L

3 A

US005734837

.
United States Patent 19 1) Patent Number: 5,734,837
Flores et al. 451 Date of Patent: *Mar. 31, 1998
[54] METHOD AND APPARATUS FOR BUILDING 5216592 6/1993 Mann et al. ..occcerrcrnereensncnnns 364/401
BUSINESS PROCESS APPLICATIONS IN 5233513 8/1993 Doyle : 364/401
TERMS OF ITS WORKFLOWS 5249300 9/1993 Bachman et al. .
5,301,320 4/1994 McAtee et al. .
[75] Inventors: Pablo A. Flores, Alameda; Rodrigo F.
Flores. Berkeley. both of Calif.; Raul OTHER PUBLICATIONS
Medina-Mora Icaza, Mexico City, Scherr, AL.; “A New Approach to Business Processes”;
Mexico; Jaime Garza Vasquez. IBM Systems Journal; vol. 32, No. 1; 1993.
Alameda, Calif.; John A. McAfee, . . .
Kensington, Calif.; Manoj Kumar; Primary Examiner—Gail O. Hayes
Manuel Jasso Nuiiez, both of Alameda, Assistant Examiner—Barton L. Bainbridge
Calif.; Terry Allen Winograd, Attorney, Agent, or Firm—Blakely Sokoloff Taylor &
Stanford, Calif.; Harry K. T. Wong. Zafman
Danville, Calif.; Roy L Gift, San
Anselmo. Calif. [571 ABSTRACT
The invention is a method and system which provides
[73] Assignee: Action Technologies, Inc.. Alameda, consultants, business process analysts. and application
Calif. developers with a unified tool with which to conduct busi-
. . ness process analysis, design. documentation and to generate
[*] Notice: The term of this patent shall not extend pusiness process definitions and workflow-enabled applica-
beyond the expiration date of Pat. No. tjons, The invention may be implemented using a software
5.630.069. system which has two functional sets. One is a set of
graphical tools that can be used by a developer or business
[21] Appl. No.: 182,744 analyst to map out business processes. The second is a set of
. tools that can be used to document and specify in detail the
[22] Filed: Jan. 14, 1994 attributes of each workflow definition, iml:)lufdlifgg roles, cycle
{51] Int. CLS GOGF 19/00 time, conditions. of satisfaction, cost and value, associated
[52] U.8. ClL oo 395/207; 395/208; 395/209; text.forms, application data as well as detail the attributes of
395/211 links between workflows required to complete a business
[58] Field of Search 364/401, 408; process map. and to generate a business process definition
395/207. 208, 209, 211 and a workflow-enabled application. In this manner, the
invention provides the capability of performing application
[56] References Cited generation and generation of business process definitions in

U.S. PATENT DOCUMENTS

5,182,705

CONDITIONAL 1

3,736,409 5/1973 Boyan .
1/1993 Barr et al. ccvecveeerercrrenmecnerneass 364/401

C1 CUSTOMER 3

0:3:1

C1 PERFORMER 15
0:5:0

CONDITIONAL 2

C2 CUSTOMER

P1 cusmuen_‘/(
19

C2 PERFORMER

CLIENT | PRIMARY WORKFLOW SALE

a definitions database. The invention also includes a work-
flow language scripting capability.

37 Claims, 14 Drawing Sheets
$1PERFORMER

6:0:0
SERIAL 1

$1 CUSTOMER

23

S LINK INDICATES

TWORKFLOW $2 PERFORMER
15 INITIATED o0

SERIAL 2

52 CUSTOMER

P2 PERFORMER

PARALLEL 1

P1 PERFORMER

U.S. Patent Mar. 31, 1998 Sheet 1 of 14 5,734,837

—PROPOSAL PHASE AGREEMENT PHASE—

CONDITIONS OF
SATISFACTION

-SATISFACTION PHASE PERFORMANCE PHASE—

FIG. 1a

U.S. Patent Mar. 31, 1998 Sheet 2 of 14 5,734,837

CUSTOMER PERFORMER
REQUEST AGREE
CONDITIONS OF
SATISFACTION
CUSTOMER PERFORMER
DECLARE SATISFACTION DECLARE COMPLETION

FIG. 1b

U.S. Patent Mar. 31, 1998 Sheet 3 of 14 5,734,837

PERFORMER CUSTOMER
OFFER ACCEPT
CONDITIONS OF
SATISFACTION
CUSTOMER PERFORMER
DECLARE SATISFACTION DECLARE COMPLETION

FIG. 1c

U.S. Patent Mar. 31, 1998 Sheet 4 of 14 5,734,837

CONDITIONS OF

PERFORMER
CUSTOMER SATISFACTION

OBSERVER

FIG. 1d

U.S. Patent Mar. 31, 1998

—PROPOSAL PHASE—CYCLE TIME
D:H:M
D:H:M

CONDITIONS OF
SATISFACTION

D:H:M

Sheet 5 of 14

5,734,837

AGREEMENT PHASE—,

D:H:M

D:H:M

-SATISFACTION PHASE

FIG. 1e

PERFORMANCE PHASE—

U.S. Patent ‘Mar. 31, 1998 Sheet 6 of 14 5,734,837

—PROPOSAL PHASE———COST/PRICE AGREEMENT PHASE—
COST/PRICE COST/PRICE
CONDITIONS OF
SATISFACTION
COST/PRICE COST/PRICE
~SATISFACTION PHASE PERFORMANCE PHASE—

FIG. 1f

C1 CUSTOMER
0:3:1

CONDITIONAL 1

ws

THESE LINKS INDICATE
THAT ONE OF TWO
CONDITIONAL WORKFLOWS
IS INMATED

13

<

FIG. 2a

C1 PERFORMER

15
C2 PERFORMER
Tousnm—\
co

$1 CUSTOMER

IS LINK INDICATES
THAT A SERIAL
WORKFLOW
IS INITIATED

NDITIONAL 2

CLIENT ! PRIMARY WORKFLOW

11

m
PARALLEL 1
e
P1 CUSTOMER_‘/(
19

$2 CUSTOMER

S1PERFORMER
6:0:0
SERIAL 1

23

S2 PERFORMER
1:0:0
SERIAL 2

P1 PERFORMER

Judyed ‘SN

8661 ‘1€ Ie]A

P1 JOo L 994S

LESPELS

U.S. Patent Mar. 31, 1998 Sheet 8 of 14 5,734,837

0:0:0
PRIMARY WORKFLOW

0:.0:0
WORKFLOW #1

Fig. 2b

WORKFLOW SERVER
33a
TRANSACTIO FOLLOW-UP SCHEDULE
MANAGER MANAGER MANAGEH
WORKFLOW WORKFLOW INSTANTIATOR | | WORKFLOW
LANGUAGE
PROCESSOR UPDATER pLANGUAGE
26~ 37”7 397 St 31
WORKFLOW STF
EVENT N ROUTER/
HANDLER | / ENQUEUER |
45 47
57
T NAMES/ H ADMINISTRATION/ EU
DEFINITIONS | |TRANSACTIONS|| NAMES/ SCHEDULE || ADMINISTRATION' |} - r quEUE

WORKFLOW
SERVER
MANAGER

WORKFLOW
DEFINITIONS
AP|

NAMES AND
ROUTINGS
AP

SERVER
ADMINISTRATION
APl

WORKFLOW
THANSAAPC|TIONS

ENABLED VIEWS AP | g
APPUCATION / ™

JudIRd SN

8661 ‘I IBIA

P1 JO 6 39S

LESPEL'S

| (" scReeN |
CONTROLLER | VIEW WINOOW)I MODEL
| - |
84
7 g : W :
MENWTOOLBAR - TOOL PROPERTIES DISPLAY 103 WORKFLOW
INTERPRETER | SELECTOR : DIALOG MODULE : RULES
) | B! T | ¥
A8 SHAPE ’ COMPONENT
TOOL PROCEDURES | 1
'\ o REPRESENTATION ' REPRESENTATION
MOUSEXEYBOARD|L | | LOOPTOOL LINK TOOL V:— LooP LINK R WORKFLOW LI
INTERPRETER !
DIAMOND ' '
/ TOOL TEXTTOOL | DIAMOND TEXT I CONDITIONAL TEXT
& | i
7 N\
% o || i
I I
|) 1 | / " 1
107
| EXPORT PRINTER | FLEWO
| MODULE MODULE | /] MOOuE
I i 105
FIG. 4 i . o
MAP %
. ! m.s“.&'(}f»'aﬁm) W l /(MAP FLES)
! | e

Jued ‘SN

8661 ‘I€ “TeA

P1 30 01 19US

LESPEL'S

U.S. Patent Mar. 31, 1998 Sheet 11 of 14 5,734,837

13”]

HWM\-’
Script Processor

Syntax

[Gonomte ™
Application .

[Chock N

119/

Display

To User
Syntax
Errors

| —1

Script I Precompiler | 131 Entities

Exe Code Module Data

1o {} 139
groduce od 135
.
z:jceompl Pr«(::om;d.pﬂod 51
137 * / ll'ﬂ
Application | / Database | Generation AP Datsbese
Generate Forms/Views |Perform Al romle Forms &
User Interface Generation | Routine AP I vi
1237
143 /
Consistency
Checkin 141
\ Finite State
115 P Machine | 116

System State Link
Scripts Transitions Errors
/ ! \
121 145

n7z

Juaged ‘S

8661 ‘I eI

P1 JO T1 194§

LESPEL'S

U.S. Patent Mar. 31, 1998 Sheet 13 of 14 5,734,837

173

STF Processor]

d

Identity "H'__]

Associated Wit

LA

Identity Table

176
FCIW‘[MOdG' 175 Performs as
Points to
\ — Is Composad
tH{ Organizational of Organizational
Role Table Role
178 1\79
WiBusProcess 177
Points to
¢ Is COIT\DOS&C' ™)
Has Default Roleto ID Hi
H ldentity Mappin u
Table s Jw
180 181

Has Request Table

Basic
L Has Offer Table Act/State
i Table
Has Offer Set
Mod %
ActWl ' " Has Request Set
Has Templates
171 Has Has Template
WiBusProcess LH.—- Has
M H-" DataTable
178 /
Has
Has
e ‘-
235
20 o Secripts
.(Worlkdlow \
Contains — 231
Workflow
11| Contai Contains Has CycleTimes [~~221
Form Phase Automatic low
Names Styles] I:Tnnsiions lﬁgm';i’gn L
217 223 Fi 8
215 |Contains g .
State
Transiions

19

Judsed 'S’

8661 ‘I€ T

P1 JO pT 1994S

LESPEL'S

5,734,837

1

METHOD AND APPARATUS FOR BUILDING
BUSINESS PROCESS APPLICATIONS IN
TERMS OF ITS WORKFLOWS

BRIEF SUMMARY OF THE INVENTION

The invention is a method and system which provides
consultants, business process analysts, and application
developers with a unified tool with which to conduct busi-
ness process analysis, design, documentation and to generate
business process definitions and workflow-enabled applica-
tions. The invention may be implemented using a software
system which has two functional sets. One is a set of
graphical tools that can be used by a developer or business
analyst to map out business processes. The second is a set of
tools that can be used to document and specify in detail the
attributes of each workflow definition, including roles, cycle
time, cost and value, conditions of satisfaction. associated
text, forms, application data as well as detail the attributes of
links between workflows required to complete a business
process map, and to generate a business process definition
and a workflow-enabled application.

A fundamental concept of workflow analysis is that any
business process can be interpreted as a sequence of basic
transactions called workflows. Every workflow has a
customer, a performer, and conditions of satisfaction. The
customer and performer are roles that participants can take
in workflows. In addition, each workflow can have observ-
ers.

In a workflow, the customer is the person for the sake of
whom the work is done, either because they made a request
or accepted an offer. It is customers who are responsible for
evaluating performed work and determining whether this
work meets their conditions of satisfaction.

The performer is the person who is responsible for
completing the work and for declaring to the customer when
the work is done.

Requests and Offers are the two basic types of workflows.
The conditions of satisfaction specify the work to be per-
formed by the performer. In a request, the customer specifies
the conditions of satisfaction, and in an offer the performer
specifies them. (Then, of course, the two can enter into
negotiation about the work to be done.)

For example, given the sentence: “John asked Frank to
prepare the report and deliver it by noon on Friday.” John is
the customer for this workflow, Frank is the performer, and
the conditions of satisfaction are “prepare the report and
deliver it by noon on Friday.” Further, because John asked
for the report rather than Frank offering it, this workflow is
of the type Request.

Given the sentence: “John proposed to prepare the report
and deliver it by noon on Friday for Frank,” John is the
performer for this workflow, Frank is the customer, and the
conditions of satisfaction are still “prepare the report and
deliver it by noon on Friday.” Further because John pro-
posed the report rather than Frank asking for it, this work-
flow is of the type Offer.

Observers of workflows take no direct action; they usually
observe for management or training purposes.

An important part of a workflow analyst’s work is the
development of business process maps, with which the
analyst and his/her client can readily see and interpret the
structure of a business process. and identify quickly areas for
clarification or improvement.

Business process maps display the workflows as loops,
and display the relevant information about each workflow—

10

15

25

30

35

45

50

55

65

2

the customer, the performer. the conditions of satisfaction,
the cycle time and cost/value.

Further, a business process map displays the relationships
among workflows, called links. For example, in a loan
approval business process, the workflow in which the loan
is approved is linked to the workflow in which the bank
issues a check. If the loan is approved, that triggers the
initiation of the “write check” workflow. If the loan is not
approved, the secondary workflow “write check” is not
initiated.

Workflow maps highlight the following features of busi-
ness Processes:

the conditions of satisfaction of both internal and external

customers;

the roles of process participants;

which workflows are primary and which workflows are

secondary to the business process;

what work is performed in serial; what work is performed

in parallel;

cycle times for the process, each workflow in the process

and the phases of each workflow;

value, cost, application data with attributes, and forms

associated with each workflow phase.

Additionally, workflow maps enable analysts to identify
opportunities for improvement because workflow maps:

clarify business processes;

identify where roles are unclear or missing;

clarify customer conditions of satisfaction;

identify where customer expectations are unclear or do

not match work performed;

indicate where work is redundant or is performed serially

when the work could be performed in parallel.

In U.S. application Ser. No. 600,144 filed Oct. 17, 1990,
now U.S. Pat. No. 5,216,603 and U.S. Ser. No. 07/368,179
filed Jun. 19, 1989, now U.S. Pat. No. 5,208,748, both
owned by Action Technologies, Inc.. the assignee of the
present application, methods and systems for managing
workflows, called conversations in the referenced
applications. are described. However, the teachings in the
cited references are limited to single workflows with no
capability for mapping business processes made up of a
number of workflows linked together. In U.S. application
Ser. No. 08/005.236 filed Jan. 15, 1993, a method and
system are disclosed to:

support the work of analyzing and mapping existing

business processes and designing new business pro-
cesses;

shorten the cycle time of producing workflow enabled

applications which allow users and managers to par-
ticipate in and manage business processes;

reduce existing coordination problems between business

process analysts and programmers;

develop maps of a business process;

document a business process;

test maps of a business process for completeness and

consistency.

However, the teachings in the pending application do not
include the capability to perform application generation, or
generate business process definitions in a definitions
database, have no workflow language scripting capability
and have no business process definition capability.

The invention disclosed in this previously filed
application, which is referred to as a workflow analyst, is a
component of a complete workflow system. The previously

5,734,837

3

disclosed invention is the component of the system that
allows creation of workflow maps of business processes.
These maps are an input to another component of a complete
workflow system. which component is referred to as a
workflow application builder. The workflow application
builder is the subject of the present application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is pictorial representation showing the phases of
a single workflow.

FIG. 1b is pictorial representation of a single workflow
showing the normal flow of a request type workflow.

FIG. 1c is pictorial representation of a single workflow
showing the normal flow of a offer type workflow.

FIG. 1d is pictorial representation of a single workflow
showing the roles of participants of a workflow.

FIG. 1e is pictorial representation of a single workflow
showing workflow cycle times.

FIG. 1f is pictorial representation of a single workflow
showing workflow cost/value.

FIG. 2a is pictorial representation of a business process,
i.e.. a set of linked workflows.

FIG. 2b is a pictorial representation of a primary work-
flow which is a request type workflow with automatic
transition turned on for performance.

FIG. 3 is a block overview diagram of a complete
workflow system showing how the present invention inter-
faces with the rest of the workflow system.

FIG. 4 is a block diagram showing the various functional
components of the invented system when implemented as a
software system.

FIG. 5 is an illustration of a conditional link between
workflows.

FIG. 6 is a block diagram showing the flow of an
application builder implemented according to the teachings
of the present invention.

FIG. 7 is a block diagram showing the relationships of
data used utilized by the present invention when viewed at
the organization level.

FIG. 8 is a block diagram showing the relationships of
data used utilized by the present invention when viewed at
the business process level.

DETAILED DESCRIFTION OF THE
INVENTION
OVERVIEW

The present invention is a method and system which is
used to: build business process maps (covered in U.S.
application Ser. No. 08/005.236 filed Jan. 15, 1993), now
U.S. Pat. No. 5,630.069 verify consistency of business
process maps. generate business process definitions and
generate workflow-enabled applications.

Assingle workflow is shown in FIGS. 1a-1f as an elliptical
loop with arrows shown in a clockwise direction wherein
each quadrant of the ellipse signifies different phases of the
workflow. The first phase is called the preparation phase
during which a request is made of the prospective performer
by a customer (FIG. 1b) or an offer to a customer is made by
a prospective performer (FIG. 1c). The second phase is
called the negotiation phase during which the offer is
accepted by the customer or the request is agreed to by the
performer and conditions of satisfaction are identified. Of
course, during the negotiation phase, the original conditions
of satisfaction can be negotiated by the customer and

10

15

20

25

30

35

45

50

55

65

4

performer until an agreement is reached. The third phase is
called the performance phase during which the performer
undertakes to meet the agreed to or accepted conditions of
satisfaction. When the performer believes that the conditions
of satisfaction have been met, the performer declares
completion. The last phase is the acceptance phase during
which the customer determines whether or not the condi-
tions of satisfaction have been met by the performer, and if
so. declares satisfaction.

FIG. 2a is a business process map having a primary
workflow 11, conditional workflows 13 and 15, a conditional
link 17, parallel workflows 19 and 21, serial workflows 23
and 25. Tt should be noted that while a business process such
as the one shown in FIG. 24 can be graphically represented
by any one of a number of prior art drawing programs
capable of drawing shapes, curved lines, straight lines and
arrowheads, such prior art programs have no ability to
associate with each workflow various parameters such as
roles, cycle time, cost/value, conditions of satisfaction or
associate semantics to the links that imply automated action
or provide the framework for application building, all of
which are necessary to create a useful business process
representation.

A workflow can be linked to (and initiate) multiple
workflows from one of its phases. If all the workflows start
at the same moment, the multiple workflows are said to have
started in parallel. Multiple workflows can also be started
serially. There are two mechanisms to indicate the serial-
ization of workflows. As illustrated in FIG. 2a, workflows
serial 1 and serial 2 are sequential workflows. The primary
workflow at the beginning of the agreement phase, has a link
to start workflow serial 1. Workflow serial 2 is linked from
the satisfaction phase of workflow serial 1. Upon satisfac-
tion of workflow serial 2, there is a link back to the primary
workflow.

In workflow analysis practice, it is often necessary and
useful to construct business process maps that do not have
the four complete phases to illustrate breakdowns in the
process.

Components of a Workflow System

Although the present invention is one element of a
complete workflow system, and details of other elements of
a workflow system are not needed to obtain an understand-
ing of the invention, a suitable workflow system in which the
present invention may be utilized incorporates the following
components which are shown in FIG. 3.

Workflow Server

The workflow server is the heart of a workflow system.
The workflow system concentrates workflow operations in
the workflow server rather than in the end user applications.
By using this client/server design, applications do not need
to have the intelligence about workflows as part of their
design. Application developers can concentrate on their
particular application development not having to worry
about workflow logic and overhead because such function-
ality is handled at the server. Referring to FIG. 3. the
workflow server 31 includes a transaction manager 33q,
follow-up manager 335, schedule manager 33¢, workflow
processor 35, workflow updater 37, instantiator 39 workflow
language interpreter 41, workflow event handler 43, agent
manager 45 and STF router/enqueuer 47. The workflow
server utilizes a definitions database 51, transactions data-
base 53, names/routings database 55, schedule database 57,
administration/configuration database 59 and STF quene 61.
The transaction manager identifies changes that have hap-
pened in the workflow transaction database and invokes the
proper server modules to provide the services that have been

5.734,837

5

requested or that those changes represent. The workflow
processor embodies the logic of workflows with phases,
actions, roles and dates of completion and reply. The work-
flow updater maintains and updates the workflow transaction
database. It uses the workflow processor to determine the
status of workflows and the set of possible actions for each
one of the roles. The workflow language interpreter inter-
prets workflow language scripts. These scripts contain work-
flow commands, such as the initiation or taking an actin a
workflow. These scripts are part of the business process
definition. These scripts are automatically generated by the
application builder. The agent manager executes workfiow
commands. “Agents” take action on behalf of some role in
a workflow. The commands that the “agents” execute are
specified through the workflow language.

The definitions database contains records that define each
type of business process and workflow in the system. These
records are used by the workflow updater and workflow
processor to determine new workflow states and available
actions.

The transactions database contains the history of com-
pleted workflows and workflows-in-progress. These records
are used by the workflow updater and workflow processor to
determine new workflow states and available actions.

The names/routing database contains the record of roles
and identities of the organization where the workflow sys-
tem has been installed.

U.S. application Ser. No. 08/014,796 filed Feb. 8, 1993
contains a complete description of a suitable workflow
server with a detailed description of the above-noted cle-
ments which may be utilized with the present invention.

In addition to the workflow server, a complete workflow
system of the type in which the present invention may be
utilized includes a set of application program interfaces
(APIs) 63, forms and views API 64, and workflow server
manager 72, standard transaction format (STF) processors
65, application builder 67, analyst 69 and reporter 71
components as follows.

Workflow APIs

The workflow APIs 63 provide a programming interface
to access the services of the workflow server. Workflow
enabled applications, STF processors and the application
builder are all developed using these APIs. APIs used by a
workflow system are as follows: forms and views API,
transactions API, definitions APL, names and routings API,
schedule API, server administration APL and reporter APL
The APIs other than the forms and views API 64 and the
definitions API as needed to implement the Application
Builder are described in co-pending application Ser. No.
08/014,796 filed Feb. 8, 1993, although a description of the
definitions APT as needed to implement the invention which
is described in the co-pending application is set forth therein.
Forms and Views API

The forms and views API responds to application builder
API calls to communicate to a forms generation package, to
generate the forms and views needed to implement the
application which has been defined through the application
builder.

Definitions AP

The definitions API from the workflow library and the
application builder are used to generate the business process
and workflow definition structures stored in the definitions
database.

Workflow-Enabled Application

A workflow-enabled application interfaces to the server
via the transactions database of the workflow server or via
APIs, or via messaging, database, or inter-process commu-
nications (IPCs) or through the use of an STF processor.

10

15

20

25

30

35

45

55

65

6

STF Processors

A standard transaction format (STF) processor 65 is an
application whose job is to interface external systems to the
workflow system. There is one STF processor for each
different type of system that interfaces to the workflow
system. STF processors can be of three types: message,
database, and IPC. The STF processors translate between an
application’s data format and the workflow APIs. It is the job
of the particular STF processor developer to design the
mapping of the external system and the workflow APIs.
Workflow Application Builder

The workflow application builder 67, which is the inven-
tion described herein. is a Graphical User Interface (GUT)
application that allows a business process designer to
specify the business process design with its network of
workflows. The application builder, in turn, creates or edits
the workflow definitions databases that define the business
process and that will be used by the workflow server. The
workflow application builder also generates forms and views
for client workflow enabled applications.

Workflow Analyst

The workflow analyst 69 is a GUI application that allows
a business process analyst to specify the map of business
processes with its network of workflows. Its output is
readable by the application builder which will update the
definitions database of the server.

Workflow Reporter

The workflow reporter 71 is a GUI application that
provides an interface to the tramsaction databases of the
system. It allows the observation of the status of current
transactions as well as the history and performance of past
transactions.

Definitions

In describing the invention, the following terms with their
indicated definitions are used:

Act—Basic linguistic occurrence by which people inter-
vene in moving a workflow towards completion.

Agreement—The outcome of the negotiation phase. in
which two parties come to a common agreement of the
conditions of satisfaction.

Business Process—A network of workflows linked
together that represent the recurrent process by which an
organization performs and completes work, delivers prod-
ucts and services and satisfies customers.

Business Process Map—This is a graphical representation
of business process, which shows its workflows and their
relationship.

Primary workflow—This is the first workflow which is
initiated when a business process is initiated. Its condition of
satisfaction represent the condition of satisfaction of the
business process.

Conditional Link—A link that indicates that only one of
a group of workflows will be triggered based on some
condition.

Conditions of Satisfaction—Conditions declared by or
agreed to by a customer. The fulfillment of which is the
purpose of a workflow.

Customer—The role in a workflow who makes a request
or accepts and offer.

Customer Satisfaction—The objective of a workflow. the
accomplishment of which is declared by the customer when
the conditions of satisfaction in the workflow have been
fulfilled.

Cycle time—A measure of the time from initiation to
successful completion of a workflow phase, a complete
workflow or a business process.

Exception flow—The path in the business process work-
flow map which is followed if a customer cancels or a
performer revokes or declines.

5,734,837

7

Link—A defined dependency between two workflows and
the mechanism by which dependencies between workflows
is established.

Loops (Workflow)—A workflow is represented graphi-
cally by an elliptical loop with arrows shown in a clockwise
direction wherein each quadrant of the ellipse signifies a
different phase of the workflow.

Normal flow—This is the path followed in a business
process when workflows complete with customer satisfac-
tion.

Observer—A role in a workflow who cannot perform acts
in the workflow, but is informed of acts in the workflow, and
has access to the information and data associated with the
workflow.

Offer—The act by which the performer can initiate a
workflow, specifying conditions of satisfaction that he is
willing to satisfy for a customer.

Organization roles—Named positions in an organization
who are authorized to make certain requests, agreements,
take certain actions, set certain policies, and make certain
decisions. The kind of roles will be accountant, office
manager. etc.

Performer—One of the principal roles in a workflow: the
role that commits to complete the conditions of satisfaction.

Phase—A characterization of the status of a workflow
based on the acts that have happened and the acts that are
permitted.

Request—A customer does this act to initiate a workflow
and declare conditions of satisfaction.

Trigger—An action in a workflow which causes an action
in some other workflow.

Triggered—Action in a workflow based on certain
conditions/status in some other workflow.

Workflow—A structured set of acts between customers
and performers organized to satisfy a customer’s conditions
of satisfaction.

Workflow Activation—A triggered action that enables the
customer or performer of the workflow to take the initial act
of the workflow.

Workflow Initiation—An act of request or offer that
initiates a workflow.

Workflow Roles—The association of participants in the
workflows that take the acts in workflows; three roles are
distinguished in workflows: customer, performer, and
observer.

Workflow Type—This indicates whether the workflow is
of request or offer type.

OPERATIONAL DESCRIPTION

The invention utilizes a graphical user interface in a
computer system which incorporates a graphical user inter-
lace (GUD) such as the Microsoft Windows (Win3.1+)
environment, using MDI and Windows HELP facility. A
display on a video monitor includes a toolbar which is
provided for the actions that need to be immediately acces-
sible. A status bar is used to display information (e.g. the
function of the currently selected menu option and the like).
Dialog boxes are used where appropriate.

Typically, a workflow map, as it appears on a monitor in
a size suitable for comfortable viewing, is larger than the
screen. For this reason, horizontal and vertical scroll bars
allow the user to scroll through the entire map.

The status bar is used for displaying information only.

The user is prompted for confirmation on deletion of
workflows and links. Objects such as workflows, links,
annotated text, etc. may be moved around on the screen by
typical clicking and dragging of a mouse as occurs in a GUL
A workflow scripting language is available to automate the

10

15

20

25

30

35

45

50

55

65

8

generation of workflow acts and to set conditions for execu-
tion of those acts. Scripting is also used to set conditions for
calling other functions or programs or generating E-mail. In
addition, prior to application generation, the invented system
is able to perform consistency checking to ensure the
creation of logical and consistent business process maps.

The invention i) produces standard workflow maps of
business processes that show workflows and the links
defined between workflows or receives such maps and
defined links created by the Analyst; and ii) defines triggers
that will cause events to occur, states to change, or acts in
workflows; iii) verifies the consistency of the business
process maps; iv) produces the workfiow scripts that corre-
spond to the workflow and links defined in the map; v)
generates definitions database; and iv) generates business
process applications through forms, form fields and their
visual representation.

The user of the invented system is known as a business
process analyst or systems analyst or designer or application
developer. To use the system, the user first creates a business
process which is defined in terms of a business process map.
A business process map contains customer and performer
names and organizational roles for the primary workflow,
target cycle times for the entire process, version of the
process, when and by whom the process may be started. and
so forth. In addition, it contains workflow and link
definitions, roles, permitted acts, default identities, applica-
tion data and forms for each workflow in the process, and
trigger act or state, triggered act or state and condition (if
link is conditional) for each link in the process.

Workflows are represented graphically as elliptical loops
with four phases as shown in FIGS. 1la-1f. Each workflow,
and each phase within the workflow, has a starting point and
an ending point. The primary workflow of the business
process is displayed as a large elliptical loop to make it
visually distinct as shown in FIG. 2a.

Workflows can be created without having all links defined
and the user is able to link them afterwards. In addition to
the loop, the workflow attributes workflow name, customer,
performer, conditions of satisfaction, cost and price (or
value) for the workflow and each phase and cycle times for
the entire workflow and each phase are displayed.
Furthermore, if a form name attribute is specified then a
form icon and name will also be displayed. The form name
attribute is for identifying any forms to be used by the
generated application.

The invention supports two types of workflows:

Request; and

Offer.

The invention supports three different roles for each
workflow:

Customer: The organizational role or name of the person
that can declare satisfaction for the completion of the
workflow.

Performer: The organizational role or name of the person
who fulfills the conditions of satisfaction of the workflow.

Observer: The organizational role or name of persons who
neither declare satisfaction nor fulfill the conditions of
satisfaction but who monitor the workflow for management,
training, or to fulfill other organizational concerns.

Each workflow has a unique name that identifies it in the
business process.

The conditions of satisfaction of a workflow are the
conditions that will satisfy the customer of a request or offer.

The cycle time of a workflow is the time to achieve
customer satisfaction as well as to reach agreement and
completion which are specified for each workflow. The cycle

5,734,837

9

time for each phase is the time it is expected to complete the
phase. Cycle time includes days, hours, and minutes for all
cases. In some cases, months and years for the cycle time
may also be specified.

The cost and value of a workflow is the sum of the cost
and value which are specified for each phase of the work-
flow.

Each workflow can have associated text. Such text could
be used, for example, to describe the workflow in narrative
form in order to construct the narrative of the process.

A workflow may also have a form name which is the name
of a form that is associated with the workflow. As noted
above, a form refers to the form to be used by the workflow-
enabled application generated by the application builder
which forms the present invention.

‘When a workflow is created on a business process map,
the user is given an accessible way to enter the workflow
attributes, namely, workflow name, customer, performer,
conditions of satisfaction, costs and prices (or values), cycle
times, application data, its attributes, forms and type of
workflow.

In many cases of a business process, a workflow repre-
sents a collection of workflows rather than a single work-
flow. This collection of workflows have the same conditions
of satisfaction (and hence can be observed as a single
workflow). These workflows are multiple in that they either
have multiple performers in the request type case, or mul-
tiple customers in the offer type case. These workflows are
repeating in that there will be a set of similar workflows
managed by the workflow system.

A graphical representation to indicate multiple repeating
(group) workflows is accomplished through a shadow or
other such graphical representation under the current arrow
of the third quadrant.

To input all of the workflow attributes, the user selects the
workflow, double-clicks it and enters all the information
through a standard dialog box.

A link specifies the relationship between two workflows,
i.e. where an action in one workflow causes an action in
another workflow. When such a relationship is established,
it is said that the second workflow is linked to the first.

A link contains definitions of trigger conditions and the
actions that result from those trigger conditions. The trigger
conditions are either:

Workflow-Act based; or

Workflow-State based.

Triggered actions to be taken are:

Workflow initiation;

Workflow activation;

Workflow acts;

Workflow states; or

Prompt for conditions for conditional link.

Links are represented graphically as lines with arrow-
heads that connect two workflows. The arrowheads indicate
that a triggered action happens in the workflow pointed to by
the arrowhead due to the trigger action in the workflow at the
tail of the line. The “tail” of each line anchors to the trigger
action, and can be placed in any part of the loop phase,
indicating sequencing of triggering action. The “head” of the
line indicates the triggered action.

Conditional links are indicated with a diamond icon.

To establish a link, the user selects one workflow and
draws a link to a second workflow.

When a new link is drawn, the defanlt values are as
follows:

The trigger action is either of type Act. The user interface
allows specifying the trigger action type. The triggered

10

15

20

25

30

35

45

50

55

65

10

action default value is Initiate or Activate depending on
where the arrow was drawn to (the beginning or end of the

first phase).

There are two kinds of links, those that correspond to the
“normal” flow of the process and those that correspond to
the “exception” fiow of the process. The latter are links
triggered by cancel. revoke or decline acts.

Tables Ia and Ib establish the relationship between trig-
gering and triggered actions under normal and exception

cases,
TABLE Ia

Outgoing Links Request Offer

Out from Preparation

state

Default trigger act S:Activate S:Activate

Other valid trigger acts none none

Valid trigger state Preparation Preparation

Cut from Negotiation

state

Default trigger act C:Request, C:Initiate P:Offer, P:Initiate

Other valid trigger acts C:Decline Counter- P:Counteroffer,
Offer, C:Counter, P:Decline Counter,
C:Cancel, C:Cancel
P:Counteroffer C:Counter

Valid trigger state Negotiation, Negotiation,
Negotiation Negotiation
{Countered) {Countered)

Out from Performance

state

Default trigger act P:Agree C:Agree To Offer

Other valid trigger acts C:Decline To Accept, C:Decline To Accept,
C:Agree To P:Agree To Counter,
Counteroffer, C:Decline offer,
C:Cancel, C:Cancel
P:Decline

Valid trigger state Performance Performance

Out from Acceptance

state

Default trigger act P:Report Completion P:Report Completion

Other valid trigger acts C:Cancel, P:Revoke C:Cancel, P:Revoke

Valid trigger state Acceptance Acceptance

Out from Satisfied state

Default trigger act C:Declare Satisfaction C:Declare Satisfaction

Other valid trigger acts C:Cancel C:Cancel

Valid trigger state Satisfied, Canceled, Satisfied, Canceled,
Revoked, Declined Revoked

TABLE Ib

Incoming Links Request Offer

Into Preparation state

Default trigger act S:Activate S:Activate

Other valid trigger acts none none

Valid trigger state Preparation Preparation

Into Negotiation state

Default trigger act
Other valid trigger acts

Valid trigger state

Into Performance state

Default trigger act

C:Initiate (C:Request)
C:Decline
Counteroffer,
C:Counter, C:Cancel,
P:Counteroffer
Negotiation,
Negotiation
(Countered)

P:Agree

P:Initiate (P:Offer)
P:.Counteroffer,
P:Decline Counter,
C:Cancel, C:Counter

Negotiation

Negotiation
(Countered)

C:Agree To Offer

5,734,837

TABLE Ib-continued
Incoming Links Request Offer
Other valid trigger acts C:Agree To P:Agree To Counter,
Counteroffer, C:Decline To Accept,
C:Decline C:Decline Offer,
To Accept, C:Cancel, C:Cancel
P:Decline Performance
Valid trigger state Performance
Into Acceptance state
Default trigger act P:Report Completion P:Report Completion
Other valid trigger acts C:Cancel, P:Revoke C:Cancel, P:Revoke
Valid trigger state Acceptance Acceptance

Into Satisfied state

Default trigger act C:Declare Satisfaction C:Declare Satisfaction

Onrder valid trigger acts C:Camcel C:Cancel

Valid trigger state Satisfied, Canceled, Satisfied, Canceled,
Revoked, Declined Revoked

The Acts are Activate, Initiate, Request. Agree. Offer,
Agree to Offer. Counter-Offer, Counter, Accept Counter-
Offer. Decline Counter-Offer. Report Completion, Declare
Satisfaction, Decline Report, Cancel, Revoke, Decline.

The user is able to draw a link between two workflow
loops on a map by selecting the “from quadrant” and the “to
quadrant” in each of the loops. The initial portion of the link
is drawn as a straight line. The user may then create a
drawing handle on the link line and “pull” the line into a
curve. The user may create multiple points on a line to aid
in drawing an “S” or other multi-shaped curve. Such draw-
ing handles and multiple points may be created by mouse
clicks at the desired points in the link.

A user may change the destination of a link by selecting
and dragging with the mouse.

When a link between two workflows is conditional, a
conditional icon is drawn between the workflows. To link
more workflows conditionally, the user links a new target
workflow to the conditional icon.

BASIC TOOLS

The invention provides a set of basic tools for drawing,
filing, editing. printing, viewing and manipulating business
processes, workflows, links, application data with attributes,
forms, cycle times. coast and value, roles and identities. The
most frequently used of these tools are available through
icons.

Workflow Mapping Tools

To facilitate the definiion of business processes. the
invention provides tools for drawing maps of workflows and
the links between them. The lines are Bezier-like and are for
drawing a line from the termination of one phase in a
workflow to another phase in another workfiow. The line
contains handles which allow the line to curve.

Map Drawing Tools

The invention supports the following map drawing tools:

Pointer

Draw Workflow

Draw Normal Flow Link

Draw Conditional link

Draw Exception Flow Link

Annotate Text.

File and Print Tools

The invention provides file and print-related tools that
enable the user to:

Create a new business process map

Open an existing business process map for read, display

and edit

10

15

20

25

30

35

45

50

55

65

12

Save a business process map to a file

Provide summary information about a business process
map

Print the map and reports of the business process

Retrieve a previous version of a business process map that
has been stored on a server for review or further editing

Export map data to Windows metafile format

Export value data

Transfer business process and workflow information to
the Definitions database

Create forms and views.
Edit Tools

The invention provides editing functions that enable the
user to:

Cut, copy, delete and paste workflows, links, and anno-
tated text.-Using edit operations in conjunction with the
clipboard, it is possible to cut or copy objects (expanded and
collapsed workflows, links, text) and paste them in the same
or different business process. It is also possible to paste these
objects in drawing packages.

Editing Attributes—Edit any element of the business
process map, such as workflow attributes, links, business
process definitions, and annotated text.

View Tools

The invention provides functions for different kinds of
views of business processes. It provides funmctions that
enable the user to:

Zoom in and zoom out for magnifying and shrinking the
map size

Expand and Collapse Workflows

Obtain normal flow of workflows and links

Obtain exception flow of workflows and links: i.e., links
for cases where workflows are canceled, declined or
revoked.

Mouse Tools

The inveation utilizes the following mouse tools: Single
Click—A single click selects a workflow or a link.

Double Click—A double click on a workfiow loop opens
the workflow definition dialog. A double click on a link
opens the link definition.

Multiple Select—Holding the shift key while single click-
ing on multiple workflows or links causes all highlighted
workflows or links to be selected. Alternatively, the toolbar
contains a “Select” tool.

Click and Drag Workfiow to New Location—Moves the
workflow loop to a new location on the screen. Automati-
cally adjusts the corresponding links in the map drawing,
Testing Tools

The invention provides a tool for testing and debugging a
business process map as follows:

Test for completeness. Causes the software to find all the
workflows that do not have complete information.
Specifically, it finds missing roles, conditions of satisfaction,
cycle times and workflow names.

Data Tools

The invention provides functions implemented using the
following commands for defining roles and identities, speci-
fying business process and workflow attributes, creating
workflow templates, and checking map completeness.

5,734,837

13

Command Purpose

Organizational Roles Define roles used to specify workflow
participants.

Identities Specify personal information about individ-
uals in the organization.

Business Process Definition Enter basic information about the business
process.

Default Role Mapping Assign specific default identities to organiza-
tional roles.

Policy Document Enter text of policy document pertinent to
the business process.

Business Process Global Define field names, types and attributes of

Data global data.

Workflow Definition Specify general information about a work-
flow such as its name, short name, customer
and performer, template and conditions of
satisfaction.

Enter maximum time values for each of the
phases of the workflow.

Enter time values for follow ups and remind-
ers and specify frequency and number of
times.

Define field names and set attributes of
workflow data.

Enter scripting information for specific acts
and states of workflow. Scripts are used to
automatically generate workflow acts and to
set conditions for the execution of those acts,

Workflow Cycle Times

Follow Up and Reminders

Workflow Application Data

Workflow Scripting

Workflow Form Narmes Set form names for participants of the
selected workflow.

Form Fields Specification ~ Set attributes of application data fields for
forms used by workflow participants.

Phase Styles Define the line type and color of the arcs
representing each phase of the selected
workflow.

Workfiow Template Create or modify templates used to limit
acts available in a workflow and to enter
substitute terminology for acts and states.

Check Consistency Check a business process map for the

validity and consistency of link paths and
other workflow elements.

Reopen the most recent consistency checking
errors list.

View Last Errors

The following is a description of the basic operations
performed by the software used to implement the invention:
Start-up

The program can be started by any suitable mechanism
depending on the platform.

Annotated text

Free text used to describe the business process. This text

is not associated with any specific element of a business

map.
Associated Text

Free text associated with each workflow. It can be used to
provide a narrative of the workflow in order to construct the
narrative of the business process.
Toolbar

A set of icons in a software package with a GUI, which
allows users to select the most frequently used options
without going through the menus and dialog boxes.
Export to a Windows Metafile

The Windows metafile is a binary format which allows
storing of the business process map as an image. This allows
the map to be incorporated in other presentation tools.
Exit

This is the option to exit the program.
‘Workflow Language and Scripting

The following is a description of the Application Build-
er’s workflow (scripting) language. Scripting is used to
automatically generate workflow acts and to set conditions
for the execution of those acts. Scripting is also used for
other functions such as sending a message or executing a

20

45

50

55

65

14

program. A designer using the Application Builder. can
specify scripts associated with acts or states in a workflow.
This allows a great deal of flexibility in the design of the
business process. A script is a series of workflow language
statements. The user interface for user defined scripting is
described below.

The Application Builder also produces “system generated
scripts” that are executed to implement the connection
between workflows in a business process. For every link and
conditional link in the map there is a system script generated
automatically. Automatic transitions (as defined with the
command Phase Styles from the Data menu) also create
system generated scripts.

Execution of Scripts

Scripts are used to move a business process forward
towards meeting the conditions of satisfaction. Scripts are
always executed within one of three contexts. Scripts are
executed when:

An action is taken by an individual

An action is taken by the system

A workflow enters a specified state

An action taken by an individual could be a customer’s
canceling a request. For instance a script could be written to
generate a sendmail notice to warn the sales person. The
script could specify the conditions for sending the mail, the
recipient of the mail, the recipient’s address and the text of
the mail.

An action taken by the system could be a follow-up.
reminder, or other automated script.

A workflow entering a specified state could be a workflow
which enters the Acceptance state.

The following conventions are used in this description:

<brackets> Indicate place holders for information sup-

plied by the designer.

[square brackets] Indicate optional items.

(choicelchoice) Parenthesis and a vertical bar indicate a

mandatory choice between two or more items. One of
the items must be chosen unless all of the items are
enclosed in square brackets|].

Data Types and Variables

The following data types are supported in the language:

Numeric

Character

Date and Time
Case sensitivity and character set

The workflow language uses the ASCII character set in a
case insensitive way (‘a’ is equal to ‘A’). Spaces, tab
characters and new lines are ignored.

A string is a sequence of characters between quotes
(“string™). It cannot extend past the end of line marker. If an
end of line character is found inside a string an error
message is generated.

Inside a character string, ASCII alphanumeric characters
can be specified using spaces and characters in the 850
international code page.

The insertion of special characters in the string can be
accomplished by the use of the escape character, similar to
C escape characters.

\t introduces a tab character

\n introduces a new line character

\\ introduces a backslash character

\" introduce the quote character

A string can be continued to the next line by using a
backslash followed by a carriage return. This is useful when
a string is too long to fit into the Workflow Scripting
window.

5,734,837

15

For example:

SendMalil(. . . ., “Please review the totals\defined below

and let me know if you find\any difference.\n”, . . .)

Strings can also be divided using the character concat-

enation operator. For example:

SendMail(. . . , “Please review the totals”+“defined
below and let me know if you find”+“any
differencen”, . . .)

This combines two strings (listed on two lines) into one
string.

Variables Support

Variables can be any of the above data types (Numeric,
Character, Date and Time).

Variables are used in expressions and statements to rep-
resent values. For example, a variable can represent the
value in an application field. Scripts can be written to
execute an action based on the value in a field at the moment
of a specific act or state in the workflow.

Scope

Variables have a scope, which is either

global—the value is available to any script of all work-

flows

local—the value is available only to the script of the

current workflow

Identifiers

Often. variables include an identifier such as the ones used
in the workflow short name or in application data field
names. An identifier is a single word which can start with an
alphabetic character followed by a sequence of alphanu-
meric or underline characters. No spaces or punctuation
marks are allowed.

For example:

total

tot2

Total_ Purchase

The two kinds of variables are workflow data variables
and application data variables.

Reserved Words

The following are reserved words and cannot be used as
identifier names. These are used in the Application Builder
to identify grammatical constructions.

IF

ELSEIF

ELSE

ENDIF

INITIATE

ACTIVATE

ACT

SENDMAIL

CALLPROGRAM

ECHO

ISACTIVE

ISINSTATE

ISNOTINSTATE

CUSTOMER

PERFORMER

OBSERVERS

TRUE

FALSE

STR

AND

OR

NOT

10

15

20

25

30

35

45

50

55

16
Special Symbols
The following symbols have special meaning to the
application builder and cannot be used in identifiers:

Assignment: ‘=’
Arithmetical operators: ‘+°, =, **’, */*
Relational operators: ==, <>, >, <, >=, <=

Logical operators: AND., OR, NOT (also reserved words)
Workflow Data
Syntax

[<workfl ow-name>. |
(CUSTOMERIPERFORMERIOBSERVERS) where
the workflow-name is either a string or an identifier.

The workflow data variables supported are:

Customer

Performer

Observers

Workflow data variables are global.

Application data

Application data is data that is specified in data fields in
an application. Within a workflow system, application data
variables can be cither local or global.

The term “local application data” refers to the names of
fields that can be made available to, and edited by partici-
pants in a specific workflow. (Participants in directly con-
nected workflows may also view these fields as “read only.”)

The term “global application data” refers to the names of
fields that can be made available to participants in any
workflow in the business process.

Application data variables and their data types are defined
using Data menu commands such as Workflow Definition
and Business Process Definition. The Application Builder
uses these definitions to use each identifier as the appropriate
data type.

Syntax
[<workflow-name>.|<identifier> where the workflow-
name is either a string or an identifier.
Variables from connected workflow loops can be referred
to with the following syntax:
<workflow-name>.variable

Search order

When the Application Builder evaluates an application
data variable, it searches for the application data in the
following order:

1. If a workflow name is specified:

a) If the workflow pame is a string, it will search in the
specified workflow.

b) If the workflow name is an identifier. it will locate
the workflow by the short workflow name and search
in the specified workflow.

c) If the workflow is not found, it will generate an error
message.

2. If no workflow name is given:

a) It will try to locate the data in the current workflow

b) It will try to locate the data as global application data

c) If the data is not found. it will generate an error
message.

Specifying application data field values:

Expressions can be derived from application data. or can
be constants. Application data field values are specified as
follows:

5,734,837

17

Priority
“Expense Report” Budget

exprep Budget

“Pat Smith”
1234567890

{Jan 5 1993 10:23:00} or
{01051993102300}

Where “Priority” is a global data field
Where the data field “Budget” is local to the
workflow “Expense Report” (full workflow
name)

Where data field “Budget” is local to a
workflow for which the short workflow
name is “exprep”

‘Where the string expression is specified
between quotations

‘Where the numeric expressions are specified
without quotation marks

Where date expressions are specified
between braces in a Month, Day, Year,

Hour, Minute, Second format:
MMDDYYYYHHMMSS
Month (2 digits)

Day (2 digit)

Year (4 digit)

Hour (2 digit)

Minute (2 digit)

Seconds (2 digits)

Expressions and Operators
Relational expressions

Relational expressions are used to compare values and to
guide action of the workflow server; they are used in
conditional links and in If statements.

Syntax

<expression><relational operator><expression>
The relational operators and their applications are:

Operator Application
== (equal to) Character, Numeric, Date
<> (not equal to) Character, Numeric, Date
> (greater than) Numeric, Date
>= (greater than or equal to) Numeric, Date
< less than) Numeric, Date

<= (less than or equal to) Numeric, Date

Logical Expressions
Logical expressions can be used to combine relational
expressions.
Syntax
<relational expression> AND <relational expression>
<relational expression> OR <relational expression>
NOT <relational expression>
Arithmetic Operators
Arithmetic operators are:
+ Plus
— Minus
* Multiply
\ Divide
Syntax
<expression><-H-|*[\><expression>
Character fields can be assigned from string constants or
other character fields.
They cannot be assigned from numeric fields.
Character Operators
The only character operator is
+ Character concatenation
Syntax
<text>+<text>
where text is a text string or identifier.
Operator Precedence
Standard C and Basic conventions are followed regarding
expression evaluation order. For example, all AND expres-

10

15

20

25

35

40

45

50

65

18

sions are evaluated first, then ORs are evaluated. Parenthe-
ses are used to force evaluation order.

The operator precedence is outlined from lowest to
highest, along with their associatively (the direction in
which expressions are evaluated):

Order Operator Associatively
1 OR left
2 AND left
3 NOT right
4 >=, <=, 2, %, =, <O left
5 + - left
6 */ left
7 unary minus right
Date and Time

The date and time types are defined as sequences of
characters enclosed in braces ({ and }).
Syntax

a) Long Date Format: {month d. year hh:mm:ss}

b) Short Date Format: {mo d, yy hh:mm:ss}

¢) Compact Date Format: {mm/dd/yy hh:mm:ss}

d) Offset Format: {yy Y mm M dd D hh:mm:ss}
where the absence of any field will assume that the value of
that field is zero. The offset format is the same as is used in
the Workflow Cycle Times dialog box.

Statements
Comments

Script statements can include comments or remarks.
Comments are preceded by the word “REM” or by an
apostrophe. REM is a command that must be at the begin-
ning of a line. An apostrophe can be used to put a comment
anywhere in a script and is particularly useful at the end of
a statement line.
Workflow Statements

Scripts can specify actions that the workflow server will
take.

There are three workflow statements which cause action
to be taken based on events. These are:

1. Activate

Activate is used to start a workflow at the preparation
state of a workflow.

“Activate” is used when there are child workflows that
need to happen during the preparation phase of the
parent workflow. Activate is also used when the
customer is specifically required to take the request
act (or, in an offer type workflow, the performer is
required to take the offer act).

Syntax

Activate (<Workflow Name>)

2. Initiate

Initiate is used to start a workflow in the negotiation
state. “Initiate” is used when the workflow can be
started with a request or offer directly. and further
preparation work is not needed.

Syntax

Initiate (<Workflow Name>)

3. Act

“Act” is used to take an act on behalf of a workflow
participant; this can be triggered by an act or state in
the workflow or in another workflow.

Syntax

Act{<Act Name>, <Workflow Name>)

4. Available Acts

Request workflows

S:Activate

5.734,837

19
C:Initiate
C:Request
P:Agree
P:Counteroffer
P:Report Completion
P:Decline
C:Declare Satisfaction
C:Cancel
P:Revoke
C:Decline To Accept
C:Agree To Counteroffer
C:Counter
C:Decline Counteroffer
C:Comment
P:Comment
Offer workflows
S:Activate
P:Initiate
P:Offer
C:Agree To Offer
C:Counter
P:Report Completion
C:Decline Offer
C:Declare Satisfaction
C:Cancel
P:Revoke
C:Decline To Accept
P:Agree To Counter
P:CounterOffer
P:Decline Counter
C:Comment
P:Comment
Using Workflow States in Logical Expressions

Every time there is an act in a connected workflow (either
a parent or child workflow). any user defined scripts for the
current state of a workflow are executed. Scripts that will be
executed are those that are conditioned on acts or condi-
tioned on application data changes in these connected work-
flows.

States of the current workflow or of linked workflows can
be used as logical expressions. You can write scripts to delay
an action {(or movement of a workflow into the next state)
until certain conditions are met. You can set the conditions
as a change in state of a child workflow, a change in a data
field or both. You can also specify that all the child work-
flows are checked to see if your conditions are met, every
time any one of them changes. A state-based script will be
executed every time there is a change in the state. There are
three workflow statements which cause action to be taken
based on workflow states. These are:

1. IsInState
Tests whether a workflow is in a specified state.
Syntax
IsInState(“workflow™, *“state™)
Example
IsInState(*Deliver Order”.“Acceptance™) would return
TRUE if the Deliver Order workflow is in the
Acceptance state.
2. IsNotInState
Tests whether a workflow is not in a specified state.
Syntax
IsNotInState(“workflow™,“state™)
Example
IsNotInState(“EstimateBudget”,“Satisfied”) would
return TRUE if the EstimateBudget workflow is not
in the Satisfied state.

10

15

20

25

30

45

50

55

65

20
3. IsActive
Tests whether a workflow is active.
Syntax
IsActive(“workflow™)
Example
IsActive(“ShipProduct™) is true when the workflow
“ShipProduct” has been instantiated.
State based scripts are executed after Act-based scripts.
Available States
Preparation
Negotiation
Performance
Acceptance
Satisfied
Negotiation (countered)
Cancelled
Declined
Revoked
Conditional Statements
Logical expressions are used to control script execution
using If-ElseIf-Else-EndIf constructs.
Syntax
H(<logical expression>)
<statements>
Elself(<logical expression>)
<statements>
Else
<statements>

EndIf

When an If statement is specified, an EndIf statement is
required. If statements can be nested. Elseif and Else may be
used optionally. If, Elseif, Else, and Endif must appear on
different lines of the script.

Other commands and functions
SendMail: Electronic mail can be sent based on script
commands:

Syntax

SendMail(<FromAddress>.<ToAddress>,

<CCAddresses>.<SubjectText>, <BodyText>)

Each of the parameters specified in the SendMail state-
ment is the name of a character application data field, or of
a workflow data field, such as customer, performer. or
observer.

FromAddress, ToAddress, and CCAddress can also be
workflow system identities. In the Builder, a designer can
specify the mail address for each identity. The mail address
specified for “Mail STF” is used for the SendMail function.
The address specified for the identity must be in the format
permitted by the selected STF Processor.

The <CCAddress> can be left blank (“*"), but must be
present. The <ToAddress> and <CCAddress> parameters
can be single identities. Single identities can be expressed as
string constants or as the names of Character application
data fields. Lists of identities can only be expressed in
application data fields. These fields can be constructed from
Character constants by assigning the desired character con-
stant to a character application data field.

CallProgram: An external program can be executed by a
script. The program called must be able to run natively on
the operating platform of the workflow server.

Syntax

CallProgram(<ProgramName>,<CommandLine

Parameters>,
<EnvironmentVariables>,v

5,734,837

21

<ReturnValue AppFieldName>.<boolReturnValue>)

The program name specifies the name of the program to
be executed. The Command Line Parameter string must be
specified, though it can be an empty string. The Environment
variables string allows setting of operating system environ-
ment strings, such as those that appear in the OS/2 environ-
ment. If the Boolean is set to TRUE, and the <RetValAp-
pFieldName> specifies the name of a numeric application
data field. then the called program’s error return number is
stored in the specified application data field. If the Boolean
is set to FALSE, the program’s returned value is ignored.

The called program is run asynchronously. The workflow
server does not wait for the called program to complete its
operation.

Echo: Displays a character string on the server log. This is
used to watch script execution.

Syntax

echo <string__expression>
Str Returns the string representation of an expression.

Syntax

Str (<expression>)

Consistency Checking

The following provides an explanation of the principles of
creating logical and consistent business process maps. Also
included here is a numbered reference to the Application
Builder map rules.

As a map is drawn, the designer adds workflows and
connect them with links and conditional links. The map is a
visual representation of a business process and shows the
interconnecting network of personal commitments and the
flow of work needed to meet the conditions of customer
satisfaction.

When creating a business process map, it is possible to
create very complex paths with links passing through
numerous secondary workflows before returning to the
primary workfiow. The Application Builder allows a great
deal of flexibility in map design, but the business process
map must flow in a logical and orderly way and conform to
workflow principles for the purposes of generating an appli-
cation

The map rules outlined below are the specific principles
required for successful application generation. These rules
concern the connection of links to workflows and condi-
tional link boxes. These rules also require that you set certain
attributes for the business process and the workflows in it.

When a map has been created, the Check Consistency
command from the Data menu is used to see if any map rules
have been violated. The Consistency Errors dialog box
specifies any map rules that have been violated. This fol-
lowing provides more information on those rules and illus-
trates both how those rules can be broken and how they can
be followed.

Principles of consistency

A business process map describes a flow of work and
defines a series of events. In order for a business process to
meet its conditions of satisfaction. the map it is based on
must be complete and logical.

Consistency checking is based on a set of map rules.
These rules are designed to insure that during creation of the
map you have adhered to the following principles:

Logical consistency—no definition you have created
should contradict the effect of another definition.

Simplicity—maps should not be unnecessarily complex.

Avoiding redundancy—elements in a map which serve no
function should be eliminated.

Completeness—all elements of the business process defi-
nition that are essential must be included.

10

15

20

25

30

35

45

50

55

65

22

Some map rules are defined as warnings. These rules
apply to ambiguous cases in which one of the above prin-
ciples may have been violated. Warnings do not prevent
application generation because the designer may have used
a method, such as scripting, to achieve map consistency.
Logical Consistency

It is possible to use the tools of the Application Builder to
create definitions which contradict the effect of other defi-
nitions. For instance an automatic transition could be
defined to move a workflow forward at the same time that a
link with stop flag on is preventing acts in that workflow
until a subprocess has completed.

In the example shown in FIG. 2b, Primary Workflow is a
Request type workflow and automatic transition is turned on
for Performance. (The performance phase is shown in this
illustration as the emphasized segment of the Primary Work-
flow loop). The effect of the automatic transition is that as
soon as the act P:Agree occurs, the system automatically
takes the act P:Report Completion and the workflow moves
into Acceptance. However, there is also a subprocess which
begins with a link from the act P:Agree, goes to Workflow
#1 and returns with a link to P:Report Completion and. in
this example, the Stop Flag is on (as set in the Link
Definition dialog box for the first link in the subprocess).
This stop flag requires that Primary Workflow must remain
in Performance until Workflow #1 is complete so it is in
direct contradiction to the automatic transition setting. This
kind of inconsistency prevents a logical fiow to the coordi-
nated work that needs to be done.

It is possible to create other situations in which two
definitions are in opposition. The following rules are
designed to prevent this kind of contradiction:

Rule 10

If an act is automatic then there should not be an incoming
link with stop flag on which takes that act and is part of the
path that has the stop flag on.

The case described here is a logical contradiction: the
automatic act says the workflow must continue immediately.
the stop flag says that the workflow must wait until the
subprocess has completed.

Rule 11

Paths staffed by multiple outgoing links from a common
Act or State, having the Stop Flag on, must return to a
common state of the workflow.

The purpose of a stop flag is to cause the parent workflow
to pause in a given state, then continue when a subprocess
is completed. It is possible to draw a map in which two
subprocesses start in a given state with the stop flag on. but
one returns to the same state and the other returns to a
subsequent state. At runtime, the one returning to the sub-
sequent state could return first. In this case, one subprocess
would be telling the parent workflow to move to the next
state and the other subprocess, since it is not yet completed.
would be telling the parent workflow to remain in the same
state.

Rule 12

Paths started by multiple conditional links from a com-
mon Act or State must all return to a common state in all
combinations of conditional paths.

This rule covers cases in which the use of conditional
links has the potential to create situations which violate Rule
11.

Rule 17

Paths starting with outgoing links of mixed types (State-
based and Act-based) must return to a common Workflow
state.

This rule is also based on the same general principle as
Rule 11, subprocesses should not contradict each other by
giving conflicting instructions to the parent workflow.

5,734,837

23

Rule 15

A workflow can only be initiated once.

In a given instance of a business process, any workflow
can only be started once. so multiple incoming links that
start the workflow are a logical contradiction unless they are
mutually exclusive, A valid map could have two links
coming from a conditional link box with both set to start a
workflow because the conditional link box insures that only
one link will be operational. A valid map could also have two
links coming from different acts of the same state with both
links set to start the same workflow because as soon as one
act occurs, it will start the subprocess and it will also move
the parent workflow to another state, thus preventing the
second act from occurring and also attempting to start the
subprocess.

Rule 13b

Paths from a Workflow, which return to that workflow,
must terminate in that Workflow with an incoming link to
the state from which they originated, or with a valid act to
another state. If the Stop Flag is not on, paths do not have
to terminate in the workflow from which they originated but
if they do return. they must follow this rule.

In any given state, only certain acts are available. When
a path returns to a parent workflow, the parent may still be
in the same state it was in when the path left (necessarily so
if the stop flag is on). Consequently the act that the returning
link triggers must be a valid act for the original state.
Rule 14

Workflow links based on the same Act must have the same
Stop Flag setting.

If a single act triggers two links, the stop flag settings
cannot be contradictory. Since both subprocesses will nec-
essarily occur, it is an unavoidable logical contradiction if
one is telling the parent workflow to continue and the other
is telling the parent workflow to stop.

Rule 16

Workflow links of mixed types (State-based and Act-
based) from the same state must have the same Stop Flag
setting.

This rule is based on avoiding the same potential for
contradiction that rule 14 addresses. Since entering the state
will necessarily trigger a subprocess, any act which might
occur in that state should not trigger a subprocess that could
contradict the stop flag setting of the state-based link.
Rule 29

A link should take an act in the target workflow.

Acts cause workflows to move forward to new states. A
state is the result of an act which has been taken. An
incoming link cannot connect to a state (unless it is the same
state the path originated from) because no act has occurred
to cause the workflow to be in the new state. Thus an
incoming link to a state is contradicting the actual state that
workflow is still in. i.e., the state it will remain in until an act
causes it to move to another state.

Simplicity

The Application Builder provides a great deal of flexibil-
ity in methods of designing business processes. Certain
constructions are overly complex. however and are ruled out
because other. simpler methods are available.

Rule 1

Conditional links can have only one incoming link.

Multiple incoming links would require *“and/or” type
constructions and would add unnecessary complexity to the
conditional link specification.

Rule 3

Links to or from a Conditional Link must connect to a
Workflow. Two Conditional Links cannot be directly con-
nected.

10

15

20

25

30

35

45

50

55

65

24

Connecting conditional links is not necessary because any
conditions that can be defined with multiple conditional
links can all be defined in one conditional link box. There is
no limit to the number of links that can come out of a
conditional link box.

Avoiding Redundancy

It is possible to create map elements that serve no pur-
pose. Some redundancies can prevent application generation
and some are flagged as warnings during consistency check-
ing. Warnings serve to notify the map designer of map
elements which may need to be modified in order to achieve
an intended purpose.

Rule 2

Conditional links must have at least one outgoing link.

I there is no outgoing link, the conditional link box and
the link coming into it can serve no function.

Rule 7

Conditional links should not be isolated.

Similarly, a conditional link that is not connected to
workflows can have no purpose.

Rule 5

Primary workflows cannot have outgoing links from their
Satisfied state.

Primary workflow reach the satisfied state when the
conditions of satisfaction of the business process have been
met. Since the satisfied state means that the business process
is over, no subprocess can start at this point.

Rule 13a

Incoming links starting a new workflow can only trigger
a limited set of acts:

i) for request workflows S:Activate, C:Initiate and
P:Agree; ii) for offer workflows S:Activate C:Agree To
Offer and P:Initiate.

Incoming links starting workflows are limited to trigger-
ing acts in this set because triggering any other act does not
lead to completion of the conditions of satisfaction of the
workflow. The acts in this set are the only acts that are not
exception acts which occur before the Performance phase of
a workflow. There is no point in starting a workflow with an
exception act that terminates a workflow and there is no
point in starting a workflow after performance because
acceptance without performance is meaningless.

Rule 24

Script has references to some objects (i.e. workflow name,
identities or application data) which are either deleted or
renamed.

During the process of designing a workflow and adding
definitions it is possible to create elements, refer to them in
scripting and then rename or delete them. When this
happens, the script can have no function.

Rule 25

Primary workflow is always activated. So script or link for
initiate act will never be executed.

When a business process is instantiated, the primary
workflow is activated and moves past the initiate act. A
script or link based on the initiate act can have no function
because the initiate act will never occur.

Completeness

In order to manage a business process, the workflow
server must be able to identify all the elements within the
business process definition. The rules for completeness are
designed to insure the presence of the minimum required
identifiers. These rules are self-explanatory.

Rule 18

A Business Process must have a Name and Administrator.
Rule 19

A Workflow must have a Customer, Performer. and Con-
ditions of Satisfaction.

5,734,837

25

Rule 20

A Conditional Link must have a Description and Expres-
sion.
Rule 26

Workflows must have a name.
Rule 27

Workflows must have a unique name.
Rule 28

Workflows must have a unique short name
Map Rules

The following is a numbered reference to the Application
Builder map rules. Rules are listed in numerical order with
missing numbers meaning that there is no associated rule.

Rule 1: Conditional links can have only one incoming
link.

Rule 2: Conditional links must have at least one outgoing
link.

Rule 3: Links to or from a Conditional Link must connect
to a Workflow. Two Conditional Links cannot be directly
connected.

Rule 5: Primary workflows cannot have outgoing links
from their satisfied state.

Rule 6: Workflows should not be isolated.

Note that Rule 6 is only a warning. Isolated workfiows
will not prevent application generation. Isolated workflows
can be linked through user generated scripting; you can
write a script causing an act or state in one workflow to
generate an act in another workflow, even though the two
workflows are not connected by links.

Rule 7: Conditional links should not be isolated.

Rule 10: If an act is automatic then there should not be any
incoming links with Stop Flag on which takes that act.

Rule 11: Paths started by multiple outgoing links from a
common Act or State, having the Stop Flag on, must return
to a common state of the workflow.

Rule 12: Paths started by multiple conditional links from
a common Act or State must all return to a common state in
all combinations of conditional paths.

Rule 13: Paths between Workflows must be logically
correct:

Rule 13 concerns the way the system finds “incorrect
links.” The map is traversed in a number of allowed paths.
All links found that follow an allowed path are declared
“correct” initially. Any links left are considered “logically
incorrect.”

In the case of normal links, the method for traversing is
a forward movement so that no link can move a workflow to
a prior state. There are, however, some acts that are allowed
to move the workflow backwards—like Decline to Accept
and counteroffers. Also, some exception acts am also
allowed to follow an abnormal flow in some circumstances,
like a Cancel that does not return to the workflow.

Rule 14: Workflow links based on the same Act must have
the same Stop Flag setting.

Rule 15: A Workflow can only be initiated once.

Rule 16: Workflow links of mixed types (State-based and
Act-based) from the same state must have the same Stop
Flag setting.

Rule 16 means that if the links coming from a state are a
mix of act and state based links, they must all have the same
Stop Flag setting.

Rule 17: Paths starting with outgoing links of mixed types
(State-based and Act-based) must return to a common Work-
flow state.

Rule 18: The required attributes of a Business Process are
Name and Administrator.

Rule 19: The required attributes of a Workflow are
Customer, Performer, and Conditions of Satisfaction.

10

15

20

25

30

45

50

55

65

26

Rule 20: The required attributes of a Conditional Link are
Description and Expression.

Rule 21: If no act can be taken in a state then it may cause
deadlock.

This is a warning message that can occur when all acts in
a state have been disabled.

If all acts have been disabled and there is no link path
which moves the workflow forward and no Automatic
Transition to move the workflow forward. the workflow will
be deadlocked.

Rule 22: At least one normal act should be allowed in each
state.

This is a warning message that occurs when a workflow
has been defined by a template in which all the normal flow
acts for a given state have been disabled. This workflow will
only be able to move forward through exception flow acts.

Rule 23: If this act is disallowed, then the workflow may
not be able to proceed to completion.

This is a warning message that occurs when a workflow
has been defined by a template in which the designer
disabled either Request. Agree, Report Completion or
Declare Satisfaction and/or Agree to Counteroffer (or their
counterparts in Offer types).

Rule 24: Script has references to some objects (i.e.
workflow name, identities or application data) which are
either deleted or renamed.

This error occurs when a script has been written, then later
there is a change to the map topology. naming, application
data or global data so that the script refers to an element that
no longer exists.

Rule 25: Primary workflow is always activated. So script
or link for initiate act will never be executed.

A workflow can only be initiated if it has not been
activated. An instance of a business process always begins
with the activation of the primary workflow (by the system).
Therefore, the act C:Initiate is always invalid. since Cus-
tomer can never initiate a Primary workflow.

This error message has two possible causes:

1. A script has been written for the C: Initiate act of the

Primary Workflow.

2. Alink is connected to the C:Initiate act of the Primary

workflow.

This message is a warning and does not prevent applica-
tion generation.

Rule 26: Workflows must have a name.

Rule 27: Workflows must have a unique name.

Rule 28: Workflows must have a unique short name.

Rule 29: A link should take an act in the target workflow.

A workflow can only move forward as the result of an act
being taken. Links must connect to acts (rather than states)
in target workflows because connecting to a state could have
the effect of moving the target workflow forward by skip-
ping the required act. The exception to this rule is when a
link terminates a path in the state from which the path
originated.

APPLICATION WINDOW LAYOUT

Bach MDI Window (MapView) displays a business pro-
cess map as above. Each window can be sized, moved,
maximized or minimized.

Single-clicking on a map component selects the compo-
nent (i.e., for cut. copy, delete, hide, etc.) To select multiple
components, the shift button must be held down while
single-clicking on additional components. Double-clicking
on a map component (MapShape) brings up a dialog dis-
playing the properties of the component. Holding the mouse
button down over a workflow allows the workflow symbol
and name to be dragged to another location. Holding the

5,734,837

27
mouse button down on the “handle” of a Link line allows the
link curvature to be changed.

The operation of the tools is based upon typical GUI

protocols as follows.
Menu Bar
The structure of the Menu Bar and pulldown menus is as
follows:
File

Contains the features for file handling:

New. Creates a new map.

Open. Opens a saved map.

Save. Saves a map.

Save As. Offers to save the map under a new name.

Export. Exports map data to a Windows metafile format.

Business Process Summary. Displays summary informa-
tion which includes the following:

Owner: This refers to the person in charge of modifying
the conditions of satisfactions, cycle times, or roles in
the workflow.

Creation date, modification date, and modifier. The date
on which the workflow was created, last modified, and
by whom this was done.

Version: the version of business process map.

Print Map. Prints the map as it appears on the screen.

Print Report. Prints map data in a tabular report
(including, for example, workflow definitions, condi-
tions of satisfaction, form names, link definitions, and
the like).

Retrieve: Retrieves a previous version of a business
process map that has been stored on a server for review
or further editing.

Generate Application: Converts the currently displayed
map to an application consisting of a series of server
specific definitions, and the forms and views required
for a workflow-enabled application.

Page Setup. Specifies map margins, headers, and footers.

Printer Setup. Standard Windows print dialog for select-
ing printers, print trays and the like.

Exit.

Edit

Contains the Windows-standard features

Cut. Removes a selected object from the screen and places
it in the Windows Clipboard.

Copy. Copies selected objects to the Clipboard without
removing them from the current screen.

Paste. Places Clipboard contents on the map (if they are
cither text or previously selected workflows.)

Delete. Deletes the selected objects from the screen
without placing them in the Clipboard.

Select Workflow: Brings up a dialog box to select a
particular workflow as the object on the display to be
manipulated or operated on.

View

Contains the tools for viewing a map in different ways

All. Displays all workflows and workflow links.

Normal Flow. Displays workflows and links that lead to
successful completion.

Exception Flow. Displays workflows and links that do not
lead to successful completion (cancel, for example).

Missing Information. Displays workflows in which some
critical element has not yet been defined.

Collapse. Hides secondary workflow associated with the
selected workflows.

10

15

20

25

30

35

43

60

65

28

Expand. Expands to display secondary workflows asso-
ciated with the selected workflow which were hidden
by a previously issued Collapse command.

Expand All, Displays all workflows.

Zoom In. Enlarges the display of workflows on the screen
by 25% each time it is selected.

Zoom Out. Reduces the display of workflows on the
screen by 25% each time it is selected.

Actual Size. Returns the display to 100%.

Data

Application Data: Places a unique icon on the screen next
to workflows which have application data defined in
them.

Follow Up and Reminders: Places a unique icon on the
screen next to workflows which have follow ups or
reminders set.

Organizational Roles: Brings up a series of dialog boxes
to enter new organizational roles or to modify existing
ones.

Identifies: Brings up a series of dialog boxes to enter new
identities and the data associated with them or to
modify existing identifies.

Default Role Mapping: Brings up a dialog box to assign
roles in the current business process to specific identi-
ties.

Policy Document: Brings up a dialog box to enter text
which represents a policy document for the current
business process.

Business Process Global Data: Brings up a dialog box to
define data used globally by the business process.

Follow Up and Reminders: Brings up a dialog box to set
follow ups or reminders on a workflow.

Workflow Application Data: Brings up a dialog box to
define data used locally by the workflow.

Workflow Scripting: Brings up a dialog box to enter
scripts for the workflow.

Workflow Form Names: Brings up a dialog box to enter
the names of forms which will be generated by the
application.

Form Field Specifications: Brings up a dialog box to set
the viewing/editing attributes of data used by the work-
flow.

Workflow Template: Brings up a series of dialog boxes to
define new templates or to edit existing templates.

Check Consistency: Starts a process to check the business
process for errors.

View Last Errors: Brings up a dialog box to show the
results of the last time the business process was
checked for errors.

Tools

Contains the tools for selecting different modes in the

Application Builder:

Workflow. Turns on the workflow cursor which in the
preferred embodiment is an oval divided into quadrants
with arrowheads at the end of each quadrant as shown
in FIGS. la-1f. When this option is selected. new
workflows can be added to the map.

Conditional Link. Turns on the conditional link cursor
which in the preferred embodiment is a diamond shape
as shown in FIG. §.

Text. Turns on the text cursor which in the preferred
embodiment is an I-beam indicating the insertion point
or a pointer with a T (for text) associated with it. When

5,734,837

29

this option is selected, annotation text can be added
anywhere on the screen (except inside a workflow)
utilizing different fonts, styles and sizes.

Pointer. Turns on the object selection cursor

Normal Flow. Turns on the defining of a normal-flow link.

Exception Flow. Turns on the defining of an exception-

flow link (in which the link is one that does not move
the workflow toward successful completion, such as
when a cancel. decline or revoke in the originating
workflow triggers a cancel in the linked workflow).

Properties. Displays the properties dialog relevant to the

object currently selected. (For example, displays the
workflow definition of the current workflow if a work-
flow is selected).
Options
Defaults. Defines the defaults for features of the program.
such as the default directory into which to save map
files and default workflow types.

Display. Defines the defaults for display of the icon bar

and link handles.

Fonts. Defines the default font, style and font size for

workflow text and annotations.
Windows

Contains standard Windows handling options.
Help

Contains an on-line help system.

Dialogs

Some of the more important dialogs are described below.
File Open

(Standard Windows 3.1 File Open)

As well as File Open, several other standard Windows 3.1
dialogs (Printer Setup, Save As etc.) are used.

Business Process Summary Information

This dialog is presented when a file is saved for the first
time (before the Save As dialog), or when the Business
Process Summary option is selected from the File menu.
Link Definition

This dialog is displayed by double-clicking on an existing
link or selecting the Properties menu option when a Link is
selected. Each of the two Listboxes displays the available
actions for the “from” and “to” workflow quadrants. One
action may be selected from each, in order to define the
Trigger and Triggered actions. respectively.

Conditional Link Definition

A Conditional Link Definition dialog is displayed by
double-clicking on an existing Conditional Link or selecting
the Properties menu option.

Creating a conditional link involves drawing a link
between two workflows as usual (but using the Conditional
Link Tool). The conditional link will be created between the
two selected workflows, using the default trigger and trig-
gered actions for the phase as with normal links, A diamond
shape is displayed. By double-clicking on the diamond, a
Conditional Link dialog is presented which allows the user
to enter a description of the condition for the conditional link
and then shows the origin and target workflows. The user
may then access an Origin Link dialog and a Target Links
dialog.

Double-clicking on the Origin Link or selecting the
Origin Link button in the dialog box of the Conditional Link
dialog presents the Origin Link dialog that allows the user to
select the trigger act or state.

Double-clicking on one of the Target Links in the dialog
box of the Conditional Link dialog presents the Target Links
dialog that allows the user to specify the specific condition
and the triggered action.

10

15

20

25

30

35

45

50

55

65

30

Adding additional Target Links to a Conditional diamond
is done by drawing a link from a point on the diamond to a
target workflow. The user is then able to edit the resulting
Target Link by double-clicking on it.
File Save

This is a standard Windows File Save dialog box with the
addition of a control to allow the user to save all organiza-
tional roles rather than just those roles used in the business
process map.
Retrieve

This dialog shows a list of generated applications along
with their current version number. The user picks one from
the list and can either double click on the selection or select
the OK button to load the application map.
Select Workflow

This dialog shows a list of all workflows in the business
process from which the user can select one to operate on.
Roles

This dialog shows a list of organizational roles. From this
dialog, the user can choose to enter a new role, modify an
existing one, delete it, or print a list of roles.
Define Role

This dialog is used to enter the name of a new role and to
set descriptive text for it.
Identities

This dialog shows a list of identifies. From this dialog. the
user can choose to enter a new identity, modify an existing
one, delete it, or print a list of them.
Edit Identity

This dialog is used to enter data about a new identity or
to modify data on an existing one. The data that can be
entered include name, address, phone number, roles that can
be assigned, and descriptive text.
Roles To Identity Mapping

This dialog is used to associate roles that may be assigned
to the identity being edited. A list of all roles is presented
from which the user may select as many as may apply to the
identity.
Business Process Definition

This dialog is where the user enters all general informa-
tion about the business process. This includes the business
process name, owner. administrator, process initiator, and
the projected cycle time. The version of the business process
as well as the computed cycle time are also displayed.
Default Role Mapping

This dialog box shows a list of all roles actually used
within the business process and the particular identities
assigned to those roles. The user may select a role and pick
from a list of identities which can be assigned to that role.
Policy Document

This dialog is used to enter text which describes the policy
document of the business process.
Business Process Global Data

This dialog box is used to enter or modify data used
globally by the business process. The user may select
whether the data item is a character string, a number, or a
calendar date.
Workflow Definition

This dialog sets the basic information for the definition of
a workflow. This includes the workflow name. which tem-
plate is used, the participants, conditions of satisfaction.
cycle times, cost/value, styles and associated text.
Workflow Template

This dialog is brought up from the Workflow Definition
dialog box and is used to locally modify the template
selected for the workflow. The user is presented with a list
of Acts and States with space provided to substitute new

5,734,837

31

names for them. Also provided is dialog box which allows
the user to specify that an act should be disabled.
Select Participants

This dialog is brought up by the Workflow Definition
dialog box and is used as an aid to selecting the participants
(Customer, Performer, Observer) of a workflow. The dialog
shows a list of available roles and a series of pushbuttons to
automatically assign them to be the workflow participants.
Follow Up and Reminders

This dialog is used to set whether follow ups and remind-
ers are issued when cycle times are exceeded for phases of
a workflow. The user can set the amount of time after the due
time has passed for issuing the follow up or reminder and the
interval of subsequent messages.
Workflow Application Data

This dialog is used for the definition of data item that are
used locally by the workflow. The user can enter the name
used to identify the data item, the type of data that it is, and
a default value for it.
Workflow Scripting

This dialog allows the user to enter scripts for the work-
flow. The user can choose to write scripts for all Acts and
States or for individual ones. A pushbutton is provided to
bring up a second dialog box which provides assistance in
writing these scripts. A mechanism is provided for checking
scripts as they are being written or edited for syntax errors.
Script Assist

This dialog is brought up by the Workflow Scripting
dialog. It provides the user with lists of the available script
commands, Acts and States, workflow names, and data field
names. The user can select items from these lists and have
them ‘pasted’ in to the Workflow Scripting dialog box. An
act or state as well as workflow names can be selected from
drop-down lists. The user may type scripts directly into a
text field provided by the dialog.
Workflow Form Names

This dialog is where the user enters in the names of forms
for the workflow. These names will be used when forms are
generated from the application. Space is provided for sepa-
rate form names for the Initiator. Customer, Performer and
Observer.
Form Field Specifications

This dialog is used to set the attributes on data that will be
used in the forms generated by the application. A list of all
data items, both global and local, is shown and the user may
choose to set these items as editable, hidden, read only, or
must fill. The user can also choose whether these attributes
apply to all Acts and States or to individual ones.
Select Template

This dialog allows the user to choose a template for
modification or to define a new one.
New Template

This dialog is used to define a new template. The user
enters a name for the new template and is presented with a
list of Acts and States and space where substitute names for
them can be entered. Also provided is dialog box which
allows the user to specify that an act should be disabled.
Defaults

This dialog is used to set global defaults for the program.
The user sets the default template to be used for workflows,
the map author name, and defauilt file path for saving maps
here.
DESIGN AND IMPLEMENTATION DESCRIPTION

In a preferred embodiment, the software used to imple-
ment the workflow Application Builder design is based on
the Model-View-Controller (MVC) paradigm of object ori-
ented programming. The MVC paradigm divides an appli-

10

15

20

25

30

35

45

50

55

65

32

cation into three main divisions: Model which represents the
core application logic, View which represents the user
interface logic, and Controller which represents the message
and event handling logic that implements the tools for
manipulation of objects.

The MVC framework for applications provides a logical
split of the different functions in a GUI application. Isolating
the core application logic in the Model makes the applica-
tion more portable, the design more understandable and the
implementation extendible. The further logical separation of
the event handling in the Controller from the user interface
in the View enables the application to be more easily ported
to another GUI environment. The Application Builder is
designed on the MVC paradigm discussed above as shown
in FIG. 4. The Model classes describe the business process
and its components in terms of a hierarchy of classes. The
View Classes draw the workflow map of a business process
and its components on different displays including the
screen, printer and metafile (i.e.. a graphics-format Windows
3.1 metafile on disk, which can be displayed by other
Windows programs)

The two highest level classes of the Model and the View
provide the framework for a software implementation of the
invention. A class designated as the ActWfModel class owns
and manages all the model classes (Object Model) such as
business processes, workflows etc. ActWfModel is used by
the ActWfView class which owns and manages user inter-
face components such as menus, icon bars, dialogs and
Multiple Document Interface (MDI) child windows. Only
one instance of the ActWfModel and ActW{View objects are
allowed.

The ActWfView class receives the menu and toolbar
commands from C++/Views and the toolbar. It in turn passes
them directly to the active (top level) MDI window
(represented by a MapView Controller component object).

The MapView class has two main components, the paint-
ing and coutroller components. The controller component
contains the menu and toolbar interpreter 81 as well as the
mouse and keyboard interpreter 83 which receive the inter-
action (inputs) from the user. These are a set of methods that
receive input from the user and pass them to the appropriate
tool. There are also methods for changing the active tool.
namely tool selector 85, e.g. when the user clicks the mouse
in an empty area of the window the current tool is called, and
when the user clicks the mouse in a current object the
appropriate object tool is called to process the click. The tool
procedures 87 of MapTool are responsible for managing the
creation, deletion, selection of object attributes, selection
and dragging of the various objects in the screen. They also
handle the automatic linking (selecting a temporary tool)
when the mouse is on the border of a specific object. For this
they have a close interaction with the shapes in the view with
an interface that helps retrieve, set, and prompt user for
attributes.

The main methods of the tools are: mouseDn (for mouse
down events) mouseDbl (for mouse double click events)
mouseMv (for mouse move events), mouseUp (for mouse
up events), keyDelete and keyEscape events (for their
equivalent key selections). The tool tramslates mouse
up/down sequences into clicks and calls the appropriate
methods. It also contains the method getShape to find a
specific object in an area of the window. The specific
methods for the various tools can be found on the Controller
Class Attributes section below.

The shapes provide with a set of methods used by the
tools to find them (pointln, pointInZone, rectln). calculate
areas used (gefInvalidRect), change attributes with a prop-

5,734,837

33
erties dialog 45 (showProperties) and change position
(beginDraggingAt, draggingAt, endDraggingAt). These
methods are in the View Class Attributes section below.
There are other methods used that serve as an interface to
obtain/set the various object attributes.

The painting component of the MapView class contains
the methods to display the image in the Window. This class
enumerates all of its objects in that area and issues the paint
method in the shape object. Also when the user is dragging
an object, the tool object calls the draw method to display the
object as it is being dragged. The two main shape methods
along with the MapView paint method constitute the Display
Module 97. To print or export a map, the print or export
command from the file Menu is received at the MapView
object which sets up a different environment via MapPrinter
and MapMetafile which redefine the display port through
which the object will be displayed. and calls the same shape
paint procedures. These MapPrinter and MapMetafile
classes define the functionality for the print module 98 and
export module 99.

The system maintains the main data in the Model classes.
Every view class has its model class equivalent where the
data is stored. The view classes get all this information from
the model classes. The main interface for the model classes
is a series of set/get functions to manage the attributes of the
class. The functions enable the system to maintain the
consistency of the object’s data and provide the map rules
103 for the data. This model data is the only data that is
stored in data files. The process of storing this data is via
get/put methods that every model class provides. These two
methods in every model class constitute the file /O module
105 that maintains the map files.

Referring now to FIG. 6 which illustrates the overall flow
of an implementation of the invented application builder, the
user initiates the flow by one of three processes namely,
Review Script Syntax, Generate Application or Check Con-
sistency.

By initiating the Review Script Syntax process e.g. by
selecting workflow scripting from the Data menu, a process
is begun to verify the syntax of a workflow script. This
process calls Script Processor module 110 which checks the
syntax and generates syntax errors 113 if there are any.

By initiating the Check Consistency process e.g. by
selecting from the Data menu, a process is begun to verify
the completeness of the business process maps and the
validity of the relationships among workflows. The Consis-
tency Checking module 115 is called for this purpose. The
Consistency Checking module uses Finite State Machine
116 and generates Link Errors 117 if there are any.

By initiating the Generate Application process e.g. by
selecting from the File menu, a process is begun to generate
the business process application in the definitions database
51. This task is performed by Generate Application module
119. This module first checks the completeness of the map
by calling Consistency Checking module 115, generates
System Scripts 121, precompiles system and user scripts,
writes details of the business process in the definitions
database and calls forms and views generation module 123
for the user interface of the workflow application.

The script processor module 110 implements the parser
which checks the syntax of the script written by user. This
module also generates the precompiled code using the
PreCompiler module 131 if required. This module is used in
two cases:

Case 1: If the user initiates the Review Script Syntax
process, then the Script Parser checks the syntax and if there
is any error then it puts the description of the error in a
Syntax Error Description object, which is shown to the user.

10

15

25

30

35

45

55

65

4

Case: If the user initiates Generate Application process,
then the Script Processor module is called to generate the
PreCompiled Code 135. This module is capable of parsing
system scripts as well as user scripts.

The PreCompiler module 131 is used by Script Processor
110 to generate the PreCompiled Code for all types of
scripts. This module has the knowledge of the grammar of
the workflow scripting language for PreCompiled Code. The
purpose of this module is to convert scripts to a tokenized
form and reduce the need for database references at run time.
This module converts the name-references of all objects to
identification references. This reduces the total number of
database accesses the transaction manager 33a makes while
executing the script.

The output of the PreCompiler module—PreCompiled
Code 135 is used by Definition Generation module 137 to
store the tokenized script in the database.

This module uses Entities Data 139 to obtain the details
of various objects like workflow, link, conditional link. type
of workflow and the like.

The Consistency Checking module 115 is called for two
different purposes:

Case 1: When the user initiates Check Consistency e.g..
by selecting from the Data menu, then this module is called.
This module checks the completeness of the business pro-
cess map by verifying that all essential data has been
provided by the user. After that it traverses the business
process map and checks if all the links are proper. It uses
Finite State Machine 116 to verify the appropriate links
taking into account the context. If there is any problem with
the link, then it generates Link Error 117 objects for each
error. These LinkFrror objects are used by the user interface
module (not shown) to communicate to the user about the
problems in the business process map. The Consistency
Checking module uses Finite State Machine 116 to verify
the correctness of the type of links in various contexts.
Analyzing the automatic transitions defined by the user. acts
disabled by the user, and links among workflows, this
module generates all possible state transitions for each
workflow, where they are kept. At the end. it uses state
transition data from each workflow to detect the conflicting
specifications and possible causes of deadlocks.

Case 2: When the user activates the Generate Application
process e.g., by selecting from the File menu, this module is
called. In this case this module does everything described in
the Case 1 and it also generates System Scripts 121. The
System Scripts implement links between workflows. The
System Scripts also manage the synchronization between
workflows by setting various internal flags. The Consistency
Checking module utilizes a set of routines distributed in
three classes: Business Process, (W{BusProcess), Workflow
(WfWorkflow) and Links (WfLink). The W{BusProcess
routine calls the WfWorkflow routine which in turn calls
itself for different workflows

The Generate Application module 119 executes the fol-
lowing tasks:

Calls Consistency Checking module 115 to verify the
completeness and the consistency of the map.

Calls Consistency Checking module 115 again to generate
the system scripts. These system scripts are used to ensure
the synchronization between the workflows and to imple-
ment links between workflows.

Calls Script Processor module 110 to check the syntax of
user defined script.

Calls Script Processor module 110 to tokenize all user and
system scripts to produce PreCompiled code 13S.

Calls Definition Generation module 137 to write the
details in the definition database 51.

5,734,837

35

Calls Forms/Views Generation module 123 to create the
forms and views in the definitions database.

The Definition Generation module 137 is initiated by the
Generate Application process. It obtains the details of all
objects in a business process from Entities Data 139 and
writes them in the database using Definitions API 151.

The Definition Generation module 137 is distributed over
several classes. The Definition Generation method in each
class has the responsibility of writing the details of the
corresponding objects. First the method of business process
is called which in turn calls for all the workflows. The
method in each workflow calls the lower level methods of
definition generation for the objects it consists of.

The Forms/Views Generation module 123 is called by
Generate Application module 119 to create Forms and Views
141. It obtains the details of fields of the forms and their
attributes from Entities Data 139 and uses Forms/Views API
143 to create the user interface in the database.

In a business process map, the user defines workflows and
links among them. The purpose of the links between work-
flows is to synchronize the events of-different workflows.
One can specify a link which will start a workflow when
some other workflow is in certain state. The user can also
make some of the state transitions automatic. All these
specifications are converted into System Scripts. When a
business process is running, the Transaction Manager 33a
executes these scripts to get the desired triggering of acts in
various workflows.

This script is generated by the Consistency Checking
module when Generate Application module 119 calls for it.

The Syntax Error object is created by Script Processor
module 110 to preserve the details of the error detected in
scripts defined by the user. It contains the line number and
column number where the error was detected. It also con-
tains the description of the error and has a method to display
the error.

Link Error objects are created by the Consistency Check-
ing module to preserve the details of the errors detected
while checking the consistency of the map. Each Link Error
object points to the object it is associated with and has the
description of the error.

The State Transitions object 145 preserves details of all
possible transitions in a workflow. It knows whether a
transition is automatic., manual, is initiated by a user defined
script or by a link specified in the map or a combination of
all these. Once all the transitions are generated. the Consis-
tency Checking module verifies that all the transitions are
consistent and free from deadlock situations.

The State Transitions object 145 are created and used by
Consistency Checking module only 115.

PreCompiled code 135 is the tokenized form of the script.
PreCompiler module 131 tokenizes all the script in an
assembly like language and Definition Generation module
137 stores them in the definition database.

The business process definition is the most important
output of the Application Builder. This data is stored in the
definitions database 51 and used by Transaction Manager
33z in the various stages of the business process. It contains
all the details of the business process.

The Forms/Views generation module 123 uses Forms/
Views API 143 to create the user interface of the workflow
enabled application 73. The Forms/Views API has the
knowledge of the underlying database.

The Finite State Machine module 116 has the state
transition tables for Request and Offer type of workflows. It
implements various methods to access the data and provides
support to the Consistency Checking module for checking
the consistency and for generating the System Scripts.

10

15

20

25

35

45

50

55

65

36

The Entities Data 139 is the data associated with all basic
elements of a business process. The main objects are
Workflows. Links, Conditional Links, Followup, Cycle
Time, Customized Names, Acts and States.

The Definition API 151 is a set of application program-
ming interface used by Definition Generation module 137 to
access the underlying database. Most of the services are to
write the details of objects like- Business Process. Workflow,
Cycle Time, Followup, Scripts, Application Data. Some of
the API provides facilities to read the definitions database
such as obtaining the identification of the workflow or
application data.

The Forms/Views API module 143 is used to create forms
and views in the database. This module provides an interface
to the Application Builder to specify the details of forms for
viewing at different times and for different workflows. Alter
obtaining all the details, this module creates the forms and
views in the definitions database 51.

Referring now to FIG. 7, the relationships of data used at
the organization level will now be described.

The class ActWfModel 171 has three tables used at the
organization level. They are the STF Table 173, the Identity
Table 175, and the Organizational Role Table 177.

The STF Table is composed of instances of STF Processor
(STFPROC). These represent Standard Transaction Format
Processors used in Network mail.

The Organizational Role Table is composed of instances
of Organizational Role (ORGROLE) 179.

The Identity Table 175 is composed of instances of
Identity (IDENTITY) 176. Identities are the real people who
will take on an organizational role within the business
process. Each Identity may be associated with up to two STF
Processor’s 183. Each Identity may perform zero or more
Organizational Roles.

Each business process (WfBusProcess) 178 has a Default
Identity Table 180 which is composed of zero or more Role
To ID Mapping instances (ROLETOID) 181. Each Role to
ID Mapping points to one Identity and one Organizational
Role and forms the association between the two for the
particular business process.

Referring now to FIG. 8 which illustrates the relationships
of data used utilized by the present invention when viewed
at the business process level, ActWiModel is the class which
is the parent to all business processes. It has an Offer and a
Request Basic Act/State Table 191 and two Custom Act/
State Tables 193 representing Offer and Request custom
types.

The Basic Act/State Table (BACTSTAT) is composed of
a collection of Basic Acts and States 195. These are the
standard Acts and States which a workflow may use. An Act
is the action that will be done when a particular Workflow
phase is reached and a State is the condition that that phase
is in.

The Custom Act/State Table 193 is composed of a col-
lection of Custom Act/States 197. These are the standard
Acts and States which may be aliased with customized
names. The aliasing is done by the user so that the Acts and
States will have more meaningful names to the Business
Process and its Workflows.

Each Business Process is represented by an instance of
WiBusProcess 178. These will be the parents to the asso-
ciated workflows that make up the business process. Each
W{BusProcess may have templates which represent Custom
Act/State Tables that are used with the workflows of the
business process. These templates are the choices available
to the workflows. The WfBusProcess also has an Applica-
tion Data Table 203 for data that is global in nature to the

5,734,837

37

whole Business Process. The Application Data Table is
composed of many individual items of Application Data
205. Each Application Data item may represent a name, a
number, or a date.

There is an one instance of workflow 209 for each
workflow in the business process. Each workflow may have
it own template of Custom Acts/States 197 from the Custom
Act/State Table 193.

Each workflow instance contains Form Names
(FORMNAME) 211 or the four possible forms that can be
created by the Forms and Views Generation module. The
four forms are Initial (used only in the Primary Workflow),
Customer, Performer, and Observer. If the user enters a
name for any of these forms then the intention is that a form
will be generated when the application is run.

Each workflow instance contains Phase Styles 215 for the
four workflow phases. These styles determine the appear-
ance of the particular Phase in the user interface.

Each workflow instance contains Automatic Transitions
217 for the four workflow phases. These can be set active by
the user to automatically transit the workflow phase when no
actions are required.

Each workflow instance contains temporary State Tran-
sitions 219 only when consistency checking is performed.
This object preserves details of all possible transitions in a
workflow. It knows whether a transition is automatic,
manual, by a user defined script, or by a link specified in the
map, or any combination of these.

Each Workflow also has an instance of Workflow Cycle
Times 221 to set the cycle times for the four phases and an
instance of Follow Up Information 223 to set reminders
when cycle times are exceeded.

If the user has entered Scripts (SCRIPT) 231 to be
executed by the workflow when certain Acts or States are
achieved, then these are also attached.

The Workflow may have Application Data 205 that is used
only by itself locally and so it has its own Application Data
Table for this.

Application Data used by the workfiow, whether global or
local, must have attributes (Hidden, Read Only, etc.)
attached to it as to how the data is presented in this
workflow. This attribute information is stored in a Field
Attribute Table 233 which is composed of Field Attributes
(FLDATTR) 235. There is a Field Attribute item for each
Application Data item.

The Model Classes and Model Class Attributes

The Model incorporates model classes which implement
the workflow Application Builder logic. The model classes
describe the business process and its components in terms of
a hierarchy of classes. The classes in the model form what
is sometimes described as the Object Model for the appli-
cation. The Object Model is similar to an Entity-
Relationship model in data modeling.

The model classes are, in effect, data structures. External
(data) attributes of the Model Classes are listed below.
Implementation will require additional instance variables
(internal data) and methods beyond those described here
which depend upon the platform on which the software is to
be used. Such additional details would be readily apparent to
persons skilled in the art.

ActWiMdl

Manages the other classes in the model including any
database access and storage. This is the top class of the
model and represents a collection of W{BusProcess objects
and the data to operate them.

10

15

25

30

35

45

50

55

65

38

Attribute Description Type Size
obColBusProcesses Collection of Business

Processes
RegActStateTable Basic Act State table for

Request type Workflows
OfrActStateTable Basic Act State table for

Offer type Workflows
STFProcs Table of STF Processors
StrtMap Author Default Map Author String 64
StrMapPath Default Map Path String 132
RequestTemplate Default Request Template ~ WfTemplate
OfferTemplate Default offer Template ‘WiTemplate
OrgRoleTable Organization Role Table OrgRoleTable
IdentityTable Identity Table IdentityTable

OrgRolcTable—Collection of OrganizationRoles
IdentityTable—Collection of Identities
OrganizationRole

A class used to describe a role used in a business process.
The role is responsible for actions within the phases of
workflows. An identity is assigned to the role in the business
process to indicate the individual responsible for the actions.

Attribute Description Type Size

OrgRoleld Role ID number long

StrName Name char 64

StrDesc Description char 64
Identity

A class used to describe the identity of an individual
within the organization which contains the business process.
This identity may be assigned to a role within the business
process to indicate the individual responsible for the actions
of that role.

Attribute Description Type Size
d Identity ID number long
StrName Name char 64
StrPostal Addr Postal address char 128
StrTelNo Telephone number char 32
StTelExtNo Telephone extension number char 10
StrFaxAddr Fax pumber char 32
StrOrgnName Organization name individual belongs char 64
to
StrDeptName Department name individual belongs to char 32
StrlocationName Location of individual char 32
StrNotes Descriptive text of individual char 254
StrNetAddr Net address char 128
MailAddr Net Mail address char 128
STFId STF Processor ID long
Mailld Net Mail STF Processor ID long
CollRolekis List of Roles this identity can take
STFProc

A class used to associate STF Processor names and ID’s
for use by Identities.

Attribute Description Type Size

I STF ID number long

Name Name char 64
WiBusProcess

This is included in a collection in ActWfModel. This class
provides the logical representation of the business process to
be mapped. It includes a collection of map components

(WfComponent) as well as information on the creation of
the map (Author, creation date, etc.).

39

5,734,837

Attribute Description Type Size
StrName Name of the business char 64
process
StrAdmin Administrator of the char 64
business process
DateCreated Creation data date 8
StrProcessVersion Version of the business char 64
process map
StrMapAuthor Author of the business char 64
process map
Initiator Initiator of the business char 64
process
CollComponents Collection of
WiComponents
ComCycleTime Computed cycle time CycleTime
UsrCycleTime Projected cycle time CycleTime
BpBoundDataTable Business process giobal BoundDataTable
application data
RoleToldTable Default Role to Identity RoleToldTable
table
StrPolicy Text Business process policy char 254
document
CollAviTemplates Collection of available
workflow templates
DefTemplate Default workflow WiTemplate
template
Cost Computed cost of
business process
Price Computed price or value
of business process
Main Methods
GenerateApp Generate the application method
from the business
process map
CheckMissingInfo ~ Check the business method
process map for missing
information
RoleToldTable

A class containing the associations of roles to specific
identities within the business organization. This is in the
form of a dictionary of key/value pairs where the Role is the
key to a corresponding Identity value.

Main Methods Description Type Size
getRoleWithIdentity Obtain the Role associated with ~ method
this Identity
getIdentityWithRole Obtain the Identity associated with method
this Role
DefaultRoleMapping

This is a collection of default identity assignments that
correspond to the roles used in the business process.
WiComponent

This is an abstract class which provides the base for all the
classes which represent components of a business process. It
includes the component type, the name and position of the
object.

Attribute Description Type Size
ComponentKey unique identifier of this component int
in the business process
ComponentType One of Workflow, Link, Condi- enum
tional link or FreeText
StrName Name of a Map, Workflow, Link Character 64

or other component

10

15

20

25

30

35

50

65

-continued

Attribute Description Type Size
Origin Logical position with respect to VLocation

the origin (0,0) of the Business object

Business Process Map. Translated (x,y)

to device units as required for

display, printing and metafile

output.
WfAnchor

This is derived from WfComponent. This is an abstract
class which provides the meaning for origin/target objects as
Workflows and conditional links. It includes the size of the
object.

Attribute Description Type Size
inberited WiComponent Object
Width of the component imt

Height of the component int

WiComponent
Width
Height

WiWorkflow

This class is derived from WfAnchor. It models the
logical concept of a workflow. including customer, per-
former and observers data. conditions of satisfaction, asso-
ciated text as will as cycle times.

Attribute Description Type Size
‘WFAnchor inherited WfAnchor
Object

Primary identifies Primary workflow Boolean
‘Workflow request or offer char 1
Type
Multiple identifies if workflow is of
Tepeating type multiple repeating
Customer name of the person requesting text 64
Name the work
Performer name of the person perform- text 64
Name ing the work
Observers names of non-participating, text 64
Names but interested, parties
Initial Form name of the associated fonm text 64
name
Customer name of the associated form text 64
Form name
Performer name of the associated form text 64
Form name
Observer name of the associated form text 64
Form name
Conditions of Conditions of satisfaction of text 1500
satisfaction the workflow
Associated Additional text, text 1500
Text
Workflow days, hours, minutes alliowed Wi{CycleTime
Cycle Time to complete the workflow
Followup Data Followup data for the FollowUp

workflow
Bound Data Application data for this BoundDataTable
Table workflow
Fieid Attribute Field attributes for the FieldAtt'Table
Table workflow data
Custom Names Customized names for Acts WfTemplate

and States
User Scripts Arrays of user scripts for Acts char []

and States
Workflow cost to complete the workflow int
Total Cost
Proposal cost t0 complete the proposal int
Phase Cost phase of the workflow
Agreement cost to complete the int
Phase Cost agreement phase of

the workflow

5,734,837

41
-continued

Attribute Description Type Size
Performance cost to complete the int
Phase Cost performance phase of

the workflow
Satisfaction cost to complete the int
Phase Cost satisfaction phase of

the workflow
Workflow assessment of pricefvalue int
Total Price associated with the com-

pletion of the workflow
Proposal assessment of price/value it
Phase Price associated with the com-

pletion of the proposal phase

of the workflow
Agr t of price/value int
Phase Price associated with the com-

pletion of the agreement phase

of the workflow
Performance assessment of price/value int
Phase Price associated with the com-

pletion of the performance

phase of the workflow
Satisfaction assesstnent of pricefvalue int
Phase Price associated with the com-

pletion of the satisfaction

phase of the workflow
Graphical requested graphical attributes Styles
attributes such as style
WiConditionalLink

This class is derived from WfAnchor. It documents con-
ditional links between Workflows. The WfConditionallink
components are illustrated in FIG. 5. WfConditionall.ink
has the following attributes:

Attribute Description Type Size

WFAnchor inherited ‘WifAnchor Object

Description Text explaining the decision to text 1500
be made

WiLink

This class is derived from WfComponent. It models the
logical link between Workflows and Conditional links,
including the link type and the trigger and triggered actions
in the source and target workflows, respectively.

10

15

20

25

35

42

Process. Please note that the Component name is used to
hold the text to print.

Attribute Description Type Size
WifComponent name, position WfComponent
Width size of the text box int

Height size of the text box int

Text text of the annotation text 64
Font e.g. “Helv” text 20
Size eg. 8 text 2
Attributes Bold, underline etc. Boolean

Alignment left, right, centered enum

Border has a border Boolean

Word wrapping this text should/should not wrap

WiPosition

A class used to model the position of the starting or ending
point of a link in a workflow as well as the curvature handles
for the link. This object is created by a MapShape or derived
classes from a given point in a MapShape.

Attribute Description Type Size
Phase phase in the workflow int

Direction From, To int

Sequence key for anchor int
WiCycleTime

This is a class which is a collection of four Cycle Time
objects to represent the four phases of a workflow.

Attribute Description Type Size
Request or Time to make the request or CycleTime
Offer Time offer
Response Time Time to respond to request or CycleTime
offer
Performarce Time to perform request or CycleTime
Time offer
Customer Time for customer to respond to CycleTime

Response Time fulfilled request or offer

CycleTime
A class used to keep track of hours, minutes, and days for
workflow phases.

45
Attribute Description Type Size
WfComponent inherited ‘WiComponent Attribute Description Type Size
Object .
FromPosition Workflow/State/Sequence pointer to usDays Number of days mt
from which this Link Wiposition 50 usHowss Number of hours int
initiates Object usMinutes Number of minutes int
ToPosition Workflow/State at which pointer to
this Link terminates Wiposition
Object FollowUp
TriggerAction A_c;iﬁ ge‘rizgef Action) A class to contain details about when follow ups should be
wi originating 55 : :
Woekflow which ca sent to the customer or performer when cycle time is
initiate this link exceeded.
TriggeredAction Action (Triggered Action)
within the target Workflow
which is initiated by this Attribute Description Type Size
Tink
Condition condition that triggers this text & Completion Time offset when follow up CycleTime
link (in the case of links Offset message should be sent :
from conditionals to Completion Maximum number of times the int
workflows) Max Times message sent
Enable Late Send Completion Late Boolean
Completion messages?
WiFreeText 65 Completion Message recurrence interval Recurrence
This class is derived from WfComponent. It models the Recurrence

free-form text which may be placed on a Map of a Business

5,734,837

43
-continued

Attribute Description Type Size
Performer Time offset when follow up CycleTime
Response message should be sent
Offset
Performer Maximum number of times the int
Response Max message sent
Times
Enable Late Send Performer Response Late Boolean
Performer messages?
Response
Performer Message recurrence interval Recurrence
Response
Recurrence
Customer Time offset when follow up CycleTime
Response message should be sent
Offset
Customer Maximum number of times the int
Response Max message sent
Times
Enable Late Send Customer Response Late Boolean
Customer messages?
Response
Customer Message recurrence interval Recurmrence
Response
Recurrence
Remind Offset Time offset when follow up CycleTime

message should be sent
Enable Remind Send Reminder of Completion Boolean

messages?
WiTemplate

This class is used to define templates for the actions and
states of a workflow. The two common type are offer and
request. Customized templates can be used to give these
actions and states more meaningful names.

Attribute Description Type Size
ColIASCNames Collection of Acts, States, Collection

and Custom Names
StrName Template Name char 32
ActStateCustName

This class stores basic information about an Act or State
used in a template. The name can be set to a custom name.

Attribute Description Type Size
StrName Customized AAct or State name char 128
ActStateld Act or State ID number int
fActState Act or State flag Boolean
fDisabled Disabled flag Boolean
BasicActState

This class describes an Act or a State.
Attribute Description Type Size
StrName Customized AAct or State name char 128
ActStateld Act or State ID number int
fActState Act or State flag Boolean
WfType Request or Offer workflow type int
fException Exception flag Boolean
ActProtagonist Protagonist in Action eoum
FormType Form type enum

10

15

20

25

35

45

50

55

65

44
BasicActStateTable
A collection of BasicActStates.
BDFieldAttrib

A class to describe attributes of data fields.

Attribute Description Type Size

idBDStruct Pointer to Bound Data BoundData
these attributes are for

idWorkflow Pointer to workflow this belongs W{Workflow
o

DefaultAtirib Default attribute enum

ActAttribs Array of attributes for Acts enum array

StateAtrribs Array of attributes for States enum array

FieldAttrTable

A collection of BDFieldAttrib’s.
BoundData

This is data that can either be associated with the business
process as a whole or with just one particular workflow. This
clags describes that data.

Attribute Description Type Size
StuName Bound Data name char 64
DataType Data type enum
MaxLen Maximum length int
SteInitialVal Initial value char 254
BDId Bound Data ID int
BoundDataTable

A collection of BoundData’s.
AwFSM

This class encapsulates all static information about the
finite state machine of a workflow. It provides static methods
to access the characteristics of different acts and states.

Description Type Size
Attribute
RegStateTransit Table of all possible state StateTransition
transitions in Request type
of workflow
OfrStateTransit ~ Table of all possible state StateTransition
transitions in Offer type
of workflow
Main Methods
getNormPostActs Returns a list of normal acts method
which can be taken in the
specified state
getExcpPostActs Returns a list of exception method
acts which can be taken in
the specified state
getPostActs Returns a list of all acts which method
can be taken in the specified
state
getPreActs Returns a list of all acts which method
lead to a specified state
getPostState Return the state after a method
specified act is taken
getPreStates Returns a list of all the states method
in which a specified act can
be taken
isValidPostAct Confirms if a specified act can method
be taken in a specified state
getMostNatural- Returns a normal act which ~ method
PostAct can be taken in a specified

state

5,734,837

45 46
-continued
Description Type Size Main Method Description Type Size
getSeqFor- Returns the list of all method Validate Parses the script to find method
Traversal acts and states which is used 5 out if there is any error. It also
by consistency checking tokenizes the script while
algorithm to traverse the generating the application.
links in a specific sequence
takesToPrevState Confirms if a given act will method
take workflow to previous The attributes of the model classes described above are
state 10 the only attributes saved when a map of a business process
is stored.
The model classes are represented in FIG. 4 within block
SyntaxError 107. The Model also utilizes a set of MAP rules as described
This class contains the full description of error detected above.
by script parser and provides methods to form the emror |5 A software implementation of the MAP rules and model
message string. classes would be well within the ability of persons skilled in
the field of the invention in view of the foregoing descrip-
tion.
Description Type Size An JYO module 105 stores the model classes in map files
- 109 in a storage medium which is typically a high capacity,
Attribute 2 pon-volatile storage device such as a hard disk. The details
Location The character column where int 9 for implementing O module should be readily apparent to
error is detected persons skilled in the art.
LineNum The line number where error int 2 The View Classes and View Class Attributes
) is detected) . The View classes implement the user interface compo-
SeriptText ;r:s‘l:’:vg Zc:g which string 25 pents required to draw the model classes on a display. Each
. class derived from the WfComponent model class is drawn
LastToken ;r:;fcifd“;‘y’f:;ii‘,‘f:m.ym sng by a class derived from the MapShape class. The View
ErrMsgld Resource id of the error unsigned 2 Classes and their attributes are described in copending
. message string] application Ser. No. 08/005.236 filed Jan. 15. 1953,
Description Description of the error siring 30 Relationships between Model and View Classes
Main Methods & Each MDI window is implemented by a MapView object.
_— A MapView object uses the MapShapes defined above to
getDescription Returns the description of the method draw various shapes in the window. The application details
error message for each shape are stored in a corresponding model class. For
display Displays the error message method 35 example, each MapView object has a WfBusProcess object
in the current window as an attribute. The WiBusProcess object has an ordered
collection of objects derived from the WfComponent class.
P For all shapes that need to be painted or repainted, the
Statc’?‘ransmon . , . ” MapView callP; the appropriate paint method t%:' the shape
Thls‘class contains the details of all possible transmc?ns of class. The shape class gets elements from the WfComponent
states in a workflow. It has details whether a particular 40 geriveq class that conforms to the shape. For example, if
transition is automatic, manual or it is because of some map MapShape retrieves a WfWorkflow object from the WfBus-
links or user script. The information is collected for a Process object. then the MapView object will draw a
workflow while doing the consistency checking and at the MapLoop on the display.
end all the transitions are analyzed to check the possibility The splitting of the logical attributes from the graphical
of deadlocks or conflicts in the specification of the map. 45 attributes of a workflow component enables the workflow
component to be drawn on any display which implements a
set of MapShapes. Both the MapPrinter and MapMetafile
Description Type Size classes may implement different logic from the MapView to
Atribute draw the loops and links.
— 50 The Controller Classes and Controller Class Attributes
WiType Request or Offer type unsigned 2 The Controller division utilizes a menu/tool bar inter-
of workfiow . . preter 81, a mouse/keyboard interpreter 83, a tool selector 85
PlransTypes mffmmm tTransDetail and a set of tool procedures 87 for the loop tool 89, link tool
pActToAct- poiner o a static list of 91, diamond tool 93 and text tool 94. The implementation
Transitions all possible transitions 55 details for each of the foregoing elements of the controller
Main Methods division in terms of its classes and their attributes are set
checkConsistency Checks if there is any possible method forth in co-pending application Ser. No. 08/005.236 filed
deadiocks or if there is a Jan. 15, 1993.
conflict between two External Definitions API
specifications of the same 60 The Application Builder generation process is intended to
getReachable- g:“:‘mmms which can be method p.roduce a databas-c definition utili.z%ng a visual rcprc§entf\—
States reached in a workflow tion of a map. This database definition is a set of entries in
a database that properly describes the business process
. definition, workfiow contents and properties, workflow
Script 65 interaction (links), application data, form field definitions,

This class provides method to validate the text of script.
It uses yacc and lex to parse the text of script.

workflow scripts, follow-up information and additional
attributes.

5,734,837

47

The definitions API is the interface that allows the Appli-
cation Builder to define such schema. The following is a
description that can be used to implement the definitions
APL
AWD_ BeginBPDefinition
Description

This call creams a new Business Process record. The
Business Process name is specified as a parameter. The
Business Process name should be unique. If a Business
Process with the same name is present, the current definition
is overwritten as a new version. This takes place only if there
are no active instances of the current business processes
definition. However, if instances for current definition exists,
then both versions of definitions co-exist in the database. All
new instantiations will be from the latest version of BP
definition. The version number is maintained internally by
the Server.

The AWD_ BeginBPDefinition should be the first call
when defining a business process and no other AWD__
BeginBPDefinition call should be in progress. Every AWD__
BeginBPDefinition has to be closed by a AWD__
EndBPDefinition call. The AWD_ EndBPDefinition should
be the last call and ends the definition of a business process.

AWD__BeginBPDefinition sets up a context for the busi-
ness process and all subsequent calls require this context.
The AWD__EndBPDefinition closes this context.

Syntax

VOID FAR PASCAL AWD_BeginBPDecfinition
(STRING szBPName, IDENT 1BP Admin, IDENT
IInitiatorOrgRoleID. LPERRCODE lpEiror)

Input Parameters

Type
STRING

Description

szBPName The Business Process name. This name
should be unique. If a business process
with the same name is present, the
current definition is overwritten as a
new version. There should be no active
instances of the current definition for
this to occur. If however some instances
are present, then both versions of
definition co-exist in the database. The
maintenance of versions of definitions is
internaily handled by the server. Older
versions of BP definition could be
deleted from the database using SAF.
The Identity of the person creating this
business process. The Identity should
bave the rights to create business
processes.

ID of the organization role who can
initiate the business process.

IBPAdmin IDENT

IInitiatorOrgRoleID IDENT

Output Parameters

Name Type Description
1pError LPERRCODE Error code returned.
Return Value
None
AWD_ EndBPDefinition
Description

Close the currently open business process. A call to
AWD_ EndBPDefinition should be preceded by a call to
AWD__BeginBPDefinition.

The AWD__EndBPDefinition should be the last call when
defining a business process. Every AWD__
BeginBPDefinition has to be closed by a AWD__

50

55

65

48

EndBPDefinition. The AWD_ EndBPDefinition should be
the last call and ends the definition of a business process.
The AWD__EndBPDefinition closes the context set up by
AWD_ BeginBPDefinition.
Note: AWD__EndBPDefinition should be called only after a
AWD__EndWFDefinition call has been made.
Syntax

VOID FAR PASCAL AWD__EndBPDefinition
(LPERRCODE IpEiror)
Output Parameters

Name Type Description
IpError LPERRCODE Error code returned.
Return Value
None.
AWD_ DeleteBPDefinition
Description

Deletes a Business Process. The delete is successful only
if the Business Process has no active instances in the
transactions database. This function is used to remove
business processes no longer in use. This function can be
called only if the business process is not active.

Syntax

VOID FAR PASCAL AWD_ DeleteBPDefinition
(STRING szBPName, IDENT IBPAdmin. LPERRCODE
IpError)

Input Parameters

Type

Name Description

szBPName STRING The name of the business process
to delete. There should be no active
instances for this BPName.

IBPAdmin IDENT The Identity of the person deleting this

business process. The Identity should
have the rights to delete this business

processes.
Output Parameters
Name Type Description
1pError LPERRCODE Emor code returned.
Return Value
None.
AWD_ DefineBPAppFields
Description

Define the list of application data fields associated with
the business process. The field name, type. size, attributes
and initial value, if any, are specified. The field names must
be unique at a Business Process level.

Syntax

VOID FAR PASCAL AWD_ DefineBPAppFields(INT
iCount, LPAPPDATAINFQO IpBDFieldStructPtr, LPER-
RCODE IpError)

Input Parameters

Name Type Description

iCount INT The number of fields to
attach with the business
process.

5,734,837

49

-continued

Name Description

Type
IpBDFieldStructPtr LPAPPDATAINFO

A pointer to an array of
APPDATAINFQ structures
containing field name, type,
size, attributes and initial

50
Input Parameters
Name Type Description
sz WFName STRING The workflow name. This name should be

unique.

szShortWFName STRING A short name for the workflow. This name

value, if any. should also be unique.
Output Parameters 10 Output Parameters
Name Type Description Name Type Description
IpError LPERRCODE Error code returned. 15 1pError LPERRCODE Error code returned.
APPDATAINFO Return Value
None.
AWD_EndWFDefinition

Name Type Description 2¢ Description

- - — Close the currently open workflow. A call to AWD__
FiekName String Name of the application B dWFDefinition should be preceded by a call to AWD_
szValue String Initial value of the BeginWFDefinition.

application data The AWD_ EndWFDefinition should be the last call when
AppDataType APPDATATYPE gge of the application .. defining a workflow. Every AWD_ BeginWFDefinition has
i . . to be closed by a AWD__ EndWFDefinition call. The AWD__
S: INT M £ the
e application dars EndWFDefinition should be the last call and ends the
AppDataAttribute APPDATAATTRIBUTE Default attribute of definition of a workflow. The AWD_ EndWFDefinition
the application data closes the context set up by AWD_ BeginWFDefinition.
3p Syntax
APP ATYP! VOID FAR PASCAL AWD_EndWFDefinition
DAT_ E L. (LPERRCODE IpFiror)
Following are the types of application data type: Output Parameters
ADT_TEXT
35
ADT_NUMERIC Name Type Description
—D IpBrror LPERRCODE Error code returned.

APPDATAATTRIBUTE =

Following are the types of attribute an application data
can have: 40 Return Value

None.
ADATTR_READONLY AWD_ SetWFParameters
ADATTR__HIDDEN Description

ADATTR_MUSTFILL

ADATTR_EDITABLE
Return Value

None.

AWD_ BeginWFDefinition
Description

Creates a new workflow in a Business Process. The
workflow name is specified as a parameter. The workfiow
name should be unique. If a workflow with the same name
is present, then the context for this workflow is used.

The AWD_ BeginWFDefinition should be the first call
when deeming a workflow and no other AWD__
BeginWFDefinition call should be in progress. Every
AWD_ BeginWFDefinition has to be closed by a AWD__
EndWFDefinition call.

AWD_ BeginWFDefinition sets up a context for the
workflow and all subsequent workflow calls require this
context. The AWD_ EndWFDefinition closes this context.
Syntax

VOID FAR PASCAL AWD_ BeginWFDefinition
(STRING szWFName, STRING szShortWFName, LPER-
RCODE IpError)

45

50

55

65

Specify workflow information. The workflow type. the
organization role for the customer and performer. This call
must be made only after AWD_ BeginWFDefinition is
called.

Syntax

VOID FAR PASCAL AWD_ SetWFParameters
(WFTYPE WFType, WFCATEGORY WFCategory, BOOL
bCentralWF, IDENT 1Customer, IDENT IPerformer, LPER-
RCODE IpError)

Input Parameters

Name Type
WFType WFTYPE

WECategory WFCATEGORY

Description

This specifies the type of workflow,
ie., Reguest or Offer.

This specified whether it is a group
workflow, primary workflow, ad-hoc
workflow, or a2 normal workflow.

Flag to indicate if this workflow is the
central workflow of the Business
Process.

This flag is TRUE if it is the central
workflow, FALSE otherwise.

The Organization Role of the Customer.
The Organization Role of the Per-

bCentralWF BOOL

ICustomer ORGROLEID
{Performer ORGROLEID

5,734,837

51
-continued
Name Type Description
former.

Output Parameters

Name Type Description

1pError LPERRCODE Error code returned

value

WFTYPE

There are two types of workflow

WFTYPE_REQUEST

WFTYPE__OFFER
WFCATEGORY

Following are the categories of workflows:
WEFCATEGORY_STANDARD
WFCATEGORY__PRIMARY

WFCATEGORY_ADHOC
WFCATEGORY_GROUP

Return Value

None.
AWD_ SetWFCycleTime
Description

Set the various cycle times associated with the workflow.
Depending on the workflow type—Request or Offer, the
response time for each act of the workflow may be specified.
The table below enumerates the various times that can be
stored.

Read table below as

10

15

20

25

30

35

52
Syntax
VOID FAR PASCAL AWD_SETCYCLETIME
(LPAWTIME IpArrayCycleTime, LPERRCODE lpError)
Input Parameters

Name

Type
IpArrayCycleTime LPAWTIME

Description

Pointer to an array of AWTIME
time offsets. Depending on the
workflow type the array elements
refer to different times are

listed in the tables above.

Output Parameters

Name Type Description

IpError LPERRCODE Error code returned value
AWTIME
Name Type Description
iYear INT Year of the time (NOT USED)
iMonth INT Month of the time (NOT USED)
iDay INT Day of the month or number of days.
iHour INT Hour of the day or number of hours.
iMinute INT Number of minutes.
iSecond INT Number of seconds.
TimeType TIMETYPE TIMETYPE_ABSOLUTE or

TIMETYPE__OFFSET (Must be
TIMETYPE__OFFSET for this function.)

Return Value

None.
AWD__DisableWFAct
Description

Disable a set of workflow acts for a specific workflow
role. By default all acts are enabled for a workflow. This call
facilitates disabling specific acts. This call must be made
only after a call to AWD__BeginWFDefinition.
Syntax

VOID FAR PASCAL AWD_ DisableWFAct{ WFROLE
WFRole, INT iCount, LPACT lpAct, LPERRCODE

<0OrgRolel> must <Actionl> [after IpExror)
< le2><Action2>]within ti ime>
OrgRole2><Action2>]within time <time 45 Input Parameters
For Request type workflow
Naine Type Description
OrgRolel Actionl OrgRole2 Action2 Time so WFRole WFROLE The Workflow Role for which the acts are
R . to be disabled.
Customer 2o osd Cusomer Reguest e 2 iCount INT The mumber of acts to disable.
Performer Complete Customer Request time 3 IpAct LPACT A pointer to an array of IDs which is the
. ; list of acts to disable. The number of acts is
Customer Respond Performer Reports completion time 4 speified by tor nCount
55
For Offer type workflow Output Parameters
OrgRolel Actionl OrgRole2 Action2 Time Name Type Description
Performer Offer time 1 60 IpError LPERRCODE Error code returned value
Customer Respond Performer Offer time 2
Performer Complete Performer Offer time 3
Customer Respond Performer Reports completion time 4 WFROLE
Following are the possible values of WFROLE type of
65 Dparameters

Note: The call must be made only after function AWD__
SetWFParameters is called.

WFROLE_CUSTOMER
WFROLE_ PERFORMER

5,734,837

53

WFROLE__ OBSERVER

WFROLE_SYSTEM
Return Value

None.
AWD_ StoreActUserDefinedName
Description

Set the user-defined description for the workflow Acts.
The list of acts and the equivalent user-defined names are

provided. This call must be made only after a call to
AWD_ BeginWFDefinition.

Syntax

VOID FAR PASCAIL AWD__StoreActUserDefinedName
(INT iCount, LPACTINFO ActPtr, LPERRCODE lpError)
Input Parameters

Name Type Description

iCount INT The number of acts for which the user-
defined name has been provided.

ActPtr LPACTINFO A pointer to an array of ACTINFO

structures which contains the list of acts,
ie., Act Names and user-defined Names

10

-

5

20

54
Output Parameters
Name Type Description
IpError LPERRCODE Error code returned value
STATEINFO
Name Type Description
StateId STATE ID of the state
szStateName STRING Name of the state
Return Value
None.
AWD__ Store ActScript
Description

Set the workflow script for an Act. The act and the script
text are the parameters to this function. This call must be
made only after a call to AWD__BeginWFDefinition.
Syntax

VOID FAR PASCAL AWD _StoreActScriptf(ACT Actld,
LPMEM lpScript, SCRIPTTYPE ScriptType. LPINT
IpiMemBlockSize. INT iPositionNotify, LPERRCODE

for the acts. % lpEn-or)
Input Parameters
Output Parameters
Name Type Description
30

Name Type Description Actld ACT The type of act, ¢.g., Request,
Agree, eic.

IpError LPERRCODE Error code returned value IpScript LPMEM The workflow script associated with
the act. The script is executed when
the comesponding act in the workflow

CTDTF 35 is executed.
A 0 ScriptType SCRIPTTYPE ScriptType is a flag which indicates
the type of script.
lpiMemBlockSize LPINT Size of the memory block in bytes.

Name Type Description iPositionNotify INT This variable identifies the first script
buffer, subsequent buffers and the

Actld ACT ID of the act last one. It should be set to 0 to

szActName STRING Name of the act 40 identify first map buffer, 1 fo
identify subsequent map buffers.

Return Value
Output Parameters
None.
AWD__StoreState UserDefinedName 43
Description Name Type Description
Set the User-defined description for the workflow States. IpError LPERRCODE Error code returned value
The list of states and the equivalent user-defined names are
provided. This call must be made only after a call to 50 SCRIPTTYPE
AWD_ BeginWFDefinition. Following are the types of script:
Syntax SCRIPTTYPE__USER
vVOID FAR PASCAL AWD __ SCRIPTTYPE__USERSYST
StoreStateUserDefinedName(INT iCount, LPSTATEINFO ,, SCRIPTTYPE_SYST
IpStatePtr, LPERRCODE IpError) SCRIPTTYPE_NOTIFY
Return Value
Input Parameters None.
AWD__StoreStateScript
Descrioti Description
Name Type scription 60 Set the workflow script for a State. The state and the script
iComt INT The number of states for which the user- text are the parameters to this function. This call must be
defined name has been provided. made only after a call to AWD__BeginWFDefinition.
IpStatePtir LPSTATEINFO A pointer to an amray of STATEINFO Syntax
structures which contains the list of states, :
ie., State Names and user-defined narmes VOID FAR PASCAL. AWD_StorcStatcScnpt.(STATE
for the states. 65 Stateld, LPMEM IpScript, SCRIPTTYPE ScriptType,

LPINT\IpiMemBlockSize, INT iPositionNotify. LPER-
RORCODE IpError)

5,734,837

55 56

Input Parameters APPDATAINFO

Name Type Description Name Type Description

Stateld STATE The type of state, e.g., Initiate, 5 szFieldName STRING Name of the application
Negotiation, Completing, Satisfied, data
etc. szValue STRING Initial value of the appli-

IpScript LPMEM The workflow script associated with cation data
the state. The script is executed when AppDataType APPDATATYPE Type of the application data
the workflow transits to the specified iSize INT Maximum size of the appli-
state. 10 cation data

ScriptType SCRIPTTYPE ScriptType is a flag which indicates AppDatatiribute APPDATAATTRIBUTE Default attribute of the ap-
the type of script. plication data

IpiMemBlockSize LPINT
iPositionNotify INT

Size of the memory block in bytes.
This variable identifies the first script
buffer, subsequent buffers and the
last one. It should be set to O to
identify first map buffer, 1 to identify
subsequent map buffers.

Output Parameters

Name Type Description
IpError LPERRCODE Error code returned value
SCRIPTTYPE

Following are the types of script:

SCRIPTTYPE__USER
SCRIPTTYPE_USERSYST
SCRIPTTYPE_SYST
SCRIPTTYPE_NOTIFY
Return Value
None.
AWD_ DefineWFAppFields
Description
Define the list of application data fields associated with

the workflow. The field name, type. size, default attributes
and initial value, if any, are specified.

Syntax

VOID FAR PASCAL AWD_ DefineWFAppFiclds(INT
iFields, LPAPPDATAINFO lpBDFieldStruct, LPER-
RCODE lpFError)

Input Parameters

15

20

25

30

35

APPDATATYFE

Following are the types of application data type:

ADT_TEXT

ADT_NUMERIC

ADT__DATE
Return Value

None.
AWD__ SetDisplayType
Description

Define the field attributes of application data fields asso-
ciated with the workflow. The field attributes, Read-only,
Editable. Hidden and MustFill. may be specified for each
Act and/or State for a specific workflow role. A call to
AWD__SetDisplayType can be made only after a calling
AWD_ SetWFBoundDataFields.
Syntax

VOID FAR PASCAL AWD_ SetDisplayType(WFROLE
WFRole, ACTSTATETYPE ASTIndicator, ACTSTATEID
ActOrStateld, INT iFields. LPWFDISPLAYINFO
IpWFDisplayInfo, LPERRCODE IpError)
Input Parameters

Name Type Description

WFRole WFROLE Whether the field is accessible
to Customer, Performer or
Observers.

ASTIndicator ACTSTATETYPE Flag whether the display type
for act or state

ActOrStateld ACTSTATEID ID of the act or state for
which the display type is
specified.

iFields INT The number of fields to attach

with the workflow,

A pointer to an array of
‘WFDISPLAYINFO structures
containing field name

and attribute. The attributes

IpWFDisplayInfo LPWPDISPLAYINFO

50 are: Read-only, Editable,
Name Type Description Hidden and MustFill.
iFields INT The number of fields to attach
with the workflow. Output Parameters
IpBDFicldStruct LPAPPDATAINFO A pointer to an array of
APPDATAINFO structures 55
cpntammg field name, type, Name Type Description
size, default attributes and initial
value, if any. IpEtror LPERRCODE Error code returned value
Output Parameters 60 WFDISPLAYINFO
Name Type Description Name Type Description
IpEsror LPERRCODE Error code returned value szWFName STRING Name of the workflow for

65

which this display type is
specified.

5,734,837

57
-continued
Name Type Description
szFieldName STRING Name of the application
data for which display type
is specified.
AppDataAitribute APPDATAATRIBUTE Attribute for the application
data

APPDATAATTRIBUTE

Following are the types of attribute an application data
can have:

ADATTR_READONLY

ADATTR__HIDDEN

ADATTR_MUSTFILL

ADATTR_EDITABLE
Return Value

None.
AWD__SetFormInfo
Description

Specify workflow form names for Customer, Performer
and Observer.
Syntax

VOID FAR PASCAL AWD_ SetFormInfo(STRING
szCusForm, STRING szPerForm. STRING szObsForm,

10

15

20

58

Output Parameters

Name Type Description

IpError LPERRCODE Error code returned value
Return Value

None. '

AWD_ SetFollowuplnfo
Description

Set up follow-up information associated with the work-
flow. The follow-up time offsets for Completion, Reply and
Reminder are specified.

A follow-up is sent after the Completion is past due. It is
sent at the specified time interval after it is past due. If the
recurring flag for Completion is set, then till Completion,
follow-up messages are sent at every time interval specified.
The maximum number of times a follow-up notification is
sent could be set using this call.

A follow-up is sent after the Reply is past due. It is sent
at the specified time interval after it is past due. If the
recurring flag for Reply is set, then till Reply has been sent.
follow-up messages are sent at every time interval specified.
The maximum number of times a follow-up notification is
sent could be set using this call.

A reminder may be sent before Completion or Reply is
due. The reminder is sent at a time interval specified before
the event is due. Reminders may be disabled. A reminder is
sent only once.

Syntax

STRING szInitForm, LPERRCODE IpEiror) % VOID FAR PASCAL AWD_SetFollowuplnfo(BOOL
bPCFollowUpFlag, AWTIME PCompOffset, FOLLOWU-
Input Parameters PRECURRENCE PCompletionRecur. INT
iPCompletionCounter, BOOL bPRFollowUpFlag,
Name Type Description AWTIME PReplyOffset, FOLLOWUPRECURRENCE
35 pReplyRecur, INT iReplyCounter, BOOL
de“;fm g%g §°m‘ tame ffg’ gm&f"“fkéw bCRFollowUpFlag, AWTIME CReplyOffset. FOLLOWU-
o 'orm name for of workflow .
2ObsForm STRING Form name for Observer of workflow PRECURRENC}E CReplyRecur, INT lcReplyCountcr.
szlnifForm STRING Tnit form name of the workflow AWTIME RemindOffset, BOOL bRemindFlag, BOOL
bActNotifyFlag, LPERRCODE IpError)
Input Parameters
Name Type Description
bPCFollowUpFlag BOOL Performer completion follow-up flag.
PCompOffset AWTIME A follow-up message is sent at an
interval, specified by PCompOffset,
after performer completion is past due.
bPCFollowUpRecur ~ FOLLOWUPRECURRENCE If set, recurring notifications are sent at
every PCompOffset interval as many as
iPCompletionCounter times.
iPCompletionCounter INT Number of times the follow-up
notifications should be sent after
performer completion is past due. If
this parameter is not specified, and
bPCFollowupFlag is set, then
notifications are sent till performer
completes.
bPRFollowUpFlag BOOL Performer response follow-up flag
PReplyOffset AWTIME A follow-up message is sent at an
interval, specified by this parameter
after Performer reply is past due.
PReplyRecur FOLLOWUPRECURRENCE I set, recurring notifications are sent at

every PReplyOffset interval as many as
iPReplyCounter times. If
bPRFollowUpFlag is set TRUE and
iPReplyCounter is not specified, then
follow-up messages are sent until

performer replies.

5,734,837

59 60
-continued
Name Type Description
ipReplyCounter INT Number of times the follow-up
notifications shouid be sent after
performer Completion is past due. If
this parameter is not specified, and
bPRFollowUpFlag is set, then
notifications are sent till performer
completes.
bCRFoliowUpFlag BOOL Customer response follow-up flag
CReplyOffset AWTIME A follow-up message is sent at an
interval, specified by this parameter
after customer reply is past due.
bCReplyRecur FOLLOWUPRECURRENCE If set, recurring notifications are sent at
every CReplyOffset interval as many as
iCReplyCounter times.
iCReplyCounter INT Number of times the follow-up
notifications should be sent after
Customer Completion is past due. If
this parameter is not specified, and
bCRFoliowUpFlag is set, then
notifications are sent till customer
replies.
RemindOffset AWTIME A reminder is sent at an interval
RemindOffset before Commpletion or
Reply is due.
bRemindFlag BOOL If this flag is enabled, reminders are
sent. If disabled, no reminders are sent.
bActNotifyFlag BOOL Indicates notification status. If set to
TRUE, notification is enabled else if set
to FALSE, it is disabled.
Output Parameters 30 Note: AWD__SetLinkInfo must be called only after all
workflows have been created using AWD_
BeginBPDefinition.
Name Type Description Syntax
VOID FAR PASCAL AWD_ SetLinkInfo(STRING
lpEor LPERRCODE ~ Emorcoderetumedvalue o o pwEName. ACTSTATETYPE FASTIndicator. ACT-
STATEID FActState, STRING sZTWFName, ACTSTATE-
AWTIME TYPE TASTIndicator, ACTSTATEID TActState, LPER-
RCODE IpError)
Input Parameters
Natne Type Description 40
iYear INT Year of the time (NOT USED) —
iMonth INT Month of the fime (NOT USED) Name Type Description
iDay INT Day of the month or number of days "
iHour INT Hour of the day or number of hours szZFWFName STRING The source or “from’” workflow
iMinute INT Number of minutes §
iSecond INT Number of seconds 45 ’Ih‘ll;ek ?sm::dof 'h: workfiow where a
e Type M TIPS o FASTIndicator ACTSTATETYPE Flag to indicate if it is an Act
TYPE_OFFSET ms functi or State link at source.
TIMETYPE_ tion) FActState ACTSTATEID The act or state from where the
link starts.
FOLLOWUPRECURRENCE 5o SCTWEName STRING Ahe destination or "to” werk-
Following are the type of recurrence for the follow-up workflow to which the Link is
event: targeted.
FUP_RECUR_NULL TASTIndicator ACTSTATETYPE Flag to indicate if it is an Act ot
State link at destination.
FUP_RECUR_HOURLY TActState ACTSTATE The act or state where the link
FUP_RECUR_DAILY 55 ends.
FUP_RECUR_WEEKLY
FUP_RECUR_MONTHLY Output Parameters
Return Value
None.
AWD_ SetLinkInfo 60 Name Type Description
Description py— = -
Specify a incoming link to a workflow. For each link, the Ipkirror RCODE Error code returned value
source workfiow name, triggering and triggered information
is provided. Triggering information constitutes whether the Return Value
link is anchored at an act or state and the act/state name. 65 None.

Triggered information constitutes whether the link termi-
nates at an act or state and the act/state name.

AWD__StoreMap
Description

5,734,837

61

Associates a map file with the specified Business Process.
The map file is inserted as a series of memory blocks. This
function requires the business process context to be setup
before execution.

Syntax

VOID FAR PASCAL AWD_ StoreMap (LPMEM
IpMapMemPtr, LPINT IpiMemBlockSize, INT
iPositionNotify, LPERRCODE IpError)

Input Parameters

Name Description

Type
LPMEM

IpMapMemPtr Pointer to a memory block containing
map.

Size of the memory block in bytes.

This variable identifies the first map
buffer, subsequent map buffers and the
last one. It should be set to O to identify
first map buffer, 1 to identify subsequent

IpiMemBlockSize LPINT
iPositionNotify INT

10

15

62

AWD_ AssignToRoleInBP
Description

Sets the Organization Role to Identity mapping at the
Business Process level.
Syntax

void FAR PASCAL AWD__AssignToRoleInBP (IDENT
1Identity, IDENT 10rgRoleld, LPERRCODE IpError)
Input Parameters

Name Type Description
dentity IDENT Organization Role id.
10rgRoleld IDENT Identity Id to be mapped with OrgRole

Output Parameters

map buffers. Name Type Description
20 IpError LPERRCODE Error code returned value
Output Parameters
Return Value
Name Type Description None.
IpError LPERRCODE Error code returned value 25 AWD__AssignToRoleInWF
Description
Return Value Sets the Organization Role to Identity mapping at the
None. Workflow level.
AWD_GetMap Syntax
Description 30 yoid FAR PASCAL AWD__AssignToRoleInWF (IDENT

Get the map file associated with the specified Business
Process. The map file is returned as a series of memory
blocks. The memory block pointer and the block size
allocated is passed to this function and the number of bytes
actually written in the memory block is returned. Initially,
the caller must pass a zero in the IpOffset variable to indicate
start of the block transfers. The caller will be notified with
a negative value in the IpOffset variable to indicate end of
the block transfers.

Syntax

VOID FAR PASCAL AWD_ GetMap (STRING
szBPName, LPMEM IpMapMemPtr, LPINT
IpiMemBlockSize, LPLONG 1pOffset, LPERRCODE
IpError)

Input Parameters

Name Type Deseription

szBPName STRING Business Process Name with which to
associate the map.

lpMapMemPtr LPMEM Pointer to a memory block where map can
be returned.

lpiMemBlockSize LPINT Size of the memory block in bytes.
IpOffset LPLONG Initially, the caller must set this to zero.

Output Parameters

Name Type Description

IpOffset LPLONG

Each block transfer changes the value
contained in this variable and the caller can
only check the value returned here. This
will be negative if end is reached.

Emor code returned value

IpError LPERRCODE

Return Value
None.

35

45

55

65

1Identity, IDENT 10rgRoleld, WFROLE WFRole, LPER-
RCODE IpError)
Input Parameters

Name Type Description

Identity IDENT Kentity Id to be mapped with OrgRole.
10rgRoleld IDENT Organization Role id.

WFRole WFROLE Workflow role of the identity.

Output Parameters

Name Type Description
IpError LPERRCODE Error code returned value
Return Value
None.
AWD_ GetBPVersion
Description

Get the current BP Version for the specified BP name. The
function returns the Business Process Version.
Syntax

VOID FAR PASCAL AWD_ GetBPVersion (IDENT
IIdentity, STRING szBPName. LPINT IpiVersion. LPER-
RCODE IpEiror)
Input Parameters

Name

Type

Iidentity IDENT
szBPName STRING

Description

Identity i to be mapped with OrgRole.
The name of the BP for which the version
number is requested

5,734,837

63
Output Parameters
Name Type Description
IpiVersion LPINT Pointer to an integer which holds the version
number of BP
IpError LPERRCODE Error code returned value
Return Value
None.
AWD__GetLastModifiedDate
Description

This function returns the last modified date of the Busi-
ness Process specified.
Syntax

VOID FAR PASCAL AWD_ GetLastModifiedDate
(STRING szBPName, LPDATETIMET IpdtLastModified,
LPERRCODE lpError)
Input Parameters

5

10

15

64

EVENT__PCPASTDUE

EVENT_PCDUE

EVENT__CRPASTDUE

EVENT__ACT

EVENT_MAIL
Return Value

None.
AWD__SetNotificationStringInWF
Description

The notification string for the event is set with respect to
the current workflow context.
Syntax

void FAR PASCAL AWD_ SetNotificationStringInWF
(NOTIFICATIONTYPE NotificationEvent, STRING
szNotificationString, LPERRCODE IpError)
Input Parameters

20 Name Type Description
Name Type Description NotificationEvent ~ NOTIFICATIONTYPE ~ This parameter notifies
the event
szBPName STRING The name of the BP for which the last modified szNotificationString STRING The notification string.
date is requested
25
Output Parameters
Output Parameters
Name Type Description
Name Type Description
30 IpError LPERRCODE Error code returned value
IpdfLastModified LPDATETIMET The pointer to the DATETIMET
type which holds the last
modified date of the Business NOTIFICATIONTYPE
Process. N . : . N
DATETIMET is a long integer The following are the possible notification types:
value where the offset EVENT__PRPASTDUE

of the date from 1/1/90 is
seconds is stored.

1pErTor LPERRCODE Error code returned value
Return Value
None.
AWD _ SetNotificationStringInBP
Description

The notification string for the event is set with respect to
the current BP context.
Syntax

void FAR PASCAL AWD_ SetNotificationStringInBP
(NOTIFICATIONTYPE NotificationEvent, STRING
szNotificationString, LPERRCODE IpFError)
Input Parameters

Name Type Description
NotificationEvent NOTIFICATIONTYPE This parameter
notifies the event
szNotificationString STRING The notification
siring.
Output Parameters
Name Type Description
IpError LPERRCODE Error code returned value
NOTIFICATIONTYPE

The following are the possible notification types:
EVENT_PRPASTDUE

35

45

50

55

65

EVENT__PCPASTDUE

EVENT__PCDUE

EVENT__CRPASTDUE

EVENT__ACT

EVENT_MAIL
Return Value

None.
AWD_ SetCOS
Description

This function specifies COS associated with a Workflow
of a Business Process. The COS is inserted as a series of
memory blocks. This function requires the Business Process
context and Workflow to be setup before execution.
Syntax

VOID FAR PASCAL AWD_ SetCOS (LPMEM 1pCOS,
LPINT lpiMemBlockSize. INT iPositionNotify, LPERROR-
CODE IpError)
Input Parameters

Name Type Description

1pCOS LPMEM Pointer to a memory chunk which stores
COS.

lpiMemBlockSize ~ LPINT Memory allocated for storing COS in
bytes.

iPositionNotify INT This variable identifies the first COS
buffer, subsequent COS buffers and the
last one. It should be set to O to identify
first buffer, 1 to identify subsequent

buffers.

5,734,837

65 66
Qutput Parameters Syntax
VOID FAR PASCAL AWD_ AssignObsRoleInWF
- (IDENT 10rgRoleld, LPERRCODE IpError)
Name Type Description Input Parameters
IpError LPERRCODE Error code returned value 5
Name Type Description
Return Value 10rgRoleld IDENT Organization Role id.
N 10
one. Output Parameters
AWD__GetCOS
Description Name Type Description
15 IpError LPERRCODE Error code returned value
The function gets the COS associated with the specified
Wo'rkﬂow of a Business Process. The COS is rf:mrncd as a Return Value
series of memory blocks. The memory block pointer and the None
block size allocated i.s pass.cd to this function and 'the number 20 AWD_ DeleteObsRoleInWF
of bytes actually written in the memory block is returned. Description

For the first call, the contents of the variable lpOffset must
be set to zero (@). This indicates the start of the memory
block transfers. The caller will be notified with a negative
value in the 1pOffset variable to indicate end of the block
transfers.

Syntax

VOID FAR PASCAL AWD_GetCOS (STRING
szBPName, STRING szWFName, LPMEM IpCOS. LPINT
IpiMemBlockSize, LPLONG 1pOffset, LPERRORCODE
IpError)

Input Parameters

Name Type Description

szBPNaimne STRING Business Process Name

szWFName STRING Workflow Name

1pCOS LPMEM Pointer to a memory chunk which stores
COS.

IpiMemBlockSize LPINT Memory allocated for storing COS in
bytes.

1pOffset LPLONG Initially, the caller must set this to zero.

Output Parameters

Name Type Description

pOffset LPLONG Each block transfer changes the value
contained in this variable and the caller can
only check the value returned here. This
will be negative if end is reached.

IpError LPERRCODE Error code returned value

Return Value

None.
AWD__AssignObsRoleInWF
Description

Sets the Observer Organization Role(s) at the Workflow
level.

25

30

35

45

50

55

65

Deletes the Observer Organization Role(s) at the Work-
flow level.
Syntax

VOID FAR PASCAL AWD_ DeleteObsRoleInWF
(IDENT 10rgRoleld. LPERRCODE IpError)
Input Parameters

Name

10rgRoleld

Type Description

IDENT

Organization Role id.

Output Parameters

Name Description

IpError

Type
LPERRCODE

Error Code returned value

Return Value

None.
AWD_ GetBPList
Description

Returns the list of names of all business processes whose
definition exist in the database.
Syntax

VOID FAR PASCAL AWD_ GetBPList (LPINT
lpiCount, BOOL bFileOrMemory, LPBPNAME
IpBPNames, STRING szFileName, LPERRCODE IpError)
Input Parameters

Name Description

Type

IpiCount LPINT
bFileOrMemory BOOL

Number of Business processes to get.
Whether the list is to be put in a file or
in mermory.

LPBPNAME If set to NULL, then IpiCount returns
number of business processes.

IpBPNames

Output Parameters

Name

Type
LPINT

Description

1piCount Number of Business processes.

5,734,837

67 68
-continued -continued
Name Type Description Name Type Description
IpBPNames LPBPNAME The list of names of all business pro- szBlobFilePath STRING File path for Blob file.
cesses. 5 iMaxBPInst INT Maximum number of Business Process
IpError LPERRCODE Error code returned value instances
Return Value Return Value
AWD. StoreNotificationScript 1o None.
oreNotificationScri . .
. 3 AWD_ BeginTransaction
Description .
Stores the compiled script for a specific type notification ~ Description

in the definition database.
Syntax

VOID FAR PASCAIL AWD__StoreNotificationScript
(NOTIFICATIONTYPE NotificationType, LPMEM
IpScript, LPINT lpiMemBlockSize, INT iPositionNotify,
LPERRCODE IpEFiror)

15

This routine must be called before any modification to the
database. After the call of this routine, several calls can be
made which may modify the database records. At the end,
AWD_ EndTransaction can be
Syntax

VOID FAR PASCAL AWD_ BeginTransaction

Input Parameters 20
P (LPERRCODE IpError)
Output Parameters
Name Type Description
NotificationType NOTIFICATIONTYPE Type of notification L.
IpScript LPMEM Compiled form of notifica- 23 Name Type Description
tion script
IpiMemBlockSize LPINT Size of this block of \pEmor LPERRCODE ~ Error code retumed value
memory
fontotiy middle or last " Return Value
block. 30 None.
AWD__EndTransaction
Output Parameters Description
This routine is used to end a series of database transac-
Name Type Description 35 tions.
Syntax
IpError LPERRCODE Error code returned value
VOID FAR PASCAL AWD_ EndTransaction (BOOL
bCommitOrRollBack. LPERRCODE IpError)
Return Value Input Parameters
None. 40 1P
AWD__GetConfiginfo
Description Name Type Description
This routine returns the details of workflow server’s -
bCo: tOrRollBack BOOL Whether all the changes done after the
configuration such as blob file path, database polling 45 mETReTEa AWD. _Begin“;,smio: call are tl;, be
interval. maximum number of business processes etc. retained in the database or not.
Syntax
VOID FAR PASCAL AWD_GetConfiglnfo
(LPCONFINFO IpConfigInfo, L PERRCODE IpExror) Output Parameters
Output Parameters 50
Name Type Description
Name Type Description ipError LPERRCODE Error code returned value
IpConfiginfo = LPCONFINFO Returns the configuration details in a
CONFINFO structure. 55 Return Value
IpError LPERRCODE Error code returned.
None.
AWD__GetDraftBPDefId
CONFINFO .
Description
60 Returns the id of the business process definition in the
Name Type Description database. This id is a unique number to identify a business
szlogFilePath STRING File path of Log file. process in the database.
stLogFileName STRING File name of Log file. Syntax
iTMPollInterval INT Transaction Mana; lling i al
TMOptions . INT Transaction Mamoes ootions 65 VOID FAR PASCAL AWD_ GetDraftBPDefld (STRING

iSCHPollInterval INT Scheduler polling interval

szBPName, LPIDEN IpBPDefId, LPBOOL
IpbDraftIsPresent, LPERRCODE IlpError)

5,734,837

69 70
Input Parameters Output Parameters
Name Type Description Name Type Description
szBPName STRING Business Process Name for which the 5 lpAppFieldID LPIDEN The id of the specified application data

definition id is required.

Output Parameters

Type
LPIDEN

Name Description

IpBPDefld The id of the business process
returned to the caller.

Returned value is TRUE if there is a
draft definition present in the
database.

LPERRCODE Error code returned value

IpbDrafdsPresent LPBOOL

IpError

Return Value

None.
AWD_ GetWfDefld
Description

Returns the id of a workflow in the database. This id is a
unique number to identify a workflow in the database.
Syntax

VOID FAR PASCAL AWD_ GetWfDefld (STRING
szWFName, LPIDEN 1pWFDefld, LPFERRCODE IpError)

Input Parameters

Name Type Description

szWFName STRING Name of the workflow for which definition
id is required

Output Parameters

Name Type Description

The definition id of the workflow is

returned through this parameter.
Error code returned value

pWiDefld LPIDEN

IpError LPERRCODE

Return Value

None,
AWD_ GetAppFieldld
Description

Returns the id of the specified application data in the
database. This id is a unique number to identify an appli-
cation data in the database.
Syntax

VOID FAR PASCAL AWD_ GetAppFieldld (STRING

szAppDataFieldName, LPIDEN IpAppFieldID, LPER-
RCODE IpError)

Input Parameters

Name Type Description
szAppDataFieldName STRING Name of the application data whose
id is required

10

20

30

35

45

50

55

is returned through this parameter.

IpError LPERRCODE Error code returned value

Return Value

None.
AWD _ strcmp
Description

This routine compares two strings. The functionality is
similar to the standard C implementation of strcmp but with
a difference. This routine does case sensitive or insensitive
comparison based on the flag set in the aws.ini file.

Syntax
INT FAR PASCAL AWD_ stremp (LPSTR strl, LPSTR

str2)
Parameters

Name Type Description

strl LPSTR pointer to the first string to be compared

str2 LPSTR pointer to the second string to be compared
Return Value

0 If both the strings are same
Negative If strl is less than the str2

Positive If the strl is greater than the str2
AWD__ strncmp
Description

This routine compares some specified number of initial
characters of two strings. The functionality is similar to the
standard C implementation of strncmp but with a difference.
This routine does case sensitive or insensitive comparison
based on the flag set in the aws.ini file.
Syntax

INT FAR PASCAL AWD__strncmp (LPSTR strl, LPSTR
str2, INT n)
Parameters

Name Type

strl LPSTR
str2 LPSTR
n INT

Description

pointer to the first string to be compared
pointer to the second string to he compared
the maximum number of characters to be compared

Return Value

0 If the first n characters of both the strings are same
Negative If the first n characters of strl is less than the first n
characters of str2

If the first n characters of the strl is greater than the first n
characters of str2

Positive

Forms and Views API

The Application Builder takes a business process map
definition and, after it is checked for consistency, the Appli-
cation Builder produces an application definition (via the
definitions API). To generate an application, the Application
Builder produces a database description of the business
process, which includes workflow descriptions and
relations, business process parameters, follow up
information, application data (along with its visibility and

5.734.837

71

protection description), and workflow language scripts to
drive the flow and actions as defined by the business process

A workflow-enabled application is usually composed of
forms (a number of fields to be filled) and views (status
reports and lists of system pending actions). The Application
Builder generates a standard set of Forms and Views as part
of the application generation process and thus provide the
developer with a starting point for his/her application.

The following description outlines the mechanism
through which the Application Builder produces such forms
and views for the workflow enabled application.

Objective

The Application Builder allows the application designer
to design forms and views to be used with the workflow
enabled application. The application can be of many types
like Notes, Visual Basic, and the like.

General Mechanism

The Forms Generation Package is a series of APIs with a
standard name.

The Forms Generation Package responds to the Applica-
tion Builder APIs and generates the forms needed to imple-
ment the whole set of data as defined by the user. This
process involves creating one or more forms per workflow,
depending on the flexibility and constraints of the Forms
platform. The Forms Generation Package minimizes the
number of generated forms from the data received from the
Application Builder.

The Application Builder provides all the information
available regarding form names. application data, and field
attributes for different acts/states.

The Application Builder only accepts the input of the
initial form name only for the primary workflow of a
business process. In any other workflows there are only three
form names: Customer, Performer and Observer. The user of
the Application Builder should be able to specify the Form
Field Attributes for the initial form in a way that is distin-
guished from any act/state.

When the user selects the Generate Application menu
Item. the Application Builder checks if the specified Forms
Generation Package library exists. If the library exists. the
Application Builder calls the FVInitApplication routine in
the library with some information about the business process
and the database. The FVInitApplication routine returns a
handle that the Application Builder uses in all the subse-
quent calls to the Form Generation Package’s routines. This
handle is used on the Application Builder side to identify the
form generation instance, and it is not to be used to extract
any information. The library uses this as a space to keep its
state and various variables. After the successful completion
of this process it proceeds to create the application definition
in the database via the standard workflow definition APIs.

The FVInitApplication routine of the library may or may
not implement some user interface to get the designer’s
choice on what (s)he wants. This is also the place when the
library can initialize all fries of the application to be gen-
erated e.g., if the application is template based, then the base
template fries should be copied to a selected directory and
the customization points located.

After the successful return from the FVInitApplication,
the Application Builder calls a set of routines to inform the
library about application data of the business process and of
all the workflows. This information can be used by the
library to provide an additional user interface to design
views which can refer to the application data, or simply to
keep track of the data for the fields it will generate.

After that the FVCreateViews routine is called. This
functionality allows the library to add fields to the views of

10

15

20

25

35

45

50

55

65

72

the application, If desired. e.g. The user could be presented
with the data sent on the previous calls and prompted to add
those (s)he wants to view.

The Application Builder scans all the workflows and
informs the library about the names of forms selected for
each workflow, a workflow at a time. After that the Appli-
cation Builder calls a routine for each field with all the
details of the visibility of an application data for a given
moment. All these calls are sorted with Roles as the primary
key and Moments (Acts/States) as the secondary key. All the
calls related to one role are bracketed by FVBeginRole and
FVEndRole. Similarly all the calls of a moment are brack-
eted by FVBeginMoment and FVEndMoment. This is the
moment in which the fields are added to the appropriate
forms.

Application Builder’s Calling Mechanism

After verifying that there is no information missing and
the map is consistent, Application Builder will do the
following steps:

1. After successful loading of library, call FVInitAppli-
cation routine so that designer can set some parameters for
forms and views creation. The FVInitApplication routine
returns a handle to its data.

2. Call FVBeginWorkflowData with a None parameter as
a type to identify the start of the Business Process Dam.

3. For each data item of this business process, Call
FVAppData with a null hWorkflow parameter

4. Call FVEndWorkflowData with the handle from step 2.

5. For each workflow in the map, Call FVBeginWork-
flowData with the workflow type. For each data of this
workflow. Call FVAppData with the hWorkflow from FVBe-
ginWorkflowData above

6. Call FVEndWorkflowData

7. Call FVCreateViews.

8. For each workflow

a) Call FVBeginWorkflow with Initial form name if the

workflow is primary or NULL otherwise.

b) In case this is the primary workflow send all the default

role assignments
Call FVBeginDefRoleTold
For every role mapping call FVDefRoleTold
Call FVEndDefRoleTold
c) For Each Workflow Role (Customer/Performer/
Observer)
Call FVBeginRole with role’s form name
For Each Act/State

Call FVBeginMoment with role form name again (this
could be used if a form per moment is desired).

For each Form Field Attribute call FVFieldAttribute

Call FVEndMoment

Call FVEndRole

Call FVEndWorkflow

9. If forms were successfully generated Call FVEndAp-
plication.

10. If there was an error call FVGetErrorStr and FVAbor-
tApplication.

Standard Set of API

The following are the routines the forms generation
package should support.

1. FVInitApplication

2. FVGetErrorString

3. FVBeginWorkflowData

4. FVEndWorkflowData

5. FVBeginWorkflow

6. FVEndWorkflow

5.734,837

73
7. FVAppData
8. FVCreateViews
9. FVBeginRole
10. FVEndRole
11. FVBeginMoment
12. FVEndMoment
13. FVFieldAttrib
14. FVEndApplication
15. FVAbortApplication
FVInitApplication
Syntax:
int FVInitApplication(HWND hParentWindow, int
iVersion,
char far *pszBPName, char far *pszDBName.
char far *pszUserName, char far *pszPassword,

AppHandle far *hApp);
Input Parameters:

10

20

74
Return Value:

IpszErrorMsg char far* Null terminated error message. Should
be set to null if library has already

displayed error message to the user.

FVBeginWorkflowData
Syntax:
int FAR PASCAL FVBeginWorkflowData(AppHandle
hApp, char far *pWorkflowName, enum Wf{Type
eWiType, WorkflowHandle far *hWorkflowData);
Input Parameters:

hApp AppHandle A long id which identifies the
application

pWorkflowName char far* Null terminated name of the
workflow

eWfType WiType Type of workflow (Request,
Offer, None)

Output Parameters:

hParentWindow - HWND handle of the parent window
Library routine can use this to implement 25
its own user interface, get options from . L.)
the designer and remcufber ﬁt:sc]ccted hWorkflowData ~ WorkflowHandle far* leon,g ;21 which identifies
options for the final forms/views woridlow
generation process.
iVersion int version number of the standard set of API V.
pszBPName char far* Null terminated name of the business Return Value
process 30
pszDBName char far* Null terminated name of the database in
which application is to be generated. iErrorCode int O if successful. Builder can use GetErrorStr to
pszUserName char far* Null terminated name of the user who has get the detail description of error message.
logged in the database through
Application Builder
pszPassword char far* Null terminated password which has been 35 FVEndWorkflowData
used by Application Builder to connect to kflow
the database. Syntax:
int FAR PASCAL FVEndWorkflowData
Output Parameters: (WorkflowHandle hWorkflowData);
: 40 Input Parameters;
hApplication AppHandle far* A long id which builder can use in rest
of the communication with the library. hWoskflowData WorkflowHandie A long id which identifies
Should he null if not successful the workflow
45
Return Value: Output Parameters:
iErrorCode int O if successful. Builder can use GetErrorStr to None
get the detail description of error message.
50
Return Value
FVGetErrorStr
Syntax: iErrorCode int 0 if successful. Builder can use GetErrorStr
char far * FAR PASCAL FVGetErrorStr{AppHandle to get the detail description of error message.
o s 55
hApp, int iBrrorCode);
Input Parameters: FVAppData
Syntax: .
happ AppHandle A long id which identifies the application - jnt FAR PASCAL FVAppData(AppHandle hApp, Work-
- frot code refumed by Ty Toutine. flowHandle hWorkflowData. AppDatalnfo far
*pAppDatalnfo);
Output Parameters Input Parameters:
None 65 hApp AppHandle A long id which identifies the

application being generated.

5,734,837

75 76
~-continued Return Value
hWorkflowData ~ WorkflowHandle A long id which identifies the
workflow. If O this is an applica- iErrorCode int 0 if successful. Builder can use GetErrorStr
tion data specification. to get the detail description of error message.

pAppDatalnfo AppDatalnfo far* pointer to a struct with full info 5
about an application’s data.

FVEndWorkflow
Output Parameters Syntax:
10 int FAR PASCAL FVEndWorkflow(WorkflowHandle
None hWorkflow);
Input Parameters:
Return Value
15 hWorkflow WorkflowHandle A long id which identifies
iErrorCode int 0 if successful. Builder can use GetErrorStr to the workflow
get the detail description of error message.
Output Parameters:
FVCreateViews 20
None
Syntax:
int FAR PASCAL FVCreateViews(AppHandle hApp. Return Value
Viewlnfo far *pViewlInfo); 25
Inp ut parameters: iErrorCode int 0 if successful. Builder can use GetErrorStr
to get the detail description of error message.
hApp AppHandie A long id which identifies the application
pViewlnfo Viewlnfo far* For future use 40 FVBeginDefRoleTold
Syntax:
Output Parameters . .
int FAR PASCAL FVBeginDefRoleTold
{WorkflowHandle hWorkflow);
None 25 Input Parameters:
Return Value hWorkflow WorkflowHandle A long id which identifies
the workflow
iErrorCode int 0 if successful. Builder can use GetErrorStr to
get the detail description of error message. Output Parameters:
FVBeginWorkflow None
: 45
Syntax: Return Value
int FAR PASCAIL FVBeginWorkflow(AppHandle hApp.
char far *pWorkflowName, enum WfType eWfType, iErrorCode int 0 if successful. Builder can use GetBrrorStr
FormName pszFormName, WorkflowHandle far to get the detail description of error message.
*hWorkflow); 50
Input Parameters: FVEndDefRoleTold
Syntax:
bépe AppHandle 2 s o ot dentifes the 4 int FAR PASCAL FVEndDefRol¢Told(WorkflowHandle
pWorkflowName char far* Null terminated name of the workflow hWorkflow);
eWfType WfType ;‘ype)of workflow (Request, Offer, Input Parameters:
one
pszFormName FormmName Initial Form name for primary
workfiow. NULL otherwise. hWorkflow WorkflowHandle A long id which identifies
60 the workflow

Output Parameters
Output Parameters:

hWorkflow WorkflowHandle far* A long id which identifies
the workflow

65 None

5.734,837

77
Return Value

78

Output Parameters

iBrrorCode int 0 if successful. Builder can use
GetErrorSir to get the detail description
of error message.

FVDefRoleTold
Syntax:

None

Return Value

iErrorCode int 0 if successful. Builder can use
GetErrorStr to get the detail description

int FAR PASCAL FVDefRoleTold(WorkflowHandle 10
hWorkflow, of error message.
char far * IpRoleName,
char far * IpldentityName); FVBeginMoment
Input Parameters: . Syntax:
— int FAR PASCAL FVBeginMoment(long hRole, int
hWorkflow ~ WorkflowHandls A ‘l‘_’k": id which identifies the bIsAct, ACT eServerld, FormName pszFormName,
workflow * .
IpRoleName char far* Name of organizational role MomentHandle far *hMoment);
IpldentityName char far* Default identity to perform for the Input Parameters:
given organizational role. 20
hRole RoleHandle A long id which identifies the role
Qutput Parameters: context
bIsAct int Boolean to specify if act or state
eServerld ACT Act or State of the moment
None 25 pszFormNarme FormName Role Form name.
Return Value Output Parameters
iErrorCode int 0 if successful. Builder can use 30 hMoment MomentHandle far* A Handle which can be used in
GetEmror3tr to get the detail description subsequent calls
of error message.
Return Value
FVBeginRole
Syntax: 35 - —
. . iErrorCode int 0 if successful. Builder can use
int FAR PASCAL FVBeginRole(WorkflowHandle GefErrorSir to get the detail description
hWorkflow, enum Roles eRole, FormName of error message.
pszFormName, RoleHandle far *hRole);
Input Parameters:
40 FVEndMoment
Syntax:
hWorkflow WorkflowHandle A long id which identifies the .
workflow context. int FAR PASCAL FVEndMoment(MomentHandle
eRole enum Roles Role Id hMoment);
pszFormName FormName Role Form name. Input Parameters:
45
Output Parameters: hMoment MomentHandle Handle of moment whose
specification is over
hRole RoleHandle far* A Handle which can be used in
subsequent calls %0 Qutput Parameters
Return Value
None
iErrorCode int 0 if successful. Builder can use 55 Return Value
GetErrorSir to get the detail description
of error message.
iErrorCode int 0 if successful. Builder can use
FVEndRole GetErrorStr to get the detail description
Syntax: 60 of error message.
int FAR PASCAL FVEndRole(RoleHandle hRole);
Input Parameters: FVFieldAttribute
Syntax:
hRole RoleHandle Handle of role whose specification is over 65 int FAR PASCAL FVFieldAttribute(MomentHandle

hMoment, AppDatalnfo far *pAppDatalnfo, FieldAt-
tribInfo far * pField AttribInfo);

5,734,837

79 80
Input Parameters: Return Value
hMoment MomentHandle Handle of the moment for which iErrorCode int 0 if successful. Builder can use
this field attribute is. GetErrorStr to get the detail description
pAppDatalnfo AppDatalnfo far* pointer to sttuct containing full 5 of error message.
info about application data
pFieldAttribInfo FieldAttribInfo far* pointer to structure containing
information about the moment Data Structures
specific visibility. This section is intended to give a complete view of the
1o data structures used in the API calls other than those defined
Output Parameters in the Windows APL This includes both the constant values
and structure contents,
Enumeration Types
None Enumeration data types are given instead of symbolic
15 defines. The definition is as follows:
Workflow Role Types
Return Value Workflow roles are those that appear in the workflow.
These are defined as follows:
iErrorCode int 0 if successful. Builder can use typedef enum Roles {AnyRole. Customer, Performer,
GetErrorStr to get the detail description 20 Observer};
of emor message. Customer, Performer, Ovserver workflow roles are used to
mean that a given role information is about to be passed.
.. AnyRole is used whenever the role information is either
FVEndApplication meaningless or applies to any of the three previous rules.
PP y P
Syntax: 25 Workflow Types
Y ’ Workflow Types are the standard types a given workflow
int FAR PASCAL FVEndApplication(AppHandle happ); 20 have.
Input Parameters: typedef enum WfType {Offer, Request, None };
None is used when Business Process Data is about to be
30 sent.
hApp AppHandle A long id which identifies the Visibility/Protection of fields
application. This id will become The visibility and protection of a given field are used
invalid if this routines terminates when an form field definition is sent and specifies the way
successfully. a specific field should appear in the form. This is usually
35 Stored per act/state.
Qutput Parameters typedef enum FieldAttr {Hide, Readonly, Editable. Mus-
thill};
Application Data Types
None The following data types are the ones that the Application
40 Builder manages at the time.
Return Value typedef enum AppDataType {Undefined, Text. Numeric,
Date};
The Undefined type is not currently sent.
iErrorCode int 0 if successful. Builder can use
GetErrorStr to get the detail description Structurcs‘ .)
of error message. 45 Following are the d§ta structures used to pass information
to the Forms Generation Package.
Application Data Information—AppDatalnfo
FVAbortApplication
. sg struct AppDatalnfo {
Syntax' char far* Name,
enum AppDataType Type;
int FAR PASCAL FVAbortApplication(AppHandle short int MaxLen;
hApp) . char InitialVal[256];
Inout P § . AWTIME TimeVal;
put Parameters: s DWORII?E dwospicw
HAND] hOSField;
I
hApp AppHandle A long id which identifies the
application. This id will become
invalid if this routines terminates
successfully.
6 Name char far* Contains the name of the
application data ficld. The
Output Parameters workflow name (empty in the
case of a business process
application data) and this name
None define uniquely an application
65 data. The workfiow context is

set via FVStartWorkflow.

5,734,837

81

-continued

82

-continued

Type enum AppDataType Defines the type of this

application data. See definition
above.

Defines the maximum allowed 5
length of the field. This value
varies depending on the Type
value.

Contains the default/initial value
of the field.

If Type is date then this variable
contains the rep ion in
date format, as specified in the
Workflow Client Libraries.
Contains the length of the
memory block below.

Memory block of the field as got
from the import functionality.
May be NULL. 1t is only
defined in the case of a custom
Application Builder (as in the
case of the Application Builder
for Notes) in which the Import
fields functionality can obtain
such information.

short int

TnitialVal char [256]

TimeVal AWTIME 10

dwOsFieldLength DWORD

hOSField HANDLE

Field Attribute Information—FieldAttribInfo
Usually the function calls that use this structure also pass
AppDatalnfo %

struct FieldAttribInfo {

const char far* OwnerWf; /! name of BD owner
enum FieldAttr eDataAttrib; // Field attribute 30
I
OwnerW{f char far* Contains the name of the
workflow that owns this 35
application data. This value may
be different from the context set
in FVBeginWorkflow given the
visibility rules for application data
variables.
eDataAttrib enum FieldAtir Defines the type of this 40
application data. See definition
above.
Defined Types
AppHandle 45

This is used as a handle to an instance of an Application
and is defined as a LONG.

WorkflowHandle

This is used as a handle to an instance of a Workflow and
is defined as a LONG.

RoleHandle

This is used as a handle to an instance of an Organiza-
tional Role and is defined as a LONG.

MomentHandle

This is used as a handle to an instance of an Moment (Act
or State) and is defined as a LONG.

FormName

This is used as the name of a form and is defined as a char
far*,
Error Codes

The Forms Generation Package should return the follow-
ing errors as appropriate, whenever an error condition is

50

found. A return code of zero means no error.
FVERR_LOW_MEMORY A low memory condition has 65
been found. Execution is

stopped.
The database connection (if any)
cannot be performed. Execution

FVERR_DB_NOT_OPENED

is stopped
FVERR_MAX_FIEL.DS _REACHED The number of accepted fields
has been exceeded. Execution is
stopped.
FVERR_FORM__EXISTS The form to be created is already
present. Execution continues.
We claim:

1. A computer based system for building business process
applications, said system including a computer which
executes a program, said program when executed by said
computer comprising:

a) means for creating a set of business process definitions
for storage in a database and a set of business process
applications for execution by a processor, said business
process definitions and said business process applica-
tions for use with a business process and its associated
workflows,

b) means for generating:

i) a component representation of at least a predeter-
mined subset of said business process in terms of its
workflows, and

ii) at least a predetermined subset of links between said
workflows.

2. The system defined by claim 1 wherein each of said
workflows has four phases.

3. The system defined by claim 1 wherein said links are
defined by a predetermined set of map rules.

4. The system defined by claim 1 wherein said component
representation of said predetermined subset of said business
process in terms of its workflows and links between said
workflows is represented as at least one image displayed on
a video display device.

5. The system defined by claim 1 wherein said links each
have a corresponding workflow script.

6. The system defined by claim § wherein each of said
workflow scripts upon execution causes a workflow server
to take a predetermined action.

7. The system defined by claim 1 wherein each of said
workflows include at least one act and at least one state.

8. The system defined by claim 7 wherein each of said
workflow scripts upon execution causes a workflow server
to take a predetermined action.

9. The system defined by claim 7 wherein the workflow
states are at least one of Preparation. Negotiation,
Performance, Acceptance, Satisfied, Negotiation, Cancelled,
Declined and Revoked.

10. The system defined by claim 7 wherein a workflow is
one of a request workflow and an offer workflow and the
predetermined workflow acts for request workflows are at
least one of:

Activate
Initiate
Request
Agree

60 Counteroffer

Report Completion
Decline

Declare Satisfaction
Cancel

Revoke

Decline To Accept
Agree To Counteroffer

5,734,837

83

Counter

Decline Counteroffer

Comment

and wherein the predetermined workflow states for offer
workflows are at least one of:

Activate

Initiate

Offer

Agree to Offer
Counter

Report Completion
Decline Offer
Declare Satisfaction
Cancel

Revoke

Decline To Accept
Agree To Counter
CounterOffer
Decline Counter
Comment.

11. The system defined by claim 1 further comprising
checking means for performing consistency checking to
assist in the creation of proper business process maps.

12. The system defined by claim 11 wherein said checking
means includes a set of business process map rules which are
applied to each workflow in said predetermined subset of
said business process and are used to determine consistency
of said predetermined subset of said business process.

13. The system defined by claim 1 further comprising
means for performing a consistency check of said compo-
nent representation of said predetermined subset of said
business process to ensure that proper business process
definitions are created.

14. The system defined by claim 1 further comprising
means for performing a consistency check of said compo-
nent representation of said predetermined subset of said
business process to ensure that proper business process
applications are created.

1S. The system defined by claim 1 wherein each business
process application is a workflow enabled application
including forms and views.

16. The system defined by claim 15 wherein said views
provide predetermined status reports and lists of pending
system actions.

17. The system defined by claim 15 wherein said forms
are associated with particular workflows and provide to a
user fields to enter workflow data.

18. The system defined by claim 17 wherein said fields,
include at least one of workflow name, customer. performer,
conditions of satisfaction, costs and values, cycle times,
application data, forms and type of workflow.

19. The system defined by claim 1 further comprising
means for automating the generation of workflow scripts
used by said business process applications.

20. The system defined by claim 19 wherein said scripts
are gencrated from said workflows based upon a set of
predetermined map rules.

21. The system defined by claim 19 wherein said scripts
are generated from said links based upon a set of predeter-
mined map rules.

22. The system defined by claim 19 wherein each of said
workflow scripts upon execution causes a workflow server
to take a predetermined action.

23. The system defined by claim 1 wherein said work-
flows include roles and identities. ‘

24. The system defined by claim 1 wherein said compo-
nent representation of said predetermined subset of said
business process is a business process map.

w

10

15

20

25

30

35

45

50

55

84

25. The system defined by claim 1 further comprising:

tool means for drawing, filing, editing, printing and view-
ing said predetermined subset of said business process
and its associated workflows, and business process
application data.

26. The system defined by claim 25 wherein said tool
means includes a testing tool which analyses all workflows
in the predetermined subset of the business process and
generates a report specifying workflows which have at least
one of roles, conditions of satisfaction, cycle times and
workflow name missing.

27. The system defined by claim 22 wherein said business
process application data includes attributes, forms, cycle
times. cost and value, roles and identities.

28. The system defined by claim 27 wherein said forms
are associated with particular workflows and provide to a
user fields to enter workflow data.

29. The system defined by claim 28 wherein said fields,
include at least one of workflow name, customer, performer,
conditions of satisfaction, costs and values, cycle times,
application data. forms and type of workflow.

30. The system defined by claim 1 further comprising
scripting means for enabling a user of the system to specify
workflow scripts associated with at least one of an act and
a state in a workflow and for producing system generated
scripts which upon execution implement the links between
the workflows of the predetermined subset of the business
process.

31. The system defined by claim 24 wherein each of said
workflow scripts upon execution causes a workflow server
to take a predetermined action.

32. A method for building business process applications
utilizing a computer which executes a program, said method
comprising the steps of:

a) creating a set of business process definitions for storage
in a database and a set of business process applications
for execution by a processor, said business process
definitions and said business process applications for
use with a business process and its associated
workflows,

b) generating:

i) a component representation of at least a predeter-
mined subset of said business process in terms of its
workflows, and

ii) at least a predetermined subset of links between said
workflows.

33. The method defined by claim 32 further comprising
the step of performing consistency checking to assist in the
creation of proper business process maps.

34. The system defined by claim 32 further comprising the
step of performing a consistency check of said component
representation of said predetermined subset of said business
process to ensure that proper business process definitions are
created.

35. The method defined by claim 32 further comprising
the step of performing a consistency check of said compo-
nent representation of said predetermined subset of said
business process to ensure that proper business process
applications are created.

36. The method defined by claim 32 wherein each busi-
ness process application is a workflow enabled application
including forms and views.

37. The method defined by claim 32 further comprising
the step of automating the generation of workflow scripts
used by said business process applications.

* % ® ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,734,837

DATED : March 31, 1998
INVENTOR(S) : Flores et al.

it is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

In column 71, at line 55, please delete "fries” and insert --files.--.

Signed and Sealed this
Sixth Day of July, 1999

Q. TODD DICKINSON

Atresting Qfﬁ(‘(’r Acting Commissioner of Patents und Trademarks

