
United States Patent
Ruff et al.

[19]

[54] METHOD FOR MANIPULATING DISK
PARTITIONS

[75] Inventors: Eric J. Ruff; RobertS. Raymond;
Scot Llewelyn, all of Orem, Utah

[73] Assignee: PowerQuest Corporation, Orem, Utah

[21] Appl. No.: 393,805

[22] Filed: Feb. 23, 1995

[51] Int. Cl.6
.. G06F 12/02

[52] U.S. CI 395/497.04; 395/497.01;
395/439; 395/492

[58] Field of Search 395/438, 439,
395/480, 492, 497.01, 497.04, 700

[56] References Cited

PUBUCATIONS

Partition Resizer v. 1.1.1 Program Manual and Technical
Information ©Zeleps 1994-95.
Welcome to FIPS version 1.1.1, Oct. 13, 1994.
Alsoft Power Utilities, Multidisk User's Guide ©1989-94.
Tyne, 'Thinking Person's Guide to OS/2 2.1", 1993, pp.
193-195.

111111 111
US005675769A

[11] Patent Number:

[45] Date of Patent:

5,675,769
Oct. 7, 1997

Primary Examiner-Eddie P. Chan
Assistant Examiner-Kevin L. Ellis
Attorney, Agent, or Firm-Computer Law++

[57] ABSTRACT

A method allows manipulation of disk partitions defined by
an ffiM-compatible partition table. The disk partitions may
be located on one or more disks attached to one or more disk
drives. Each partition has an associated file system type,
such as F.tXI' or HPFS. An interrupted manipulation may be
resumed at a point in the progress of the manipulation near
the point of interruption. Available manipulations include
verifying the integrity of a partition's file system structures;
displaying information about a partition; moving a partition
to a different location; resizing a partition; and converting a
partition from one file system to another file system. The
resizing step is illustrated with particular reference to HPFS
file systems and F.tXI' file systems. The details required to
perform these manipulations are attended to by an imple­
menting program that requires only general direction from a
user. Thus, the present invention provides a method that
allows users who are unfamiliar with technical intricacies to
easily manipulate ffiM -compatible disk partitions, including
extended partitions and logical partitions.

67 Claims, 9 Drawing Sheets

U.S. Patent

0

Oct. 7, 1997

c.o
C\J

C\J ,....

Sheet 1 of 9 5,675,769

,....
•
~ -LL

U.S. Patent Oct. 7, 1997 Sheet 3 of 9 5,675,769

LOCATE PARTITION TABLE ON DISK

READ TABLE

IDENTIFY FILE SYSTEM USED
IN PARTITION

106

YES

DISPLAY TABLE CONTENTS TO
USER IN GUI

OBTAIN USER SELECTION
OF PARTITION AND

MANIPULATION DESIRED

136

ENSURE PARTITION IS LOCKED

TO FIGURE 5

112

100

102

104

INFORM USER
MANIPULATION

IS BEING
RESUMED

110

FIG. 4

108

U.S. Patent Oct. 7, 1997 Sheet 4 of 9 5,675,769

FROM FIGURE 4

PERFORM SELECTED
MANIPULATION

ON SELECTED PARTITION

UNLOCK PARTITION,
CLEAN UP, EXIT

ERRORS
DETECTED

148

140

ERRORS
DETECTED

152

150

INFORM
USER

CLEAN UP
AND EXIT

146

INFORM
USER

CLEAN UP
AND EXIT

FIG. 5

v PARTITIONMAGIC BY POWERQUEST D D -.-----

118 -
""'

PHYSICAL DRIVES DFAT D FREE

" _5JS DHPFS D OTHER ~ DEXTENDED r-
DRIVE 1 DRIVE 2 -

120 --......_
I'-'\ PARTITIONS !'--...

"_ -]I C: 10011 E: II F: ~~~
j"'-...,

!"--
I--

/VOLUME ~ TYPE SIZE MB USED MB FREE MB
.-" v

BOOT MANAGER 1.5 1.5 0.0 ~ "'-~#: 122

130

V C:ALWAYSC FAT 193.3 102.9 290.5- '-- '-....
/ #: FREE SPACE 37.0 0.0 37.0 ~

..........
........ v -

/
OPTIONS

I CHECK I I INFO I I HELP I -
/
v I MOVE I I RESIZE I lcoNVERTI I EXIT I

/ -134

1 (I)0
~ ----

/

-
1--

1-

r--

116

126

114

24

28

32

~ •
00 •

~
""" a
0
~
~~

......
~
~

~
~ a
Ol

~
\C)

Ot
~
-.....1
Ot

'"' FIG. 6 ~
\0

U.S. Patent Oct. 7, 1997 Sheet 6 of 9 5,675,769

I
CX)
LO ,...

Cl

~
w I

I
I-
hlz
....JQ

I w-

I ... en I-,... I-I-cr:CI:
I w<r::

I >0....
z
0

I I
0

I I
Cl I I w
I-
()

I I
~z
wo
en I- ,~;

"' >-- l ~

I
,

a... I- ,jl" I
,...

ocr:
()<(_a..

I I
w
>
0

.
" -LL

~ I I
<0 I I
LO ,.....

I
Cl I w
I-
()Z

I wo

~
....J-

..... wl-, CfJI-
wcr: I N<(
-0....
CJ)

..;:t

(
w

I ,..... cr:
I

..;:t
1.0 ,.....

U.S. Patent Oct. 7, 1997

DETERMINE BOUNDS ON
SIZE OF MODIFIED

PARTITION

DETERMINE EDGES OF
SELECTED PARTITION

TO MOVE

DETERMINE SIZE OF
MODIFIED PARTITION

DETERMINE SIZE AND
LOCATION OF FILE

SYSTEM STRUCTURES

166

YES

180

ADJUST FILE
SYSTEM STRUCTURES

CLEAN UP, UNLOCK,
EXIT

182

Sheet 7 of 9 5,675,769

160

162

164

170

172

174

176

168

BLOCK BAD
SECTORS

CREATE RECOVERY
SECTOR

ADJUST PARTITION
TABLE

CREATE BITMAPS

UPDATE
SUPERBLOCK

AND BOOT SECTORS

FIG. 8

U.S. Patent Oct. 7, 1997 Sheet 8 of 9

r-154
- _L_ -

DETERMINE BOUNDS ON SIZE OF
MODIFIED PARTITION

DETERMINE EDGES OF SELECTED
PARTITION TO MOVE

DETERMINE SIZE OF MODIFIED
PARTITION

YES

DETERMINE SIZE, LOCATION, AND
SYSTEM PARAMETERS OF FILE

SYSTEM STRUCTURES

ADJUST BAD SECTOR LIST

IDENTIFY DATA CLUSTERS TO MOVE

MOVE DATA CLUSTERS

ADJUST FILE SYSTEM STRUCTURES,
BOOT SECTOR, PARTITION TABLE

CLEAN UP, UNLOCK, EXIT

5,675,769

184

186

188

192

BLOCK BAD
SECTORS

194

196

198

200

202

204

FIG. 9

U.S. Patent Oct. 7, 1997 Sheet 9 of 9 5,675,769

- --I- - -
'If

DETERMINI;: MODIFIED lf PARTITION EDGE

210 ~156
LOCATIONS

'If

I CREATE BAD lf SECTOR LIST FOR

212

SELECTED PARTITION

'if

lf TEST NEW AREA
214

FOR BAD SECTORS

'f

lf CREATE BAD
216

SECTOR LIST FOR
MODIFIED PARTITION

,,.
MOVE/COPY SELECTED lf
PARTITION CONTENTS

218

TO MODIFIED PARTITION

'It

lf UPDATE BAD
220

SECTOR LIST

'If lf CLEAN UP, UNLOCK,
222

EXIT

- - - - J
'if

FIG. 10

5,675,769
1

METHOD FOR MANIPULATING DISK
PARTITIONS

FIELD OF THE INVENTION

The present invention permits manipulation of selected
partitions of a computer disk drive More particularly the
present invention relates to a method for safely shrinking
expanding, moving, and copying hard disk partitions.

TECHNICAL BACKGROUND OF THE
INVENTION

Computers utilize a wide variety of disks to store data.
Disks are classified according to the storage medium
employed, such as when "optical" disks are distinguished
from "magnetic" disks. Disks are also classified as either
"floppy" or "hard." Hard disks generally have greater stor­
age capacity, faster data access times, and longer useful lives
than floppy disks ("floppies"). Unlike hard disks, however,
floppies are "removable." That is, floppies are easily
released from, and reattached to, a disk drive which provides
the computer with access to the data on the disk

FIG. 1 illustrates a disk 10 attached to a disk drive 12. The
disk 10 illustrates physical characteristics of both floppies
and hard disks. The disk 10 contains a number of concentric
data cylinders such as the cylinder 14. The cylinder 14
contains several data sectors, including sectors 16 and 18.
The sectors 16 and 18 are located on an upper side 20 of the
disk 10; additional sectors may be located on a lower side 22
of the disk 10. The sides 20, 22 of the disk 10 define a platter
24. Floppy disks contain only one platter and thus are either
single-sided or double-sided. For clarity of illustration only
one platter 24 is shown in FIG. 1, but hard disks often
contain several platters and thus may include one, two, or
more sides.

The upper side 20 of the disk 10 is accessed by a head 26
mounted on an arm 28 secured to the drive 12. To access
different cylinders of the disk 10, the arm 28 moves the head

2
single number rather than a triplet of numbers. The logical
address of a sector corresponds to the number of sectors
between the addressed sector and the "first" sector on the
disk 10 along some specified path which traverses all

5 available sectors in order. The first sector, known as "sector
zero," is often located at a physical sector address of (0, 0,
1). One common traversal path begins at logical sector zero,
traverses the sectors in cylinder zero of head zero, traverses
the sectors of cylinder zero of head one, proceeds thus

10 through cylinder zero on each successive head, proceeds to
the sectors of cylinder one of head zero, and continues in like
manner. However, other disk traversal paths are also used.

Disks are also classified by rules governing the physical
organization of data on the disk. Many disks mold the

15 available space into one or more "partitions" by a "partition
table" located on the disk. For instance, MACINTOSH®
computers utilize a partition table having a composition that
is specifically adapted for use with the MACINTOSH oper­
ating system (MACINTOSH is a registered trademark of

20 Apple Computer, Inc.). Many SUN® workstation computers
utilize a partition table composition that is specifically
adapted for use with the SunOS® File System (SUN and
Sun OS are registered trademark of Sun Microsystems, Inc.).
Other examples abound; different partition table composi-

25 tions are almost as common as different operating systems
and different file systems, which number in the hundreds.

Unfortunately, different partition table compositions are
usually incompatible. Detailed methods which correctly
modify the contents of a first partition table will often

30 scramble the contents of a second partition table if the first
and second tables use different composition rules. A detailed
method for reducing the number of disk sectors in a
MACINTOSH partition, for instance, is likely to be of little
help in shrinking a SunOS partition, and may even cause

35 data loss if applied to the SunOS partition table.
One partition table composition, denoted herein as the

26 in toward the center of the disk 10 or out toward the
periphery of the disk 10 according to the position of the
desired cylinder. To access different sectors within a 40
cylinder, the drive 12 rotates the disk 10 around a spindle 30,
thereby rotating the desired sectors into adjacency with the
head 26. Additional sides of a disk, including sides on
additional platters, may be accessed in a similar manner by
additional disk drive heads. Because each side of a disk is 45
accessed by a corresponding disk drive head, the number of
heads is sometimes used to indicate the number of sides of
the disk that are accessible to the drive. For example,
double-sided disks are accessed with double-headed drives.

"IBM compatible" partition table, is found on the disks used
in many IBM® personal computers and IBM-compatible
computers (IBM is a registered trademark of International
Business Machines Coxporation). IBM-compatible partition
tables may be used on both floppies and hard disks, and they
may be used with magnetic disks, optical disks, and disks
employing other storage media. IBM-compatible partition
tables may also be used with a variety of disk sector
addressing schemes, including without limitation schemes
that employ traversal paths different from the path described
above and schemes which assign logical sector addresses
that start over again at zero for each partition on the disk.

A given sector on the disk 10 may be identified by so
specifying a head, a cylinder, and a sector within the
cylinder. Heads are generally numbered from the top of the
drive proceeding downward, beginning at zero. Cylinders

As shown in FIG. 2, an IBM-compatible partition table 32
includes an Initial Program Loader ("IPL") identifier 34,
four primary partition identifiers 36, and a boot identifier 38.
As shown in FIG. 3, each partition identifier 36 includes a
boot indicator 40 to indicate whether the partition in ques-

55 tion is bootable. At most one of the partitions in the set of
partitions defined by the partition table 32 is bootable at any
given time.

are generally numbered from the outside edge of the platter
proceeding inward, beginning at zero. Sectors within a
cylinder are generally numbered from a marker in the disk
medium proceeding either clockwise or counter-clockwise,
depending on the direction of disk rotation in the disk drive,
and beginning at one. A triplet specifying the head number,
cylinder number, and sector number in this manner is known 60
as a "physical sector address." For instance, the sector
labeled as 16 in FIG. 1 could have a physical sector address
of (head zero, cylinder seven, sector two), or more concisely,
a physical address of (0, 7, 2). The terms "address" and
"pointer" are used interchangeably herein.

Alternatively, a given sector may be identified by a
"logical sector address." Each logical sector address is a

Each partition identifier 36 also includes a starting address
42, which is the physical sector address of the first sector in
the partition in question, and an ending address 44, which is
the physical sector address of the last sector in the partition.
A sector count 46 holds the total number of disk sectors in
the partition. A boot sector address 48 holds the logical
sector address corresponding to the physical starting address

65 42. On disks having more than 1024 cylinders, the starting
address 42 and the ending address 44 contain predetermined
maximum values if the actual values are too large to store in

5,675,769
3

the space given in the partition table 32; the actual values
can be derived from the sector count 46 and the boot sector
address 48.

4
characteristics such as the partition's size or its location on
the disk 10 (FIG. 1).

Those of ordinary skill in the art have a working knowl­
edge of the disk 10, the disk drive 12, and the internal file Some IBM-compatible computer systems allow "logical

partitions" as well as the primary partitions just described.
All logical partitions are contained within one primary
partition; a primary partition which contains logical parti­
tions is also known as an "extended partition." Logical
partitions are represented by one or more lists of partition
identifiers 36. Each list is attached in conventional fashion
to one of the partition identifiers Pl, P2, P3, or P4. Thus, the
set of partitions defined by an IBM-compatible partition
table includes any defined primary partition, regardless of
whether that primary partition is an extended partition, and
also includes any logical partitions defined by partition
identifiers 36.

5 system structures on the disk 10 and in computer memory.
They will also have an understanding of operating systems
and file systems in general. With regard to HPFS file
systems, reference may be made to U.S. Pat. No. 5,371,885
issued to James G. Letwin for a HIGH PERFORMANCE

10 FILE SYSTEM, which describes the structure of an HPFS
file system. With regard to FAIT file systems, reference may
be made to Chapter Eight of Advanced MS-DOS: The
Microsoft guide for Assembly Language and C
programmers, by RayDuncan,ISBN0-914845-7702, 1986,

15 which describes the structure of a FAIT file system.

Each partition identifier 36 also includes a system indi­
cator 50. The system indicator 50 identifies the type of file
system contained in the partition, which in turn defines the
physical arrangement of data that is stored in the partition on
the disk 10 (FIG. 1). The system indicator 50 utilizes
predefined constant values to designate various file systems.
For instance, the constant value 01H indicates a 12-bit File
Allocation Table (''FAIT") file system first used by the
MS-DOS® operating system(MS-DOS is a registered trade­
mark of Microsoft Corporation). Other values designate
other file systems, including the CP/M-86® file system
(registered trademark of Novell, Inc), the XENIX® file
system (registered trademark of Microsoft Corporation), the
NOVELL file system (trademark of Novell, Inc.), a 16-bit
FAT file system of the MS-DOS operating system, and the
PCIX file system. Values not recognized by a particular
operating system are treated as designating an unknown file
system.

It is sometimes desirable to alter the contents of an
IBM-compatible partition table. For instance, a person using
a computer may wish to expand a particular partition to
allow additional data to be stored in files within that parti-

20 tion. Conversely, the user may wish to shrink a specified
partition by allocating fewer disk sectors to the partition. It
may also be convenient or necessary to move a partition to
a different location on the disk while substantially or exactly
preserving the number of disk sectors allocated to the

25 partition.
One conventional approach to modification of an IBM­

compatible partition table begins by copying all necessary
user and system data off the disk to a temporary storage

30
location such as a tape or another disk. The data copied
includes without limitation the contents of files created by
the user such as textual documents and spreadsheets, the
contents of files required to run applications such as word
processors, and system data such as directory information.

The system indicator 50 may designate a file system, such
35

as the 12-bit FAIT file system. which is used most widely in
connection with a particular operating system, such as
MS-DOS. However, operating systems and file systems are
different components of the computer. The file system

40
associated with a specific partition of the disk 10 (FIG. 1)
determines the format in which data is stored in the partition,
namely, the physical arrangement of user data and of file
system structures in the portion of the disk 10 that is
delimited by the starting address 42 and the ending address

45
44 of the partition in question. At any given time, each
partition thus contains at most one type of file system.

The operating system manages access, not only to the disk
10, but to other computer resources as well. Resolirces
typically managed by the operating system include one or so
more disks and disk drives, memory (RAM and/or ROM),
microprocessors, and I/0 devices such as a keyboard,
mouse, screen, printer, tape drive, modem, serial port, par­
allel port, or network port.

Some internal file system data such as sector allocation maps
does not necessarily need to be copied, but is often copied
anyway. The familiar disk utility FDISK is then used to
update the IBM -compatible partition table. The newly speci­
fied partition is then formatted with the familiar disk utility
FORMPIT or a similar utility. Finally, the data is copied back
into the new partition on the disk. During this copying
process the file system copy utility creates appropriate new
file system structures reflecting the current locations of data
on the disk.

This approach to partition manipulation has several draw­
backs. A temporary storage device with adequate storage
capacity may not be readily available or affordable under the
circumstances. Even if temporary storage is available, copy­
ing large amounts of data from the disk to temporary storage
and then back again can take a substantial period of time.

In addition, manipulating IBM-compatible partition
tables in this manner is confusing and dangerous for many
computer users. The FDISK utility assumes that the user is
familiar with the intricacies of IBM-compatible partition

55 tables, physical disk addresses, logical partitions, extended
partitions, operating system assumptions regarding
partitions, and related matters. Users who are unfamiliar
with these technical details may easily and inadvertently

The operating system accesses the disk 10 in part through
subprograms known as "file system drivers." These drivers
use internal file system data and assumptions about the file
system to translate more abstract information such as file
names and read/write requests into more detailed informa­
tion such as sector addresses and physical disk accesses. By 60
appropriate use of file system drivers, a single operating
system can access files stored according to different file
systems. For instance, the OS/2 operating system can access
both FAIT files and High Performance File System ("HPFS")
files (OS/2 is a mark of International Business Machines 65

Corporation). File system drivers do not alter the type of file
system that is contained in a partition, nor do they alter

destroy data.
Less grievous but nonetheless undesirable situations can

also arise if the user miscalculates the correct size or position
of the new partitions. For instance, if the partition has been
made too small to receive all the data from temporary
storage, it becomes necessary to once again modify the
partition table with FDISK, to reformat again, and to once
again copy all the data from temporary storage into the
reformatted partition. Even if everything works as desired

5,675,769
5

the first time, this approach to partition modification can be
very time-consuming. With a typical disk holding several
hundred megabytes of data the process may require several
hours to complete successfully.

Some conventional partition manipulation approaches are
limited to shrinking FAT partitions or HPFS partitions.
These approaches are not capable of shrinking logical par­
titions. They provide no capability for expanding a partition
or moving a partition to a new location on the disk while
preserving the partition's size. Moreover, known approaches
allow user data to be lost if power to the computer is
interrupted during the partition shrinking operation.

6
manipulation. A data recovery method such as checkmark­
ing or journaling is also used to allow resumption of the
method near the point of interruption.

Available manipulations include checking or verifying the
5 integrity and internal consistency of a partition's file system

structures; displaying information about a partition such as
its location, size, and associated file system type; moving a
partition to a different location on a disk that presently holds
the partition or to another disk; molding or resizing a

10 partition to include either a lesser or greater number of disk
sectors within the partition; and converting a partition from
one file system to another file system.

It is sometimes desirable to convert a partition from one
file system to another. For instance, one known approach
converts a FAT partition into an HPFS partition. However, 15

the conversion is performed in place. That is, user data is left
substantially in the same sectors on disk while FAT file
system structures are converted into corresponding HPFS
file system structures. This approach has the advantage of
requiring only about enough additional disk space to hold 20

the HPFS file system structures.

Steps are taken at one or more points in the manipulation
to detect inconsistencies in the file system data structures or
other breaches in the integrity of the selected partition. If
errors are detected, the user is informed. Conditions on the
disk that were changed by the present method are then
restored to the extent possible and control is returned to the
invoking environment.

The resizing step is illustrated with particular reference to
HPFS file systems and FAT file systems, but is also useful in
reshaping partitions which hold a variety of other file
systems. During a bounds determining step the maximum

25
and minimum sizes of the desired modified partition are
determined. An edge determining step takes appropriate
actions depending on which edges of the selected partition
are being moved to produce the modified partition. A size
determining step determines the exact size of the modified

30
partition by specifying the starting and ending physical
addresses of the modified partition.

If the selected partition is being expanded, then certain
additional steps are taken after the size determining step.
The disk sectors being added may be tested first to locate and

intricacies to easily shrink, expand, and move IBM- 35 block out any bad sectors during a blocking step. During a
compatible disk partitions. creating step, a recovery sector is created on the very last

However, during virtually the entire conversion operation,
the partition is in a hybrid state that matches no single
known file system. Thus, it is very likely that user data will
be lost if the file system conversion is interrupted. In
particular, data is likely to be lost if power to the computer
is interrupted for even a moment during the conversion.
Moreover, this approach is not integrated with means for
shrinking, expanding, and moving partitions, or with effi­
cient means for checking the integrity and self-consistency
of the file system before and after the conversion.

Thus, it would be an advancement in the art to provide a
method that allows users who are unfamiliar with technical

It would be a further advancement to provide such a
method which prevents data loss caused by interruptions
such as a power failure during the manipulation of a parti­
tion.

It would also be an advancement to provide such a method
which properly shrinks, expands, and moves logical parti­
tions and extended partitions.

sector of the proposed modified partition to permit data
recovery in the event the manipulation is interrupted. During
an adjusting step the contents of the partition table are

40 adjusted to reflect the larger size of the modified partition
and the RPI is placed on the disk, making the partition
unrecognizable to MS-DOS, OS/2, and other familiar oper­
ating systems. During a bitmap creating step sector alloca­
tion structures are created as needed for the new area of the

It would be an additional advancement in the art to
provide such a method which safely converts partitions from 45

one file system to another file system.

disk.
Regardless of whether the partition is being reduced or

expanded, a size determining step determines the size and
location of file system structures in the modified partition.
An adjusting step then adjusts the size, location, and con-

It would be a further advancement to provide such a
method which efficiently tests the integrity and consistency
of the file system data within a partition.

Such a method for manipulating disk partitions is dis­
closed and claimed herein.

BRlEF SUMMARY OF THE INVENTION

The present invention provides a method for manipulating
disk partitions defined by an IBM-compatible partition table.
The disk partitions may be located on one or more disks
attached to one or more disk drives. Each partition has an
associated file system type, such as FAT or HPFS.

According to the present method, the partition table is
initially read from the disk. The table contents may contain
an RPI system indicator, which indicates that an earlier
attempt at partition manipulation was interrupted by a power
failure. If the RPI is present on the disk, an informing step
notifies the user that the interrupted manipulation is being
resumed. Otherwise, steps are taken to lock out other
processes that could interfere with the requested partition

50 tents of the file system structures as needed to reflect
differences between the selected partition and the modified
partition. An exiting step releases any temporarily allocated
disk space, removes the RPI from the disk, generally cleans
up, and then returns control to the software which invoked

55 it; in some cases the exiting step forces the computer to
reboot so that changes in the partition table or file system
structures will be detected by the operating system.

The moving/copying step is useful in replicating parti­
tions utilizing a variety of familiar or unknown file systems.

60 A location determining step determines the location of the
edges of the modified partition. The present method provides
the capability of moving and copying partitions from a first
location, which is on a first disk attached to a first disk drive,
to a second location. The second location may also be on the

65 first disk, or it may be on a second disk that is attached to
a second disk drive. During a creating step a first list is made
of all bad sectors inside the selected partition. During a

5,675,769
7

testing step all sectors added by the proposed modified
partition are tested, and any bad sectors found are placed in
a second list. During a creating step a composite list of all
bad sectors is created from the first and second lists just
described. Any data or system information occupying disk 5

sectors in the selected partition that would otherwise be
copied to bad sectors in the modified partition are relocated
such that they are copied instead to good sectors in the
modified partition.

8
DErAILED DESCRJPITON OF THE

PREFERRED EMBODIMENTS

Reference is now made to the figures wherein like parts
are referred to by like nnmerals. The present invention
relates to a method for physically manipulating disk parti­
tions. As noted above, each partition has an associated file
system type, such as 12-bit FAT. 16-bit FAT, FAT­
compatible, CP!M-86, XENIX, NOVELL, PCIX, or HPFS.
The present invention will be illustrated mainly by reference
to HPFS and FAT partitions defined as primary partitions on
the disk 10 (FIG. 1) by an IBM-compatible partition table.

The selected partition's contents are then replicated. The 10

bad sector list for the modified partition is updated, and an
exiting step cleans up, removes the RPI from the disk, and
exits back to the invoking environment or to a reboot, as
appropriate. An alternative method allows the moving and
copying of foreign or unknown partitions.

The details required to perform these manipulations are
attended to by an implementing program that requires only
general direction from a user. Thus, the present invention
provides a method that allows users who are unfamiliar with
technical intricacies to easily mold IBM-compatible disk 20

partitions, including logical and extended partitions. The
present method also utilizes the RPI and data recovery steps

However. those of skill in the art will appreciate that the
scope of the present invention comprises manipulation of
both primary and logical partitions on one or more disks of

15 various kinds, and that such partitions may be associated
either with the file systems listed expressly herein or with
other file systems.

to prevent data loss caused by interruptions such as a power
failure during the manipulation of a partition. The method
also efficiently tests the integrity and consistency of the file 25

system data within a partition at various points during the
manipulation.

The features and advantages of the present invention will
become more fully apparent through the following descrip-

30
tion and appended claims taken in conjunction with the
accompanying drawings.

BRIEF DESCRJPITON OF THE DRAWINGS

To illustrate the manner in which the advantages and 35

features of the invention are obtained, a more particular
description of the invention summarized above will be
rendered by reference to the appended drawings. Under­
standing that these drawings only provide selected embodi­
ments of the invention and are not therefore to be considered 40

limiting of its scope, the invention will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 is a partial cut-away view of a computer disk drive.
45

FIG. 2 is a diagram illustrating an IBM-compatible par-
tition table.

FIG. 3 is a diagram further illustrating a portion of the
partition table shown in FIG. 2.

Overview of Disk Partition Manipulation

A preferred method of the present invention for manipu­
lating disk partitions is illustrated by a flowchart in FIGS. 4
and 5. A computer program which implements this flowchart
and/or other teachings of the present invention in order to
assist users in molding disk partitions is referred to herein as
an "implementing program." Those of skill in the art will
readily create appropriate implementing programs according
to the present invention by using computer languages such
as Cor C++, conventional compilers and linkers, and other
tools familiar to computer programmers. Implementing pro­
grams may execute on conventional digital computers,
including without limitation IBM-compatible personal com­
puters.

All critical portions of the implementing program, such as
those containing disk updates, are preferably protected by
proper utilization of a data recovery method. A checkrnark­
ing data recovery method prevents data loss unless failure
occurs in the middle of a disk write. Checkmarking stores
progress markers on the disk within a selected partition. The
progress markers correspond to incrementally increasing
portions of the modification of the selected partition, thereby
removing the need to repeat all of those portions over again
if the modification is resumed after the flow of electric
power to the disk drive is temporarily interrupted. A jour-
naling data recovery method is generally faster than the
checkmarking method and prevents data loss even if power
fails in the middle of a disk write. Journaling preserves at
least one copy of all user data on the disk at all times during
the partition modification, thereby reducing the risk of loss

FIG. 4 is an initial portion of a flowchart illustrating a
preferred method of the present invention.

50 of user data if modification is temporarily interrupted.

FIG. 5 is an additional portion of the flowchart shown in
FIG. 4.

FIG. 6 is a front view of a computer screen illustrating a
graphical user interface to a computer-based implementation
of the present invention.

FIG. 7 is a flowchart further illustrating a partition
manipulating step shown in FIG. 5.

FIG. 8 is a flowchart further illustrating a partition resiz­
ing step shown in FIG. 7 in connection with a partition
employing an HPFS file system.

FIG. 9 is a flowchart further illustrating a partition resiz­
ing step shown in FIG. 7 in connection with a partition
employing a FAT file system.

FIG. 10 is a flowchart further illustrating a partition
moving/copying step shown in FIG. 7.

According to alternative methods of the present invention, a
data recovery method familiar to those of skill in the art may
also be employed.

In a locating step 100, an IBM-compatible partition table
55 (FIGS. 2 and 3) is located on the disk 10. The IPL 34 (FIG.

2) of the partition table is typically located at the beginning
of the disk sector whose logical address is zero; the other
portions of the partition table follow according to the
partition table composition described herein and concepts

60 familiar to those of skill in the art.
The partition table is then read from the disk 10 by a

reading step 102. Reading is accomplished by one or more
conventional disk sector read operations directed by the
implementing program. Multiple read operations may be

65 required to obtain the contents of partition identifiers 36
(FIG. 3) that define logical partitions. The copy of the table
contents thus obtained may be left in the same relative

5,675,769
9

positions in computer memory as they were in on the disk
10. Alternatively, the table contents in memory may be
rearranged into data structures that are more convenient for
use in the succeeding steps of the method. Those of skill in
the art will readily detennine appropriate data structures 5
according to the teachings herein.

In this preferred method of the present invention, the table
contents may contain an indication that an earlier attempt at
partition manipulation has been interrupted. One cause of
such an interruption is a temporary interruption of the flow 10
of electrical power to the computer. Interruptions may also
occur as a result of soft resets, hard resets, faulty hardware,
or other circumstances.

It is presently preferred that an incomplete partition
manipulation resulting from such an interruption be indi-

15
cated by the presence of a unique ''recovery partition iden-
tifier" (''RPr') in the system indicator 50 (FIG. 3) of a
partition identifier 36 (FIG. 3) in the partition table. The RPI
indicates that the partition is a "recovery partition," namely,
that the partition is in a condition not associated with any

20
known file system such as HPFS or FAT but is rather in a
transitional state corresponding to interruption of the present
method. Thus, any value not corresponding to a previously
known file system and capable of representation in the space
allotted to the system indicator 50 is an acceptable RPI
value. One presently suitable RPI value is 3C hexadecimal; 25

other suitable values may be identified by surveying the
values used by familiar operating systems and file systems.

Accordingly, an identifying step 104 identifies the file
system associated with each partition defined by the parti-

30
tion table. The identifying step 104 may be implemented by
a table look-up, by a case or switch statement, or by another
familiar means which recognizes the RPI of the present
invention. An interrogating step 106 then checks the result
of the identifying step 104 to determine whether an RPI was

35
found in any of the partition identifiers 36.

If the interrogating step 106 detennines that a partition
manipulation was interrupted, an informing step 108 notifies
the user that the interrupted manipulation is being resumed.
The method then proceeds to a partition lock ensuring step 40
110. On the other hand, if the interrogating step 106 deter­
mines that no incomplete manipulation is pending, then a
displaying step 1U displays at least a portion of the partition
table contents to the user. The displaying step 112 preferably
utilizes a graphical user interface ("GDr') in the implement- 45
ing program to provide users with feedback regarding the
current partition configuration and a command interface for
molding that configuration.

One suitable GUI 114 is illustrated in FIG. 6. The GUI
114 is displayed on a computer screen 116 by the displaying 50
step 112 (FIG. 4). The GUI 114 includes a drive group box
118 which provides the user with information regarding the
physical disk drives attached to the computer, including the
drive names. Icons corresponding to the drives are prefer­
ably highlighted or otherwise altered in appearance to indi- 55
cate the drive or drives for which partition information is
presently being displayed.

A partition graph 120 provides information regarding the
partitions presently defined by the partition table, including
the names, relative positions, and file system types of the 60

partitions. The left end 122 of the partition graph 120
corresponds to the disk sector at the lowest physical address
(which is typically (0, 0, 1)), while the right end 124 of the
partition graph 120 corresponds to the disk sector at the
highest physical address on the particular disk in question. 65

Colors or graphical patterns may be used in the partition
graph 120. The colors or patterns are selected from a legend

10
126 that matches colors to file system types, to free space not
claimed by any partition, and to partition characteristics
such as "extended" or "other" (unrecognized system
identifier). In the example shown in FIG. 6, partitions E: and
F: are enclosed by a box 128 to indicate that they are logical
partitions. Partition C: is a primary partition, as indicated by
the absence of an enclosing box.

Partition C: is also the current "selected partition,"
namely, the partition regarding which information is sought
or upon which a manipulation operation is or will shortly be
performed. Additional information about the partitions is
provided in a partition list 130, with the details 132 regard­
ing the currently selected partition (partition C:) preferably
highlighted or otherwise altered in appearance.

An option box 134 lists the partition manipulation opera­
tions that are available through this implementation of the
present method. As described herein, these manipulations
include checking or verifying the integrity and internal
consistency of a partition's file system structures; displaying
information about a partition such as its location, size, and
associated file-system-specific details; moving a partition to
a different location on a disk that presently holds the
partition or to another disk; resizing a partition to include
either a lesser or greater number of disk sectors within the
partition; and converting a partition from one file system to
another file system. With reference to FIGS. 4 through 6,
users interact with the implementing program through an
interface such as the GUI 114 and through a mouse, a
keyboard (neither shown), or other familiar input devices.
During an obtaining step 136 user interaction results in
selection of a partition and selection of a manipulation
operation. Selections are communicated and acknowledged
by means familiar to those of skill in the art.

The locked status of the selected partition (partition C: in
FIG. 6) is then ensured during the lock ensuring step 110.
Thus, if the lock ensuring step 110 is reached by way of step
108, then the manipulation·is being resumed after an inter­
ruption and the selected partition may already be locked by
the RPI. However, if no interruption occurred, that is, if step
110 is reached by way of steps 112 and 136, then locking is
ensured by an operating-system-level lock, by halting other
processes, by placing the RPI, or by some combination of
these steps.

It is necessary to lock the selected partition to prevent
processes other than the implementing program from access­
ing the partition while it is manipulated according to the
present invention. Those of skill in the art will appreciate
that such unexpected accesses by other processes may cause
significant data loss.

Locking may be accomplished by one or more methods.
It is presently preferred tllat access be prevented by engag­
ing an operating-system-level partition lock such as is
provided in certain operating systems. For example, the
OS/2 operating system provides the capability to lock a
logical drive, as identified by the drive letter, as well as the
capability to lock an entire physical drive.

Operating-system-level partition locks are not available
on some computers. In manipulating partitions on such
computers, the user is preferably instructed to stop all
non-implementing program processes, tasks, TSRs, and the
like from executing. That is, the user must ensure that the
implementing program alone has access to the disk(s) that
hold the selected partition and the proposed modified par­
tition.

A power failure or other condition which causes the
computer to reboot may disable operating-system-level par-

5,675,769
11

tition locks and/or restart non-implementing program pro­
cesses which are capable of accessing the disk(s) that hold
the selected partition and the proposed modified partition. It

12
the verifying steps 138 and 142 may check for inconsistent
links between Fnodes and for illegal values in the Super­
Block or SpareBlock, and may generally perform those
checks that are typically performed by the OS/2 disk utility is therefore preferred that locking also be provided through

the use of an RPI as described herein.
Locking by placement of the RPI on the disk preferably

comprises the following steps. First, a free disk sector is
located within the selected partition on the disk 10. The disk
sector is allocated by updating the file system sector bitmap

5 program CHKDSK. With regard to FAT, HPFS, or other file
systems, the verifying steps may be performed in a manner
familiar to those of skill in the art or by novel methods in
concert with the teachings herein.

or comparable structure, and the current system indicator 50 10

(FIG. 3) value for the selected partition is stored on the disk
10 in the newly allocated sector.

The system indicator 50 on the disk 10 is then overwritten

If errors are detected by the verifying step 138 or by the
reverifying step 142, the user is informed by respective
informing steps 144 and 146. Conditions on the disk 10 that
were changed by the present method are then restored to the
extent possible and the method relinquishes control of the
disk 10 and the CPU during respective exiting steps 148 and so that the partition identifier 36 corresponding to the

selected partition contains the RPI. According to industry
convention, an operating system will refuse to recognize
partitions that are associated with a file system that is
unknown to the operating system. By definition, the RPI
corresponds to no known file system, so replacing a con­
ventional system indicator value by the RPI effectively
prevents the operating system and processes which run
within constraints defined by the operating system from
accessing the selected partition. The implementing program

15 150. If no file system data structure errors are detected, the
selected partition is unlocked during an exiting step 152,
thereby opening the disk 10 for access by processes other
than the implementing program. Other conditions on the
disk 10 that were changed by the present method are also

of the present invention is not thus constrained.

20 restored, to the extent that such restoration is consistent with
the desired results of the manipulating step 140, during the
exiting step 152. In alternative methods, some or all of the
actions performed during the exiting step 152 are also
performed, or are performed instead, at the end of the

25 manipulating step 140 as described hereafter. Thus, if the power fails prior to completion of the present
method, the operating system will typically refuse to mount
the selected partition and thus be prevented from trying to
automatically "fix" the selected partition. However, the
implementing program will detect the interruption by the

30
presence of the RPI. The implementing program may then
either properly complete the manipulation or, if that is not
possible, the implementing program may attempt to place
the selected partition in a more consistent and conventional
condition before exiting. In extreme cases, the implementing

35
program may resort to a data-salvaging step to allow the user
to extract selected files for copying to another storage
medium.

In the preferred method illustrated herein, great care is
taken to detect inconsistencies in the file system data struc- 40
tures or other breaches in the integrity of the selected
partition. Thus, a verifying step 138 precedes a partition
manipulating step 140, and a reverifying step 142 follows
the manipulating step 140. The steps 138 and 142 are
collectively termed "verifying steps" herein. In the method 45
illustrated, the verifying step 138 and the reverifying step
142 perform substantially identical tests on the file system at
different times. In alternative methods according to the
present invention, the verifying steps 138 and 142 may each
perform different tests. Some methods of the present inven- 50
tion omit either or both of the verifying steps 138 and 142.

The tests performed during the verifying steps 138 and
142 depend on the particular file system that is associated
with the partition; the file system was identified during the
identifying step 104. To prevent data loss, tests are not 55

performed on unknown file systems. However, disk reads
may be used to test partitions associated with unknown file
systems for "bad sectors," namely, disk sectors that are
unreliable due to faults in the disk media or (occasionally)
to disk drive hardware problems.

In testing the integrity of a FAT file system the verifying
steps 138 and 142 may search for lost clusters, illegal values

60

in the boot sector, or inconsistencies between copies of the
file allocation table (if duplicates are present). In short, the
verifying steps may generally perform those checks that are 65

typically performed by the MS-DOS disk utility program
CHKDSK. In testing the integrity of an HPFS file system,

Those of skill in the art will appreciate that particular
operating systems may fail to detect changes in the partition
table or file system structures made by the implementing
program. In such cases, the exiting step in question (step
148, 150, 152 182, 204, or 222) forces the computer to
immediately reboot so that such changes will be detected by
the operating system. Depending on the operating system
involved, such changes may also be made known to the
operating system through a system call rather than a reboot.

With reference to FIG. 7, the partition manipulating step
140 comprises a resizing step 154, a moving/copying step
156, and a converting step 158. The resizing step 154
provides the capability of resizing the selected partition to
include either a lesser or greater number of disk sectors. The
moving/copying step 156 provides the capability of either
moving or copying the selected partition to a different
location on the disk 10 or to a disk attached to a different
disk drive than the drive 12 (FIG. 1). The converting step
158 provides the capability of converting the selected par­
tition from one file system, such as FAT, to another file
system, such as HPFS.

Resizing Disk Partitions

A flowchart illustrating one method for accomplishing the
resizing step 154 is shown in FlG. 8. Portions of the method
apply particularly to HPFS file systems, while other portions
of the method are useful in resizing partitions that utilize any
of a variety of file systems.

Regardless of the type of file system contained in the
partition that is being reshaped, steps are preferably taken to
prevent data loss in the event that resizing is interrupted.
These steps may include the use of a data recovery method
in conjunction with the resizing step 154.

During a bounds determining step 160, the maximum and
minimum sizes of a ''modified partition" are determined. As
used herein, a ''modified partition" is a partition which is
created from a selected partition by the manipulating step
140 (FIG. 5). Like other partitions, the modified partition has
a "left" edge corresponding to the disk sector with the lowest
sector address of any sector in the modified partition, and a
"right" edge corresponding to the disk sector with the

5,675,769
13

highest sector address of any sector in the modified partition.
Regardless of the type of file system it contains, the modified
partition cannot be safely expanded to push either its left
edge or its right edge beyond either a neighboring partition
boundary or a physical disk boundary. The edges of other
partitions and of the disk 10 (FIG. 1) thus constrain the
maximum size of the modified partition.

The size of the modified partition may also be constrained
by particular file systems or operating systems. For example,
FAr file systems have a maximum size that is based on a
FAr file system structure known as a "cluster." The OS/2
operating system can only boot safely from partitions that do
not extend past cylinder number 1023. These and other
limitations are familiar to those of skill in the art.

Determination of the minimum modified partition size
during the determining step 160 takes into account several
factors, some of which may depend on the type of file system
contained in the modified partition. Factors considered typi­
cally include the total size of all files and directories cur­
rently allocated in the selected partition, the number of
subdirectories in the selected partition, the minimum free
space required in the modified partition, the disk space likely
to be consumed by file system structures in the modified
partition, and a safety factor.

The safety factor is provided to permit the creation of
additional file system allocation sectors. One method for
determining the safety factor for an HPFS partition com­
prises the following steps. The implementing program deter­
mines a desired safety factor either by querying the user or
through a default in the implementing program. The user
may specify an increased safety factor to allow additional
room for anticipated file growth. Conversely, if there is no
need to allow room for file growth, the safety factor may be
decreased to leave free disk sectors available for use by other
partitions.

The implementing program also determines a smallest
acceptable safety factor. The smallest acceptable safety
factor for an HPFS partition is at least two percent of total
partition size for partitions under 100 megabytes in size and
at least two megabytes for larger partitions. Using any
smaller safety factor may conflict with assumptions made by
the OS/2 operating system about the safety factor and result
in data loss.

In addition, the implementing program examines all of the
bitmaps on the selected partition and counts all the set bits
(each bit whose value is equal to 1) to obtain the total
number of free disk sectors and thus the current free space
(number of free sectors multiplied by bytes per sector).
Finally, the implementing program uses the maximum of the
desired safety factor and the smallest acceptable safety
factor as the safety factor.

Regardless of the type of file system contained in the
selected partition, the resizing step 154 can be performed by
moving the selected partition's left edge, by moving its right
edge, or by moving both edges. The choice of edges to move
may be specified by the user through the GUI 114 (FIG. 6)
or by default in the implementing program. An edge deter­
mining step 162 takes appropriate actions depending on the
edge or edges being moved. If the right edge will be moved,
then no sector addresses inside the existing system and
directory structures need to be modified. Moving the right
edge to perform the resizing step 154 is the easiest approach
and is thus the preferred default.

If resizing is to be accomplished by moving the left edge
or by moving both edges, then all sector addresses listed in
all directory and other file system structures must be

14
adjusted by a constant N/eft_edge . which equals the number
of disk sectors by which the sefected partition's left edge
will be moved. If the left edge is moved to the left,
N 1ift_.,age_shift must be added to each sector address; if the

5 left edge is moved to the right, Nieft_.,age-,,., must be
subtracted from each sector address. This adJustment by
N1eft_edge_shift can be performed safely only when the par­
tition has been changed into a recovery partition type by
placement of the RPI on the disk 10 as described herein.

10
Otherwise, if the implementing program is interrupted dur­
ing the adjustment the partition's file system integrity will
likely be compromised and data may be lost.

In an HPFS partition, if the left edge will be moved closer
to the right edge, then all the data and file system structures

15
between the current left edge position and the new position
must be relocated before the left edge is repositioned. In all
cases, since the critical boot sectors, SuperBlock and Spare­
Block are located at the front of every HPFS partition, a
''recovery sector" is created, as explained further below, and

20
the boot sectors, SuperBlock, and SpareBlock are preserved
on disk at a location recorded in the recovery sector prior to
moving the partition's left edge. In practicing the present
invention with non-HPFS file systems, file system structures
that must be placed at a predefined offset within the modified

25
partition are handled in a manner similar to the handling of
the HPFS boot sectors, SuperBlock and SpareBlock.

It will be appreciated that if any one of the first twenty
disk sectors of a proposed modified HPFS partition are bad
sectors, then the proposed left edge cannot be used.

30 Otherwise, the integrity of the modified partition will be
severely compromised because the main boot sectors, the
SuperBlock, and the SpareBlock must reside within those
initial twenty sectors. Thus, it may be necessary to repeat
steps 160 and 162 more than once to find an acceptable left

35 edge location before proceeding to a size determining step
164. Such repetition may also be needed for non-HPFS
partitions which contain structures that must be placed at a
predefined offset within the modified partition.

The size determining step 164 determines the exact size of
40 the modified partition by specifying the starting and ending

physical addresses of the modified partition. These physical
addresses may correspond exactly to positions specified by
the user, or they may reflect adjustments to achieve a
partition size that is a multiple of some file-system-specific

45 or hardware-specific factor such as the number of sectors per
track. A file system requirement that a partition contain a
number of sectors that is an exact multiple of some integer
larger than one is herein denoted a "clustering" requirement.
At the conclusion of the size determining step 164, the

50 implementing program has a definite value for the desired
size of the modified partition, and an indication as to which
edge(s) must be moved in order to resize the selected
partition.

Regardless of the type of file system it contains, the
55 selected partition may be either reduced or expanded during

the resizing step 154. If the partition is reduced, no disk
sectors outside the selected partition's boundaries will be
added to produce the modified partition. If the selected
partition is expanded, then disk sectors which are either to

60 the left of the selected partition's left edge or to the right of
its right edge will be included in the modified partition. A
querying step 166 selects between reduction and expansion
and thus determines whether certain additional steps, labeled
168 through 176 in FIG. 8, are taken after the size deter-

65 mining step 164.
If the selected partition is being expanded, then the disk

sectors being added may be tested first to locate and block

5,675,769
15

out any bad sectors during a blocking step 168. The disk area
being added to the selected partition to create the modified
partition ("new area") may be tested for bad sectors as
follows. First, write a known pattern to each sector sequen­
tially from the first sector in the new area to the very last 5

sector. This has the effect of flushing any software or
hardware disk cache that might otherwise invalidate the test
results. Then read the sectors that were just written.

16
allow resumption of the method at an appropriate point
within the method after power failure or another interrup­
tion. An HPFS recovery sector also holds the addresses of
the SuperBlock and SpareBlock system sectors.

If it is determined that the last sector of the modified
partition is occupied by the selected partition, then the data
in that last sector is moved to another free sector to make
room for the recovery sector. This determination is made by
scanning all file system structures and directories to deter-Flushing may be quite time-consuming, so it should be

skipped if there is a way to otherwise guarantee that the
sectors to be tested are not already in the computer's
memory. In many computer systems, flushing is not required
because it is very unlikely that sectors not already inside the
selected partition will have been read into memory.

10 mine which structure or file uses this last sector. Once the
internal file system structures using the last sector are
identified, the sector is copied elsewhere and the appropriate
file system structures are updated to reflect the new location.
This is preferably accomplished in concert with the data

15 recovery method being used. Next, maintain a list or table of the addresses of bad
sectors identified during the flushing and subsequent read­
ing. Bad sectors are identified as such by an error code from
the disk drive to the implementing program indicating that
the sector write failed. To reduce the amount of time spent
moving the disk drive head 26 (flG. 1), the disk sectors are 20

preferably accessed in consecutive order, as is known in the
art. The addresses of any sectors for which the sector access
(read or write) failed is added to the list of bad sectors. The
result is a complete list or table in computer memory of all

During an adjusting step 172, the contents of the partition
table 32 (flG. 2) are adjusted to reflect the larger size of the
modified partition. At the same time, the partition system
indicator 50 (flG. 3) is replaced by the RPI, making the
partition unrecognizable to MS-DOS, OS/2, and other famil­
iar operating systems. If the partition table is located near the

bad sectors in the new area of the disk 10. 25

left edge of the selected partition, then the partition table 32
is simultaneously moved to its new location near the left
edge of the modified partition. If the partition contains an
HPFS file system, the boot sector and other HPFS structures
are not adjusted yet. According to one alternative method of the present inven­

tion which is adapted for use with HPFS partitions, the test
for bad sectors in the new disk area is omitted if the
FAST _FORMAT flag inside the SpareBlock has been set.
Analogous flags may be used in alternative methods adapted
for use with other file systems. Those of skill in the art will
appreciate that while this omission tends to substantially
decrease the time required to expand the selected partition,
omitting the test also introduces the possibility that a file
system structure will be assigned storage locations in one or
more bad disk sectors. Such an approach i.s unreliable and
places the integrity of the file system at risk The tradeoff is
therefore between safety and speed.

During a bitmap creating step 174 bitmaps or analogous
sector allocation structures are created as needed for the new

30
area of the disk 10, in an arrangement compatible with the
file system of the modified partition. These bitmaps identify
which disk sectors in the modified partition are free, and
which are allocated. If the left edge of the selected partition
is being moved, one alternative method of the present

35
invention also shifts the HPFS bitmaps until they reside on
either the first or the last sector of their respective data
bands.

Many contemporary disks have almost flawless media 40
with few or no bad sectors, and many disk drives provide
internal hardware support for revectoring bad sectors with­
out direct intervention by the operating system or by a file
system driver. On such systems the risk of data loss from
skipping the test for bad sectors is very small. However, the 45

implementing program may be unable to access DIP switch
settings, memory-mapped disk drive registers, or other hard­
ware to determine the age or revectoring capability of the
disk drive 12. It is therefore generally preferred to perform
the test for all bad sectors. At a minimum, it is preferred that 50
the new locations on the disk 10 which are targeted to hold
the file system structures be tested so that bad sectors can be
identified and avoided.

In HPFS partitions, new bitmap locations are added to the
indirect list, and the list is updated on the disk 10. If the
selected partition is being reduced, excess bitmaps are not
yet removed because they may point to critical data or other
file system structures on the disk The SuperBlock and the
boot sector are then updated on the disk 10 to reflect the
expanded partition size during an updating step 176.

A size determining step 178 is performed to determine the
size and location of file system structures in the modified
partition. According to one method of the present invention,
which is adapted for use in resizing HPFS partitions, this
step 178 comprises determining the new size and location of
all internal HPFS system structures. The placement conven­
tions exhibited by HPFS structures in the selected partition
are followed to the extent possible in view of the modified
partition size. Thus, each system structure that is already
within the modified partition boundaries is preferably left in During a creating step 170, a recovery sector is created on

the very last sector of the proposed modified partition. The
recovery sector is illustrated in connection with specific file
systems (HPFS and FAT), but those of skill in the art will
appreciate how analogous recovery sectors are created for
other file systems. The finished recovery sector contains the
system indicator 50 (FIG. 3) of the selected partition, and an
indication of the partition manipulation being performed
(such as "shrinking partition from 200 megabytes down to
127 megabytes by moving the right edge toward the left
edge"), and information on the type of data recovery method
being used to protect the user's data. During partition
manipulation, additional information is stored in the recov­
ery sector as required by the recovery prevention method to

55 the same location on the disk 10.
An adjusting step 180 adjusts the size, location, and

contents of the file system structures as needed to reflect
differences between the selected partition and the modified
partition. Regardless of the type of file system found in the

60 selected partition, an iterative approach may be used during
this adjusting step 180. A first attempt is made to relocate all
the system structures in a manner consistent with the bounds
of the modified partition and the file system in question. This
first attempt may fail due to overlaps between old and new

65 positions of the structures or due to a lack of contiguous free
space in the partition large enough to receive the structures.
In the event of such failure, data and other structures on the

5,675,769
17

disk 10 that can be moved are moved to provide an appro­
priate free location for the file system structures, after which
another attempt is made to move and adjust the file system
structures.

If the selected partition is expanded, it is possible that 5
many HPFS system structures will not need to be resized or
moved. In addition, whether the partition is reduced or
expanded, it will be appreciated that certain HPFS structures
may be resized in place by techniques readily determined by
those of skill in the art. Similarly, for non-HPFS file systems, 10
any system structures that can be left in place without
compromising the integrity of the file system are preferably
left in place.

In the course of the adjusting step 180 it is generally best
to start with the largest structures first One method for

15 resizing HPFS system structures comprises the following
steps. Initially, adjust the current directory band unless its
current size and location are acceptable. If the current band
size must be reduced, reduce the number of sectors allocated
to the directory band. Free any sectors in the released portion
that are not occupied by directory blocks and are not listed 20

in the bad sector list. These sectors are freed by clearing the
appropriate bits in both the sector bitmaps and in the
directory band map. If the newly sized directory band can
remain at its current location on the disk 10 in compliance
with HPFS structure arrangement rules, then resizing of the 25

directory band has been accomplished.
Otherwise, if there is a free location elsewhere in the

modified partition that is large enough for the directory
band, the new space is allocated and the entire band is copied

30
to that location. The directory band pointers in the Super­
Block are adjusted accordingly. The old location is marked
free, except for any sectors listed in the bad sector list, and
resizing of the band in question is completed.

If there is no free location, the HPFS directory band is 35
reduced to a single directory block corresponding to the
current last directory block An area of adequate size to hold
the directory band is then freed from another portion of the
disk 10 in the modified partition. The reduced band is
reconstructed in the freed area and as many of the directory

40
blocks as possible are copied into it.

If the directory band must be expanded, an initial check
is made to determine if the band can be expanded in place.
If adequate contiguous space is available, the band is
expanded in place. If adequate space is not available, an area 45
large enough to accommodate the expansion is freed by
properly and safely removing data or system structures from
disk sectors contiguous to the current directory band loca­
tion and the band is expanded into that area. Alternatively,
the entire band may be copied to a new area of adequate size 50
within the modified partition boundaries, after which the
band is appropriately expanded in place.

Next, the HPFS spare directory block list is checked. It
may be possible to obtain locations within the modified
partition for spare directory blocks left outside the modified 55
partition by the partition resizing operation. If necessary,
user data may be moved to free a sufficiently large contigu­
ous space within the modified partition.

18
requirement. If the selected partition is reduced, any extra
bitmaps are not yet removed. However, bad sectors which
are not part of the modified partition are removed from the
bad sector list.

Regardless of the type of file system involved, the fol­
lowing steps are taken if any file system structures were not
relocated to proper locations during the above steps or
during analogous steps performed for non-HPFS file sys­
tems. The size of the disk area needed to contain all the file
system structures to be relocated is determined by tech­
niques familiar to those of skill in the art in view of the
teachings herein. One or more contiguous areas inside the
user data areas is then chosen and "cleared" of data by
properly and safely relocating the data. Size determining,
clearing, and adjusting steps are repeated as necessary to
finish relocating the file system structures into the newly
cleared areas. If the selected partition is being reduced then
all files, directories, and other structures are moved from the
truncated region to free areas within the modified partition.
This is not infrequently the most time-consuming part of the
manipulation.

An exiting step 182 follows the adjusting step 180. If the
exiting step 182 follows an expansion of the selected
partition, then this portion of the implementing program (a)
releases any temporarily allocated disk space, and (b) returns
control to the software which invoked it or forces a reboot
before other processes can execute, as appropriate. If the
exiting step 182 follows a reduction in partition size, all
bitmaps to data areas beyond the reduced modified partition
are removed from the bitmap list. The partition table 32
(FIG. 2) is adjusted to reflect the smaller partition size. In the
case of reduction of an HPFS partition, the SuperBlock and
the boot sector are simultaneously adjusted to reflect the
modified partition size.

Regardless of whether the selected partition is reduced or
expanded, the system indicator 50 (FIG. 3) is restored during
the exiting step 182 to its initial value, such as a value
corresponding to an HPFS file system. The postponed
adjustments in HPFS back pointers for directories and other
file system structures are also preferably made at this time.

As part of the clean-up portion of the exiting step 182 in
cases where the partition is to be reduced, some methods
according to the present invention check for any sectors in
the selected-but-not-yet-reduced partition which are not bad
sectors and which are still allocated. If any such sectors are
found, the implementing program does not alter the partition
table 32 (FIG. 2). Instead, the user is informed that the
selected partition could not be reduced, and control is
returned to the invoking environment. This situation may
occur when all or most of the free space in the selected
partition would be freed by the reduction or when there are
many bad sectors in the selected partition.

A :flowchart illustrating an alternative method for accom­
plishing the resizing step 154 is shown in FIG. 9. Those of
skill in the art will readily identify portions of the method
which apply particularly to FAT file systems. Such persons
will also recognize that other portions of the method are
useful in resizing a variety of file systems, including without
limitation HPFS and FAT file systems.

During a bounds determining step 184, the maximum and
minimum sizes of a modified partition are determined sub­
stantially in accordance with the bounds determining step
160 (FIG. 8) previously discussed. However, those of skill
in the art will appreciate that the minimum modified parti-

Then the HPFS list of hot-fix sectors is examined. If the
selected partition is expanded, additional sectors are allo- 60
cated as needed from the pool of sectors in the new area
added by the expansion. If the selected partition is reduced,
entries are removed from the tail end of the list and any
hot-fix sectors outside the boundaries of the modified par­
tition are relocated. 65 tion size of a FAT partition depends in part on the disk space

consumed by the root directory and by the file allocation
table(s).

Finally, other HPFS file system structures are adjusted.
The last bitmap is moved if necessary to satisfy a clustering

5,675,769
19

For simplicity, the discussion herein of those aspects of
the present invention which relate specifically to FAT file
systems assume a 512-byte logical sector size inside FAT
partitions and a 512-byte physical sector size on the disk 10
(FIG. 1). However, the present method is readily tailored for 5
use with other sector sizes by those of skill in the art.

An edge determining step 186 takes appropriate actions
depending on the edge or edges of the selected partition
which are being moved, substantially in accordance with the
edge determining step 162 (FIG. 8) previously discussed. A

10
size determining step 188 determines the size of the modi­
fied partition and determines the number of logical sectors in
the modified partition substantially in accordance with the
size determining step 164 (FIG. 8) previously discussed and
the particulars of the file system involved.

15
A querying step 190, which is substantially similar to the

querying step 166 in FIG. 8, determines whether the selected
partition is being expanded. If expansion is necessary, then
the disk sectors being added to the selected partition may be
tested first to locate and block out any bad sectors during a

20
blocking step 192 that is substantially similar to the blocking
step 168 (FIG. 8). Alternatively, some or all of such testing
may be omitted, thereby saving time but possibly increasing
the risk of data loss as previously discussed.

During a characteristic determining step 194, certain 25
characteristics of the modified FAT partition are determined,
including the size of the boot sector(s), the desired size of
each file allocation table and the size of the root directory
(collectively, the "system area"). The "data cluster area" is
all remaining space on the disk 10 in the modified partition 30
outside of the system area. The data cluster area may include
disk area not presently used but reserved for future growth.
The size of each file system structure is preferably deter­
mined such that no clusters need to be realigned, thereby
substantially reducing the time needed to resize the selected 35
partition by avoiding physical relocation of all used data
sectors.

The present method preferably resizes a selected FAT
partition such that the resulting modified partition passes any
industry standard CHKDSK program with no serious errors. 40
To accomplish this, certain rules set forth below must be
followed.

According to the presently preferred method of the
present invention, the number of sectors per cluster ("cluster
size") in the modified partition will equal the cluster size of 45
the selected partition. Alternative methods permit the cluster
size to be reduced or increased, provided that the cluster size
is always a positive integer power of two: one, two, four,
eight, sixteen, and so forth are acceptable cluster sizes.
These alternative methods increase the flexibility of the so
implementing program but also increase the time required to
resize a FAT partition.

If cluster size is reduced, the new smaller clusters will
already be properly aligned and need not be moved unless
they would be overlaid by the expanded file allocation 55

table(s) or root directory of the modified partition. However,
the smaller data clusters at the end of a file should be freed
if they are no longer required to hold data. The change to
smaller clusters may therefore free a significant amount of
space on the disk 10. For example, a file that contains only 60
100 bytes of meaningful data occupies eight kilobytes when
eight-kilobyte-clusters are used, but only occupies one kilo­
byte when one-kilobyte-clusters are used. When the cluster
size is reduced, the other seven smaller clusters that previ­
ously formed part of the original eight-kilobyte-cluster can 65

and should be freed by techniques familiar to those of skill
in the art.

20
If cluster size is increased, it may be necessary to move

clusters about on the disk 10 to make them contiguous with
adjoining clusters, to achieve proper alignment, andor to
obtain sufficient free space into which the smaller clusters
can safely expand. Regardless of whether the cluster size is
reduced or increased, the original cluster numbers used in
the file allocation table(s) must be replaced by new cluster
numbers which reflect the change in cluster size.

If any FAT system structure needs to be reduced or
expanded, then the total number of sectors allocated to all
file system structures must be adjusted only by an integer
multiple of the cluster size. Following this rule may require
padding some system structures or shrinking the reserved
area or the root directory, but the size of such changes is
limited to less than one cluster of disk space. This rule arises
from the desire to maintain the current cluster alignment on
the disk 10 (FIG. 1) and thus prevent major restructuring of
all used data clusters. An alternative method of the present
invention shifts all data clusters by a constant number of
sectors in order to accommodate cluster restructuring and
realignment. However, this alternative requires significantly
greater time to resize the selected partition, and also adds
slightly to the complexity of the method.

The number of reserved boot sectors is also determined
during the characteristic determining step 194. Typically one
boot sector is reserved by FAT file systems. The present
method produces a modified partition having the same
number of reserved sectors as the selected partition, what­
ever that value may be. When padding is required to
preserve cluster alignment, it is preferred that the reserved
boot sector area not be padded, as some older FAT-specific
disk utilities assume that only one sector is reserved; reserv­
ing additional boot sectors may cause data loss if such
utilities are subsequently used.

The minimum size (in sectors) of the modified partition's
root directory and the minimum desired size of that root
directory are also determined during the characteristic deter­
mining step 194. The desired size must be greater than or
equal to the minimum size. Most FAT partitions formatted
by standard MS-DOS utilities contain 512 directory entries,
filling exactly thirty-two 512-byte disk sectors. However,
under the present method the root directory may be extended
beyond thirty-two sectors. Likewise, if the selected FAT
partition's root directory covers more than thirty-two disk
sectors and any of its end sectors are unused, it may be
reduced to cover fewer sectors. The number of sectors in the
root directory does not impact FAT file system integrity if
there is at least one sector and the modified partition contains
enough sectors to hold the contents of the selected parti­
tion's root directory. However, some users may wish to
make thirty-two sectors a minimum value.

During the characteristic determining step 194, the num­
ber of sectors required to hold each copy of the file alloca­
tion table is also determined. Each file allocation table must
contain exactly enough sectors to hold all cluster entries. If
too few sectors are allocated, data will be lost. If too many
sectors are allocated, the modified partition may be rendered
unusable by OS/2 or another operating system.

The number of data clusters in the modified partition is
also determined. If the total number of data clusters
(calculated after the size of all system structures is
determined) is greater than 4085 clusters, each cluster entry
requires two bytes of space in each file allocation table.
Otherwise, each cluster entry requires 1.5 bytes of space in
each copy.

One method for accomplishing these determinations is set
forth below in a form readily understood by those of skill in

5,675,769
21

the art. All calculations should be integer truncated at each
step, unless otherwise specified: .
I. Determine the number of cluster entries per file allocation

table sector. For a 512-byte sector, 16-bit file allocation
tables hold 256 entries per sector (16 BIT_CLUST_
ENfS is 256), and 12-bit file allocation tables hold 341
and 1;3 entries per sector (12 BIT_CLUST_ENfS is 341
and lj,). Note that the first two cluster entries for every file
allocation table are always used and reserved by the
system.

II. Set OLD_FIRST_DATA_8ECf to the logical sector
address of the first data sector of the selected partition.

III. Set TOTAL_SECfS to the total number of sectors in the
modified .partition as determined in the size determining
step 188.

N. Set BOOT _sEerS to the number of reserved boot
sectors in the modified partition as determined in the
characteristic determining step 194.

V. Set ROOT_SECfS to the number of root-directory
sectors in the modified partition as determined in the
characteristic determining step 194.

VI. Set FAT SECTS to zero.
VII. Set SECfS_pER_CLUST to the selected partition's

22
E. Record the values for FAT _SECTS, NUM_

CLUSTERS, and NEW _FIRST_DATA_SECT as
stated above in connection with the initial portion of
step IX.

5 X. When the step IX loop terminates, compare the value of
FAT SECTS from the fourth iteration with the value of
FAT=SECfS from the third iteration.

10

A. If the values are equal, or if the fourth iteration's value
is the lower of the two values, then use the fourth
iteration values of FAT_SECfS, NUM_CLUSTERS,
and NEW _FIRST_DATA_SECf;

B. Otherwise, assign these variables their respective val­
ues at the end of the third iteration of the step IX loop.

XL ROOT SECTS= NEW _FIRST _DATA_SECT-
15 (BOOT _SECfS+(FAT _SECfSxNUM_FATS)). .

Having made the determinations regarding file allocation
table(s) in the modified partition during the characteristic
determining step 194 as described, the present method next
performs an adjusting step 196. The adjusting step 196

20 ensures that no sectors previously identified as bad sectors
lie within the proposed modified partition's system area
(boot sector(s), root directory, and file allocation table(s)). If
any sector having an address prior to NEW _FIRST_

cluster size. DATA_8ECf within the system area of the proposed modi-
VIII. Set NUM_FATS to the number of copies of the file 25 fied FAT partition has been identified as bad, either by its

allocation table maintained on the disk presence in the selected partition's bad sector list or by the
IX. Follow the next loop 4 times to compute FAT_SECfS, presence of an error code from the disk drive 12 (FIG. 1)

NUM_CLUSTS, and NEW _FIRST _DATA_SECf. during the blocking step 192, then the implementing pro-
Convergence to the proper values often occurs by the end gram should warn the user and exit without significantly
of the second iteration of the loop, but special cases 30 altering the selected partition.
require a third loop iteration to test for proper Otherwise, all data areas in the selected partition that will
convergence, and the fourth loop iteration ensures con- not lie within the data cluster area of the proposed modified
vergence in all cases. At the end of each iteration of the partition are identified during an identifying step 198. All
loop, record the values of FAT_SECTS, NUM_ data within these areas must be cleared by being safely
CLUSTERS, and NEW_FIRST_DATA_SECf. 35 moved to locations inside the boundaries of the data cluster
A. NEW _FIRST _DATA_SECT=BOOT _SECTS+ area of the modified partition, by data-preserving techniques

ROOT_8ECfS+(FAT_SECfSxNUM_FATS). Align familiar to those of skill in the art.
NEW FIRST _DATA_SECf with the current cluster If the modified partition ending address is closer to the
alig~nt as follows (this has the effect of possibly selected partition starting address than is the selected parti-
expanding the root directory): 40 tion ending address, then all data clusters in the area between
1. If NEW _FIRST_DATA_SECf is greater than the selected partition ending address and the modified par-

OLD_FIRST_DATA_SECf: tition ending address must be scanned, and any allocated
a) DIFF=NEW _FIRST _DATA_SECT _OLD clusters must be moved from that area. In addition, the

_FIRST _DATA_8ECf. modified partition system area must always be checked; if it
b) Add (SECTS_PER_CLUST-(remainder of 45 overlaps the first clusters of the selected partition then those

(DIFF/SECTS_PER_CLUST)) to NEW_ affected data clusters must also be moved.
FIRST DATA_8ECf. The size of the system structures in a FAT partition will

2. Else if NEW_FIRST_DATA_SECf is less than usually range from thirty-five sectors (assuming one boot
OLD_FIRST_DATA_SECf: sector, two copies of the file allocation table at one sector
a) DIFF=OLD_FIRST_DATA_SECT_NEW_ so apiece, and a 512-entry root directory requiring thirty-two

FIRST DATA_SECf. sectors) to 545 sectors (assuming one boot sector, two copies
b) Add the remainder of (DIFF/SECfS_PER_ of the file allocation table at the maximum size of 256

CLUST) to NEW13 FIRST_DATA_SECf. sectors apiece, and a 512-entry root directory requiring
B. DATA SECfS=TOTAL_SECfS-NEW_FIRST_ thirty-two sectors). However, the size of the FAT system

DATA_SECf. 55 structures may be greater due to a larger root directory, a
C. NUM_CLUSTERS=DATA_SECfS/SECfS_PER_ larger boot area, or the presence in the selected partition of

CLUST. more than two copies of the file allocation table. The
D. Determine the new value for FAT_SECTS. For this implementing program may therefore require the user to

calculation, the number must be rounded up, since any always have approximately 280 kilobytes plus the size of
partial sector must be allocated for the file allocation 60 one cluster in free space on the disk 10 for the modified
table. Do this as follows: partition. Such a safety buffer will provide room to resize the
1. If NUM_CLUSTERS is greater than 4085, FAT_ system areas when the selected partition is resized.

SECTS=(NUM_CLUSTERS+2+16 BIT_ There are circumstances when both the ending (high
CLUST _ENTS-1) /16 BIT _CLUST _ENTS. address) portion and the starting (low address) portion of the

2. IfNUM CLUSTERS is smaller than or equal to 4085, FAT 65 datacluster area must be moved. Care must then be taken to
SECfS=(NUM_CL USTERS+ 2+ 12 BIT _CL UST _ avoid damaging data moved from one area as data is moved
ENTS-1)/12 BIT_CLUST_ENTS. from the other area. According to the present method, a

5,675,769
23 24

chain of unallocated clusters may be marked and reserved to of the partition is reduced. In this case, the portion of the data
assist in accomplishing safe movement of data during FAT cluster area at the low end of the selected partition that will
partition resizing. be covered by the expanded system area of the modified

To reserve disk space in a FAT file system partition when partition must also be cleared.
manipulating a FAT file system without help from, or 5 During a moving step 200, the data cluster regions ideo-
knowledge of, the operating system, the present method tified during the identifying step 198 are cleared by moving
provides the capability of temporarily reserving cluster the data to a safe location on the disk 10. The conventional
chains in a "fixable" manner. That is, the cluster chains may method of moving clusters on a partition, which is employed
be allocated by the implementing program in such a way that by disk defragmentation and data recovery utilities, may be
(a) file system structure consistency can always and easily 10 employed while repeating the following steps for each

cluster that must be moved: Identify a cluster from the
be restored by a CHKDSK program in the event of a power region which must be moved. Find a free cluster within the
outage, and (b) the operating system and disk utilities other modified partition, s data cluster area. Copy the data from the
than the implementing program are prevented from attempt- identified cluster to the free cluster. Mark the free cluster as
ing to allocate and use these same clusters. Such "fixable" used and update the file allocation table(s) on the disk 10.
reservations may be utilized in situations where permanent 15 Adjust all references to the old cluster location to indicate
allocation of disk space is not needed, and where it would be the new location of the data. Such references may occur in
acceptable for a user to use CHKDSK to ''fix" the disk if the the file allocation table(s) and/or in directory entries. The
power failed unexpectedly. According to this method, one or updating of directory back and self pointers may be per-
more FAT clusters may be chained together in a way which formed at this time, or such updating may be postponed until
does not require any directory entries and does not require 20 a subsequent partition integrity verifying or reverifying step.
the CHKDSKprogram to create a file entry for lost clusters. Next, save the updated structures on the disk 10 (FIG. 1).
Thus, CHKDSK is able to immediately return to general Finally, mark the old cluster as free (or with the value of one
usage all such marked and/or chained clusters. to reserve it), and then save the file allocation table(s) to the

The cluster reservation method proceeds as follows. disk 10 once again.
Initially, the first appropriate unallocated cluster is identified 25 An adjusting step 202 adjusts the file system structures,
by searching the valid range in the file allocation table for boot sector, and partition table 32 (FIG. 2) as necessary. The
cluster entries having a zero value. A one is entered in place file system structures will usually need to be resized to
of the zero to mark the cluster as a reserved part of the accommodate a modified partition that is either larger or a
temporary storage allocation. All subsequent allocations of smaller than the selected partition. In resizing the system
temporary storage should be in ascending sequence from 30 structures of a FXI' partition, the new first cluster on the
each previous allocation. If this order is maintained, the modified partition may be the same as the first cluster of the
"chain" is simply the sequential list of all clusters whose selected partition, or it may physically precede that original
value is one. first cluster, or it may be located at the same place on the disk

Those of skill in the art will appreciate that there are 10 as the second, third, fourth, etc., cluster of the selected
65,536 unique possible values for each cluster entry in a 35 partition.
16-bit FXI' file allocation table. Because any value higher The following rules are preferably followed regardless of
than one may be interpreted as possibly valid, the CHKDSK whether the selected partition starting boundary, ending
program will try to list each cluster containing values above boundary, or both are moved. The selected partition should
one as a "lost cluster." To "fix" the FXI' partition, the be changed to a recovery partition by placing the RPI on the
CHKDSK program must find a free directory entry in the 40 disk 10 in the system indicator (50 in FIG. 3) of the
root directory to hold the cluster(s) in each lost cluster chain. appropriate partition identifier (36 in FIG. 3) as discussed
If there is no free entry, CHKDSK will fail to free the cluster. above. In addition, if the selected partition is being extended
On the other hand, if the value is one, CHKDSK will treat by having its ending boundary moved, the partition size
the cluster as an "invalid cluster entry" and immediately entries 44 and 46 should be simultaneously changed. If the
return that cluster to general availability. Thus, the clusters 45 selected partition contains the partition table 32 (FIG. 2) and
marked with the value one according to the teachings herein the selected partition's starting boundary is being expanded,
are temporarily allocated for use in manipulating partitions, the partition table 32 must also be simultaneously moved to
but not removed from subsequent use. a safe and appropriate new location in the modified partition.

If the selected partition ending boundary is being changed A FXI' recovery sector is preferably created on the very
to expand the selected partition, then it may be necessary to 50 last sector of the modified partition in substantially the
clear a portion of the data cluster area at the front of the manner previously discussed in connection with the creating
selected partition that would otherwise be overwritten by the step 170 (FIG. 8). The last sector of the modified partition
expanded system area of the modified partition. Although will often be free at this point; if it is occupied by a used
the area must be cleared if expansion of the selected partition cluster of the selected partition (as may occur when shrink-
causes the system structures to grow, expansion by only a 55 ing the partition), it must first be cleared by moving its data
small amount will not necessarily increase the size of the to another free sector as described above in connection with
system structures. the steps 198 and 200.

If the selected partition ending boundary is moved to form In performing the adjusting step 202 in a FAT partition, all
a reduced modified partition, then the portion of the data cluster numbers of all clusters listed in all directory struc-
cluster area at the high end of the selected partition must be 60 tures in the selected partition are adjusted by a constant
cleared. All data clusters that will lie partially or entirely factor FXI'_SHIFT. The integer f;tctor FXI'_SHIFT equals
outside the modified partition must be relocated to other the number of clusters by which the first cluster of the
cluster locations that will lie within the modified partition. modified partition is offset from the first cluster of the

A special case merits attention: if the cluster size is selected partition. This adjustment can be performed safely
reduced as part of the resizing then the system area may 65 only when the partition has been changed into a recovery
grow due to an increase in the total number of clusters to be partition by placement of the RPI on the disk 10 as described
mapped on the partition, even though the data storage area herein.

5,675,769
25 26

partition type indicated by the system indicator 50 in the
modified partition's partition identifier 36 must reflect the
recognized non-RPI type of the modified partition. If the
selected partition was of a "hidden" type, the modified

If FAT_SH1Ff is non-zero, the implementing program
traverses the directory structure and adjusts the starting
cluster pointer for every file and for all directory cluster
pointers (to self and to parent). If the modified partition's
starting cluster physically precedes the selected partition's
starting cluster on the partition, add FPJ_SH1Ff to each
cluster pointer; if the reverse order holds, then subtract
FPJ_SlllFT from each cluster pointer. This adjustment is
preferably accomplished in concert with the data recovery
method to preserve integrity in the event of power failure.

5 partition should be identified as being of a corresponding
hidden type. Those of skill in the art will recognize the
following as type values of FliT partitions, as indicated by
the value of the system indicator 50 (other FliT-compatible
file systems may use other type values):

Next, the boot sector is updated to reflect the size of the
modified FliT partition, the size of the modified partition's
file allocation table(s) and root directory, and other param­
eters readily determined by those of skill in the art in concert
with the teachings herein.

10 a) Type 1 (thatis, system indicator equal to 1) is a 12-bitFPJ
(4085 clusters or less).JYpe 11 hexadecimal is its hidden
counterpart.

b) JYpe 4 is a 16-bit FliT (4086 clusters or more) under
thirty-two megabytes. Type 14 hexadecimal is its hidden

15 counterpart.
c) JYpe 6 is a 16-bit FliT greater than or equal to thirty-two

megabytes. JYpe 16 hexadecimal is its hidden counter­
part.
During an exiting step 204, the implementing program

The file allocation table(s) is/are then modified and saved
to the disk 10 (FrG. 1). This is accomplished as follows. The
value inside each cluster entry in the FliT must be both
physically moved and logically modified by the value FliT_
SlllFT. However, if the clusters have not been shifted (that
is, if FPJ_SH1Ff is equal to zero), then these steps are
omitted.

In modifying the file allocation table(s), all file allocation
table entries are initially inspected to identify any entries
which have the value one and thus are temporarily reserved
in a fixable manner as previously described; all such entries
are zeroed. A buffer NewFatEntry large enough to hold the
new file allocation table is allocated and initialized to

20 may check the FliT partition once more to ensure complete
integrity. Any needed adjustments to back pointers for
directories and other system structures may also be per­
formed if those updates were skipped when moving clusters.
As noted, it is also necessary to keep the partition locked

25 until after rebooting if the operating system used on the
computer does not support dynamic partition resynchroni­
zation through system calls or other means.

contain all zero entries. For notational convenience, the
existing file allocation table of the selected partition is 30

denoted OldFatEntry.
Each non-zero entry in the file allocation table(s) must be

physically shifted FPJ_SH1Ff positions in the file alloca­
tion table(s) and all entries except bad cluster entries,
end-of-chain entries, and temporarily allocated fixable 35

entries, must also be adjusted by the factor FliT _slllFT as
follows. If the modified partition starting cluster physically
precedes the selected partition starting cluster, then add
FXI'_SlllFT to each entry from the selected partition file
allocation table(s) and then store that value to the modified 40

partition file allocation table(s) entry that is FPJ_SlllFT
positions after it. For example, if OldFatEntry[ThisOne] is a
bad cluster entry or an end-of-chain entry, do NewFatEntry
[ThisOne+FAT _SHIFT]=OldFatEntry[ThisOne];
otherwise, do NewFatEntry[ThisOne+FAT_SHIFT]= 45

OldFatEntry[ThisOne]+FPJ_sHlFf. If the modified parti­
tion starting cluster physically succeeds the selected parti­
tion starting cluster then subtract FliT _SlllFT in an
analogous manner: if OldFatEntry[ThisOne] is a bad-cluster
entry or an end-of-chain entry, do NewFatEntry[ThisOne- 50

FAT _SHIFT]=OldFatEntry[ThisOne] ;. otherwise, do
NewFatEntry[ThisOne FAT _SHIFT]=OldFatEntry
[ThisOne]-FPJ_SlllFT. When these adjustments have
been completed, write NUM_FPJS copies of the file allo­
cation table to the proper locations in the modified partition 55
on the disk 10.

At this point, almost all changes inside the FliT partition
are complete. If a recovery sector was placed on the disk 10

Moving and Copying Disk Partitions

With reference to FIG. 7, the moving/copying step 156
comprises either moving a partition or copying a partition,
according to the user's wishes as indicated by interaction
with the GUI 114 (FIG. 6). The moving/copying step 156
may be performed as taught herein on partitions containing
any of a variety of familiar file systems, including without
limitation HPFS and FliT file systems.

If the modified partition contains entirely different disk
sectors than the selected partition and the selected partition
remains intact on the disk 10 after the modified partition is
made containing a copy of the selected partition's user data,
then the selected partition has been copied. By contrast, if
the modified and selected partitions have any disk sectors in
common (making it impossible for the selected and modified
partitions to exist simultaneously as distinct partitions on the
disk 10), or if some selected partition disk sectors holding
user data are freed, then the selected partition has been
moved. Those of skill in the art will appreciate, however,
that the steps described below are otherwise substantially the
same for a move as for a copy. The term "replicate" is used
herein to indicate moving and/or copying.

After a partition replicating operation, the partitions
defined on the disk 10 should be as robust and safe as the
selected partition was prior to that operation. This may be
accomplished by making the implementing program consis­
tent with the details and implications of the strategy used by
the file system of the selected partition to maintain and
manage the file system's bad sector list and the file system's
other structures.

As illustrated in FIG. 10, the moving/copying step 156
includes a location determining step 210 which determines
the location of the edges of the modified partition. The
selected partition can be moved to any location on any disk
in any drive attached to the computer, provided there is

at the end of the modified partition, the contents of the
recovery sector must be placed appropriately in the system 60

area of the modified partition and the partition type must be
restored to the appropriate type of FliT partition. If the
selected partition was expanded, the partition size was
already restored. If the selected partition was reduced,
appropriate changes are made at this time in the partition
table 32 (FIG. 2) on the disk 10 to reflect the boundaries and
size of the modified partition. With reference to FIG. 3, the

65 sufficient free disk space at the proposed location not cur­
rently claimed by another partition. In the event that the
proposed modified partition will overlap the selected

5,675,769
27

partition, there must be enough free space to accommodate
that portion of the modified partition which does not overlap
the selected partition.

The present method provides the capability of moving and
copying partitions from a first disk ("source disk") attached 5
to one disk drive to a second disk ("target disk") attached to
a different disk drive. In this event, it is preferred that the
source disk and the target disk each have the same number
of cylinders, sides, and sectors per track. Otherwise, the
move or copy can be safely accomplished only if the 10
modified partition can be safely resized to fit in free space on
the target disk in a manner that satisfies the clustering
requirements of the file system (if any), and if corresponding
changes can be made in the boot sector and other file system
structures of the modified partition.

15
During a creating step 212, a first list or map is created of

all disk sectors inside the selected partition that are marked
as bad or unusable by the selected partition's file system.
During a testing step 214, all sectors in the proposed
modified partition area of the target disk are tested with read

20
operations, write operations, or both, to identify any bad disk
sectors. The addresses of any bad sectors found are placed
in a second list or map of bad sectors. Sectors in the modified
partition which also lie within the selected partition need not
be tested. However, the bad sector list for the selected

25 partition is inspected to identify any bad sectors that lie in
both partitions. For each such bad sector, its logical sector
address is converted to a logical sector address that is
relative to the start of the modified partition. The converted
logical address is then added to the second bad sector list.

30
During a creating step 216, a composite list of all bad

sectors is created from the first and second lists just
described. The composite list contains both the entire list of
logical addresses of all bad sectors inside the selected
partition and the entire list of logical addresses of bad sectors 35
that exist in the proposed modified partition. All bad sectors
identified in this composite list are then marked as bad inside
the selected partition, after moving any data or file system
structures that may currently occupy these sectors to newly
allocated good sectors. This creating step 216 is preferably

40
performed in concert with the data recovery method to
preserve partition integrity in the event of power failure.

At this point, lock the partition. It is then safe to move or
copy the selected partition during a moving/copying step
218. All good sectors in the selected partition which will 45
overlay bad sectors in the modified partition have been
blocked out such that all the data moved to the modified
partition will be written to good sectors on the disk 10. The
data is replicated by being written to the same relative
position within the modified partition that it now occupies in 50
the selected partition.

The data is replicated according to the following rules.

28
selected partition and the selected partition overlaps the
proposed modified partition, then the selected partition must
be replicated from the right to left (from sectors having
higher addresses to those with lower addresses). Otherwise,
the selected partition must be replicated from left to right.
Following this rule prevents the overwriting of as yet
unreplicated portions of the selected partition.

An appropriate data recovery method such as journaling,
checkmarking, or a conventional data recovery method is
preferably used during the moving/copying step 218. Thus,
if the power fails prior to full completion of this process the
process can be resynchronized and completed, or reversed
by the user if desired. Checkmarking is preferred where bulk
replication with no need to update system structures is
performed.

At this point, the modified partition is substantially a copy
of the original selected partition. Bad sectors identified in the
selected partition in the first bad sector list which lie outside
the modified partition are still marked bad in the composite
list but can now be freed. These sectors are freed during an
updating step 220 which does the following for each bad
sector identified in the first list. Initially, a check is made to
determine if the logical address of the bad sector is also
listed in the composite list of bad sectors. If so, no adjust­
ment is made; such coincidental listings must be identified
to maintain complete integrity in the modified partition. If
the sector is not in both lists, the sector's logical address is
removed from the composite list of bad sectors (the list of
modified partition bad sectors) and the sector is made
available for allocation by the file system.

An exiting step 222 then cleans up other alterations made
by the present method, restores the original system indicator
50 (FIG. 3), and exits back to the main routine shown in
FIGS. 4 and 5 to commence the reverifying step 142.

An alternative method of the present invention allows the
moving and copying of foreign or unknown partitions,
which are indicated by unrecognized values of the system
indicator 50 (FIG. 3). If the selected partition is to be copied
to a target disk having a different number of cylinders, sides,
or sectors per track than the source disk, no manipulation is
performed. The implementing program simply explains the
problem to the user and then exits.

Otherwise, the entire range of sectors inside the selected
partition is tested for bad sectors, as is the entire range of
sectors in the proposed modified partition. This test can be
optimized to test each sector only once in the case where the
modified and selected partitions overlap. If any bad sectors
are identified in either test, no manipulation is performed.
The implementing program simply explains to the user that
the requested move or copy operation is unsafe and then
exits.

If no bad sectors are found and if all sector addresses
stored by the unknown file system are logical (relative to the
partition starting address, as is the industry convention)
rather than physical, then no adjustments will need to be
made to the file system. Hence, no intimate knowledge of the
unknown file system is required to perform the copy or move
and the replication simply overlays the modified partition

First, only disk sectors containing data or disk sectors that
are reserved for file system use are replicated. Substantial
time may be saved by not replicating any free sectors or bad 55
sectors and the integrity of the modified partition will not be
compromised by this time-saving measure. If this rule is not
followed, the replication will take longer. More importantly,
the replication may fail during an attempt to replicate a bad
sector. 60 disk area with the entire selected partition contents accord­

ing to the teachings herein. All sectors must be copied
because there is no way of knowing which are in use and
which are free without knowledge of the physical arrange-

Second, a disk sector copy buffer is used. The buffer size
is the lesser of the amount of computer memory available
and the product of the number of bytes per sector times the
number of sectors between the selected partition's starting
sector and the modified partition's starting sector.

Third, if the modified partition's physical starting address
is greater than (to the right of) the starting address of the

65

ment used by the file system to place data on the disk 10.
The invention may be embodied in other specific forms

without departing from its spirit or essential characteristics.
The described embodiments are to be considered in all

5,675,769
29

respects only as illustrative and not restrictive. Any expla­
nations provided herein of the scientific principles employed
in the present invention are illustrative only. The scope of the
invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which 5
come within the meaning 'and range of equivalency of the
claims are to be embraced within their scope.

What is claimed and desired to be secured by patent is:
1. A computer -implemented method for manipulating disk

partitions, comprising the steps of: 10
selecting an IBM-compatible partition located on a disk,

the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks, 15

each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

resizing the selected partition to produce a modified
partition having a different number of disk sectors than
the selected partition, said resizing step comprising (a) 20

determining The size of file system structures in a
system area of the modified partition, (b) identifying a
data area in the selected partition that will not lie within
the data area of the modified partition but will instead
be allocated to file system structures of the modified 25

partition, and (c) clearing the data from the identified
data area by physically relocating it to the data area of
the modified partition while avoiding physical reloca­
tion of used data sectors in the selected partition that
will lie within the data area of the modified partition. 30

2. The method of claim 1, further comprising the step of
placing a recovery partition indicator on the disk.

30
selecting an IBM-compatible partition which is not an

extended partition, the selected partition being located
on a disk and having a left edge and a right edge, the
disk being attached to a disk drive communicating with
a source of electric power, the disk having at least one
platter having a plurality of substantially concentric
tracks, each track having a plurality of sectors arranged
substantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition which is not an extended partition, the modi­
fied partition having a different number of disk sectors
than the selected partition, wherein said modifying step
comprises moving the left edge of the selected partition
and adjusting the location of file system structures as
needed to maintain their integrity and internal consis­
tency in the modified partition, said modifying step
being accomplished without destroying user data.

16. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

replicating the selected partition to produce a modified
partition which excludes at least one track included in
the selected partition, said replicating step comprising
(a) creating a list of bad sectors which are in the
selected partition or in the modified partition, and (b)
avoiding the listed bad sectors while copying data and
system information into the modified partition. 3. The method of claim 1, further comprising the step of

locking the selected partition prior to said resizing step.
4. The method of claim 1, further comprising the step of

rebooting after said resizing step.

17. The method of claim 16, further comprising the step
35 of placing a recovery partition indicator on the disk.

5. The method of claim 1, wherein said resizing step
comprises placing a system indicator in a recovery sector on
the disk.

6. The method of claim 1, wherein said resizing step
comprises temporarily allocating sectors on the disk.

7. The method of claim 6, wherein said allocating step
comprises placing the value one in cluster entries of a FAT
partition.

8. The method of claim 1, wherein said resizing step
comprises the step of adjusting the size and location of file
system structures.

9. The method of claim 8, wherein said adjusting step
comprises adjusting the file system structures substantially
in order of decreasing file system structure size.

10. The method of claim 1. wherein said resizing step
comprises determining the maximum size of the modified
partition.

18. The method of claim 16, further comprising the step
of locking the selected partition prior to said replicating step.

19. The method of 16, wherein said replicating step
comprises identifying bad sectors which are located outside

40 the modified partition and inside the selected partition and
removing references to the identified bad sectors from file
system structures of the modified partition.

20. The method of claim 16, wherein said replicating step
comprises relocating disk sectors in the selected partition

45 that would otherwise be copied to bad sectors in the modi­
fied partition such that the relocated disk sectors are copied
instead to good sectors in the modified partition.

50

21. The method of claim 16, further comprising the step
of rebooting after said replicating step.

22. The method of claim 16, wherein said replicating step
comprises placing a system indicator in a recovery sector on
the disk.

11. The method of claim 1, wherein said resizing step
comprises determining the minimum size of the modified 55
partition.

23. The method of claim 16, wherein said replicating step
comprises temporarily allocating sectors on the disk.

24. The method of claim 23, wherein said allocating step
comprises placing the value one in cluster entries of a FAT
partition. 12. The method of claim 11, wherein said resizing step

further comprises identifying a safety factor for use in
determining the minimum size of the modified partition.

13. The method of claim 1, wherein said resizing step
comprises moving the right edge of the selected partition.

14. The method of claim 1, wherein said resizing step
further comprises the step of iteratively determining the
number of disk sectors in a file allocation table of the
modified partition.

15. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

25. The method of claim 16, wherein said replicating step
comprises copying partition contents from the disk contain-

60 ing the selected partition to another disk.
26. The method of claim 16, wherein the selected partition

contains an unrecognized system identifier and said repli­
cating step comprises verifying that no bad sectors are
located in the selected partition and verifying that no bad

65 sectors are located in the modified partition.
27. A computer-implemented method for manipulating

disk partitions, comprising the steps of:

5,675,769
31

locating an IDM-compatible partition table on a disk, the
disk attached to a disk drive communicating with a
source of electric power, the disk having at least one
platter having a plurality of substantially concentric
tracks, each track having a plurality of sectors arranged 5
substantially in end-to-end fashion;

selecting a partition from the partition table;
identifying a file system associated with the selected

partition;
creating a list of bad sectors which are in the selected 10

partition or in a modified partition to be produced from
the selected partition; and modifying the selected par­
tition and avoiding the listed bad sectors while produc­
ing the modified partition by a step selected from the
group comprising:

15
shrinking the selected partition to produce the modified

partition, the modified partition having fewer disk
sectors than the selected partition;

expanding the selected partition to produce the modi­
fied partition, the modified partition having more
disk sectors than the selected partition; and 20

moving the selected partition to produce the modified
partition at a new location, the modified partition
excluding at least one track included in the selected
partition, the modified partition and the selected parti­
tion having substantially the same number of disk 25
sectors.

28. The method of claim 27, further comprising the step
of verifying the integrity and consistency of internal file
system data of the selected partition.

29. The method of claim 28, wherein said verifying step 30

precedes said modifying step.
30. The method of claim 29, further comprising the step

of reverifying the integrity and consistency of the internal
file system data of the selected partition after said modifying
~~ ~

31. The method of claim 27, wherein said selecting step
comprises selecting a logical partition from the partition
table.

32. The method of claim 27, wherein said selecting step
comprises selecting an extended partition from the partition 40

table.
33. The method of claim 27, wherein said modifying step

comprises preserving at least one copy of all user data on the
disk at all times during said modifying step, thereby reduc­
ing the risk of loss of user data if the disk drive's commu- 45

nication with the source of electric power is temporarily
interrupted during said modifying step.

34. The method of claim 27, wherein said modifying step
comprises employing a data recovery method.

35. The method of claim 34, wherein said data recovery 50

method comprises the step of storing progress markers on
the disk within the selected partition, the progress markers
corresponding to incrementally increasing portions of said
modifying step, thereby removing the need to repeat all of
said modifying step if said modifying step is resumed after 55

the disk drive's communication with the source of electric
power is temporarily interrupted during said modifying step.

36. The method of claim 27, wherein said identifying step
comprises identifying a file system in the group consisting of
the 12-bit FAr file system, the 16-bit FAr file system, the 60

HPFS file system, and a recovery partition file system,
37. The method of claim 27, wherein said identifying step

comprises identifying a file system in the group consisting of
a FAT-compatible file system, the HPFS file system, and a
recovery partition file system. 65

38. The method of claim 27, wherein said modifying step
comprises determining the minimum size of the partition

32
based on the file system contained in the selected partition
and the amount of user data in the selected partition.

39. The method of claim 27, wherein said modifying step
comprises said expanding step and said expanding step
comprises producing a modified partition which includes at
least one track closer to the center of the platter than any
track in the selected partition.

40. The method of claim 27, wherein said modifying step
comprises said expanding step and said expanding step
comprises producing a modified partition which includes at
least one track further away from the center of the platter
than any track in the selected partition.

41. The method of claim 27, wherein said modifying step
comprises said shrinking step and said shrinking step com­
prises producing a modified partition which includes at least
one track closer to the center of the platter than any track in
the selected partition.

42. The method of claim 27, wherein said modifying step
comprises said shrinking step and said shrinking step com­
prises producing a modified partition which includes at least
one track further away from the center of the platter than any
track in the selected partition.

43. A method of manipulating a partition-molding disk for
file system structures with the aid of a digital computer,
comprising:

providing said computer with parameters for said disk
partition including at least the number of heads, sides,
and sectors per track of the disk, and the starting
address and ending address of a selected partition on
the disk;

initiating a partition manipulation operation upon locking
out other processes from access to the disk and placing
a recovery partition indicator on the disk;

iteratively modifying the file system structures on the disk
with the aid of the computer; and

opening the disk automatically for access to other pro­
cesses when said modifying step is completed.

44. The method of claim 43, wherein said modifying step
comprises shrinking said disk partition.

45. The method of claim 43, wherein said modifying step
comprises expanding said disk partition.

46. The method of claim 43, wherein said modifying step
comprises moving said disk partition to a new location.

47. The method of claim 43, further comprising the step
of verifying the integrity and consistency of the file system
structures.

48. The method of claim 43, wherein said disk partition is
a logical partition.

49. The method of claim 43, wherein said disk partition is
an extended partition.

50. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IDM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

resizing the selected partition to produce a modified
partition having a different number of disk sectors than
the selected partition, said resizing step comprising
relocating disk sectors in the selected partition that
would otherwise be copied to bad sectors in the modi­
fied partition such that the relocated disk sectors are
copied instead to good sectors in the modified partition.

5,675,769
33

51. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of 5

electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

resizing the selected partition to produce a modified 10

partition having a different number of disk sectors than
the selected partition; and

placing a recovery partition indicator on the disk.
52. A computer-implemented method for manipulating

15
disk partitions, comprising the steps of:

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter 20
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

resizing the selected partition to produce a modified
partition having a different number of disk sectors than 25

the selected partition, said resizing step comprising
temporarily allocating sectors on the disk.

53. A computer-implemented method for manipulating
disk partitions, comprising the steps

selecting an IBM-compatible partition located on a disk, 30

the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, The disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub- 35

stantially in end-to-end fashion;
resizing the selected partition to produce a modified

partition having a different number of disk sectors than
the selected partition, said resizing step comprising the
step of adjusting the size and location of at least one file 40

system structure that is located outside of any DOS file
allocation table in the selected partition.

34
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

resizing the selected partition in place to produce a
modified partition having a different number of disk
sectors than the selected partition, said resizing step
comprising adjusting the size of FAr file system struc­
tures such that the total number of sectors allocated to
all file system structures is adjusted only by an integer
multiple of the cluster size, said resizing step per­
formed without destroying user data.

56. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IBM-compatible HPFS partition located on a
disk. the selected HPFS partition having a left edge and
a right edge, the disk attached to a disk drive commu­
nicating with a source of electric power, the disk having
at least one platter having a plurality of substantially
concentric tracks, each track having a plurality of
sectors arranged substantially in end-to-end fashion;
and

enlarging the selected HPFS partition in place without
destroying user data to produce a modified HPFS
partition having more disk sectors than the selected
HPFS partition.

57. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IBM-compatible HPFS partition located on a
disk, the selected HPFS partition having a directory
band, a left edge, and a right edge, the disk attached to
a disk drive communicating with a source of electric
power, the disk having at least one platter having a
plurality of substantially concentric tracks, each track
having a plurality of sectors arranged substantially in
end-to-end fashion; and

resizing the selected HPFS partition in place without
destroying user data to produce a modified MPFS
partition having a different number of disk sectors than
the. selected HPFS partition, at least one of the size and
the location of the directory band of the modified HPFS
partition being substantially different from the respec­
tive size and location of the directory band of the
selected HPFS partition.

54. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IBM-compatible partition which is not an
extended partition, the selected partition being located

58. A computer-implemented method for manipulating

45
disk partitions, comprising the steps of:

on a disk, the selected partition having a left edge and
a right edge, the disk attached to a disk drive commu­
nicating with a source of electric power, the disk having

50
at least one platter having a plurality of substantially
concentric tracks, each track having a plurality of
sectors arranged substantially in end-to-end fashion;

resizing the selected partition to produce a modified
partition having a different number of disk sectors than 55

the selected partition, said resizing step comprising the
step of moving the left edge of the selected partition
and adjusting the location of file system structures as
needed to maintain their integrity and internal consis­
tency in the modified partition, said resizing step being 60

accomplished without destroying user data.
55. A computer-implemented method for manipulating

disk partitions, comprising the steps of:
selecting an IBM-compatible partition located on a disk,

the partition having a left edge and a right edge, the disk 65

attached to a disk drive communicating with a source of
electric power, the disk having at least one platter

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub-
stantially in end-to-end fashion; and

replicating the selected partition to produce a modified
partition which excludes at least one track included in
the selected partition, said replicating step comprising
placing a recovery partition indicator on the disk.

59. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub-
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti-

5,675,769
35

tion without destroying user data, the modified partition
having a different cluster size than the selected parti­
tion.

60. The method of claim 59, further comprising the step
of placing a recovery partition indicator on the disk.

61. The method of claim 59, wherein said modifying step
comprises updating a list of bad sectors.

62. The method of claim 59, wherein said modifying step
comprises temporarily allocating sectors on the disk in a
fixable manner.

63. The method of claim 59, wherein said modifying step
comprises the step of iteratively determining the number of
clusters in a file allocation table of the modified partition.

64. The method of claim 59, wherein the cluster size of the
modified partition is larger than the cluster size of the

36
selected partition and said modifying step comprises the step
of aligning newly created clusters.

65. The method of claim 59, wherein the cluster size of the
modified partition is smaller than the cluster size of the

5
selected partition and said modifying step comprises the step

· of freeing newly created unused clusters.
66. The method of claim 59, wherein said modifying step

comprises preserving at least one copy of all user data on the
disk at all times during said modifying step, thereby reduc­
ing the risk of loss of user data if the disk drive's commu-

10 nication with the source of electric power is temporarily
interrupted during said modifying step.

67. The method of claim 59, wherein the selected partition
is a FXI'-compat1ble file system partition.

* * * * *

