
United States Patent [19]

Ruff et al.

[54] METHOD FOR MANIPULATING DISK
PARTITIONS

[75] Inventors: Eric J. Ruff; RobertS. Raymond;
Scot Llewelyn, all of Orem, Utah

[73] Assignee: PowerQuest Corporation. Orem. Utah

[*] Notice: The tenn of this patent shall not extend
beyond the expiration date of Pat. No.
5.675,769.

[21] Appl. No.: 554,828

[22] Filed: Nov. 7, 1995

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 393,805, Feb. 23, 1995, Pat
No. 5,675,769, and Sec. No. 4,359, Sep. 27, 1995.

[51] Int. CL 6
.. G06F 12102

[52] U.S. CI .. 31JS/497.04; 395/439
[58] Field of Search 3951438, 439,

[56]

4,722,048
4,819,159
4,982,324
4,994,963
5,062,042
5,136,711
5,166,936
5,214,695
5,269,018
5,307,497
5,313,646
5,359,725
5,361,358
5,363,487
5,371,885

395/497.01, 497.02, 497.03, 497.04

References Cited

U.S. PPJENT DOCUMENTS

1/1988 Hirsch et al. 395/672
4/1989 Shipley et al 395/182.17
1/1991 McConaughy et al 395/200.09
2/1991 Rorden et al 395/309

10/1991 Biukley et al 395/621
8/1992 Hugard et al 395/652

11/1992 Ewert et al 371/21.6
5/1993 Arnold et al 380/4

12/1993 Lee 395/185.01
4/1994 Feigenbaum et al 395/651
5/1994 Hendricks et al 395/612

10/1994 Garcia et al 395/616
11/1994 Cox et al 3951712
11/1994 Willman et al 395/828
1211994 Letwin 395/621

afHER PUBUCPJIONS

Internet comp.archives.msdos.announce posting with sub­
ject ''preszlll.zip--The Partition Resizer: Safe HD repar­
titioning", Apr. 29, 1995.

I IIIII 111111111~111~ 11111~111~ 11111111 ~11111111111
US005706472A

[111 Patent Number:

[45] Date of Patent:

5,706,472
*Jan.6, 1998

"One CD to fit them all", Barry Fox, Technology, Dec. 1994,
p. 19.
Preszlll.ZIP (Partition Resizer program submitted in * .zip
form on 3.5 inch DOS disk labeled "IDS Disk One"),
unknown version apparently released at least as early as
Nov. 1994.
FIPS12.ZIP (FIPS program submitted in*. zip form on 3.5
inch DOS disk labeled "IDS Disk One"), alpha version 0.1
released Apr. 12, 1993, version 1.0 released May 3. 1994,
version 1.2 released Oct. 20. 1994.
"Unconstrained Filenames on the PC! Introducing Chica­
go's Protected Mode Fat File System", Walter Oney,
Microsoft Systems Journal. Aug. 1994, pp. 13-24.
"Fil~ystem Development with Stackable Layers", John S.
Heidemann et al., ACM Transactions of Computer Systems,
vol. 12. No. 1, Feb. 1994, pp. 58-89.

(List continued on next page.)

Primary Emminer-Edd.ie P. Chan
Assistant Examiner-Kevin L. Ellis
Attorney, Agent, or Finn-Computer Law

[57] ABSTRACT

A method allows non-destructive manipulation of disk par­
titions defined by an ffiM-compatible partition table. The
disk partitions may be located on one or more disks attached
to one or more disk drives. Each partition has an associated
file system type. An interrupted manipulation may be
resumed at a point in the progress of the manipulation near
the point of interruption. Available manipulations include
verifying the integrity of a partition's file system structures;
displaying information about a partition; moving a partition
to a different location; resizing a partition; and resizing the
file system clusters. The resizing steps are illustrated with
particular reference to file systems which use a file alloca­
tion table. The details required to perform these manipula­
tions are attended to by an implementing program that
requires only general direction from a user. Thus, the present
invention provides a method that allows users who are
unfamiliar with technical intricacies to easily manipulate
ffiM-compatible disk partitions, including extended parti­
tions and logical partitions.

38 Claims, 8 Drawing Sheets

5,706,472
Page 2

OTHER PUBUCATIONS

"A High Performance and Reliable Distributed File Facil­
ity", Rajmohan Panadiwal et al., Proc. 14th IEEE Interna­
tional Conference on Distributed Computer Systems, 1994,
pp. 116-123.
Disk Administrator (screen shot), Windows NT version 3.5
(date unknown), prerelease version dated Jun. 26, 1992,
version 3.1 release dated Sep. 11, 1993.
"A Subsystem for Swapping and Mapped File I/0 on Top of
Chorus", Lothar Bomnan et al., Proc. 13th IEEE Interna­
tional Conference on Distributed Computer Systems, 1993,
pp. 12-19.
''Extending Device Management In Minix", C. Kavka et al.,
ACM SlOOPS Operating System Review. Apr. 1993, vol.
27, No.2, pp. 35-43.
'The Logical Disk: A New Approach to Improving File
Systems", Wiebren de Jonge et al., 14th ACM Symposium
on Operating Systems Principles, 1993, pp. 15-28.
"An MS-DOS File System for UNIX", Alessandro Forin et
al., Sep. 1993, pp. 1-23.
"Open Boot Firmware", Mitch Bradley, USENIX, Winter
1992, pp. 223-235.
''Loge: a self-organizing disk controller". Robert M. English
et al., USENlX, Winter 1992, pp. 237-251.
"Go Anywhere and Do Anything with 32-bit Virtual Device
Drivers for WindowsTM", Andrew Schulman, Microsoft Sys­
tems Journal, Oct. 1992, pp. 15-25.
"Semantic File Systems", David K.. Gifford et al., 13th ACM
Symposium on Operating Systems Principles, 1991, pp.
16-25.
"Port WindowsTM Applications to OS/2 (Almost) Painlessly
with the Software Migration Kit", Fric Fogelin et al.,
Microsoft Systems Journal, Nov. 1990, pp. 21-30.
"Design Goals and Implementation of the New High Per­
formance File System", Ray Duncan, Microsoft Systems
Journal, Sep. 1989, pp. 01-13.

"Vnodes: An Architecture for Mulitple File System Types in
Sun UNIX'', S.R. Kleiman, Summer 1986 USENIX Con­
ference, pp. 238-247.

'The Generic File System". R. Rodriguez et al.. Summer
1986 Usenix Conference, pp. 260-269.

"Chapter 8-File System and Network Redirect or". Andrew
Schulman et al., Undocumented DOS: A Programmer's
Guide to Reserved MS-DOS® Functions and Data Struc­
tures, Second Edition, 1994. p. 413.

''MS-DOS Disk Internals Chapter 8". Ray Duncan.
Advanced MSDOS®, The Microsoft Guide for Assembly
Language and C Programmers, 1986, pp. 161-:t73.

''FormatterFiveTM, Partitioning and File Transfer Utility for
Macintosh®", product information sheet, 1990-1994, Soft­
ware Architects Inc., Bothell. Washington.

''MultiBus ManagerTM, Multiple SCSI Bus Manager for the
Macintosh®", product information sheet, 1994, Software
Architects Inc .. Bothell, Washington.

''FormatterSTM Pro", product information sheet, 1993, Soft­
ware Architects Inc., Bothell, Washington.

''FormatterOneTM Pro, SCSI Manager 4.3 Driver & Utility
for the Macintosh®", product information sheet; 1993,
Software Architects Inc., Bothell. Washington.

''Lido 7TM", product information sheet, Sep. 27, 1993, Surf
City Software, Orange, California.

''MultiDisk disk partitioner", product information sheet,
AlSoft Poer UtilitiesTM, Spring, Texas.

"MultiDiskTM Disk Partitioning", product information sheet.

''GFS Revisited or How I Uved with Four Di:fferent Local
File Systems", Matt Koehler, pp. 291-305.

Presizer. Doc (printout from PRESZlll.ZIP).

Readme. 1st (printout from PRESZ11l.ZIP).

U.S. Patent Jan. 6, 1998

C\1

Sheet 1 of 8

0 C\1 co ~ ~

::> a.
()

5,706,472

0 •
00.

40 • ·v ""= 32
I BOOT INDICATOR =

~

I/ a IPL -V I
HEAD NUMBER

42 . . L -
P4 • I

SECTOR NUMBER -v ~ P3 -+-"' I CYLINDER NUMBER S" -- 1--0
36

'C
'C

I ~ / 00 P2 -V
SYSTEM INDICATOR 36 -. /

g: P1
I HEAD NUMBER -t'

.
44 ~

38
Sl

I v N BOOT .-Y"
SECTOR NUMBER ~

44 00

1/

I
CYLINDER NUMBER

I ~48 FIG.2
BOOT SECTOR ADDRESS

46 tit
~

'I
SECTOR COUNT -Y' =

FIG. 3
Q\
~

~
'I
N

U.S. Patent Jan. 6, 1998 Sheet 3 of 8

LOCATE PARTITION TABLE ON DISK

READ TABLE

IDENTIFY FILE SYSTEM USED
IN PARTITION

106

YES

DISPLAY TABLE CONTENTS TO
USER IN GUI

OBTAIN USER SELECTION
OF PARTITION AND

MANIPULATION DESIRED

136

ENSURE PARTITION IS LOCKED

TO FIGURES

112

5,706,472

100

102

104

INFORM USER
MANIPULATION

IS BEING
RESUMED

110

FIG.4

108

U.S. Patent Jan. 6, 1998 Sheet 4 of 8 5,706,472

FROM FIGURE 4

PERFORM SELECTED
MANIPULATION

ON SELECTED PARTITION

UNLOCK PARTITION,
CLEAN UP, EXIT

ERRORS
DETECTED

148

140

ERRORS
DETECTED

152

150

INFORM
USER

CLEAN UP
AND EXIT

146

INFORM
USER

CLEAN UP
AND EXIT

FIG.S

I'
I a o-_... ~ PARTITIONMAGIC™ BY POWERQUEST™

118 -I'\ PHYSICAL DRIVES DFAT D FREE

~ _§§ OHPFS 0 OTHER ~ 1'- OEXTENDED
DRIVE 1 DRIVE 2 -

120 -.. --.......
1'--'\ -PARTITIONS

122

'_ -]I C: 10011 E= 11 F= u~
.........

......._ v VOLUME TYPE SIZE MB USED MB FREE MB i\

-/
BOOT MANAGER 1.5 1.5 0.0 ~ " v- #:

/ ~:ALWAYSC FAT 193.3 102.9 290.5--........
/ #: FREE SPACE 37.0 0.0 37.0 ~

......... -

/

-

-
-

-

-

116

126

114

0 •
00 •
~ = t"'t-a
=...... p
$1'
.....
\C

24 ?j

28

~
32 ~ -tJ1 _,/

OPTIONS 130 _.....I I I rOPTIONS I I I ~

I CHECK I I lNFO I
1--,/' I MOVE I I RESIZE I ICONVERTI / v

134

\.

I HELP I
I EXIT I

1 (I)0
~

00

Ol

"'' ~
FIG. 6 ~

"'' N

U.S. Patent Jan. 6, 1998 Sheet 6 of 8 5,706,472

CX)
1.() ,...

\ !;(en LLa:

""
ww ,. N~
-:::l cn_.
~u

Q
w
1-
(_)

~z
wo

"'"
ent- w

"'->--,.
a.. I- ~"

,.
oa:
(_)<(_a.
w
>
0
~

<0
1.() ,...

Q
w
t-uz wo
..J-

("" wl-, ent-
wa:
N<(-a.

0 en
~

(
w ,... a:

-.:t
1.() ,...

U.S. Patent Jan. 6, 1998 Sheet 7 of 8 5,706,472

.r 154

v
DETERMINE BOUNDS ON v160

SIZE OF MODIFIED
PARTITION • v162 DETERMINE EDGES OF

SELECTED PARTITION
TO MOVE

~ v164
DETERMINE SIZE OF
MODIFIED PARTITION

166 168 \

EXPANDING YES ... BLOCK BAD
PARTITION?

,..
SECTORS

NO ~.

"' v 170
CREATE RECOVERY SECTOR

+ 172
ADJUST PARTITION TABLE

• /174
DETERMINE SIZE, LOCATION, AND SYSTEM

PARAMETERS OF FILE SYSTEM STRUCTURES

• /176
ADJUST FILE SYSTEM STRUCTURES, BOOT

SECTOR, PARTITION TABLE

~ 178
CLEAN UP, UNLOCK, EXIT

v
FIG. 8

U.S. Patent Jan. 6, 1998 Sheet 8 of 8 5,706,472

DETERMINE SIZE OF CLUSTER NUMBER, 182
PARTITION, BOOT AREA, AND ROOT DIRECTORY

DETERMINE FILE ALLOCATION TABLE
PARAMETERS AND DATA CLUSTER AREA SIZE

CHECK FOR BAD SECTORS

188

YES

CONVERT CLUSTER NUMBERS

SAVE FILE SYSTEM STRUCTURES ON DISK

CLEAN UP, UNLOCK, EXIT

FIG. 9

184

186

200

202

204

5,706,472
1

METHOD FOR MANIPULATING DISK
PARTITIONS

R.ELJXI'ED APPUCATIONS

This application is a continuation-in-part of commonly
owned application Ser. No. 081393,805, filed Feb. 23, 1995
('"805 application"), now U.S. Pat. No. 5,675,769, and Ser.
No. 60/004,359, filed Sep. 27, 1995.

FIELD OF THE INVENTION

The present invention permits manipulation of selected
partitions of a computer disk drive. More particularly, the
present invention relates to a method for safely resizing hard
disk partitions and for safely altering cluster size in FAT
partitions.

TECHNICAL BACKGROUND OF THE
INVENI10N

Computers utilize a wide variety of disks to store data.
Disks are classified according to the storage medium
employed, such as when "optical" disks are distinguished
from "magnetic" disks. Disks are also classified as either
"floppy" or "hard." Hard disks generally have greater stor­
age capacity, faster data access times, and longer useful lives
than floppy disks ("floppies"). Unlike hard disks, however,
floppies are "removable." That is, floppies are easily
released from. and reattached to, a disk drive which provides
the computer with access to the data on the disk.

FIG. 1 illustrates a disk 2 attached to a disk drive 4. The
disk drive 4 is in signal communication with a computer
system 6 which makes read and write requests of the disk
drive 4. The computer system 6 comprises at least one
processor ("CPU") 8 which is in digital signal communica­
tion with a memory 10. Suitable memories 10 include
random access memory, read-only memory, and combina­
tions of these two memory types.

The computer system 6 is also capable of comprising at
least one program storage medium 12. Suitable storage
media 12 include a magnetic, optical, or other computer­
readable storage device having a specific physical substrate
configuration. Suitable storage devices include floppy disks,
hard disks, tape, CD-ROMs, PROMs, RAM, and other
computer system storage devices.

The substrate configuration represents data and instruc­
tions which cause the computer system to operate in a
specific and predefined manner as described herein. Thus,
the medium 12 tangibly embodies a program. functions,
and/or instructions that are executable by the processor 8 to
perform disk partition manipulation steps according to the
present invention. In some embodiments according to the
present invention, the instructions are stored on a medium 12
that also contains the disk partition being manipulated. In
other embodiments. the instructions are stored on one
instance of a medium 12 and the disk partition of one or
more other media 12 are manipulated.

The disk 2 illustrates physical characteristics of both
floppies and hard disks. The disk 2 contains a number of
concentric data cylinders such as the cylinder 14. The
cylinder 14 contains several data sectors, including sectors

2
The upper side 20 of the disk 2 is accessed by a head 26

mounted on an arm 28 secured to the drive 4. To access
different cylinders of the disk 2, the arm 28 moves the head
26 in toward the center of the disk 2 or out toward the

5 periphery of the disk 2 according to the position of the
desired cylinder. To access different sectors within a
cylinder, the drive 4 rotates the disk 2 around a spindle 30,
thereby rotating the desired sectors into adjacency with the
head 26. Additional sides of a disk. including sides on
additional platters, may be accessed in a similar manner by

10 additional disk drive heads. Because each side of a disk is
accessed by a corresponding disk drive head. the number of
heads is sometimes used to indicate the number of sides of
the disk that are accessible to the drive. For example,
double-sided disks are accessed with double-headed drives.

15 A given sector on the disk 2 may be identified by
specifying a head. a cylinder, and a sector within the
cylinder. Heads are generally numbered from the top of the
drive proceeding downward, beginning at zero. Cylinders
are generally numbered from the outside edge of the platter

20 proceeding inward, beginning at zero. Sectors within a
cylinder are generally numbered from a marker in the disk
medium proceeding either clockwise or counterclockwise,
depending on the direction of disk rotation in the disk drive,
and beginning at one. A triplet specifying the head number,

25 cylinder number, and sector number in this manner is known
as a "physical sector address." For instance, the sector
labeled as 16 in FIG. 1 could have a physical sector address
of (head zero, cylinder seven, sector two), or more concisely,
a physical address of (0, 7, 2). The terms "address" and

30 "pointer" are used interchangeably herein.
Alternatively, a given sector may be identified by a

"logical sector address." Each logical sector address is a
single number rather than a triplet of numbers. The logical
address of a sector corresponds to the number of sectors

35 between the addressed sector and the "first" sector on the
disk 2 along some specified path which traverses all avail­
able sectors in order. The first sector, known as "sector
zero," is often located at a physical sector address of (0. 0,
1). One common traversal path begins at logical sector zero.

40 traverses the sectors in cylinder zero of head zero. traverses
the sectors of cylinder zero of head one, proceeds thus
through cylinder zero on each successive head, proceeds to
the sectors of cylinder one of head zero, and continues in like
manner. However, other disk traversal paths are also used.

45 The sector (exemplified by sectors 16, 18) is the smallest
unit of individually addressable disk storage recognized by
the disk drive 4. An individual bit within any sector can be
altered only by reading the entire sector into a memory
bu11er, overwriting the bit in question, and then writing the

so entire sector back onto the disk 2.
However, software executing on the processor 8 does not

always operate on individual sectors. In particular, "file
system" software which helps define the format used to
organize data on the disk 2 and file system "drivers" which

55 actuate the disk drive 4 to read and write that data do not
necessarily treat sectors as the smallest addressable storage
unit. One commonly used file system. the File Allocation
Table (''FAT") file system, is configured to allocate sectors

16 and 18. The sectors 16 and 18 are located on an upper side 60
20 of the disk 2; additional sectors may be located on a lower
side 22 of the disk 2. The sides 20, 22 of the disk 2 define

in "clusters" of one or more sectors each. Each cluster
contains 2" sectors, where n is in the range from zero to Max
and Max gives a cluster size of 64K bytes. The value of n is
fixed when the disk 2 is initially formatted, and does not
typically change during use of the disk 2. The cluster size
can be changed with conventional tools by reformatting the
disk 2, but such reformatting is destructive, as it destroys
access to all user data that was stored in the reformatted

a platter 24. Floppy disks contain only one platter and thus
are either single-sided or double-sided. For clarity of illus­
tration only one platter 24 is shown in FIG. 1, but hard disks 65

often contain several platters and thus may include one, two,
or more sides. region.

5,706,472
3 4

File systems are generally used in combination with set of partitions defined by an mM-compatible partition
''partitions" to define the physical organization of data on the table includes any defined primary partition, regardless of
disk. Partitions are often defined by the contents of a whether that primary partition is an extended partition, and
''partition table" which is located on the disk 2. For instance, also includes any logical partitions defined by partition
MACINTOSH® computers utilize a partition table having a 5 identifiers 36.
composition that is specifically adapted for use with the Each partition identifier 36 also includes a system indi-
MACINTOSH operating system (MACINTOSH is a regis- cator SO. The system indicator SO identifies the type of file
tered trademark of Apple Computer, Inc.). Many SUN® system contained in the partition, which in turn defines the
workstation computers utilize a partition table composition physical arrangement of data that is stored in the partition on
that is specifically adapted for use with the SunOS® File 10 the disk 2 (FIG. 1). The system indicator SO utilizes pre-
System (SUN and SunOS are registered trademark of Sun defined constant values to designate various file systems.
Microsystems, Inc.). Other examples abound; different par- For instance, the constant value OlH indicates a 12-bit FPJ
tition table compositions are almost as common as different file system of the type first used by the MS-DOS® operating
operating systems and different file systems, which number system (MS-DOS is a registered trademark of Microsoft
in the hundreds. 15 Corporation). Other values designate other file systems,

Unfortunately, different partition table compositions are including the CP/M-86® file system (registered trademark
usually incompatible. Detailed methods which correctly of Novell, Inc), the XENIX® file system (registered trade-
modify the contents of a first partition table will often mark of Microsoft Corporation), the NOVElL file system
scramble the contents of a second partition table if the first (trademark of Novell, Inc.), a 16-bit FAT file system of the
and second tables use different composition rules. A detailed 20 MS-DOS operating system, and the PCIX file system.
method for reducing the number of disk sectors in a Values not recognized by a particular operating system are
MACINTOSH partition, for instance, is likely to be of little treated as designating an unknown file system.
help in shrinking a Sun OS partition, and may even cause The system indicator SO may designate a file system. such
data loss if applied to the SunOS partition table. as the 12-bit FAT file system. which is used most widely in

One partition table composition, denoted herein as the 25 connection with a particular operating system, such as
"IBM-compatible" partition table, is found on the disks used MS-DOS. However, operating systems and file systems are
in many IBM® personal computers and mM-compatible different components of the computer. The file system
computers (ffiM is a registered trademark of International associated with a specific partition of the disk 2 (FIG. 1)
Business Machines Corporation). IBM-compatible partition determines the format in which data is stored in the partition,
tables may be used on both floppies and hard disks, and they 30 namely, the physical arrangement of user data and of file
may be used with magnetic disks, optical disks, and disks system structures in the portion of the disk 2 that is delimited
employing other storage media. IBM-compatible partition by the starting address 42 and the ending address 44 of the
tables may also be used with a variety of disk sector partition in question. At any given time, each partition thus
addressing schemes, including without limitation schemes contains at most one type of file system.
that employ traversal paths different from the path described

35
The operating system manages access. not only to the disk

above and schemes which assign logical sector addresses 2, but to other computer resources as well. Resources
that start over again at zero for each partition on the disk typically managed by the operating system include one or

As shown in FIG. 2, an IBM-compatible partition table 32 more disks and disk drives, memory (RAM and/or ROM),
includes an Initial Program Loader ("IPL") identifier 34, 40 microprocessors, and UO devices such as a keyboard,
four primary partition identifiers 36, and a boot identifier 38. mouse, screen, printer, tape drive, modem. serial port, par-
As shown in FIG. 3, each partition identifier 36 includes a allel port, or network port.
boot indicator 40 to indicate whether the partition in ques- The operating system accesses the disk 2 in part through
tion is bootable. At most one of the partitions in the set of file system drivers. These drivers use internal file system
partitions defined by the partition table 32 is bootable at any 45 data and assumptions about the file system to translate more
given time. abstract information such as file names and read/write

Each partition identifier 36 also includes a starting address requests into more detailed information such as sector
42, which is the physical sector address of the first sector in addresses and physical disk accesses. By appropriate use of
the partition in question, and an ending address 44, which is file system drivers, a single operating system can access files
the physical sector address of the last sector in the partition. 50 stored according to different file systems. For instance, the
A sector count 46 holds the total number of disk sectors in OS/2 operating system can access both FPJ files and High
the partition. A boot sector address 48 holds the logical Performance File System ("HPFS") files (OSfl. is a mark of
sector address corresponding to the physical starting address International Business Machines Corporation). File system
42. On disks having more than 1024 cylinders, the starting drivers do not alter the type of file system that is contained
address 42 and the ending address 44 contain predetermined 55 in a partition. Nor do file system drivers alter characteristics
maximum values if the actual values are too large to store in such as the partition's size, the partition's location on the
the space given in the partition table 32; the actual values disk 2 (FIG. 1), or the cluster size of FAT partitions.
can be derived from the sector count 46 and the boot sector It is sometimes desirable to alter the contents of an
address 48.

Some IBM-compatible computer systems allow "logical
partitions" as well as the primary partitions just described
All logical partitions are contained within one primary
partition; a primary partition which contains logical parti­
tions is also known as an "extended partition." Logical
partitions are represented by one or more lists of partition
identifiers 36. Each list is attached in conventional fashion
to one of the partition identifiers Pl, P2, P3, or P4. Thus, the

IBM-compatible partition table. For instance, a person using
60 a computer may wish to expand a particular partition to

allow additional data to be stored in files within that parti­
tion. Conversely, the user may wish to shrink a specified
partition by allocating fewer disk sectors to the partition. It
may also be convenient or necessary to move a partition to

65 a different location on the disk while substantially or exactly
preserving the number of disk sectors allocated to the
partition.

5,706,472
5

One conventional approach to modification of an ffiM­
compatible partition table begins by copying all necessary
user and system data off the disk to a temporary storage
location such as a tape or another disk. The data copied
includes without limitation the contents of files created by 5

the user such as textual documents and spreadsheets, the
contents of files required to run applications such as word
processors, and system data such as directory information.
Some internal file system data such as sector allocation maps
does not necessarily need to be copied, but is often copied 10

anyway. The familiar disk utility FDISK is then used to
update the ffiM-compatible partition table. The newly speci­
fied partition is then formatted with the familiar disk utility
FORMAT or a similar utility. Finally. the data is copied back
into the new partition on the disk. During this copying 15

process the file system copy utility creates appropriate new
file system structures reflecting the current locations of data
on the disk.

6
Thus, it would be an advancement in the art to provide a

method that allows users who are unfamiliar with technical
intricacies to easily resize and reconfigure ffiM-compatible
disk partitions without destroying any user data.

It would also be an advancement to provide such a method
which either increases or decreases FAT cluster size, as
desired

It would be a further advancement to provide such a
method which prevents data loss caused by interruptions
such as a power failure during the manipulation of a parti­
tion.

It would also be an advancement to provide such a method
which properly resizes and reconfigures logical partitions
and extended partitions.

It would be a further advancement to provide such a
method which efficiently tests the integrity and consistency
of the file system data within a partition.

This approach to partition manipulation has several draw­
backs. A temporary storage device with adequate storage
capacity may not be readily available or affordable under the
circumstances. Even if temporary storage is available, copy­
ing large amounts of data from the disk to temporary storage
and then back again can take a substantial period of time.

Such a method for manipulating disk partitions is dis-
20 closed and claimed herein.

In addition, manipulating ffiM-compatible partition 25

tables in this manner is confusing and dangerous for many
computer users. The FDISK utility assumes that the user is
familiar with the intricacies of ffiM-compatible partition
tables, physical disk addresses, logical partitions, extended

30 partitions, operating system assumptions regarding
partitions, cluster sizes, file allocation tables, and related
matters. Users who are unfamiliar with these technical
details may easily and inadvertently destroy data.

Less grievous but nonetheless undesirable situations can
35

also arise if the user miscalculates the correct size or position
of the new partitions. For instance, if the partition has been
made too small to receive all the data from temporary
storage, it becomes necessary to once again modify the
partition table with FDISK, to reformat again, and to once

40
again copy all the data from temporary storage into the
reformatted partition. Even if everything works as desired
the first time, this approach to partition modification can be
very time-consuming. With a typical disk holding several
hundred megabytes of data the process may require several

45
hours to complete successfully.

Some conventional partition manipulation approaches are
limited to shrinking partitions. They provide no capability
for expanding a partition or moving a partition to a new
location on the disk while preserving the partition's size. 50
Moreover, known approaches allow user data to be lost if
power to the computer is interrupted during the partition
shrinking operation.

In addition, the only previously known approach to resiz­
ing clusters in FAT partitions is destructive reformatting of 55
the disk partition.

Moreover, known approaches to partition resizing are not
integrated with means for checking the integrity and self­
consistency of the file system before and after the operation.
One partition resizing approach requires a shift in position of 60
all clusters, thereby significantly increasing not only the
time required to resize but also the risk of data corruption if
resizing is interrupted. Moreover, such approaches lose data
if any bad sectors are present in the disk partition. Finally,
some known partition resizing operations do not properly 65
handle conditions that often arise in the file system struc­
tures as a result of resizing.

BRIEF SUMMARY OF THE INVENfiON

The present invention provides a method for manipulating
disk partitions defined by an ffiM-compatible partition table.
The disk partitions may be located on one or more disks
attached to one or more disk drives. Each partition has an
associated file system type, such as 12-bit FAT or 16-bit FAT.

According to the present method, the partition table is
initially read from the disk. The table contents may contain
an RPI system indicator, which indicates that an earlier
attempt at partition manipulation was interrupted by a power
failure. If the RPI is present on the disk, an informing step
notifies the user that the interrupted manipulation is being
resumed Otherwise, steps are taken to lock out other
processes that could interfere with the requested partition
manipulation. A data recovery method such as checkmark­
ing or journaling is also used to allow resumption of the
method near the point of interruption.

Available manipulations include, without limitation:
checking or verifying the integrity and internal consistency
of a partition's file system structures; displaying information
about a partition such as its location, size. and associated file
system type; moving a partition to a different location on a
disk that presently holds the partition or to another disk;
molding or resizing a partition to include a different number
of disk sectors within the partition; and resizing clusters in
a FAT partition.

Steps are taken at one or more points in the manipulation
to detect inconsistencies in the file system data structures or
other breaches in the integrity of the selected partition. If
errors are detected. the user is informed. Conditions on the
disk that were changed by the present method are then
restored to the extent possible and control is returned to the
invoking environment

The resizing step is illustrated with particular reference to
FAT file systems, but is also useful in reshaping partitions
which hold a variety of other file systems. During a bounds
determining step the maximum and minimum sizes of the
desired modified partition are determined. An edge deter­
mining step takes appropriate actions depending on which
edges of the selected partition are being moved to produce
the modified partition. A size determining step determines
the exact size of the modified partition by specifying the
starting and ending physical addresses of the modified
partition.

H the selected partition is being expanded, then certain
additional steps are taken after the size determining step.

5,706,472
7

The disk sectors being added may be tested first to locate and
block out any bad sectors during a blocking step. During a
creating step, a recovery sector is created on the very last
sector of the proposed modified partition to permit data
recovery in the event the manipulation is interrupted During

8
FIG. 7 is a flowchart further illustrating a partition

manipulating step shown in FIG. 5.

FIG. 8 is a flowchart further illustrating a partition resiz­
ing step shown in FIG. 7 in connection with a partition

5 employing a FAT file system.
an adjusting step the contents of the partition table are
adjusted to reflect the larger size. of the ~odified p~~on
and the RPI is placed on the disk, making the partition
unrecognizable to MS-DOS, OS/2, and other familiar oper­
ating systems. File allocation table entries are created as

10 needed for the new area of the disk.

FIG. 9 is a flowchart further illustrating a cluster resizing
step shown in FIG. 7 in connection with a partition employ­
ing a FAT file system.

DEfAllED DESCRIPTION OF THE
PREFERRED EMBODIMENfS Regardless of whether the partition is being reduced or

expanded, a size determining st~ determine.s the siz~ :md
location of file system structures m the modified partition.
An adjusting step then adjusts the size, location, and con­
tents of the file system structures as needed to reflect
differences between the selected partition and the modified
partition. An exiting step releases any temporarily allocated
disk space, removes the RPI from the disk. generally cleans
up, and then returns control to the software which invoked
it. In some cases the exiting step forces the computer to
reboot so that changes in the partition table or file system
structures will be detected by the operating system.

The moving/copying step, which is useful in replicating
partitions utilizing a variety of familiar or unknown file
systems, proceeds substantially as described in the '805
application. The '805 application description of partition
replication is incorporated herein by this reference.

The details required to perform these manipulations are
attended to by an implementing program that requires only
general direction from a user. Thus, the present invention
provides a method that allows users who are unfamiliar with
technical intricacies to easily resize and reconfigure mM­
compatible disk partitions, including logical and extended
partitions. The present method also utilizes the RPI and data
recovery steps to prevent data loss caused by interruptions
such as a power failure during the manipulation of a parti­
tion. The method also efficiently tests the integrity and
consistency of the file system data within a partition at
various points during the manipulation.

The features and advantages of the present invention will
become more fully apparent through the following descrip­
tion and appended claims taken in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

To illustrate the manner in which the advantages and
features of the invention are obtained, a more particular
description of the invention summarized above will be
rendered by reference to the appended drawings. Under­
standing that these drawings only provide selected embodi­
ments of the invention and are not therefore to be considered
limiting of its scope, the invention will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 is a partial cut-away view of a computer disk drive.
FIG. 2 is a diagram illustrating an IDM-compatible.

partition table.
FIG. 3 is a diagram further illustrating a portion of the

partition table shown in FIG. 2.
FIG. 4 is an initial portion of a flowchart illustrating a

preferred method of the present invention.
FIG. 5 is an additional portion of the flowchart shown in

FIG. 4.
FIG. 6 is a front view of a computer screen illustrating a

graphical user interface to a computer-based implementation
of the present invention.

Reference is now made to the figures wherein like parts
are referred to by like numerals. The present invention

15 relates to a method for physically manipulating disk parti­
tions. As noted above, each partition has an associated file
system type, such as 12-bit FAT, 16-bit FAT, FAT­
compatible, CP/M-86, XENIX, NOVELL, PCI:X, or HPFS.
The present invention will be illustrated mainly by reference

20 to FAT partitions defined as primary partitions on the disk 2
(FIG. 1) by an IDM-compatible partition table. However,
those of skill in the art will appreciate that the scope of the
present invention comprises manipulation of both primary
and logical partitions on one or more disks of various kinds.

25 The present invention will also be illustrated mainly in
connection with FAT partition resizing and FAT cluster
resizing. However, the scope of the present invention also
comprises partition resizing in combination with cluster
resizing, as well as cluster resizing in combination with

30 partition moving, replicating, and other steps disclosed in
the '805 application, which are incorporated herein by this
reference.

Those of ordinary skill in the art have a working knowl­
edge of the disk 2, the disk drive 4, and the internal file

35 system structures on the disk 2 and in computer memory.
They will also have an understanding of operating systems
and file systems in general. With regard to FAT file systems,
Chapter Eight of Advanced MS-DOS: The Microsoft guide
for Assembly Language and C programmers, by Ray

40 Duncan, ISBN 0-914845-77-2, 1986, which describes the
structure of a FAT file system, is incorporated herein by this
reference.
Overview of Disk Partition Manipulation

A preferred method of the present invention for manipu-
45 lating disk partitions is illustrated by a flowchart in FIGS. 4

and 5. A computer program which implements this flowchart
and/or other teachings of the present invention in order to
assist users in molding disk partitions is referred to herein as
an "implementing program." Those of skill in the art will

so readily create appropriate implementing programs according
to the present invention by using computer languages such
as C or C++, conventional compilers and linkers, and other
tools familiar to computer programmers. Implementing pro­
grams may execute on conventional digital computers,

55 including without limitation IDM-compatible personal com­
puters.

All critical portions of the implementing program, such as
those containing disk updates, are preferably protected by
proper utilization of a data recovery method. A checkmark-

60 ing data recovery method prevents data loss unless failure
occurs in the middle of a disk write. Checkmarking stores
progress markers on the disk within a selected partition. The
progress markers correspond to incrementally increasing
portions of the modification of the selected partition, thereby

65 removing the need to repeat all of those portions over again
if the modification is resumed after the flow of electric
power to the disk drive is temporarily interrupted. A jour-

5,706,472
9 10

naling data recovery method is generally faster than the table contents to the user. The displaying step 112 preferably
chec.kmarking method and prevents data loss even if power utilizes a graphical user interface ("GtJr') in the implement-
fails in the middle of a disk write. Journaling preserves at ing program to provide users with feedback regarding the
least one copy of all user data on the disk at all times during current partition configuration and a command interface for
the partition modification, thereby reducing the risk of loss 5 molding that configuration.
of user data if modification is temporarily interrupted. one suitable GUI 114 is illustrated in FIG. 6. The GUI 114
According to alternative methods of the present invention, a is displayed on a computer screen 116 by the displaying step
data recovery method familiar to those of skill in the art may 112 (FIG. 4). The GUI 114 illustrated is part of a Parti-
also be employed. tionMagic program which implements aspects of the inven-

In a locating step 100, an ffiM-compatible partition table 10 tion of the '805 application and is commercially available
(FIGS. 2 and 3) is located on the disk 2. The 1PL 34 (FIG. from PowerQuest corporation of Orem, Utah. Parti-
2) of the partition table is typically located at the beginning tionMagic and PowerQuest are trademarks of PowerQuest
of the disk sector whose logical address is zero; the other Corporation.
portions of the partition table follow according to the The GUI 114 includes a drive group box 118 which
partition table composition described herein and concepts 15 provides the user with information regarding the physical
familiar to those of skill in the art. disk drives attached to the computer, including the drive

The partition table is then read from the disk 2 by a names. Icons corresponding to the drives are preferably
reading step 102. Reading is accomplished by one or more highlighted or otherwise altered in appearance to indicate
conventional disk sector read operations directed by the the drive or drives for which partition information is pres-
implementing program. Multiple read operations may be 20 ently being displayed.
required to obtain the contents of partition identifiers 36 A partition graph 120 provides information regarding the
(FIG. 3) that define logical partitions. The copy of the table partitions presently defined by the partition table, including
contents thus obtained may be left in the same relative the names, relative positions, and file system types of the
positions in computer memory as they were in on the disk 2. partitions. The left end 122 of the partition graph 120
Alternatively, the table contents in memory may be rear- 25 corresponds to the disk sector at the lowest physical address
ranged into data structures that are more convenient for use (which is typically (0, 0, 1)), while the right end 124 of the
in the succeeding steps of the method Those of skill in the partition graph 120 corresponds to the disk sector at the
art will readily determine appropriate data structures accord- highest physical address on the particular disk in question.
ing to the teachings herein. Colors or graphical patterns may be used in the partition

In this preferred method of the present invention, the table 30 graph 120. The colors or patterns are selected from a legend
contents may contain an indication that an earlier attempt at 126 that matches colors to file system types, to free space not
partition manipulation has been interrupted. One cause of claimed by any partition, and to partition characteristics
such an interruption is a temporary interruption of the flow such as "extended" or "other" (unrecognized system
of electrical power to the computer. Interruptions may also identifier). In the example shown in FIG. 6, partitions E: and
occur as a result of soft resets, hard resets, faulty hardware, 35 F: are enclosed by a box 128 to indicate that they are logical
or other circumstances. partitions. Partition C: is a primary partition. as indicated by

It is presently preferred that an incomplete partition the absence of an enclosing box.
manipulation resulting from such an interruption be indi- Partition C: is also the current "selected partition,"
cated by the presence of a unique "recovery partition ideo- namely, the partition regarding which information is sought
tifier" (''RPI") in the system indicator 50 (FIG. 3) of a 40 or upon which a manipulation operation is or will shortly be
partition identifier 36 (FIG. 3) in the partition table. The RPI performed Additional information about the partitions is
indicates that the partition is a "recovery partition," namely, provided in a partition list 130, with the details 132 regard-
that the partition is in a condition not associated with any ing the currently selected partition (partition C:) preferably
known file system such as a particular FAT file system but high-lighted or otherwise altered in appearance.
is rather in a transitional state corresponding to interruption 45 An option box 134 lists the partition manipulation opera-
of the present method. Thus, any value not corresponding to tions that are available through this implementation of the
a previously known file system and capable of representa- present method As described herein, these manipulations
tion in the space allotted to the system indicator 50 is an include checking or verifying the integrity and internal
acceptable RPI value. One presently suitable RPI value is 3C consistency of a partition's file system structures; displaying
hexadecimal; other suitable values may be identified by 50 information about a partition such as its location, size, and
surveying the values used by familiar operating systems and associated file-system-specific details such as FliT cluster
file systems. size; moving a partition to a different location on a disk that

Accordingly, an identifying step 104 identifies the file presently holds the partition or to another disk; resizing a
system associated with each partition defined by the parti- partition to include either a lesser or greater number of disk
tion table. The identifying step 104 may be implemented by 55 sectors within the partition; and converting a partition from
a table look-up, by a case or switch statement, or by another one file system configuration to another file system configu-
familiar means which recognizes the RPI of the present ration. As used herein, a ''file system configuration" includes
invention. An interrogating step 106 then checks the result a particular file system (e.g., HPFS, 12-bit FliT) as well as
of the identifying step 104 to determine whether an RPI was basic file system parameters such as the FliT cluster size.
found in any of the partition identifiers 36. 60 With reference to FIGS. 4 through 6, users interact with

If the interrogating step 106 determines that a partition the implementing program through an interface such as the
manipulation was interrupted, an informing step 108 notifies GUI 114 and through a mouse, a keyboard (neither shown),
the user that the interrupted manipulation is being resumed or other familiar input devices. During an obtaining step 136
The method then proceeds to a partition lock ensuring step user interaction results in selection of a partition and selec-
110. On the other hand, if the interrogating step 106 deter- 65 tion of a manipulation operation. Selections are communi-
mines that no incomplete manipulation is pending, then a cated and acknowledged by means familiar to those of skill
displaying step 112 displays at least a portion of the partition in the art.

5,706,472
11

The locked status of the selected partition (partition C: in
FIG. 6) is then ensured during the lock ensuring step 110.
Thus, if the lock ensuring step 110 is reached by way of step
108, then the manipulation is being resumed after an inter­
ruption and the selected partition may already be locked by
the RPI. However, if no interruption occurred, that is, if step
110 is reached by way of steps 112 and 136, then locking is
ensured by an operating-system-level lock. by halting other
processes, by placing the RPI. or by some combination of
these steps.

It is necessary to lock the selected partition to prevent
processes other than the implementing program from access­
ing the partition while it is manipulated according to the
present invention. Those of skill in the art will appreciate
that such unexpected accesses by other processes may cause
significant data loss.

Locking may be accomplished by one or more methods.
It is presently preferred that access be prevented by engag­
ing an operating-system-level partition lock such as is
provided in certain operating systems. For example, the
OS/2 operating system provides the capability to lock a
logical drive, as identified by the drive letter, as well as the
capability to lock an entire physical drive.

Operating-system-level partition locks are not available
on some computers. In manipulating partitions on such
computers, the user is preferably instructed to stop all
non-implementing program processes, tasks, TSRs, and the
like from executing. That is, the user must ensure that the
implementing program alone has access to the disk(s) that
hold the selected partition and the proposed modified par­
tition.

A power failure or other condition which causes the
computer to reboot may disable operating-system-level par­
tition locks and/or restart non-implementing program pro­
cesses which are capable of accessing the disk(s) that hold
the selected partition and the proposed modified partition. It
is therefore preferred that locking also be provided through
the use of an RPI as descnbed herein.

Locking by placement of the RPI on the disk preferably
comprises the following steps. First, a free disk sector is
located within the selected partition on the disk 2. The disk
sector is allocated by updating the file allocation table or
comparable structure, and the current system indicator SO
(FIG. 3) value for the selected partition is stored on the disk

12
program may resort to a data-salvaging step to allow the user
to extract selected files for copying to another storage
medium.

In the preferred method illustrated herein, great care is
5 taken to detect inconsistencies in the file system data struc­

tures or other breaches in the integrity of the selected
partition. Thus, a verifying step 138 precedes a partition
manipulating step 140, and a reverifying step 142 follows
the manipulating step 140. The steps 138 and 142 are

10 collectively termed "verifying steps" herein. In the method
illustrated, the verifying step 138 and the reverifying step
142 perform substantially identical tests on the file system at
different times. In alternative methods according to the
present invention, the verifying steps 138 and 142 may each

15 perform different tests. Some methods of the present inven­
tion omit either or both of the verifying steps 138 and 142.

The tests performed during the verifying steps 138 and
142 depend on the particular file system that is associated
with the partition; the file system was identified during the

20 identifying step 104. To prevent data loss. tests are not
performed on unknown file systems. However, disk reads
may be used to test partitions associated with unknown file
systems for "bad sectors," namely, disk sectors that are
unreliable due to faults in the disk media or (occasionally)

25 to disk drive hardware problems.
In testing the integrity of a FAT file system the verifying

steps 138 and 142 may search for lost clusters, illegal values
in the boot sector, or inconsistencies between copies of the
file allocation table (if duplicate copies are present). In short,

30 the verifying steps may generally perform those checks that
are typically performed by the MS-DOS disk utility program
CHKDSK. The verifying steps may be performed in a
manner familiar to those of skill in the art or by novel
methods in concert with the teachings herein. The present

35 method preferably resizes a selected partition such that the
resulting modified partition passes any industry standard
CHKDSK program with no serious errors. Some of the rules
to accomplish this are set forth herein; others are readily
detennined by those of skill in the art.

40 If errors are detected by the verifying step 138 or by the
reverifying step 142, the user is informed by respective
informing steps 144 and 146. Conditions on the disk 2 that
were changed by the present method are then restored to the

2 in the newly allocated sector. 45
extent possible and the method relinquishes control of the
disk 2 and the CPU during respective exiting steps 148 and
1SO. If no file system data structure errors are detected, the The system indicator SO on the disk 2 is then overwritten

so that the partition identifier 36 corresponding to the
selected partition contains the RPI. According to industry
convention, an operating system will refuse to recognize
partitions that are associated with a file system that is
unknown to the operating system. By definition, the RPI
corresponds to no known file system. so replacing a con­
ventional system indicator value by the RPI effectively
prevents the operating system and processes which run
within constraints defined by the operating system from
accessing the selected partition. The implementing program
of the present, invention is not thus constrained.

Thus, if the power fails prior to completion of the present
method, the operating system will typically refuse to mount
the selected partition and thus be prevented from trying to
automatically "fix" the selected partition. However, the
implementing program will detect the interruption by the
presence of the RPI. The implementing program may then
either properly complete the manipulation or, if that is not
possible, the implementing program may attempt to place
the selected partition in a more consistent and conventional
condition before exiting. In extreme cases, the implementing

selected partition is unlocked during an exiting step 152,
thereby opening the disk 2 for access by processes other than
the implementing program. Other conditions on the disk 2

so that were changed by the present method are also restored,
to the extent that such restoration is consistent with the
desired results of the manipulating step 140, during the
exiting step 1S2. In alternative methods. some or all of the
actions performed during the exiting step 1S2 are also

55 performed, or are performed instead, at the end of the
manipulating step 140 as described hereafter.

Those of skill in the art will appreciate that particular
operating systems may fail to detect changes in the partition
table or file system structures made by the implementing

60 program. In such cases, the exiting step in question (such as
step 148, 1SO, 1S2, 178. and 204) forces the computer to
immediately reboot so that such changes will be detected by
the operating system. Depending on the operating system
involved, such changes may also be made known to the

65 operating system through a system call rather than a reboot.
With reference to FIG. 7, the partition manipulating step

140 comprises a partition-resizing step 1S4, a moving/

5,706,472
13

copying step 156, and a cluster-resizing step 158. The
partition-resizing step 154 provides the capability of resizing
the selected partition to include either a lesser or greater
number of disk sectors. The moving/copying step 156 pro­
vides the capability of either moving or copying the selected 5

partition to a di1ferent location on the disk 2 or to a disk
attached to a di1ferent disk drive than the drive 4 (FlO. 1).
The cluster-resizing step 158 provides the capability of
changing the cluster size used in a FJXI' file system. In a
preferred embodiment, the cluster size can be either 10

decreased or increased.
Resizing Disk Partitions

A flowchart illustrating one method for accomplishing the
partition-resizing step 154 is shown in FIG. 8. As suggested
above, steps are preferably taken to prevent data loss in the 15
event that partition resizing is interrupted. Suitable steps
include the use of a data recovery method such as check­
marking or journaling in conjunction with the partition­
resizing step 154.

During a bounds determining step 160, the maximum and 20

minimum sizes of a "modified partition" and corresponding
"modified cluster size" are determined. As used herein, the
"modified partition" is a partition which is created from a
selected partition by the manipulating step 140 (FIG. 5). The
"modified cluster size" is the size of each cluster in a 25
modified partition which uses the FJXI' file system. Partition
resizing and cluster resizing may be performed on a selected
partition either independently of one another or in combi­
nation.

Like other partitions, the modified partition has a "left" 30

edge corresponding to the disk sector with the lowest sector
address of any sector in the modified partition, and a ''right"
edge corresponding to the disk sector with the highest sector
address of any sector in the modified partition. The modified
partition cannot be safely expanded to push either its left 35

edge or its right edge beyond either a neighboring partition
boundary or a physical disk boundary. The edges of other
partitions and of the disk 2 (FIG. 1) thus constrain the
maximum size of the modified partition.

The minimum size of the modified partition is at least the 40

size of the data stored in the current partition plus the size

14
a 512-byte logical sector size inside FAT partitions and a
512-byte physical sector size on the disk 2 (FIG. 1).
However, those of skill in the art will readily use the present
invention with other sector sizes.

Cluster Size

512
IK
2K
4K
8K
16K
32K
64K

TABLE 1

Maximum Partition Size

Up to 32M
Upto64M
Up to 128M
Up to 256M
Upto512M
Up to 1024M
Up to 2048M
Upto4096M

The minimum value of the modified cluster size may also
be restricted by a lack of free space in the modified partition.
When the modified cluster size is halved, the space required
to hold one copy of the file allocation table doubles because
the file allocation table must be large enough to hold twice
as many cluster numbers. But in general, the amount of free
space needed for expansion of the file allocation table(s) is
relatively small compared to the partition size.

The maximum modified cluster size may also be con-
strained by the amount of free space on the disk 2. Increasing
the cluster size causes each file, on average, to consume an
additional half cluster. Thus. if a partition contains 100 files,
the current cluster size is 21{. the desired modified cluster
size is 4K. and the disk 2 only has 150K of free space, the
cluster resizing could fail if attempted. In this and other
situations in which there is a clear risk of failure due to
insufficient free space, the implementing program preferably
refuses to perform the requested operation. Instead, the
implementing program explains the situation to the user and
suggests that unneeded files be deleted to free up a specified
amount of additional disk space. In no case should an
implementation attempt a particular cluster resizing opera­
tion or any other operation if doing so places user data at
risk.

The partition-resizing step 154 can be performed by
moving the selected partition's left edge, by moving its right
edge, or by moving both edges. The choice of edges to move
may be specified by the user through the GUI 114 (FIG. 6)
or by default in the implementing program. An edge deter­
mining step 162 takes appropriate actions depending on the
edge or edges being moved. If the right edge will be moved,
then no sector addresses inside the existing system and
directory structures need to be modified. Moving the right
edge to perform the partition-resizing step 154 is the easiest

of the system structures needed to organize that data plus the
total size of any bad sectors within the modified partition.
The minimum modified partition size of a FJXI' partition
depends on the disk space consumed by the root directory, 45
by the file allocation table(s). and the user data. The present
invention treats all user data in the current partition as data
that should appear in the modified partition. However, users
may elect to delete files to reduce the size of the data stored
before resizing. so approach and is thus the preferred default

The size of the modified partition may also be constrained
by particular file systems or operating systems. For example,
current FJXI' file systems bave a maximum size that is based
on the cluster size. Other possible constraining factors
include the total size of all files and directories currently 55

allocated in the selected partition, the number of subdirec­
tories in the selected partition, the minimum free space
required in the modified partition, the disk space likely to be
consumed by file system structures in the modified partition,
and a safety factor which permits the creation of additional 60
file system allocation sectors for anticipated file growth.

The minimum modified cluster size is determined by the
size of the modified partition according to relationships set
forth in Table 1 below. Values in Table 1 are in bytes;
1K=1024 bytes and 1M=l0242 bytes. Cluster size may also 65
be specified in terms of the number of sectors per cluster. For
simplicity. the discussion herein of FJXI' file systems assumes

If resizing is to be accomplished by moving the left edge
or by moving both edges, then all sector addresses listed in
all directory and other file system structures must be
adjusted by a constant Ni<!ll'_...,,..__..hift which equals the
number of disk sectors by which the selected partition's left
edge will be moved. If the left edge is moved to the left.
N1<!fl'_edge_shift must be added to each sector address; if the
left edge is moved to the right, N left_edge...shift must be
subtracted from each sector address. This adjustment by
N1<!fl'_ettse...shift can be performed safely only when the par­
tition has been changed into a recovery partition type by
placement of the RPI on the disk 2 as described herein.
Otherwise, if the implementing program is interrupted dur­
ing the adjustment the partition's file system integrity will
likely be compromised and data may be lost

If the left edge of the partition will be moved closer to the
right edge, then all the data and the file system structures

5,706A72
15

between the current left edge position and the new position
must be relocated before the left edge is repositioned. In
addition, it will generally be necessary to move the critical
boot sectors and any other file system structures that must be
placed at a predefined offset within the modified partition. 5
Accordingly, a ''recovery sector" is created as explained
below. and the boot sectors and other structures are pre­
served on disk at a location recorded in the recovery sector
prior to moving the partition's left edge.

It will be appreciated that if any one of the first disk
10

sectors of a proposed modified FAT partition are bad sectors
and if those sectors would receive structures that must be
placed at a predefined offset within the modified partition,
then the proposed left edge cannot be used Otherwise, the
integrity of the modified partition will be severely compro­
mised because the main boot sectors and other necessary 15

structures would reside at least partially within those bad
sectors. Thus. it may be necessary to repeat steps 160 and
162 more than once to find an acceptable left edge location
before proceeding to a size determining step Ui4.

The size determining step 164 determines the exact size of 20
the modified partition by specifying the starting and ending
physical addresses of the modified partition. These physical
addresses may correspond exactly to positions specified by
the user, or they may reflect adjustments to achieve a
partition size that is a multiple of the cluster size. At the 25

conclusion of the size determining step 164, the implement­
ing program has a definite value for the desired size of the
modified partition, and an indication as to which edge(s)
must be moved in order to resize the selected partition.

The selected partition may be either reduced or expanded 30

during the partition-resizing step 154. If the partition is
reduced, no disk sectors outside the selected partition's
boundaries will be added to produce the modified partition.
If the selected partition is expanded. then disk sectors which
are either to the left of the selected partition's left edge or to 35

the right of its right edge will be included in the modified
partition. A querying step 166 selects between reduction and
expansion.

If the selected partition is being expanded, then the disk
sectors being added may be tested first to locate and block 40

out any bad sectors during a blocking step 168. The disk area
being added to the selected partition to create the modified
partition ("new area") may be tested for bad sectors as
follows. First, write a known pattern to each sector sequen­
tially from the first sector in the new area to the very last 45

sector. This has the effect of flushing any software or
hardware disk cache that might otherwise invalidate the test
results. Then read the sectors that were just written.

Hushing may be quite time-consuming, so it should be
skipped if there is a way to otherwise guarantee that the so
sectors to be tested are not already in the computer's
memory. In many computer systems, flushing is not required
because it is very unlikely that sectors not already inside the
selected partition will have been read into memory.

16
omitted if a "fast format" flag has been set. Those of skill in
the art will appreciate that while this omission tends to
substantially decrease the time required to expand the
selected partition, omitting the test also introduces the
possibility that a file system structure will be assigned
storage locations in one or more bad disk sectors. Such an
approach is unreliable and places the integrity of the file
system at risk. The tradeoff is therefore between safety and
speed.

Many contemporary disks have almost flawless media
with few or no bad sectors, and many disk drives provide
internal hardware support for revectoring bad sectors with­
out direct intervention by the operating system or by a file
system driver. On such systems the risk of data loss from
skipping the test for bad sectors is very small. However, the
implementing program may be unable to access DIP switch
settings, memory-mapped disk drive registers, or other hard­
ware to determine the age or revectoring capability of the
disk drive 4. It is therefore generally preferred to perform the
test for all bad sectors. At a minimum. it is preferred that the
new locations on the disk 2 which are targeted to hold the file
system structures be tested so that bad sectors can be
identified and avoided.

During a creating step 170, a recovery sector is created on
the very last sector of the proposed modified partition. The
finished recovery sector contains the system indicator 50
(FIG. 3) of the selected partition, and an indication of the
partition manipulation being performed (such as "shrinking
partition from 200 megabytes down to 127 megabytes by
moving the right edge toward the left edge"), and informa­
tion on the type of data recovery method being used to
protect the user's data. During partition manipulation, addi­
tional information is stored in the recovery sector as required
by the recovery prevention method to allow resumption of
the method at an appropriate point within the method after
power failure or another interruption.

If it is determined that the last sector of the modified
partition is occupied by the selected partition, then the data
in that last sector is moved to another free sector to make
room for the recovery sector. This determination is made by
scanning all file system structures and directories to deter-
mine which structure or file uses this last sector. Once the
internal file system structures using the last sector are
identified the sector is copied elsewhere and the appropriate
file system structures are updated to reflect the new location.
This is preferably accomplished in concert with the data
recovery method being used.

During an adjusting step 172, the contents of the partition
table 32 (FIG. 2) are adjusted to reflect the larger size of the
modified partition, if the selected partition is being
expanded. The partition system indicator 50 (FIG. 3) is
replaced by the RPI, making the partition unrecognizable to
MS-DOS. OS/2, and other familiar operating systems. If the
partition table is located near the left edge of the selected
partition. then the partition table 32 is simultaneously moved
to its new location near the left edge of the modified
partition. The boot sector is then updated on the disk 2 to
reflect the expanded partition size.

A characteristic determining step 174 is performed to
determine the size and location of file system structures in
the modified partition. According to one method of the
present invention, which is adapted for use in resizing FliT
partitions, this step 174 comprises determining the new size
and location of all internal FliT file system structures in

Next, maintain a list or table of the addresses of bad 55

sectors identified during the flushing and subsequent read­
ing. Bad sectors are identified as such by an error code from
the disk drive to the implementing program indicating that
the sector write failed To reduce the amount of time spent
moving the disk drive head 26 (FlG. 1), the disk sectors are 60

preferable accessed in consecutive order, as is known in the
art The addresses of any sectors for which the sector access
(read or write) failed is added to the list of bad sectors. The
result is a complete list or table in computer memory of all
bad sectors in the new area of the disk 2. 65 connection with the cluster resizing step 158 (FIG. 7).

According to one alternative method of the present
invention, the test for bad sectors in the new disk area is

The placement conventions exhibited by FliT structures in
the selected partition are followed to the extent possible in

5,706.472
17

view of the modified partition size. Thus, each system
structure that is already within the modified partition bound­
aries is preferably left in the same location on the disk 2
unless that structure would not be located at the required
offset within the modified partition. For instance. most but 5

typically not all clusters within a file are left in place when
cluster size is increased.

18
is replaced by the system indicator SO for a 16-bit FAT file
system less than 32 megabytes in size if the selected
partition is a 12-bit FAT partition and the modified partition
is a 16-bit FAT partition less than 32 megabytes in size.

As part of the clean-up portion of the exiting step 178 in
cases where the partition is to be reduced, some methods
according to the present invention check for any sectors in
the truncated region of the partition which are not bad
sectors and which are still allocated. If any such sectors are

An adjusting step 176 adjusts the size, location, and
contents of the file system structures as needed to reflect
differences between the selected partition and the modified 10

partition. One method for resizing FAT system structures
when the cluster size is changed is described in detail in
connection with FIG. 9 below. Methods for resizing file
system structures are also described in the '805 application,
and are incorporated herein by this reference.

An iterative approach is preferably used during the adjust­
ing step 176. A first attempt is made to relocate all the system
structures in a manner consistent with the bounds of the
modified partition and the requirements of the file system in
question. This first attempt may fail due to overlaps between 20

old and new positions of the structures or due to a lack of
contiguous free and good sectors in the partition large
enough to receive the structures.

found, the implementing program does not alter the partition
table 32 (F1G. 2). Instead. the user is informed that the
selected partition could not be reduced, and control is
returned to the invoking environment. This situation may
occur when all or most of the free space in the selected
partition would be freed by the reduction or when there are

15 many bad sectors in the selected partition.

In the event of such failure, data and other structures on
the disk 2 that can be moved are moved to provide an 25
appropriate free location for the file system structures, after
which another attempt is made to move and adjust the file
system structures. The size of the disk area needed to contain
all the file system structures to be relocated is determined by
techniques familiar to those of skill in the art in view of the 30

teachings herein. One or more contiguous areas inside the
user data areas is then chosen and "cleared" of data by
properly and safely relocating the data using techniques
readily determined by those of skill in the art. Size
determining, clearing, and adjusting steps are repeated as 35

necessary to finish relocating the file system structures into
the newly cleared areas. If the selected partition is being
reduced then all files, directories. and other structures are
moved from the truncated region to free areas within the
modified partition. This is not infrequently the most time- 40

consuming part of the manipulation.
If the selected partition is expanded, it is possible that

many system structures will not need to be resized or moved.
In addition, whether the partition is reduced or expanded, it
will be appreciated that certain file system structures may be 45

resized in place by techniques readily determined by those
of skill in the art. Any system structures that can be left in
place without compromising the integrity of the file system
are preferably left in place.

Cluster Resizing
Those of skill in the art will appreciate that one method

for cluster resizing without partition resizing omits the
changes to the positions of the selected partition in step 162
and the corresponding changes to the partition table 32 in
step 172. FIG. 9 illustrates another method for accomplish-
ing the cluster-resizing step 158, which may be used in the
context of the partition-resizing step 154 shown in FIG. 8.

During a characteristic determining step 182, certain
characteristics of the modified FAT partition are determined.
including the size of the storage space occupied by each
cluster number in the file allocation table (typically either 12
bits or 16 bits in current FAT file systems), the size of the
modified partition. the size of the modified partition boot
area, the size of the modified partition root directory. The
space occupied by the file allocation table(s). boot sector(s),
and root directory is the "system area." The "data cluster
area" is the remaining space on the disk 2 in the modified
partition outside of the system area. The data cluster area
may include disk area not presently used but reserved for
future growth.

The size of the system structures in a FAT partition will
usually range from thirty-five sectors (assuming one boot
sector, two copies of the file allocation table at one sector
apiece, and a 512-entry root directory requiring thirty-two
sectors) to 545 sectors (assuming one boot sector. two copies
of the file allocation table at the maximum size of 256
sectors apiece, and a 512-entry root directory requiring
thirty-two sectors). However, the size of the FAT system
structures may be greater due to a larger root directory. a
larger boot area, or the presence in the selected partition of
more than two copies of the file allocation table. The
implementing program may therefore require the user to
always have approximately 280K plus the size of one cluster
in free space on the disk 2 for the modified partition. Such
a safety buffer will provide room to resize the system areas
when the selected partition is resized.

To reserve disk space in a FAT file system partition when
manipulating a FAT file system without help from. or

An exiting step 178 follows the adjusting step 176. If the 50

exiting step 178 follows an expansion of the selected
partition, then this portion of the implementing program (a)
releases any temporarily allocated disk space, and (b) returns
control to the software which invoked it or forces a reboot
before other processes can execute, as appropriate. If the
exiting step 178 follows a reduction in partition size, all file
allocation table references to data areas beyond the reduced
modified partition are removed. The partition table 32 (F1G.

55 knowledge of, the operating system, the present method may
utilize the cluster reservation method described in the '805
application, which is incorporated herein by this reference.
That cluster reservation method sets certain cluster entries to

2) is adjusted to reflect the smaller partition size. the value one rather than the value zero.
The number of data clusters in the modified partition

overall and in its data area are determined during the step
182 and a subsequent parameter determining step 184. If the
total number of data clusters (calculated after the size of all
system structures is determined during the steps 182, 184) is

Regardless of whether the selected partition is reduced or 60

expanded, the system indicator SO (F1G. 3) is replaced
during the exiting step 178. In HPFS partitions, the initial
value of the system indicator SO is restored. In FAT
partitions, the initial value of the system indicator SO is
replaced by the value which corresponds to the modified
partition, which need not be the same as the initial value. For
instance, the system indicator SO for a 12-bit FAT file system

65 greater than 4085 clusters, each cluster entry requires two
bytes of space in each file allocation table. Otherwise. each
cluster entry requires 1.5 bytes of space in each copy.

5,706.472
19

Typically one boot sector is reserved by FAT file systems.
The present method produces a modified partition having the
same number of reserved sectors as the selected partition,
whatever that value may be. If any FAT system structure
needs to be reduced or expanded, then the total number of s
sectors allocated to all file system structures must be
adjusted only by an integer multiple of the cluster size.
Following this rule may require padding some system struc­
tures or shrinking the reserved area or the root directory, but
the size of such changes is limited to less than one cluster of 10

disk space. This rule arises from the desire to maintain the
current cluster alignment on the disk 2 (FIG. 1) and thus
prevent major restructuring of all used data clusters. When
padding is required to preserve cluster alignment, it is
preferred that the root directory rather than the reserved boot 15

sector area be padded. Some older FAT-specific disk utilities
assume that only one boot sector is reserved; reserving
additional boot sectors may cause data loss if such utilities
are subsequently used.

The minimum size (in sectors) of the modified partition's 20

root directory and the minimum desired size of that root
directory are also determined during the characteristic deter­
mining step 182. The desired size must be greater than or
equal to the minimum size. Most FAT partitions formatted
by standard MS-DOS utilities contain 512 directory entries, 25

filling exactly thirty-two 512-byte disk sectors.
However, under the present method the root directory

may be extended beyond thirty-two sectors. Likewise, if the
selected FAT partition's root directory covers more than
thirty-two disk sectors and any of its end sectors are unused. 30

it may be reduced to cover fewer sectors. The number of
sectors in the root directory should be kept within bounds
established by testing commonly used operating systems.
For instance, the number of root directory sectors is pref­
erably in the range from 32 to 64 sectors under the OSfl. 35

operating system. and is preferably in the range from 32 to
96 sectors under a DOS operating system. Some users may
wish to make thirty-two sectors a minimum value.

During the parameter determining step 184, the number of
sectors required to hold each copy of the file allocation table 40

is determined. Each file allocation table preferably contains
exactly enough sectors to hold all cluster entries. If too few
sectors are allocated. data will be lost. If too many sectors
are allocated. the modified partition may be rendered unus-
able by OSfl. or another operating system. 45

One method for accomplishing the determinations made
during the steps 182, 184 is set forth below in a form readily
understood by those of skill in the art. All calculations
should be integer truncated at each step, unless otherwise

50
specified:

L Determi:ne the nmnber of cluster entries per file
allocation table sector. For a 512-byte sector, 16-bit tile

20
-continued

sectors in the modified partition as determined in the
characteristic determining step 182 or 174.
VI. Set FAT_SECTS to zero.
Vll. Set SECTSJ'E!LCLUST to the selected partition's
cluster size.
VITI. Set NUM....FATS to the nmnber of copies of tbe tile
allocation table maintained on the disk.
IX. Follow the next loop 4 times to compute FJJ_SECTS,
NUM..._CLUSTS, and NEW_FIRST...J);JA.__SECT. Convergence to tbe
proper values often occurs by the end of the secooo
iteration of the loop, but special cases require a third
loop iteration to test fbr proper convergence, and the
fourth loop iteration ensures convergence in all cases. At
the eoo of each iteration of the loop, record the values of
FJJ_SECTS, NUM..._CLUS1ERS, and NEWFIRST...J);JA.__SECT.

A. NEW _FIRST...J)ATA__SECT = BOOT_SECTS +
ROOT_SECTS + (FJJ_SECTS x
NUM....FATS). Align NEW_FIRST...J)JJA.__SECT with
tbe current cluster alignment as follows (this bas the
effect of possibly expanding the root directory):

l.lfNEW__FIRST__D;JA.__SECT is gn:ater than
OLD__FIRST__DJJA.__SECI':

a) DIFF = NEW.....FIRST__DATA.....SECT­
OLD.....FIRST__DATA__SECT.
b) Add (SECTSJ'EILCLUST- (reiiUiimer of
(DIFF I SECTS__.PER__CLUST)) to
NEWFIRST__DATA.__SECT.

2. Else if NEW _FIRST__DATA__SECT is less than
OLD_FIRST__D;JA.__SECT:

a) DIFF = OLD.....FIRST__D;JA.__SECf -
NEW _FIRST__DATA.__SECT.
b) Add the remainder of (DIFF I
SECTSJ'ER__CLUST) to NEWFlRST...J);JA.__SECf.

B. DATA.....SECTS = TOTAL_SECTS -
NEW _FIRST__DATA__SECT.
C. NUM.__CLUS1ERS = DJJA.__SECIS I SECTSJ'E!LCLUST.
D. Detennine the new value for FJJ_SECTS. For this
calculation, the number must be roUilded up, since any
partial sector lllliSt be allocated for tbe tile alloca-
tion table. Do this as follows:

1. If NUM.__CLUS1ERS is greater than 4085,
FAT_SECTS = (NUM..._CLUSTERS +
2 + 16BIT_CLUST_ENTS -
1) I 16BIT_CLUSTJ!NTS.
2. If NUM.__CLUS1ERS is smaller than or equal to
4085, FAT_SECTS = (NUM..._CLUSTERS + 2 +
12BIT_CLUST_ENTS - 1) I 12BIT_CLUST_ENTS.

E. Record the values fbr FAT_SECTS, NUM.__CLUSTERS, and
NEW _FIRST__DATA.....SECT as stated above in connection with
the initial portion of step IX.

X. When the step IX loop terminates, compare the
value of FAT _SECTS from the fourth iteration with the value
of FJJ_SECTS from tbe third iteration.

A. If the values are equal, or if tbe fourth
iteration's value is the lower of the two values, then
use the fourth iteration values of FAT_SECTS,
NUM.__CLUSTERS, and NEW __FIRST...J)ATA.....SECT;
B. Otherwise, assign these variables their respective
values at the eoo of the third iteration of the step IX
loop.

XI. ROOT_SECTS = NEW_FIRST__DATA.....SECT- (BOOT_SECTS +
(FAT_SECTS x NUM....FATS)). If NUM..._CLUS1ERS clnsters will not
hold all user data from the selected partition, notify the
user and exit. Note that no tile system parameter changes
have yet been committed to disk. The steps described have

allocation tables bold 256 entries per sector
(16BIT_CLUST__ENTS is 256), and 12-bit tile allocation tables
bold 341 and 113 entries per sector (12BIT_CLUST__ENTS is 341
and 1/3). Note that the first two cluster entries fbr every

SS been performed in the computer's RAM.

file allocation table are always used and reserved by the
system.
ll. Set OLD.....FIRST...J);JA.__SECT to the logical sector
address of tbe first data sector of the selected partition.
m. Set TOTAL._SECTS to the total nmnber of sectors in
the nxxlified partition as detennined in the chanlcteristic
determining steP 182 or 174.
IV. Set BOOT_SECTS to the nmnber of reserved boot
sectors in the modified partition as determi:ned in the
characteristic detel'lllinin8 steP 182 or 174.
V. Set ROOT_SECTS to the nmnber of root-directory

A checking step 186 ensures that no sectors previously
identified as bad sectors lie within the proposed modified
partition's system area (boot sector(s), root directory, and

60 file allocation table(s)). If any sector having an address prior
to NEW _FIRST _DATA_SECf within the system area of
the proposed modified FAT partition has been identified as
bad. either by its presence in the selected partition's bad
sector list or by the presence of an error code from the disk

65 drive 4 (FIG. 1) during the blocking step 168, then the
implementing program should warn the user and exit with­
out significantly altering the selected partition.

5,706,472
21 22

A selecting step 188 chooses between an increase in
cluster size and a decrease in cluster size. Changes to the
cluster size are constrained by Table 1, by the need to
preserve file system integrity, and by the teachings of the
present invention.

If cluster size is increased, it may be necessary to move
clusters about on the disk 2 during an aligning step 190 to
make the clusters contiguous with adjoining clusters, to
achieve proper alignment, and/or to obtain sufficient free
space into which the smaller clusters can safely expand. The

10
description of methods for moving clusters provided in the
'805 application is incorporated herein by reference.

of meaningful data occupies 8K when 8K clusters are used,
but only occupies lK when lK clusters are used. When the
cluster size is reduced, the other seven smaller clusters that
previously formed part of the original 8K cluster can and

5 should be freed by techniques familiar to those of skill in the
art.

Regardless of whether the cluster size is reduced or
increased, during a converting step 200 the original cluster
numbers used in the file allocation table(s) are replaced by
new cluster numbers which reflect the change in cluster size.
The cluster numbers of all clusters listed in all directory
structures and in the file allocation table(s) are adjusted as
described below when the modified cluster size differs from

During the aligning step 190, each "cluster chain" in the
selected partition is adjusted to conform with four condi­
tions. A "cluster chain" is the set of all clusters that belong
to a given file or subdirectory. If N represents the modified
partition cluster size divided by the selected partition cluster
size, then each cluster chain is aligned to meet the following
constraints:

15 the selected cluster size. Note that if the modified cluster size
is less than the selected cluster size then the final cluster of

1. Starting with the first cluster in the chain, each group 20
of N clusters is numbered in sequential ascending
order.

2. Starting with the first cluster in the chain, each group
of N clusters is stored contiguously on the disk 2.

3. The start of each group of N clusters is located at an 25

offset from the start of the data cluster area which is an
exact multiple of the modified cluster size.

4. The last group of clusters in the chain may contain
fewer than N clusters. However, this last group also
satisfies the numbering, storage, and location require- 30

ments in constraints 1-3 above.
For example, if the selected partition cluster size is 2K

and the modified partition cluster size is 4K, then pairs of 2K
clusters will be combined, starting sequentially from the
beginning of the file or subdirectory, to form 4K clusters 35
until a leftover cluster or the end of the cluster chain is
reached.

some files may split into used and unused clusters, depend­
ing on the size of the data stored in that cluster, the selected
cluster size, and the modified cluster size. For example. if
the selected cluster size is 4K, the modified cluster size is
lK, and the final cluster holds only one byte of data, then
that final cluster splits into one used lK cluster and 3 unused
lK clusters. To deal effectively with such situations, it is
presently preferred to coordinate the adjustment of file
allocation table entries with the adjustment of directory
entries. These adjustments are also preferably performed
only in conjunction with the use of a recovery partition
indicator as described above.

The following operations (shown inC-style pseudocode)
will convert a sector number into a cluster number:

SECIOR -= (ROOT_SECTS+(FAT_SECTS "NUM..J'ATS)+
RESERVED SECTORS)
SECIOR I= sectors per cluster
CLUSTER = SECTOR+2

Any clusters in the selected partition which are currently
marked ''bad" due to the presence of a bad sector are also
marked bad in the modified partition during an updating step
192. This is readily accomplished by those of skill in the art
according to the methods disclosed herein.

The following operations will convert a cluster number
40 into a sector number:

CLUSTER~ 2
CLUSTER •= sectors per cluster

If the cluster size is reduced, the new smaller clusters will
already be properly aligned and generally need not be
moved. However, any clusters that would be overlaid by the
expanded file allocation table(s) or root directory of the
modified partition are moved during a moving step 194.
Movement is accomplished according to the methods
described and identified herein.

45 SECTOR = CLUS'IER+ROOT_SECTS+(FAT_SECTS•NUM.....FATS)+
RESERVED_SECTORS

During an expanding step 196, additional clusters are 50

added to the file allocation table(s) and initialized in order to
accommodate the additional clusters created in the table and
in the data cluster area by dividing larger selected partition
clusters into smaller modified partition clusters. The size of
each file allocation table is determined during the steps 182, 55
184 as previously described. Cluster numbers are placed in
the file allocation table according to the constraints imposed

To convert an old (selected partition) cluster number into
a new (modified partition) cluster number, first convert the
old cluster number into a sector number using the method
above and the parameters (Roai' _SECTS, FAT _SECTS,
NUM_FATS, RESERVED_SECTORS) of the selected
partition. Then convert the resulting sector number into a
cluster number using the parameters of the modified parti­
tion.

In modifying the file allocation table(s), all file allocation
table entries are initially inspected to identify any entries
which have the value one and thus are temporarily reserved

by the file system and by the present invention, with
particular attention to the conversion described below in
connection with a converting step 200.

Clusters which are created by the change in cluster size
and which do not contain user or system data are marked as
free during a freeing step 198. In many cases, the newly
defined and smaller data clusters at the end of a file or
subdirectory cluster chain do not hold valid data. Reducing
cluster size may therefore free a significant amount of space
on the disk 2. For example, a file that contains only 100 bytes

60 in a fixable manner as previously described; all such entries
are zeroed. A buffer NEW _FAT large enough to hold the
new file allocation table is allocated and initialized to
contain all zero entries. For notational convenience, the
existing file allocation table of the selected partition is

65 denoted OLD_FAT.
The directory structures are traversed, and the following

steps are repeated for each file and directory:

5,706,472
23

L Let FACfOR represent the number of smaller modified
clusters each selected cluster will be split into when
decreasing the cluster size, or the number of smaller
selected clusters that will be merged to furm a single
modified cluster when increasing the cluster size.
n. For each cluster (OLD_CLUST) befure the end of the
current cluster chain, do the fullowing:

A. Convert the old cluster number OLD_CLUST to a new
cluster number NEW _CLUSf using the conversion
method described above.
B. If cluster size is being reduced, repeat the
fullowing (FACTOR-I) times:
NEW_FAT[NEW_CLUST] = NEW_CLUST + I
NEW_CLUST+= I
C. If cluster size is being increased, add (FACTOR-I)
to OLD_CLUST
D. OLD_NEXT_CLUST = OLD_FAT[OLD_CLUST]
E. Convert OLD__NEXI'_CLUSf to NEW_NEXT_CLUST
using the method above
F. NEW__FAT(NEW_CLUST] =NEW_NEXT_CLUST

m. For the last cluster of the chain, do the fullowing:

5

10

15

24
recognize the following as type values of FAT partitions, as
indicated by the value of the system indicator 50 (other
FAT-compatible file systems may use other type values):

a) Type 1 (that is. system indicator equal to 1) is a 12-bit
FAT (4085 clusters or less). Type 11 hexadecimal is its
hidden counterpart.

b) Type 4 is a 16-bit FAT (4086 clusters or more) under
thirty-two megabytes. Type 14 hexadecimal is its hid­
den counterpart.

c) Type 6 is a 16-bit FAT greater than or equal to
thirty-two megabytes. Type 16 hexadecimal is its hid­
den countetpart.

During the exiting step 204, the implementing program
may check the FAT partition once more to ensure complete
integrity. Any needed adjustments to back pointers for

A. Convert the old cluster number OLD_CLUST to a new
cluster number NEW _CLUSf using the conversion
method described above.
B. If cluster size is being reduced:

directories and other system structures may also be per­
formed if those updates were skipped when moving clusters.
As noted, it is also necessary to keep the partition locked
until after rebooting if the operating system used on the

20 computer does not support dynamic partition resynchroni­
zation through system calls or other means.

1. If chain belongs to a file, then
BYIES__IN_CLUSf = FILE._SIZE mod (old cluster
size)
2. If chain belongs to a directory, then
BYIES__IN_CLUST is determined by scanning the
last cluster and counting the number of used
entries
3. BYIES__IN_CLUSf +=(new cluster size-I)
4. USED_CLUSTS = BYIES__IN_CLUST I (new cluster
size)

In summary, the present invention provides a non­
destructive method that allows users who are unfamiliar
with technical intricacies to easily resize and reconfigure

25 ffiM-compatible disk partitions. Knowledge of file system
structures, cluster alignment. bad sector maps, partition table
structure and values, and numerous other details are hidden
behind a GUI and dealt with by the implementing program
according to the general directions of the user. In particular,

30 the method provides means for safely changing the cluster
size in a FAT partition. Ouster resizing is advantageously
combined in various ways with other partition
manipulations, with integrity check, and with recovery

5. Repeat the fullowing (USED CLUSTS-1) times:
NEW__FAT[NEW_CLUST] = NEW_CLUST + 1
NEW CLUSf += 1

C. NEW__FAT[NEW_CLUST] = -1 (end-<>f-chain marl=)
IV. Convert the starting cluster in the directory entry to
the new starting cluster.

35

During a preserving step 202, the system structures are
then written to the disk 2. FAT file system structures to
preserve include the root directory, the file allocation table
(s), and the boot sector. Journaling is preferably used as 40

descnbed herein to protect system data from power failures.
An exiting step 204 is then performed. Certain files have

internal structures which depend on cluster size, such as the
OS/2 "EA DATA.SF' file. which stores file locations in
cluster offsets rather than byte offsets. To complete a cluster 45

resizing operation, the internal structure of such files is
modified to reflect the modified cluster size.

Next, the boot sector is updated to reflect the size of the
modified FAT partition, the size of the modified partition's
file allocation table(s) and root directory, and other pararn- 50

eters readily determined by those of skill in the art in concert
with the teachings herein.

If a recovery sector was placed on the disk 2 at the end of
the modified partition. the contents of the recovery sector
must then be placed appropriately in the system area of the 55

modified partition and the partition type must be restored to
the appropriate type of FAT partition. If the selected partition
was expanded, the partition size was already restored. If the
selected partition was reduced, appropriate changes are
made at this time in the partition table 32 (FIG. 2) on the disk 60

2 to reflect the boundaries and size of the modified partition.
With reference to FIG. 3, the partition type indicated by

the system indicator 50 in the modified partition's partition
identifier 36 must reflect the recognized non-RPI type of the
modified partition. If the selected partition was of a "hidden" 65

type, the modified partition should be identified as being of
a corresponding hidden type. Those of skill in the art will

methods.
The invention may be embodied in other specific forms

without departing from its spirit or essential characteristics.
The described embodiments are to be considered in all
respects only as illustrative and not restrictive. In particular,
the steps illustrated may be performed in a different order
unless one step depends on the results of another step. The
scope of the invention is, therefore. indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope.

What is claimed and desired to be secured by patent is:
1. A computer-implemented method for manipulating disk

partitions, comprising the steps of:
selecting an mM-compatible partition located on a disk,

the partition having a left edge and a right edge. the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data; and

locking the selected partition prior to said modifying step.
2. A computer-implemented method for manipulating disk

partitions, comprising the steps of:
selecting an mM-compatible partition located on a disk,

the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of

5,706,472
25

electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

26
modifying the selected partition to produce a modified

partition by resizing the root directory in the selected
partition to produce a modified partition having a
different root directory size than the selected partition
without destroying user data.

7. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause
a processor to perform a method for manipulating disk
partitions, the method comprising the computer-

modifying the selected partition to produce a modified 5

partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data; and

10 implemented steps of: rebooting after said modifying step.
3. A computer -implemented method for manipulating disk

partitions, comprising the steps of:
selecting an IBM-compatible partition located on a disk,

the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of 15

electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

20 modifying the selected partition to produce a modified

selecting an IBM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub-
stantially in end-to-end fashion;

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a di11erent
cluster size than the selected partition without destroy­
ing user data; and

partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data, wherein said modifying step comprises
the step of converting cluster numbers of the selected
partition to corresponding cluster numbers of the modi­
fied partition.

4. A computer-implemented method for manipulating disk

locking the selected partition prior to the modifying step.
8. A computer-readable storage medium having a con-

25 figuration that represents data and instructions which cause
a processor to perform a method for manipulating disk
partitions, the method comprising the computer­
implemented steps of:

partitions. comprising of:
30

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks, 35
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power. the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a di11erent
cluster size than the selected partition without destroy­
ing user data; and

rebooting after the modifying step.

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different 40
cluster size than the selected partition without destroy­
ing user data, wherein said selecting step comprises
selecting a logical partition from the partition table. 9. A computer-readable storage medium having a con­

figuration that represents data and instructions which cause

45 a processor to perform a method for manipulating disk
partitions, the method comprising the computer­
implemented steps of:

5. A computer-implemented method for manipulating disk
partitions, comprising the steps of:

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks, 50
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different 55

cluster size than the selected partition without destroy­
ing user data, wherein said selecting step comprises
selecting an extended partition from the partition table.

fi. A computer-implemented method for manipulating disk
partitions, comprising the steps of: 60

selecting an IBM-compatible partition located on a disk.
the partition having a left edge and a right edge. the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a di11erent
cluster size than the selected partition without destroy­
ing user data, wherein the modifying step comprises the
step of converting cluster numbers of the selected
partition to corresponding cluster numbers of the modi-
fied partition.

selecting an IBM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

10. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause

65 a processor to perform a method for manipulating disk
partitions, the method comprising the computer­
implemented steps of:

5,706,472
27

selecting an ffiM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks, 5
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different 10
cluster size than the selected partition without destroy­
ing user data, wherein the selecting step comprises
selecting a logical partition from the partition table.

11. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause
a processor to perform a method for manipulating disk 15

partitions, the method comprising the computer­
implemented steps of:

selecting an ffiM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of 20

electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

25
modifying the selected partition to produce a modified

partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data, wherein the selecting step comprises

30
selecting an extended partition from the partition table.

12. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause
a processor to perform a method for manipulating disk
partitions, the method comprising the computer-

35
implemented steps of:

selecting an ffiM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter 40
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the root directory in the selected 45
partition to produce a modified partition having a
different root directory size than the selected partition
without destroying user data.

13. A computer-implemented method for manipulating
disk partitions, comprising the steps of: 50

selecting an ffiM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks, 55
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

28
selecting an ffiM-compatlble partition located on a disk.

the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub-
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data, wherein said modifying step comprises
employing a data recovery method.

16. The method of claim 1S, wherein said data recovery
method comprises the step of storing progress markers on
the disk within the selected partition, the progress markers
corresponding to incrementally increasing portions of said
modifying step, thereby removing the need to repeat all of
said modifying step if said modifying step is resumed after
the disk drive's communication with the source of electric
power is temporarily interrupted during said modifying step.

17. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause
a processor to perform a method for manipulating disk
partitions, the method comprising the computer­
implemented steps of:

selecting an mM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data, wherein the modifying step comprises the
step of adjusting a file system structure.

18. The storage medium of claim 17, wherein the adjust­
ing step comprises adjusting the size of a file allocation
table.

19. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause
a processor to perform a method for manipulating disk
partitions, the method comprising the computer-
implemented steps of:

selecting an ffiM-compatible partition located on a disk.
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub-
stantially in end-to-end fashion; and

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to having a modified partition having a different
cluster size than the selected partition without destroy­
ing user data, wherein the modifying step comprises
employing a data recovery method.

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different 60

cluster size than the selected partition without destroy­
ing user data, wherein said modifying step comprises
the step of adjusting a file system structure.

20. The storage medium of claim 19, wherein the data
recovery method comprises the step of storing progress
markers on the disk within the selected partition, the

65 progress markers corresponding to incrementally increasing
portions of the modifying step, thereby removing the need to
repeat all of the modifying step if the modifying step is

14. The method of claim 13, wherein said adjusting step
comprises adjusting the size of a file allocation table.

1S. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

5,706,472
29

resumed after the disk drive's communication with the
source of electric power is teiDJXlrarily interrupted during
the modifying step.

21. A computer-implemented method for manipulating
disk partitions, comprising the steps of:

selecting an ffiM-compatible partition located on a disk,
5

the partition having a left edge and a right edge. the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks, 10

each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different 15

cluster size than the selected partition without destroy­
ing user data; and

verifying the integrity and consistency of internal file
system data of the selected partition. .

20
22. The method of claim 21, wherein said verifying step

precedes said modifying step.
23. The method of claim 22, further comprising the step

30
UJ.Odifying the selected partition to produce a modified

partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data; and

resizing the selected partition such that the modified
partition has a different number of disk sectors than the
selected partition.

28. The method of claim 27, wherein said resizing step
comprises determining the maximum size of the modified
partition.

29. The method of claim 27, wherein said resizing step
comprises moving the left edge of the selected partition.

30. The method of claim 27, wherein said resizing step
comprises moving the right edge of the selected partition.

31. The method of claim 27, wherein said resizing step
comprises determining the minimum size of the modified
partition.

32. The method of claim 31. wherein said resizing step
further comprises identifying a safety factor for use in
determining the minimum size of the modified partition.

33. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause

of reverifying the integrity and consistency of the internal
file system data of the selected partition after said modifying
step.

24. A computer-readable storage medium having a con­
figuration that represents data and instructions which cause

25 a processor to perform a method for manipulating disk
partitions, the method comprising the computer­
implemented steps of:

a processor to perform a method for manipulating disk
partitions, the method comprising the computer-

30
implemented steps of:

selecting an ffiM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter 35
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti- 40

tion to produce a modified partition having a different
cluster size than the selected partition without destroy­
ing user data; and

verifying the integrity and consistency of internal file
system data of the selected partition.

25. The storage medium of claim 24. wherein the veri­
fying step precedes the modifying step.

45

26. The storage medium of claim 25, further comprising
the step of reverifying the integrity and consistency of the
internal file system data of the selected partition after the 50

modifying step.
27. A computer-implemented method for manipulating

disk partitions, comprising the steps of:
selecting an ffiM-compatible partition located on a disk,

the partition having a left edge and a right edge, the disk 55

attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

selecting an ffiM-compatible partition located on a disk,
the partition having a left edge and a right edge, the disk
attached to a disk drive communicating with a source of
electric power, the disk having at least one platter
having a plurality of substantially concentric tracks,
each track having a plurality of sectors arranged sub­
stantially in end-to-end fashion;

modifying the selected partition to produce a modified
partition by resizing the clusters in the selected parti­
tion to produce a modified partition having a different
cluster size than the selected partition without destroy-
ing user data; and

resizing the selected partition such that the modified
partition has a different number of disk sectors than the
selected partition.

34. The storage medium of claim 33, wherein the resizing
step comprises determining the maximum size of the modi­
fied partition.

35. The storage medium of claim 33. wherein the resizing
step comprises moving the left edge of the selected partition.

36. The storage medium of claim 33, wherein the resizing
step comprises moving the right edge of the selected parti­
tion.

37. The storage medium of claim 33, wherein the resizing
step comprises determining the minimum size of the modi­
fied partition.

38. The storage medium of claim 37, wherein the resizing
step further comprises identifying a safety factor for use in
determining the minimum size of the modified partition.

* * * * *

