entertainment
seating and scheduling are all time sensitive and must be
regularly updated to avoid inconvenience and potential
legal liability. Accordingly, even if all data could be
provided locally, it would be unwise and objectionable
to do so.

SUMMARY OF INVENTION

interactive networks recently introduced to offer large Accordingly, it is an object of this invention to pro-
numbers of the public access to transactional services vide a method for storing data in an interactive-service
such as home shopping, banking, and investment main- network.
terrance, as well as informational services concerning It is another object of this invention to provide a
entertainment, business and personal matters. 60 method for storing data in an interactive-service net-

As can be appreciated, commercial interactive net- work, which method reduces communication line traf-
works will have to provide attractive services at low fie required to support the service at user sites.
cost and with minimal response times in order to be It is still another object of this invention to provide a
successful. Unlike military and governmental networks method for storing data in an interactive-service net-
where, because of the compulsory nature of the service 65 work, which method allows adequate amounts of data
performed, costs, content and efficiency are of second- to be stored in limited-capacity storage facilities.
ary concern, in commercial services, since use is pre- It is yet another object of this invention to provide a
dominantly elective, and paid for by the consumer, method for storing data in an interactive-service net-

3
5,442,771

work, which method allows for maintaining currency
of the data used to present applications.

4
Also in accordance with the invention, to insure cur­

rency is maintained for time-sensitive data; as for exam­
ple, data relating to news, pricing, availability, etc.,
storage candidacy and version control parameters are

It is a again a further object of this invention to pro­
vide a method for storing data in an interactive-service
network which method automatically configures the
data stores to include data tailored to the service usage
experience.

5 impressed on the data to avoid storage of data consid­
ered too sensitive to be maintained on a least-recently­
used basis alone. In preferred form, a range of storage
candidacy values are provided and ascribed to the data Briefly, the method for storing data in accordance

with this invention achieves the above-noted and other
objects by featuring steps for establishing data stores of 10
prescribed capacities within the network from which
data may be obtained for generating the service applica­
tions during user sessions. Further, the method features
steps for associating storage control parameters with
the application data to be stored and supplying data to 15
the respective stores in excess of their respective capaci­
ties. Yet further, the method features steps for retaining
data at the stores based on the respective prescribed
storage control parameters and the date-usage experi-
ence at the respective stores. 20

In accordance with the invention, data stores are
established within the service network, preferably at
least at the user reception system, and, if provided, also
at network concentrator facilities hierarchically located
between the reception system and the network host. 25
The size of the respective stores depends on the avail­
able resources; i.e., RAM and disk memory, and is allo­
cated between a temporary cache and variable-content
permanent stage, the cache being provided at available
RAM and a fixed disk file, and the stage being config- 30
ured as a variable-content, fixed disk file. In accordance
with the invention, data stored during a data-use ses­
sion; e.g., a user interactive session, is stored at the
cache distributed between RAM and the cache disk file,
while data retained between data-use sessions is stored 35
at the stage permanent disk file.

As a further feature of the invention, data is supplied
to the respective stores in excess of their respective
capacities, and in preferred form excess data is deleted
in accordance with a least-recently-used criterion and 40
storage candidacy conditions ascribed to the data. Still
further, in preferred form a version storage control
parameter may also be applied.

In operation, as data is supplied to the store; for exam­
ple, a reception system store during a user interactive 45
session, data is retained at the store based on the avail­
able cache space within the store; i.e., reception system
available RAM and designated disk file. Particularly,
data items designated by a data identification number
are placed on a list of recently called data items, the 50
most recently called items being at the top of the list. As
new data is called, it pushes previously called data
down on the list, with the result that a data item pushed
below the list capacity forfeits its presence on the list if
not recalled before being pushed off. If data is recalled 55
during a session, it once more is promoted to the top of
the data list. At the end of a session, data items at the
cache are written to a stage least-recently-used list, the
stage retaining data items between sessions in the same
fashion the cache retains data during a session. The 60
result is, over a series of sessions, the stage automati­
cally configures itself; i.e., self-configures, with the data
most often called. And, as will be appreciated, where
the most frequently called data is retained, the effi­
ciency of the limited capacity store to reduce response 65
time is maximized; i.e., need for line data requests is
minimized by having data tailored to the user readily
available.

that dictate whether the respective data can be stored
beyond the user session or between user sessions. In this
regard, multiple storage qualifying categories can be
established with a combination of control parameters
concerning data version, storage candidacy value and
application of the least-recently-used criterion above
described.

Yet further, in preferred form, the application data is
organized as objects having a header with one or more
data segments, the header being formulated to include
the data identification, storage candidacy, and version
storage control parameters. Still further, in accordance
with the preferred form, the storage method may be
applied to all levels of storage in the interactive-service
network; i.e., reception syswm, concentrator facility
and host.

DESCRIPTION OF THE DRAWINGS

The above and further objects, features and advan­
tages of the invention will become clear from the fol­
lowing more detailed description when read with refer­
ence to the accompanying drawings in which:

FIG. 1 is a block diagram of the interactive computer
network in which the data-storage method of the pres­
ent invention may be employed;

FIG. 2 is a schematic diagram of the network illus­
trated in FIG. 1;

FIG. 3a and 3b are plan views of a display screen for
a user reception system employed in a network in which
the data-storage method of the present invention may
be practiced;

FIGS. 4a, 4b and 4c are schematic drawings that
illustrate the structure of objects, and object segments
that may be used in a network in which the data-storage
method of the present invention may be employed;

FIG. 5 is a schematic diagram that illustrates major
layers for a reception system which might be used for
supporting applications in a network in which the data­
storage method of the present invention may be prac­
ticed;

FIG. 6 is a block diagram that illustrates native code
modules for a reception system which might be used for
supporting applications in a network in which the data­
storage method of the present invention may be prac­
ticed;

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Generill System Description

FIGS. 1 and 2 show a network in which the method
of the present invention for storing data might be used.
As seen the network, designated 10, and described more
fully in U.S. Pat. No. 5,347,632, the contents of which
are incorporated herein by reference, includes a plural­
ity of reception units within a reception layer 401 for
displaying information and providing transactional ser­
vices. In this arrangement, many users each access net­
work 10 with a conventional personal computer; e.g.,
one of the IBM or IBM-compatible type, which has

5
5,442,771

6
been provided with application software to constitute a
reception system (RS) 400.

As seen in FIG. 1, interactive network 10 uses a lay­
ered structure that includes an information layer 100, a
switch/file server layer 200, and cache/concentrator 5
layer 300 as well as reception layer 401. This structure
maintains active application databases and delivers re­
quested parts of the databases on demand to the plural­
ity of RSs 400, shown in FIG. 2. As seen in FIG. 2,
cache/concentrator layer 300 includes a plurality of 10
cache/concentrator units 302, each or which serve a
plurality of RS 400 units over lines 301. Additionally,
switch/file server layer 200 is seen to include a server
unit 205 connected to multiple cache/concentrator
units 302 over lines 201. Still further, server unit 205 is 15
seen to be connected to information layer 100 and its
various elements, which act as means for producing,
supplying and maintaining the network databases and
other information necessary to support network 10.
Continuing, switch/filer layer 200 is also seen to include 20
gateway systems 210 connected to server 205. Gate­
ways 210 couple layer 200 to other sources of informa­
tion and data; e.g., other computer systems. As will be
appreciated by those skilled in the art, layer 200, like
layers 401 and 300, could also include multiple servers, 25
gateways and information layers in the event even
larger numbers of users were sought to be served.

RS 400 formulated in this fashion is capable of com­
munication with the host system to receive information
containing either of two types of data, namely objects 30
and messages. Objects have a uniform, self-defining
format known to RS 400, and include data types, such
as interpretable programs and presentation data for
display at monitor screen 414 of the user's personal
computer 405. Applications presented at RS 400 are 35
partitioned into objects which represent the minimal
units available from the higher levels of interactive
network 10 or RS 400. In this arrangement, each appli­
cation partition typically represents one screen or a
partial screen of information, including fields filled with 40
data used in transactions with network 10. Each such
screen, commonly called a page, is represented by its
parts and is described in a page template object, dis­
cussed below.

Applications, having been partitioned into minimal 45
units, are available from higher elements of network 10
or RS 400, and are retrieved on demand by RS 400 for
interpretive execution. Thus, not all partitions of a parti­
tioned application need be resident at RS 400 to process
a selected partition, thereby raising the storage effi- 50
ciency of the user's RS 400 and minimizing response
time. Each application partition is an independent, self­
contained unit and can operate correctly by itself. Each
partition may refer to other partitions either statically or
dynamically. Static references are built into the parti- 55
tioned application, while dynamic references are cre­
ated from the execution of program logic using a set of
parameters, such as user demographics or locale.

Objects provide a means of packaging and distribut­
ing partitioned applications. As noted, objects make up 60
one or more partitioned applications, and are retrieved

size of objects to be minimized. Further, the time re­
quired to display a page is minimized when, in accor­
dance with the method of the present invention, refer­
enced objects are stored locally at RS 400 (which stor­
age is determined by prior usage meeting certain reten­
tion criteria to be described more fully below), or have
been pre-fetched, or in fact, are already used for the
current page.

RS 400 includes a means to communicate with net­
work 10 to retrieve objects in response to events occur­
ring at RS 400 and to send and receive messages.

In accordance with the method of the present inven­
tion, RS 400 includes a means to selectively store ob­
jects according to a predetermined storage criterion,
thus enabling frequently used objects to be stored lo­
cally at the RS, and causing infrequently used objects to
forfeit their local storage location. The currency of
objects stored locally at the RS 400 is verified before
use according to the object's storage control parameters
and the storage criterion in use for version checking.

Selective storage tailors the contents of the RS 400
memory to contain objects representing all or signifi­
cant parts of partitioned applications favored by the
user. Because selective storage of objects is local, re­
sponse time is reduced for those partitioned applications
that the user accesses most frequently.

Since much of the application processing formerly
done by a host computer in previously known time­
sharing networks is now performed at the user's RS 400,
the higher elements of network 10, particularly layer
200, has as their primary functions the routing of mes­
sages, serving of objects, and line concentration. The
narrowed functional load of the higher network ele­
ments permits many more users to be serviced within
the same bounds of computer power and I/0 capability
of conventional host-centered architectures.

SYSTEM CONFIGURATION

As shown in FIG. 1, interactive computer network 10
includes four layers: information layer 100, switch and
file server layer 200, concentrator layer 300, and recep­
tion layer 401.

There are two types of information in the network 10
which are utilized by the RS 400: objects and messages.

Objects include the information requested and uti­
lized by the RS 400 to permit a user to select specific
parts of applications, control the flow of information
relating to the applications, and to supply information
to the network. Objects are self-describing structures
organized in accordance with a specific data object
architecture, aescribed below. Objects are used to pack-
age presentation data and program instructions required
to support the partitioned applications and advertising
presented at a RS 400. Objects are distributed on de­
mand throughout interactive network 10. Objects may
contain: control information; program instructions to
set up an application processing environment and to
process user or network created events; information
about what is to be displayed and how it is to be dis­
played; references to programs to be interpretively
executed; and references to other objects, which may be
called based upon certain conditions or the occurrence
of certain events at the user's personal computer, result­
ing in the selection and retrieval of other partitioned

on demand by a user's RS 400 for interpretive execution
and selective storage. All objects are interpreted by RS
400, thereby enabling applications to be developed inde­
pendently of the personal computer brand used. 65 applications packaged as objects.

Objects may be nested within one another or refer­
enced by an object identifier (object-id) from within
their data structure. References to objects permit the

Messages are information provided by the user or the
network and are used in fields defined within the con­
structs of an object, and are seen on the user's RS moni-

5,442,771
8 7

(not to be confused with application partitions). Win­
dow page partitions 275, well known in the art, are also
available and are opened and closed conditionally on
page 255 upon the occurrence of an event specified in
the application being run. Each page partition 250, 260,
280 and 290 and window 275 is made up of a page ele­
ment which defines the content of the partition or win­
dow.

tor 412, or are used for data processing at RS 400. Addi­
tionally, and as more fully described hereafter, messages
are the primary means for communication within and
without the network. The format of messages is applica­
tion depeljldent. If the message is input by the user, it is 5
formatted by the partitioned application currently being
processed on RS 400. Likewise, and with reference to
FIG. 2, if the data are provided from a co-application
database residing in delivery system 20, or accessed via
gateway 210 or high function system 110 within the 10 NETWORK OBJECTS
information layer 100, the partitioned application cur- As noted above, in conventional time-sharing corn-
rently being processed on RS 400 causes the message puter networks, the data and program instructions nee-
data to be displayed in fields on the user's display rnoni- essary to support user sessions are maintained at a cen-
ter as defined by the particular partitioned application. tral host computer. However, that approach has been

All active objects reside in file server 205. Inactive 15 found to create processing bottlenecks as greater nurn­
objects or objects in preparation reside in producer bers of users are connected to the network; bottlenecks
system 120. Objects recently introduced into delivery . which require increases in processing power and corn-
system 20 from the producer system 120 will be avail- plexity; e.g., multiple hosts of greater computing capa-
able from file server 205, but, may not be available on bility, if the network is to meet demand. Further, such
cache/concentrator 302 to which the user's RS 400 has 20 bottlenecks have been found to also slow response time
dialed. If such objects are requested by the RS 400, the as more users are connected to the network and seek to
cache/concentrator 302 automatically requests the ob- have their requests for data processing answered.
ject from file server 205. The requested object is routed
back to the requesting cache/concentrator 302, which The consequences of the host processing bottleneck-
automatically routes it to the communications line on 25 ing is to either compel capital expenditures to expand
which the request was originally made, from which it is host processing capability, or accept longer response
received by the RS 400. times; i.e., a slower network, and risk user dissatisfac­

tion. The RS 400 is the point of application session control
because it has the ability to select and randomly access However, even in the case where additional cornput-
objects representing all or part of partitioned applica- 30 ing power is added, and where response time is allowed
tions and their data. RS 400 processes objects according to increase, eventually the host becomes user saturated
to information contained therein and events created by as more and more users are sought to be served by the
the user on personal computer 405. network. The network described above, however, is

Applications on network 10 act in concert with the designed to alleviate the effects of host-centered lirnita-
distributed partitioned applications running on RS 400. 35 tions, and extend the network saturation point. This
Partitioned applications constructed as groups of ob- objective is achieved by reducing the demand on the
jects and are distributed on demand to a user's RS 400. host for processing resources by structuring the net-
An application partition represents the minimum work so that the higher network levels act primarily to
amount of information and program logic needed to maintain and supply data and programs to the lower
present a page or window, i.e. portion of a page pres- 40 levels of the network, particularly RS 400, which acts
ented to the user, perform transactions with the interac- to manage and sustain the user screen displays.
tive network 10, and perform traditional data process- More particularly, the described network features
ing operations, as required, including selecting another procedures for parsing the network data and program
partitioned application to be processed upon a user instructions required to support the interactive user
generated completion event for the current partitioned 45 sessions into packets, referred to as objects, and distrib-
application. uting them into the network where they can be stored

In accordance with the invention, objects represent- and processed at lower levels, particularly, reception
ing all or part of partitioned applications may be stored system 400.
in a user's RS 400 if the objects meet certain criteria, As shown in FIG. 4c, the network objects are orga-
such as being non-volatile, noncritical to network integ- 50 nized as a family of objects each of which perform a
rity, or if they are critical to ensuring reasonable re- specific function in support of the interactive session.
sponse time. Such objects are either provided on dis- More particularly, the network object family is seen to
kettes 426 together with RS 400 system software used include 6 members: page format objects 502, page ele-
during the installation procedure or they are autornati- ment objects 504, window objects 506, program objects
cally requested by RS 400 when the user makes selec- 55 508, advertisement objects 510 and page template ob-
tions requiring objects not present in RS 400. In the jects 500.
latter case, RS 400 requests from cache/concentrator Objects 500 to 510 shown in FIG. 4c are themselves
layer 300 only the objects necessary to execute the made up of further sub-blocks of information that may
desired partitioned application. be selectively collected to define the objects and result-

APPLICATIONS AND PAGES
60 ing pages that ultimately constitute the application pres-

Applications, i.e. information events, are composed
of a sequence of one or more pages opened at screen 414
of monitor 412. This is better seen with reference to
FIG. 3a and 3b were a page 255 is illustrated as might 65
appear at screen 414 of monitor 412. With reference to
FIG. 3a, each page 255 is formatted with a service
interface having page partitions 250, 260, 280, and 290

ented to the user in an interactive text and graphic ses­
sion.

More specifically and as shown schematically in FIG.
4a, objects 500 to 510 are predefined, variable length
records consisting of a fixed length header 551 and one
or more self-defining record segments 552 a list of
which is presented in FIG. 4c as segment types 512 to
540.

9
5,442,771

In accordance with this design, and as shown in FIG.
4b, object header 551 in preferred form is 18 bytes in
length and contains a prescribed sequence of informa­
tion which provides data regarding the object's identifi­
cation, its anticipated use, association to other objects, 5
its length and its version and currency.

More particularly, each of the 18 bytes of object
header 551 are conventional hexadecimal, 8 bit bytes
and are arranged in a fixed pattern to facilitate interpre­
tation by network 10. Particularly, and as shown in 10
FIG. 4b, the first byte of header 551; i.e., byte 1, identi­
fies the length of the object ID in hexadecimal. The next
six bytes; i.e., bytes 2 to 7, are allocated for identifying
access control to the object so as to allow creation of
closed user groups to whom the object(s) is to be pro- 15
vided. As will be appreciated by those skilled in the art,
the ability to earmark objects in anticipation of user
requests enables the network to anticipate requests and
pre-collect objects from large numbers of them main­
tained to render the network more efficient and reduce 20
response time. The following 4 bytes of header 551;
bytes 8 to 11, are used to identify the set of objects to
which the subject object belongs. In this regard, it will
be appreciated that, again, for speed of access and effi­
ciency of selection, the objects are arranged in groups 25
or sets which are likely to be presented to user sequen­
tially in presenting the page sets; i.e., screens that go to
make up a session.

Following identification of the object set, the next
byte in header 551; i.e., byte 12, gives the location of the 30
subject object in the set. As will be appreciated here
also the identification is provided to facilitate ease of
object location and access among the many thousands
of objects that are maintained to, thereby, render their
selection and presentation more efficient and speedy. 35

Thereafter, the following byte of header 551; i.e.,
byte 13, designates the object type; e.g., page format,
page template, page element, etc. Following identifica­
tion of the object type, two bytes; i.e., bytes 14, 15, are
allocated to define the length of the object, which may 40
be of whatever length is necessary to supply the data
necessary, and thereby provides great flexibility for
creation of the screens. Thereafter, in accordance with
the preferred form of the invention, a single byte; i.e.,
byte 16, is allocated to identify the storage characteris- 45
tic for the object; i.e., the criterion which establishes at
what level in network 10 the object will be stored, and
the basis upon which it will be updated. At least a por­
tion of this byte; i.e, the higher order nibble (first 4 bits
reading from left to right) is associated with the last 50
byte; i.e., byte 18, in the header which identifies the
version of the object, a control used in determining how
often in a predetermined period of time the object will
be updated by the network.

Following storage characteristic byte 16, header 551 55
includes a byte; i.e., 17, which identifies the number of
objects in the set to which the subject object belongs.
Finally, and as noted above, in accordance with the
invention, header 551 includes a byte; i.e., 18, which
identifies the version of the object. Particularly the 60
object version is a number to establish the control for
the update of the object that are resident at RS 400.

As shown in FIG. 4a, and as noted above, in addition
to header 551, the object includes one more of the vari-
ous segment types shown in FIG. 4c. 65

Segments 512 to 540 are the basic building blocks of
the objects. And, as in the case of the object, the seg­
ments are also self-defining. As will be appreciated by

10
those skilled in the art, by making the segments self­
defining, changes in the objects and their use in the
network can be made without changing pre-existing
objects.

As in the case of objects, the segments have also been
provided with a specific structure. Particularly, and as
shown in FIG. 4a, segments 552 consists of a designa­
tion of segment type 553, identification of segment
length 554, followed by the information necessary to
implement the segment and its associated object 555;
e.g., either, control data, display data or program code.

In this structure, segment type 553 is identified with a
one-byte hexadecimal code which describes the general
function of the segment. Thereafter, segment length 554
is identified as a fixed two-byte long field which carries
the segment length as a hexadecimal number in INTEL
format; i.e., least significant byte first. Finally, data
within segments may be identified either by position or
keyword, depending on the specific requirements of the
segment.

NETWORK MESSAGES

In addition to the network ·objects, and the display
data, control data, and the program instructions they
contain as previously described, network 10 also ex­
changes information regarding the support of user ses­
sions and the maintenance of the network as "messen­
ger". Specifically, messages typically relate to the ex­
change of information associated with initial logon of a
reception system 400 to network 10, dialogue between
RS 400 and other elements and communications by the
other network elements amongst themselves.

To facilitate message exchange internally, and
through gateway 210 to entities externally to network
10, a protocol termed the "Data Interchange Architec­
ture" (DIA) is used to support the transport and inter­
pretation of information. More particularly, DIA ena­
bles: communications between RS 400 units, separation
of functions between network layers 100, 200, 300 and
401; consistent parsing of data; an "open" architecture
for network 10; downward compatibility within the
network; compatibility with standard industry proto­
cols such as the IBM System Network Architecture;
Open Systems Interconnections standard; support of
network utility sessions; and standardization of common
network and application return codes.

Thus DIA binds the various components of network
10 into a coherent entity by providing a common data
stream for communications management purposes. DIA
provides the ability to route messages between applica­
tions based in IBM System Network Architecture
(SNA), (well known in the art, and more fully described
in Data and Computer communications, by W. Stallings,
Chapter 12, McMillian Publishing, Inc. (1985)) and
non-SNA reception system applications; e.g. home
computer applications. Further, DIA provides common
data structure between applications run at RS 400 units
and applications that may be run on external computer
networks; e.g. Dow Jones Services, accessed through
gateway 210. As well, DIA provides support for utility
sessions between backbone applications run within net­
work 10. A more detailed description of network mes­
saging in provided in parent application Ser. No.
388,156 now issued Sep. 13, 1994 as U.S. Pat. No.
5,347,632, the contents of which patent are incorpo­
rated herein by reference.

5,442,771
11

OBJECT LANGUAGE

In accordance with the design of network 10, in order
to enable the manipulation of the network objects, the
application programs necessary to support the interac- 5
tive text/graphic sessions are written in a high-level
language referred to as "TBOL", (TRINTEX Basic
Object Language, "TRINTEX" being the former com­
pany name of one of the assignees of this invention).
TBOL is specifically adapted for writing the applica- 10
tion programs so that the programs may be compiled
into a compact data stream that can be interpreted by
the application software operating in the user personal
computer, the application software being designed to
establish the network Reception System 400 previously 15
noted and described in more detail hereafter.

The Reception System application software supports
an interactive text/graphics sessions by managing ob­
jects. As explained above, objects specify the format
and provide the content; i.e., the text and graphics, 20

12
Continuing, TBOL programs have a program syntax

that includes a series of "identifiers" which are the
names and labels assigned to programs, procedures, and
data structures.

An identifier may be up to 31 characters long; contain
only uppercase or lowercase letters A through Z, digits
0 through 9, and/or the special character underscore ();
and must begin with a letter. Included among the sys­
tem identifiers are: "header section identifiers" used in
the header section for the program name; "data section
identifiers" used in the data section for data structure
names, field names and array names; and finally, "code
section identifiers" used in the code section for identifi­
cation of procedure names and statement labels. A more
detailed description of TBOL is provided in parent
application Ser. No. 388,156 issued Sep. 13, 1994 as U.S.
Pat. No. 5,347,632, the contents of which patent are
incorporated herein by reference.

RECEPTION SYSTEM SOFTWARE

displayed on the user's screen so as to make up the pages The reception system 400 software is the interface
that constitute the application. As also explained, pages between the user of personal computer 405 and interac-
are divided into separate areas called "partitions" by tive network 10. The object .of reception system soft-
certain objects, while certain other objects describe

25
ware is to minimize mainframe processing, minimize

windows which can be opened on the pages. Further, transmission across the network, and support applica-
still other objects contain TBOL application programs tion extendibility and portability.
which facilitate the data processing necessary to present RS 400 software is composed of several layers, as
the pages and their associated text and graphics. shown in FIG. 7. It includes external software 451,

As noted, the object architecture allows logical 30 which is composed of elements well known to the art
events to be specified in the object definitions. An exam- such as device drivers, the native operating systems;
pie of a logical event is the completion of data entry on e.g., MS-DOS, machine-specific assembler functions (in
a screen; i.e., an application page. Logical events are the preferred embodiment; e.g., CRC error checking),
mapped to physical events such as the user pressing the and "C" runtime library functions; native software 420;
<ENTER> key on the keyboard. Other logical events 35 and partitioned applications 410.
might be the initial display of a screen page or the com- Again with reference to FIG. 7, native software 420
pletion of data entry in a field. Logical events specified is compiled from the "C" language into a target ma-
in page and window object definitions can be associated chine-specific executable, and is composed of two com-
with the call of TBOL program objects. ponents: the service software 430 and the operating

RS 400 is a'Yare of the occurrence of all physical 40 environment 450. Operating environment 450 is com-
events during the interactive text/graphic sessions. prised of the Logical Operating System 432, or LOS;
When a physical event such as depression of the for- and a multitasker 433. Service software 430 provides
ward <TAB> key corresponds to a logical event such functions specific to providing interaction between the
as completion of data entry in a field, the appropriate user and interactive network 10, while the operating
TBOL program is executed if specified in the object 45 environment 450 provides pseudo multitasking and
definition. Accordingly, the TBOL programs can be access to local physical resources in support of service
thought of as routines which are given control to per- software 430. Both layers of native software 420 contain
form initialization and post-processing application logic kernel, or device independent functions 430 and 432,
associated with the fields, partitions and screens at the and machine-specific or device dependent functions
text/ graphic sessions. 50 433. All device dependencies are in code resident at RS

RS 400 run time environment uses the TBOL pro- 400, and are-limited to implementing only those func-
grams and their high-level key-word commands called tions that are not common across machine types, to
verbs to provide all the system services needed to sup- enable interactive network 10 to provide a single data
port a text/graphic session, particularly, display man- stream to all makes of personal computer which are of
agement, user input, local and remote data access. 55 the IBM or IBM compatible type. Source code for the

TBOL programs have a structure that includes three native software 420 is included in parent application
sections: a header section in which the program name is Ser. No. 388,156 now issued as U.S. Pat. No. 5,347,632,
specified; a data section in which the data structure the the contents of which patent are incorporated herein by
program will use are defined; and a code section in reference. Those interested in a more detailed descrip-
which the program logic is provided composed of one 60 tion of the reception system software may refer to the
or more procedures. More specifically, the code section source code provided in the referenced patent.
procedures are composed of procedure statements, each Service software 430 is comprised of modules, which
of which begins with a TBOL key word called a verb. are device-independent software components that to-

The name of a procedure can also be used as the verb gether obtain, interpret and store partitioned applica-
in a procedure statement exactly as if it were a TBOL 65 tions existing as a collection of objects. The functions
key-word verb. This feature enables a programmer to performed by, and the relationship between, the service
extend the language vocabulary to include customized software 430 module is shown in FIG. 8 and discussed
application-oriented verb commands. further below.

5,442,771
14. 13

Through facilities provided by LOS 432 and mul­
titasker 433, here called collectively operating environ­
ment 450, device-independent multitasking and access
to local machine resources, such as multitasking, timers,
buffer management, dynamic memory management, file 5
storage and access, keyboard and mouse input, and
printer output are provided. The operating environ­
ment 450 manages communication and synchronization
of service software 430, by supporting a request/re­
sponse protocol and managing the interface between 10
the native software 420 and external software 437.

Applications software layer 410 consists of programs
and data written in an interpretive language, "TRIN­
TEX Basic Object Language" or "TBOL," described
above. TBOL was written specifically for use in RS 400 15
and interactive network 10 to facilitate videotext­
specific commands and achieve machine-independent
compiling. TBOL is constructed as objects, which in
interaction with one another comprise partitioned appli-
cations. 20

RS native software 420 provides a virtual machine
interface for partitioned applications, such that all ob­
jects comprising partitioned applications "see" the same
machine. RS native software provides support for the

25
following functions: (1) keyboard and mouse input; (2)
text and graphics display; (3) application interpretation;
(4) application database management; (5) local applica­
tion storage; (6) network and link level communica­
tions; (7) user activity data collection; and (8) advertise- 30
ment management.

With reference to FIG. 8, service software 430 is
comprised of the following modules: start-up (not
shown); keyboard manger 434; object interpreter 435;
TBOL interpreter 438; object storage facility 439; dis- 35
play manager 461; data collection manager 441; ad man­
ager 442; object/communications manager interface
443; link communications manager 444; and fatal error
manager 469. Each of these modules has responsibility
for managing a ~ifferent aspect of RS 400. 40

Startup reads RS 400 customization options into
RAM, including modem, device driver and telephone
number options, from the file CONFIG.SM. Startup
invokes all RS 400 component startup functions, includ­
ing navigation to the first page, a logon screen display 4S

containing fields initialized to accept the user's id and
password. Since Startup is invoked only at initialization,
for simplicity, it has not been shown in FIG. 8.

The principal function of keyboard manger 434 is to
translate personal computer dependent physical input so
into a consistent set of logical keys and to invoke pro­
cessors associated with these keys. Depending on the
LOS key, and the associated function attached to it,
navigation, opening of windows, and initiation of filter
or post-processor TBOL programs may occur as the 55
result input events handled by the keyboard manger
434. In addition, keyboard manger 434 determines inter
and intra field cursor movement, and coordinates the
display of field text and cursor entered by the user with
display manager 461, and sends information regarding 60
such inputs to data collection manager 441.

Object interpreter 435 is responsible for building and
recursively processing a table called the "Page Process­
ing Table," or PPT. Object interpreter 435 also man­
ages the opening and closing of windows at the current 65
page. Object interpreter 435 is implemented as two
sub-components: the object processor 436 and object
scanner 437.

Object processor 436 provides an interface to key­
board manger 434 for navigation to new pages, and for
opening and closing windows in the current page. Ob­
ject processor 436 makes a request to object storage
facility 439 for a page template object (PTO) or win­
dow object (WO), as requested by keyboard manger
434, and for objects and their segments which comprise
the PTO or WO returned by object storage facility 439
to object processor 436. Based on the particular seg­
ments comprising the object(s) making up the new PTO
or WO, object processor 436 builds or adds to the page
processing table (PPT), which is an internal, linked-list,
global data structure reflecting the structure of the page
or page format object (PFO), each page partition or
page element object (PEO), and program objects (POs)
required and each window object (WO) that could be
called. Objects are processed by parsing and interpret­
ing each object and its segment(s) according to their
particular structure as formalized in the data object
architecture (DOA). While in the process object state,
(state "B" of FIG. 6), object processor 436 will request
any objects specified by the PTO that are identified by
external references in call segments (e.g. field level
program call 518, page element selector call 524, page
format call 526 program call 532, page element call 522
segments) of such objects, and will, through a request to
TBOL interpreter 438, fire initializers and selectors
contained in program data segments of all PTO constit­
uent program objects, at the page, element, and field
levels. Object processor 436 requests all objects re­
quired to build a page, except objects that could only be
called as the result of some event external to the current
partitioned application, such as a HELP window ob­
ject. When in the course of building or adding to the
PPT and opening/closing WOs, object processor en­
counters a call to an "ADSLOT" object id, the next
advertisement object id at ad manager 442 is fetched,
and the identified advertisement object is retrieved
either locally, if available, or otherwise from the net­
work, so that the presentation data for the advertise­
ment can be sent to display manager 461 along with the
rest of the presentation data for the other objects to
enable display to the user. Object processor 436 also
passes to data collection manager 441 all object ids that
were requested and object ids that were viewed. Upon
completion of page or window processing, object pro­
cessor 436 enters the wait for event state, and control is
returned to keyboard manger 434.

The second component of object interpreter 435,
object scanner 437, provides a file-like interface, shared
with object storage facility 439, to objects currently in
use at RS 400, to enable object processor 436 to main­
tain and update the PPT. Through facilities provided by
object scanner 437, object processor recursively con­
structs a page or window in the requested or current
partitioned application, respectively.

In accordance with the invention, object storage
facility 439 provides an interface through which object
interpreter 435 and TBOL interpreter 438 either syn­
chronously request (using the TBOL verb operator
"GET") objects without which processing in either
module cannot continue, or asynchronously request
(using the TBOL verb operator "FETCH") objects in
anticipation of later use. Object storage facility 439
returns the requested objects to the requesting module
once retrieved from either local store 440 or interactive
network 10. Through control structures shared with the
object scanner 437, object storage facility determines

15
5,442,771

16
whether the requested object resides locally, and if not, used forfeit their storage to objects that are more fre-
makes an attempt to obtain it from interactive network quently used.
10 through interaction with link communications man- Trashable objects can be retained only while the user
ager 444 via object/communications manager interface is in the context of the partitioned application in which
443. 5 the object was requested. Trashable objects usually

When objects are requested from object storage facil- have a very high update frequency and must not be
ity 439, only the latest version of the object will be retained to ensure that the user has access to the most
provided to guarantee currency of information to the current data.
user. Object storage facility 439 assures currency by More particularly and, as noted above, in order to
requesting version verification from network 10 for 10 render a public informational and transactional network
those objects which are available locally and by re- of the type considered here attractive, the network must
questing objects which are not locally available from be both economical to use and fast. That is to say, the
delivery system 20 where currency is maintained. network must supply information and transactional

y ersion verification increases response time. There- support to the user at minimal costs and with a minimal
fore, not all objects locally available are version 15 response time. In accordance with the present inven-
checked each time they are requested. Typically, ob- tion, these objectives are sought to be achieved by lo-
jects are checked only the first time they are requested eating as many information and transactional support
during a user session. However, there are occasions, as objects which the user is likely to request, as close to the
for example in the case of objects relating to news appli- user as possible; i.e., primarily at the user's RS 400 and
cations, where currency is always checked to assure 20 secondarily at delivery system 20. In this way, the user

will be able to access objects required to support a integrity of the information.
desired application with minimal intervention of deliv-

The frequency with which the currency of objects is ery system 20, thus reducing the cost of the session and
checked depends on factors such as the frequency of speeding the response time. -
updating of the objects. For example, objects that are 25 However, the number of objects that can be main-
designated as ultrastable in a storage control parameter tained at RS 400 is restricted by at least two factors: the
in the header of the object are never version checked RS 400 storage capacity; i.e., RAM and disk sizes, and
unless a special version control object sent to the RS as the need to maintain the stored objects current.
part of logon indicates that all such objects must be In order to optimize the effectiveness of the limited
version checked. Object storage facility 439 marks all 30 storage space at RS 400, the collection of objects is
object entries with such a stability category in all direc- restricted to those likely to be requested by the user; i.e.,
tories indicating that they must be version checked the tailored to the user's tastes-and to those least likely to
next time they are requested. be time sensitive; i.e., objects which are stable. To ac-

Object storage facility 439 manages objects locally in complish this, objects are coded for storage candidacy
local store 440, comprised of a cache (segmented be- 35 to identify when they will be permitted at RS 400, and
tween available RAM and a fixed size disk file), and subject to the LRU algorithm to maintain presence at
stage (fixed size disk file). Ram and disk cached objects RS 400. Additionally, to assure currency of the informa-
are retained only during user sessions, while objects tion and transaction support provided at RS 400, ob-
stored in the stage file are retain~d between sessi~ns. jects are further coded for version identification and
The storage con~rol field, located m the header portion 40 checking in accordance with a system of priorities that
of an object, described more fully hereafter as the ob- are reflected in the storage candidacy coding.
ject "storage candidacy", indicates whether the object Specifically, to effect object storage management,
is stageable, cacheable or trashable. objects are provided with a coded version id made up of

Stageable objects must not be subject to frequent the storage control byte and version control bytes iden-
change or update. They are retained between user ses- 45 tified above as elements of the object header, specifi-
sions on the system, provided storage space is available cally, bytes 16 and 18 shown in FIG. 4b. In preferred
and the object has not discarded by a least-recently- form, the version id is comprised of bytes 16 and 18 to
used (LRU) algorithm of a conventional type; e.g., see define two fields, a first 13 bit field to identify the object
Operating System Theory, by Coffman, Jr. and Denning, version and a second three bite field to identify the
Prentice Hall Publishers, New York, 1973, which in 50 object storage candidacy.
accordance with the invention, operates in combination In this arrangement, the storage candidacy value of
with the storage candidacy value to determine the ob- the object is addressed to not only the question of stor-
ject storage priority, thus rendering the stage self-con- age preference but also object currency. Specifically,
figuring as described more fully hereafter. Over time, the storage candidacy value establishes the basis upon
the self-configuring stage will have the effect of retain- 55 which the object will be maintained at RS 400 and also
ing within local disk storage those objects which the identifies the susceptibility of the object to becoming
user has accessed most often. The objects retained lo- stale by dictating when the object will be version
cally are thus optimized to each individual user's usage checked to determine currency.
of the applications in the system. Response time to such The version value of the object on the other hand,
objects is optimized since they need not be retrieved 60 provides a parameter that can be checked against prede-
from the interactive computer system. termined values available from delivery system 20 to

Cacheable objects can be retained during the current determine whether an object stored at RS 400 is suffi-
user session, but cannot be retained between sessions. ciently current to permit its continued use, or whether
These objects usually have a moderate update fre- the object has become stale and needs to be replaced
quency. Object storage facility 439 retains objects in the 65 with a current object from delivery system 20.
cache according to the LRU storage retention algo- Still further, object storage management procedure
rithm. Object storage facility 439 uses the LRU alga- further includes use of the LRU algorithm, for combi-
rithm to ensure that objects that are least frequently nation with the storage and version coding to enable

5,442,771
17

discarding of objects which are not sufficiently used to
warrant retention, thus personalizing the store of ob­
jects at RS 400 to the user's tastes. Particularly, object
storage facility 439, in accordance with the LRU algo­
rithm maintains a usage list for objects. As objects are 5
called to support the user's applications requests, the
objects are moved to the top of a usage list. As other
objects are called, they push previously called objects
down in the list. If an object is pushed to the bottom of
the list before being recalled, it will be forfeited from 10
the list if necessary to make room for the next called
object. As will be appreciated, should a previously
called object be again called before it is displaced from
the list, it will be promoted to the top of the list, and
once more be subject to depression in the list and possi- 15
ble forfeiture as other objects are called.

As pointed out above, in the course of building the
screens presented to the user, objects will reside at vari­
ous locations in RS 400. For example, objects may re­
side in the RS 400 RAM where the object is supporting 20

a particular application screen then running or in a
cache maintained at either RAM or disk 424 where the
object is being held for an executing application or
staged on the fixed size file on disk 424 noted above

25 where the object is being held for use in application
likely to be called by the user in the future.

In operation, the LRU algorithm is applied to all
these regions and serves to move an object from RAM
cache to disk cache to disk file, and potentially off RS 30
400 depending on object usage.

With regard to the storage candidacy value, in this
arrangement, the objects stored at RS 400 include a
limited set of permanent objects; e.g., those supporting
logon and logoff, and other non-permanent objects 35
which are subject to the LRU algorithm to determine
whether the objects should be forfeited from RS 400 as
other objects are added. Thus, in time, and based on the
operation of the LRU algorithm and the storage candi­
dacy value, the _collection of objects at RS 400 will be 40
tailored to the usage characteristics of the subscriber;
i.e., self-configuring.

More particularly, the 3-bit field of the version id that
contains the storage candidacy parameter can have 8
different values. A first candidacy value is applied 45
where the object is very sensitive to time; e.g., news
items, volatile pricing information such as might apply
to stock quotes, etc. In accordance with this first value,
the object will not be permitted to be stored on RS 400,
and RS 400 will have to request such objects from deliv- 50
ery system 20 each time it is accessed, thus, assuring
currency. A second value is applied where the object is
sensitive to time but less so than the first case; e.g., the
price of apples in a grocery shopping application. Here,
while the price might change from day to day, it is 55
unlikely to change during a session. Accordingly the
object will be permitted to persist in RAM or at the disk
cache during a session, but will not be permitted to be
maintained at RS 400 between sessions.

Continuing down the hierarchy of time sensitivity, 60
where the object concerns information sufficiently sta­
ble to be maintained between sessions, a third storage
candidacy value is set to permit the object to be stored
at RS 400 between sessions, on condition that the object
will be version check the first time it is accessed in a 65
subsequent session. As will be appreciated, during a
session, and under the effect of the LRU algorithm, lack
of use at RS 400 of the object may result in it being

18
forfeited entirely to accommodate new objects called
for execution at RS 400.

Still further, a fourth value of storage candidacy is
applied where the object is considered sufficiently sta­
ble as not to require version checking between sessions;
e.g., objects concerning page layouts not anticipated to
change. In this case, the storage candidacy value may
be encoded to permit the object to be retained from
session to session without version checking. Here again,
however, the LRU algorithm may cause the object to
forfeit its storage for lack of use.

Where the object is of a type required to be stored at
RS 400, as for example, objects needed to support stan­
dard screens, it is coded for storage between sessions
and not subject to the LRU algorithm forfeiture. How­
ever, where such objects are likely to change in the
future they may be required to be version checked the
first time they are accessed in a session and thus be
given a fifth storage candidacy value. If, on the other
hand, the required stored object is considered likely to
be stable and not require even version checking; e.g.,
logon screens, it will be coded with a sixth storage
candidacy value for storage without version checking
so as to create a substantially permanent object.

Continuing, where a RS 400 includes a large amount
of combined RAM and disk capacity, it would permit
more objects to be stored. However, if objects were
simply coded in anticipation of the larger capacity, the
objects would potentially experience difficulty, as for
example, undesired forfeiture due to capacity limita­
tions if such objects were supplied to RS 400 units hav­
ing smaller RAM and disk sizes. Accordingly, to take
advantage of the increased capacity of certain RS 400
units without creating difficulty in lower capacity units,
objects suitable for storage in large capacity units can be
so coded for retention between sessions with a seventh
and eighth storage candidacy value depending upon
whether the stored large capacity object requires ver­
sion checking or not. Here, however, the coding will be
interpreted by smaller capacity units to permit only
cacheable storage to avoid undesirable forfeiture that
might result from over filling the smaller capacity units.

Where an object is coded for no version checking
need may nonetheless arise for a version check at some
point. To permit version checking of such objects, a
control object is provided at RS 400 that may be version
checked on receipt of a special communication from
delivery system 20. If the control object fails version
check, then a one shot version checking attribute is
associated with all existing objects in RS 400 that have
no version checking attributes. Thereafter, the respec­
tive objects are version checked, the one shot check
attribute is removed and the object is caused to either
revert to its previous state if considered current or be
replaced if stale.

Still further, objects required to be stored at RS 400
which are not version checked either because of lack of
requirement or because of no version check without a
control object, as described above, can accumulate in
RS 400 as dead objects. To eliminate such accumula­
tion, all object having required storage are version
checked over time. Particularly, the least recently used
required object is version checked during a session thus
promoting the object to the top of the usage list if it is
still to be retained at RS 400. Accordingly, one such
object will be checked per session and over time, all
required objects will be version checked thereby elimi­
nating the accumulation of dead objects.

19
5,442,771

20
However, in order to work efficiently, the version abies (GEVs), Partition External Variables (PEVs), and

check attribute of the object should be ignored, so that Runtime Data Arrays (RDAs).
even required object can be version checked. Yet, in GEVs contain global and system data, and are acces-
certain circumstances, e.g., during deployment of new sibie to ali program objects as they are executed. GEVs
versions of the reception system software containing 5 provide a means by which program objects may com-
new objects not yet supported on delivery system 20 municate with other program objects or with the RS
which may be transferred to the fixed storage file ofRS native code, if declared in the program object. GEVs
400 when the new version is loaded, unconditional ver- are character string variables that take the size of the
sion checking may prematurely deletes the object from variables they contain. GEVs may preferably contain a
the RS 400 as not found on delivery system 20. To avoid 10 maximum of 32,000 variables and are typically used to
this problem, a sweeper control segment in the control store such information as program return code, system
object noted above can be used to act as a switch to tum date and time, or user sex or age. TBOL interpreter 438
the sweep of dead objects on and off. stores such information in GEVs when requested by the

With respect to version checking for currency, where program which initiated a transaction to obtain these
an object stored at RS 400 is initially fetched or ac- 15 records from the RS or user's profile stored in the inter-
cessed during a session, a request to delivery system 20 active system.
is made for the object by specifying the version id of the Partition external variables (PEV s) have a scope
object stored at RS 400. restricted to the page partition on which they are de-

In response, delivery system 20 will advise the recep- fined. PEVs are used to hold screen field data such that
tion system 400 either that the version id of the stored 20 when PEOs and window objects are defined, the fields
object matches the currency value; i.e., the stored ob- in the page partitions with which these objects are to be
ject is acceptable, or deliver a current object that will associated are each assigned to a PEV. When applica-
replace the stored object shown to be stale. Aitema- tions are executed, TBOL interpreter 438 transfers data
tively, the response may be that the object was not between screen fields and thefr associated PEV. When
found. If the version of the stored object is current, the 25 the contents of a PEV are modified by user action or by
stored object will be used until verified again in accor- program direction, TBOL interpreter 428 makes a re-
dance with its storage candidacy. If the stored object is quest to display manager 461 to update the screen field
stale, the new object delivered will replace the old one to reflect the change. PEVs are also used to hold parti-
and support the desired screen. If the response is object tion specific application data, such as tables of informa-
not found, the stored object will be deleted. 30 tion needed by a program to process an expected screen

Therefore, based on the above description, network input.
10 is seen to include steps for execution at storage facil- Because the scope of PEVs is restricted to program
ity 439 which enables object reception, update and objects associated with the page partition in which they
deletion by means of a combination of operation of the are defined, data that is to be shared between page parti-
LRU algorithm and interpretation of the storage candi- 35 tions or is to be available to a page-level processor must
dacy and version control values. In tum, these proce- be placed in GEVs or RDAs.
dures cooperate to assure a competent supply of objects RDAs are internal stack and save buffers used as
at RS 400 so as to reduce the need for intervention of general program work areas. RDAs are dynamically
delivery system 20, thus reducing cost of information defmed at program object "runtime" and are used for
supply and transactional support so as to speed the 40 communication and transfer of data between programs
response to user requests. when the data to be passed is not amenable to the other

TBOL interpreter 438 shown in FIG. 8 provides the techniques available. Both GEVs and RDAs include, in
means for executing program objects, which have been the preferred embodiment, 8 integer registers and 8
written using an interpretive language, TBOL de- decimal registers. Preferably, there are also 9 parameter
scribed above. TBOL interpreter 438 interprets opera- 45 registers limited in scope to the current procedure of a
tors and operand contained in program object 508, man- program object.
ages TBOL variables and data, maintains buffer and All variables may be specified as operand of verbs
stack facilities, and provides a runtime library ofTBOL used by the virtual machine. The integer and decimal
verbs. registers may be specified as operand for traditional

TBOL verbs provide support for data processing, 50 data processing. The parameter registers are used for
program flow control, file management, object manage- passing parameters to "called" procedures. The con-
ment, communications, text display, command bar con- tents of these registers are saved on an internal program
trol, open/close window, page navigation and sound. stack when a procedure is called, and are restored when
TBOL interpreter also interacts with other native mod- control returns to the "calling" procedure from the
ules through commands contained in TBOL verbs. For 55 "called" procedure.
example: the verb "navigate" will cause TBOL inter- TBOL interpreter 438, keyboard manger 434, object
preter 438 to request object interpreter 435 to build a interpreter 435, and object storage facility 439, together
PPT based on the PTO id contained in the operand of with device control provided by operating environment
the NAVIGATE verb; "fetch" or "GET" will cause 450, have principal responsibility for the management
TBOL interpreter 438 to request an object from object 60 and execution of partitioned applications at the RS 400.
storage facility 439; "SET FUNCTION" will assign a The remaining native code modules function in support
filter to events occurring at the keyboard manger 434; and ancillary roles to provide RS 400 with the ability
and "FORMAT " "SEND" and "RECEIVE" will display partitioned applications to the user (display
cause TBOL interpreter 438 to send application level manager 461), display advertisements (ad manager 442),
requests to object/communications manager interface 65 to collect usage data for distribution to interactive net-
433. work 10 for purposes of targeting such advertisements

Data areas managed by TBOL interpreter 438 and
available to TBOL programs are Global External Vari-

(data collection manager 441), and prepare for sending,
and send, objects and messages to interactive network

21
5,442,771

10 (object/communications manager interface 443 and
link communications manager 444) Finally, the fatal
error manager exists for one purpose: to inform the user
of RS 400 and transmit to interactive network 10 the
inability of RS 400 to recover from a system error. 5

Display manager 461 interfaces with a decoder using
the North American Presentation Level Protocol Syn­
tax (NAPLPS), a standard for encoding graphics data,
or text code, such as ASCII, which are displayed on
monitor 412 of the user's personal computer 405 as 10
pictorial codes. Codes for other presentation media,
such as audio, can be specified by using the appropriate
type code in the presentation data segments. Display
manager 461 supports the following functions: send
NAPLPS strings to the decoder; echo text from a PEV; 15
move the cursor within and between fields; destructive
or non-destructive input field character deletion;
"ghost" and "unghost" fields (a ghosted field is consid­
ered unavailable, unghosted available); turn off or on
the current field cursor; open, close, save and restore bit 20
maps for a graphics window; update all current screen
fields by displaying the contents of their PEVs, reset the
NAPLPS decoder to a known state; and erase an area of
the screen by generating and sending NAPLPS to draw
a rectangle over that area. Display manager 461 also 25
provides a function to generate a beep through an inter­
face with a machine-dependent sound driver.

Ad manager 442 is invoked by object interpreter 435
to return the object id of the next available advertise­
ment to be displayed. Ad manager 442 maintains a 30
queue of advertising object id's targeted to the specific
user currently accessing interactive network 10. Adver­
tising objects are pre-fetched from interactive system 10
from a personalized queue of advertising ids that is
constructed using data previously collected from user 35
generated events and/or reports of objects used in the
building of pages or windows, compiled by data collec­
tion manager 466 and transmitted to interactive system
10.

Advertising objects 510 are PEOs that, through user 40
invocation of a "LOOK" command, cause navigation to
partitioned applications that may themselves support,
for example, ordering and purchasing of merchandise.

An advertising object id list, or "ad queue," is re­
quested in a transaction message to delivery system 20 45
by ad manager 442 immediately after the initial logon
response. The logon application at RS 400 places the
advertising list in a specific RS global storage area
called a SYS GEV (system global external variable),
which is accessible to all applications as well as to the 50
native RS code). The Logon application also obtains
the first two ad object id's from the queue and provides
them to object storage facility 439 so the advertising
objects can be requested. However, at logon, since no
advertising objects are available at RS local storage 55
facilities 440, ad objects, in accordance with the de­
scribed storage candidacy, not being retained at the
reception system between sessions, they must be re­
quested from interactive network 10.

In accordance with the preferred form of network 10, 60
the following parametric values are established for ad
manager 442: advertising object is queue capacity, re­
plenishment threshold for advertising object id's and
replenishment threshold for number of outstanding
pre-fetched advertising objects. These parameters are 65
set up in GEVs of the RS virtual machine by the logon
application program object from the logon response
from high function system 110. The parameters are then

22
also accessible to the ad manager 442. Preferred values
are an advertising queue capacity of 15, replenishment
value of 10 empty queue positions and a pre-fetched
advertising object threshold of 3.

Ad manager 442 pre-fetches advertising objects by
passing advertising object id's from the advertising
queue to object storage facility 439 which then retrieves
the object from the interactive system if the object is not
available locally. Advertising objects are pre-fetched,
so they are available in RS local store 440 when re­
quested by object interpreter 435 as it builds a page. The
ad manager 442 pre-fetches additional advertising ob­
jects whenever the number of pre-fetched advertising
objects not called by object interpreter 435; i.e. the
number of remaining advertising objects, falls below the
pre-fetch advertising threshold.

Whenever the advertising object id queue has more
empty positions than replenishment threshold value, a
call is made to the advertising object id queue applica­
tion in high function system 110 shown in FIG. 2, via
object/communications manager interface 443 for a
number of advertising object id's equal to the threshold
value. The response message from system 110 includes
a list of advertising object id's, which ad manager 442
enqueues.

Object interpreter 435 requests the object id of the
next advertising object from ad manager 442 when
object interpreter 435 is building a page and encounters
an object call for a partition and the specified object-id
equals the code word, "ADSLOT." If this is the first
request for an advertising object id that ad manager 442
has received during this user's session, ad manager 442
moves the advertising object id list from the GEV into
its own storage area, which it uses as an advertising
queue and sets up its queue management pointers,
knowing that the first two advertising objects have been
pre-fetched.

Ad manager 442 then queries object storage facility
439, irrespective of whether it was the first request of
the session. The query asks if the specified advertising
object id pre-fetch has been completed, i.e., is the object
available locally at the RS. If the object is available
locally, the object-id is passed to object interpreter 435,
which requests it from object storage facility 439. If the
advertising object is not available in local store 440, ad
manager 442 attempts to recover by asking about the
next ad that was pre-fetched. This is accomplished by
swapping the top and second entry in the advertising
queue and making a query to object storage facility 439
about the new top advertising object id. If that object is
not yet available, the top position is swapped with the
third position and a query is made about the new top
position.

Besides its ability to provide advertising that have
been targeted to each individual user, two very impor­
tant response time problems have been solved by ad
manager 442 of the ·present invention. The first is to
eliminate from the new page response time the time it
takes to retrieve an advertising object from the host
system. This is accomplished by using the aforemen­
tioned pre-fetching mechanism.

The second problem is caused by pre-fetching, which
results in asynchronous concurrent activities involving
the retrieval of objects from interactive system 10. If an
advertising object is pre-fetched at the same time as
other objects required for a page are requested, the
transmission of the advertising object packets could
delay the transmission of the other objects required to

5,442,771
24 23

antees proper block sequencing. Object/communica­
tions manager interface 443 interacts with other native
code modules as follows: object/communications man­
ager 443 (1) receives all RS 400 object requests from

complete the current page by the amount of time re­
quired to transmit the advertising object(s). This prob­
lem is solved by the structuring the requests from object
interpreter 435 to the ad manager 442 in the following
way:

I. Return next object id of pre-fetched advertising
object & pre-fetch another;

2. Return next advertising object id only; and

5 object storage facility 439, and forwards objects re­
ceived from network 10 via link communications man­
ager 444 directly to the requesting modules; (2) receives
ad list requests from ad manager 442, which thereafter

3. Pre-fetch next advertising object only.
By separating the function request (1) into its two 10

components, (2) and (3), object interpreter 435 is now
able to determine when to request advertising object
id's and from its knowledge of the page build process, is
able to best determine when another advertising object
can be pre-fetched, thus causing the least impact on the 15
page response time. For example, by examining the
PPT, object interpreter 435 may determine whether any
object requests are outstanding. If there are outstanding
requests, advertising request type 2 would be used.
When all requested objects are retrieved, object inter- 20
preter 435 then issues an advertising request type 3.
Alternatively, if there are no outstanding requests, ob­
ject interpreter 435 issues an advertising request type 1.
This typically corresponds to the user's "think time"
while examining the information presented and when 25
RS 400 is in the Wait for Event state (D).

Data collection manager 441 is invoked by object
interpreter 435 and keyboard manger 434 to keep re­
cords about what objects a user has obtained (and, if a
presentation data segment 530 is present, seen) and what 30
actions users have taken (e.g. "NEXT," "BACK "
"LOOK," etc.)

The data collection events that are to be reported
during the user's session are sensitized during the logon
process. The logon response message carries a data 35
collection indicator with bit flags set to "on" for the
events to be reported. These bit flags are enabled (on) or
disabled (off) for each user based on information con­
tained in the user's profile stored and sent from high
function host 110. A user's data collection indicator is 40
valid for the duration of his session. The type of events
to be reported can be changed at will in the host data
collection application. However, such changes will
affect only users who logon after the change.

Data collection manager 441 gathers information 45
concerning a user's individual system usage characteris­
tics. The types of informational services accessed, trans­
actions processed, time information between various
events, and the like are collected by data collection
manager 441, which compiles the information into mes- 50
sage packets (not shown). The message packets are sent
to network 10 via object/communication manager in­
terface 443 and link communications manager 444. Mes­
sage packets are then stored by high function host 110
and sent to an offline processing facility for processing. 55
The characteristics of users are ultimately used as a
means to select or target various display objects, such as
advertising objects, to be sent to particular users based
on consumer marketing strategies, or the like, and for
system optimization. 60

Object/communications manager interface 443 is
responsible for sending and receiving DIA (Data Inter­
change Architecture described above) formatted mes­
sages to or from interactive network 10. Object/com­
munications manager 443 also handles the receipt of 65
objects, builds a DIA header for messages being sent
and removes the header from received DIA messages
or objects, correlates requests and responses, and guar-

periodically calls object/communications manager 443
to receive ad list responses; (3) receives data collection
messages and send requests from data collection man-
ager 441; (4) receives application-level requests from
TBOL interpreter 438, which also periodically calls
object/communications manager interface 443 to re­
ceive responses (if required); and (5) receives and sends
DIA formatted objects and messages from and to link
communications manager 444.

Object/communications manager interface 443 sends
and receives DIA formatted messages on behalf of
TBOL interpreter 438 and sends object requests and
receives objects on behalf of object storage facility 439.
Communication packets received containing parts of
requested objects are passed to object storage facility
439 which assembles the packets into the object before
storing it. If the object was requested by object inter­
preter 435, all packets received by object storage facil­
ity 439 are also passed to object interpreter 435 avoiding
the delay required to receive an entire object before
processing the object. Objects which are pre-fetched
are stored by object storage facility 439.

Messages sent to interactive network 10 are directed
via DIA to applications in network 10. Messages may
include transaction requests for records or additional
processing of records or may include records from a
partitioned application program object or data collec­
tion manager 441. Messages to be received from net-
work 10 usually comprise records requested in a previ­
ous message sent to network 10. Requests received from
object storage facility 439 include requests for objects
from storage in interactive system 10. Responses to
object requests contain either the requested object or an
error code indicating an error condition.

Object/communications manager 443 is normally the
exclusive native code module to interface with link
communications manager 444 (except in the rare in­
stance of a fatal error). Link communications manager
444 controls the connecting and disconnecting of the
telephone line, telephone dialing, and communications
link data protocol. Link communications manager 444
accesses network 10 by means of a communications
medium (not shown) link communications manager 444,
which is responsible for a dial-up link on the public
switched telephone network (PSTN). Alternatively,
other communications means, such as cable television
or broadcast media, may be used. Link communications
manager 444 interfaces with TBOL interpreter for con­
nect and disconnect, and with interactive network 10
for send and receive.

Link communications manager 444 is subdivided into
modem control and protocol handler units. Modem
control (a software function well known to the art)
hands the modem specific handshaking that occurs dur­
ing connect and disconnect. Protocol handler is respon-
sible for transmission and receipt of data packets using
the TCS (TRINTEX Communications Subsystem) pro-
tocol (which is a variety ofOSI link level protocol, also
well known to the art).

5,442,771
25 26

8. The method of claim 5 wherein associating storage
control parameters with the data includes providing the
storage candidacy parameter with a range of values.

Fatal error manager 469 is invoked by all reception
system components upon the occurrence of any condi­
tion which precludes recovery. Fatal error manager 469
displays a screen to the user with a textual message and
an error code through display manager 461. Fatal error
manager 469 sends an error report message through the
link communications manager 444 to a subsystem of
interactive network 10.

9. The method of claim 8 wherein providing the stor-
5 age candidacy parameter with a range of values in­

cludes providing lower storage candidacy parameter
values dependent on data sensitive to time.

The source code for the reception system software as
noted above is described in parent application Ser. No. 10
388,156 filed Jul. 28, 1989, now issued as U.S. Pat. No.
5,347,622, the contents of which are incorporated
herein by reference.

While this invention has been described in its pre­
ferred form, it will be appreciated that changes may be 15
made in the form, construction, procedure and arrange­
ment of its various elements and steps without departing
from its spirit or scope.

What we claim is:
1. Method for storing data in a computer network, the 20

network including a multiplicity of user reception sys­
tems at which respective users can request applications
during user sessions, the application being generated
from the data, the method comprising the steps of:

25
a. establishing data stores within the network from

which data may be obtained for generating the
applications during data usage sessions;

b. associating storage control parameters with the
data to be stored, the control parameters dictating 30
predetermined eligibility of the data for storage at
the data stores;

c. supplying data to the respective stores for use in
generating applications; and

d. retaining data at the stores based on at least the 35
eligibility for storage dictated by the respective
storage control parameters.

2. The method of claim 1 wherein associating storage
control parameters with the data includes providing a
data identificatiQn parameter. 40

3. The method of claim 2 wherein establishing the
date stores includes providing the respective stores with
a prescribed capacity, and supplying data to the stores
includes supplying data in excess of capacity and delet­
ing data on a least-recently-used basis such that retain- 45
ing data at the respective stores may be determined by
the control parameters and by data usage experience.

4. The method of claim 3 wherein associating storage
control parameters with the data includes providing a
data storage candidacy parameter in addition to the data 50
identification parameter, and wherein retaining data at
the respective stores may be determined by respective
data storage candidacy parameter and the data usage
experience.

5. The method of claim 4 wherein establishing the 55
data stores includes providing first store portions for
maintaining data during respective data usage sessions
and providing second store portions for maintaining
data during and between respective data usage session.

6. The method of claim 5 wherein establishing the 60
data stores includes providing first store portions as a
temporary cache, and providing the second store por­
tion as a fixed stage.

7. The method of claim 6 wherein establishing the
data stores includes providing the respective temporary 65
caches as file element in a volatile memory element, and
providing the respective fixed stages as file elements in
a nonvolatile memory element.

10. The method of claim 9 wherein associating stor­
age control parameters with the data further includes
providing a version control parameter that indicates
data currency.

11. The method of claim 10 wherein associating stor­
age control parameters with the data includes providing
the candidacy parameter with a range that includes a
value which prevents the data from being stored.

12. The method of claim 10 wherein associating stor­
age control parameters with the data includes providing
the storage candidacy parameter with a range that in­
cludes a value which permits the data to be stored only
during data usage session.

13. The method of claim 10 wherein associating stor­
age control parameters with the data includes providing
the storage candidacy parameter with a range that in­
cludes a value which permits ·the data to be stored be­
tween respective usage sessions.

14. The method of claim 13 wherein retaining data at
the stores based on the respective storage control pa­
rameters includes retaining the data between data usage
sessions independent of the most-recently-used deletion
condition.

15. The method of claim 1 wherein establishing data
stores at the respective reception systems includes set­
ting the stores respective capacities dependent on the
respective reception system storage capacity and the
currency requirements of the data.

16. Method for storing data in a computer network,
the network including a multiplicity of user reception
systems at which respective users can request applica­
tions during user sessions, the application being gener-
ated from the data, the method comprising the steps of:

a. establishing data stores of prescribed capacities at
the respective reception systems, the stores includ­
ing first portions maintained during respective user
sessions and second portion maintained during and
between respective user sessions;

b. associating storage control parameters with the
data to be stored;

c. supplying data to the stores for use at the respec­
tive reception systems in excess of the store capac­
ity and deleting data from the stores on a least­
recently:used basis such that the data retained at
the stores between respective user sessions will be
determined by the storage control parameters of
the data and the usage experience at the respective
reception systems.

17. The method of claim 16 wherein establishing the
data stores includes providing the first store portions as
caches and the second store portions as stages.

18. The method of claim 17 wherein establishing the·
data stores includes providing the store caches in vola­
tile memory and the store stages in nonvolatile memory.

19. The method of claim 18 wherein associating stor­
age control parameters with the data includes providing
the storage candidacy parameter with a range of values.

20. The method of claim 19 wherein associating stor-
age control parameters with the data further includes
providing a version control parameter that indicates
data currency.

* * * * *

