
United States Patent [19]

Flores et al.

[54] METHOD AND APPARATUS FOR BUILDING
BUSINESS PROCESS APPLICATIONS IN
TERMS OF ITS WORKFLOWS

[75] Inventors: Pablo A. Flores, Alameda; Rodrigo F.
Flores. Berkeley, both of Calif.; Raul
Medina-Mora Icaza, Mexico City.
Mexico; Jaime Garza Vasquez,
Alameda, Calif.; John A. McAfee.
Kensington. Calif.; Manoj Kumar;
Manuel Jasso Nuiiez, both of Alameda,
Calif.; Terry Allen Winograd,
Stanford, Calif.; Harry K. T. Wong,
Danville, Calif.; Roy L Gift, San
Anselmo, Calif.

[73] Assignee: Action Technologies, Inc .. Alameda,
Calif.

[*] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5,630,069.

[21] Appl. No.: 182,744

[22] Filed: Jan. 14, 1994

[51] Int. Cl.6
.. G06F 19/00

[52] U.S. Cl 395/207; 395/208; 395/209;
395/211

[58] Field of Search 364/401, 408;

[56]

395/207, 208. 209. 211

References Cited

U.S. PATENT DOCUMENTS

3,736,409 5/1973 Boyan .
5,182,705 l/1993 Barret al 364/401

IIIII 111111111111111111111011111111111111111111111
US005734837 A

[11] Patent Number:

[45] Date of Patent:

5,734,837
*Mar. 31, 1998

5,216,592
5,233,513
5,249,300
5,301,320

6/1993 Mann et al 364/401
8/1993 Doyle 364/401
9/1993 Bachman et al ..
4/1994 McAtee et al ..

OTHER PUBLICATIONS

Scherr, A.L.; "A New Approach to Business Processes";
ffiM Systems Journal; vol. 32. No. 1; 1993.

Primary Examiner-Gail 0. Hayes
Assistant Examiner-Barton L. Bainbridge
Attome)\ Agent, or Firm-Blakely Sokoloff Taylor &
Zafman

[57] ABSTRACT

The invention is a method and system which provides
consultants, business process analysts. and application
developers with a unified tool with which to conduct busi­
ness process analysis. design. documentation and to generate
business process definitions and work:Oow-enabled applica­
tions. The invention may be implemented using a software
system which has two functional sets. One is a set of
graphical tools that can be used by a developer or business
analyst to map out business processes. The second is a set of
tools that can be used to document and specify in detail the
attributes of each work:Oow definition, including roles. cycle
time, conditions. of satisfaction. cost and value. associated
text. forms. application data as well as detail the attributes of
links between work:Oows required to complete a business
process map. and to generate a business process definition
and a work:Oow-enabled application. In this manner, the
invention provides the capability of performing application
generation and generation of business process definitions in
a definitions database. The invention also includes a work­
flow language scripting capability.

37 Claims, 14 Drawing Sheets

S1 PERFORMER

U.S. Patent Mar. 31, 1998 Sheet 1 of 14 5,734,837

PROPOSAL PHASE---------AGREEMENT PHASE

CONDITIONS OF

SATISFACTION

SATISFACTION PHASE--------PERFORMANCE PHASE

FIG. 1a

U.S. Patent Mar. 31, 1998 Sheet 2 of 14 5,734,837

CUSTOMER

REQUEST

CUSTOMER
DECLARE SATISFACTION

CONDITIONS OF

SATISFACTION

FIG. 1b

PERFORMER

AGREE

PERFORMER

DECLARE COMPLETION

U.S. Patent Mar. 31, 1998 Sheet 3 of 14 5,734,837

I,ERFORMER

OFFER

CUSTOMER

DECLARE SATISFACTION

CONDITIONS OF

SATISFACTION

FIG. 1c

CUSTOMER

ACCEPT

PERFORMER

DECLARE COMPLETION

U.S. Patent

CUSTOMER

Mar. 31, 1998 Sheet 4 of 14

CONDITIONS OF

SATISFACTION

5,734,837

PERFORMER

~-------------------OBSERVER:--------------------~

FIG. 1d

U.S. Patent Mar. 31, 1998 Sheet 5 of 14 5,734,837

PROPOSAL PHASE---cCYCLE TIME•--AGREEMENT PHASE
D:H:M

D:H:M

D:H:M

CONDITIONS OF

SA nSF ACTION

D:H:M

D:H:M

SATISFACTION PHASE--------PERFORMANCE PHASE

FIG. 1e

U.S. Patent Mar. 31, 1998 Sheet 6 of 14 5,734,837

PROPOSAL PHASE---COST/PRICE.--AGREEMENT PHASE

COST/PRICE COST/PRICE

COST/PRICE

CONDITIONS OF

SATISFACTION

COST/PRICE

SATISFACTION PHASE--------PERFORMANCE PHASE

FIG. 1f

THESE UN<S INDICATE -A\
THATONEOFTWO ~17

CONDITIONAL WORKFLOWS
IS INJTlATED

FIG. 2a

IS LINK INDICATES
TiiAT A SERIAL

WORKFLOW
IS INITIATED

51 PERFORMER ---

P1 PERFORMER

0 •
00
•

~

i

~ :;
w r
I-'

~
QC

ga
a
-..I
0
~

I-'
~

Ol ...
-...l
~ .a;. ...
QC
~
-...l

U.S. Patent Mar. 31, 1998 Sheet 8 of 14 5,734,837

0:0:0

PRIMARY WORKFLOW

Fig. 2b

WORKFLOW SERVER
33a

33b
TRANSACTION FOLLOW-UP) SCHEDULE

MANAGER MANAGER MANAGER

WORKFLOW WORKFLOW INST ANTIATOR
WORKFLOW

PROCESSOR UPDATER LANGUAGE
INTERPRETER

35 37" 39' '41_~

WORKFLOW AGENT STF
EVENT MANAGER ROUTER/

43
HANDLER 4t ENQUEUER

~'47

1....._ 53, ! 55'" 5\ 59'" I 6_ !,
I;.. ~ -..,'"-

DEFINITIONS TRANSACTIONS NAMES/ SCHEDULE ADMINISTRATION/ STFOUEUE
ROUTINGS CONAGURATlON

~
WORKFLOW WORKFLOW NAMES AND SCHEDULE SERVER REPORTER

TRANSACTIONS DEFINITIONS ROUTINGS API ADMINISTRATION API
API API API API

I
STF) REPORTER

I PROCESSOR
6\ 71

(WORKFLCM r FORMS AND ENA8LEO APPLICATION J--sg APPliCATION VIEWS API ----1
BUILDER)4---1

ANALYST

/-~- -- "- ~ .J

64

WORKFLOW
""' r+--1 SERVER

MANAGER)

.....

~ •
00.
•
~ = ;-
a

3:
~
w
r
"""" ~
QO

ga
a
loC

~
"""" .&::o.

Ul ._.
-...1
~
~ ._.
QC
w
-...1

CONTROIJ.ER

MENU'Toot.BAR
INTERPRETER

81

MOUSEJI<EYBOAFI)
INTERPRETER

/
83

TOOL
SELECTOR

85

87

G lr~~~r:~
OOl [~~~~]

I ~~~tm~J
7 94 ~

FIG. 4

VIEW

PROPERTIES
DIALOG

DISPLAY
MOOULE

I~S:~~;J
I LOOJ II -ut« ---1
Jo~o II TEXT I

EXPORT
MODULE

PRINTER
MODULE

107

MODEL

WCRFlCJII
lUES

I WCRFUJIIJ I lJI(J'
I a»a1DCAL II 1m I

IMPFI.ES

101

0
• 00.
•
~ = ;-
a.

~
~
!.M
~

""
~

~

ga
l
~ =
~
~
ol::o.

OJ
.....:1
~
~
QIO
~
.....:1

U.S. Patent Mar. 31, 1998 Sheet 11 of 14 5,734,837

2

Fig. 5

System
Scripts

121

State
Transitions

145

Unk
Errors

117

31
__....{

II l
r_......_ 1

118111

J I I
139

151 I

Definitions - - -

API

Display
To User

----L...._

141

16

Fig. 6

~ • 00
•

;p
t""'t"
~ = t""'t"

:::
~
~

~

"""" ~
QC

g:
a
"""" N

s,
"""" ol:o.

Ut
~

~

~
~

~
~
~

U.S. Patent

ActWfModel

178
WfBusProcess

Has

Mar. 31, 1998

173

STFTable

175

177

Default
Identity
Table

180

Sheet 13 of 14 5,734,837

183

Associated With

Performs as

Points to

179

Points to

Role to ID

181

Fig. 7

178

Has I

Has Reauest Table

Has Offer Table

Has Offer Set

Has Reauest Set

Basic
Act/State

Table

Application
Data Table

I /
203

Has
I (Field

Attribute
Table

Has

Has

Has
I Workflow

Cycle Times

Follow Up

17 l
Information

Contains

197-

Basic
Act/State

'"
Of O~

Application I Data

Points Tol \
205

F.eld Attribute

Scripts 1

~221
231

}~223 Fig. 8

d •
00
•
~ = ~
~ a

s::
~
~
1-'
"'
1-'
\C
\C
QO

00
=-~
~
1-'
~

~
1-'
~

til
....;)
~
~
QO
~
....;)

5,734,837
1

METHOD AND APPARATUS FOR BUILDING
BUSINESS PROCESS APPLICATIONS IN

TERMS OF ITS WORKFWWS

2
the customer, the performer, the conditions of satisfaction,
the cycle time and cost/value.

Further, a business process map displays the relationships
among workflows. called links. For example, in a loan

BRIEF SUMMARY OF THE INVENTION 5 approval business process, the workflow in which the loan
is approved is linked to the workflow in which the bank
issues a check. If the loan is approved, that triggers the
initiation of the ''write check'' workflow. If the loan is not
approved, the secondary workflow ''write check" is not

The invention is a method and system which provides
consultants, business process analysts, and application
developers with a unified tool with which to conduct busi­
ness process analysis, design, documentation and to generate
business process definitions and workflow-enabled applica­
tions. The invention may be implemented using a software
system which has two functional sets. One is a set of
graphical tools that can be used by a developer or business
analyst to map out business processes. The second is a set of
tools that can be used to document and specify in detail the 15

attributes of each workflow definition, including roles, cycle
time, cost and value, conditions of satisfaction. associated
text, forms, application data as well as detail the attributes of
links between workflows required to complete a business
process map, and to generate a business process definition 20

and a workflow-enabled application.

10 initiated.

A fundamental concept of workflow analysis is that any
business process can be interpreted as a sequence of basic
transactions called workflows. Every workflow has a 25
customer, a performer. and conditions of satisfaction. The
customer and performer are roles that participants can take
in workflows. In addition, each workflow can have observ-
ers.

In a workflow, the customer is the person for the sake of 3D

whom the work is done, either because they made a request
or accepted an offer. It is customers who are responsible for
evaluating performed work and determining whether this
work meets their conditions of satisfaction.

The performer is the person who is responsible for 35

completing the work and for declaring to the customer when
the work is done.

Requests and Offers are the two basic types of workflows.

Workflow maps highlight the following features of busi­
ness processes:

the conditions of satisfaction of both internal and external
customers;

the roles of process participants;
which workflows are primary and which workflows are

secondary to the business process;
what work is performed in serial; what work is performed

in parallel;
cycle times for the process, each workflow in the process

and the phases of each workflow;
value. cost, application data with attributes, and forms

associated with each workflow phase.
Additionally, workflow maps enable analysts to identify

opportunities for improvement because workflow maps:
clarify business processes;
identify where roles are unclear or missing;
clarify customer conditions of satisfaction;
identify where customer expectations are unclear or do

not match work performed;
indicate where work is redundant or is performed serially

when the work could be performed in parallel.
In U.S. application Ser. No. 600.144 filed Oct. 17, 1990,

now U.S. Pat. No. 5,216.603 and U.S. Ser. No. 07/368,179
filed Jun. 19, 1989, now U.S. Pat. No. 5,208,748, both
owned by Action Technologies, Inc.. the assignee of the
present application, methods and systems for managing The conditions of satisfaction specify the work to be per­

formed by the performer. In a request. the customer specifies
the conditions of satisfaction, and in an offer the performer
specifies them. (fhen. of course. the two can enter into
negotiation about the work to be done.)

For example, given the sentence: "John asked Frank to
prepare the report and deliver it by noon on Friday." John is
the customer for this workflow. Frank is the performer, and
the conditions of satisfaction are "prepare the report and
deliver it by noon on Friday." Further. because John asked
for the report rather than Frank offering it. this workflow is

40 workfiows. called conversations in the referenced
applications. are described. However, the teachings in the
cited references are limited to single workflows with no
capability for mapping business processes made up of a
number of workflows linked together. In U.S. application

45 Ser. No. 081005,236 filed Jan. 15, 1993, a method and
system are disclosed to:

of the type Request. so
Given the sentence: "John proposed to prepare the report

and deliver it by noon on Friday for Frank," John is the
performer for this workflow, Frank is the customer, and the
conditions of satisfaction are still "prepare the report and

55
deliver it by noon on Friday." Further because John pro­
posed the report rather than Frank asking for it. this work­
flow is of the type Offer.

Observers of workflows take no direct action; they usually
observe for management or training purposes.

An important part of a workflow analyst's work is the
development of business process maps. with which the
analyst and his/her client can readily see and interpret the
structure of a business process, and identify quickly areas for
clarification or improvement.

Business process maps display the workflows as loops,
and display the relevant information about each workflow-

60

65

support the work of analyzing and mapping existing
business processes and designing new business pro­
cesses;

shorten the cycle time of producing workflow enabled
applications which allow users and managers to par­
ticipate in and manage business processes;

reduce existing coordination problems between business
process analysts and programmers;

develop maps of a business process;
document a business process;
test maps of a business process for completeness and

consistency.
However, the teachings in the pending application do not

include the capability to perform application generation. or
generate business process definitions in a definitions
database. have no workflow language scripting capability
and have no business process definition capability.

The invention disclosed in this previously filed
application, which is referred to as a workflow analyst, is a
component of a complete workflow system. The previously

5,734,837
3

disclosed invention is the component of the system that
allows creation of workflow maps of business processes.
These maps are an input to another component of a complete
workflow system. which component is referred to as a
workflow application builder. The workflow application
builder is the subject of the present application.

BRJEF DESCRIPTION OF THE DRAWINGS

4
performer until an agreement is reached. The third phase is
called the performance phase during which the performer
undertakes to meet the agreed to or accepted conditions of
satisfaction. When the performer believes that the conditions

5 of satisfaction have been met, the performer declares
completion. The last phase is the acceptance phase during
which the customer determines whether or not the condi­
tions of satisfaction have been met by the performer. and if

F1G. 1a is pictorial representation showing the phases of
10

a single workflow.

so. declares satisfaction.
F1G. 2a is a business process map having a primary

workflow 11. conditional worktlows 13 and 15, a conditional
link 17. parallel workflows 19 and 21. serial workflows 23
and 25. It should be noted that while a business process such
as the one shown in F1G. 2a can be graphically represented

F1G. lb is pictorial representation of a single workflow
showing the normal flow of a request type workflow.

F1G. 1c is pictorial representation of a single workflow
showing the normal flow of a otTer type workflow.

F1G. 1d is pictorial representation of a single workflow
showing the roles of participants of a workflow.

F1G. 1e is pictorial representation of a single workflow
showing workflow cycle times.

F1G. 1/ is pictorial representation of a single workflow
showing workflow cosVvalue.

F1G. 2a is pictorial representation of a business process,
i.e .. a set of linked workflows.

15 by any one of a number of prior art drawing programs
capable of drawing shapes. curved lines, straight lines and
arrowheads, such prior art programs have no ability to
associate with each workflow various parameters such as
roles. cycle time, cost/value. conditions of satisfaction or

20 associate semantics to the links that imply automated action
or provide the framework for application building. all of
which are necessary to create a useful business process
representation.

F1G. 2b is a pictorial representation of a primary work- 25

flow which is a request type workflow with automatic
transition turned on for performance.

A workflow can be linked to (and initiate) multiple
workflows from one of its phases. If all the workflows start
at the same moment, the multiple workflows are said to have
started in parallel. Multiple workflows can also be started
serially. There are two mechanisms to indicate the serial­
ization of workflows. As illustrated in F1G. 2a. workflows

F1G. 3 is a block overview diagram of a complete
workflow system showing how the present invention inter­
faces with the rest of the workflow system.

F1G. 4 is a block diagram showing the various functional
components of the invented system when implemented as a
software system.

30 serial 1 and serial2 are sequential workflows. The primary
workflow at the beginning of the agreement phase, has a link
to start workflow serial 1. Workflow serial 2 is linked from
the satisfaction phase of workflow serial 1. Upon satisfac-

F1G. 5 is an illustration of a conditional link between
35

workflows.

tion of workflow serial 2, there is a link back to the primary
workflow.

In workflow analysis practice, it is often necessary and
useful to construct business process maps that do not have
the four complete phases to illustrate breakdowns in the

F1G. 6 is a block diagram showing the flow of an
application builder implemented according to the teachings
of the present invention. process.

F1G. 7 is a block diagram showing the relationships of 40

data used utilized by the present invention when viewed at
the organization level.

Components of a Workflow System
Although the present invention is one element of a

complete workflow system. and details of other elements of
a workflow system are not needed to obtain an understand­
ing of the invention, a suitable workflow system in which the

F1G. 8 is a block diagram showing the relationships of
data used utilized by the present invention when viewed at
the business process level.

DErAILED DESCRIPTION OF THE
INVENTION

OVFRVlEW
The present invention is a method and system which is

used to: build business process maps (covered in U.S.
application Ser. No. 081005.236 filed Jan. 15, 1993), now
U.S. Pat. No. 5.630.069 verify consistency of business
process maps. generate business process definitions and
generate workflow-enabled applications.

A single workflow is shown in F1GS. la-1/ as an elliptical
loop with arrows shown in a clockwise direction wherein
each quadrant of the ellipse signifies different phases of the
workflow. The first phase is called the preparation phase
during which a request is made of the prospective performer
by a customer (F1G. 1b) or an otTer to a customer is made by
a prospective performer (F1G. lc). The second phase is
called the negotiation phase during which the otTer is
accepted by the customer or the request is agreed to by the
performer and conditions of satisfaction are identified. Of
course, during the negotiation phase, the original conditions
of satisfaction can be negotiated by the customer and

45 present invention may be utilized incorporates the following
components which are shown in F1G. 3.
Worldlow Server

The workflow server is the heart of a worldlow system.
The worldlow system concentrates worldlow operations in

50 the worktlow server rather than in the end user applications.
By using this client/server design, applications do not need
to have the intelligence about workflows as part of their
design. Application developers can concentrate on their
particular application development not having to worry

55 about workflow logic and overhead because such function­
ality is handled at the server. Referring to F1G. 3. the
workflow server 31 includes a transaction manager 33a.
follow-up manager 33b, schedule manager 33c, worldlow
processor 35, worldlow updater 37. instantiator 39 worldlow

60 language interpreter 41, worldlow event handler 43, agent
manager 45 and STF router/enqueuer 47. The workflow
server utilizes a definitions database 51, transactions data­
base 53. names/routings database 55, schedule database 57,
administration/configuration database 59 and STF queue 61.

65 The transaction manager identifies changes that have hap­
pened in the worldlow transaction database and invokes the
proper server modules to provide the services that have been

5,734,837
5

requested or that those changes represent. The workflow
processor embodies the logic of workflows with phases,
actions, roles and dates of completion and reply. The work­
flow updater maintains and updates the workflow transaction
database. It uses the workflow processor to determine the
status of workflows and the set of possible actions for each
one of the roles. The workflow language interpreter inter­
prets workflow language scripts. These scripts contain work­
flow commands, such as the initiation or taking an act in a
workflow. These scripts are part of the business process
definition. These scripts are automatically generated by the
application builder. The agent manager executes workflow
commands. "Agents" take action on behalf of some role in
a workflow. The commands that the "agents" execute are
specified through the workflow language.

The definitions database contains records that define each
type of business process and workflow in the system. These
records are used by the workflow updater and workflow
processor to determine new workflow states and available
actions.

The transactions database contains the history of com­
pleted workflows and workflows-in-progress. These records
are used by the workflow updater and workflow processor to
determine new workflow states and available actions.

The names/routing database contains the record of roles
and identities of the organization where the workflow sys­
tem has been installed.

U.S. application Ser. No. 08/014,796 filed Feb. 8, 1993
contains a complete description of a suitable workflow
server with a detailed description of the above-noted ele­
ments which may be utilized with the present invention.

In addition to the workflow server, a complete workflow
system of the type in which the present invention may be
utilized includes a set of application program interfaces
(APis) 63, forms and views API 64, and workflow server
manager 72, standard transaction format (STF) processors
65, application builder 67, analyst 69 and reporter 71
components as follows.
Workflow APis

The workflow APis 63 provide a programming interface
to access the services of the workflow server. Workflow
enabled applications, STF processors and the application
builder are all developed using these APis. APis used by a
workflow system are as follows: forms and views APL
transactions API, definitions APL names and routings API,
schedule APL server administration APL and reporter APL
The APis other than the forms and views API 64 and the
definitions API as needed to implement the Application
Builder are described in co-pending application Ser. No.
08/014,796 filed Feb. 8, 1993, although a description of the
definitions API as needed to implement the invention which
is described in the co-pending application is set forth therein.
Forms and Views API

The forms and views API responds to application builder
API calls to communicate to a forms generation package, to
generate the forms and views needed to implement the
application which has been defined through the application
builder.
Definitions API

The definitions API from the workflow library and the
application builder are used to generate the business process
and workflow definition structures stored in the definitions
database.
Workflow-Enabled Application

6
STF Processors

A standard transaction format (STF) processor 65 is an
application whose job is to interface external systems to the
workflow system. There is one STF processor for each

5 different type of system that interfaces to the workflow
system. STF processors can be of three types: message,
database, and IPC. The STF processors translate between an
application's data format and the workflow APis. It is the job
of the particular STF processor developer to design the

10
mapping of the external system and the workflow APis.
Workflow Application Builder

The workflow application builder 67, which is the inven­
tion described herein, is a Graphical User Interface (GUI)
application that allows a business process designer to
specify the business process design with its network of

15 workflows. The application builder, in turn, creates or edits
the workflow definitions databases that define the business
process and that will be used by the workflow server. The
workflow application builder also generates forms and views
for client workflow enabled applications.

20 Workflow Analyst
The workflow analyst 69 is a GUI application that allows

a business process analyst to specify the map of business
processes with its network of workflows. Its output is
readable by the application builder which will update the

25 definitions database of the server.
Workflow Reporter

The workflow reporter 71 is a GUI application that
provides an interface to the transaction databases of the
system. It allows the observation of the status of current

30
transactions as well as the history and performance of past
transactions.
Definitions

In describing the invention, the following terms with their
indicated definitions are used:

Act-Basic linguistic occurrence by which people inter-
35 vene in moving a workflow towards completion.

Agreement-The outcome of the negotiation phase, in
which two parties come to a common agreement of the
conditions of satisfaction.

Business Process-A network of workflows linked
40 together that represent the recurrent process by which an

organization performs and completes work. delivers prod­
ucts and services and satisfies customers.

Business Process M~This is a graphical representation
of business process, which shows its workflows and their

45 relationship.
Primary workflow-This is the first workflow which is

initiated when a business process is initiated. Its condition of
satisfaction represent the condition of satisfaction of the
business process.

so Conditional link-A link that indicates that only one of
a group of workflows will be triggered based on some
condition.

Conditions of Satisfaction-Conditions declared by or
agreed to by a customer. The fulfillment of which is the

55 purpose of a workflow.
Customer-The role in a workflow who makes a request

or accepts and offer.
Customer Satisfaction-The objective of a workflow, the

accomplishment of which is declared by the customer when
60 the conditions of satisfaction in the workflow have been

fulfilled.

A workflow-enabled application interfaces to the server
via the transactions database of the workflow server or via 65
APis, or via messaging, database, or inter-process commu­
nications (IPCs) or through the use of an STF processor.

Cycle time--A measure of the time from initiation to
successful completion of a worldlow phase, a complete
worldlow or a business process.

Exception flow-The path in the business process work­
flow map which is followed if a customer cancels or a
performer revokes or declines.

5,734,837
7

link-A defined dependency between two workflows and
the mechanism by which dependencies between workflows
is established.

8
generation of workflow acts and to set conditions for execu­
tion of those acts. Scripting is also used to set conditions for
calling other functions or programs or generating E-mail. In

Loops (Workflow)-A workflow is represented graphi­
cally by an elliptical loop with arrows shown in a clockwise 5

direction wherein each quadrant of the ellipse signifies a
different phase of the workflow.

addition. prior to application generation, the invented system
is able to perform consistency checking to ensure the
creation of logical and consistent business process maps.

The invention i) produces standard workflow maps of
business processes that show workflows and the links
defined between workflows or receives such maps and

Normal flow-This is the path followed in a business
process when workflows complete with customer satisfac­
tion.

Observer-Arole in a workflow who cannot perform acts
in the workflow. but is informed of acts in the workflow, and
has access to the information and data associated with the
workflow.

Offer-The act by which the performer can initiate a
workflow. specifying conditions of satisfaction that he is
willing to satisfy for a customer.

Organization roles-Named positions in an organization
who are authorized to make certain requests, agreements.
take certain actions, set certain policies •. and make certain
decisions. The kind of roles will be accountant. office
manager. etc.

Performer-One of the principal roles in a workflow: the
role that commits to complete the conditions of satisfaction.

Phase-A characterization of the status of a workflow
based on the acts that have happened and the acts that are
permitted.

Request-A customer does this act to initiate a workflow
and declare conditions of satisfaction.

Trigger-An action in a workflow which causes an action
in some other workflow.

Triggered-Action in a workflow based on certain
conditions/status in some other workflow.

Workflow-A structured set of acts between customers
and performers organized to satisfy a customer's conditions
of satisfaction.

Workflow Activation-A triggered action that enables the
customer or performer of the workflow to take the initial act
of the workflow.

Workflow Initiation-An act of request or offer that
initiates a workflow.

Workflow Roles-The association of participants in the
workflows that take the acts in workflows; three roles are
distinguished in workflows: customer, performer, and
observer.

Workflow Type-This indicates whether the workflow is
of request or offer type.
OPERATIONAL DESCR1PTION

10 defined links created by the Analyst; and ii) defines triggers
that will cause events to occur. states to change, or acts in
workflows; iii) verifies the consistency of the business
process maps; iv) produces the workflow scripts that corre­
spond to the workflow and links defined in the map; v)

15 generates definitions database; and iv) generates business
process applications through forms, form fields and their
visual representation.

The user of the invented system is known as a business
process analyst or systems analyst or designer or application

20 developer. To use the system, the user first creates a business
process which is defined in terms of a business process map.
A business process map contains customer and performer
names and organizational roles for the primary workflow.
target cycle times for the entire process. version of the

25 process, when and by whom the process may be started, and
so forth. In addition. it contains workflow and link
definitions, roles, permitted acts, default identities. applica­
tion data and forms for each workflow in the process. and
trigger act or state. triggered act or state and condition (if

30 link is conditional) for each link in the process.
Workflows are represented graphically as elliptical loops

with four phases as shown in FIGS. la-lf. Each workflow.
and each phase within the workflow, has a starting point and
an ending point. The primary workflow of the business

35 process is displayed as a large elliptical loop to make it
visually distinct as shown in FIG. 2a.

Workflows can be created without having all links defined
and the user is able to link them afterwards. In addition to
the loop, the workflow attributes workflow name, customer,

40 performer. conditions of satisfaction, cost and price (or
value) for the workflow and each phase and cycle times for
the entire workflow and each phase are displayed.
Furthermore, if a form name attribute is specified then a
form icon and name will also be displayed. The form name

45 attribute is for identifying any forms to be used by the
generated application.

The invention supports two types of workflows:

The invention utilizes a graphical user interface in a
computer system which incorporates a graphical user inter- 50

lace (GUI) such as the Microsoft Windows (Win3.1+)
environment, using MDI and Windows HELP facility. A
display on a video monitor includes a toolbar which is
provided for the actions that need to be immediately acces­
sible. A status bar is used to display information (e.g. the 55

function of the currently selected menu option and the like).
Dialog boxes are used where appropriate.

Request; and
Offer.
The invention supports three different roles for each

workflow:
Customer: The organizational role or name of the person

that can declare satisfaction for the completion of the
workflow.

Performer: The organizational role or name of the person
who fulfills the conditions of satisfaction of the workflow.

Observer: The organizational role or name of persons who
neither declare satisfaction nor fulfill the conditions of
satisfaction but who monitor the workflow for management,
training, or to fulfill other organizational concerns.

Typically, a workflow map, as it appears on a monitor in
a size suitable for comfortable viewing, is larger than the
screen. For this reason, horizontal and vertical scroll bars 60
allow the user to scroll through the entire map.

The status bar is used for displaying information only.
The user is prompted for confirmation on deletion of

workflows and links. Objects such as workflows. links,
annotated text. etc. may be moved around on the screen by 65
typical clicking and dragging of a mouse as occurs in a Gill
A workflow scripting language is available to automate the

Each workflow has a unique name that identifies it in the
business process.

The conditions of satisfaction of a workflow are the
conditions that will satisfy the customer of a request or offer.

The cycle time of a workflow is the time to achieve
customer satisfaction as well as to reach agreement and
completion which are specified for each workflow. The cycle

5,734,837
9

time for each phase is the time it is expected to complete the
phase. Cycle time includes days, hours, and minutes for all
cases. In some cases. months and years for the cycle time
may also be specified.

The cost and value of a workflow is the sum of the cost 5
and value which are specified for each phase of the work­
fl.ow.

10
action default value is Initiate or Activate depending on
where the arrow was drawn to (the beginning or end of the
first phase).

There are two kinds of links, those that correspond to the
"normal" fl.ow of the process and those that correspond to
the "exception" flow of the process. The latter are links
triggered by cancel. revoke or decline acts.

Tables Ia and lb establish the relationship between trig­
gering and triggered actions under normal and exception

Each workflow can have associated text. Such text could
be used, for example, to describe the workflow in narrative
form in order to construct the narrative of the process.

A workflow may also have a form name which is the name
of a form that is associated with the workflow. As noted
above, a form refers to the form to be used by the workflow­
enabled application generated by the application builder
which forms the present invention.

10 cases.

Outgoing Links

15 Out from Preparation
state

When a workflow is created on a business process map,
the user is given an accessible way to enter the workflow
attributes, namely, workflow name, customer, performer,
conditions of satisfaction, costs and prices (or values), cycle
times, application data. its attributes. forms and type of
workflow. 20

Default trigger act
Other valid trigger acts
Valid trigger state
Out from Negotiation
state In many cases of a business process, a workflow repre­

sents a collection of workflows rather than a single work­
fl.ow. This collection of workflows have the same conditions
of satisfaction (and hence can be observed as a single
workflow). These workflows are multiple in that they either
have multiple performers in the request type case, or mul­
tiple customers in the offer type case. These workflows are
repeating in that there will be a set of similar workflows
managed by the workflow system.

A graphical representation to indicate multiple repeating
(group) workflows is accomplished through a shadow or
other such graphical representation under the current arrow
of the third quadrant

To input all of the workflow attributes, the user selects the
workflow, double-clicks it and enters all the information
through a standard dialog box.

A link specifies the relationship between two workflows,
i.e. where an action in one workflow causes an action in
another workflow. When such a relationship is established.
it is said that the second workflow is linked to the first.

A link contains definitions of trigger conditions and the
actions that result from those trigger conditions. The trigger
conditions are either:

Workflow-Act based; or
Workflow-State based.
Triggered actions to be taken are:
Workflow initiation;
Workflow activation;
Workflow acts;
Workflow states; or
Prompt for conditions for conditional link.
Unks are represented graphically as lines with arrow­

heads that connect two workflows. The arrowheads indicate
that a triggered action happens in the workflow pointed to by
the arrowhead due to the trigger action in the workflow at the
tail of the line. The "tail" of each line anchors to the trigger
action, and can be placed in any part of the loop phase,
indicating sequencing of triggering action. The "head" of the
line indicates the triggered action.

Conditional links are indicated with a diamond icon.
To establish a link, the user selects one workflow and

draws a link to a second workflow.
When a new link is drawn, the default values are as

follows:
The trigger action is either of type Act. The user interface

allows specifying the trigger action type. The triggered

25

30

35

40

45

50

55

60

65

Default trigger act
Other valid trigger acts

Valid trigger state

Out from Performance
state

Default trigger act
Other valid trigger acts

Valid trigger state
Out from Acceptance
state

Default trigger act
Other valid trigger acts
Valid trigger state
Out from Satisfied state

Default trigger act
Other valid trigger acts
Valid trigger state

Incoming Links

Into Preparation state

Default trigger act
Other valid trigger acts
Valid trigger state
Into Negotiation state

Default trigger act
Other valid trigger acts

Valid trigger state

Into Perfurmance state

Default trigger act

TABLE Ia

Request

S:Activate
oone
Preparation

C:Request, C:Jnitiate
C:Decline Counter-
Offer, C :Cotmter,
C:Cancel,
P:CoWiteroffer
Negotiation,
Negotiation
(Countered)

P:Agree
C:Decline Th Accept,
C:Agree To
Co\Ulteroft'er,
C:Cancel,
P:Decline
Performance

P:Report Completion
C:Cancel, P:Revoke
Acceptance

C:Declare Satisfaction
C:Cancel
Satisfied, Canceled,
Revoked, Declined

TABLElb

Request

S:Activate
oone
Preparation

C:Jnitiate (C:Request)
C:Decline
Co\Ulteroffer,
C:Counter, C:Caocel,
P:Co\Ulteroffer
Negotiation,
Negotiation
(Countered)

P:Agree

Offer

S:Activate
oone
Preparation

P:Offer, P:Initiate
P:Cotmteroffer,
P:Decline Counter,
C:Cancel
C:Counter
Negotiation,
Negotiation
(Countered)

C:Agree Th Offer
C:Decline To Accept,
P:Agree To Counter,
C:Decline offer,
C:Cancel

Performance

P:Report Completion
C:Cancel, P:Revoke
Acceptance

C:Declare Satisfaction
C:Cancel
Satisfied, Canceled,
Revoked

Offer

S:Activate
none
Preparation

P:Initiate (P:Oft'er)
P:CoWiteroffer,
P:Decline Counter,
C:Cancel, C:Counter

Negotiation
Negotiation
(Countered)

C:Agree Th Offer

5,734,837

Incoming Links

Other valid trigger acts

Valid trigger state
Into Acceplallce state

Default trigger act
Other valid trigger acts
Valid trigger state
Into Satisfied state

Default trigger act
Order valid trigger acts
Valid trigger state

11

TABLE lb-continued

Request

C:Agree lb
Cowteroffer,
C:Decline
lb Accept, C:Cancel,
P:Decline
Perfunnarwe

P:Report Completion
C:Cancel, P:Revoke
Acceptance

Offer

P:Agree To Counter,
C:Decline To Accept,
C:Decline Offer,
C:Cancel
Perfonnanoe

P:Report Completion
C:Cancel, P:Revoke
Acceptance

C:Declare Satisfaction C:Declare Satisfaction
C:Cancel C:Cancel
Satisfied, Canceled, Satisfied, Canceled,
Revoked, Declined Revoked

The Acts are Activate, Initiate, Request. Agree. Offer,
Agree to Offer. Counter-Offer, Counter, Accept Counter­
Offer. Decline Counter-Offer, Report Completion, Declare
Satisfaction, Decline Report, Cancel, Revoke, Decline.

The user is able to draw a link between two workflow
loops on a map by selecting the ''from quadrant" and the "to
quadrant" in each of the loops. The initial portion of the link
is drawn as a straight line. The user may then create a
drawing handle on the link line and "pull" the line into a
curve. The user may create multiple points on a line to aid
in drawing an "S" or other multi-shaped curve. Such draw­
ing handles and multiple points may be created by mouse
clicks at the desired points in the link.

A user may change the destination of a link by selecting
and dragging with the mouse.

5

10

15

12
Save a business process map to a file

Provide summary information about a business process
map

Print the map and reports of the business process
Retrieve a previous version of a business process map that

has been stored on a server for review or further editing
Export map data to Windows metafile format

Export value data

Transfer business process and workflow information to
the Definitions database

Create forms and views.
Edit Tools

The invention provides editing functions that enable the
user to:

Cut. copy, delete and paste workflows, links, and anno­
tated text.-Using edit operations in conjunction with the

20 clipboard, it is possible to cut or copy objects (expanded and
collapsed workflows, links, text) and paste them in the same
or different business process. It is also possible to paste these
objects in drawing packages.

Editing Attributes-Edit any element of the business
25 process map. such as workflow attributes, links, business

process definitions, and annotated text.
View Tools

The invention provides functions for different kinds of
30 views of business processes. It provides functions that

enable the user to:

Zoom in and zoom out for magnifying and shrinking the
map size

When a link between two workflows is conditional, a 35

conditional icon is drawn between the workflows. To link
more workflows conditionally, the user links a new target
workflow to the conditional icon.

Expand and Collapse Workfiows
Obtain normal flow of workfiows and links

Obtain exception fiow of workfiows and links: i.e., links
for cases where workflows are canceled, declined or
revoked. BASIC TOOLS

Mouse Tools

The invention utilizes the following mouse tools: Single
Click-A single click selects a workflow or a link.

The invention provides a set of basic tools for drawing. 40

filing. editing. printing, viewing and manipulating business
processes, workflows, links, application data with attributes,
forms, cycle times, coast and value, roles and identities. The
most frequently used of these tools are available through Double Click-A double click on a workflow loop opens

45 the workflow definition dialog. A double click on a link
opens the link definition.

icons.
Workflow Mapping Tools

To facilitate the definition of business processes, the
invention provides tools for drawing maps of workflows and
the links between them. The lines are Bezier-like and are for
drawing a line from the termination of one phase in a
workflow to another phase in another workflow. The line
contains handles which allow the line to curve.
Map Drawing Tools

The invention supports the following map drawing tools:
Pointer
Draw Workflow
Draw Normal Flow Link
Draw Conditional link
Draw Exception Flow Link
Annotate Text.

File and Print Tools
The invention provides file and print-related tools that

enable the user to:
Create a new business process map
Open an existing business process map for read. display

and edit

Multiple Select-Holding the shift key while single click­
ing on multiple workfiows or links causes all highlighted

50
workflows or links to be selected. Alternatively. the toolbar
contains a "Select" tool.

Click and Drag Workflow to New Location-Moves the
workflow loop to a new location on the screen. Automati­
cally adjusts the corresponding links in the map drawing.

55 Testing Tools

The invention provides a tool for testing and debugging a
business process map as follows:

Test for completeness. Causes the software to find all the

60
workflows that do not have complete information.
Specifically. it finds missing roles, conditions of satisfaction,
cycle times and workflow names.
Data Tools

The invention provides functions implemented using the
65 following commands for defining roles and identities. speci­

fying business process and workflow attributes, creating
workflow templates. and checking map completeness.

5,734,837

Connnaocl

Organizational Roles

Identities

13

Define roles used to specify workflow
participants.
Specify personal infonnation about individ­
uals in the organization.

Business Process Definition Enter basic infbrmation about the business

Default Role Mapping

Policy Document

Business Process Global
Data
Workflow Definition

Workflow Cycle Tlllles

Follow Up and Reminders

Workflow Application Data

Workflow Scripting

Workflow Fonn Names

Form Fields Specification

Phase Styles

Workflow Template

Check Consistency

View Last Errors

process.
Assign specific default identities to organiza­
tional roles.
Enter text of policy document pertinent to
the business process.
Define field names, types aocl attributes of
global data.
Specify general infonnation about a work­
flow such as its name, short name, customer
aocl perfurmer, template and conditions of
satisfaction.
Enter maximwn time values fbr each of the
phases of the workflow.
Enter time values fbr fbllow ups and remind­
ers and specify frequency and number of
times.
Define field names and set attributes of
workflow data.
Enter scripting information for specific acts
and states of workflow. Scripts are used to
automatically generate worldlow acts and to
set conditions fbr the execution of those acts.
Set fbnn names for participants of the
selected workflow.
Set attributes of application data fields fbr
forms used by worldlow participants.
Define the line type and color of the arcs
representing each phase of the selected
workflow.
Create or modify templates used to limit
acts available in a workflow and to enter
substitute terminology for acts and states.
Check a business process map fbr the
valiclliy and consistency of link paths aocl
other workflow elements.
Reopen the most recent consistency checking
errors list.

The following is a description of the basic operations
performed by the software used to implement the invention:
Start-up

The program can be started by any suitable mechanism
depending on the platform.
Annotated text

14
program. A designer using the Application Builder, can
specify scripts associated with acts or states in a workflow.
This allows a great deal of flexibility in the design of the
business process. A script is a series of workflow language

5 statements. The user interface for user defined scripting is
described below.

The Application Builder also produces "system generated
scripts" that are executed to implement the connection
between workflows in a business process. For every link and

10 conditional link in the map there is a system script generated
automatically. Automatic transitions (as defined with the
command Phase Styles from the Data menu) also create
system generated scripts.

15

20

Execution of Scripts
Scripts are used to move a business process forward

towards meeting the conditions of satisfaction. Scripts are
always executed within one of three contexts. Scripts are
executed when:

An action is taken by an individual
An action is taken by the system
A workflow enters a specified state
An action taken by an individual could be a customer's

canceling a request. For instance a script could be written to
generate a sendmail notice to warn the sales person. The

25 script could specify the conditions for sending the mail, the

30

35

recipient of the mail, the recipient's address and the text of
the mail.

An action taken by the system could be a follow-up.
reminder, or other automated script.

A workflow entering a specified state could be a workflow
which enters the Acceptance state.

The following conventions are used in this description:
<brackets> Indicate place holders for information sup­

plied by the designer.
[square brackets] Indicate optional items.
(choicelchoice) Parenthesis and a vertical bar indicate a

mandatory choice between two or more items. One of
the items must be chosen unless all of the items are
enclosed in square brackets[].

40 Data Types and Variables
The following data types are supported in the language:
Numeric
Character

Free text used to describe the business process. This text 45

is not associated with any specific element of a business
map.

Date and Time
Case sensitivity and character set

The workflow language uses the ASCIT character set in a
case insensitive way ('a' is equal to 'A'). Spaces, tab
characters and new lines are ignored.

Associated Text
Free text associated with each workflow. It can be used to

provide a narrative of the workflow in order to construct the
narrative of the business process.

50
A string is a sequence of characters between quotes

("string"). It cannot extend past the end of line marker. If an
end of line character is found inside a string an error
message is generated.

Tool bar
A set of icons in a software package with a GUI, which

allows users to select the most frequently used options
without going through the menus and dialog boxes.
Export to a Windows Metafile

Inside a character string, ASCTI alphanumeric characters

55
can be specified using spaces and characters in the 850
international code page.

The Windows metafile is a binary format which allows
storing of the business process map as an image. This allows
the map to be incorporated in other presentation tools.
Exit

This is the option to exit the program.
Workflow Language and Scripting

60

The following is a description of the Application Build­
er's workflow (scripting) language. Scripting is used to
automatically generate workflow acts and to set conditions 65

for the execution of those acts. Scripting is also used for
other functions such as sending a message or executing a

The insertion of special characters in the string can be
accomplished by the use of the escape character, similar to
C escape characters.

\t introduces a tab character
\n introduces a new line character
\\introduces a backslash character
\" introduce the quote character
A string can be continued to the next line by using a

back:slash followed by a carriage return. This is useful when
a string is too long to fit into the Workflow Scripting
window.

5,734,837
15

For example:
SendMail(. . . • "Please review the totals\defined below

and let me know if you find\any difference.\n", ...)

16
Special Symbols

The following symbols have special meaning to the
application builder and cannot be used in identifiers:

Strings can also be divided using the character concat-
enation operator. For example: 5 Assignment: '='

Arithmetical operators:'+','-','*','/'

Relational operators: =. <>. >, <. >=, <=
SendMail(... , "Please review the totals"+"defined

below and let me know if you find"+"any
difference.\n", ...)

This combines two strings (listed on two lines) into one
string. 10

Logical operators: AND. OR, NOT (also reserved words)

Workflow Data

Syntax

[<workflow-name>.]
(CUSTOMERIPERFORMERIOBSERVERS) where

Variables Support
Variables can be any of the above data types (Numeric.

Character. Date and Time).
Variables are used in expressions and statements to rep­

resent values. For example, a variable can represent the 15

value in an application field. Scripts can be written to
execute an action based on the value in a field at the moment

the workflow-name is either a string or an identifier.

The workflow data variables supported are:

Customer

Performer

Observers

of a specific act or state in the workflow.
Scope

Variables have a scope. which is either
global-the value is available to any script of all work­

flows
local-the value is available only to the script of the

current workflow
Identifiers

Often. variables include an identifier such as the ones used
in the workflow short name or in application data field
names. An identifier is a single word which can start with an
alphabetic character followed by a sequence of alphanu­
meric or underline characters. No spaces or punctuation
marks are allowed.

For example:
total

tot2
Total_Purchase
The two kinds of variables are workflow data variables

and application data variables.
Reserved Words

20

Workflow data variables are global.

Application data

Application data is data that is specified in data fields in

25
an application. Within a workflow system, application data
variables can be either local or global.

The term "local application data" refers to the names of
fields that can be made available to, and edited by partici­
pants in a specific workflow. (Participants in directly con-

30 nected workflows may also view these fields as "read only.")
The term "global application data" refers to the names of

fields that can be made available to participants in any
workflow in the business process.

Application data variables and their data types are defined
35 using Data menu commands such as Workflow Definition

and Business Process Definition. The Application Builder
uses these definitions to use each identifier as the appropriate
data type.

The following are reserved words and cannot be used as
identifier names. These are used in the Application Builder 40

to identify grammatical constructions.

Syntax
[<Workflow-name>.J<identifier> where the workflow­

name is either a string or an identifier.
IF

ELSEIF
ELSE
END IF

INTI1ATE
ACTIViiTE

ACf
SEND MAIL
CALLPROGRAM
ECHO
ISACfiVE
ISINSTiiTE
ISNOTINSTATE
CUSTOMER
PERFORMER
OBSERVERS
TRUE
FALSE
STR
AND
OR
NOT

45

50

55

60

65

Variables from connected workflow loops can be referred
to with the following syntax:

<Workflow-name>.variable

Search order
When the Application Builder evaluates an application

data variable, it searches for the application data in the
following order:

1. If a workflow name is specified:
a) If the workflow name is a string, it will search in the

specified workflow.
b) If the workflow name is an identifier, it will locate

the workflow by the short workflow name and search
in the specified workflow.

c) If the workflow is not found, it will generate an error
message.

2. If no workflow name is given:
a) It will try to locate the data in the current workflow
b) It will try to locate the data as global application data
c) If the data is not found, it will generate an error

message.
Specifying application data field values:

Expressions can be derived from application data, or can
be constants. Application data field values are specified as
follows:

5,734,837

Priority
"Expense Report" .Budget

exprep.Budget

"Pat Smith"

1234567890

{Jan 5 1993 10:23:00} or
{01051993102300}

17

Where "Priority" is a global data field
Where the data field "Budget" is local to the
workflow "Expense Report" (full worldlow
name)
Where data field "Budgef' is local to a
worldlow for which the short worldlow
name is "exprep"
Where the string expression is specified
between quotations
Where the numeric expressions are specified
without quotation marks
Where date expressions are specified
between brnces in a Month, Day, Year,
Hour, Minute, Seoond fonnat:
MMDDYYYYHHMMSS
Month (2 digits)
Day (2 digit)
Year (4 digit)
Hour (2 digit)
Minute (2 digit)
Seoonds (2 digits)

Expressions and Operators
Relational expressions

Relational expressions are used to compare values and to
guide action of the workflow server; they are used in
conditional links and in If statements.

Syntax
<expression><relational operator><expression>
The relational operators and their applications are:

Operator

= (equal to)
<> (not equal to)
> (greater than)

>= (greater than or equal to)
< less than)

<= (less than or equal to)

Logical Expressions

Application

Character, Num<:ric, Date
Character, Num<:ric, Date
Numeric, Date
Numeric, Date
Numeric, Date
Numeric, Date

18
sions are evaluated first, then ORs are evaluated. Parenthe­
ses are used to force evaluation order.

The operator precedence is outlined from lowest to
highest. along with their associatively (the direction in

5 which expressions are evaluated):

Order Operator Associatively

1 OR left
10 2 AND left

3 NOT right
4 >=,<=,>,<,=,<> left
5 +,- left
6 *,I left
7 unary minus right

15 --

20

Date and Time
The date and time types are defined as sequences of

characters enclosed in braces ({ and }).
Syntax

a) Long Date Format: {month d. year hh:mm:ss}
b) Short Date Format: {mod. yy hh:mm:ss}
c) Compact Date Format: { mm/dd/yy hh:mm:ss}
d) Offset Format: {yy Y mm M dd D hh:mm:ss}

where the absence of any field will assume that the value of
25

that field is zero. The offset format is the same as is used in
the Workflow Cycle Times dialog box.
Statements
Comments

Script statements can include comments or remarks.
30

Comments are preceded by the word "REM" or by an
apostrophe. REM is a command that must be at the begin­
ning of a line. An apostrophe can be used to put a comment
anywhere in a script and is particularly useful at the end of

35
a statement line.
Workflow Statements

Scripts can specify actions that the workflow server will
take.

Logical expressions can be used to combine relational 40

There are three workflow statements which cause action
to be taken based on events. These are:

1. Activate
expressions.

Syntax
<relational expression> AND <relational expression>
<relational expression> OR <relational expression>
NOT <relational expression>

Arithmetic Operators
Arithmetic operators are:
+Plus
-Minus
*Multiply
\Divide
Syntax

45

50

<expression><+l-1*1\><expression>
55 Character fields can be assigned from string constants or

other character fields.
They cannot be assigned from numeric fields.

Character Operators
The only character operator is
+ Character concatenation
Syntax
<text>+<text>
where text is a text string or identifier.

Operator Precedence
Standard C and Basic conventions are followed regarding

expression evaluation order. For example. all AND expres-

60

65

Activate is used to start a workflow at the preparation
state of a workflow.

"Activate" is used when there are child workflows that
need to happen during the preparation phase of the
parent workflow. Activate is also used when the
customer is specifically required to take the request
act (or, in an offer type workflow, the performer is
required to take the offer act).

Syntax
Activate (<Workflow Name>)

2. Initiate
Initiate is used to start a workflow in the negotiation

state. "Initiate" is used when the workflow can be
started with a request or offer directly. and further
preparation work is not needed.

Syntax
Initiate (<Workflow Name>)

3.Act
"Act" is used to take an act on behalf of a workflow

participant; this can be triggered by an act or state in
the workflow or in another workflow.

Syntax
Act(<Act Name>, <Workflow Name>)

4. Available Acts
Request workflows

S:Activate

5.734,837
19

C:Initiate
C:Request
P:Agree
P:Counteroffer
P:Report Completion
P:Decline
C:Declare Satisfaction
C:Cancel
P:Revoke
C:Decline To Accept
C:Agree To Counteroffer
C:Counter
C:Decline Counteroffer
C:Comment
P:Comment

Offer workflows
S:Activate
P:Initiate
P:Offer
C:Agree To Offer
C:Counter
P:Report Completion
C:Decline Offer
C:Declare Satisfaction
C:Cancel
P:Revoke
C:Decline To Accept
P:Agree To Counter
P:CounterOffer
P:Decline Counter
C:Comment
P:Comment

Using Workflow States in Logical Expressions
Every time there is an act in a connected workflow (either

a parent or child workflow), any user defined scripts for the
current state of a workflow are executed. Scripts that will be
executed are those that are conditioned on acts or condi­
tioned on application data changes in these connected work­
flows.

5

10

15

20

20
3. lsActive

Tests whether a workflow is active.
Syntax
IsActive("workflow")
Example
lsActive("ShipProduct") is true when the workflow

"ShipProduct" has been instantiated.
State based scripts are executed after Act-based scripts.
Available States

Preparation
Negotiation
Performance
Acceptance
Satisfied
Negotiation (countered)
Cancelled
Declined
Revoked

Conditional Statements
Logical expressions are used to control script execution

using If-Elself-Else-Endlf constructs.
Syntax
If(<logical expression>)

25 <statements>
Elself(<logical expression>)
<statements>
Else

30 <statements>
Endlf
When an If statement is specified, an Endlf statement is

required. If statements can be nested. Elseif and Else may be
used optionally. If. Elseif, Else, and Endif must appear on

35 different lines of the script.
Other commands and functions
SendMail: Electronic mail can be sent based on script
commands:

Syntax

States of the current workflow or of linked workflows can 40

be used as logical expressions. You can write scripts to delay
SendMail(<FromAddres s> .<ToAddre ss>.

<CCAddresses>.<SubjectText>, <BodyText>)
an action (or movement of a workflow into the next state)
until certain conditions are met. You can set the conditions
as a change in state of a child workflow, a change in a data
field or both. You can also specify that all the child work- 45

flows are checked to see if your conditions are met_ every
time any one of them changes. A state-based script will be
executed every time there is a change in the state. There are
three workflow statements which cause action to be taken
based on workflow states. These are: 50

1. IslnState
Tests whether a workflow is in a specified state.
Syntax

Each of the parameters specified in the SendMail state­
ment is the name of a character application data field, or of
a workflow data field, such as customer, performer. or
observer.

FromAddress, ToAddress, and CCAddress can also be
workflow system identities. In the Builder. a designer can
specify the mail address for each identity. The mail address
specified for "Mail STF' is used for the SendMail function.
The address specified for the identity must be in the format
permitted by the selected STF Processor.

lslnState("workflow" ,"state")
Example
lslnState("Deliver Order" ,"Acceptance") would return

TRUE if the Deliver Order workflow is in the
Acceptance state.

2. IsNotlnState

The <CCAddress> can be left blank (""), but must be
present. The <ToAddress> and <CCAddress> parameters
can be single identities. Single identities can be expressed as

55 string constants or as the names of Character application
data fields. Lists of identities can only be expressed in
application data fields. These fields can be constructed from
Character constants by assigning the desired character con­
stant to a character application data field.

60 CallProgram: An external program can be executed by a
script. The program called must be able to run natively on
the operating platform of the workfiow server.

Tests whether a workflow is not in a specified state.
Syntax
lsNotlnState("workflow". "state")
Example
lsNotlnState("EstimateBudget" ,"Satisfied") would 65

return TRUE if the EstimateBudget workflow is not
in the Satisfied state.

Syntax
CallProgram(<ProgramN ame>,<CommandLine

Parameters>,
<Environment Variables>, v

5,734,837
21

<Return ValueAppFieldName> .<boolReturn Value>)
The program name specifies the name of the program to

be executed. The Command Line Parameter string must be
specified, though it can be an empty string. The Environment
variables string allows setting of operating system environ­
ment strings. such as those that appear in the OS/2 environ­
ment. If the Boolean is set to TRUE, and the <RetValAp­
pFieldName> specifies the name of a numeric application
data field. then the called program's error return nnmber is
stored in the specified application data field. If the Boolean
is set to FALSE, the program's returned value is ignored.

The called program is run asynchronously. The workflow
server does not wait for the called program to complete its
operation.
Echo: Displays a character string on the server log. This is
used to watch script execution.

Syntax
echo <string__expression>

Str Returns the string representation of an expression.
Syntax
Str (<expression>)

Consistency Checking
The following provides an explanation of the principles of

creating logical and consistent business process maps. Also
included here is a numbered reference to the Application
Builder map rules.

As a map is drawn, the designer adds workflows and
connect them with links and conditional links. The map is a
visual representation of a business process and shows the
interconnecting network of personal commitments and the
flow of work needed to meet the conditions of customer
satisfaction.

22
Some map rules are defined as warnings. These rules

apply to ambiguous cases in which one of the above prin­
ciples may have been violated. Warnings do not prevent
application generation because the designer may have used

5 a method, such as scripting. to achieve map consistency.
Logical Consistency

It is possible to use the tools of the Application Builder to
create definitions which contradict the effect of other defi­
nitions. For instance an automatic transition could be

10
defined to move a workflow forward at the same time that a
link with stop flag on is preventing acts in that workflow
until a subprocess has completed.

In the example shown in FIG. 2b, Primary Workflow is a
Request type workflow and automatic transition is turned on
for Performance. (The performance phase is shown in this

15 illustration as the emphasized segment of the Primary Work­
flow loop). The etfect of the automatic transition is that as
soon as the act P:Agree occurs, the system automatically
takes the act P:Report Completion and the workflow moves
into Acceptance. However, there is also a subprocess which

20 begins with a link from the act P:Agree, goes to Workflow
#1 and returns with a link to P:Report Completion and, in
this example. the Stop Flag is on (as set in the Link
Definition dialog box for the first link in the subprocess).
This stop flag requires that Primary Workflow must remain

25 in Performance until Workflow #1 is complete so it is in
direct contradiction to the automatic transition setting. This
kind of inconsistency prevents a logical flow to the coordi­
nated work that needs to be done.

It is possible to create other situations in which two
definitions are in opposition. The following rules are

30 designed to prevent this kind of contradiction:
Rule 10

When creating a business process map, it is possible to
create very complex paths with links passing through
numerous secondary workflows before returning to the 35

primary workflow. The Application Builder allows a great
deal of flexibility in map design. but the business process
map must flow in a logical and orderly way and conform to
workflow principles for the pwposes of generating an appli­
cation 40

If an act is automatic then there should not be an incoming
link with stop flag on which takes that act and is part of the
path that has the stop flag on.

The case described here is a logical contradiction: the
automatic act says the workflow must continue immediately.
the stop flag says that the workflow must wait until the
subprocess has completed.
Rule 11

Paths staffed by multiple outgoing links from a common
Act or State, having the Stq> Flag on, must return to a
common state of the workflow.

The map rules outlined below are the specific principles
required for successful application generation. These rules
concern the connection of links to workflows and condi­
tional link boxes. These rules also require that you set certain
attributes for the business process and the workflows in it. 45

When a map has been created, the Check Consistency
command from the Data menu is used to see if any map rules
have been violated. The Consistency Errors dialog box
specifies any map rules that have been violated. This fol­
lowing provides more information on those rules and illus- so
trates both how those rules can be broken and how they can
be followed.
Principles of consistency

A business process map describes a flow of work and
defines a series of events. In order for a business process to 55

meet its conditions of satisfaction. the map it is based on
must be complete and logical.

The pwpose of a stop flag is to cause the parent workflow
to pause in a given state, then continue when a subprocess
is completed. It is possible to draw a map in which two
subprocesses start in a given state with the stop flag on, but
one returns to the same state and the other returns to a
subsequent state. At runtime, the one returning to the sub­
sequent state could return first. In this case. one subprocess
would be telling the parent workflow to move to the next
state and the other subprocess. since it is not yet completed.
would be telling the parent workflow to remain in the same
state.
Rule 12

Paths started by multiple conditional links from a com­
mon Act or State must all return to a common state in all
combinations of conditional paths.

Consistency checking is based on a set of map rules.
These rules are designed to insure that during creation of the
map you have adhered to the following principles:

This rule covers cases in which the use of conditional
links has the potential to create situations which violate Rule

60 11.
Logical consistency-no definition you have created

should contradict the effect of another definition.
Simplicity-maps should not be unnecessarily complex.
Avoiding redundancy-elements in a map which serve no

function should be eliminated.
Completeness-all elements of the business process defi­

nition that are essential must be included.

65

Rule 17
Paths starting with outgoing links of mixed types (State­

based and Act-based) must return to a common Workflow
state.

This rule is also based on the same general principle as
Rule 11, subprocesses should not contradict each other by
giving conflicting instructions to the parent workflow.

5,734,837
23 24

Rule 15 Connecting conditional links is not necessary because any
A workflow can only be initiated once. conditions that can be defined with multiple conditional
In a given instance of a business process, any workflow links can all be defined in one conditional link box. There is

can only be started once. so multiple incoming links that no limit to the number of links that can come out of a
start the workflow are a logical contradiction unless they are 5 conditional link box.
mutually exclusive. A valid map could have two links Avoiding Redundancy
coming from a conditional link box with both set to start a It is possible to create map elements that serve no pur-
workflow because the conditional link box insures that only pose. Some redundancies can prevent application generation
one link will be operational. A valid map could also have two and some are flagged as warnings during consistency check-
links coming from different acts of the same state with both

10
ing. Warnings serve to notify the map designer of map

links set to start the same workflow because as soon as one elements which may need to be modified in order to achieve
act occurs, it will start the subprocess and it will also move an intended purpose.
the parent workflow to another state, thus preventing the Rule 2
second act from occurring and also attempting to start the Conditional links must have at least one outgoing link.
subprocess. If there is no outgoing link, the conditional link box and
Rule 13b 15 the link coming into it can serve no function.

Paths from a Workflow, which return to that workflow, Rule 7
must terminate in that Workflow with an incoming link to Conditional links should not be isolated.
the state from which they originated. or with a valid act to Similarly, a conditional link that is not connected to
another state. If the Stop Hag is not on, paths do not have workflows can have no purpose.
to terminate in the workflow from which they originated but 20 Rule 5
if they do return. they must follow this rule. Primary workflows cannot have outgoing links from their

In any given state, only certain acts are available. When Satisfied state.
a path returns to a parent workflow, the parent may still be Primary workflow reach the satisfied state when the
in the same state it was in when the path left (necessarily so conditions of satisfaction of the business process have been
if the stop flag is on). Consequently the act that the returning 25 met. Since the satisfied state means that the business process
link triggers must be a valid act for the original state. is over, no subprocess can start at this point
Rule 14 Rule 13a

Workflow links based on the same Act must have the same Incoming links starting a new workflow can only trigger
Stop Hag setting. a limited set of acts:

If a single act triggers two links, the stop flag settings 30 i) for request workflows S:Activate, C:Initiate and
cannot be contradictory. Since both subprocesses will nee- P:Agree; ii) for offer workflows S:Activate C:Agree To
essarily occur, it is an unavoidable logical contradiction if Offer and P:Initiate.
one is telling the parent workflow to continue and the other Incoming links starting workflows are limited to trigger-
is telling the parent workflow to stop. ing acts in this set because triggering any other act does not
Rule 16 35 lead to completion of the conditions of satisfaction of the

Workflow links of mixed types (State-based and Act- workflow. The acts in this set are the only acts that are not
based) from the same state must have the same Stop Hag exception acts which occur before the Performance phase of
setting. a workflow. There is no point in starting a workflow with an

This rule is based on avoiding the same potential for exception act that terminates a workflow and there is no
contradiction that rule 14 addresses. Since entering the state 40 point in starting a workflow after performance because
will necessarily trigger a subprocess, any act which might acceptance without performance is meaningless.
occur in that state should not trigger a subprocess that could Rule 24
contradict the stop fiag setting of the state-based link. Script has references to some objects (i.e. workflow name,
Rule 29 identities or application data) which are either deleted or

A link should take an act in the target workflow. 45 renamed.
Acts cause workflows to move forward to new states. A During the process of designing a workflow and adding

state is the result of an act which has been taken. An definitions it is possible to create elements, refer to them in
incoming link cannot connect to a state (unless it is the same scripting and then rename or delete them. When this
state the path originated from) because no act has occurred happens, the script can have no function.
to cause the workflow to be in the new state. Thus an 50 Rule 25
incoming link to a state is contradicting the actual state that Primary workflow is always activated. So script or link for
workflow is still in, i.e., the state it will remain in until an act initiate act will never be executed.
causes it to move to another state. When a business process is instantiated, the primary
Simplicity workflow is activated and moves past the initiate act. A

The Application Builder provides a great deal of flexibil- 55 script or link based on the initiate act can have no function
ity in methods of designing business processes. Certain because the initiate act will never occur.
constructions are overly complex, however and are ruled out Completeness
because other, simpler methods are available. In order to manage a business process, the workflow
Rule 1 server must be able to identify all the elements within the

Conditional links can have only one incoming link. 60 business process definition. The rules for completeness are
Multiple incoming links would require "and/or" type designed to insure the presence of the minimum required

constructions and would add unnecessary complexity to the identifiers. These rules are self-explanatory.
conditional link specification. Rule 18
Rule 3 A Business Process must have a N arne and Administrator.

Unks to or from a Conditional Link must connect to a 65 Rule 19
Workflow. 'IWo Conditional Links cannot be directly con- A Workflow must have a Customer, Performer, and Con-
nected. ditions of Satisfaction.

5,734,837
25

Rule 20
A Conditional link must have a Description and Expres­

sion.
Rule 26

Workflows must have a name.
Rule 27

Workflows must have a unique name.
Rule 28

Workflows must have a unique short name
Map Rules

The following is a numbered reference to the Application
Builder map rules. Rules are listed in numerical order with
missing numbers meaning that there is no associated rule.

Rule 1: Conditional links can have only one incoming
link.

5

26
Rule 20: The required attributes of a Conditional Link are

Description and Expression.
Rule 21: If no act can be taken in a state then it may cause

deadlock.
This is a warning message that can occur when all acts in

a state have been disabled.
If all acts have been disabled and there is no link path

which moves the workflow forward and no Automatic
Transition to move the workflow forward. the workflow will

10 be deadlocked.
Rule 22: At least one normal act should be allowed in each

state.

Rule 2: Conditional links must have at least one outgoing 15

link.

This is a warning message that occurs when a workflow
has been defined by a template in which all the normal flow
acts for a given state have been disabled. This workflow will
only be able to move forward through exception flow acts.

Rule 23: If this act is disallowed, then the workflow may
not be able to proceed to completion.

Rule 3: Links to or from a Conditional link must connect
to a Workflow. Two Conditional links cannot be directly
connected.

Rule 5: Primary workflows cannot have outgoing links
from their satisfied state.

Rule 6: Workflows should not be isolated.
Note that Rule 6 is only a warning. Isolated workflows

will not prevent application generation. Isolated workflows
can be linked through user generated scripting; you can
write a script causing an act or state in one workflow to
generate an act in another workflow, even though the two
workflows are not connected by links.

Rule 7: Conditional links should not be isolated.
Rule 10: If an act is automatic then there should not be any

incoming links with Stop Hag on which takes that act.
Rule 11: Paths started by multiple outgoing links from a

common Act or State, having the Stop Flag on, must return
to a common state of the workflow.

Rule 12: Paths started by multiple conditional links from
a common Act or State must all return to a common state in
all combinations of conditional paths.

Rule 13: Paths between Workflows must be logically
correct:

This is a warning message that occurs when a workflow

20 has been defined by a template in which the designer
disabled either Request. Agree, Report Completion or
Declare Satisfaction and/or Agree to Counteroffer (or their
counterparts in Offer types).

Rule 24: Script has references to some objects (i.e.

25 workflow name, identities or application data) which are
either deleted or renamed.

This error occurs when a script has been written, then later
there is a change to the map topology. naming, application
data or global data so that the script refers to an element that

30 no longer exists.
Rule 25: Primary workflow is always activated. So script

or link for initiate act will never be executed.
A workflow can only be initiated if it has not been

activated. An instance of a business process always begins

35 with the activation of the primary workflow (by the system).
Therefore, the act C:Initiate is always invalid. since Cus­
tomer can never initiate a Primary workflow.

This error message has two possible causes:

Rule 13 concerns the way the system finds "incorrect 40

links." The map is traversed in a number of allowed paths.
All links found that follow an allowed path are declared
"correct" initially. Any links left are considered "logically
incorrect."

1. A script has been written for the C: Initiate act of the
Primary Workflow.

2. A link is connected to the C:Ioitiate act of the Primary
workflow.

This message is a warning and does not prevent applica­
tion generation.

In the case of normal links. the method for traversing is 45

a forward movement so that no link can move a workflow to
Rule 26: Workflows must have a name.
Rule 27: Workflows must have a unique name.

a prior state. There are, however, some acts that are allowed
to move the workflow backwards-like Decline to Accept
and counteroffers. Also, some exception acts am also
allowed to follow an abnormal flow in some circumstances,
like a Cancel that does not return to the workflow.

Rule 14: Workflow links based on the same Act must have
the same Stop Hag setting.

Rule 15: A Workflow can only be initiated once.
Rule 16: Workflow links of mixed types (State-based and

Act-based) from the same state must have the same Stop
Flag setting.

Rule 16 means that if the links coming from a state are a
mix of act and state based links, they must all have the same
Stop Flag setting.

Rule 17: Paths starting with outgoing links of mixed types
(State-based and Act-based) must return to a common Work­
flow state.

Rule 18: The required attributes of a Business Process are
Name and Administrator.

Rule 19: The required attributes of a Workflow are
Customer, Performer, and Conditions of Satisfaction.

Rule 28: Workflows must have a unique short name.
Rule 29: A link should take an act in the target workflow.
A workflow can only move forward as the result of an act

so being taken. Links must connect to acts (rather than states)
in target workflows because connecting to a state could have
the effect of moving the target workflow forward by skip­
ping the required act. The exception to this rule is when a
link terminates a path in the state from which the path

55 originated.

60

APPUCATION WINDOW LAYOUf
Each MDI Window (MapView) displays a business pro­

cess map as above. Each window can be sized. moved.
maximized or minimized.

Single-clicking on a map component selects the compo-
nent (i.e., for cut. copy, delete. hide, etc.) To select multiple
components, the shift button must be held down while
single-clicking on additional components. Double-clicking
on a map component (MapShape) brings up a dialog dis-

65 playing the properties of the component. Holding the mouse
button down over a workflow allows the workflow symbol
and name to be dragged to another location. Holding the

5,734,837
27

mouse button down on the "handle" of a Unk line allows the
link curvature to be changed.

The operation of the tools is based upon typical GUI
protocols as follows.
Menu Bar 5

The structure of the Menu Bar and pulldown menus is as
follows:
File

Contains the features for file handling:

New. Creates a new map.

Open. Opens a saved map.
Save. Saves a map.

10

Save As. Offers to save the map under a new name.
Export. Exports map data to a Windows metafile format. 15

Business Process Summary. Displays summary informa-
tion which includes the following:

Owner: This refers to the person in charge of modifying
the conditions of satisfactions, cycle times, or roles in
the workflow.

Creation date, modification date, and modifier. The date
on which the workflow was created, last modified. and
by whom this was done.

Version: the version of business process map.
Print Map. Prints the map as it appears on the screen.
Print Report. Prints map data in a tabular report

(including. for example, workflow definitions, condi­
tions of satisfaction, form names, link definitions, and
the like).

Retrieve: Retrieves a previous version of a business
process map that has been stored on a server for review
or further editing.

20

25

30

Generate Application: Converts the currently displayed
map to an application consisting of a series of server 35

specific definitions, and the forms and views required
for a workflow-enabled application.

Page Setup. Specifies map margins, headers, and footers.
Printer Setup. Standard Windows print dialog for select-

40 ing printers, print trays and the like.
Exit

Edit
Contains the Windows-standard features
Cut. Removes a selected object from the screen and places 45

it in the Windows Clipboard.
Copy. Copies selected objects to the Clipboard without

removing them from the current screen.
Paste. Places Clipboard contents on the map (if they are

either text or previously selected workflows.) 50

Delete. Deletes the selected objects from the screen
without placing them in the Clipboard.

Select Workflow: Brings up a dialog box to select a
particular workflow as the object on the display to be
manipulated or operated on. 55

View
Contains the tools for viewing a map in different ways
All. Displays all workflows and workflow links.
Normal Flow. Displays workflows and links that lead to

60
successful completion.

Exception Flow. Displays workflows and links that do not
lead to successful completion (cancel, for example).

Missing Information. Displays workfiows in which some
critical element has not yet been defined. 65

Collapse. Hides secondary workflow associated with the
selected workflows.

28
Expand. Expands to display secondary workflows asso­

ciated with the selected workflow which were hidden
by a previously issued Collapse command.

Expand All. Displays all workflows.
Zoom In. Enlarges the display of worldlows on the screen

by 25% each time it is selected.
Zoom Out. Reduces the display of workflows on the

screen by 25% each time it is selected.

Actual Size. Returns the display to 100%.
Data

Application Data: Places a unique icon on the screen next
to workflows which have application data defined in
them.

Follow Up and Reminders: Places a unique icon on the
screen next to workflows which have follow ups or
reminders set.

Organizational Roles: Brings up a series of dialog boxes
to enter new organizational roles or to modify existing
ones.

Identifies: Brings up a series of dialog boxes to enter new
identities and the data associated with them or to
modify existing identifies.

Default Role Mapping: Brings up a dialog box to assign
roles in the current business process to specific identi­
ties.

Policy Document: Brings up a dialog box to enter text
which represents a policy document for the current
business process.

Business Process Global Data: Brings up a dialog box to
define data used globally by the business process.

Follow Up and Reminders: Brings up a dialog box to set
follow ups or reminders on a workflow.

Workflow Application Data: Brings up a dialog box to
define data used locally by the workflow.

Workflow Scripting: Brings up a dialog box to enter
scripts for the workflow.

Workflow Form Names: Brings up a dialog box to enter
the names of forms which will be generated by the
application.

Form Field Specifications: Brings up a dialog box to set
the viewing/editing attributes of data used by the work­
flow.

Workflow Template: Brings up a series of dialog boxes to
define new templates or to edit existing templates.

Check Consistency: Starts a process to check the business
process for errors.

View Last Errors: Brings up a dialog box to show the
results of the last time the business process was
checked for errors.

Tools
Contains the tools for selecting different modes in the

Application Builder:
Workflow. Turns on the workflow cursor which in the

preferred embodiment is an oval divided into quadrants
with arrowheads at the end of each quadrant as shown
in FIGS. la-l.f. When this option is selected, new
workflows can be added to the map.

Conditional Link. Turns on the conditional link cursor
which in the preferred embodiment is a diamond shape
as shown in FIG. 5.

Text. Turns on the text cursor which in the preferred
embodiment is an 1-beam indicating the insertion point
or a pointer with aT (for text) associated with it. When

5.734,837
29 30

this option is selected, annotation text can be added Adding additional Target Links to a Conditional diamond
anywhere on the screen (except inside a workflow) is done by drawing a link from a point on the diamond to a
utilizing different fonts, styles and sizes. target workflow. The user is then able to edit the resulting

Pointer. Turns on the object selection cursor Target Link by double-clicking on it.
Normal Flow. Turns on the defining of a normal-flow link. 5 File Save
Exception Flow. Turns on the defining of an exception- This is a standard Windows File Save dialog box with the

flow link (in which the link is one that does not move addition of a control to allow the user to save all organiza-
tional roles rather than just those roles used in the business the workflow toward successful completion. such as

when a cancel. decline or revoke in the originating process map.
10 Retrieve workflow triggers a cancel in the linked workflow).

This dialog shows a list of generated applications along
Properties. Displays the properties dialog relevant to the with their current version number. The user picks one from

object currently selected. (For example, displays the the list and can either double click on the selection or select
workflow definition of the current workflow if a work- the OK button to load the application map.
flow is selected). 15 Select Workflow

Options This dialog shows a list of all workflows in the business
Defaults. Defines the defaults for features of the program. process from which the user can select one to operate on.

such as the default directory into which to save map Roles
files and default workflow types. This dialog shows a list of organizational roles. From this

Display. Defines the defaults for display of the icon bar 20 dialog, the user can choose to enter a new role. modify an
and link handles. existing one, delete it. or print a list of roles.

Fonts. Defines the default font, style and font size for Define Role
workflow text and annotations. This dialog is used to enter the name of a new role and to

Windows set descriptive text for it.
Contains standard Windows handling options. 25 Identities

Help This dialog shows a list of identifies. From this dialog. the
Contains an on-line help system. user can choose to enter a new identity. modify an existing

Dialogs one. delete it, or print a list of them.
Some of the more important dialogs are described below. Edit Identity

File Open 30 This dialog is used to enter data about a new identity or
(Standard Windows 3.1 File Open) to modify data on an existing one. The data that can be
As well as File Open, several other standard Windows 3.1 entered include name. address. phone number, roles that can

dialogs (Printer Setup. Save As etc.) are used. be assigned, and descriptive text.
Business Process Summary Information Roles To Identity Mapping

This dialog is presented when a file is saved for the first 35 This dialog is used to associate roles that may be assigned
time (before the Save As dialog), or when the Business to the identity being edited. A list of all roles is presented
Process Summary option is selected from the File menu. from which the user may select as many as may apply to the
Link Definition identity.

This dialog is displayed by double-clicking on an existing Business Process Definition
link or selecting the Properties menu option when a Link is 40 This dialog is where the user enters all general informa-
selected. Each of the two Listboxes displays the available tion about the business process. This includes the business
actions for the "from" and "to" workflow quadrants. One process name, owner. administrator, process initiator. and
action may be selected from each, in order to define the the projected cycle time. The version of the business process
Trigger and Triggered actions. respectively. as well as the computed cycle time are also displayed.
Conditional Link Definition 45 Default Role Mapping

A Conditional Link Definition dialog is displayed by This dialog box shows a list of all roles actually used
double-clicking on an existing Conditional Link or selecting within the business process and the particular identities
the Properties menu option. assigned to those roles. The user may select a role and pick

Creating a conditional link involves drawing a link from a list of identities which can be assigned to that role.
between two workflows as usual (but using the Conditional so Policy Document
Link Tool). The conditional link will be created between the This dialog is used to enter text which describes the policy
two selected workflows. using the default trigger and trig- document of the business process.
gered actions for the phase as with normal links. A diamond Business Process Global Data
shape is displayed. By double-clicking on the diamond. a This dialog box is used to enter or modify data used
Conditional Link dialog is presented which allows the user 55 globally by the business process. The user may select
to enter a description of the condition for the conditional link whether the data item is a character string. a number. or a
and then shows the origin and target workflows. The user calendar date.
may then access an Origin Link dialog and a Target Links Workflow Definition
dialog. This dialog sets the basic information for the definition of

Double-clicking on the Origin Link or selecting the 60 a workflow. This includes the workflow name. which tern-
Origin Link button in the dialog box of the Conditional Link plate is used, the participants, conditions of satisfaction.
dialog presents the Origin Link dialog that allows the user to cycle times, cost/value, styles and associated text.
select the trigger act or state. Workflow Template

Double-clicking on one of the Target Links in the dialog This dialog is brought up from the Workflow Definition
box of the Conditional Link dialog presents the Target Links 65 dialog box and is used to locally modify the template
dialog that allows the user to specify the specific condition selected for the workflow. The user is presented with a list
and the triggered action. of Acts and States with space provided to substitute new

5,734,837
31

names for them. Also provided is dialog box which allows
the user to specify that an act should be disabled.
Select Participants

32
cation into three main divisions: Model which represents the
core application logic, View which represents the user
interface logic, and Controller which represents the message
and event handling logic that implements the tools for This dialog is brought up by the Workflow Definition

dialog box and is used as an aid to selecting the participants
(Customer, Performer. Observer) of a workflow. The dialog
shows a list of available roles and a series of pushbuttons to
automatically assign them to be the workflow participants.
Follow Up and Reminders

5 manipulation of objects.
The MVC framework for applications provides a logical

split of the different functions in a GUI application. Isolating
the core application logic in the Model makes the applica­
tion more portable. the design more understandable and the

This dialog is used to set whether follow ups and remind­
ers are issued when cycle times are exceeded for phases of
a workflow. The user can set the amount of time after the due
time has passed for issuing the follow up or reminder and the
interval of subsequent messages.

10 implementation extendible. The further logical separation of
the event handling in the Controller from the user interface
in the View enables the application to be more easily ported
to another GUI environment. The Application Builder is
designed on the MVC paradigm discussed above as shown

Workflow Application Data
This dialog is used for the definition of data item that are

used locally by the workflow. The user can enter the name
used to identify the data item, the type of data that it is. and
a default value for it

15 in F1G. 4. The Model classes describe the business process
and its components in terms of a hierarchy of classes. The
View Classes draw the workflow map of a business process
and its components on different displays including the
screen, printer and metafile (i.e .. a graphics-format Windows

Workflow Scripting
This dialog allows the user to enter scripts for the work­

flow. The user can choose to write scripts for all Acts and
States or for individual ones. A pushbutton is provided to
bring up a second dialog box which provides assistance in
writing these scripts. A mechanism is provided for checking
scripts as they are being written or edited for syntax errors.
Script Assist

20 3.1 metafile on disk. which can be displayed by other
Windows programs)

The two highest level classes of the Model and the View
provide the framework for a software implementation of the
invention. A class designated as the ActWfModel class owns

This dialog is brought up by the Workflow Scripting
dialog. n provides the user with lists of the available script
commands, Acts and States, workflow names. and data field
names. The user can select items from these lists and have
them 'pasted' in to the Workflow Scripting dialog box. An
act or state as well as workflow names can be selected from
drop-down lists. The user may type scripts directly into a
text field provided by the dialog.

25 and manages all the model classes (Object Model) such as
business processes. workflows etc. ActWfModel is used by
the ActWfView class which owns and manages user inter­
face components such as menus, icon bars, dialogs and
Multiple Document Interface (MDI) child windows. Only

30 one instance of the ActWfModel and ActWfView objects are
allowed.

The ActWfView class receives the menu and toolbar
commands from C++!Views and the toolbar. n in turn passes
them directly to the active (top level) MDI window

35 (represented by a MapView Controller component object).
Workflow Form Names

This dialog is where the user enters in the names of forms
for the workflow. These names will be used when forms are
generated from the application. Space is provided for sepa­
rate form names for the Initiator. Customer, Performer and 40

Observer.
Form Field Specifications

This dialog is used to set the attributes on data that will be
used in the forms generated by the application. A list of all
data items, both global and local, is shown and the user may 45

choose to set these items as editable, hidden, read only, or
must fill. The user can also choose whether these attributes
apply to all Acts and States or to individual ones.
Select Template

This dialog allows the user to choose a template for 50

modification or to define a new one.
New Template

This dialog is used to define a new template. The user
enters a name for the new template and is presented with a
list of Acts and States and space where substitute names for 55

them can be entered. Also provided is dialog box which
allows the user to specify that an act should be disabled.
Defaults

This dialog is used to set global defaults for the program.
The user sets the default template to be used for workflows, 60
the map author name, and default file path for saving maps
here.
DESIGN AND IMPLEMENTATION DESCRIPTION

In a preferred embodiment, the software used to imple­
ment the workflow Application Builder design is based on 65
the Model-View-Controller (MVC) paradigm of object ori­
ented programming. The MVC paradigm divides an appli-

The Map View class has two main components. the paint­
ing and controller components. The controller component
contains the menu and toolbar interpreter 81 as well as the
mouse and keyboard interpreter 83 which receive the inter­
action (inputs) from the user. These are a set of methods that
receive input from the user and pass them to the appropriate
tool. There are also methods for changing the active tool.
namely tool selector 85, e.g. when the user clicks the mouse
in an empty area of the window the current tool is called. and
when the user clicks the mouse in a current object the
appropriate object tool is called to process the click. The tool
procedures 87 of Map Tool are responsible for managing the
creation, deletion, selection of object attributes. selection
and dragging of the various objects in the screen. They also
handle the automatic linking (selecting a temporary tool)
when the mouse is on the border of a specific object. For this
they have a close interaction with the shapes in the view with
an interface that helps retrieve. set, and prompt user for
attributes.

The main methods of the tools are: mouseDn (for mouse
down events) mouseDbl (for mouse double click events)
mouseMv (for mouse move events), mouseUp (for mouse
up events), keyDelete and keyEscape events (for their
equivalent key selections). The tool translates mouse
up/down sequences into clicks and calls the appropriate
methods. It also contains the method getShape to find a
specific object in an area of the window. The specific
methods for the various tools can be found on the Controller
Class Attributes section below.

The shapes provide with a set of methods used by the
tools to find them (pointln, pointlnZone, rectln). calculate
areas used (geflnvalidRect). change attributes with a prop-

5,734,837
33

erties dialog 45 (showProperties) and change position
(beginDraggingAt, draggingAt, endDraggingAt). These
methods are in the View Class Attributes section below.
There are other methods used that serve as an interface to
obtain/set the various object attributes.

The painting component of the MapView class contains
the methods to display the image in the Window. This class
enumerates all of its objects in that area and issues the paint
method in the shape object. Also when the user is dragging
an object, the tool object calls the draw method to display the
object as it is being dragged. The two main shape methods
along with the Map View paint method constitute the Display
Module 97. To print or export a map. the print or export
command from the file Menu is received at the MapView
object which sets up a different environment via MapPrinter
and MapMetafile which redefine the display port through
which the object will be displayed, and calls the same shape
paint procedures. These MapPrinter and MapMetafile
classes define the functionality for the print module 98 and
export module 99.

The system maintains the main data in the Model classes.
Every view class has its model class equivalent where the
data is stored. The view classes get all this information from
the model classes. The main interface for the model classes
is a series of set/get functions to manage the attributes of the
class. The functions enable the system to maintain the
consistency of the object's data and provide the map rules
103 for the data. This model data is the only data that is
stored in data files. The process of storing this data is via
get/put methods that every model class provides. These two
methods in every model class constitute the file I/0 module
105 that maintains the map files.

Referring now to FIG. 6 which illustrates the overall flow
of an implementation of the invented application builder, the
user initiates the flow by one of three processes namely,
Review Script Syntax, Generate Application or Check Con­
sistency.

By initiating the Review Script Syntax process e.g. by
selecting workflow scripting from the Data menu, a process
is begun to verify the syntax of a workflow script. This
process calls Script Processor module 110 which checks the
syntax and generates syntax errors 113 if there are any.

By initiating the Check Consistency process e.g. by
selecting from the Data menu, a process is begun to verify
the completeness of the business process maps and the
validity of the relationships among workflows. The Consis­
tency Checking module 115 is called for this putpose. The
Consistency Checking module uses Finite State Machine
116 and generates Link Errors 117 if there are any.

By initiating the Generate Application process e.g. by
selecting from the Ftle menu, a process is begun to generate
the business process application in the definitions database
51. This task is performed by Generate Application module
119. This module first checks the completeness of the map
by calling Consistency Checking module 115, generates
System Scripts 121, precompiles system and user scripts,
writes details of the business process in the definitions
database and calls forms and views generation module 123
for the user interface of the workflow application.

5

34
Case: If the user initiates Generate Application process.

then the Script Processor module is called to generate the
PreCompiled Code 135. This module is capable of parsing
system scripts as well as user scripts.

The PreCompiler module 131 is used by Script Processor
110 to generate the PreCompiled Code for all types of
scripts. This module has the knowledge of the grammar of
the workflow scripting language for PreCompiled Code. The
putpose of this module is to convert scripts to a tokenized

10
form and reduce the need for database references at run time.
This module converts the name-references of all objects to
identification references. This reduces the total number of
database accesses the transaction manager 33a makes while
executing the script.

The ou1put of the PreCompiler module-PreCompiled
15 Code 135 is used by Definition Generation module 137 to

store the tokenized script in the database.
This module uses Entities Data 139 to obtain the details

of various objects like workflow,link. conditional link. type
of workflow and the like.

20 The Consistency Checking module 115 is called for two
different purposes:

Case 1: When the user initiates Check Consistency e.g ..
by selecting from the Data menu, then this module is called.
This module checks the completeness of the business pro-

25 cess map by verifying that all essential data has been
provided by the user. After that it traverses the business
process map and checks if all the links are proper. lt uses
Finite State Machine 116 to verify the appropriate links
taking into account the context. If there is any problem with

30 the link. then it generates Link Error 117 objects for each
error. These UnkError objects are used by the user interface
module (not shown) to communicate to the user about the
problems in the business process map. The Consistency
Checking module uses Finite State Machine 116 to verify

35 the correctness of the type of links in various contexts.
Analyzing the automatic transitions defined by the user. acts
disabled by the user, and links among workflows. this
module generates all possible state transitions for each
workflow. where they are kept. At the end. it uses state

40 transition data from each workflow to detect the conflicting
specifications and possible causes of deadlocks.

Case 2: When the user activates the Generate Application
process e.g., by selecting from the File menu, this module is
called In this case this module does everything described in

45 the Case 1 and it also generates System Scripts 121. The
System Scripts implement links between workflows. The
System Scripts also manage the synchronization between
workflows by setting various internal flags. The Consistency
Checking module utilizes a set of routines distributed in

50 three classes: Business Process, (WfBusProcess), Workflow
(WfWorkflow) and Links (Wflink). The WfBusProcess
routine calls the WfWorkflow routine which in turn calls
itself for different workflows

The Generate Application module 119 executes the fol-
55 lowing tasks:

Calls Consistency Checking module US to verify the
completeness and the consistency of the map.

The script processor module 110 implements the parser
which checks the syntax of the script written by user. This 60
module also generates the precompiled code using the
PreCompiler module 131 if required. This module is used in
two cases:

Calls Consistency Checking module 115 again to generate
the system scripts. These system scripts are used to ensure
the synchronization between the workflows and to imple­
ment links between workflows.

Calls Script Processor module 110 to check the syntax of
user defined script.

Case 1: If the user initiates the Review Script Syntax
process, then the Script Parser checks the syntax and if there
is any error then it puts the description of the error in a
Syntax Error Description object, which is shown to the user.

Calls Script Processor module 110 to tokenize all user and
65 system scripts to produce PreCompiled code 135.

Calls Definition Generation module 137 to write the
details in the definition database 51.

5,734,837
35

Calls FormsNiews Generation module 123 to create the
forms and views in the definitions database.

The Definition Generation module 137 is initiated by the
Generate Application process. It obtains the details of all
objects in a business process from Entities Data 139 and 5
writes them in the database using Definitions API 151.

The Definition Generation module 137 is distributed over
several classes. The Definition Generation method in each
class has the responsibility of writing the details of the
corresponding objects. First the method of business process

10
is called which in turn calls for all the workflows. The
method in each workflow calls the lower level methods of
definition generation for the objects it consists of.

The FormsNiews Generation module 123 is called by
Generate Application module 119 to create Forms and Views
141. It obtains the details of fields of the forms and their 15

attributes from Entities Data 139 and uses FormsNiews API
143 to create the user interface in the database.

36
The Entities Data 139 is the data associated with all basic

elements of a business process. The main objects are
Workflows. Links, Conditional Links, Followup. Cycle
Time. Customized Names, Acts and States.

The Definition API 151 is a set of application program­
ming interface used by Definition Generation module 137 to
access the underlying database. Most of the services are to
write the details of objects like- Business Process. Workflow,
Cycle Time. Followup. Scripts. Application Data. Some of
the API provides facilities to read the definitions database
such as obtaining the identification of the workflow or
application data.

The Forms/Views API module 143 is used to create forms
and views in the database. This module provides an interface
to the Application Builder to specify the details of forms for
viewing at di11erent times and for di11erent workflows. Alter
obtaining all the details, this module creates the forms and
views in the definitions database 51.

Referring now to FIG. 7, the relationships of data used at
the organization level will now be described.

The class ActWfModel 171 has three tables used at the
organization level. They are the STFTable 173. the Identity
Table 175. and the Organizational Role Table 177.

In a business process map. the user defines workflows and
links among them. The purpose of the links between work­
flows is to synchronize the events of di11erent workflows. 20

One can specify a link which will start a workflow when
some other workflow is in certain state. The user can also
make some of the state transitions automatic. All these
specifications are converted into System Scripts. When a
business process is running. the Transaction Manager 33a
executes these scripts to get the desired triggering of acts in
various workflows.

The STF Table is composed of instances of STF Processor
25 (STFPROC). These represent Standard Transaction Format

Processors used in Network mail.

This script is generated by the Consistency Checking
module when Generate Application module 119 calls for it.

The Syntax Error object is created by Script Processor 30

module 110 to preserve the details of the error detected in
scripts defined by the user. It contains the line number and
column number where the error was detected. It also con­
tains the description of the error and has a method to display
the error. 35

The Organizational Role Table is composed of instances
of Organizational Role (ORGROLE) 179.

The Identity Table 175 is composed of instances of
Identity (IDENTTIY) 176. Identities are the real people who
will take on an organizational role within the business
process. Each Identity may be associated with up to two S1F
Processor's 183. Each Identity may perform zero or more
Organizational Roles.

Each business process (WfBusProcess) 178 has a Default
Identity Table 180 which is composed of zero or more Role
To ID Mapping instances (ROLEI'OID) 181. Each Role to
ID Mapping points to one Identity and one Organizational
Role and forms the association between the two for the

Link Error objects are created by the Consistency Check­
ing module to preserve the details of the errors detected
while checking the consistency of the map. Each Link Error
object points to the object it is associated with and has the
description of the error. 40 particular business process.

The State Transitions object 145 preserves details of all
possible transitions in a workflow. It knows whether a
transition is automatic. manual, is initiated by a user defined
script or by a link specified in the map or a combination of
all these. Once all the transitions are generated, the Consis- 45

tency Checking module verifies that all the transitions are
consistent and free from deadlock situations.

The State Transitions object 145 are created and used by
Consistency Checking module only 115.

PreCompiled code 135 is the tokenized form of the script. so
PreCompiler module 131 tokenizes all the script in an
assembly like language and Definition Generation module
137 stores them in the definition database.

The business process definition is the most important
output of the Application Builder. This data is stored in the 55

definitions database 51 and used by Transaction Manager
33a in the various stages of the business process. It contains
all the details of the business process.

The FormsNiews generation module 123 uses Forms/
Views API 143 to create the user interface of the workflow 60

enabled application 73. The FormsNiews API has the
knowledge of the underlying database.

Referring now to FIG. 8 which illustrates the relationships
of data used utilized by the present invention when viewed
at the business process level, ActWfModel is the class which
is the parent to all business processes. It has an 011er and a
Request Basic Act/State Table 191 and two Custom Act/
State Tables 193 representing 011er and Request custom
types.

The Basic Act/State Table (BACTSTXI') is composed of
a collection of Basic Acts and States 195. These are the
standard Acts and States which a workflow may use. An Act
is the action that will be done when a particular Workflow
phase is reached and a State is the condition that that phase
is in.

The Custom Act/State Table 193 is composed of a col­
lection of Custom Act/States 197. These are the standard
Acts and States which may be aliased with customized
names. The aliasing is done by the user so that the Acts and
States will have more meaningful names to the Business
Process and its Workflows.

Each Business Process is represented by an instance of
WfBusProcess 178. These will be the parents to the asso­
ciated workflows that make up the business process. Each
WfBusProcess may have templates which represent Custom
Act/State Tables that are used with the work:flows of the

The Finite State Machine module 116 has the state
transition tables for Request and 011er type of workflows. It
implements various methods to access the data and provides
support to the Consistency Checking module for checking
the consistency and for generating the System Scripts.

65 business process. These templates are the choices available
to the workflows. The WfBusProcess also has an Applica­
tion Data Table 203 for data that is global in nature to the

5,734,837
37

whole Business Process. The Application Data Table is
composed of many individual items of Application Data
205. Each Application Data item may represent a name. a
number, or a date.

There is an one instance of workflow 209 for each 5

workflow in the business process. Each workflow may have
it own template of Custom Acts/States 197 from the Custom
Act/State Table 193.

Each workflow instance contains Form Names
(FORMNAME) 211 or the four possible forms that can be 10

created by the Forms and Views Generation module. The
four forms are Initial (used only in the Primary Workflow),
Customer, Performer, and Observer. n the user enters a
name for any of these forms then the intention is that a form
will be generated when the application is run. 15

Each workflow instance contains Phase Styles 215 for the
four workflow phases. These styles determine the appear­
ance of the particular Phase in the user interface.

Each workflow instance contains Automatic Transitions
20

217 for the four workflow phases. These can be set active by
the user to automatically transit the workflow phase when no
actions are required.

Each workflow instance contains temporary State Tran­
sitions 219 only when consistency checking is performed.
This object preserves details of all possible transitions in a
workflow. It knows whether a transitiQn is automatic.
manual, by a user defined script. or by a link specified in the
map. or any combination of these.

25

Each Workflow also has an instance of Workflow Cycle 30
Times 221 to set the cycle times for the four phases and an
instance of Follow Up Information 223 to set reminders
when cycle times are exceeded.

n the user has entered Scripts (SCRIPT) 231 to be
executed by the workflow when certain Acts or States are 35
achieved, then these are also attached.

The Workflow may have Application Data 205 that is used
only by itself locally and so it has its own Application Data
Table for this.

38

Attribute Description

obColBusProcesses Collection of Business

ReqActStateTable

OfrActStateTable

SIFProcs
StlMapAuthor
StrMapPath
RequestTemplate
OfferTemplate
OrgRoleTable
IdentityTable

Processes
Basic Act State table for
Request type Worldlows
Basic Act State table for
Offer type Workfiows
Table of SIF Processors
Default Map Author
Default Map Path
Default Request Template
Default offer Template
Organization Role Table
Identity Table

Type

String
String
WfTemplate
WfTemplate
OrgRoleTable
IdentityTable

OrgRoleTable-Collection of OrganizationRoles
ldentityTable-Collection of Identities
OrganizationRole

Size

64
132

A class used to describe a role used in a business process.
The role is responsible for actions within the phases of
workflows. An identity is assigned to the role in the business
process to indicate the individual responsible for the actions.

Attribute Description JYpe Size

OrgRoleid Role ID number long
StrName Name char 64
StrDesc Description char 64

Identity
A class used to describe the identity of an individual

within the organization which contains the business process.
This identity may be assigned to a role within the business
process to indicate the individual responsible for the actions
of that role.

Attribute Description 'JYpe Size

4Qid Application Data used by the workflow, whether global or
local, must have attributes (Hidden, Read Only, etc.)
attached to it as to how the data is presented in this
workflow. This attribute information is stored in a Field
Attribute Table 233 which is composed of Field Attributes
(FLDATTR) 235. There is a Field Attribute item for each 45

Application Data item.

Identity ID number long

The Model Classes and Model Class Attributes
The Model incotporates model classes which implement

the workflow Application Builder logic. The model classes
describe the business process and its components in terms of
a hierarchy of classes. The classes in the model form what
is sometimes described as the Object Model for the appli­
cation. The Object Model is similar to an Entity­
Relationship model in data modeling.

The model classes are, in effect, data structures. External
(data) attributes of the Model Classes are listed below.
hnplementation will require additional instance variables

StrName
Strl'ostalAddr
StrTelNo
StrTelExtNo
Std'axAddr
SI!OrgnName

StrDeptName
SIILocationName
StrNotes
StrNetAddr
Mai!Addr

Name
Postal address
TelephoDO: number
TelephoDO: extension number
Fax number
Organization name individual belongs
to
Department name individual belongs to
Location of individual
Descriptive text of individual
Net address
Net Mail address

char 64
char 128
char 32
char 10
char 32
char 64

char 32
char 32
char 254
char 128
char 128

50 SIFid S1F Processor ID long

55

Mailid
CollRolekls

STFProc

Net Mail S1F Processor ID long
List of Roles this identity can talre

A class used to associate STF Processor names and ID's
for use by Identities.

(internal data) and methods beyond those described here Attribute Description 1YPe Size

which depend upon the platform on which the software is to 60 --------------------­
be used. Such additional details would be readily apparent to
persons skilled in the art.
ActWfMdl

Manages the other classes in the model including any
database access and storage. This is the top class of the 65
model and represents a collection of WffiusProcess objects
and the data to operate them.

Id
Name

WffiusProcess

SIF ID number
Name

long
char 64

This is included in a collection in ActWfModel. This class
provides the logical representation of the business process to
be mapped. It includes a collection of map components

5,734,837
39

(WfComponent) as well as information on the creation of
the map (Author, creation date, etc.).

Attribute

SlrName

Sir Admin

DateCreated
SlrProcessVersion

SlrMapAuthor

Initiator

CollComponents

ComCycleTune
UsrCycleTune
BpBoundDataTable

Rolelbldfable

SlrPolicyText

CollAvlTemplates

Defremplate

Cost

Price

Main Methods

GenerateApp

Description

Name of the business
process
Administrator of the
business process
Creation data
\~lesion of the business
process map
Author of the business
process map
Initiator of the business
process
Collection of
WfComponents
Computed cycle time
Projected cycle time
Business process global
application data
Default Role to Identity
table
Business process policy
document
Collection of available
worldiow templates
Default workflow
template
Computed cost of
business process
Computed price or value
of business process

char

char

date
char

char

char

Cycle Tune
CycleTune
BoundDataTable

RolelbldThble

char

Wfremplate

Generate the application method
from the business
process map

CheckMissingJnfo Check the business method
process map for missing
information

RoleToldfable

Size

64

64

8
64

64

64

254

A class containing the associations of roles to specific
identities within the business organization. This is in the
form of a dictionary of key/value pairs where the Role is the
key to a corresponding Identity value.

Attribute

Origin
5

10
WfAnchor

40
-continued

Description

Logical position with respect to
the origin (0,0) of the Business
Business Process Map. Translated
to device units as required for
display, printing and metafile
output.

VLocation
object
(x,y)

Size

This is derived from WfComponent. This is an abstract
class which provides the meaning for origin/target objects as
Work:Hows and conditional links. It includes the size of the

15 object.

Attribute Description Size

WfComponent inherited W!Component Object
20 Width Width of the component int

Height Height of the component int

WfWork:How
This class is derived from WfAnchor. It models the

25 logical concept of a work:How. including customer. per­
former and observers data, conditions of satisfaction, asso­
ciated text as will as cycle times.

30 Attribute

WFAnchor

Primary
Workflow

35 JYpe
Multiple
repeating
Customer
Name
Performer
Name

40
Observers
Names
Initial Form
name
Customer

Description JYpe Size

inherited WfAnchor
Object

identifies Primary wor:ldlow Boolean
request or offer char

identifies if worldlow is of
type multiple tepeating
name of the person requesting text 64
the work
name of the person perfonn- text 64
ing the work
names of non-participating, text 64
but interested, parties
name of the associated fonn text 64

name of the associated fonn text 64
Main Methods Description JYpe Size Form name

-- 45 Performer getRoleWithldentity Obtain the Role associated with method
this Identity

getidentityWithRole Obtain the Identity associated with method
this Role

DefaultRoleMapping
This is a collection of default identity assignments that

correspond to the roles used in the business process.
WfComponent

This is an abstract class which provides the base for all the
classes which represent components of a business process. It
includes the component type, the name and position of the
object.

Attribute Description

ComponentKey unique identifier of this component int
in the business process

Componentlype One of Worldlow, Link, Condi- enum
tiona! link or FreeText

SlrName Name of a Map, Worldlow, Link Character
or other component

Size

64

Form name
Observer
Form name
Conditions of
satisfaction

50 Associated
Text

55

60

65

Worldiow
Cycle Time
Followup Data

Bound Data
Table
Field Artribute
Table
Custom Names

User Scripts

Workflow
Total Cost
Proposal
Phase Cost
Agreement
Phase Cost

name of the associated fonn text

name of the associated fonn text

Conditions of satisfaction of text
the workflow
Additional text. text

days, hours, minutes allowed WICycleTune
to complete the wotkftow
Followup data for the FollowUp
wotkftow
Application data for this BoundDataTable
wor:ldlow
Field attributes for the FieldAtttfable
wor:ldlow data
Customized names for Acts Wffimplate
and States
Arrays of user scripts for Acts char []
and States
cost to complete the worldiow int

cost to complete the proposal int
phase of the worldlow
cost to complete the int
agreement phase of
the workflow

64

64

1500

1500

5,734,837
41 42

-continued Process. Please note that the Component name is used to
hold the text to print.

Attribute Description 'JYpe Size

Perfonnance cost to complete the int
Phase Cost performance phase of 5 Attribute Description 'JYpe Size

the workflow
WfComponent name, position Wtcomponent

Satisfaction cost to camp lete the int Width size of the text box int
Phase Cost satisfaction phase of

Height size of the text box int the workflow
Workflow assessment of price/value int

Text text of tbe annotation text 64
Font e.g. "Helv'' text 20

Total Price associated with the com- 10 Size e.g. 8 text 2
pletion of the workflow

Attributes Bold, underline etc. Boolean Proposal assessment of price/value int
Alignment left, right, centered

Phase Price associated with the com-
enwn

pletion of the proposal phase
Border has a border Boolean

of the workflow
Word wrapping this text should/should not wrap

Agreement assessment of price/value int 15
Phase Price associated with the com- WfPosition

pletion of the agreement phase
of the workflow A class used to model the position of the starting or ending

Performance assessment of price/value int point of a link in a workflow as well as the curvature handles
Phase Price associated with the com- for the link. This object is created by a MapShape or derived

pletion of the performance
20 classes from a given point in a MapShape. phase of the workflow

Satisfaction assessment of price/value int
Phase Price associated with the com-

pletion of the satisfaction Attribute Description 'JYpe Size
phase of the workflow

Graphical requested graphical attributes Styles Phase phase in the workflow int
attributes such as style 25 Direction From. Th int

Sequence key for anchor int

WfConditionalLink
This class is derived from WfAnchor. It documents con­

ditional links between Work:fiows. The WfConditionalLink
components are illustrated in FIG. 5. WfConditionalLink 30
has the following attributes:

WfCycleTime
This is a class which is a collection of four Cycle Time

objects to represent the four phases of a workflow.

Attribute Description 'JYpe Size

WFAnchor inherited WfAnchor Object
Description Text explaining the decision to text 1500

be made

WfLink
This class is derived from WfComponent. It models the

logical link between Workflows and Conditional links,
including the link type and the trigger and triggered actions
in the source and target workflows, respectively.

Attribute Description 'JYpe Size

WfComponent inherited WfComponent
Object

FromPosition Workflow/State/Sequence pointer to
from which this Link Wfposition
initiates Object

To Position Workflow/State at which pointer to
this Link terminates Wfposition

Object
Trigger Action Action (Trigger Action)

within the originating
Workflow which can
initiate this link

TriggeredAction Action (Triggered Action)
within tbe target Workflow
which is initiated by this
link

Condition condition that triggers this text 64
link (in the case of links
from conditionals to
workflows)

WfFreeText
This class is derived from WfComponent. It models the

free-form text which may be placed on a Map of a Business

Attribute

35
Request or
Offer Tune
Response Tune

Performance
Tune
Customer

40 Response Tune

CycleTime

Description

Tune to make the request or
offer
Tune to respond to request or
offer
Tune to perform request or
offer
Tune for customer to respond to
fulfilled request or offer

Size

CycleTune

CycleTune

Cycle Tune

Cycle Tune

A class used to keep track of hours, minutes, and days for

45 workflow phases.

Attribute Description 'JYpe Size

usDays Number of days int

50 usHoiD"S Number of hours int
usMinutes Number of minutes int

Follow Up
A class to contain details about when follow ups should be

55 sent to the customer or performer when cycle time is
exceeded.

Attribute Description 'JYpe Size

60 Completion Tune offset when follow up CycleTune
Offset message should be sent
Completion Maximum number of times the int
Max Tunes message sent
Enable Late Send Completion Late Boolean

65
Completion messages?
Completion Message recurrence interval Recurrence
Recurrence

5,734,837
43

-continued

Attribute Description 1YPe Size

Perfonner Tune offset when follow up Cycle Tune
Re$1Xl11BC message should be sent
Offset
Perfonner Maximum number of times the int
Re$1Xl11BC Max message sent
Tunes
Enable Late Send Performer Response Late Boolean
Perfonner messages?
Re$1Xl11BC
Performer Message recurrence interval Recurrence
Re$1Xl11BC
Recurrence
Customer Tune offset when follow up Cycle Tune
Re$1Xl11BC message should be sent
Offset
Customer Maximum number of times the int
Response Max message sent
Tunes
Enable Late Send Customer Response Late Boolean
Customer messages?
Re$1Xl11BC
Customer Message recurrence interval Recurrence
Re$1Xl11BC
Recurrence
Remind Offset Tune offset when follow up Cycle Tune

message should be sent
Enable Remind Send Reminder of Completion Boolean

messages?

Wffemplate

This class is used to define templates for the actions and
states of a workflow. The two common type are offer and
request. Customized templates can be used to give these
actions and states more meaningful names.

Attribute Description

CollASCNames Collection of Acts, States,
and Custom Names

StrName Template Name

ActStateCustN arne

1YPe Size

Collection

char 32

This class stores basic information about an Act or State
used in a template. The name can be set to a custom name.

Attribute Description 1YPe Size

StrName Customized AAct or State name char 128
ActStateld Act or State ID number int
fActState Act or State ftag Boolean
fDisabled Disabled ftag Boolean

BasicActState

This class describes an Act or a State.

Attribute Description 1YPe Size

StrName Customized AAct or State name char 128
ActStateld Act or State ID number int
fActState Act or State ftag Boolean
Wf'IYPe Request or Offer worldlow type int
!Exception Exception ftag Boolean
ActProtagonist Protagonist in Action enum
FormJYpe Form type enum

44
BasicActStateTable

A collection of BasicActStates.
BDFieldAttrib

5 A class to describe attributes of data fields.

Attribute Description JYpe Size

idBDStruct Pointer to Bound Data BoundData

10 these attributes are for
idWorldlow Pointer to worldlow this belongs WfWorldlow

to
DefaultAttrib Default attribute enum
ActAttribs Array of attributes fur Acts enum array
StateAtrribs Array of attributes fur States enum array

15

FieldAtlflable
A collection of BDFieldAttrib's.

BoundData
20 This is data that can either be associated with the business

25

30

process as a whole or with just one particular workflow. This
cla~s describes that data.

Attribute Description JYpe Size

StrName Bound Data name char 64
DataJYpe Data type enum
MaxLen Maximum length int
Strlnitia!Val Initial value char 254
BDid Bound Data ID int

BoundDataTable
A collection of BoundData's.

35
AwFSM

40

45

50

55

60

65

This class encapsulates all static information about the
finite state machine of a workflow. It provides static methods
to access the characteristics of different acts and states.

Description Size

Attribute

ReqStateTransit Table of all possible state State Transition
transitions in Request type
ofworldlow

OfrStateTransit Table of all possible state State Transition
transitions in Offer type
ofworldlow

Main Methods

getNormPostActs Returns a list of normal acts method
which can be taken in the
specified state

getExcpPostActs Returns a list of exception method
acts which can be taken in
the specified state

getPostActs Returns a list of all acts which method
can be taken in the specified
state

getPreActs Returns a list of all acts which method
lead to a specified state

getPostState Return the state after a method
specified act is taken

getPreStates Returns a list of all the states method
in which a specified act can
be taken

isValidPostAct Confirms if a specified act can method
be taken in a specified state

getMostNatural- Returns a normal act which method
PostAct can be taken in a specified

state

getSeqFor­
'Ihtversal

takesToPrevState

SyntaxError

45
-continued

Description

Returns the list of all
acts and states which is used
by consistency checking
algoritlnn to traverse the
links in a specific sequence
Confirms if a given act will
take worldlow to previous
state

method

method

5,734,837

Size

5

46

Main Method Description

Validate Parses the script to find
out if there is any error. It also
to~nizes the script while
generat:ing the application.

Size

method

The attributes of the model classes described above are
10 the only attributes saved when a map of a business process

is stored

This class contains the full description of error detected

The model classes are represented in FIG. 4 within block
107. The Model also utilizes a set of MAP rules as described
above.

by script parser and provides methods to form the error 15
message string.

A software implementation of the MAP rules and model
classes would be well within the ability of persons skilled in
the field of the invention in view of the foregoing descrip­
tion.

Description 'JYpe Size

Attribute

Location The character colunm where int 2
error is detected

LineNwn The line number where error int 2
is detected

ScriptText Text of the script which string
was having error

Las fib ken Text of the last token string
detected by lexical analyzer

ErrMsgld Resource id of the error W1Signed 2
message string

Description Description of the error string
message

Main Methods

getDescription Returns the description of the method
error message

display Displays the error message method
in the current window

StateTransition
This class contains the details of all possible transitions of

states in a workflow. It has details whether a particular
transition is automatic, manual or it is because of some map
links or user script. The information is collected for a
workflow while doing the consistency checking and at the
end all the transitions are analyzed to check the possibility
of deadlocks or conflicts in the specification of the map.

Attribute

pTrans'I}rpes

pActToAct­
'fransitions
Main Methods

Description

Request or Offer type
of worldlow
Array of records containing
details of state transitions
pointer to a static list of
all possible transitions

W1Signed

tTransDetail

checkConsistency Checks if there is any possible method
deadlocks or if there is a

getReachable­
States

Script

conflict between two
specifications of the same
transition
Gets all states which can be
reached in a worldlow

method

Size

2

This class provides method to validate the text of script.
It uses yacc and lex to parse the text of script.

An I/0 module 105 stores the model classes in map files

20
109 in a storage medium which is typically a high capacity.
non-volatile storage device such as a hard disk. The details
for implementing I/0 module should be readily apparent to
persons skilled in the art.
The View Classes and View Class Attributes

The View classes implement the user interface compo-
25 nents required to draw the model classes on a display. Each

class derived from the WfComponent model class is drawn
by a class derived from the MapShape class. The View
Classes and their attributes are described in copending
application Ser. No. 08/005.236 filed Jan. 15. 1993.

30 Relationships between Model and View Classes
Each MDI window is implemented by a Map View object.

A MapView object uses the MapShapes defined above to
draw various shapes in the window. The application details
for each shape are stored in a corresponding model class. For

35 example. each Map View object has a WfBusProcess object
as an attribute. The WfBusProcess object has an ordered
collection of objects derived from the WfComponent class.

For all shapes that need to be painted or repainted. the
MapView calls the appropriate paint method for the shape
class. The shape class gets elements from the WfComponent

40 derived class that conforms to the shape. For example, if
MapShape retrieves a WfWorkflow object from the WfBus­
Process object. then the MapView object will draw a
MapLoop on the display.

The splitting of the logical attributes from the graphical
45 attributes of a workflow component enables the workflow

component to be drawn on any display which implements a
set of MapShapes. Both the MapPrinter and MapMetafile
classes may implement different logic from the Map View to
draw the loops and links.

50 The Controller Oasses and Controller Oass Attributes
The Controller division utilizes a menu/tool bar inter­

preter 81, a mouse/keyboard interpreter 83. a tool selector 85
and a set of tool procedures 87 for the loop tool89 ,link tool
91, diamond tool 93 and text tool 94. The implementation

55 details for each of the foregoing elements of the controller
division in terms of its classes and their attiibutes are set
forth in co-pending application Ser. No. 08/005.236 filed
Jan. 15, 1993.
External Definitions API

60 The Application Builder generation process is intended to
produce a database definition utilizing a visual representa­
tion of a map. This database definition is a set of entries in
a database that properly describes the business process
definition. workflow contents and properties, workflow

65 interaction (links), application data, form field definitions.
workflow scripts, follow-up information and additional
attributes.

5,734,837
47

The definitions API is the interface that allows the Appli­
cation Builder to define such schema. The following is a
description that can be used to implement the definitions
API.

48
EndBPDefinition. The AWD___EndBPDefinition should be
the last call and ends the definition of a business process.
The AWD___EndBPDefinition closes the context set up by
A WD __BeginBPDefinition.

A WD_BeginBPDefinition
Description

5 Note: AWD_EndBPDefinition should be called only after a
AWD_EndWFDefinition call has been made.

This call creams a new Business Process record. The
Business Process name is specified as a parameter. The
Business Process name should be unique. If a Business
Process with the same name is present, the current definition

10 is overwritten as a new version. This takes place only if there
are no active instances of the current business processes
definition. However, if instances for current definition exists,
then both versions of definitions co-exist in the database. All
new instantiations will be from the latest version of BP
definition. The version number is maintained internally by 15

the Server.

Syntax
VOID FAR PASCAL AWD EndBPDefinition

(LPERRCODE lpError)
Output Parameters

Name Descriptioo

lpError LPERRCODE Error code returned.

The AWD_BeginBPDefinition should be the first call
when defining a business process and no other AWD_
BeginBPDefinition call should be in progress. Every AWD_
BeginBPDefinition has to be closed by a AWD_ 20

EndBPDefinition call. The AWD___EndBPDefinition should

Return Value
None.

AWD_DeleteBPDefinition
Description

Deletes a Business Process. The delete is successful only
if the Business Process has no active instances in the
transactions database. This function is used to remove be the last call and ends the definition of a business process.

AWD__BeginBPDefinition sets up a context for the busi­
ness process and all subsequent calls require this context.
The AWD_EndBPDefinition closes this context.
Syntax

VOID FAR PASCAL AWD_BeginBPDefinition
(STRING szBPName, IDENT lBP Admin, !DENT
llnitiatorOrgRoleiD, LPERRCODE lpError)
Input Parameters

Name

szBPName STRING

lBPAdnrin IDENT

Description

The Business Process name. 1bis name
should be unique. If a business process
with the same oame is present, the
current definitioo is overwritten as a
new version. There shonld be no active
instanoes of the current definition for
this to occur. If however some instanoes
are present, then both versions of
definition co-exist in the database. The
maintenance of versions of definitioos is
internally hlllldled by the server. Older
versions of BP definition could be
deleted from the database using SAF.
Tbe Identity of the person creating this
business process. The Identity should
have the rights to cream business
processes.

IJnitiatorOrgRoleiD IDENT ID of the organization role who can
initiatt the business process.

Output Parameters

Name Description

lpError LPERRCODE Error code returned.

Return Value
None

AWD_EndBPDefinition
Description

Close the currently open business process. A call to
AWD_EndBPDefinition should be preceded by a call to
A WD __BeginBPDefinition.

business processes no longer in use. This function can be

25 called only if the business process is not active.
Syntax

VOID FAR PASCAL AWD_DeleteBPDefinition
(STRING szBPName, IDENT lBPAdmin, LPERRCODE
lpError)

30 Input Parameters

35

40

45

Name

szBPName

ffiPAdmin

Description

STRING The name of the business process
to delete. There should be no active
instances for this BPName.

IDENT The Identity of the person deleting this
business process. The Identity should
have the rights to delett this business
processes.

Output Parameters

Name

lpError

Return Value
None.

JYpe Description

LPERRCODE Error code returned.

so AWD_DefineBPAppFields
Description

Define the list of application data fields associated with
the business process. The field name. type. size. attributes
and initial value. if any, are specified. The field names must

55 be unique at a Business Process level.
Syntax

VOID FAR PASCAL AWD_DefineBPAppFields(INT
iCount. LPAPPDATAlNFO lpBDFieldStructPtr. LPER­
RCODE lpError)

60 Input Parameters

Name Description

TheAWD___EndBPDefinition should be the last call when 65
defining a business process. Every AWD_
BeginBPDefinition has to be closed by a AWD

iCount INT The number of fields to
attach with the business
process.

5,734,837
49

-continued

Name Type Description

lpBDFieldStructPtr LPAPPDAU\INFO A pointer to an array of
APPD...a:AINFO structures
containing field name, type,
size, attributes and initial
value, if any.

Output Parameters

Name Description

lpError LPERRCODE Error code returned.

APPDATAINFO

Name 'JYpe Description

50
Input Parameters

Name 'JYpe Description

5 szWFName STRJNG The workfiow name. This name should be
unique.

szShortWFName STRING A short name for the workfiow. This name
should also be unique.

10 Output Parameters

15

Name

lpError

Return Value
None.

Type

LPERRCODE

AWD _EndWFDefinition
20 Description

Description

Error code returned

---------------------- Close the currently open workflow. A call to AWD_
szFieldN arne String Name of the application

data
szValue String Initial value of tbe

application data
AppData'JYpe APPDATATYPE 'JYpe of the application

data
iSize INT Maximwn size of tbe

application data
AppDataAttribute APPDATAATI'RIBUIE Default attribute of

the application data

APPDATATYPE
Following are the types of application data type:

ADT_TEXT

ADT _NUMERIC
ADT_DPJE

APPDATAATfRIBUfE

EndWFDefinition should be preceded by a call to AWD_
Begin WFDefinition.

The A WD _EndWFDefinition should be the last call when
25 defining a workflow. Every AWD_BeginWFDefinition has

to be closed by aAWD_EndWFDefinition call. The AWD_
EndWFDefinition should be the last call and ends the
definition of a workflow. The AWD_EndWFDefinition
closes the context set up by AWD__»eginWFDefinition.

30 Syntax

35

VOID FAR PASCAL AWD_EndWFDefinition
(LPERRCODE lpError)
Output Parameters

Name Description

lpError LPERRCODE Error code returned

Following are the types of attribute an application data
can have: 40 Return Value

None.
ADATTR_READONLY
ADATTR_HIDDEN

ADATTR_MUSTFILL

ADATTR_EDffABLE
Return Value

None.
AWD_jBeginWFDefinition
Description

Creates a new workflow in a Business Process. The
workflow name is specified as a parameter. The workflow
name should be unique. If a workflow with the same name
is present, then the context for this workflow is used.

AWD _SetWFParameters
Description

Specify workflow information. The workflow type. the
45 organization role for the customer and performer. This call

must be made only after A WD _Begin WFDefinition is
called.
Syntax

VOID FAR PASCAL AWD SetWFParameters
50 (WFI'YPE WFfype, WFCPJEGORY WFCategory, BOOL

bCentralWF, !DENT !Customer, !DENT !Performer. LPER­
RCODE lpError)
Input Parameters

The AWD_BeginWFDefinition should be the first call 55

when deeming a workflow and no other AWD_
BeginWFDefinition call should be in progress. Every
AWD_BeginWFDefinition has to be closed by a AWD_
EndWFDefinition call.

Name

WFTYPE

WFCategoty WFCAIEGORY

Description

This specifies the type of worldiow,
i.e., Reguest or Offer.
This specified whether it is a group
workflow, primary workfiow, ad-hoc
workflow, or a normal worldlow. AWD_jBeginWFDefinition sets up a context for the

workflow and all subsequent workflow calls require this
context. The A WD _EndWFDefinition closes this context.
Syntax

VOID FAR PASCAL AWD_BeginWFDefinition
(STRING szWFName, STRING szShortWFName, LPER­
RCODE lpError)

60

bCentralWF BOOL

65 !Customer
!Performer

ORGROLEID
ORGROLEID

Flag to indicate if this workflow is the
central workfiow of the Business
Process.
This flag is TRUE if it is the central
workfiow, FALSE otherwise.
The Organization Role of the Customer.
The Organization Role of the Per-

5,734,837
51

-continued

Name Type Description

furmcr.

Output Parameters

Name Description

lpError LPERRCODE Error code returned
value

WFfYPE

There are two types of workflow

WFTYPE_REQUEST
WFTYPE_OFFER

WFCATEGORY

Following are the categories of workflows:

WFCATEGORY _8TANDARD
WFCATEGORY _PRIMARY

WFCATEGORY_ADHOC

WFCATEGORY _GROUP

Return Value

None.

AWD_SetWFCycleTime

Description

Set the various cycle times associated with the workflow.
Depending on the workflow type-Request or Offer, the
response time for each act of the workflow may be specified.
The table below enumerates the various times that can be
stored.

Read table below as

<OrgRolel> must <Actionl> [after
<OrgRole2><Action2>]within time <time>

For Request type workflow

OrgRolel Action! OrgRole2 Action2 Tune

Customer Request time 1
Perfonner Respond Customer Rcguest time 2
Performer Complete Customer Request time 3
Customer Respond Pcrfunncr Reports completion time4

For Offer type workflow

OrgRolel Action! OrgRole2 Action2 Tune

Perfonner Offer time 1
Customer Respond PcrfotmCr Offer time 2
Perfonner Complete Pcrfurmcr Offer time3
Customer Respond PerfotmCr Reports completion time4

Note: The call must be made only after function AWD_
SetWFParameters is called.

5

52
Syntax

VOID FAR PASCAL AWD_SETCYCLETIME
(LPAWI'IME lpArrayCycleTime, LPERRCODE lpError)
Input Parameters

Name Description

lpArrayCycleTime LPAWTIME Pointer to an array of AWTIME
time offsets. Depending on the

1 o worldlow type the array clements
refer to different times are
listed in the tables above.

Output Parameters

15 ----------------------------Name Description

lpError LPERRCODE Error code returned value

20 AWTIME

Name

25 iYear
iMonth
iDay
iHour
iMinute
iSecond

30
Tunel'ypc

Type

INT
INT
INT
INT
INT
INT
TIMETYPE

Return Value
None.

Description

Year of the time (NOT USED)
Month of the time (NOT USED)
Day of the month or number of days.
Hour of the day or nwnber of hours.
Number of minutes.
Number of seconds.
TIMETYPE_ABSOLUIE or
TIMETYPILOFFSET (Must be
TIMETYPILOFFSET fur this function.)

35 AWD_DisableWFAct
Description

Disable a set of workflow acts for a specific workflow
role. By default all acts are enabled for a workflow. This call
facilitates disabling specific acts. This call must be made

40 only after a call to AWD~eginWFDefinition.
Syntax

VOID FAR PASCAL AWD_DisableWFAct(WFROLE
WFRole, INT iCount, LPACT lpAct, LPERRCODE
lpError)

45 Input Parameters

Name Type Description

WFRole 50 WFROLE The Worldlow Role for which the acts are
to be disabled.

iCount INT The number of acts to dioablc.
I pAct LPACT A pointer to an array of IDs which is the

list of acts to dioable. 1be number of acts is
spcified by parameter nCount

55

Output Parameters

Name Type Description

60
lpError LPERRCODE Error code returned value

WFROLE
Following are the possible values of WFROLE type of

65 parameters
WFROLE_CUSTOMER
WFROLEYERFORMER

5,734,837

WFROLE_OBSERVER

WFROLE_SYSTEM

Return Value

None.

53

AWD_storeActUserDefinedName

Description

Set the user-defined description for the workflow Acts.
The list of acts and the equivalent user-defined names are
provided. This call must be made only after a call to
A WD_BeginWFDefinition.

Syntax

5

10

54
Output Parameters

Name '!ype

lpError LPERRCODE

STATEINFO

Name 1Ype

Stateld sv.:rn
szStateName STRING

Description

Error code returned value

Description

ID of the state
Name of the state

VOID FAR PASCALAWD_StoreActUserDefinedName 15
(INT iCount, LPACTINFO ActPtr, LPERRCODE lpError)

Return Value
None.

Input Parameters

Name

iCoWlt INT

ActPtr LPACTINFO

Output Parameters

Name 1Ype

Description

The number of acts for which the user­
defined name has been provided
A pointer to an array of ACTINFO
structures which contains the list of acts,
i.e., Act Names a.OO user~fined Names
for the acts.

Description

lpError LPERRCODE Error code returned value

ACI'INFO

Name

Actld
szActName

Return Value
None.

ACT
STRING

AWD_storeStateUserDefinedName

Description

Description

ID of rhe act
N arne of the act

Set the User-defined description for the workflow States.
The Jist of states and the equivalent user-defined names are

AWD_storeActScript
Description

Set the workflow script for an Act. The act and the script
20 text are the parameters to this function. This call must be

made only after a call to AWD__BeginWFDefinition.
Syntax

VOID FAR PASCAL AWD_storeActScript(ACf Actld.
LPMEM lpScript, SCRIPTTYPE ScriptType. LPINT

25
lpiMemBlockSize. !NT iPositionNotify. LPERRCODE
lpError)
Input Parameters

Name '!ype
30

Actld ACT

lpScript LPMEM

35
Script'!ype SCRIPITYPE

lpiMemBlockSize LPINT
iPositionNotify INT

40

Output Parameters

Description

The type of act, e.g., Request,
Agree, etc.
The workflow script associated with
the act. The script is executed when
the corresponding act in rhe worldlow
is executed.
Script'!ype is a flag which indicates
the type of script.
Size of the memory block in bytes.
This variable identifies rhe first script
buffer, subsequent buffers and the
last ODC. It should be set to 0 to
identify first map buffer, 1 to
identify subsequent map buffers.

45 --Name Description

lpError LPERRCODE Error code returned value

provided. This call must be made only after a call to 50 SCRIPITYPE
A WD__BeginWFDefinition.

Syntax
VOID FAR PASCAL AWD

Following are the types of script:
SCRIPITYPE_USER
SCRIPITYPE_USERSYST

StoreStateUserDefinedName(INT iCount, LPSTPUEJNFO
55

SCRIPITYPE_SYST
SCRIPTI'YPE_NOTIFY lpStatePtr, LPERRCODE lpError)

Input Parameters

Name

iCoWlt INT

lpStatePtr LPSTATEINFO

Description

The number of states fur which the user­
defined name has been provided.
A pointer to an array of STAlEINFO
structures which oontains the list of states,
i.e., State Names a.OO user~fined names
for the states.

60

Return Value
None.

AWD _storeStateScript
Description

Set the workflow script for a State. The state and the script
text are the parameters to this function. This call must be
made only after a call to AWD_BeginWFDefinition.
Syntax

VOID FAR PASCAL AWD_StoreStateScript(STATE
65 Stateld. LPMEM lpScript, SCRIPTTYPE ScriptType.

LPINT\lpiMemBlockSize. !NT iPositionNotify. LPER­
RORCODE lpError)

5,734,837
55

Input Parameters

Name Type

Stateld STATE

lpScript LPMEM

ScriptType SCRIPITYPE

lpiMemBlockSize LPINT
iPositionNotify INT

Output Parameters

Name

lpError LPERRCODE

SCR1PITYPE

Description

Tbe type of state, e.g., Initiate,
Negotiation, Comp~q, Satisfied,
etc.
Tbe worldlow script associated with
the state. Tbe script is executed when
the workflow transits to the specified
state.
Scripnype is a flag which indicates
the type of script.
Size of the memory block in bytes.
This variab~ identifies the first script
buffer, subsequent buffers and the
last one. It should be set to 0 to
identify first map buffer, 1 to identify
subsequent map buffers.

Description

Error oode returned value

Following are the types of script:

SCRlPITYPE_USER

SCRlPITYPE_USERSYST
SCRlPITYPE_SYST

SCRIPITYPE_NOTIFY

Return Value

None.

A WD _DefineWFAppFields

Description

Define the list of application data fields associated with
the workflow. The field name, type. size, default attributes
and initial value. if any. are specified.

Syntax

VOID FAR PASCAL AWD_DefineWFAppFields(INT
iFields, LPAPPDATAINFO lpBDFieldStruct, LPER­
RCODE lpError)

Input Parameters

Name Type

iFields INT

lpBDFieldS1ruct LPAPPDIUAINFO

Output Parameters

Name Type

lpError LPERRCODE

Description

The number of fields to attach
with the workflow.
A pointer to an array of
APPDATAINFO structures
containing field name, type,
size, default attributes and initial
value, if any.

Description

Error oode returned value

56
APPDATAINFO

Name Type Description

5 szFieldName STRING Name of the application
data

szValue STRING Initial value of the appli-
cation data

AppDataType APPDATATYPE Type of the application data
iSize INT Maxinwm size of the appli-

10 cation data
AppDataAttribute APPDATAAlTRIBUIE Default attribute of the ap-

plication data

APPDATATYPE
15 Following are the types of application data type:

ADT_TEXT
ADT _NUMERIC
ADT_DATE

20 Return Value
None.

AWD_SetDisplayType
Description

Define the field attributes of application data fields asso-
25 ciated with the workflow. The field attributes, Read-only,

Editable. Hidden and MustFill. may be specified for each
Act and/or State for a specific workflow role. A call to
AWD_SetDisplayType can be made only after a calling
AWD _SetWFBoundDataFields.

30 Syntax
VOID FAR PASCAL AWD_SetDisplayType(WFROLE

WFRole, ACTSTATEfYPE ASTindicator, ACTSTATEID
ActOrStateld, INT iFields. LPWFDISPLAYINFO
lpWFDisplaylnfo, LPERRCODE lpError)

35 Input Parameters

Name Type

WFRo~ WFROLE

40

ASTlndicator ACTSTAlETYPE

ActOrStateld ACTSTAIEID

45 iY.elds lNT

lpWFDisplaylnfo LPWPDISPLAYINFO

50

Output Parameters

55

Name

lpError LPERRCODE

60 WFDISPLAYINFO

Name

szWFName STRING
65

Description

Whether the field is accessib~
to Customer, Performer or
Observers.
Fla,g whether the display type
for act or state
ID of the act or state for
which the display type is
specified.
The number of fields to attach
with the workflow.
A pointer to an array of
WFDISPLAYINFO structures
containing field name
and attribute. The attributes
are: Rc~nly, Editable,
Hidden and MustFill.

Description

Error code returned value

Description

N arne of the workflow for
which this display type is
specified.

57
-continued

Name Type

szFieklName S1RING

AppDataAttribute APPDATAATRIBUIE

APPDXI'AJITI'RIBUfE

5.734,837

Description

Name of the application
data for which display type
is specified.
Atttibute for the application
data

58
Output Parameters

Name Type

5 lpError LPERRCODE

Return Value
None.

10
AWD_SetFollowuplnfo
Description

Description

Error code returned value

Following are the types of attribute an application data
can have:

Set up follow-up information associated with the work­
flow. The follow-up time offsets for Completion. Reply and
Reminder are specified.

ADATIR_READONLY
AD.IITfR_HIDDEN

AD.IITfR_MUSTFll.L

AD.IITfR_EDITABLE

Return Value

None.

AWD_SetFormlnfo

Description

A follow-up is sent after the Completion is past due. It is
15 sent at the specified time interval after it is past due. If the

recurring flag for Completion is set, then till Completion,
follow-up messages are sent at every time interval specified.
The maximum number of times a follow-up notification is

20
sent could be set using this call.

A follow-up is sent after the Reply is past due. It is sent
at the specified time interval after it is past due. If the
recurring flag for Reply is set, then till Reply has been sent.
follow-up messages are sent at every time interval specified.

Specify wor.ldlow form names for Customer, Performer
25

and Observer.

The maximum number of times a follow-up notification is
sent could be set using this call.

A reminder may be sent before Completion or Reply is
due. The reminder is sent at a time interval specified before
the event is due. Reminders may be disabled. A reminder is
sent only once.

Syntax

VOID FAR PASCAL AWD_SetFormlnfo(STRING
szCusForm, STRING szPerForm. STRING szObsForm.
STRING szlnitForm. LPERRCODE lpError)

Syntax
30 VOID FAR PASCAL AWD_SetFollowuplnfo(BOOL

Input Parameters

Name Type

szCusForm S1RING
szPerForm SlRING
szObsForm S'IRING
szlnitForm S1RING

Description
35

bPCFollowUpFlag, AWTIME PCompOffset. FOLLOWU­
PRECURRENCE PCompletionRecur. INT
iPCompletionCounter, BOOL bPRFollowUpFlag,

Form name for Customer of workflow

A WTIME PReplyOffset, FOLLOWUPRECURRENCE
bReplyRecur, INT iReplyCounter, BOOL
bCRFollowUpFlag. AWTIME CReplyOffset. FOLLOWU­
PRECURRENCE CReplyRecur. INT iCReplyCounter,
AWTIME RemindOffset, BOOL bRemindFlag. BOOL
bActNotifyFlag, LPERRCODE lpError)

Form name for Performer of work:fiow
Form name for Observer of work:fiow
lnit form name of the work:fiow

Input Parameters

Name Type Description

bPCFollowUpFlag BOOL Performer completion follow-up ftag.
PCompOffset AWTIME A follow-up message is sent at an

interval, specified by PCompOffset,
after performer completion is past due.

bPCFollowUpRecur FOILOWUPRECURRENCE If set, recurring notifications are sent at
every PCompOffset interval as many as
iPCompletionCounter times.

iPCompletionCounter 1NT Nmnber of times the fullow-up
notifications should be sent after
performer completion is past due. If
this parameter is not specified, aiXI
bPCFollowupFlag is set, then
notifications are sent till performer

bPRFollowUpFlag
PReplyOffset

PReplyRecur

completes.
BOOL Performer response follow-up ftag
AWTIME A follow-up message is sent at an

interval, specified by this parameter
after Performer reply is past due.

FOILOWUPRECURRENCE If set, recurring notifications are sent at
every PReplyOffset interval as many as
iPReplyCounter times. If
bPRFollowUpFlag is set '!RUE and
iPReplyCounter is not specified, then

follow-up messages are sent 1mtil
performer replies.

Name

ipReplyCmmter

bCRFollowUpFlag
CReply01fset

bCReplyRccur

iCReplyCounter

Remind Offset

bRemindflag

bActNotifyFlag

5,734,837
59

-continued

l)rpe Description

INT Number of times the follow-up
notifications should be sent after
perfonner Completion is past due. If
this parameter is not specified, and
bPRFollowUpFlag is set, then
notifications are sent till performer
completes.

BOOL Customer response follow-up flag
AWTIME A follow-up message is sent at an

interval, specified by this parameter
after customer reply is past due.

FOLLOWUPRECURRENCE If set, recurring notifications are sent at
every CReplyOffset interval as many as
iCReplyCounter times.

INT Number of times the follow-up
notifications should be sent after
Customer Completion is past due. If
this parameter is not specified, and
bCRFollowUpFlag is set, then
notifications are sent till customer
replies.

A WTIME A reminder is sent at an interval
Remind01fset before Completion or
Reply is due.

BOOL If this flag is enabled, =ninders are
sent. If disabled, no reminders are sent.

BOOL Indicates notification status. If set to
TRUE, notification is enabled else if set
to FALSE, it is disabled.

60

Output Parameters 30 Note: AWD_SetLinklnfo must be called only after all
workflows have been created using AWD
BeginBPDefinition.

Name Description Syntax
VOID FAR PASCAL AWD_SetLinklnfo(STRING

lpError IPERRCODE

AWilME

Error code returned value
35 szFWFName, ACTSTATEfYPE FASTindicator, ACT­

STATEID FActState. S1RING sifWFName, ACTSTATE­
TYPE TASTindicator, ACTSTATEID TActState, LPER­
RCODE lpError)

Name

iYear
iMonth
iDay
iHour
iMimlte
iSecond
TuneJYpe

INT
INT
INT
INT
INT
INT
TIMEfYPE

Description

Year of the time (NOT USED)
Month of the time (NOT USED)
Day of the month or nwnber of days
Hour of the day or nwnber of hours
Nwnber of minutes
Nwnber of seconds
TIMETYPE_ABSOLUIE or
TIMETYPE__OFFSET (Must be
TIMETYPE__OFFSET for this ftmction)

FOLLOWUPRECURRENCE
Following are the type of recurrence for the follow-up

event:
FUP _RECUR_NUI.L
FUP _RECUR_HOURLY
FUP _RECUR_DAll.X
FUP _RECUR_ WEEKLY
FUP _RECUR_MONTHLY

Return Value
None.

AWD_SetLinklnfo
Description

Specify a incoming link to a worldlow. For each link. the
source worldlow name, triggering and triggered information

40

45

50

55

60

is provided. Triggering information constitutes whether the
link is anchored at an act or state and the act/state name. 65

Triggered information constitutes whether the link termi­
nates at an act or state and the act/state name.

Input Parameters

Name 1Jrpe

szFWFName STRING

FASTindicator ACTSTATEI'YPE

FActState ACTSTAJEID

szTWFName STRING

TASTindicator ACTSTAIEIYPE

TActState ACTS TATE

Output Parameters

Name

Return Value
None.

LPERRCODE

AWD_StoreMap
Description

Description

The source or "from" workflow
name.
The name of the workflow where a
link is anchored.
Flag to indicate if it is an Act
or State link at source.
The act or state from where the
link starts.
The destination or "to" work-
flow name. The name of the
worldl.ow to which the link is
targeted
Flag to iD:li<:ate if it is an Act or
State link at destination.
The act or state where the link
ends.

Description

Error code returned value

5,734,837
61

Associates a map file with the specified Business Process.
The map file is inserted as a series of memory blocks. This
function requires the business process context to be setup
before execution.

AWD _AssignToRolelnBP
Description

62

Sets the Organization Role to Identity mapping at the
Business Process level.

Syntax
VOID FAR PASCAL AWD_StoreMap (LPMEM

lpMapMemPtr, LPINT lpiMemBlockSize, INT
iPositionNotify, LPERRCODE lpError)

5 Syntax

Input Parameters

void FAR PASCAL AWD_AssignToRolelnBP (!DENT
lldentity, IDENT lOrgRoleld_ LPERRCODE lpError)
Input Parameters

10 ---
Name Type

lpMapMemPtr LPMEM

lpiMemBlockSize LPINT
iPositionNotify INT

Output Parameters

Name Type

Description

Pointer to a memory block containing
map.
Size of the memozy block in bytes.
This variable identifies the first map
buffer, suboequent map buffers and the
last one. It should be set to 0 to identify
first map buffer, 1 to identify subsequent
map buffers.

Description

15

20

Name

IJdentity
lOrgRoleld

Type

!DENT
!DENT

Output Parameters

Name TYpe

Description

Organization Role id
Identity Id to be mapped with OrgRole

Description

lpError LPERRCODE Error code returned value

Return Value
None.

lpError LPERRCODE Error code returned value 25 AWD _AssignToRoleln WF
Description

Return Value
None.

AWD_GetMap
Description 30

Get the map file associated with the specified Business
Process. The map file is returned as a series of memory
blocks. The memory block pointer and the block size
allocated is passed to this function and the number of bytes
actually written in the memory block is returned. Initially, 35

the caller must pass a zero in the IpOffset variable to indicate
start of the block transfers. The caller will be notified with
a negative value in the IpOffset variable to indicate end of

Sets the Organization Role to Identity mapping at the
Workflow level.
Syntax

void FAR PASCAL AWD_AssignToRoleln WF (!DENT
lldentity, IDENT lOrgRoleld, WFROLE WFRole, LPER­
RCODE lpError)
Input Parameters

Name

lldentity
lOrgRoleld
WFRole

Type

!DENT
!DENT
WFROLE

Description

Identity Id to be mapped with OrgRole.
Organization Role id
Workfiow role of the identity. the block transfers.

Syntax ~ ---
VOID FAR PASCAL AWD_GetMap (STRING

szBPName, LPMEM lpMapMemPtr, LPINT
lpiMemBlockSize, LPLONG lpOffset, LPERRCODE
lpError)
Input Parameters

Name Type Description

szBPName STRING Business Process Name with which to
associate the map.

lpMapMemPtr LPMEM Pointer to a memory block where map can
be returned.

lpiMemBlockSize LPINT Size of the memoty block in bytes.
lpOffset LPLONG Initially, the caller must set this to zero.

Output Parameters

Name Type Description

lpOffset LPLONG Each block transfer changes the value
contained in this variable and the caller can
only check the value returned here. This
will be negative if end is reached.

lpError LPERRCODE Elror code returned value

Return Value
None.

45

50

Output Parameters

Name

lpError

Return Value
None.

Type

LPERRCODE

AWD _GetBPVersion
Description

Description

Error code returned value

Get the current BP Version for the specified BP name. The
function returns the Business Process Version.

55 Syntax

60

VOID FAR PASCAL AWD_GetBPVersion (!DENT
lldentity, STRING szBPName. LPINf lpiVersion, LPER­
RCODE lpError)
Input Parameters

Name Type Description

!Identity !DENT Identity ld to be mapped with OrgRole.
szBPName STRING The name of the BP for which the version

65 number is requested

5,734,837

Output Parameters

Name Type

lpiVersion LPINT

lpError LPERRCODE

Return Value
None.

63

Description

Pointer to an integer which holds the version
numberofBP
Error code returned value

A WD_GetLastModifiedDate
Description

This function returns the last modified date of the Busi­
ness Process specified.
Syntax

VOID FAR PASCAL AWD_GetLastModifiedDate
(STRING szBPName, LPDPJ'ETIMET lpdtLastModified.
LPERRCODE lpError)
Input Parameters

Name Description

szBPName STRING The name of the BP for which the last modified
date is requested

Output Parameters

Name Description

5

EVENT _llCPASTDUE
EVENT_PCDUE
EVENT_CRPASTDUE
EVENT_ACT
EVENT_MAlL

Return Value
None.

64

A WD _SetNotificationStringln WF
10 Description

The notification string for the event is set with respect to
the current workflow context
Syntax

void FAR PASCAL AWD_SetNotificationStringlnWF
15 (NOTIFICATIONTYPE NotificationEvent, STRING

szNotificationString. LPERRCODE lpError)
Input Parameters

20 Name Type Description

25

NotificatiooEvent NOTIFICATIONTYPE This parameter notifies
the event

szNotificationString STRING The notification string.

Output Parameters

Name Type Description

lpdtLastModified LPDATETIMET The pointer to the DATETIMET 30 ---lpError ____ LPE_R_R_c_o_o_E ___ Erro--r-code--re-tumed--vai-ue __

lpError

Return Value
None.

LPERRCODE

type which holds the last
m<Xililed date of the Business
Process.
DATETIMET is a long integer
value where the offset
of the date from 111190 is
seconds is stored
Error code returned value

AWD_SetNotificationStringlnBP
Description

The notification string for the event is set with respect to
the current BP context
Syntax

void FAR PASCAL AWD_setNotificationStringlnBP
(NOTIFICATIONTYPE NotificationEvent, STRING
szNotificationString. LPERRCODE lpError)
Input Parameters

Name Type Description

NotificationEvent NOTIFICATIONTYPE This parameter
notifies the event
'fhc notification szNotificationString STRING
string.

Output Parameters

Name Type Description

lpError LPERRCODE Error code returned value

NariFICliTIONTYPE
The following are the possible notification types:
EVENT _PRPASTDUE

35

40

NariFICXITONTYPE
The following are the possible notification types:

EVENT_PRPASTDUE
EVENT_PCPASTDUE
EVENT_PCDUE
EVENT _CRPASTDUE
EVENT_ACT
EVENT_MAlL

Return Value
None.

AWD_SetCOS
45 Description

This function specifies COS associated with a Work.tlow
of a Business Process. The COS is inserted as a series of
memory blocks. This function requires the Business Process
context and Work.tlow to be setup before execution.

5o Syntax
VOID FAR PASCAL AWD_SetCOS (LPMEM lpCOS,

LPINT lpiMemBlockSize. INT iPositionNotify, LPERROR­
CODE lpError)

55
Input Parameters

Name

lpCOS

60 lpiMemBlockSize

iPositionNotify

65

Description

LPMEM Pointer to a memory chunk which stores
cos.

LPlNT Memory allocated for stori!Js COS in
bytes.

!NT This variable identifies the first COS
buffer, subsequent COS buffers and the
last one. It should be set to 0 to identify
first buffer, 1 to identify subsequent
buffers.

5,734.837
65

Output Parameters

Name '!Ype Description

lpError LPERRCODE Error code retmned value 5

Return Value

None. 10

AWD_GetCOS

Description
15

66
Syntax

VOID FAR PASCAL AWD_AssignObsRolelnWF
(!DENT lOrgRoleld, LPERRCODE lpError)
Input Parameters

Name Description

lOrgRoleld IDENf Organization Role id.

Output Parameters

Name Description

lpError LPERRCODE Error code returncd value

Return Value
None.

The function gets the COS associated with the specified
Workflow of a Business Process. The COS is returned as a
series of memory blocks. The memory block pointer and the
block size allocated is passed to this function and the number
of bytes actually written in the memory block is returned.
For the first call. the contents of the variable lpotfset must

20 AWD _DeleteObsRoleln WF

be set to zero (0). This indicates the start of the memory
block transfers. The caller will be notified with a negative
value in the lpotfset variable to indicate end of the block 25

transfers.

Syntax

VOID FAR PASCAL AWD_GetCOS (STRING 30

szBPName, STRING szWFName. LPMEM lpCOS. LPINT
lpiMemBlockSize. LPLONG lpotfset. LPERRORCODE
lpError)

Input Parameters 35

Name Type Description

szBPName STRING Business Process Name
szWFName STRING WorldlowName 40

lpCOS lPMEM Pointer to a memory chunk which stores
cos.

lpiMemBlockSize lPINT Memory allocated fur storing COS in
bytes.

lpOffset IPLONG Initially, the caller must set this to zero.
45

Output Parameters

Description
Deletes the Observer Organization Role(s) at the Work­

flow level.
Syntax

VOID FAR PASCAL AWD_DeleteObsRolelnWF
(!DENT lOrgRoleld. LPERRCODE lpError)
Input Parameters

Name

lOrgRoleld IDENT

Output Parameters

Name

lpError LPERRCODE

Return Value
None.

AWD_GetBPList
Description

Description

Organization Role id.

Description

Error Code returned value

Returns the list of names of all business processes whose
definition exist in the database.
Syntax

VOID FAR PASCAL AWD_GetBPList (LPINT
--------------------- 50 lpiCount. BOOL bFileOrMemory. LPBPNAME
Name Type Description lpBPNames. STRING szFileName, LPERRCODE lpError)

lpOffset LPLONG Each block transfer changes the value
contained in this variable and the caller can
only check the value returned here. This
will be negative if end is reached.

lpError LPERRCODE Error code retmned value

Return Value

None.

A WD _AssignObsRoleln WF

Description

Sets the Observer Organization Role(s) at the Workflow
level.

Input Parameters

55 Name

lpiCount LPINT
bFileOrMemory BOOL

Description

Number of Business processes to get.
Whether the list is to be put in a file or
in memory.

lpBPNames LPBPNAME If set to NUll-, then lpiCount retmns
number of business processes.

~ ---------------------------
Output Parameters

65 Name

lpiCount

1Ype

LPINT

Description

Number of Business processes.

5,734,837
67 68

-continued -continued

Name Description Name Type Descripti011

---------------------------------lpBPNames LPBPNAME The list of names of all business pro- szBlobFilePath STRING Fik path fur Blob fik.
cesses. 5 iMaxBPinst INT Maximmn number of Business Process

lpError LPERRCODE Error code returned value instances

Return Value
None.

A WD _StoreN otificationScript
Description

Stores the compiled script for a specific type notification
in the definition database.
Syntax

VOID FAR PASCAL AWD_StoreNotificationScript
(NOTIFICATIONTYPE NotificationType, LPMEM
lpScript. LPINT lpiMemBlockSize, INT iPositionNotify,
LPERRCODE lpError)
Input Parameters

Name Type Description

Return Value

10 None.

AWD_BeginTransaction

Description

This routine must be called before any modification to the
15 database. After the call of this routine, several calls can be

made which may modify the database records. At the end.
AWD_EndTransaction can be

20

Syntax

VOID FAR PASCAL AWD_BeginTransaction
(LPERRCODE lpError)
Output Parameters

Notificati0111'ype NOTIFICATIONTYPE Type of ootification
lpScript LPMEM Compiled form of noti.fica- 25

lion script

Name

lpError

Type Description

LPERRCODE Error code returned value
lpiMemBlockSize LPINT Size of this block of

iPositionNotify INT

Output Parameters

Name

lpError LPERRCODE

Return Value
None.

AWD_GetConfiglnfo
Description

memory
Whether this is the first,
middle or last
block.

Description

Error code returned value

Return Value
30 None.

AWD_EndTransaction

Description
This routine is used to end a series of database transac-

35 tions.

Syntax
VOID FAR PASCAL AWD_EndTransaction

bCommitOrRollBack. LPERRCODE lpError)
40 Input Parameters

Name Type Description

(BOOL

This routine returns the details of workflow server's
configuration such as blob file path, database polling 45
interval. maximum number of business processes etc.

bCommitOrRoliBack BOOL Whether all the cJJanses done after the
AWD_BeginTransaction call are to be
retained in the database or n:>t.

Syntax
VOID FAR PASCAL AWD_GetConfiginfo

(LPCONFINFO lpConfiglnfo, LPERRCODE lpError)
Output Parameters

Name Descripti011

LPCONFINFO Returns the configuration details in a

50

Output Parameters

Name Type Description

ipError LPERRCODE Error code returned value

lpConfiglnfo

lpError
CONFINFO structnre. 55 Return Value

LPERRCODE Error code returned.

CONFINFO

Name

szLogFikPath
szLogFikNamc
iTMPolllnte:rval
1M Options
iSCHPollintcrval

Type

STRING
STRING
INT
INT
INT

Description

File path of Log file.
Fik name of Log fik.
Transaction Manager polling interval
Transaction Manager options
Scheduler polling inrerval

60

65

None.

AWD _GetDraftBPDefld

Description
Returns the id of the business process definition in the

database. This id is a unique number to identify a business
process in the database.
Syntax

VOID FAR PASCALAWD_GetDraftBPDe:fld (STRING
szBPName, LPIDEN lpBPDefld, LPBOOL
lpbDraftlsPresent, LPERRCODE lpError)

5,734,837

Input Parameters

Name Type

szBPName STRING

Output Parameters

Name Type

lpBPDefld LPIDEN

lpbDraftlsPresent LPBOOL

lpError LPERRCODE

Return Value

None.

AWD_GetWfDefld

Description

69

Description

Business Process Name for which the
definition id is required.

Description

The id of the business process
returned to the caller.
Renuned value is TRUE if there is a
draft definition present in the
database.
Error code renuned value

70
Output Parameters

Name Type Description

5 lpAppFieldiD LPIDEN The id of the specified application data
is renuned through this parameter.

lpEnor LPERRCODE Error code returned value

Return Value
10 None.

AWD_strcmp
Description

This routine compares two strings. The functionality is
similar to the standard C implementation of strcmp but with

l5 a difference. This routine does case sensitive or insensitive
comparison based on the :Hag set in the aws.ini file.
Syntax

INT FAR PASCALAWD_strcmp (LPSTR strl. LPSTR
str2)

20 Parameters

Name Type Description

Returns the id of a workflow in the database. This id is a 25

unique number to identify a workflow in the database.

strl
str2

LPSTR
LPSTR

pointer to the first string to be c0111pared
pointer to the second string to be compared

Syntax
Return Value

VOID FAR PASCAL AWD_GetWfDefld (STRING
szWFName, LPIDEN lpWFDefld, LPERRCODE lpError)

30

0 If both the strings are same
Negative If strl is less than the str2
Positive If the strl is greater than the str2

Input Parameters

Name Type

szWFName STRING

Output Parameters

Name

lpWfDefld

lpError

Type

LPIDEN

LPERRCODE

Return Value

None.
AWD _GetAppFieldld

Description

Description

Name of the worldlow for which definition
id is required

Description

The definition id of the worldlow is
returned through this parameter.
Error code returned value

Returns the id of the specified application data in the
database. This id is a unique number to identify an appli­
cation data in the database.

Syntax
VOID FAR PASCAL AWD_GetAppFieldld (STRING

szAppDataFieldName, LPIDEN lpAppFieldiD, LPER­
RCODE lpError)

Input Parameters

Name Type Description

szAppDataFieldName STRING Name of the application data whose
id is required

AWD_strncmp
Description

This routine compares some specified number of initial
35 characters of two strings. The functionality is similar to the

standard C implementation of strncmp but with a difference.
This routine does case sensitive or insensitive comparison
based on the :Hag set in the aws.ini file.
Syntax

40 INT FAR PASCALAWD_strncmp (LPSTR strl. LPSTR
str2, INT n)
Parameters

45 Name Type Description

50

s1rl
s1r2
n

LPSTR pointer to the first string to be compared
LPSTR pointer to the second s1ring to be c0111pared
INT the maximwn niDllber of characters to be c0111pared

Return Value

0 If the first n characters of both the s1rings are same
Negative If the first n chanocters of s1rl is less than the first n

55 characters of s1r2
Positive If the first n chanocters of the s1rl is greater than the first n

characters of s1r2

Forms and Views API
60 The Application Builder takes a business process map

definition and. after it is checked for consistency, the Appli­
cation Builder produces an application definition (via the
definitions API). To generate an application, the Application
Builder produces a database description of the business

65 process, which includes workflow descriptions and
relations, business process parameters. follow up
information, application data (along with its visibility and

5,734,837
71

protection description). and workflow language scripts to
drive the flow and actions as defined by the business process
map.

72
the application, If desired. e.g. The user could be presented
with the data sent on the previous calls and prompted to add
those (s)he wants to view.

The Application Builder scans all the worktlows and A workflow-enabled application is usually composed of
fonns (a number of fields to be filled) and views (status
reports and lists of system pending actions). The Application
Builder generates a standard set of Fonns and Views as part
of the application generation process and thus provide the
developer with a starting point for his/her application.

The following description outlines the mechanism
through which the Application Builder produces such fonns
and views for the workflow enabled application.

5 infonns the library about the names of forms selected for
each workflow, a workflow at a time. After that the Appli­
cation Builder calls a routine for each field with all the
details of the visibility of an application data for a given
moment. All these calls are sorted with Roles as the primary

Objective
The Application Builder allows the application designer

to design forms and views to be used with the workflow
enabled application. The application can be of many types
like Notes, Visual Basic. and the like.

10 key and Moments (Acts/States) as the secondary key. All the
calls related to one role are bracketed by FVBeginRole and
FVEndRole. Similarly all the calls of a moment are brack­
eted by FVBeginMoment and FVEndMoment This is the
moment in which the fields are added to the appropriate

15 fonns.

General Mechanism
The Fonns Generation Package is a series of APis with a

standard name.

Application Builder's Calling Mechanism
After verifying that there is no information missing and

the map is consistent. Application Builder will do the
following steps:

1. After successful loading of library. call FVInitAppli­
cation routine so that designer can set some parameters for
forms and views creation. The FVInitApplication routine
returns a handle to its data.

The Fonns Generation Package responds to the Applica- 20
tion Builder APis and generates the fonns needed to imple­
ment the whole set of data as defined by the user. This
process involves creating one or more fonns per workflow,
depending on the flexibility and constraints of the Forms
platform. The Fonns Generation Package minimizes the
number of generated forms from the data received from the
Application Builder.

2. Call FVBeginWorktlowData with a None parameter as
25 a type to identify the start of the Business Process Dam.

3. For each data item of this business process, Call
FVAppData with a null hWorkflow parameter

4. Call FVEndWorldlowData with the handle from step 2. The Application Builder provides all the information
available regarding form names. application data, and field
attributes for different acts/states.

5. For each workflow in the map, Call fVBeginWork-
30 flowData with the workflow type. For each data of this

workflow. Call FV AppData with the h Workflow from FVBe­
ginWorkflowData above

The Application Builder only accepts the input of the
initial form name only for the primary workflow of a
business process. In any other workflows there are only three
form names: Customer. Performer and Observer. The user of
the Application Builder should be able to specify the Form 35

Field Attributes for the initial form in a way that is distin­
guished from any act/state.

When the user selects the Generate Application menu
Item. the Application Builder checks if the specified Fonns
Generation Package library exists. If the library exists. the 40

Application Builder calls the FVInitApplication routine in
the library with some information about the business process
and the database. The FVInitApplication routine returns a
handle that the Application Builder uses in all the subse­
quent calls to the Form Generation Package's routines. This 45

handle is used on the Application Builder side to identify the
form generation instance, and it is not to be used to extract
any information. The library uses this as a space to keep its
state and various variables. After the successful completion
of this process it proceeds to create the application definition 50

in the database via the standard workflow definition APis.
The FVInitApplication routine of the library may or may

not implement some user interface to get the designer's
choice on what (s)he wants. This is also the place when the
library can initialize all fries of the application to be gen- 55
erated e.g., if the application is template based, then the base
template fries should be copied to a selected directory and
the custornization points located.

After the successful return from the FVInitApplication.
the Application Builder calls a set of routines to inform the 60

library about application data of the business process and of
all the workflows. This information can be used by the
library to provide an additional user interface to design
views which can refer to the application data. or simply to
keep track of the data for the fields it will generate.

After that the FVCreateViews routine is called. This
functionality allows the library to add fields to the views of

65

6. Call FVEndWorkflowData
7. Call FVCreateViews.
8. For each workflow
a) Call FVBeginWorkflow with Initial form name if the

workflow is primary or NULL otherwise.
b) In case this is the primary workflow send all the default

role assignments
Call FVBeginDefRoleTold
For every role mapping call fVDefRoleTold
Call FVEndDefRoleTold

c) For Each Workflow Role (Customer/Performer/
Observer)
Call FVBeginRole with role's form name

For Each Act/State
Call FVBeginMoment with role form name again (this

could be used if a form per moment is desired).
For each Form Field Attribute call fVFieldAttribute
Call FVEndMoment
Call FVEndRole
Call FVEndWorkflow
9. If forms were successfully generated Call FVEndAp­

plication.
10. If there was an error call fVGetErrorStr and FVAbor­

tApplication.
Standard Set of API

The following are the routines the forms generation
package should support.

l.FVInitApplication
2. FVGetErrorString
3.FVBeginWorkflowData
4. FVEndWorktlowData
5. FVBeginWorkflow
6. FVEndWorktlow

7. FV AppData

8. FVCreateViews

9. FVBeginRole

10. FVEndRole

11. FVBeginMoment

12. FVEndMoment

13. FVField.Attrib

14. FVEnd.Application

15. FVAboru\pplication

FVInitApplication

Syntax:

73
5,734,837

5

10

74
Return Value:

lpszErrorMsg char far* Null terminated error message. Should
be set to null if library has already
displayed error message to the user.

FVBegin Workflow Data

Syntax:

int FAR PASCAL FVBeginWorkflowData(AppHandle
hApp. char far *pWorkflowName. enum Wfl'ype
eWfl'ype. WorkflowHandle far *hWorkflowData);

Input Parameters:

int FVInitApplication(HWND hParentWindow. int
15

iVersion, hApp AppHandle A long id which identifies the
application char far *pszBPName, char far *pszDBName.

char far *pszUserName. char far *pszPassword.
AppHandle far *hApp);

Input Parameters:

hParen!Window HWND

i'krsion int
pszBPName char far"

pszDBName char far"

pszUserName char far*

pszPassword char far*

Output Parameters:

handle of the parent window
Library routine can use this to implement
its own user interface, get options from
the designer and remember the selected
options for the final fonnslviews
generation process.
version number of the standard set of API
Null terminated name of the business
process
Null terminated name of the database in
which application is to be generated
Null terminated name of the user woo has
logged in the database through
Application Builder
Null terminated password which has been
used by Application Builder to connect to
the database.

hApplication AppHandle far* A long id which builcler can use in rest
of the communication with the library.
Should he null if not successful

Return Value:

int 0 if successful. Builder can use GetErrorStr to
get the detail description of error message.

FVGetErrorStr
Syntax:

pWorldlowName char far•

20 eWfiYpe

Output Parameters:

25
hWorldlowData WorldlowHandle far*

Return Value
30

Null terminated name of the
worldlow
Type of worldlow (Request,
Offer, None)

A long id which identifies
the worldlow

int 0 if successful. Builder can use GetErrorStr to
get the detail description of error message.

35 FVEndWorkflowData

Syntax:

int FAR PASCAL FVEndWorkflowData
(WorkflowHandle h Workflow Data);

40 Input Parameters;

hWorldlowData WorldlowHandle

45
Output Parameters:

None

50
Return Value

int

A long id which identifies
the worldlow

0 if successful. Builder can use GetErrorStr
to get the detail description of error message. char far * FAR PASCAL FVGetErrorStr(AppHandle

55 hApp. int iErrorCode); --------------------
Input Parameters:

hApp AppHandle
iErrorCode int

Output Parameters

None

A long id which identifies the application
Error code returned by the libialy routine. 60

FVAppData
Syntax:

int FAR PASCAL FVAppData(AppHandle hApp. Work­
flow Handle hWorkflowData. AppDatalnfo far
*pAppDatalnfo);

Input Parameters:

65 hApp AppHandle A long id which identifies the
application being generated

5,734.837
75 76

-continued Return Value

hWorldlowData WorldlowHandle A long id which identifies the
worldlow. If 0 this is an applica- iErrorCode int 0 if successful. Builder can use GetErrorStr

to get the detail description of error message. lion data specification.
pAppDatalnfo AppDatainfo far• pointer to a struct with full info 5

about an application's data.

Output Parameters

None

Return Value

iErrorCode int

FVCreate Views

Syntax:

0 if successful. Builder can use GetFzrorStr to
get the detail description of error message.

int FAR PASCAL FVCreateViews(AppHandle hApp.
Viewlnfo far *pViewlnfo);

Input parameters:

hApp AppHandle
pVicwinfu Viewlnfu far*

Output Parameters

None

Return Value

iErrorCode int

FVBegin Workflow

Syntax:

A long id which identifies the application
For future use

0 if successful. Builder can use GetErrorStr to
get the detail description of error message.

int FAR PASCAL FVBeginWorldlow(AppHandle hApp.
char far *pWorkfiowName. enum Wffype eWIType.
FormName pszFormName, WorldlowHandle far
*hWorkfiow);

Input Parameters:

hApp AppHandle A long id which identifies the
application

pWorldlowName char far* Null termina~ name of the worldlow
eWfiYpe WfiYpe 'JYpe of worldlow (Request, Offer,

None)
pszFormName FormName Initial Form name fbr primary

worldlow. NUlL otherwise.

Output Parameters

hWorldlow WorldlowHandle far• A long id which identifies
the worldlow

10

15

FVEndWorkfiow

Syntax:

int FAR PASCAL FVEndWorkfiow(WorkftowHandle
hWorkfiow);

Input Parameters:

hWorldlow WorldlowHandle

Output Parameters:

A long id which identifies
the worldlow

20 ---------------------
None

Return Value

25 ---------------------------------------iErrorCode int 0 if successful. Builder can use GetErrorStr
to get the detail description of error message.

30
FVBeginDefRoleTold

Syntax:

35

40

45

50

55

60

int FAR PASCAL FVBeginDefRoleTold
(WorldlowHandle hWorkfiow);

Input Parameters:

hWorldlow WorldlowHandle

Output Parameters:

None

Return Value

A long id which identifies
the worldlow

iErrorCode int 0 if successful. Builder can use GetErrorStr
to get the detail description of error message.

FVEndDefRoleTold

Syntax:

int FAR PASCAL FVEndDefRoleTold(WorkfiowHandle
hWorkfiow);

Input Parameters:

hWorldlow WorldlowHandle

Output Parameters:

A long id which identifies
the worldlow

65 None

Return Value

iErrmCode

FVDefRoleTold
Syntax:

int

5,734,837
77

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message. 5

Output Parameters

None

Return Value

iErro!Code int

78

int FAR PASCAL FVDefRoleTold(WorkfiowHandle 10
hWorkfiow,

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

char far * IpRoleName,
char far * IpldentityName);

Input Parameters:

hWorldlow Workflow Handle

lpRoleName char far*
lpldentityName char far*

A long id which identifies the
workflow
Name of organizational role
Default identity to perform fbr the

15

FVBeg~oment

Syntax:

int FAR PASCAL FVBeginMoment(long hRole, int
blsAct, ACT eServerld. FormName pszFormName,
MomentHandle far *hMoment);

Input Parameters:
given organizational role. 20

Output Parameters:

None

Return Value

iErro!Code

FVBeginRole
Syntax:

int 0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

int FAR PASCAL FVBeginRole(WorkfiowHandle
hWorkfiow, enum Roles eRole, FormName
pszFormName, RoleHandle far *hRole);

Input Parameters:

hWorkflow Workflow Handle A long id whi<:h identifies the
workflow context.

eRole
pszFormName

enum Roles
FormName

Output Parameters:

hRole RoleHarulle far*

Return Value

iErro!Code

FVEndRole
Syntax:

int

Role Id
Role Form name.

A Handle which can be used in
subsequent calls

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

int FAR PASCAL FVEndRole(RoleHandle hRole);
Input Parameters:

hRole RoleHandle Handle of role whose specification is over

hRole

blsAct
eServerld

Role Handle

int

A long id whi<:h identifies the role
context
Boolean to specify if act or state
Act or State of the moment

25 pszFormName
ACT
FormName Role Form name.

Output Parameters

30 hMoment MomentHamle far* A Handle which can be used in
subsequent calls

Return Value

35
iErro!Code int 0 if successful. Builder can use

GetErrorStr to get the detail description
of error message.

40 FVEndMoment
Syntax:

45

50

55

60

65

int FAR PASCAL FVEndMoment(MomentHandle
hMoment);

Input Parameters:

bMoment MomentHaOOle Handle of moment whose
specification is over

Output Parameters

None

Return Value

iErro!Code int

FVFieldAttribute
Syntax:

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

int FAR PASCAL FVFieldAttribute(MomentHandle
hMoment, AppDatalnfo far *pAppDatalnfo, FieldAt­
triblnfo far * pFieldAttriblnfo);

5,734,837
79

Input Parameters:

hMoment MomentHandle Handle of the moment for which
this field attribute is.

pAppDatalnfo AppDatainfo far* pointer to sttuct containing full
info about application data

pFieldAttriblnfu FieldAttriblnfo far• pointer to structure containing
information about the moment
specific visibility.

Output Parameters

None

Return Value

iErrmCode int

FVEnd.Application

Syntax:

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

int FAR PASCAL FVEnd.Application(AppHandle hApp);
Input Parameters:

bApp AppHandle

Output Parameters

None

Return Value

iErro.Code int

FV AbortApplication

Syntax:

A long id which identifies the
application. This id will become
invalid if this routines terminates
successfully.

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

int FAR PASCAL FVAbortApplication(AppHandle
hApp);

Input Parameters:

hApp AppHandle

Output Parameters

None

A long id which identifies the
application. This id will become
invalid if this routines terminates
successfully.

5

Return Value

iErro!Code

Data Structures

int

80

0 if successful. Builder can use
GetErrorStr to get the detail description
of error message.

This section is intended to give a complete view of the

10 data structures used in the API calls other than those defined
in the Windows APL This includes both the constant values
and structure contents.
Enumeration Types

Enumeration data types are given instead of symbolic

15
defines. The definition is as follows:

Workflow Role Types

20

25

Workflow roles are those that appear in the workflow.
These are defined as follows:

typedef enum Roles { AnyRole. Customer, Performer.
Observer};

Customer. Performer, Ovserver workflow roles are used to
mean that a given role information is about to be passed.
AnyRole is used whenever the role information is either
meaningless or applies to any of the three previous rules.

Workflow Types
Workflow Types are the standard types a given workflow

can have.
typedef en urn Wfl'ype {Offer, Request, None } ;
None is used when Business Process Data is about to be

30 sent.
Visibility/Protection of fields
The visibility and protection of a given field are used

when an form field definition is sent and specifies the way
a specific field should appear in the form. This is usually

35 stored per act/state.
typedef enum Field.Attr {Hide. Readonly. Editable. Mus­

tfill };
Application Data Types
The following data types are the ones that the Application

40 Builder manages at the time.
typedef enum AppDataType {Undefined, Text. Numeric,

Date};
The Undefined type is not currently sent.

Structures
45 Following are the data structures used to pass information

to the Forms Generation Package.
Application Data Information-AppDatalnfo

50 struct AppDatalnfo {
char far•

55

};

60 Name

65

enum AppData'JYpe
short int
char
AWTIME
DWORD
HANDLE

char far"

Name,
'JYpe;
MaxLen;
lnitia!Val[256);
Tune Val;
dwOSFieldLength;
hOSField;

Contains the name of the
application data field The
worldiow name (empty in the
case of a business process
application data) and this name
define uniquely an application
data. Tile worldlow coutext is
set via FVStartWorldlow.

'!Ype

MaxLen

htitia!Val

TilDe Val

dwOsFieldLength

5,734,837
81

-continued

enmn AppData'!Ype

soort int

char [256]

AWIIME

DWORD

Defines the type of this
application data. See definition
above.
Defines the maximum allowed
length of the fu:ld. This value
varies depending on the 1Ype
valuc.
Contains tbe default/initial valuc
of the field.
If 1Ype is date then this variable
contains the representation in
date funnat, as specified in the
Workflow Client Libraries.
Contains tbe length of the
memory block below.

5

10

82
-continued

FVERR....DB_NOT_OPENED

FVERR_MAX_FIELDS_REACHED

FVERR_FORM_J;XISTS

We claim:

stopped.
The database connection (if any)
cannot be performed. Execution
is stopped
The number of accepted fields
has been exceeded. Execution is
stopped.
The form to be created is already
prcseut. Execution continucs.

hOSField HANDLE Memory block of the field as got 15
from tbe import functionality.

1. A computer based system for building business process
applications, said system including a computer which
executes a program, said program when executed by said
computer comprising:

May be NUlL. It is only
defined in the case of a custom
Application Builder (as in the
case of the Application Builder
fur Notes) in which the Import
fields functionality can obtain
such information.

Field Attribute Jnformation-Field.Attriblnfo

20

a) means for creating a set of business process definitions
for storage in a database and a set of business process
applications for execution by a processor, said business
process definitions and said business process applica­
tions for use with a business process and its associated
worldlows,

b) means for generating:

Usually the function calls that use this structure also pass
AppDataJnfo 25

i) a component representation of at least a predeter­
mined subset of said business process in terms of its
worldlows, and

ii) at least a predetermined subset of links between said
worldlows.

struct FieldAttriblnfu {
const char fur*
cllUlll FieldAttr

};

OwnerWf;
eDataAttrib;

II name of BD owner
II Field attribute

OwnerWf char far* Contains the name of the
workflow that owns this
application data. This value may
be different from tbe context set
in FVBeginWorkftow given the
visibility rules fur application data
variables.

eDataAttrib

Defined Types
AppHandle

enmn FieldAttr Defines the type of this
application data. See definitbn
above.

This is used as a handle to an instance of an Application
and is defined as a LONG.

Workflow Handle
This is used as a handle to an instance of a Workflow and

is defined as a LONG.
Role Handle
This is used as a handle to an instance of an Organiza­

tional Role and is defined as a WNG.
MomentHandle

30

2. The system defined by claim 1 wherein each of said
workflows has four phases.

3. The system defined by claim 1 wherein said links are
defined by a predetermined set of map rules.

4. The system defined by claim 1 wherein said component
representation of said predetermined subset of said business
process in terms of its worldlows and links between said

35 workflows is represented as at least one image displayed on
a video display device.

5. The system defined by claim 1 wherein said links each
have a corresponding worldlow script

6. The system defined by claim 5 wherein each of said
40 workflow scripts upon execution causes a workflow server

to take a predetermined action.
7. The system defined by claim 1 wherein each of said

worldlows include at least one act and at least one state.
8. The system defined by claim 7 wherein each of said

45 workflow scripts upon execution causes a worldlow server
to take a predetermined action.

9. The system defined by claim 7 wherein the worldlow
states are at least one of Preparation, Negotiation,
Performance, Acceptance, Satisfied, Negotiation, Cancelled,

so Declined and Revoked.
10. The system defined by claim 7 wherein a workflow is

one of a request worldlow and an offer worldlow and the
predetermined workflow acts for request workflows are at
least one of:

This is used as a handle to an instance of an Moment (Act 55
or State) and is defined as a LONG. Activate

Initiate
Request
Agree

FormName
This is used as the name of a form and is defined as a char

far*.
Error Codes

The Forms Generation Package should return the follow­
ing errors as appropriate, whenever an error condition is
found. A return code of zero means no error.

FVERR._LOW_MEMORY A low memory condition has
been found. Execution is

60 Counteroffer
Report Completion
Decline
Declare Satisfaction
Cancel

65 Revoke
Decline To Accept
Agree To Counteroffer

5~734,837

Counter
Decline Counteroffer
Comment

83

and wherein the predetermined workflow states for offer
workflows are at least one of:

Activate
Initiate
Offer

5

84
25. The system defined by claim 1 further comprising:
tool means for drawing, filing, editing, printing and view­

ing said predetermined subset of said business process
and its associated workflows, and business process
application data.

26. The system defined by claim 25 wherein said tool
means includes a testing tool which analyses all workflows
in the predetermined subset of the business process and
generates a report specifying workflows which have at least

Agree to Offer
Counter
Report Completion
Decline Offer
Declare Satisfaction
Cancel

10 one of roles, conditions of satisfaction, cycle times and
workflow name missing.

Revoke 15

27. The system defined by claim 22 wherein said business
process application data includes attributes, forms, cycle
times. cost and value, roles and identities.

28. The system defined by claim 27 wherein said forms
are associated with particular workflows and provide to a
user fields to enter workflow data.

Decline To Accept
Agree To Counter
CounterOffer
Decline Counter
Comment

11. The system defined by claim 1 further comprising
checking means for performing consistency checking to
assist in the creation of proper business process maps.

2!}. The system defined by claim 28 wherein said fields,
include at least one of workflow name, customer. performer,

20 conditions of satisfaction, costs and values. cycle times,
application data. forms and type of workflow.

30. The system defined by claim 1 further comprising
scripting means for enabling a user of the system to specify
workflow scripts associated with at least one of an act and 12. The system defined by claim 11 wherein said checking

means includes a set of business process map rules which are
applied to each workflow in said predetermined subset of
said business process and are used to determine consistency
of said predetermined subset of said business process.

25 a state in a workflow and for producing system generated
scripts which upon execution implement the links between
the workflows of the predetermined subset of the business
process.

13. The system defined by claim 1 further comprising
means for performing a consistency check of said compo­
nent representation of said predetermined subset of said 30

business process to ensure that proper business process
definitions are created.

14. The system defined by claim 1 further comprising
means for performing a consistency check of said compo­
nent representation of said predetermined subset of said 35

business process to ensure that proper business process
applications are created.

15. The system defined by claim 1 wherein each business
process application is a workflow enabled application
including forms and views.

16. The system defined by claim 15 wherein said views
provide predetermined status reports and lists of pending
system actions.

40

17. The system defined by claim 15 wherein said forms
are associated with particular workflows and provide to a 45

user fields to enter workflow data.
18. The system defined by claim 17 wherein said fields,

include at least one of workflow name, customer. performer,
conditions of satisfaction. costs and values, cycle times,
application data. forms and type of workflow.

1!}. The system defined by claim 1 further comprising
means for automating the generation of workflow scripts
used by said business process applications.

50

20. The system defined by claim 19 wherein said scripts
are generated from said workflows based upon a set of 55

predetermined map rules.
21. The system defined by claim 19 wherein said scripts

are generated from said links based upon a set of predeter­
mined map rules.

22. The system defined by claim 19 wherein each of said 60

workflow scripts upon execution causes a workflow server
to take a predetermined action.

23. The system defined by claim 1 wherein said work­
flows include roles and identities.

24. The system defined by claim 1 wherein said compo- 65
nent representation of said predetermined subset of said
business process is a business process map.

31. The system defined by claim 24 wherein each of said
workflow scripts upon execution causes a workflow server
to take a predetermined action.

32. A method for building business process applications
utilizing a computer which executes a program. said method
comprising the steps of:

a) creating a set of business process definitions for storage
in a database and a set of business process applications
for execution by a processor. said business process
definitions and said business process applications for
use with a business process and its associated
workflows,

b) generating:
i) a component representation of at least a predeter­

mined subset of said business process in terms of its
workflows, and

ii) at least a predetermined subset of links between said
workflows.

33. The method defined by claim 32 further comprising
the step of performing consistency checking to assist in the
creation of proper business process maps.

34. The system defined by claim 32 further comprising the
step of performing a consistency check of said component
representation of said predetermined subset of said business
process to ensure that proper business process definitions are
created.

35. The method defined by claim 32 further comprising
the step of performing a consistency check of said compo­
nent representation of said predetermined subset of said
business process to ensure that proper business process
applications are created.

36. The method defined by claim 32 wherein each busi­
ness process application is a workflow enabled application
including forms and views.

37. The method defined by claim 32 further comprising
the step of automating the generation of workflow scripts
used by said business process applications.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 5, 734,837

DATED March 31, 1998
INVENTOR(S) : Flores et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

In column 71, at line 55, please delete "fries" and insert -~files.--.

Attest:

Attesting Officer

Signed and Sealed this

Sixth Day of July, 1999

Q. TODD DICKINSON

Acting Commissf<mer o{ Patent.~ and Tradt'mark.~

