
United States Patent [19]

Levergood et al.

[54] INTERNET SERVER ACCESS CONTROL
AND MONITORING SYSTEMS

[75] Inventors: Thomas Mark Levergood. Hopkinton;
Lawrence C. Stewart. Burlington;
Stephen Jelfrey Morris. Westford;
Andrew C. Payne. Lincoln; George
Wmfield Treese. Newton. all of Mass.

[73] Assignee: Open Market, Inc •• Cambridge. Mass.

[21] Appl. No.: 474,096

[22] Filed: Jnn. 7, 1995

[51] Int. CI.6
.. G06F 15/56

[52] U.S. CI 395/200.12; 3951200.15
[58] Field of Search 395/200.11, 200.12.

[56]

5,347,632
5,544,322
5,560,008
5,577;J.r;y:J

395/200.02. 200.05. 200.06, 200.09, 200.15;
380/23, 24, 25. 49; 340/825.34

References Cited

U.S. PJJENT DOCUMENfS

9/1994 Filepp et al 3951200
8/1996 Cheng et al 395/200.12
9/1996 Johnson et al 395/200.09

11/1996 Boyle et al. 395/200.06

FOREIGN PJJENT DOCUMENTS

0 456 920
0 645 688

wo 94/03859
wo 94/03959

11/1991
3/1995
2/1994
2/1994

European Pat. Off ..
European Pat. Off ..
WIPO G06F 13/14
WIPO.

UI'HER PUBUCATIONS

Bina et al .• Secure Access to Data over the Internet, 1994.
pp. 99-102,1EEE.

Kiuchi et al.. C-HITP-the Development of a Secure,
Closed HITP based Network on the Internet. 1996, pp.
64-75, IEEE.

Ramanathan, Srinivas. et al .. "Architectures for Personal­
ized Multimedia," IEEE Multimedia. vol. 1. No. 1. Com­
puter Society, pp. 37-46. 1994.

1111~ 1111111~11 ~1111~11~11111111111111111111
US005708780A

[11] Patent Number:

[45] Date of Patent:

5,708,780
Jan. 13, 1998

Choudhury. Abhijit K.. et al., "Copyright Protection for
Electronic Publishing Over Computer Networks," IEEE
Network. The Magazine of Computer Communications, vol.
9, No.3, pp. 12-20, May 1995.
Netscape Products, "Open and Secure Internet Software"
Internet Sep. 18, 1995, pp. 1-2.
Merchant System: Overview, "Netscape Merchant System
Data Sheet" Internet, Sep. 18, 1995. pp. 1-3.
Internet Applications Customer Showcase, "Customer
Showcase" Internet. Sep. 18, 1995., pp. 1-2.
The Server-Application Function and Netscape Server APL
'The Netscape Server APf' Netscape Products Internet, Sep.
18, 1995.pp. 1-11.
The Object-Oriented Paradigm of Server Configuration,
'The Object-Oriented Paradigm of Server Configuration"
Internet, Sep. 18, 1995, p. 102.
Verisign Redirection Information, "Important Announce­
ment" Internet, Sep. 18. 1995, p. 1.

(list continued on next page.)

Primary Examiner-William M. Treat
Assistant Examiner-Patrice L. Winder
Attorney, Agent, or Finn-Hamilton,
Reynolds. P.C.

[57] ABSTRACT

Brook, Smith &

This invention relates to methods for controlling and moni­
toring access to network servers. In particular, the process
described in the invention includes client-server sessions
over the Internet involving hypertext files. In the hypertext
environment, a client views a document transmitted by a
content server with a standard program known as the
browser. Each hypertext document or page contains links to
other hypertext pages which the user may select to traverse.
When the user selects a link that is directed to an access­
controlled file, the server subjects the request to a secondary
server which determines whether the client has an authori­
zation or valid account. Upon such verification, the user is
provided with a session identification which allows the user
to access to the requested file as well as any other files within
the present protection domain.

45 Claims, 7 Drawing Sheets

5,708,780
Page 2

OTHER PUBLICATIONS

Lou Montulli, Electronic Mail to multiple recipients of the
www-talk: list (www-talk@www10.w3.org) on "Session
Tracking" (omi.mail.www-talk, Apr. 18, 1995).

PR: Digital IDs for Open Market's Secure WebServer,
"Press Release, VeriSign, Inc. to Provide Digital IDs for

Open Market's Secure WebServer" Internet. Sep. 18. 1995,
pp. 1-2.
PR: Online Security Solutions, "Verisign, Inc. Adds the
Missing Component to Online Security Solutions" Internet,
Sep. 18. 1995, pp. 1-2.
The SSL Protocol, Internet, Sep. 18, 1995, pp. 1-18.
IStore, "Netscape !store Data Sheet" Internet, Sep. 18. 1995,
pp. 1-2.

U.S. Patent Jan. 13, 1998 Sheet 1 of 7 5,708,780

0
30

12 12

0 0

INTERNET

14 0

0 18

FIG. 1

U.S. Patent Jan. 13, 1998 Sheet 2 of 7

Browser 100

G t URL _..Link
e -Direct

,------- --------,
j- Content

N
102 Server

I 120
I

122 I too
I

Redirect I Browser
----------. U R L I

I
I
I

5,708,780

114 Authentication
Server

Transaction
Log

URL+ IP

y

108

Transaction Log
URL+SIO+IP

Redirect
URL,_;--+~ Browser

200

122 100

122

Redirect
URL 1--~ Browser 1-------'

I
I
I
I
I
I Send File

112

116
L _____ _ _______ _j

-----1 Browser I Display 100

FIG. 2A

100

U.S. Patent Jan. 13, 1998 Sheet 3 of 7 5,708,780

Browser
URL /Get Authen.

100

r-------- -----------, Authentication

1
Server

Generate

N

Determine
Level

y

210 r---'200

214 I
I
I
I

124

Challenge;
Cred. Query .___,. _ _. Browser

.,._ _____ ,:.........j Authentication
Header

300

222 100

1-------_.:....-~ Browser

100
I 222

N Access I
Denied ~---~-----.....1

228 230 32
I
I
I
I Append SID Redirect__-~~ Browser

1 . SID to URL 1
L ______________ _j

120
FIG. 28

Content
Server

__........___ Authentication
Server

@New URL w/SID

FIG. 3

0
• 00
•
;p
;­
a.

-?
1-"

~
1-"

~

g:
m.
~

~
~

01
~

.....)

= 00
~

.....)
00 =

U.S. Patent Jan. 13, 1998 Sheet 5 of 7

Doc. Title I CONTENT HOME PAGE

Doc. URL I http: //Conten·t.com/homepoge

Content 1, content 2, content 3, content 4,
~412a

content 5, Link 1, content 6, content 7,

l
I

L
I

5,708,780

400

I
r-410

408 -
402

,--412b ,..._ V"
404

content 8, content 9, conten110, Link 2,
t 414

content 11, content 12, content 13, content 14,

412c~
content 15, content 16, Link 3, content 17

http: //Content. com /advertisement - 406 r--.

FIG. 4

U.S. Patent Jan. 13, 1998 Sheet 6 of 7 5,708,780

Document View

File Options Navigate ~nnotate Documents Help

Title: I How to join I
URL: (http: /Iouth. com/service/nph- createoccf..cgi I

I. First nome I I
2. Lost name I I
3. Choose a screen name (no more than 15 characters)

I I
4. Choose a password (no more than 15 characters)

Password:

I I
Re-enter password:

I I
5. E-mail address

' ' 6. Your birthdote (MM /00/ YY J I
7. U.S. zip code, or country code

Zip/postal code:

I I
ISO country code

[us I

FIG. 5

U.S. Patent Jan. 13, 1998 Sheet 7 of7 5,708,780

NUMBER to URL
Database ---E;l 04

1
Directory

~6
Server 02

ER" 2.RED
11 TA ,

I. GET II NUMB IRECT
RGET- URL" [MS]

Client r-G 01

3. GET "TARGET-U RLU 4.Send Page

Merchant Server (MS) 1--603

FIG. 6

5,708,780
1

INTERNET SERVER ACCESS CONTROL
AND MONITORING SYSTEMS

REFERENCE TO APPENDIX

2
Created in 1991, the Web is based on the concept of

"hypertext" and a transfer method known as "IfiTP"
(Hypertext Transfer Protocol). HITP is designed to run
primarily over TCPIIP and uses the standard Internet setup,

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso­
ever.

5 where a server issues the data and a client displays or
processes it. One format for information transfer is to create
documents using Hypertext Markup Language (HTML).
HTML pages are made up of standard text as well as
formatting codes which indicate how the page should be

BACKGROUND OF THE INVENITON

The Internet, which started in the late 1960s, is a vast
computer network consisting of many smaller networks that
span the entire globe. The Internet has grown exponentially,
and millions of users ranging from individuals to corpora­
tions now use permanent and dial-up connections to use the
Internet on a daily basis worldwide. The computers or
networks of computers connected within the Internet, known
as "hosts", allow public access to databases featuring infor­
mation in nearly every field of expertise and are supported

10 displayed. The Web client, a browser, reads these codes in
order to display the page. The hypertext conventions and
related functions of the world wide web are described in the
appendices of U.S. patent application Ser. No. 081328.133,
filed on Oct. 24, 1994, by Payne et al. which is incorporated

15 herein by reference.

Each Web page may contain pictures and sounds in
addition to text Hidden behind certain text, pictures or
sounds are connections, known as "hypertext links"
("links"), to other pages within the same server or even on

by entities ranging from universities and government to
many commercial organizations.

20 other computers within the Internet. For example, links may
be visually displayed as words or phrases that may be
underlined or displayed in a second color. Each link is
directed to a web page by using a special name called a URL
(Uniform Resource Locator). URLs enable a Web browser

25 to go directly to any file held on any Web server. A user may
also specify a known URL by writing it directly into the
command line on a Web page to jump to another Web page.

The information on the Internet is made available to the
public through "servers". A server is a system running on an
Internet host for making available files or documents con­
tained within that host. Such files are typically stored on
magnetic storage devices, such as tape drives or fixed disks, 30
local to the host. An Internet server may distribute informa­
tion to any computer that requests the files on a host. The
computer making such a request is known as the "client",
which may be an Internet-connected workstation, bulletin
board system or home personal computer (PC).

The URL naming system consists of three parts: the
transfer format, the host name of the machine that holds the
file, and the path to the file. An example of a URL may be:

http://www .college.univ.edul Adir/Bdir/Cdir/page.html,

where "hUp" represents the transfer protocol; a colon and

TCP/IP (l'ransmission Control Protocol/Internet Protocol)
35 two forward slashes (:/f) are used to separate the transfer

format from the host name; "www.college.univ.edu" is the
host name in which "www" denotes that the file being
requested is a Web page; "/Adir/Bdir/Cdir" is a set of

is one networking protocol that permits full use of the
Internet. All computers on a TCPIIP network need unique ID
codes. Therefore, each computer or host on the Internet is
identified by a unique number code, known as the IP 40

(Internet Protocol) number or address, and corresponding
network and computer names. In the past, an Internet user
gained access to its resources only by identifying the host
computer and a path through directories within the host's
storage to locate a requested file. Although various navigat- 45
ing tools have helped users to search resources on the
Internet without knowing specific host addresses, these tools
still require a substantial technical knowledge of the Inter­
net.

The World-Wide Web (Web) is a method of accessing 50

information on the Internet which allows a user to navigate
the Internet resources intuitively, without IP addresses or
other technical knowledge. The Web dispenses with
command-line utilities which typically require a user to
transmit sets of commands to communicate with an Internet 55

server. Instead, the Web is made up of hundreds of thousands
of interconnected "pages", or documents, which can be
displayed on a computer monitor. The Web pages are
provided by hosts running special servers. Software which
runs these Web servers is relatively simple and is available 60

on a wide range of computer platforms including PC' s.
Equally available is a form of client software, known as a
Web "browser", which is used to display Web pages as well
as traditional non-Web files on the client system. Today, the
Internet hosts which provide Web servers are increasing at a 65

rate of more than 300 per month. en route to becoming the
preferred method of Internet communication.

directory names in a tree structure, or a path, on the host
machine; and "page.html" is the file name with an indication
that the file is written in HTML.

The Internet maintains an open structure in which
exchanges of information are made cost-free without restric­
tion. The free access format inherent to the Internet,
however, presents difficulties for those information provid­
ers requiring control over their Internet servers. Consider for
example, a research organization that may want to make
certain technical information available on its Internet server
to a large group of colleagues around the globe, but the
information must be kept confidential. Without means for
identifying each client, the organization would not be able to
provide information on the network on a confidential or
preferential basis. In another situation, a company may want
to provide highly specific service tips over its Internet server
only to customers having service contracts or accounts.

Access control by an Internet server is difficult for at least
two reasons. First, when a client sends a request for a file on
a remote Internet server, that message is routed or relayed by
a web of computers connected through the Internet until it
reaches its destination host. The client does not necessarily
know how its message reaches the server. At the same time,
the server makes responses without ever knowing exactly
who the client is or what its IP address is. While the server
may be programmed to trace its clients, the task of tracing
is often difficult, if not impossible. Secondly, to prevent
unwanted intrusion into private local area networks (LAN),
system administrators implement various data-flow control

5,708,780
3

mechanisms. such as the Internet "firewalls". within their
networks. An Internet firewall allows a user to reach the
Internet anonymously while preventing intruders of the
outside world from accessing the user's LAN.

4
However, if the relative link points to a controlled page in a
different protection domain, the SID is no longer valid. and
the client is automatically redirected to forward the rewritten
URL to the authentication server to update the SID. The

SUMMARY OF THE INVENTION
s updated or new SID provides access to the new domain if the

user is qualified.
The user may also elect to traverse a link to a document

in a different path. This is called an "absolute link". In
generating a new absolute link, the SID is overwritten by the

The present invention relates to methods of processing
service requests from a client to a server through a network
In particular the present invention is applicable to processing
client requests in an HITP (Hypertext Transfer Protocol)
environment, such as the World-Wide Web (Web). One
aspect of the invention involves forwarding a service request
from the client to the server and appending a session
identification (SID) to the request and to subsequent service
requests from the client to the server within a session of
requests. In a preferred embodiment. the present method
involves returning the SID from the server to the client upon
an initial service request made by the client. A valid SID may
include an authorization identifier to allow a user to access
controlled files.

10 browser. In the preferred embodiment. the content server, in
each serving of a controlled Web page within the domain,
filters the page to include the current SID in each absolute
URL on the page. Hence, when the user elects to traverse an
absolute link, the browser is facilitated with an authenticated

15 URL which is directed with its SID to a page in a different
path. In another embodiment, the content server may forego
the filtering procedure as above-described and redirect an
absolute URL to the authentication server for an update.

In a preferred embodiment, a client request is made with
a Uniform Resource Locator (URL) from a Web browser.
Where a client request is directed to a controlled file without

An absolute link may also be directed to a controlled file
20 in a different domain. Again, such a request is redirected to

the authentication server for processing of a new SID. An
absolute link directed to an uncontrolled file is accorded an
immediate access.

an SID, the Internet server subjects the client to an autho-
25

rization routine prior to issuing the SID, the SID being
protected from forgery. A content server initiates the autho­
rization routine by redirecting the client's request to an
authentication server which may be at a different host. Upon
receiving a redirected request, the authentication server

30
returns a response to interrogate the client and then issues an
SID to a qualified client. For a new client, the authentication
server may open a new account and issue an SID thereafter.
A valid SID typically comprises a user identifier, an acces­
sible domain, a key identifier. an expiration time such as

35
date, the IP address of the user computer, and an unforget­
table digital signature such as a cryptographic hash of all of
the other items in the SID encrypted with a secret key. The
authentication server then forwards a new request consisting
of the original URL appended by the SID to the client in a

40
REDIRECf. The modified request formed by a new URL is
automatically forwarded by the client browser to the content
server.

In another embodiment. a server access control may be
maintained by programming the client browser to store an
SID or a similar tag for use in each URL call to that
particular server. This embodiment. however, requires a
special browser which can handle such communications and
is generally not suitable for the standard browser format
common to the Web.

Another aspect of the invention is to monitor the fre-
quency and duration of access to various pages both con­
trolled and uncontrolled. A transaction log within a content
server keeps a history of each client access to a page
including the link sequence through which the page was
accessed. Additionally, the content server may count the
client requests exclusive of repeated requests from a com­
mon client. Such records provide important marketing feed­
back including user demand, access pattern, and relation­
ships between customer demographics and accessed pages
and access patterns.

The above and other features of the invention including
various novel details of construction and combinations of When the content server receives a URL request accom­

panied by an SID, it logs the URL with the SID and the user
IP address in a transaction log and proceeds to validate the
SID. When the SID is so validated, the content server sends
the requested document for display by the client's Web
browser.

45 parts will now be more particularly described with reference
to the accompanying drawings and pointed out in the claims.
It will be understood that the particular devices and methods
embodying the invention are shown by way of illustration
only and not as limitations of the invention. The principles

In the preferred embodiment. a valid SID allows the client
to access all controlled files within a protection domain
without requiring further authorization. A protection domain

so and features of this invention may be employed in varied and
numerous embodiments without departing from the scope of
the invention.

is defined by the service provider and is a collection of
controlled files of common protection within one or more
servers. ss

When a client accesses a controlled Web page with a valid
SID, the user viewing the page may want to traverse a link
to view another Web page. There are several possibilities.
The user may traverse a link to another page in the same
path. This is called a ''relative link". A relative link may be 60

made either within the same domain or to a different domain.
The browser on the client computer executes a relative link
by rewriting the current URL to replace the old controlled
page name with a new one. The new URL retains all portions
of the old, including the SID, except for the new page name. 65

If the relative link points to a page in the same protection
domain, the SID remains valid, and the request is honored.

BRIEF DESCR1PTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating the Internet operation.
FIG. 2A is a flowchart describing the preferred method of

Internet server access control and monitoring.
FIG. 2B is a related flowchart describing the details of the

authentication process.
FIG. 3 illustrates an example of a client-server exchange

session involving the access control and monitoring method
of the present invention.

FIG. 4 is an example of a World Wide Web page.
FIG. 5 is an example of an authorization form page.
FIG. 6 is a diagram describing the details of the transla-

tion of telephone numbers to URLs.

5,708,780
5

DErAILED DESCRIPTION OF THE
INVENTION

Referring now to the drawings, FIG. 1 is a graphical
illustration of the Internet. The Internet 10 is a network of

5 millions of interconnected computers 12 including systems
owned by Internet providers 16 and information systems
(BBS) 20 such as Compuserve or America Online. Indi­
vidual or corporate users may establish connections to the
Internet in several ways. A user on a home PC 14 may

10 purchase an account through the Internet provider 16. Using
a modem 22, the PC user can dial up the Internet provider
to connect to a high speed modem 24 which, in turn,
provides a full service connection to the Internet. A user 18
may also make a somewhat limited connection to the

15 Internet through a BBS 20 that provides an Internet gateway
connection to its customers.

6
the current domain 106. If the request having a SID is
directed to a controlled page of a different domain, the SID
is no longer valid and. again, the user is redirected to the
authentication server 122.

If the request is for a controlled page within the current
domain, the content server proceeds to log the request URL.
tagged with SID, and the user IP address in the transaction
log 108. The content server then validates the SID 110. Such
validation includes the following list of checks: (1) the
SID's digital signature is compared against the digital sig­
nature computed from the remaining items in the SID and
the user IP address using the secret key shared by the
authentication and content servers; (2) the domain field of
the SID is checked to verify that it is within the domain
authorized; and (3) the EXP field of the SID is checked to
verify that it is later than the current time.

FIG. 2A is a flowchart detailing the preferred process of
the present invention and FIG. 4 illustrates a sample Web
page displayed at a client by a browser. The page includes
text 404 which includes underlined link text 412. The title
bar 408 and URL bar 402 display the title and URL of the
current web page, respectively. As shown in FIG. 4, the title
of the page is "Content Home Page" and the corresponding
URL is "http://content.comlhomepage". When a cursor 414 25
is positioned over link text 412b. the page which would be
retrieved by clicking a mouse is typically identified in a
status bar 406 which shows the URL for that link. In this
example the status bar 406 shows that the URL for the
pointed link 412b is directed to a page called 30
"advertisement''. in a commercial content server called
"content". By clicking on the link text, the user causes the
browser to generate a URL GEf request at 100 in FIG. 2A.
The browser forwards the request to a content server 120,
which processes the request by first determining whether the 35
requested page is a controlled document 102. If the request

If the validation passes, the content server searches the
page to be forwarded for any absolute URL links contained
therein 112, that is, any links directed to controlled docu-

20 ments in different content servers. The content server aug­
ments each absolute URL with the current SID to facilitate
authenticated accesses across multiple content servers. The
requested page as processed is then transmitted to the client

is directed to an uncontrolled page, as in "advertisement"
page in this example, the content server records the URL and
the IP address, to the extent it is available, in the transaction
log 114. The content server then sends the requested page to 40
the browser 116 for display on the user computer 117.

If the request is directed to a controlled page, the content
server determines whether the URL contains an SID 102.
For example, a URL may be directed to a controlled page
name "report", such as "http://content.com/report", that 45

requires an SID. If no SID is present, as in this example, the
content server sends a "REDIRECT" response 122 to the
browser 100 to redirect the user's initial request to an
authentication server 200 to obtain a valid SID. The details
of the authentication process are described in FIG. 2B and so
will be discussed later, but the result of the process is an SID
provided from the authentication server to the client. In the
above example, a modified URL appended with an SID may
be: "http://content.com/[SID]/report". The preferred SID is

browser for display 117. The user viewing the requested
Web page may elect to traverse any link on that page to
trigger the entire sequence again 100.

FIG. 2B describes the details of the authentication pro­
cess. The content server may redirect the client to an
authentication server. The REDIRECT URL might be:
"http://auth.com/authenticate?domain=[domain] & URL=
http://content.com/report". That URL requests authentica­
tion and specifies the domain and the initial URL. In
response to the REDIRECT, the client browser automati­
cally sends a GEf request with the provided URL.

Whenever the content server redirects the client to the
authentication server 200, the authentication server initiates
the authorization process by validating that it is for an
approved content server and determining the level of authen­
tication required for the access requested 210. Depending on
this level. the server may challenge the user 212 for cre-
dentials. If the request is for a low level document, the
authentication may issue an appropriate SID immediately
228 and forego the credential check procedures. If the
document requires credentials, the authentication server
sends a "CHALLENGE" response which causes the client
browser to prompt the user for credentials 214. A preferred
credential query typically consists of a request for user name
and password. If the user is unable to provide a password.
the access is denied. The browser forms an authorization
header 300 from the information provided, and resends a
GEf request to the authentication server using the last URL
along with an authorization header. For example, a URL of
such a GET request may be: "http://auth.com/
authenticate?domain=[domain]&URL=http://content.com/
report and the authorization header may be:"AUTHORIZE:
[authorization]".

Upon receiving the GEf request, the authentication server
queries an account database 216 to determine whether the
user is authorized 218 to access the requested document. A
preferred account database may contain a user profile which
includes information for identifying pmposes, such as client
IP address and password, as well as user demographic
information, such as user age, home address, hobby, or

a sixteen character ASCII string that encodes 96 bits of SID 55
data, 6 bits per character. It contains a 32-bit digital
signature, a 16-bit expiration date with a granularity of one
hour, a 2-bit key identifier used for key management, an
8-bit domain comprising a set of information files to which
the current SID authorizes access, and a 22-bit user identi- 60

fier. The remaining bits are reserved for expansion. The
digital signature is a cryptographic hash of the remaining
items in the SID and the authorized IP address which are
encrypted with a secret key which is shared by the authen­
tication and content servers. 65 occupation, for later use by the content server. If the user is

authorized. an SID is generated 228 as previously described.
If the user is not cleared for authorization, the authentication

If the initial GEf URL contains a SID, the content server
determines whether the request is directed to a page within

5,708,780
7 8

server checks to see if the user qualifies for a new account As previously described. the preferred SID comprises a
220. If the user is not qualified to open a new account. a page compact ASCll string that encodes a user identifier, the
denying access 222 is transmitted to the client browser 1M. current domain, a key identifier. an expiration time, the
If the user is qualified, the new user is sent a form page such client IP address. and an unforgeable digital signature. In
as illustrated in FIG. 5 to initiate a real-time on-line regis- s Step 8, the authentication server redirects the client to the
tration 224. The form may, for example, require personal tagged URL, ''http://content.com/[SID]/report", to the eli-
information and credit references from the user. The browser ent In Step 9, the tagged URL is automatically forwarded by
is able to transmit the data entered by the user in the blanks the browser as a GEl' request to the content server. The
502 as a "POST' message to the authentication server. A content server logs the GEl' request in the Transaction
POST message causes form contents to be sent to the server 10 database 56 by recording the tagged URL, the client IP
in a data body other than as part of the URL. If the address, and the current time. In Step 10, the content server,
registration form filled out by the new user is valid 226, an upon validating the SID, transmits the requested controlled
appropriate SID is generated 228. If the registration is not page "report" for display on the client browser.
valid. access is again denied 222. According to one aspect of the present invention, the

An SID for an authorized user is appended ("tagged") 230 15 content server periodically evaluates the record contained in
to the original URL directed to a controlled page on the the transaction log 56 to determine the frequency and
content server. The authentication server then transmits a duration of accesses to the associated content server. The
REDIRECr response 232 based on the tagged URL to the server counts requests to particular pages exclusive of
client browser 100. The modified URL, such as ''http:// repeated requests from a common client in order to deter-
content.com/[SID]/report" is automatically forwarded to the 20 mine the merits of the information on different pages for
content server 120. ratings purposes. By excluding repeated calls, the system

FIG. 3, illustrates a typical client-server exchange involv- avoids distortions by users attempting to "stuff the ballot
ing the access control and monitoring method of the present box." In one embodiment. the time intervals between
invention. In Step 1, the client 50 running a browser trans- repeated requests by a common client are measured to
mits a GET request through a network for an uncontrolled 2s exclude those requests falling within a defined period of
page (UCP). For example, the user may request an adver- time.
tisement page by transmitting a URL "http://content.com/ Additionally, the server may, at any given time, track
advertisement", where "content.com" is the server name and access history within a client-server session. Such a history
"advertisement'' is the uncontrolled page name. In Step 2, profile informs the service provider about link transversal
the content server 52 processes the GET request and trans- 30 frequencies and link paths followed by users. This profile is
mits the requested page, "advertisement". The content server produced by filtering transaction logs from one or more
also logs the GET request in the transaction database 56 by servers to select only transactions involving a particular user
recording the URL, the client 1P address, and the current ID (UID). TWo subsequent entries, A and B, corresponding
time. to requests from a given user in these logs represent a link

In Step 3, the user on the client machine may elect to 35 traversal from document A to document B made by the user
traverse a link in the advertisement page directed to a in question. This information may be used to identify the
controlled page (CP). For example, the advertisement page most popular links to a specific page and to suggest where
may contain a link to a controlled page called "report". to insert new links to provide more direct access. In another
Selecting this link causes the client browser 50 to forward a embodiment, the access history is evaluated to determine
GEl' request through a URL which is associated with the 40 traversed links leading to a purchase of a product made
report file "http://contentcom!report". The content server 52 within commercial pages. This information may be used. for
determines that the request is to a controlled page and that example, to charge for advertising based on the number of
the URL does not contain an SID. In Step 4, the content link traversals from an advertising page to a product page or
server transmits a REDIRECf response to the client, and. in based on the count of purchases resulting from a path
Step 5, the browser automatically sends the REDIRECf 45 including the advertisement In this embodiment. the server
URL to the authentication server 54. The REDIRECI' URL can gauge the effectiveness of advertising by measuring the
sent to the authentication server may contain the following number of sales that resulted from a particular page, link, or
string: path of links. The system can be configured to charge the

"http://auth.com/authenticate?domain=[domain]&URL= merchant for an advertising page based on the number of
http://content.com/report". so sales that resulted from that page.

The authentication server processes the REDIRECf and According to another aspect of the present invention, a
determines whether user credentials (CRED) are needed for secondary server, such as the authentication server 200 in
authorization. In Step 6, the authentication server transmits FIG. 2B, may access a prearranged user profile from the
a "CHALLENGE" response to the client As previously account database 216 and include information based on such
described, typical credentials consist of user name and 55 a profile in the user identifier field of the SID. In a preferred
password. An authorization header based on the credential embodiment, the content server may use such an SID to
information is then forwarded by the client browser to the customize user requested pages to include personalized
authentication server. For example, a GET URL having such content based on the user identifier field of the SID.
an authorization header is: In another aspect of the invention, the user may gain

"http://autho.com/authenticate?domain=[domain] 60 access to domain of servers containing journals or publica-
&URL=http://contentcom/report and the authorization tions through a subscription. In such a situation, the user
header may be: "AUfHORIZE:[authorization]". The may purchase the subscription in advance to gain access to
authentication server processes the GET request by on-line documents through the Internet The user gains
checking the Account Database 58. If a valid account access to a subscribed document over the Internet through
exists for the user, an SID is issued which authorizes 65 the authorization procedure as described above where an
access to the controlled page "report" and all the other authorization indicator is preferably embedded in a session
pages within the domain. identifier. In another embodiment, rather than relying on a

5,708,780
9

prepaid subscription, a user may be charged and billed each
time he or she accesses a particular document through the
Internet In that case, authorization may not be required so
long as the user is fully identified in order to be charged for
the service. The user identification is most appropriately 5

embedded in the session identifier described above.
In another aspect of the invention, facilities are provided

10
computed from database 604. The client browser 601 then
automatically sends Message 3 to GEf the contents of this
URL. Merchant server 603 returns this information in Mes-
sage 4. The server 602 might have returned a Web page to
the client to provide an appropriate link to the required
document However, because server 602 makes a translation
to a final URL and sends a REDIRECf rather than a page to
client 601, the document of message 4 is obtained without
any user action beyond the initial dial input.

The Target URL contained in Message 3 can be an
ordinary URL to an uncontrolled page, or it can be a URL
that describes a controlled page. If the Target URL describes
a controlled page then authentication is performed as pre­
viously described. The Target URL can also describe a URL
that includes an SID that provides a preauthorized means of
accessing a controlled page.

Among benefits of the "dial" command and its imple­
mentation is an improved way of accessing the Internet that
is compatible with conventional telephone numbers and

to allow users to utilize conventional telephone numbers or
other identifiers to access merchant services. These mer­
chant services can optionally be protected using SIDs. In a 10

preferred embodinlent as shown in F1G. 6, a Web browser
client 601 provides a "dial" command to accept a telephone
number from a user, as by clicking on a "dial" icon and
inputting the telephone number through the keyboard. The
browser then constructs a URL of the form "http:// 15
directory.net/NUMBER", where NUMBER is the telephone
number or other identifier specified by the user. The browser
then performs a GEf of the document specified by this URL.
and contacts directory server 602, sending the NUMBER
requested in Message 1. 20 other identifiers. Merchants do not need to alter their print or

television advertising to provide an Internet specific form of
contact information, and users do not need to learn about
URLs.

In another embodiment, implemented with a conventional
browser, client 601 uses a form page provided by directory
server 602 that prompts for a telephone number or other
identifier in place of a "dial" command, and Message 1 is a
POST message to a URL specified by this form page.

Once NUMBER is received by directory server 602, the
directory server uses database 604 to translate the NUMBER

In the approach a single merchant server can provide
25 multiple services that correspond to di11erent external ''tele­

phone numbers" or other identifiers. For example, if users
dial the "flight arrival" number they could be directed to the
URL for the arrival page, while. if they dial the ''reserva-to a target URL that describes the merchant server and

document that implements the service corresponding to
NUMBER. This translation can ignore the punctuation of 30

the number, therefore embedded parenthesis or dashes are
not significant.

tions" number, they would be directed to the URL for the
reservations page. A ''priority gold" number could be
directed to a controlled page URL that would first authen-
ticate the user as belonging to the gold users group, and then
would provide access to the ''priority gold" page. An unpub­
lished "ambassador" number could be directed to a tagged

In another embodinlent an identifier other than a number
may be provided. For example, a user may enter a company
name or product name without exact spelling. In such a case
a "soundex" or other phonetic mapping can be used to
permit words that sound alike to map to the same target
URL. Multiple identifiers can also be used, such as a
telephone number in conjunction with a product name or
extension.

In Message 2, Directory server 602 sends a REDIRECf
to client 601, specifying the target URL for NUMBER as

35 URL that permits access to the "priority gold" page without
user authentication.
Equivalents

Those skilled in the art will know, or be able to ascertain
using no more than routine experimentation. many equiva-

40 Ients to the specific embodiments or the invention described
herein. These and all other equivalents are intended to be
encompassed by the following claims.

1

5,708,780
11

-30-

I
* tclSidSup.c

* * tel SID packlunpacklid routines

*
* Steve Morris
* morris®openmarket.com
*I

I* #define debug 1 *I
#include <Stdio.h>
#include <sysltypes.h>
#include <Stdlib.h>
#include <Unistd.h>
#ifdef _alpha
#include <sysltime.h>
#endif
#include <tcl.h>
#include "global.h"
#include "mdS.h"

#ifdef debug
#define dbg out(s) printf("%s\n", s);
#define dbg-outi{s,a) printf("%s %x\n", s,a);
#define dbg-outs(s,a) printf("%s %s\n", s,a);
#else -
#define dbg out(s}
#define dbg-outi(s,a)
#define dbg=outs(s,a)
#end if

I* external routines called
*I

12

char* radix64decode noslash(char *in, int len, int *output_len);
char* radix64encode-noslash(char *in, int len);
int compute_ihash(char *str);

#define sid_rev_zero (0)

#define get sid(lw,pos,mask) ((bsid[lw]>>pos) & mask)
#define put-sid(lw,pos,mask,data) {bsid[lw] &= -(Oxffffffff & (mask<<pos)); \

- bsid (lw] I= ((data & mask) «pos) ; }

#define sig lw 0
#define sigyos 0
#define sig_mask oxffffffff

#define kid lw 1
#define kidyos 0
#define kid mask Ox3
#define rev-lw 1
#define rev_pos 2
#define rev mask Ox3
#define uid-lw 1

13

·# .. efine uid_pos
#define uid mask
#define rsrvl lw
#define rsrvl~os
#define rsrvl_mask

#define dom lw
#define domyos
#define dom mask
#define rsrv2 lw
#define rsrv2:Pos
#define rsrv2 mask
#define uctx_lw
#define uctx_pos
#define uctx mask
#define exp_Iw
#define exp_pos
#define exp_mask

4
Ox3fffff
1
26
Ox3f

2
0
oxff
2
8
Ox3f
2
14
Ox3
2
16
Oxffff

#ifdef sun
#define~ix_endian(i,o)

#else
/* #define fix endian(i,o)
#define fix endian(i,o)
#endif -

5,708,780

-31-

ecp = (char *) i; \
eda (*ecp++)<<O; \
eda 1= (*ecp++)<<8; \
eda = {*ecp++)<<16; \
eda = (*ecp)<<24; \
(int *) *o = eda;}

{ (int *) *o (int *} *i;} */

14

5,708,780
15 16

-32-

/* TclUnpackSid[NoValidate)
* Converts a binary sid to the internal representation, and does minimal
* validation on the SID, the NoValidate version does even less.
* Inputs:
* the sid a sid, looks like "/®®u9Gig4QEAAAAABPn"
* Returns:
* {%d %d %d %d} on succes (dom uid keyid exp)

on failure * or
*
*I

int TclUnpackSid(ClientData dummy, Tcl_Interp *interp,
int argc, char **argv)

char temp[512);
int ret status = 1;
int i; -
int * bsid = NULL, act hash;
char ip address[32]=""--;- secret[200]="", *cp;
unsigned char *ecp;
unsigned int eda;
char hash_buffer[512];

struct sid info
{ -
unsigned int sig;
unsigned int kid;
unsigned int uid;
unsigned int rev;
unsigned int dom;
unsigned int exp;
unsigned int uctx;
} esid;

if (argc ! = 2)
{
Tcl_AppendResult(interp, "wrong# args: should be\"", argv[O],

" string\"", (char *) NULL};
return TCL ERROR;
} -

#ifdef test ip
strcpy(ip address, test_ip);

#endif -
#ifdef test secret

strcpy{secret, test secret);
#endif -

cp = Tel GetVar(interp, "sidip", TCL GLOBAL ONLYITCL LEAVE ERR MSG);
if (cp !~NULL) strncpy(ip_address, cp, 31)7 - - -

cp = argv[1]+3;
i = strlen (cp) ;
if (i != 16) goto sid_bad;

5,708,780
17

-33-
/* first convert the SID back to binary*/
bsid = (int *) radix64decode noslash(cp, i, &i);
if {bsid == NULL) goto sid bad;
if (i != 12) goto sid_bad;-

fix endian{&bsid[O], &bsid[O]);
fix-endian(&bsid[1), &bsid[l]);
fix=endian(&bsid[2) r &bsid[2});

dbg outi ("sid[O] =",bsid[O]};
dbg-outi("sid[1]=",bsid[1]};
dbg=outi{"sid[2]=",bsid[2]};

18

dbg outi("sig =",get_sid(sig_lw,sig_pos,sig_mask));
dbg-outi("kid =",get_sid(kid_lw,kid_pos,kid_mask});
dbg-outi ("uid =" ,get_sid (uid_lw, uid_pos, uid_mask));
dbg-outi("rev =",get_sid{rev_lw,rev_pos,rev_mask)};
dbg=outi("dom =",get_sid{dom_lw,dom_pos,dom_mask)};
dbg_outi ("exp =", get_sid (exp_lw, exp_pos, exp_mask)};
dbg_outi ("uctx =" ,get_sid(uctx_lw,uctx_pos,uctx_mask));
dbg_outi ("rsl =" ,get_sid (rsrv1_lw, rsrvl_pos, rsrvl_mask));
dbg_outi ("rs2 =", get_sid (rsrv2_lw, rsrv2_pos, rsrv2_mask));

/* check the SID version field */
if (get_sid(rev_lw,rev_pos,rev_mask) != sid rev zero) goto sid bad;
if !get_sid!rsrvl_lw,rsrvl_pos,rsrvl_maskl != oT goto sid bad;-
if (get_sid(rsrv2_lw,rsrv2_pos,rsrv2_mask) != 0) goto sid=bad;

/* unpack the sid */
esid.sig get_sid(sig_lw,sig_pos,sig_mask);
esid.kid get_sid(kid_lw,kid_pos,kid_mask);
esid.uid get_sid(uid_lw,uid_pos,uid_mask);
esid.rev get_sid(rev_lw,rev_pos,rev_mask);
esid.dom get_sid(dom_lw,dom_pos,dom_mask);
esid.exp get_sid(exp_lw,exp_pos,exp_mask);
esid.uctx = get_sid{uctx_lw,uctx_pos,uctx_mask);

dbg outi("sig =",esid.sig);
dbg-outi("kid =",esid.kid);
dbg-outi("uid =",esid.uid);
dbg-outi("rev =",esid.rev);
dbg-outi("dom =",esid.dom);
dbg-outi("exp =",esid.exp);
dbg=outi("uctx =",esid.uctx};

sprintf (temp, "secret (%d)", esid. kid);
cp =Tel GetVar{interp, temp, TCL GLOBAL ONLY);
if (cp !~NULL} strncpy(secret, cp, 199);

/* hash the sid and check the signature */
sprintf(hash_buffer, "%s%s%08x%08x", secret,ip_address,bsid[2] ,bsid[l]);
dbg outs ("hashing ->",hash buffer) ;
act-hash= compute ihash(hash buffer);
fix-endian(&act hash, &act hash);
dbg:::outi("expected hash=",bsid[O]);
dbg outi("actual hash=",act hash);
if Tact_hash != esid.sig) goto sid_bad;

rtn exit:

5,708,780
19 20

-34-

if (bsid != NULL) free(bsid);
if (ret_status} sprintf(interp->result,"{%d %d %d %d %d}",

esid.dom,esid.uid,esid.kid,esid.exp,esid.uctx);
else sprintf(interp->result,"");
return TCL_OK;

sid bad:
ret status = 0;
goto rtn exit;

exp_bad:
ret_status = 0;
goto rtn_exit;

5,708,780
21 22

-35-

int TclUnpackSidNoValidate(ClientData dummy, Tel Interp *interp,
int argc, char **argv)

char temp[Sl.2];
int ret_status = 1;
int i;
int * bsid = NULL, act hash;
char ip address[32]=""-;- secret[200]="", *cp;
unsigned char *ecp;
unsigned int eda;
char hash_buffer[512];

-struct sid info
{ -
unsigned int sig;
unsigned int kid;
unsigned int uid;
unsigned int rev;
unsigned int dom;
unsigned int exp;
unsigned int uctx;
} esid;

if (argc I= 2)
{
Tcl_AppendResult(interp, "wrong# args: should be \"", argv[O],

"string\"", (char*) NULL);
return TCL ERROR;
} -

#ifdef test_ip
strcpy(ip address, test_ip);

#endif -
#ifdef test secret

strcpy(secret, test secret);
#endif -

cp = Tcl_GetVar(interp, "sidip", TCL_GLOBAL_ONLYITCL_LEAVE_ERR_MSG);
if (cp !=NULL) strncpy(ip_address, cp, 31);

cp = argv[1]+3;
i = strlen(cp);
if (i != 16) goto sid_bad;

/* first convert the SID back to binary*/
bsid = (int *) radix64decode noslash(cp, i, &i);
if (bsid == NULL) goto sid bad;
if (i != 12) goto sid_bad;-

fix endian(&bsid[O], &bsid[OJ);
fix-endian(&bsid[1), &bsid[l]);
fix=endian(&bsid[2), &bsid[2]);

dbg outi("sid[O]=",bsid[O]);
dbg-outi("sid[l]=",bsid[l]);
dbg=outi ("sid [2] =", bsid [2]) ;

dbg_outi("sig =",get_sid(sig_lw,sig_pos,sig_mask));

--

5,708,780
23 24

-36-

dbg outi("kid =",get_sid(kid_lw,kid_pos,kid_mask));
dbg-outi ("uid =", get_sid(uid_lw, uid_pos,uid_mask));
dbg::::outi ("rev =", get_sid(rev_lw,rev_pos, rev_mask));
dbg_outi ("dom =" ,get_sid(dom_lw,dom_pos,dom_mask));
dbg_outi("exp =",get_sid{exp_lw,exp_pos,exp_maskll;
dbg_outi{"uctx =",get_sid(uctx_lw,uctx_pos,uctx_mask));
dbg_outi("rsl =",get_sid(rsrvl_lw,rsrvl_pos,rsrvl_mask));
dbg_outi ("rs2 =", get_sid (rsrv2_lw, rsrv2_pos, rsrv2_mask));

/* check the SID version field */
if (get_sid{rev_lw,rev_pos,rev_mask) I= sid rev zero) goto sid bad;
if (get_sid(rsrvl_lw,rsrvl_pos,rsrvl_mask) l= o) goto sid bad;-
if (get_sid{rsrv2_lw,rsrv2_pos,rsrv2_mask) I= 0) goto sid::::bad;

I* unpack the sid */
esid.sig get_sid(sig_lw,sig_pos,sig_mask);
esid.kid get_sid(kid_lw,kid_pos,kid_mask);
esid.uid = get_sid(uid_lw,uid_pos,uid_mask);
esid.rev get_sid(rev_lw,rev_pos,rev_mask);
esid.dom = get_sid(dom_lw,dom_pos,dom_mask);
esid.exp get_sid{exp_lw,exp_pos,exp_mask);
esid.uctx = get_sid(uctx_lw,uctx_pos,uctx_mask);

dbg_outi ("sig =", esid. sig) ;
dbg_outi("kid =",esid.kid);
dbg outi("uid =",esid.uid);
dbg-outi("rev =",esid.rev);
dbg-outi("dom =",esid.dom);
dbg-outi("exp =",esid.exp);
dbg::::outi ("uctx =", esid. uctx};

#if (1 == 0) /* disable validation for the novalidate case */
sprintf(temp,"secret(\d}",esid.kid);
cp = Tcl_GetVar(interp, temp, TCL_GLOBAL_ONLY);
if (cp I= NULL) strncpy(secret, cp, 199);

!• hash the sid and check the signature •/
sprintf(hash buffer, "%s\s%08x%08x", secret,ip address,bsid[2) ,bsid[l));
dbg_outs("hashing ->",hash_buffer}; -
act hash= compute ihash(hash buffer};
fix-endian(&act hash, &act hash);
dbg-outi ("expected hash=", bsid [0)) ;
dbg::::outi (•actual hash=", act_hashl;
if (act hash !• esid.sig) goto sid bad;

#endif - -

rtn exit:
if (bsid !=NULL) free(bsid);
if (ret status) sprintf(interp->result,"{%d %d %d %d %d}",

esid.dom,esid.uid,esid.kid,esid.exp, esid.uctx);
else sprintf(interp->result,"");
return TCL_OK;

sid bad:
ret_status = 0;
goto rtn_exit;

exp_bad:

25

ret_status = 0;
goto rtn exit;

5,708,780
26

-37-

5,708,780
27

-38-

/* TclPackSid
* Creates the ascii representation of a binary sid
* Inputs:
* "{%d %d %d %d [%dl} Dom uid keyid exp [uctxl
* Returns:
* ascii bin_sid like "/®®u9Gig4QEAAAAABPn"
*
*I

int TclPackSid(ClientData dummy, Tcl_Interp *interp,

{
int argc, char **argv)

char temp[512);
int bsid[3] = {o,o,o}, i, act_hash;
unsigned char *ecp;
unsigned int eda;

char ip address[32), secret[200]="", *cp;
int dom~ uid, keyid, exp, uctx;
char hash_buffer[512];

struct sid info
{ -
unsigned int sig;
unsigned int kid;
unsigned int uid;
unsigned int rev;
unsigned int dom;
unsigned int exp;
unsigned int uctx;
} esid;

if (argc != 2)
{

28

Tel Append.Resul t (interp, "wrong # args: should be \ 11 11
, argv [o) ,

"-string\"", (char *) NULL);
return TCL ERROR;
} -

i = sscanf(argv[l) ,"%d %d %d td %d", &dom, &uid, &keyid, &exp, &uctx);
dbg outs("scanning •.. •,argv[l]);
dbg-outi ("scan returned ", i);
if (i == 4 l { uctx = o; i = 5; }
if {i != 5) return TCL_ERROR;

esid.kid keyid;
esid.uid uid;
esid.dom - dom;
esid.exp exp;
esid.uctx = uctx;
dbg outi("kid=",esid.kidl;
dbg-outi("uid=",esid.uid);
dbg-outi("dom=",esid.dom);
dbg-outi{"exp=",esid.exp);
dbg=outi ("uctx=" ,esid.uctx);

5,708,780
29

-39-

Jtifdef test ip
strcpy(Ip address, test_ip);

#endif -
#·ifdef test secret

strcpy(secret, test_secret);
#endif

cp = Tcl_GetVar(interp, "sidip", TCL_GLOBAL ONLY);
if (cp != NULL) strncpy(ip_address, cp, 31}/

sprintf(temp,"secret(%d)",esid.kid);
cp =Tel GetVar(interp, temp, TCL GLOBAL ONLY);
if {cp !~NULL} strncpy(secret, cp, 199)/

put_sid(kid_lw,
put sid(uid lw,
put=sid(rsrvl_lw,
put_sid(rev_lw,
put_sid{dom_lw,
put sid{rsrv2 lw,
put=sid(exp_lw,
put_sid{uctx_lw,

kid _pas,
uid_pos,
rsrvl_pos,
rev_pos,
dom_pos,
rsrv2_pos,
exp_pos,
uctx_pos,

dbg outi("sid[O]=•,bsid[O));
dbg-outi("sid(l]=",bsid[l)};
dbg=outi (•sid [2) =", bsid [2]);

kid mask,
uid-mask,
rsrv1 mask,
rev mask,
dam-mask,
rsrv2 mask,
exp mask,
uctx_mask,

esid.kid);
esid.uid);
0);
sid rev zero};
esid.doiii);
0) ;
esid.exp);
esid.uctx);

30

sprintf(hash_buffer, "%s%s%08x%08x", secret,ip_address,bsid(2],bsid(l]);
dbg outs("ascii sid built ",hash buffer);
act-hash= compute ihash(hash buffer};

/*

/*

fix-endian(&act hash, &act hash); */
put=sid(sig_lw,-sig_pos, sig_mask, act_hash);

dbg outi("sid(O]=",bsid[O]);
dbg:=outi("sid(1]=",bsid{l]);
dbg_outi("sid[2]=",bsid[2)); *I

/* fix endian(&bsid(O], &bsid(O)); *I
fix-endian{&bsid[l), &bsid[l));
fix:=endian{&bsid(2], &bsid[2));

dbg outi("sid[O]=",bsid[O));
dbg-outi("sid[l)=",bsid[l]);
dbg=outi("sid[2)=",bsid[2]);

cp = radix64encode noslash((char *) bsid, 12);
if (cp == NULL} return TCL ERROR;
sprintf(temp,"/®®%s", cp};­
Tcl_SetResult(interp, temp, TCL_VOLATILE);
if (cp !=NULL) free(cp);
return TCL_OK;

5,708,780
31 32

-40-

/* TclldSid
* Scans an ascii line and finds an ascii SID. (no validation though)
* Inputs:
* lineoftext
* Returns:
* ascii bin_sid, if a sid is found it is returned.

*
*I

int TclidSid(ClientData dummy, Tel Interp *interp,
int argc, char **argv)

/*

{
char *sidp, *cp;

interp->result[O] = 0;

if (argc ! = 2)
{
interp->result = •wrong # args";
return TCL ERROR; } . -

sidp = (char*) strstr(argv[l], "/®®");
if (sidp == NULL) return TCL_OK;
cp = (char*) strstr(sidp+l,"/");
if ((cp z= NULL) && (strlen(sidp) != 19)) return TCL_OK;
if ((cp- sidp) != 19) return TCL OK;
strncpy(interp->result, sidp,l9) ;-
interp->result[l9) = 0;
return TCL OK;
} -

* Register commands with interpreter.
*/

int SidSupinit(Tcl Interp *interp)
{ -
Tel Createcommand(interp, "packsid", TclPackSid, NULL, NULL);
Tcl-CreateCommand(interp, "unpacksid", TclUnpackSid, NULL, NULL);
Tcl-CreateCommand(interp, •unpacksidnovalidate", TclUnpackSidNoValidate, NULL,
Tcl-CreateCommand(interp, "issid", TclidSid, NULL, NULL);
return TCL OK;
} -

5.708.780
33 34

-41-

(*
*--
*
* compute_ihash --

* * Compute the MDS hash for the specified string, returning the hash as
* a 32b xor of the 4 hash longwords.

*
* Results:
* hash int.
*
* Side effects:
* None.
*--
*I

int compute_ihash(char *str)
{

MDS crx mdS;
unsigned char hash[lG];
unsigned int *pl;
unsigned int hashi = 0;

MDSinit{&mdS);
MDSUpdate(&mdS, str, strlen(str));
MDSFinal(hash, &mdS);
pl = (unsigned int *) hash;

hashi = *pl++;
hashi "= *pl++
hashi "= *pl++
hashi "= *pl++
return hashi;

5,708,780
35

-42-
/*
* tic:ket. c
* * Commands for TICKET.
* * Copyright 1995 by Open Market, Inc.
* All rights reserved.
*

36

* This file contains proprietary and confidential information and
* remains the unpublished property of Open Market, Inc. Use,
* disclosure, or reproduction is prohibited except as permitted by
* express written license agreement with open Market, Inc.

* * Steve Morris
* morris®OpenMarket.com
* * Created: Wed Mar 1 1995
* $Source: /omi/proj/master/omhttpd/Attic/ticket.c,v $

*
*I

#if !defined(lint)
static canst char rcsid[]="$Header: /omi/proj/master/omhttpd/Attic/ticket.c,v 2.
#endif /*not lint*/

#include cstdio.h>
#include csys/utsname.h>
#include "httpd.h"
#include "md5.h"
!!include "ticket.h"

static TICKET_Server TicketServerData;

5,708,780
37 38

/*
* This file implements all the ticket/aid related functions for the server.

* The region commands RequireSID and xxxxx can be used to limit
* access to groups of files based on the authentication of the requestor.
* The two commands are very similar, and only differ in the method used to
* present the authentication data (via the URL) and in handling of the
* failing access case. For failing TICKET's, a "not authorized" message is
* generated. For failing (or absent) SID's, a REDIRECT (either local or via
* CGI script) is performed to forward the request to an authentication server.

* * RequireSID domainl [domain2 domainn)
*
* This command denies access unless the specified properties are
* true of the request. Only one RequireSID or xxxxx command can
* be used for a given region, though it may specify multiple domains.
*
*
*I

static int

static int

static
static
static
static
static
static
static

int
char
int
char
char
int
char

static void
static void
static void

5,708,780
39 40

ProcessRequires(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv, int flavor);

DomainNamecmd(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv);

GetDomain (char *domname, int df 1 t) ;
*GetAsciiDomain{char *domname, char *dflt);

compute ihash(char *str);
*computeHash(char *str);
*GetSecret(int kid);
GetKidByKeyiD(char *keyiD);

*CreateSid(HTTP_Request *reqPtr, int dom, int uid, int kid,
int exp, int uctx);

freeTicketReqData(void *dataPtr};
DumpStatus{HTTP_Request *reqPtr};
TICKET DebugHooks(ClientData clientData, char *suffix,

- HTTP_Request *reqPtr);
static int ParseSid(HTTP_Request *reqPtr);
static int ParseTicket(HTTP_Request *reqPtr);
static char *fieldParse(char *str, char sep, char **endptr);
void TICKET ConfigCheck();
void DumpRusage(HTTP_Request *reqPtr);

5,708,780
41 42

/*
*---~------

·*
* TICKET_RequireSidCmd
* * Checks that the requested URL is authorized via SID to access this
* region. If the access is not authorized and we do not have a "remote
* authentication server" registered, then an "unauthorized message"
* is returned. If a "remote authentication server" has been
* declared, we REDIRECT to that server, passing the requested URL and
* required domain's as arguments.
*
* Results:
* Normal Tel result, or a REDIRECT request.
*
* Side effects:
* Either an "unauthorized access" message or a REDIRECT in case of error.
* *--
*I

static int TICKET RequireSidCmd(ClientData clientData, Tel Interp *interp,
- int argc, char **argv) -

{
if (TicketGlobalData(EnableSidEater)) return TCL_OK;
return(ProcessRequires(clientData, interp,argc, argv, ticketSid));
}

5,708,780
43 44

I*
*--

·*
* ProcessRequires --
* * Checks that the requested URL is authorized to access this
* region. The error cases are treated differently for SID v.s. TICKET.
* For Ticket's, an unauthorized access generates a returned error message.
* For SID's, we first look to see if we are operating in "local authentica
* mode", if we are, we generate a new SID, into the URL and re-process the
* If not in "local" mode, we look for the presence of a remoteauthenticati
* server, if we have one declared (in the conf file) we REDIRECT to it pas
* the FULL url and a list of domains that would have been legal. If the
* authentication server was not found we return an error message.

* * Results:
* Normal Tel result, a local reprocess command, or a REDIRECT request.
* * Side effects:
* Either an •unauthorized access" message or a REDIRECT in case of error.
* *--
*I

static int ProcessRequires(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv, int flavor)

HTTP Request *reqPtr = (HTTP Request *) clientData;
HTTP-Server •serverPtr; -
TICKET Request *ticketPtr;
DString targetUrl;
DString escapeUrl;
int i, required dom;
int firstLegalDom = -1;
char *NewSid, *cp;

DStringinit(&targetUrl};
DStringinit(&escapeUrl);

/* fetch the server private and ticket specific extension data */
serverPtr = reqPtr->serverPtr;
ticketPtr = (TICKET Request *) HT GetReqExtData(reqPtr, TicketServerData.tic
ASSERT (ticketPtr !~ NULL) ; -

I*
I*

for
{

compare the requesting SIDITicket<DOM> to authorized list of domains */
a match OR any valid domain and a required domain of TicketFreeArea is su
(i = 1; i < argc; i++)

required dom = GetDomain(argv[i),-1);
if (required dom != -1)

{ -
if (firstLegalDom == -1} firstLegalDom = required_dom;
if ((ticketPtr-~sidDom == required_dom) I I

(ticketPtr->valid && (ticketPtr->sidDom !a -1) &&
(required_dom •= TicketGlobalData(FreeArea))) I I

((ticketPtr-~ticketDom ==required dom) &&
(time(O) <= ticketPtr->ticketExp) &&
((DStringLength(&ticketPtr->ticketiP) == 0) l I

5,708,780
45 46

(strcmp(DStringValue(&ticketPtr->ticketiP), DStringValue(&reqPtr->r

{
DStringFree(&targetUrl);
DStringFree(&escapeUrl);
return TCL OK;
) -

I* count the number of domain crossing that caused re-auth *I
if ((flavor== ticketSid) && (ticketPtr->sidDom) != -1) IncTicketCounter(Cou

I* authorization failed, if this was a sid url, and local auth is enabled *I
I* or this was an access to the free area *I

-1* insert a new sid in the ur1, and REDIRECT back to the client *I
if (TicketGlobalData(EnableLocalAuth) I I

((firstLegalDom == TicketGlobalData(FreeArea))
&& (flavor== ticketSid) && {firstLegalDom != -1)))

{
if ((DStringLength(&reqPtr->url) l= 0) &&

(DStringValue(&reqPtr->url) [0] !='I'))
{
HTTP Error(reqPtr, NOT FOUND, "access denied due to poorly formed url");
DStringFree(&targetUrl);
DStringFree(&escapeUrl);
if (!ticketPtr->valid)

DStringFree(&ticketPtr->sid);
return TCL RETURN ;
} -

NewSid = CreateSid(reqPtr,
firstLegalDom, ticketPtr->uid,
TicketGlobalData(CUrrentSecret), TicketGlobalData(LocalAuthExp),
ticketPtr->uctx) ;

DStringFree(&ticketPtr->sid);
DStringAppend(&ticketPtr->sid, NewSid, -ll;
ComposeURL(reqPtr, DStringValue(&reqPtr->url), &targetUrl);
IncTicketCounter(CountLocalRedirects);
HTTP Error(reqPtr, REDIRECT, DStringValue{&targetUrl));
DStringFree(&targetUrl);
DStringFree(&escapeUrl);
if (!ticketPtr->valid)

DStringFree(&ticketPtr->sid);
return TCL RETURN;
) -

I* authorization failed, build the REDIRECT URL arg's. *I
I• If present, REDIRECT to authentication server *I
if ({DStringLength{&TicketGlobalData(AuthServer)) != O) && (flavor== ticket

{
if ((DStringLength(&reqPtr->urll != 0) &&

{DStringValue {&reqPtr->url) [0] ! = • I'))
{
HTTP Error{reqPtr, NOT FOUND, "access denied due to poorly formed url");
DStringFree(&targetUrl);
DStringFree(&escapeUrl);
if (!ticketPtr->valid}

DStringFree(&ticketPtr->sid);

5,708,780
47 48

return TCL RETURN ;
} -

DStringAppend(&targetUrl, DStringValue(&TicketGlobalData(AuthServerll, -1}
DStringAppend(&targetUrl, "?url=", -1);
ComposeURL(reqPtr, DStringValue(&reqPtr->url), &escapeUrll;
EscapeUrl(&escapeUrl};
DStringAppend(&targetUrl,DStringValue(&escapeUrl), -1);
DStringAppend(&targetUrl, "&domain=", -1);
DStringTrunc(&escapeUrl, 0);
DStringAppend(&escapeUrl, "{", -1);
for (i=1; i < argc; i++}

{
cp = GetAsciiDomain(argv[i], NULL);
if (cp ! = NULL)

{
DStringAppend(&escapeUrl, cp, -1);
DStringAppend(&escapeUrl, " ", -1);

} }
DStringAppend(&escapeUrl, "}", -1);
EscapeUrl(&escapeUrl);
DStringAppend(&targetUrl,DStringValue(&escapeUrll, -1);
DStringFree(&escapeUrll;
HTTP Error(reqPtr, REDIRECT, DStringValue(&targetUrl));
IncTicketCounter(CountRemoteRedirects);
DStringFree(&targetUrl);
if (!ticketPtr->valid)

DStringFree(&ticketPtr->sid);
return TCL RETURN;
} -

I* authorization failed, if this is a ticket access, decode the *I
I* reason and handle via a redirect to a handler, or punt a *I
I* no access message *I
if ((flavor =• ticketTicket) && (firstLegalDom != -1) && (ticketPtr->ticketD

{
I* check For IP address restrictions *I
if ((DStringLength(&ticketPtr->ticketiP) != 0) &&

(DStringLength(&TicketGlobalData(TicketAdrHandler)) != 0) &&
(strcmp(DStringValue(&ticketPtr->ticketiP), DStringValue(&reqPtr->remo

{
DStringAppend(&targetUrl, DStringValue(&TicketGlobalData(TicketAdrHandle
DStringAppend(&targetUrl, DStringValue(&ticketPtr->fieldsl, -1);
DStringAppend(&targetUrl, "&url=", -1);
DStringAppend(&targetUrl, DStringValue(&reqPtr->url), -1);
IncTicketCounter(CountTicketAddr);
HTTP Error(reqPtr, REDIRECT, DStringValue(&targetUrl));
DStringFree(&targetUrll;
return TCL RETURN;
} -

I* check for expired tickets *I
if (tirne(O) > ticketPtr->ticketExp)

{
DStringAppend(&targetUrl, DStringValue(&TicketGlobalData(TicketExpHandle
DStringAppend(&targetUrl, DStringValue(&ticketPtr->fields), -1);
DStringAppend(&targetUrl, "&url=", -1);
DStringAPpend(&targetUrl, DStringValue(&reqPtr->url), -1);
IncTicketCounter(CountExpiredTicket);

5,708,780
49 50

HTTP Error(reqPtr, REDIRECT, DStringValue(&targetUrl));
DStringFree(&targetUrl);
return TCL RETURN;
l -

/* no handler, punt a message *I
HTTP Error(reqPtr, FORBIDDEN, "access denied by Require ticket/sid region co
IncTicketCounter(CountNoRedirects);
if (!ticketPtr->valid)
DStringFree(&ticketPtr->sid);
DStringFree(&targetUrl);
DStringFree(&escapeUrll;
return TCL RETURN;
} -

~-----------------------------------

5,708,780
51 52

/*
*--
* * Get[Ascii]Domain --

* * These routine performs an ascii to binary domain name lookup,
* indexed by 'key') from the server's domain name catalog. Name/number
* pair's are loaded into the catalog at configuration time with the
* with the "Domain" configuration command. The Ascii version returns
* a pointer to a character string that represents the domain number.
* The non Ascii version returns an integer representing the domain number.
*
* Results:
* Integer value of domain. If no domain is available, returns deflt.

*
• Side effects:
* None.
* *--
•!

static int GetDomain(char *domname, int deflt)
{
HashEntry *entryPtr;
DString DomName;

DStringlnit(&DornName);
DStringAppend(&DomName, domname, -1);
strtolower(DStringValue(&DomName));

entryPtr = FindHashEntry(&TicketServerData.Domains, DStringValue(&DomName));
DStringFree(&DomName);
if (entryPtr =• NULL) return deflt;
return (int) GetHashValue(entryPtr);
}

static char * GetAsciiDomain(char •domname, char *deflt)

}

{
HashEntry *entryPtr;
static char buffer[64];
DString DomName;

DStringlnit{&DomName);
DStringAppend(&DomName, domname, -1);
strtolower{DStringValue(&DomName));

entryPtr = FindHashEntry(&TicketServerData.Domains, DStringValue(&DomName));
DStringFree(&DomName);
if (entryPtr == NULL) return deflt;
sprintf (buffer, "%d", (int) GetHashValue (entryPtr) J;
return buffer;

5,708,780
53 54

/*
*--

* TICKET InsertLocalSid --

* * Given a URL, inspect it to see if it refers to the local server/port
* if it does, and it does not already contain a SID, insert one if
* the current request included one. Note, for port 80 access we look
* for a match with and without the port specifier.

*
* Results:
* None.

*
* Side effects:
* A SID may be inserted into the URL.

* *--
*I

void TICKET_InsertLocalSid(HTTP_Request *reqPtr, DString *result)
{
HTTP Server *serverPtr;
TICKET Request *ticketPtr;
char tmp(32);
DString pattern!;
DString pattern2;
DString tmp_url;
DString *hitPattern NULL;

ticketPtr = (TICKET Request *) HT_GetReqExtData(reqPtr, TicketServerData.tic
if (ticketPtr == NULL) return;
serverPtr = reqPtr->serverPtr;

DStringinit(&patternl);
DStringinit(&pattern2);
DStringinit(&tmp_url);

DStringAppend(&patternl, "http://", -1);
DStringAppend(&pattern1, DStringValue(&serverPtr->serverName), -1);
DStringAppend(&pattern2, DStringValue(&pattern1}, -1);
sprintf (tmp, ": %d", serverPtr->server_portl;
DStringAppend(&patternl, tmp, -1);

if ((DStringLength(result) >= DStringLength(&patternl)) &&
(strncasecmp(DStringValue(&pattern1), DStringValue(result), DStringLengt
hitPattern = &patternl;

else
if ((serverPtr->server_port == 80) &&

(DStringLength(result) >= DStringLength(&pattern2)} &&
(strncasecmp(DStringValue(&pattern2), DStringValue(result), DStringLengt
hitPattern = &pattern2;

if (hitPattern != NULL}
{
DStringAppend(&tmp_url, DStringValue(hitPattern), -1);
DStringAppend(&tmp url, DStringValue(&ticketPtr->sid), -1);
DStringAppend(&tmp=url, &DStringValue(result) [DStringLength(hitPattern)],
DStringFree(result};

5,708,780
55

..5/
DStringAppend(result, DStringValue(&tmp url), -1);
DStringFree(&tmp url); -
} -

DStringFree(&patternl);
DStringFree(&pattern2);
DStringFree(&tmp_url);
}

56

5,708,780
57 58

I*
*--
*
* CreateSid

* * This routine takes the passed arguments and creates a sid ..

*
* Results:
* A sid.
*
* Side effects:
* •--
*I

char * CreateSid(HTTP Request *reqPtr, int dom, int uid, int kid,
- int exp, int uctx)

{
int bsid[3)= {0,0,0};
char temp str[512);
DString hash;
int act hash;
static char sid[64);
unsigned int expire_time;
char *secret;
char *hashP;
char *cp;
unsigned char *ecp;
unsigned int eda;
int endian = l;

DStringinit(&hash);
expire_time = time(O)+ exp;

put sid(dom lw,
put-sid(uid-lw,
put=sid(kid=lw,
put sid(exp lw,
put-sid(uctx lw,
put=sid(rev_Iw,

dom_pos,
uid_pos,
kid_pos,
exp_pos,
uctx_pos,
rev_pos,

secret= GetSecret(kid);

dom mask,
uid-mask,
kid-mask,
exp=mask,
uctx mask,
revjiiask,

ASSERT (secret != NULL);
DStringAppend(&hash, secret, -1);

dom);
uid) ;
kid);
(expire time>>exp shft amt))
uctx); - - -
sid_rev_zero);

DStringAppend(&hash, DStringValue(&reqPtr->remoteAddr), -1);
sprintf(temp str, "\08x%08x", bsid[2] ,bsid[l));
DStringAppend(&hash, temp str, -1};
I* format of the hash string is %s%s%08x%08x", secret,ip_addr,bsid[2] ,bsid[l

hashP = DStringValue(&hash);
act hash= compute ihash(hashP);
while (*hashP != o) *hashP++ = 0;
DStringFree(&hash);

I* fix_endian(&act_hash, ecp, eda); *I

/*

5,708,780

59

S.J

.put_sid(sig_lw, sig_pos, sig_mask, act_hash)

fix endian(&bsid[O], ecp, eda}; */
fix-endian(&bsid(l], ecp, eda);
fix=endian(&bsid[2], ecp, eda};

#if (1 == 0)
DumpSid();

#endif

cp = radix64encode noslash((char *) bsid, 12);
strcpy(sid, SID_prefix);
strcat{sid, cp);
free (cp);
return{sid);
}

60

5,708,780
61 62

/* *--
*
* compute_ihash --
* * Compute the MDS hash for the specified string, returning the hash as
* a 32b xor of the 4 hash longwords.

* * Results:
* hash int.
*
* Side effects:
* None.
*--
*I

static int compute ihash(char *str)
{ -
MDS CTX mdS;
unsigned char hash[16];
unsigned int *pl;
unsigned int hashi = 0;

MDSinit{&mdS);
MDSUpdate(&mdS, (unsigned char*) str, strlen(str));
MDSFinal{hash, &mdS};
pl = (unsigned int *) hash;

hashi = *pl++;
hashi "= *pl++
hashi "= *pl++
hashi "= *pl++
return hashi;
}

5,708,780
63 64

/*
*--
*
* computeHash --

* * Compute the MDS hash for the specified string, returning the hash as
* a 32-character hex string.

* * Results:
* Pointer to static hash string.

*
* Side effects:
* None.
*-~--
*I

static char *computeHash(char *str)
{

int i;
MDS CTX mdS;
unsigned char hash[l6);
static char hashstr[33];
char *q;

MDSinit(&mdS);
MDSUpdate(&mdS, (unsigned char*} str, strlen(str));
MD5Final{hash, &mdS);
q = hashstr;
for(i=O; i<16; i++) {

}

sprintf {q, "%02x", hash (i]) ;
q += 2;

*q = '\0';
return hashstr;

5,708,780
65 66

/*
*--
* * TICKET_ParseTicket --
* * Called by dorequest, before any region commands or mount handlers
* have run. We parse and handle incomeing sid's and tickets.
*
* Results:
* None.
*
* Side effects:
* *--
*I

int TICKET ParseTicket(HTTP Request *reqPtr) { - -
int status = HT_OK;

IncTicketCounter(CountTotalUrl);

status= ParseSid(reqPtr);
if (TicketGlobalData{EnableTicket) && (status •= HT_OK)) status= ParseTicke
return status;
}

5,708.780
67 68

/*
*--
*
* ParseSid --

* * Called by TICKET ParseTicket, before any region commands or mount handle
* have run. We parse and handle incomeing sid's.

*
* Results:
* None.
*
* Side effects:
* *--
*I

int ParseSid(HTTP Request *reqPtr)
{ -
TICKET Request *ticketPtr;
HTTP server *serverPtr;
DString hash;
int i;
char *cp, *cp1;
int *bsid•NULL, act hash;
unsigned int cur_tim, tdif, exp_tim;
char *secret;
char temp str[S12);
char *hashP;
int sid ok = 0;
unsigned char *ecp;
unsigned int eda;
int endian = 1;
int ip1,ip2,ip3,ip4;

I* fetch the server private ticket extension data */
I* note that this sets up a default ticket block for both SID's and Ticket a
serverPtr = reqPtr->serverPtr;
ticketPtr = {TICKET Request *) HT_GetReqExtData(reqPtr, TicketServerData.tic
ASSERT (ticketPtr =;NULL);

ticketPtr = (TICKET_Request *) Malloc(sizeof(TICKET_Request));
HT AddReqExtData{reqPtr, TicketServerData.ticketExtensionid, ticketPtr, free
DStringinit(&ticketPtr->rawUrl);
DStringinit(&ticketPtr->sid);
DStringinit(&ticketPtr->fields);
DStringinit(&ticketPtr->signaturel;
DStringinit(&ticketPtr->ticketiP);
ticketPtr->valid = 0;
ticketPtr->sidDom -1;
ticketPtr->ticketDom -1;
ticketPtr->ticketExp -1;
ticketPtr->uid 0;
ticketPtr->UCtX 0;
sscanf(DStringValue(&reqPtr->remoteAddr), "%-d.%d.%-d.%d", &ip1, &ip2, &ip3, &
ticketPtr->uid = (((ip1+ip2)<<24) I ((ip3+ip4)<<16} (rand() & OxFFFF});
ticketPtr->UCtX = 1;

5,708,780
69 70

f* we are done if sids are not enabled, or this url does not have a sid */
if (! (TicketGlobalData(EnableSid))) return HT_OK;
cpl = DStringValue(&reqPtr->url);
if (strstr(cpl, SID_prefix) != cp1)

return HT OK;
if (strlen(cpl) == sidLength)

{
DStringAppend{&reqPtr->url, "/", -1};
DStringAppend(&reqPtr->path, "/", -1);
cpl = DStringValue(&reqPtr->url);
}

cp = strchr(cpl+sizeof(SID_prefix), '/');
if ((cp- cpl) != sidLength)

return HT OK;
IncTicketCounter(CountSidUrl);

DStringinit(&hash);

/* if sid eater is enabled, rewrite the url without the sid, and reprocess t
if (TicketGlobalData(EnableSidEater))

{
DStringAppend(&hash, DStringValue(&reqPtr->url), -1);
DStringFree(&reqPtr->url);
DStringAppend(&reqPtr->url, DStringValue(&hash)+sidLength, -1);
DStringTrunc(&hash, 0);
DStringAppend(&hash, DStringValue(&reqPtr->path), -1);
DStringFree(&reqPtr->path);
DStringAppend(&reqPtr->path, DStringValue(&hash)+sidLength, -1);
DStringFree(&hash);
IncTicketCounter(CountDiscardedSidUrl};
return HT OK;
} -

DStringAppend(&ticketPtr->sid, DStringValue(&reqPtr->url), sidLength};

I* first convert the SID back to binary*/
i = DStringLength{&ticketPtr->sid)-3;
bsid a (int *) radix64decode noslash(DStringValue(&ticketPtr->sid)+3, i, &i)
if ((bsid ==NULL) I I (i != l2)) goto rtn_exit;

fix endian(&bsid[O), ecp, eda);
fix-endian(&bsid[1), ecp, eda);
fix=endian(&bsid[2), ecp, eda);

I* check the SID version field */
if (get_sid(rev_lw,rev_pos,rev_mask) != sid rev zero) goto sid bad;
if (get_sid(rsrvl_lw,rsrv1_pos,rsrvl_mask) != o) goto sid bad;-
if (get_sid(rsrv2_lw,rsrv2_pos,rsrv2_mask) != 0) goto sid=bad;

I* Get a pointer to the secret */
secret= GetSecret(get_sid(kid_lw,kid_pos,kid_mask));
if (secret == NULL) goto sid_bad;

I* hash the sid and check the signature */
DStringAppend(&hash, secret, -1);

5,708,780
71 72

~-:
.DStringAppend(&hash, DStringValue(&reqPtr->remoteAddr), -1);
sprintf(temp_str, "%08x%0Bx", bsid[2) ,bsid[1));
DStringAppend(&hash, temp_str, -1);
f* format of the hash string is %s%s%0Bx%08x", secret,ip_addr,bsid[2) ,bsid[1

hashP = DStringValue(&hash};
act hash= compute ihash{hashP};
while (*hashP != o) *hashP++ = 0;

fix endian(&act hash, ecp, eda};
if (act_hash !=-get_sid(sig_lw,sig_pos,sig_mask)) goto sid_bad;

f* is is ok, may be expired, but good enough to id user */
ticketPtr->uid = get_sid(uid_lw,uid_pos,uid_mask);
ticketPtr->uctx = get_sid(uctx_lw,uctx_pos,uctx_mask);

/* do the SID experation processing */
cur tim- (time(O)>>exp shft amt) & exp mask;
exp=tim = get_sid(exp_lw,exp~os,exp_mask);
tdif = (exp tim - cur tim) & Oxffff;
if (tdif > Ox7fff) -

{
IncTicketCounter(CountExpSid);
joto sid_exp;

/* sid is fine, save the sid state, update the url's */
ticketPtr->sidDom = get_sid(dom_lw,dorn_pos,dom_mask);
ticketPtr->valid = 1;
sid ok = 1;
IncTicketCounter(CountValidSid);

sid bad:
if {l(sid ok)) IncTicketCounter(CountinvalidSid);

sid exp: -
DStringAppend{&ticketPtr->rawUrl, DStringValue(&reqPtr->path), -1);
DStringTrunc(&reqPtr->path, 0);
DStringAppend(&reqPtr->path, DStringValue(&ticketPtr->rawUrl)+sidLength, -1)

DStringTrunc(&ticketPtr->rawUrl, O);
DStringAppend(&ticketPtr->rawUrl, DStringValue(&reqPtr->url), -1);
DStringTrunc(&reqPtr->url, 0);
DStringAppend(&reqPtr->url, DStringValue(&ticketPtr->rawUrl)+sidLength, -1);

rtn exit:
DStringFree(&hash);
if (bsid l= NULL) free(bsid);
return HT_OK;
}

5,708,780
73 74

/*
*--
* * freeTicketReqData
* * This routine frees the storage used by ticket specific request
* data.
*
* Results:
* None.
* * Side effects:
* Memory freed.
* *--
*/

static void freeTicketReqData(void *dataPtr)
{
TICKET Request *ticketPtr = dataPtr;
DStringFree(&ticketPtr->rawUrl);
DStringFree(&ticketPtr->sid);
DStringFree(&ticketPtr->fields);
DStringFree(&ticketPtr->signature);
DStringFree(&ticketPtr->ticketiP);
free(ticketPtr);
}

5,708,780
75 76

6/

/*
*--
*
* GetSecret --

* "* Given a binary keyiD, returns an ascii secret from the
* secrets store.
* for untranslatable names, return NULL.

*
* Results:
* "I've got a secret, now you do too"

*
* Side effects:
*
* *--
*I

char *Getsecret(int kid)
{
HashEntry *entryPtr;

entryPtr = FindHashEntry(&TicketServerData.SecretsKid, (void*} kid);
if(entryPtr ==NULL) return NULL;
return DStringValue((DString *)GetHashValue(entryPtr));
}

5,708,780
77 78

/*
*--
*
* GetKidByKeyiD --
* * Given an ascii KeyiD return the binary KeyiD.
* for untranslatable names, return -1.
*
* Results:
• "I've got a secret, now you do too"
* * Side effects:
*
* *--
*I

int GetKidByKeyiD(char *keyiD)
{
HashEntry *entryPtr;

entryPtr = FindHashEntry(&TicketServerData.KeyiD, (void *) keyiD);
if(entryPtr ==NULL) return -1;
return (int) GetHashValue(entryPtr);
}

5,708,780
79 80

I* *--
* * fieldParse --

* * Given a string, a separator character, extracts a field up to the
* separator into the result string.
* Does substitution on '\XX' sequences, and returns the pointer to the
* character beyond last character in '*endptr'.

*
* Results:
* Returns a rnalloc'ed string (caller must free), or NULL if an
* error occurred during processing (such as an invalid '%' sequence).

* * Side effects:
* None.

* *--
*I

#define SIZE INC 200
static char *fieldParse(char
{

I*

char buf[3];
char c;
char *end, *data,
int maxlen, len;

len == 0;
maxlen = SIZE INC;

*str, char sep, char **endptr)

*p;

p = data = mailoc(rnaxlen};

* Loop through string, until end of string or sep character.
*I
while(*str && *str != sep) {

if(*str===='%') {
if (! isxdigit (str [1]) II ! isxdigit (str [2))) {

free(data);
return NULL;

}
buf[O] = str[l);
buf [1) = str [2) ;
buf[2] == '\0';
c = strtol(buf, &end, 16);
str +• 3;

else if(*str -· '+') {
C ::: I I j

str++;
else

c = *str++;

*p++ = c;
len++;
if(len >== rnaxlen) {

maxlen += SIZE INC;
data= realloc(data, maxlen);
p = data + len;

81

*p++ = '\0';
*endptr = str;
return data;

5,708,780
82

5,708,780
83 84

I* *--
*
* DomainNameCmd --

*
-* A call to this routine, builds the ascii domain name
* to binary domain name maping structure for a numeric domain.
* Syntax is Domain number name1 name2 name3 name ... name last
* At least one name is required. The number is decimal and
* can be any value except -1. -1 is reserved as a marker
* for untranslatable names.

* * Results:
* None.

* * Side effects:
* Commands are validate, and entries added to the map

* *--
*/

static int DomainNameCmd(ClientData clientData, Tel Interp *interp,
int argc, char **argv) -

{
int new,i;
HashEntry *entryPtr;
int DomNumber;
DString DomName;

if (argc <3)
{
Tel_ AppendResul t (interp, argv (0], • directive : wrong number of "

•arguments, should be \"3\"",
(char *} NULL) ;

return TCL_ERROR;
}

DStringinit(&DomName);

if (((sscanf (argv [1), "~d", &DomNumber) != 1) II (DomNumber == -1)))
{
Tcl_AppendResult(interp, argv(O), " directive: ,

"Domain number must be an integer, and not equal to -1",
",value found was •,argv[1],
(char *) NULL) ;

return TCL_ERROR;
}

for (i = 2; i < argc; i++)
{
DStringFree(&DomName);
DStringAppend(&DomName, argv[i], -1);
strtolower(DStringValue(&DomName)};
entryPtr = CreateHashEntry(&TicketServerData.Domains, DStringValue(&DomNam
if (new == 0)

{
Tel_AppendResult(interp, argv[O), "directive:

5,708,780
85

"Duplicate domain name specified,
(char *) NULL);

return TCL_ERROR;
}

SetHashValue(entryPtr,
}

DStringFree(&DomName);
return TCL OK;
} -

DomNumber);

86

argv[i], "'"

5,708,780
87 88

/*
*--
* * SecretsCmd --

* * A call to this routine, builds kid to secrets table

* * Results:
* None.

*
* Side effects:
* Secrets are stored.
*
·-~--
*/

static int SecretsCmd(ClientData clientData, Tel Interp *interp,
int argc, char **argv)

{
int newKid,newKeyiD;
HashEntry *entryPtrKid = NULL , *entryPtrKeyiD
int Kid;
DString *dsptrKid;

if (argc ! .. 4)
{

NULL;

Tcl_AppendResult(interp, argv[O), 11 directive: wrong number of 11

"arguments, should be \"4\"",
(char *) NULL);

return TCL ERROR;
} -

if (sscanf(argv[2], "%d 11
, &Kid) != 1)

{
Tel AppendResult(interp, argv[O],

- " directive: KeyiD must be an integer",
11

, value found was '", argv [2], 11
' ",

(char *) NULL) ;
return TCL_ERROR;
}

entryPtrKid = CreateHashEntry(&TicketServerData.SecretsKid, (void *) Kid, &n
if (strlen(argv[l]))

entryPtrKeyiD = CreateHashEntry(&TicketServerData.KeyiD, (void *) argv[1),
if ((newKid == 0) I I ((newKeyiD == 0) && strlen(argv[1))))

{
Tel AppendResult(interp, argv[O],

- "directive: Duplicate Secret specified for KeyiD '"
argv[1),
(char *) NULL);

return TCL_ERROR;
}

if (strlen(argv[l)))
(
dsptrKid = (DString *) malloc(sizeof(DString));
DStringinit(dsptrKid);
DStringAppend(dsptrKid, argv[3], -1);

5,708,780
89

SetHashValue(entryPtrKid, dsptrKid);
}

SetHashValue(entryPtrKeyiD, Kid);
return TCL OK;
} -

90

5,708,780
91 92

6/'

/* *--
* * TICKET_Initialize --
* * Calls all the necessary routines to initialize the ticket .subsystem.
*
* Results:
* None.
* * Side effects:
* Commands added to the region interpreter.
* SID "/®®" url catcher declared.
* *--
*I

int TICKET Initialize{HTTP Server *serverPtr, Tel Interp *interp}
{ - - -
TicketServerData.ticketExtensionid = HT_RegisterExtension(serverPtr, "ticket

InitHashTable{&TicketServerData.SecretsKid, TCL ONE WORD KEYS);
InitHashTable(&TicketServerData.KeyiD, TCL STRING-KEYS);
InitHashTable(&TicketServerData.Domains, TCL=STRING=KEYS);

/* initialize Server ticket data */
DStringinit(&TicketGlobalData(AuthServer});
DStringinit(&TicketGlobalData(TicketExpHandler}};
DStringinit(&TicketGlobalData(TicketAdrHandler));
TicketGlobalData(FreeArea} 0;
TicketGlobalData(EnableLocalAuth) 0;
TicketGlobalData(CurrentSecret) 0;
TicketGlobalData(EnableSid) = 0;
TicketGlobalData(EnableTicket) c 0;
TicketGlobalData(EnableSidEater) 0;
TicketGlobalData{LocalAuthExp) 60*30;

/* ticket event counters */
TicketGlobalData(CountTotalUrl} 0;
TicketGlobalData(CountSidUrl) = 0;
TicketGlobalData(CountValidSid) 0;
TicketGlobalData(CountExpSid} = O;
TicketGlobalData(CountinvalidSid} 0;
TicketGlobalData(CountCrossDomain) 0;
TicketGlobalData(CountLocalRedirects) 0;
TicketGlobalData(CountRemoteRedirects) 0;
TicketGlobalData(CountNoRedirects) 0;
TicketGlobalData(CountDiscardedSidUrl) 0;

/* Ticket related Config commands */
Tel CreateCommand(interp, "Domain", DomainNameCmd,

- (ClientData} serverPtr, NULL);
Tel CreateCommand(interp, "Secrets", SecretsCmd,

- (ClientData) serverPtr, NULL};
Tel CreateCommand(interp, "AuthenticationServer", CmdStringValue,

- (ClientData} &TicketGlobalData(AuthServer), NULL);
Tel CreateCommand(interp, "TicketExpirationHandler", CmdStringValue,

(ClientData) &TicketGlobalData(TicketExpHandler}, NULL);

--·- --------------------------------------

5,708,780
93 94

Tel CreateCommand(interp, "TicketAddressHandler", L ... dStringValue,
- (ClientData) &TicketGlobalData(TicketAdrHandler), NULL);

Tel CreateCommand(interp, "FreeDomain", CmdlntValue,
- (ClientData) &TieketGlobalData(FreeArea), NULL);

Tel CreateCommand(interp, "EnableSidEater", CmdintValue,
- (ClientData) &TieketGlobalData(EnableSidEater), NULL);

Tel CreateCommand(interp, "EnableSid", CmdintValue,
- (ClientData) &TicketGlobalData(EnableSid), NULL); ·

Tel CreateCommand(interp, "EnableTieket", CmdintValue,
- {ClientData) &TicketGlobalData{EnableTicket), NULL);

Tel CreateCommand(interp, "EnableLocalAuth", CmdintValue,
- {ClientData) &TicketGlobalData{EnableLocalAuth), NULL);

Tel createCommand(interp, "CurrentSecret", CmdintValue,
- {ClientData) &TicketGlobalData(CurrentSecret), NULL);

Tel CreateCommand(interp, "LocalAuthExp", CmdlntValue,
- {ClientData) &TicketGlobalData{LocalAuthExp), NULL);

HT AddMountHandler{serverPtr, (ClientData} NULL, TICKET_DebugHooks,
- "/omiserver", NULL) ;

return HT_OK;
}

5,708,780
95 96

/*
*--
*
* TICKET_Shutdown --
* * Calls all the necessary routines to shutdown the ticket subsystem.
* * Results:
* None.
* * Side effects:
* Memory freed
* *--
*/

void TICKET Shutdown(HTTP Server *serverPtr) { - -
HashEntry *entryPtr;
HashSearch search;
DString *dstring;

DStringFree(&TicketGlobalData(AuthServer));
DStringFree(&TicketGlobalData(TicketExpHandler));
DStringFree{&TicketGlobalData(TicketAdrHandler));

entryPtr = FirstHashEntry(&TicketServerData.SecretsKid, &search);
while (entryPtr != NULL)

{
dstring = GetHashValue(entryPtr);
DStringFree{dstring);
free(dstring);
entryPtr = NextHashEntry(&search);
}

DeleteHashTable(&TicketServerData.SecretsKid);

DeleteHashTable(&TicketServerData.KeyiD);

DeleteHashTable(&TicketServerData.Domains);
}

5,708,780
97 98

/*
*--
* * TICKET_AddRegionCommands --

* * Add TICKET region commands for authentication/authorization decisions.

*
* Results:
* None.
*
* Side effects:
* Commands added to the region interpreter.
* *--
*1

void TICKET AddRegionCommands(HTTP Request *reqPtr, Tel Interp *interp) { - - -
Tel CreateCommand(interp, "RequireSID", TICKET RequireSidCmd,

- (ClientData) reqPtr, NULL); -
Tcl_CreateCommand(interp, "RequireTieket", TICKET_RequireTieketCmd,

(ClientData) reqPtr, NULL);

5,708,780
99 100

I* *--
* * TICKET_GetCGIVariables --

* * Add TICKET CGI variables to the CGI variable table.

*
* Results:
* None.
*
* Side effects:
* Extends the CGI variable hash table.

* *--
*1

void TICKET GetCGIVariables(HTTP Request *req}
{ - -
TICKET_Request *ticketPtr = (TICKET_Request *) HT_GetReqExtData(req, TicketS

I*
* If there's no extension data, then we're not doing a ticket. Just return
*I

if (ticketPtr == NULL)
return;

if (DStringLength(&ticketPtr->rawurl} !• O)
HT AddCGIParameter(req, "TICKET URL", DStringValue(&ticketPtr->rawUrl), FA

if (DStringLength(&ticketPtr->sid) != 0)
HT AddCGIParameter(req, •TICKET SID", DStringValue(&ticketPtr->sid), FALSE

if (DStringLength(&ticketPtr->fields) !• 0)
HT AddCGIParameter(req, "TICKET FIELDS", DStringValue(&ticketPtr->fields),

if (DStringLength(&ticketPtr->signature) != 0)
HT_AddCGIParameter(req, "TICKET_SIGNATURE", DStringValue(&ticketPtr->signa

5,708,780
101 102

I* *--
* * TICKET_GetUrl

* * Return the original url (with sid)

*
* Results:
* The URL.

*
* Side effects:
* None.

*
*--~-----------------------------

*I
char* TICKET GetUrl(HTTP Request *reqPtr)

- { - -

TICKET_Request *ticketPtr;

ticketPtr = (TICKET Request *)
HT GetReqExtData(reqPtr, TicketServerData.ticketExtensionidl;

if ((ticketPtr != NULL) &&
(DStringLength(&ticketPtr->rawUrl) != 0})

return DStringValue(&ticketPtr->rawUrl);
else

return DStringValue(&reqPtr->url);

5,708,780
103 104

/*
*--
*
* TICKET_ConfigCheck

* * Perform late configuration checks

*
* Results:

*
* * Side effects:
* Possible message loged/printed, and program exit'd.
* *--
•!

void TICKET ConfigCheck()
. { -
HashEntry *entryPtr;
int kid;

if {{TicketGlobalData(EnableSid) & -Ox1} != 0}
{
LogMessage(LOG ERR, "EnableSid must be 0 or 1");
exit{O}; -
}

if (! (TicketGlobalData(EnableSid))) return;

kid= TicketGlobalData{CurrentSecret);
if ((kid && kid mask) ! = kid)

{ -
LogMessage(LOG_ERR, •currentSecret %d is invalid", kid);
exit(O);
}

entryPtr = FindHashEntry(&TicketServerData.SecretsKid, {void *) kid);
if(entryPtr == NULL)

{
LogMessage{LOG E'RR, "No secret defined for CurrentSecret %d", kid);
exit (O); -
}

if ((TicketGlobalData(FreeArea) & -Ox255) != 0)
{
LogMessage(LOG ERR, "FreeArea must be between 0 and 255"};
exit(O); -
}

if ((TicketGlobalData(EnableSidEater) & -Oxl) != 0)
{
LogMessage(LOG ERR, "EnableSidEater must be 0 or l.");
exit(O}; -
}

if {(TicketGlobalData{EnableTicket) & -Ox1) != 0)
{
LogMessage(LOG ERR, "EnableTicket must be 0 or l.");
exit {0); -
}

5,708,780
105 106

if ((TicketGlobalData(EnableLocalAuth) & -Oxl) != 0)
{
LogMessage(LOG_ERR, "EnablLocalAuth must be 0 or 1");
exit(O);
}

5,708,780
107 108

?7

I* *--
* * TICKET_DebugHooks
* * Check for debug hooks and execute if found.
*
* Results:
* None.
* • Side effects:
* None.
*
·-~--
*/

static void TICKET DebugHooks{ClientData clientData, char *suffix,
- HTTP_Request *reqPtr)

{
if(strcmp(suffix, "/ticketstatus") == 0)

(
DumpStatus(reqPtr);
HT_FinishRequest(reqPtr);
return;
}

HTTP_Error{reqPtr, NOT_FOUND, "access denied due to poorly formed url");
HT FinishRequest{reqPtr);
return;
}

5,708,780
109 110

/* *--
* * DurnpStatus --

* * Dump the server's ticket stat's

* * Results:
* None.
* * Side effects:
* None.

* *--
*1

#define BUFSIZE 1024
static void DurnpStatus(HTTP Request *reqPtr}
{ -

HTTP Server *serverPtr = reqPtr->serverPtr;
char-trnp[BUFSIZE), tirneStr[BUFSIZE];
struct utsnarne sysinfo;
time t uptime;
int hours;

HTTP BeginHeader(reqPtr, "200 OK");
HTTP-SendHeader(reqPtr, •content-type: text/html", NULL);
HTTP-EndHeader(reqPtr);
HTTP-Send(reqPtr, "<title>WebServer Ticket Status</title>",

- "<hl>Webserver Ticket Status</h1>", NULL);

HTTP_Send(reqPtr, "<p><hr><P><h2>Ticket Log</h2>", "<P><pre>\n•, NULL);

sprintf(tmp, II <h>%S: %d\n", "Number
HTTP Send(reqPtr, trnp, NULL);
sprintf (tmp, " <h>%S: %d\n", "Number
HTTP Send(reqPtr, trnp, NULL);
sprintf (trnp, " <h>%S: %d\n", "Number
HTTP Send(reqPtr, tmp, NULL);
sprintf (trnp, " %S: %d\n", "Number
HTTP Send(reqPtr, trnp, NULL);
sprintf (tmp, II %S: %d\n", "Number
HTTP Send(reqPtr, trnp, NULL);
sprintf (tmp,

,,, <h>%S: %d\n", "Number
HTTP Send(reqPtr, tmp, NULL);
sprintf (trnp, II %S: %d\n", "Number
HTTP Send(reqPtr, tmp, NULL);
sprintf (tmp, " %S: %d\n", "Number
HTTP Send(reqPtr, tmp, NULL);
sprintf(tmp, II %S: </h> %d\n", "Number

HTTP_Send(reqPtr, tmp, "</pre>", NULL};

uptime = time(NULL) - serverPtr->started;
uname(&sysinfo);
strftime(timeStr, BUFSIZE, "%A, %d-%b-%y %T",

localtime(&serverPtr->started));

of access

of SID URL's

of Valid SID's

of Expired SID's

of Invalid SID's

of XDomain accesses",

of Local Redirects II ,

of Remote Redirects",

of No Auth servers II

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

Ticket

5,708,780
111 112

sprintf(tmp, "Server running on <h>%S (%s %s) port %d, has been up\
since %s.<p>", sysinfo.nodename, sysinfo.sysname,

sysinfo.release, serverPtr->server_port, timeStr);
HTTP_Send(reqPtr, tmp, NULL);

sprintf (tmp, " Number of connections:
serverPtr->numConnects);

HTTP_Send(reqPtr, "<P><pre>\n" I trnp, NULL);

sprintf(tmp, • <h>Number of HTTP requests:
serverPtr->numRequests);

HTTP_Send(reqPtr, tmp~ "</pre><p>" I NULL);

hours = max(uptime I 3600 1 1);

 %d\n"~

 %d\n",

sprintf(tmp, "This server is averaging %d requests per hour.<p>" 1

serverPtr->numRequests/hours);
HTTP_Send(reqPtr~ tmp, NULL);

DumpRusage(reqPtrl;
/* DumpConnections(reqPtr); */

}

DNS_DumpStats(reqPtr);

HTTP Send(reqPtr~ "<p><hr><address>", DStringValue(&ht_serverSoftware),
- "</address>\n", NULL);

reqPtr->done TRUE;

#undef BUFSIZE

113

UGer: morris
Host: uprism.openmarket.com
Class: uprism.openmarket.com
Job: t.t

5,708,780
114

5,708,780
115

What is claimed is:
1. A method of processing service requests from a client

to a server system through a network, said method compris­
ing the steps of:

forwarding a service request from the client to the server 5

system. wherein communications between the client
and server system are according to hypertext transfer
protocol;

returning a session identifier from the server system to the

116
14. A method as claimed in claim 13 wherein the session

identifier includes a user identifier.
15. A method as claimed in claim 13 wherein the session

identifier includes an expiration time for the session.
16. A method as claimed in claim 13 wherein the session

identifier provides access to a protected domain to which the
session has access authorization.

17. A method as claimed in claim 16 wherein the session
identifier is modified for access to a different protected
domain. client; and 10

18. A method as claimed in claim 13 wherein the session
identifier provides a key identifier for key management.

19. A method as claimed in claim 13 wherein the server
system records information from the session identifier in a

15 transaction log in the server system.

appending as part of a path name in a uniform resource
locator the session identifier to the request and to
subsequent service requests from the client to the server
system within a session of requests.

2. A method as claimed in claim 1 wherein the session
identifier includes a user identifier.

3. A method as claimed in claim 1 wherein the session
identifier includes an expiration time for the session.

20. A method as claimed in claim 13 wherein the client
modifies the path name of a current uniform resource locator
using relative addressing and retains the session identifier
portion of the path name unmodified for successive requests

4. A method as claimed in claim 1 wherein the server
system records information from the session identifier in a
transaction log in the server system.

20 in the session.

5. A method as claimed in claim 4 wherein the server
system tracks the access history of sequences of service
requests within a session of requests.

25
6. A method as claimed in claim 5 wherein the server

system tracks the access history to determine service
requests leading to a purchase made within the session of
requests.

7. A method as claimed in claim 4 wherein the server
30

system counts requests to particular services exclusive of
repeated requests from a common client.

8. A method as claimed in claim 4 wherein the server
system maintains a data base relating customer information
to access patterns.

35
9. A method as claimed in claim 8 wherein the informa­

tion includes customer demographics.
10. A method as claimed in claim 1 wherein the server

system assigns the session identifier to an initial service
request to the server system.

40
11. A method as claimed in claim 1 wherein the server

system subjects the client to an authorization routine prior to
issuing the session identifier and the session identifier is
protected from forgery.

12. A method as claimed in claim 1 wherein the server
45

system comprises plural servers including an authentication
server which provides session identifiers for service requests
to multiple servers.

13. A method as claimed in claim 12 wherein:
a client directs a service request to a first server which is 50

to provide the requested service;
the first server checks the service request for a session

identifier and only services a service request having a
valid session identifier, and where the service request
has no valid identifier:
the first server redirects the service request from the

client to the authorization server;
the authorization server subjects the client to the autho­

rization routine and issues the session identifier to be
appended to the service request to the first server;

the client forwards the service request appended with
the session identifier to the first server; and

the first server recognizes the session identifier and
services the service request to the client; and

55

60

the client appends the session identifier to subsequent 65

service requests to the server system and is serviced
without further authorization.

21. A method as claimed in claim 1 wherein:
the server system subjects the client to an authorization

routine prior to issuing the session identifier and the
session identifier is protected from forgery, records
information from the session identifier in a transaction
log in the server system. tracks request paths relative to
hypertext pages, and maintains a data base relating
customer demographics to access patterns; and

the client modifies the path name of a current uniform
resource locator using relative addressing and retains
the session identifier portion of the path name unmodi­
fied for successive requests in a session.

22. A method of processing service requests from a client
to a server system through a network. said method compris­
ing the steps of:

appending as part of a path name in a uniform resource
locator a session identifier to the request, wherein
communications between the client and server system
are according to hypertext transfer protocol;

responding to requests for hypertext pages received from
a client through the network by returning the requested
hypertext pages to the client;

responding to further client requests related to links in the
hypertext pages; and tracking the further client requests
related to a particular hypertext page.

23. A method as claimed in claim 22 wherein the requests
include a common session identifier and the server system
tracks client requests within a session of requests.

24. A method of processing service requests from a client
to a server system through a network, said method compris­
ing the steps of:

appending a session identifier to the request as part of a
path name in a uniform resource locator. wherein
communications between the client and server system
are according to hypertext transfer protocol; and

responding to requests for documents received from the
client through the network by returning the requested
documents wherein the documents are customized for
a particular user based on a user profile.

25. A method of processing service requests from a client
to a server system through a network, said method compris­
ing the steps of:

responding to a request for a document received from the
client through the network, wherein communications
between the client and server system are according to
hypertext transfer protocol;

5,708,780
117

appending a session identifier, which includes a user
identification to the request as part of a path name in a
uniform resource locator; and

returning the requested document wherein the document
is customized for a particular user based on the user 5

identification of the session identifier.
26. A method of processing service requests from a client

to a server system through a network, said method compris­
ing the steps of:

118
means for appending the session identifier as part of a path

name in a uniform resource locator in response to an
initial service request in a session of requests; and

means for servicing service requests from a client which
include the session identifier, the subsequent service
request being processed in the session.

33. An information system as claimed in claim 32 wherein
the means for providing the session identifier is in a server
system which services the requests.

34. An information system as claimed in claim 32 further
comprising an authorization routine for authorizing the
client prior to issuing the session identifier and means for
protecting the session identifier from forgery.

appending a session identifier to the request as part of a 10

path name in a uniform resource locator, wherein
communications between the client and server system
are according to hypertext transfer protocol; 35. An information server system as claimed in claim 32

15 further comprising a transaction log for recording informa­
tion from the session identifier.

responding to requests for information received from the
client through the network by returning the requested
information to the client; and

counting requests to particular information exclusive of
repeated requests from a common client

36. An information system as claimed in claim 32 further
comprising means for tracking access history of sequences
of service requests within the session of requests.

27. A method as claimed in claim 26 comprising exclud- 20
ing from the counting requests made for information from
the client within a defined period of time.

37. An information system as claimed in claim 32 further
comprising means for counting requests to particular ser­
vices exclusive of repeated requests from a common client.

38. An information system as claimed in claim 32 further
comprising a data base relating customer information to

25 access patterns.

28. A method of processing service requests for a docu­
ment received from a client through a network in which the
document has been purchased by a user, said method com­
prising the steps of:

responding to a request for a document received from a
client through the network in which the document has
been purchased by the user wherein communications
between the client and server system are according to 30
hypertext transfer protocol;

appending an authorization identifier to the request as part
of a path name in a uniform resource locator; and

returning the requested document if the authorization
identifier indicates that the user is authorized to access 35

the document.
29. A method as claimed in claim 28. wherein the autho­

rization identifier is encoded within a session identifier
which is appended to the request as part of a path name in
a uniform resource locator. 40

30. A method of processing service requests from a client
to a server system through a network, said method compris­
ing the steps of:

responding to a request for a document received from a
45

client through the network, wherein communications
between the client and server system are according to
hypertext transfer protocol;

appending as part of a path name in a uniform resource
locator a session identifier to the request;

returning the requested document to the client. and;
charging the user identified in the session identifier for

access to the document.

50

31. A method as claimed in claim 30, wherein a user
identifier is encoded within a session identifier which is 55

appended to the request.
32. An information system on a network, comprising:

39. An information system as claimed in claim 38 wherein
the information includes customer demographics.

40. An information server on a network, comprising:
means for appending a session identifier as part of a path

name in a uniform resource locator, wherein commu­
nications between the client and server system are
according to hypertext transfer protocol;

means for responding to requests for hypertext pages
received from a client through the network by returning
the requested hypertext pages to the client;

means for responding to further requests derived from
links in the hypertext pages; and means for tracking the
further requests derived from a particular hypertext
page.

41. A server as claimed in claim 40 wherein the requests
include a common session identifier and the server tracks
requests within a session of requests.

42. A server as claimed in claim 41 further comprising a
data base relating customer demographics to access patterns.

43. An information server on a network, comprising:
means for appending the session identifier as part of a path

name in a uniform resource locator, wherein commu­
nications between the client and server system are
according to hypertext transfer protocol;

means for responding to requests for service received
from a client through a network by returning the
requested service to the client; and

means for counting requests to particular service exclu­
sive of repeated requests from a common client.

44. A server as claimed in claim 43 wherein the requests
include a common session identifier and the server tracks
requests within a session of requests.

means for receiving service requests from clients and for
determining whether a service request includes a ses­
sion identifier, wherein communications between the
client and server system are according to hypertext
transfer protocol;

45. A server as claimed in claim 43 further comprising
means for excluding requests made to a service from the

60 client within a defined period of time.

* * * * *

