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[57] ABSTRACT 

A memory 601 comprising a plurality of static random 
access cell arrays 701, and a plurality of sets of latches 703 
each for storing address bits associated with data stored in a 
corresponding one of the static random access cell arrays 
701. Bit comparison circuitry 503 compares a received 
address bit with an address bit stored in each of the plurality 
of sets of latches 703 and enables access to a selected one of 
the static random cell arrays 701 corresponding to the set of 
latches 703 storing an address bit matching the received bit. 

27 Claims, 8 Drawing Sheets 
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DRAM WITH INTEGRAL SRAM 
COMPRISING A PLURALITY OF SETS OF 
ADDRESS LATCHES EACH ASSOCIATED 
WITH ONE OF A PLURALITY OF SRAM 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application for patent is a continuation-in-part of 
DRAM WITH INTEGRAL SRAM AND SYSTEMS AND 
METHODS USING THE SAME, U.S. patent application 
Ser. No. 08/816,663 (Attorney Docket No. 17200-P00lUS), 
filed on Mar. 13, 1997. 

TECHNICAL FIELD OF THE INVENTION 

The present invention relates in general to electronic 
memories and in particular to a dynamic random access 
memory (DRAM) with integral static random access 
memory (SRAM), and systems and methods using the same. 

BACKGROUND OF THE INVENTION 

Currently available dynamic random access memories 
(DRAMs) are generally based upon architectures which 
share the following characteristics. First, the typical general 
purpose DRAM has a single data port for writing and 
reading data to and from addressed storage locations ("dual 
ported" DRAMs are available which provide two data ports, 
typically one random and one serial port, however, these 
devices are normally limited to special memory 
applications). Second, data writes and reads are only made 
on a location by location basis, with each location typically 
being one bit, one byte or one word wide. Specifically, in a 
"random access mode", an access (read or write) is made to 

2 
A CPU typically exchanges data with memory in terms of 

"cache lines." Cache lines are a unit of data by which 
operandi and results can be stored or retrieved from memory 
and operated on by the CPU in a coherent fashion. Cache 

5 lines accesses are made both to cache and to system 
memory. 

In systems operating with CPUs having a 32-bit data 1/0 
port, a cache line is normally eight (8) 32-bit words or 256 
bits. In the foreseeable future, data 1/0 ports will be 64 bits 

10 wide, and cache lines may be comprised of 16 64-bit data 
words or 1024 bits in length. Typically, the CPU may read 
a cache line from a corresponding location in memory, 
perform an arithmetic or logic operation on that data and 
then write the result back to the same location in system or 

15 cache memory. A given location for a cache line can be in 
one or more physical rows in memory and therefore an 
access to cache line location may require multiple /RAS 
cycles. In any event, the CPU, depending on the operating 
system running, can generally access any location in 

20 memory for storing and retrieving operandi and results. 

Often situations arise when the results from a given 
operation exceed the length of the cache line and therefore 
data can no longer be processed as coherent cache line units. 
For example, if the CPU performs a n by n bit integer 

25 multiplication, the result could be a maximum of 2n bits. In 
other words, while each operand can be retrieved from 
memory as a cache line, the result exceeds the length of a 
single cache line and coherency is lost. Similarly, when 
operandi containing decimal points or fractions are 

30 involved, exceeding the length of a cache line can also take 
place. In the case of fractions, long strings of bits, which 
exceed cache line length, may be required to minimize 
rounding errors and therefor increase the precision of the a single location per row address strobe (/RAS) active cycle 

and in a "page mode" an access is made to a single location 35 
per column address strobe (/CAS) or master clock cycle of 
the row addressed during the given /RAS cycle. Third, no 
method has generally been established to handle contention 
problems which arise when simultaneous requests for access 
are made to the same DRAM unit. Current techniques for 
handling contention problems depend on the DRAM and/or 
system architecture selected by the designer and range, for 
example, from "uniform memory-noncontention" methods 

calculations. 

In any computing system, and in particular multiprocess­
ing systems, the ability to operate on data as cache lines 
substantially improves operating efficiency. Thus, when a 
cache line is exceeded during an operation, system perfor-

40 mance is reduced. Specifically, when a cache line is 
exceeded, the CPU must either access that data as two cache 
lines or as a cache line and additional discrete words or 
doublewords of data. As a result, extra memory cycles are 
required to execute an operation and the transfer of data to "non-uniform memory access" (NUMA) methods. 

Similarly, the system architectures of personal computers 
(PCs) generally share a number of common features. For 
example, the vast majority of today's PCs are built around 

45 
within the system is more difficult because the necessary 
data is no longer in proper cache line data structures. 

a single central processing unit (CPU), which is the system 
"master." All other subsystems, such as the display 
controller, disk drive controller, and audio controller then 50 

operate as slaves to the CPU. This master/slave organization 

Thus, the need has arisen for new memory and system 
architectures in which operations can be performed on 
coherent units of data, even if cache lengths are exceeded. 

SUMMARY OF THE INVENTION 

A memory is disclosed comprising a plurality of static 
random access memory cell arrays and their plurality of sets 
of latches, each for storing address bits associated with data 

is normally used no matter whether the CPU is a complex 
instruction set computer (CISC), reduced instruction set 
computer (RISC), Silicon Graphics MIPS device or Digital 
Equipment ALPHA device. 55 stored in a corresponding one of the static random access 

cell arrays. Bit comparison circuitry compares a received 
address bit with an address bit stored in each of the plurality 
of sets of latches and enabling access to a selected one of the 

Present memory and PC architectures, such as those 
discussed above, are rapidly becoming inadequate for con­
structing the fast machines with substantial storage capacity 
required to run increasingly sophisticated application soft­
ware. The problem has already been addressed, at least in 60 

part, in the mainframe and server environments by the use 
of multiprocessor (multiprocessing) architectures. Multipro­
cessing architectures however are not yet cost effective for 
application in the PC environment. Furthermore, memory 
contention and bus contention are still significant concerns 65 

in any multiprocessing system, and in particular in a mul­
tiprocessing PC environment. 

static cell arrays corresponding to the set of latches storing 
an address bit matching the received bits. 

A method is provided for accessing blocks of data in a 
memory having a plurality of registers and a memory array. 
An address is received through an address port and paired 
with addresses previously stored in each of a plurality of 
latches. When a match occurs between the received address 
and a matching address stored in one of the latches, a register 
corresponding to the latches storing the matching address is 



5,890,195 
3 4 

pre-stored data is substantially increased. The principles of 
the present invention also allow for high speed accesses 
directly from the registers, in addition to traditional accesses 
to the DRAM cell array. 

The foregoing has outlined rather broadly the features and 
technical advantages of the present invention in order that 
the detailed description of the invention that follows may be 
better understood. Additional features and advantages of the 
invention will be described hereinafter which form the 

accessed through a data port. When a match does not occur 
between the received address and an address stored in one of 
the latches, the following substeps are performed: data is 
exchanged between a location in the memory array 
addressed by the received address and a selected one of the 5 
registers; and storing the received address in one of the 
latches corresponding to the selected register. The received 
address is modified to generate a modified address. Data is 
then exchanged between a location in the memory array 
addressed by the modified address and a second selected one 

10 subject of the claims of the invention. It should be appre­
ciated by those skilled in the art that the conception and the 
specific embodiment disclosed may be readily utilized as a 
basis for modifying or designing other structures for carry­
ing out the same purposes of the present invention. It should 

of the registers while the modified address is stored in the 
latches corresponding to the second selected register. 

A memory is also disclosed comprising a plurality of 
banks, including first and second arrays of static random 
access memory cells, first and second latches, address com­
pare circuitry and a row address latch. The first latch is 
provided for storing a plurality of address bits accessing 
associated data stored in the first array of static cells. The 
second latch is provided for storing a plurality of address bits 
accessing associated data stored in the second array of static 20 
cells. Address comparison circuitry is provided for compar­
ing first selected bits of a received address with address bits 
stored in the first and second latches and selectively enabling 
access to the first and second arrays in response. A row 
address latch stores a received address and increment and 25 
decrement circuitry allows for selective modification of an 
address stored in the address latch. A global row assignor is 
provided for selecting a bank for access in response to 
second selected bits of the received address. 

15 also be realized by those skilled in the art that such equiva­
lent constructions do not depart from the spirit and scope of 
the invention as set forth in the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

For a more complete understanding of the present 
invention, and the advantages thereof, reference is now 
made to the following descriptions taken in conjunction with 
the accompanying drawings, in which: 

FIGS. lA and lB are block diagrams respectively depict­
ing two basic system architectures typical of those found in 
personal computers (PCs); 

FIG. 2A depicts a multiprocessing system in which each 
processor operates in conjunction with private system 
memory; 

FIG. 2B depicts a multiprocessing system in which each 
processor operates in conjunction with a public system 
memory; 

FIG. 2C depicts a multiprocessing system in which each 
processor operates in conjunction with both private memory 

35 and public system memory; 

A method is also disclosed for operating a memory having 30 

a plurality of banks, each bank including a dynamic random 
access memory cell array and first and second static random 
access memory cell arrays. A row address is received and a 
bit decoded to select a first bank for access. Selected bits of 
the received row address are compared with bits stored in 
first and second latches in the first bank, the first latch 
holding an address associated with data stored in the first 
static array and the second latch holding an address associ­
ated with data stored in the second static array of the first 
bank. When a match occurs between the selected bits of the 
received row address and the bits stored in the first latch, 
these subsets are performed: the first static array of the first 
bank is accessed; the received row address is modified to 
generate a second row address; and a second bank loads a 
selected one of the first and second static arrays with data 45 

from the dynamic array using the second row address. When 

40 

FIG. 3A is a diagram illustrating a "loosely coupled" 
multiprocessing architecture in which each processing node 
maintains a dedicated copy of the operating system and a 
dedicated copy of the applications program; 

FIG. 3B depicts a "tightly coupled" multiprocessing sys-
tem in which all processing nodes share a single copy of the 
operating system and a single copy of the applications 
program; 

FIG. 3C depicts a diagram of a "snugly coupled" multi­
processing system in which each processing node maintains 
a dedicated copy of the operating system and all nodes share 
a single copy of the applications program; 

FIG. 4 illustrates a functional block diagram of a dynamic 

50 random access memory device according to one embodi­
ment of the principles of the present invention; 

a match does not occur between the selected bits of the 
received row address and the bits stored in the first and 
second latches of the first bank, these substeps are per­
formed: in the first bank, loading a selected one of the first 
and second static arrays with data from the dynamic array 
using the received row address; the received row address is 
modified to generate a second row address; and, in the 
second bank, selected one of the first and second static 
arrays is loaded with data from the dynamic array using the 55 

second row address. 
Among the many advantages, the principles of the present 

invention allow for the efficient accessing of blocks of data 
as required by the CPU and/or the operating system. For 
example, in a four bank embodiment, with two registers per 60 

bank, a contiguous block of eight rows of data and associ­
ated addresses can be stored in register for fast access. 
Typically, the CPU accesses data within such spatial or 
temporal blocks. Thus, when the CPU requires data from 
memory, and that data is already stored in register, data with 65 

a given spatial or temporal locality is also most likely 
already in a register. In this fashion, the number of "hits" to 

FIG. 5 depicts a more detailed diagram emphasizing the 
data and address routing circuitry of the memory shown in 
FIG. 4; 

FIG. 6 depicts a second dynamic random access memory 
device according to the principles of the present invention; 

FIG. 7 depicts a selected SRAM cache depicted in FIG. 6; 
FIG. 8 is a diagram of the bitfields of the mode register 

shown in FIG. 6; and 
FIGS. 9Aand 9B illustrate respective timing diagrams for 

exemplary read and write operations to the memory of FIG. 
7. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The principles of the present invention and their advan­
tages are best understood by referring to the illustrated 
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embodiment depicted in FIGS. 1-9 of the drawings, in 
which like numbers designate like parts. 

6 
signals required for DRAMs in the system memory or cache; 
and controls general management transactions. The data 
intensive chip(s) generally: interfaces CPU 101 with the data 
bus 102; issues cycle completion responses; may abort 

FIGS. lA and lB are block diagrams respectively depict­
ing two basic system architectures lO0A and 100B typical of 
those found in personal computers (PCs). While numerous 
variations on these basic architectures exist, FIGS. lA and 
lB are suitable for describing the basic structure and opera­
tion of most PCs. 

5 operations if their cycles are incomplete; and arbitrates for 
the data path of bus 102. 

Both systems lO0A and 100B include a single central 
processing unit 101, CPU local data bus 102, CPU local 10 

address bus 103, external (L2) cache 104, core logic/ 
memory controller 105, and system memory 106. In system 
lO0A, the peripherals 108 are coupled directly to core 
logic/memory controller 105 via a bus 107. Bus 107 in this 
case is preferably a peripheral controller interface (PCI) bus, 15 

although alternatively it could be an ISA, general, or special 
purpose bus, as known in the art. In system 100B, core 
logic/memory controller 105 is again coupled to bus 107. A 
PCI bus bridge then interfaces bus 107 with a PCI bus 110, 
to which the peripherals 111 couple. An additional bus 112, 20 

which may be a ISA, PCI, VESA, IDE, general, or special 
purpose bus, is provided for access to peripherals 111 from 
an external device or system (not shown). 

In single CPU systems lO0A and 100B, CPU 101 is the 
"master" which, in combination with the operating system 25 

and applications software, controls the overall operation of 
system 100. Among other things, CPU 101 performs various 
data processing functions including numerical and word 
processing, generates graphics data, and performs overall 
system management. CPU 101 may be, for example, a 30 

complex instruction set computer (CISC), such as an Intel 
Pentium™ class microprocessor, a reduced instruction set 
computer (RISC), such as a Apple Power PC microprocessor, 
or a very long instruction word (VLIW) machine. 

CPU 101 communicates with the remainder of system 100 
via CPU local address and data buses 102 and 103, each of 
which may be, for example, a special bus, or a general bus, 
as known in the art. 

35 

CPU 101 can directly communicate with core logic/ 
memory controller 103 or through an external (L2) cache 
104. L2 cache 104 may be, for example, a 256 KByte fast 
SRAM device(s). Typically, the CPU also maintains up to 16 
kilobytes of on-chip (Ll) cache. 

PCI bus bridges, such as PCI bus bridge 109, are also well 
known to those skilled in the art. In the typical PC, the CPU 
is the bus master for the entire system and hence devices 
such as PCI bus bridge are slave devices which operate 
under command of the CPU. 

Peripherals 107/111 may include a display controller and 
associated frame buffer, floppy drive controller, disk driver 
controller, and/or modem, to name only a few options. 

The principles of the present invention may also be 
embodied in multiprocessing devices and systems. Although 
a number multiprocessing architectures exist to which the 
principles of the present invention can be applied, FIGS. 2A, 
2B and 2C respectively depict exemplary multiprocessor 
architectures 200A, 200B and 200C for discussion purposes. 

Multiprocessing system 200A is based upon n number of 
CPUs 201. Each CPU 201 is associated with a dedicated 
cache 202 and dedicated (private) system memory 203. 
Common bus 204 allows a given CPU to exchange infor­
mation with peripherals, including mass storage subsystems 
204, such as disk drives, tape drives and cartridge units, and 
Input/Output subsystems 206, such as printers, displays and 
keyboards. 

The memory organization of system 200A is typically 
categorized under the "no read/write memory access" 
(NORMA) paradigm. In NORMA based systems, the pro­
cessors have no access to a common (public) memory and all 
data sharing between processors occurs over communica-

4o tions links. NORMA typically is used in fully distributed Core logic/memory controller 105, under the direction of 
CPU 101, controls the exchange of data, addresses, control 
signals and instructions between CPU 101, system memory 
105, and peripherals 108/111 via bus 107 and/or PCI bus 
bridge 109. Although the core logic/memory controller 
allows tasks to be shifted from the CPU, thereby allowing 45 
the CPU to attend to other CPU-intensive tasks, the CPU can 
always override core logic/memory controller 105 to initiate 
execution of a higher priority task. 

Core logic and memory controllers are widely available in 
the PC industry and their selection and application well 
known by those skilled in the art. The memory controller can 
be either a separate device or incorporated into the same chip 
set as the core logic. The memory controller is generally 
responsible for generating the memory clocks and control 
signals such as /RAS, /CAS, /WE (write enable), /OE 
( output enable) and bank select, and monitors and controls 
cell refresh. The memory controller may also have some 
address generation capability for accessing sequences of 
pages. 

systems. 

System 200B also primarily includes n number of CPUs 
201, each with an associated cache 202, and coupled to the 
peripheral devices through a common bus 204. In the case 
of system 200B, system memory 207 is also coupled to bus 
204 and is shared by all the CPUs 201. A second bus 208 is 
provided as a second path for accessing system memory 207. 

The memory architecture of system 200B is typically 

50 
designated as a uniform memory access (UMA) architec­
ture. Under the UMA paradigm, all processors have equal 
access to system memory and all processors have local 
cache. The uniform memory access architecture typically 
provides the fastest possible interaction between processors 

55 
and is the common architecture used in PCs, work stations, 
and other desktop computing devices. UMA based systems 
are often referred to as "symmetric-multiprocessing" sys­
tems. 

The core logic is typically comprised of a chip-set, with 60 

one or more chips typically being "address and system 
controller intensive" and one or more chips typically being 
"data intensive." Among other things, the address intensive 
chip(s): interfaces CPU 101 with address bus 103; maintains 
cache memory, including the cache tags, sets associative 65 

cache tags and other data necessary to insure cache coher­
ency; performs cache "bus snooping"; generates the control 

System 200C is a system in which both private and system 
memory are provided. Specifically, in addition to dedicated 
cache 202, each CPU 201 is also associated with private 
memory 209. Each CPU is further connected by bus 204 to 
a shared system memory 210. 

The memory architecture of system 200C falls under the 
non-uniform memory access (NUMA) paradigm. Under the 
NUMA paradigm, each processor has a private memory and 
additionally shares system memory with the other proces-
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sors in the system. One difficulty in a NUMA based system 
is the fact that the access times for the private and system 
memories may be different creating timing problems. 

At the highest system level, there are a number of ways 
to implement the hardware architectures shown in FIGS. 2A, 
2B and 2C in a complete hardware/software system. Three 
such systems are shown in FIGS. 3A-3C, respectively. 

FIG. 3A is a diagram illustrating a "loosely coupled" 
multiprocessing architecture. In the loosely coupled 
architecture, each processing node 300 maintains a dedi­
cated copy of both the operating system and the application 
programs. Loosely coupled architectures, such as that shown 
in FIG. 3A, are used often in embedded systems and in 
real-time systems in which tasks must be partitioned to 
different processing nodes for synchronization purposes. 
Embedded systems include those in which the CPU is 
fabricated on the same chip as logic, memory, a signal 
processor, or the like. High speed interconnects are used to 
share data and pass messages between processing nodes 
300. While loosely coupled systems are more fault and error 
tolerant, their software programming is most often highly 
complex. 

FIG. 3B depicts a "tightly coupled" system. In this case, 
a single copy of the operating system and a single copy of 
the application program are shared and executed by a single 
set of processors. Advantageously, writing software pro­
grams for a tightly coupled system is normally simpler than 
for writing programs to a loosely coupled system. However, 
tightly coupled systems, based only on single copies of the 
application programs and operating system, are less tolerant 
to errors and failures than the loosely coupled systems. 

FIG. 3C is a diagram of a "snugly coupled" system in 
which each processing node 300 maintains a dedicated copy 
of the operating system and all nodes share a single copy of 
the applications program. The snugly coupled variation is a 
hybrid which provides the tolerance to failure/errors found 
in loosely coupled systems while still providing the simpler 
program found in tightly coupled systems. 

Generally, under any of the UMA, NUMA or NORMA 
paradigms, the system will act differently depending upon 
the type of processor employed. For example, a CISC CPU 
may be "latency" dominated while a digital signal processor 
(DSP) based system may be "dataflow" dominated. Further, 
pipelined processing algorithms typically are dataflow 
intensive, since the processors perform operations on 
streams of data received from other processors in the system 
and then pass the results on to other processors. 

There are major challenges which must be addressed in 
the design of almost any multiprocessing system. First, if an 
architecture, such as those used in system 200B or system 
200C, in which a single system memory system is shared by 
multiple processors, the issue of memory contention must be 
addressed; a technique must be developed to handle the 
situation in which several processors attempt to simulta­
neously access the shared memory. This problem is com­
pounded by the fact that the contention issues must be dealt 
with from design to design, since different processors inter­
face with memory differently. For example, a RISC proces­
sor requires substantial memory space while a CISC pro­
cessor requires substantial register space. 

In a memory device or subsystem with a single data 
input/output port and a single address port, contention 
problems can be solved by "memory locking." In this case, 
while one CPU (or controller) is accessing a given memory 
device or subsystem, the other CPU (controller) is "locked 
out" and cannot access that same device/subsystem. 

8 
Memory locking is a memory management task which may 
be performed by the memory management unit (MMU) 
on-board the CPUs themselves or by a stand-alone device or 
subsystem. In any event, memory locking reduces the effi-

5 ciency which multiprocessing was intended to increase, 
since during a contention situation, at least one processor 
must wait to access data. 

Another major challenge is the software design. Symmet­
ric multiprocessing operating systems are preferred, since 

10 this type of operating system is capable of seamlessly 
passing application programs to the CPUs as they become 
available. As discussed above, the selection of between 
tightly, loosely and snugly coupled software architecture 
requires substantial trade-offs, and in particular trade offs 

15 between ease of programming and fault/error tolerance. 
Further, when multiple processors (or controllers) are 

coupled to the same bus, bus contention problems may also 
arise. Specifically, when a shared bus is employed, only one 
processor is normally granted access to the bus to perform 

20 a given bus task, while the remainder of the processors 
coupled to that bus must wait until their priority has been 
reached. One technique for minimizing bus contention 
problems, is to provide a dedicated cache for each CPU, as 
shown in FIGS. 3A-3C, so that a given CPU need only 

25 access the bus at times when required data are not found in 
the dedicated cache. As a result, cache coherency is a major 
concern in the design of a multiprocessing system. In other 
words, when a given processor modifies a location in 
memory, some technique must be provided for insuring that 

30 the data is modified in the cache memory of each of the other 
processors using the same data. 

FIG. 4 is a functional block diagram of a dynamic random 
access memory device 400 according to one embodiment of 
the principles of the present invention. Memory 400 

35 includes N number of memory banks or units 401, with four 
such banks 401a, 401b, 401c, and 401d being shown in FIG. 
4 for discussion; the actual number of banks will vary from 
application to application, although N is preferably an even 
number two or greater. Banks 401 communicate with exter-

40 nal circuitry through control and configuration circuitry 407, 
discussed further below. In single CPU processing systems, 
such as systems 100a and 100b, memory subsystem 400 
may be used to construct system memory 102, although 
many other applications in the single CPU personal com-

45 puter environment are possible, such as in the display frame 
buffer. In multiprocessing architectures, such as systems 
200a, 200b, and 200c, memory subsystem 400 can be used 
to construct either the system memories or the local (private) 
memories. Preferably, subsystem 400 is a monolithic inte-

50 grated circuit device. 
Each bank 401 includes an array 402 of dynamic random 

access memory (DRAM) cells arranged in N number rows 
and M number columns. As is known to those skilled in the 
art, each array 402 may be partitioned into multiple 

55 subarrays, with the columns organized using either an open­
bitline or folded-bitline approach. Each bank 401 further 
includes a traditional DRAM row decoder 404 coupled to 
the array wordlines, and traditional DRAM sense amplifiers/ 
column decoder circuitry 405 coupled to the array bitlines. 

60 The row and column decoders are preferably organized in 
hierarchical fashion in which a main decoder and one or 
more levels of subdecoders/drivers are used. Generally, each 
row decoder 404, in response to a row address, selects one 
of N rows for access during an active cycle when the row 

65 address strobe /RAS is in a logic low state. Column decoder 
selects P number of pages (locations) of C number of 
columns (bits) from the M total number of columns in 
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response to P number of column addresses for access during 
an active cycle. 

10 
sented to the fine granularity row decoders 404 and the least 
significant bits to the global row assignor 406. The most 
significant row address bits from the previous (last) /RAS 
cycle are transferred to last row read address latch 502. 

Global row assignor 406 performs a "coarse granularity 
decoding" using L number of least significant row address 
bits from each received row address. Specifically, all banks 
401 are active during each /RAS cycle, and global row 
assignor using the L least significant row address bits to 
select. Row decoders 404 consequently decode the Y-L 
number of remaining most significant address bits to simul­
taneously select one row per /RAS cycle in each DRAM 
array during a DRAM access. 

5 Comparison circuitry 503 compares the most significant row 
address bits latched into row address latch 501 and the last 
read row address held in latch 502. During each /CAS cycle, 
one or more column addresses are received at address port 
AddO-AddY and latched into column address latch 504 

10 
with each falling edge of /CAS. 

SRAM registers 506 store data associated with the 
address bits stored last read address latch 502 (i.e., assuming 
that row addresses and data are considered together as a data 
structure, the row address MSBs comprise the row field and 

Control circuitry 407 receives conventional DRAM con­
trol signals and clocks from an external source, such as 
processor 101 or core logic 105 in system 100 or CPUs 201 
in multiprocessing systems 200A-200C. These signals 
include a synchronous clock (SCLK), a row address strobe 
(IRAS), a column address strobe (/CAS), read/write select 
(RAN) and output enable (/OE), along with data (DQ) and 
addresses (Aaa)- Control circuitry 407 also inputs a configu­
ration bit (CONFIG), discussed below. In the preferred 
embodiment, the address input port is multiplexed in a 
conventional manner wherein row addresses and column 
addresses are received sequentially at the same pins and 
latched in with /RAS and /CAS respectively. 

15 
the data bits, the data field). A second column decoder 507 
is provided to access locations in SRAM registers 506. Row 
address increment/decrement and refresh control circuitry 
508, when enabled, steps through the rows of array 402 to 
perform cell refresh through the DRAM sense amps and 

20 
implements the address transformations detailed below. 

Preferred methods of operating memory 400 can now be 
described. During an access, a row address is first received 
at address pins AddO-AddY. On the falling edge of /RAS, 
the least significant row address bits (in the four bank 

25 embodiment, the two least significant bits) are passed to 
global row assignor 406 and the remaining most significant 
bits are latched into row address latch 501 of each bank 401. 
The most significant bits stored in each row address latch 
501 from the previous /RAS cycle are transferred into the 

According to the principles of the present invention, each 
bank 401 further includes static random access memory 
(SRAM)/SRAM column decoder circuitry 408. SRAM cir­
cuitry 408 will be discussed in further detail in conjunction 
with FIG. 6, but can generally be described at this point as 
follows. First, a linear array of M number of SRAM cells is 30 

included for storing a row of data transferred from the 
corresponding DRAM array 402. Second, SRAM column 
decoder circuitry is included for page access (reads or 
writes) of C-bit wide pages of data to the row of data in 
SRAM array in response to one or more column addresses. 35 

Data latches 409 interface the DRAM sense amplifiers/ 
column decoders 405 and the SRAM column decoders 408 
with a data bus 410. Column addresses are transferred via a 
column address bus 411 and row addresses by a row address 

40 
bus 412. 

corresponding LRR address latch 502. 
In a first method of reading, the bit CONFIG at the input 

to memory 400 is set to a logic low. Global row assignor 406 
determines from the current least significant row address bits 
the bank 401 which corresponds to the address space of the 
received address. The comparator 503 of the corresponding 
bank 401 is enabled such that during the period between the 
falling edge of /RAS and the first high to low transition of 
/CAS, that comparator 503 compares the current address 
most significant bits in the corresponding row address latch 
501 and bits stored in LRR address latch 502. If a match 
occurs for the given bank, the SRAM column address 
decoders 507 are selected and set-up to access the complete 
SRAM cell array 506 of that bank. Column addresses 
received at the address port AddO-AddY are latched into 

Address latches and last row read (LRR) compare cir­
cuitry 413 includes latches for storing the current row and 
column addresses received at the address port AaaO-Aaa Y. 
Also included as part of circuitry 413 are latches for storing 
the high order (MSB) row address bits of the last row read 
(LRR) and comparison circuitry for comparing the stored 
LRR bits to the high order bits (MSB) of the current row 
address. 

45 column address latches 504 of each bank and each SRAM 

It should be noted that while in the illustrated embodiment 50 

the least significant row address bits are processed by global 
assignor 406 and the most significant row address bits are 
used internal to the banks 401 to select individual rows of 
cells, other arrangements will just as easily apply. For 
example, a given number of most significant row address 55 

bits could be used by global row assignor 406 and the 
remaining least significant bits used for individual row 
select. Further, either big- or little-endian data structures can 
be used. The number of address bits presented to the SRAM 
cache of a given bank 408 is identical to the number of MSB 60 

address bits presented to DRAM row decoder 404. 
FIG. 5 is a more detailed diagram emphasizing the data 

and address routing circuitry of a selected bank 401. 
Addresses are received in a multiplexed fashion at the 
address port AddO-AddY. The row address bits are latched 65 

on the falling edge of /RAS (which follows the SCLK) into 
row address latch 501. The most significant bits are pre-

column decoder 507 accordingly allows access to a C-bit 
word per each of P number of column addresses latched-in 
with /CAS. The accesses are implemented through a C-bit 
wide data bus 410; if for example, each bank is organized as 
a by 16 device, data bus 410 is 16-bits wide and so on. 
Preferably, the selected (enabled) bank is the only bank 401 
accessed via data bus 410, the word of data in the data 
latches 409 of the other banks is simply not used. 

If the address bits in latches 501 and 502 do not match for 
the bank 401 addressed by the received row address LSBs, 
access must be made to the corresponding DRAM array. 
Specifically, for a read to the addressed bank 401, the row is 
selected by DRAM row decoder 404 from the corresponding 
DRAM array 402 and an entire row of data transferred to the 
associated SRAM array 506 for output when the column 
addresses are presented. For the remaining banks 401, the 
MSBs are incremented or decremented using the corre­
sponding row address increment circuitry 508. A row of data 
for these banks is similarly transferred to the corresponding 
SRAM arrays 507. 

Assume for example, in the illustrated four bank system, 
that the received row address has LSBs 01 indicating the 
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address space of bank 401b (Bankl) is to be accessed. 
Global row assignor 406 hence enables Bankl to make the 
comparison of the row current address MSBs and the bits 
stored in the Bankl LRR latch. The row address MSBs as 
received are not modified for transferring data from the bank 5 

401b DRAM array 402 to the Bankl SRAM array. However, 
for bank 401a (Bank0) the row address MSBs are decre­
mented by 01 by the corresponding row increment circuitry 
508 and the row address MSBs for banks 401c (Bank2) and 
401d (Bank3) are incremented by 01 and 10 respectively. In 10 

other words, if the address to Bankl (the received row 
address MSBs) is designated addressA+l, then addressA+l 

12 
the present invention. In embodiment 600, as shown in FIG. 
6, an SRAM cache unit 602 is included in each bank 601. 
SRAM cache units 602 will be described in detail in 
conjunction with FIG. 7; however, each SRAM cache 602 
can be generally described as having a plurality of SRAM 
arrays (registers), each having a corresponding dedicated 
SRAM column decoder. DRAM 600 further includes a set of 
mode registers and input for receiving a global data strobe 
(DS). Address latches and LRR decode circuitry 604 are 
appropriately expanded to control the multiple SRAM 
embodiments, as will be demonstrated in FIG. 7. Mode 
register 603 and the functioning of the global data strobe 
(DS) will also be discussed further below. 

As shown in FIG. 7, each SRAM cache 602 includes a 
is decremented by one such that Bank0 receives address AO 
and incremented such that Bank2 receives address A+2 and 
Bank3 receives address A+3. These addresses are used to 
access the associated bank's DRAM array 402 and the 
accessed data in DRAM transferred to the SRAM arrays. 
The new addresses are stored in address latches 501. 

15 plurality of SRAM column decoders 700 coupled to a 
corresponding SRAM register 701. In the illustrated 
embodiments, two SRAM registers 701a and 701b, associ­
ated with a pair of SRAM column decoders 700a and 700b 
shown for brevity and clarity. However, it should be recog-During accessing of the addressed bank, assuming again 

for discussion purposes BANKl, the DRAM of any bank, 
including in this case the DRAM array 402 of Bankl can be 
refreshed. The DRAM column decoders 405 isolate the 
corresponding DRAM arrays 402 from the SRAM arrays 
408. Thus, while data is being accessed from the SRAM 
array of the selected bank 401, any or all of the DRAM 25 

arrays 402 can be refreshed without disturbing the data in the 
SRAM arrays. Refresh is preferably performed by incre­
menting the row addresses in each bank using increment and 
refresh circuitry 508 and latching each row of data using the 
DRAM sense amplifiers 405 in a conventional fashion. 

20 nized that an SRAM cache 602 may be constructed with 
additional SRAM registers 700 along with a corresponding 
number of SRAM decoders 701. 

Additionally, a corresponding number of LRR latches 703 
are provided to support the multiple SRAM registers 701. 
Hence, if in a given embodiment includes n number of 
registers 701, there will preferably also be n number of LRR 
registers 704, although this is not an absolute requirement. 
In the illustrated embodiment where two SRAM registers 
701a and 701b are depicted, a corresponding pair of LRR 

30 latches 704a and 704b are also shown. 

35 

DRAM cell array 402, row address decoder 404, address 
latches/LRR comparison circuitry 413 and row address 
increment/decrement and refresh circuitry 702 all substan­
tially operate as described above. 

Assume that each DRAM cell array 402 is arranged in m 
number of rows and n number of columns. Row address 
decoder 404 will be coupled with the wordline controlling 
access to each row of cells. In the most straightforward 

In the preferred embodiment, once the data in the SRAM 
array 506 of the addressed (selected) bank has been 
accessed, the /RAS cycle is complete. The data in the SRAM 
arrays 506 of the remaining banks 401 is available through 
the associated data latches 409, and could be used, but 
typically is reserved for future /RAS cycles. The current row 
address MSBs for the selected banks and the new row 
address MSBs are transferred to the LRR registers during 
the next /RAS cycle. The corresponding data remain in the 
SRAM arrays. Advantageously, since the CPU and/or oper­
ating system typically accesses data within temporally or 
spatially adjacent areas in memory, the probability is sub­
stantial that a match will occur. 

40 
embodiment, n number of sense amplifiers are provided with 
one sense amplifier coupled to bitline associated with each 
column of cells. DRAM column decoder/sense amplifiers 
405 includes a data interface with SRAM column decoders 
700 allowing data to be exchanged, between DRAM array 

45 
402 and SRAM registers 701, either individually or in 
combination. SRAM and DRAM column decoders 700 and 

For a write operation the following is the preferred 
method. An address is received at address portAddO-AddY. 
From the LSBs, global row assignor 406 determines the 
bank 401 assigned to the corresponding row address space. 
Assume again for example, the LSBs are 01, addressing 
bank 401b (Bankl ). The received row MSBs are taken as the 

50 
address to the Bankl DRAM array 402. As was done above, 
the row address increment circuitry 508 for Bank0 decre­
ments the received row MSBs to obtain a row address to the 
Bank0 DRAM array and increments the received MSBs by 
01 and 10 to obtain row addresses to the DRAM arrays of 

55 
Bank2 and Bank3 respectively. The MSB row address bits 
for each bank 401 is written into the respective bank's LRR 
register 502. 

In a second method of accessing, the CONFIG bit at the 
input to memory 400 is set high. In this case, during an 60 
access, the MSBs of a received address are compared by all 
the comparators 503. If a match occurs in any one or more 
banks 401, the data from all the banks is taken, although the 
data from the non-matching banks may be discarded or left 
in the data latches. 

FIG. 6 depicts a second Dynamic Random Access 
Memory (DRAM) device 600 according to the principles of 

65 

402 are all coupled to column address latch 504. 
In the illustrated embodiment, where DRAM array 402 is 

n columns wide and each SRAM register 701 correspond­
ingly is a linear array of n number of cells disposed in a 
single row. In the present example therefore, the cache width 
is n and the cache depth is two. Each row in either cache or 
DRAM memory stores p number of cache lines, wherein p 
equals m divided by b, the number of bits per cache line. 

The multiple SRAM register/column decoder structure of 
each SRAM cache 602 has further advantages. For example, 
if SRAM column address decoders 700 are static devices, 
then while DRAM cell array 402 of any bank 601 is in 
precharge (i.e., /RAS high), one or more of the correspond­
ing SRAM registers 701 can be accessed either in a random 
or page fashion. Of course, column address decoders 700 
can be dynamic devices which are inactive during the period 
when /RAS is high thereby providing for substantial power 
savings across the banks 601 of device 600. 

SRAM registers 701 of given bank 601 can be used in 
various combinations with the associated DRAM cell array 
402 and its column decoder 405 to optimize data exchanges. 
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The conventional control signals /RAS, /CAS, /CS and 
/WE are used to control the loading of mode registers 603. 
There are many combinations of the states of these signals 
which can send device 603 into the Load Mode Registers 

For example, one SRAM register 701 of the selected bank 
601 can access data through the device data port (DQ), while 
simultaneously data can be exchanged between the associ­
ated DRAM cell array 402 and any of the remaining SRAM 
registers 701 in the same cache unit 602. At the same time, 
data exchanges can occur between the SRAM registers 701 
and the associated DRAM cell array 402 of each of the other 
banks 601. 

For any SRAM registers 701 in device 600 which are not 
being accessed through the device 1/0 port, a number of 
different data exchanges between the data cell array 402 and 
the SRAM registers 701 can be set up. Among other things, 
the contents of a SRAM register 701 can be copied to a row 

5 state. For example, a chip select signal /CS (FIG. 6), /RAS, 
/CAS and /W could all be set to a logic low state. In response 
to this combination of input signals, each of the banks 601 
would be deactivated. The mode control data can then be 
loaded into mode registers 603, preferably timed by the 

10 system clock. 

FIG. 8 is a diagram of the bitfields of mode registers 603. 
Each of these bitfields can be described as follows. 

in the corresponding DRAM cell array 402 or vice versa; 
data can be copied from DRAM to a SRAM register. During 
accesses through the data port (DQ) each port can be 
individually configured such that reads and writes are made 
to the cache unit 602 only, to the DRAM cell array 402 only, 

Bits 0---2 set the burst length for device 600. The burst 
length is the number of words clocked into or out of data 

15 latches 409 of the bank 601 being accessed. 

or to both an SRAM register 701 in the cache 602 and to the 
DRAM array 402. 

Bit 3 defines the burst type. In the illustrated embodiment, 
if zero is written into the bit 3 position, the burst output will 
be serial and if a Logic One is written thereto, an interleaved 

20 
burst will take place. 

The multiple SRAM register embodiment 600 allows for 
the selective implementation of one of a number of address­
ing schemes. For example, assume that global row assignor 
406 has taken the received least significant row address bits 
and has selected BANK 1 for access. Assuming a two 25 
SRAM register embodiment, the most significant row 
address bits are then compared with two addresses stored in 
the LRR address latch 502 ( one corresponding to each row 
of data stored in a corresponding SRAM register 701). If a 
match occurs, then the SRAM register 701 corresponding to 30 
the matching addresses is accessed. In this case the prob­
ability of a match ( cache hit) are increased since the number 
of SRAM registers in which the desired data could possibly 
be stored in has increased. 

Alternatively, the multiple registers 701 of each bank 601 35 
could be considered as residing in a single address space. In 
this case, the most significant bits of an incoming row 
address are compared against a single stored LRR address. 
If a match occurs, all of the SRAM registers of the given 
bank are then accessed in a predetermined sequence. Among 40 
other things, this scheme would allow paging of data in 
multiple page lengths, depending on the length of each row 

The bitfield comprised of bits 4--6 define the read latency. 
Typically, it takes (slightly) longer to perform a write than it 
does to perform a read. A read after write, or write after read 
takes even longer, in today's commercial SDRAM's, espe­
cially when one switches from Bank X to Bank Y. In this 
invention, since all banks are normally 'on', there is no such 
penalty. In other words, the minimum write latency is 
slightly longer than the minimum read latency. These bits 
therefore allow the read latency to be adjusted to optimize 
read/write timing. Specifically, the burst latency is the delay 
in the output of the first bit of a burst of data from the high 
to low transition of /CAS. The desired delay is generated 
using an internal clock optimized for DRAM operations 
with SRAM register operations. 

In the illustrated embodiment, the bitfield consisting of 
bits 7-8 and the bitfield consisting of bits 14-16 are reserved 
for future use. 

Bit 9 is used to select between single word bursting and 
bursting in bursts of the length specified in the burst length 
register. For example, if a zero is written into the bit 9 
position, then the write burst length will be as defined by the 
burst length bits written into the bitfield 0-2. If a logic one 
is loaded into bit position 9, the write burst length will be 
one word. In other words, writes will be made on a word by 

in SRAM and the number of SRAM registers accessed. 
Provisions can be made during the setup of Mode Registers 
603 to accomplish varying embodiments. 45 word basis. 

In an additional alternative, data can be loaded from the 
DRAM arrays such that the data in a selected SRAM register 
in a given bank is associated with an address non-contiguous 
with the addresses associated with the contents of other 
registers in that bank. For example, row address increments/ 
decrements 501 could be configured such that if Bank 0, 
SRAM register 701a is loaded with data corresponding to 
Addr0, the associated register 701b is loaded with data 
corresponding to Addr4. For bank 1 registers 701a and 701b 

Bit 12 controls the data strobe. If a logic zero is written 
into bit position 12, an internal delay locked loop (DLL) 
clock generator is the selected source for the global data 
strobe (DS). In contrast, if a logic one is written to this bit 

50 position, external data strobe clock is selected over the 
internally generated clock. The external clock is an addition 
to the Synchronous System Clock, master clock or primary 
clock to device 600. 

are respectively loaded with data corresponding to Addrl 55 

and Addr5. Similarly, the SRAM registers of Bank 2 hold 
data at addresses Addr2 and Addr6 and Bank 3 data at 
addresses Addr3 and Addr7. Numerous other combinations/ 
permutations are possible. 

Data Strobe (DS), internal or external, can be (for 
example) timed off /CAS, for BOTH read and write opera­
tions; or for read only. 

Bit position 13 holds a bit which defines the adjustment 
resolution of the read data latency. If a zero is written into 

60 bit position 13, then the data latency is programmed in 
integers of the system clock CLK (e.g., latencies of 1, 2, 3, 
... n CLK periods). If a logic one is written into bit position 
13, data latency is set in 0.5 clock increments ( e.g., latencies 

Mode register 603, is "set" by the CPU ( or core logic, at 
CPU's command) to operationally configure memory device 
600. These registers may be loaded either through the data 
port (DQ), the address port (ADDJ or a dedicated mode 
register data port (MODE O-MODE P, FIG. 6). Preferably, 
either the data port or the address port is used for loading the 65 

mode register 603 since they are sufficiently wide and no 
additional pins to the device are required. 

of 0.5, 2.5, 3.5 ... CLK periods). 
The bitfield consisting of bits 17-20 holds the bank status 

bits. Using these bits, the CPU (and corelogic) and operating 
system can selectively activate and deactivate banks 601. 
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Hence, the CPU is given the ability to repeatedly access a 
specified amount of memory. Further, by appropriately set­
ting this register, predictive/speculative execution of instruc­
tions by the CPU can be implemented. The bit encoding for 
banks status bitfield is provided in Table 1. 

TABLE I 

Bank Status 
Register Bits Bank Status 

20 19 18 17 Bank,, Bank,,., Bank,,.2 Bank,,.3 

0 0 0 0 A D D D 
0 0 0 D A D D 
0 0 0 D D A D 
0 0 D D D A 
0 0 0 A A D D 
0 0 D A A D 
0 0 D D A A 
0 A D D A 

0 0 0 A D A D 
0 0 D A A D 
0 0 D A D A 
0 A A A D 

0 0 D A A A 
0 A D A A 

0 A A D A 
A A A A 

A-Active 
D - Deactivated 

The bitfield consisting of bit positions 21 and 22 is the 
SRAM output field. This field allows the CPU and operating 
system to selectively sequence through banks 601. The 
encoding for this field is provided in Table. II. In Table II, 
Bankn represents the bank which contains the target data, as 
identified by bit comparison circuitry using the procedure 
described above. From then on, depending on the bank 
status register bits, additional banks can be accessed in 
specified sequence. 

Register 
Bit 
22 

0 
0 

Register 
Bit 
21 

0 

0 

TABLE II 

Bank Access Sequence 

Bank,, - Bank,,., - Bank,,.2 - Bank,,.3 

Bank,, - Bank,,., - Bank,,.2 

Bank,, - Bank,,., 
Bank,, only 

Assume for discussion purposes that an 01 is written into 
SRAM output bitfield. Also assume that, from the row 
address, comparator 502 has identified Bank 2 (601b) as the 
bank initially containing desired data. For the case where 
each bank includes two SRAM registers 701, the first SRAM 
register 701a of bank 2 is accessed followed by the second 
SRAM register 701b for that bank. In response to the 01 
programmed into the SRAM output field, the next bank 
accessed is bank Bn+ 1 (i.e., Bank3) is accessed, with SRAM 
register 1 and SRAM register 2 sequentially accessed from 
Bankl. The process repeats itself for Bankn+2 (i.e., Bank4) 

16 
Bit position 23 maintains a read/write selection bit. When 

a zero is set in bit position 23, a write is performed through 
the bank or banks identified in the SRAM output bitfield 
(bits 22-21 ). Similarly, when a logic one is set into bit 

5 position 23 a read operation is made from the identified bank 
or banks in accordance with the SRAM output bitfield. 

10 

FIG. 9A and 9B are respective timing diagrams for the 
read and write operations according to the principles of the 
present invention. 

As is shown in FIG. 9A, a read from device 600 is timed 
by the system clock (which in synchronous embodiments, 
comprises the master clock). The Data strobe (DS) clocks 
data out of the data latches 409 for the bank 601 being 
accessed. As indicated above, the data strobe can be gener-

15 ated either internal to device 600 or externally. In the 
embodiment shown in FIG. 9A, the data strobe is generated 
by doubling the frequency of the system clock. Tripling, 
quadrupling data rates can also be accomplished. 

20 

25 

On the falling edge of /RAS, a row address is input 
through the data port Add

0 
-Addy and shortly thereafter 

becomes valid. The row address bits are then processed as 
discussed above using the global row assignor 406 and LRR 
address latch 502 and bit compare circuitry 503 of the 
selected bank. 

On the falling edge of /CAS, an initial row address is input 
through the address port Add

0 
-Addy- Shortly thereafter, the 

column address becomes valid. Data is then output through 
the data port (DQ), starting at the initial column address, 

30 
after the programmed read latency (FIG. 8) express. Words 
of data are output through data latches 409 of the initial bank 
in response to the rising edges of the data strobe. If plurality 
of banks have been selected for the read access, a bank 
switch is made once the data is SRAM registers 701a and 

35 
701b of the initial bank have been paged out. The paging 
from the next bank in the loop starts from the initial address 
latched in the column address latches 504 with the column 
address strobe. 

As is shown in FIG. 9B, a write access to device 600 is 

40 similar to a read access. Timing is again controlled by the 
system clock, /CAS, /RAS and /WE and the data strobe 
(DS). The strobes /RAS and /CAS also time the input and 
validation of the addresses. The most significant difference 
in the timing of the write operation is that there is a fixed 

45 latency between the latching of the column address and 
writing of the first bit of data. In other words, while the read 
latency can be adjusted using the Read Latency Field, no 
provision is required to adjust the write latency. Again, data 
are written by words starting at the location corresponding 

50 to the received column address from SRAM register 1 of the 
initial bank and continuing through the locations of SRAM 
register 2. At the conclusion of the write to SRAM register 
2, the writes switch to register 1 of the next bank in the loop, 
starting with the location corresponding to the column 

55 address latched in that banks column address latch 504. 

In this example, the loop of accesses from Banks 2, 3 and 4 
can continue as long as the CPU needs to repeatedly access 60 

those locations. It should be recognized that the access could 
also be made from the bank DRAM cell arrays 402 for the 
given bank in addition to the SRAM registers. 

As discussed above, data can be loaded into the SRAM 
registers can be accessed in a number of different ways, 
include non-contiguous accessing within a bank, between 
banks, or both. For example, consider the case where Bank 
0 registers 701a and 701b are respectively accessed with 
Addr0 and Addr4, the SRAM registers of Bank 1 with 
addresses Addrl and Addr5, the SRAM registers of Bank 2 
with addresses Addr2 and Addr6, and the Bank 3 data at 
addresses Addr3 and Addr7. This type of access can be 
implemented as follows. 

If the looping option is chosen, the CPU and the operating 
system must be configured to recognize how data are stored 65 

and retrieved from the sequence of banks such that the 
proper data is accessed at the proper time. 

During a first /RAS cycle. A row address is received at the 
address (DQ) port. On the falling edge of /RAS the row 
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address MSBs are latched in the row address latches 501 of 
all the banks. The LSBs of the row address are again used 
by the global row assignor to enable comparison circuitry 
503 of one selected bank being accessed. For that bank, 
comparison circuitry 503 compares the incoming row 5 

address MSBs with the LRR row address MSBs stored in 
each of the plurality of LRR latches 703 for the selected 
bank. 

18 
no SRAM registers 701 are accessed through the DQ port 
and all SRAM registers 701 (if desired) are loaded from 
DRAM. 

During the first /RAS cycle, the received row address 
MSBs latched in and then used to transfer data from the 
DRAM array 402 of the bank being accessed to a selected 
one of the plurality of SRAM registers (arrays) 701. The 
choice of which SRAM register 701 to be loaded can be a 
function of anyone of a number of factors. For example, it Assume that Bank O is the bank being accessed and that 

a match occurs between the incoming row address MSBs 
(Addr) and the bits stored in LRR latch 1. In response to 
/CAS and the incoming column addresses, SRAM register 1 
of Bank O is accessed. For Bank 0, the address row address 
register is incremented to produce addressAddr+4. This new 
address is used to access Bank O DRAM array 402 and load 
Bank 0 SRAM register 2 (701b). At the same time, the 
incoming address in row latch 501 of Bank 1 is incremented 

10 
may be the encoding of the address bits themselves ( e.g. odd 
parity sends the data to one register and even parity to 
another register) or to obtain specific temporal locality ( e.g. 
the register which has not be reloaded in the immediately 
previous cycle or cycles). At the same time, the received row 
address MSBs are modified in the address latches 501 of the 

to Addr+S, in the Bank 2 row address latch to Addr+6 and 
in the Bank 3 row address latch to Addr+ 7. These modified 
addresses are used to transfer data between each bank's 
DRAM array of its SRAM register 2 (701b). 

15 remaining banks, as desired to define the first half of a block 
of data to be stored in SRAM. Preferably these registers 
correspond to the SRAM register selected in the accessed 
bank (i.e. if register 1 is loaded in the accessed bank, register 
1 is loaded in the remaining bank). The SRAM registers 701 

20 of these banks are subsequently loaded using the modified 
addresses. 

It should be noted that if the incoming row address MSBs 
instead matched with the bits in an LRR Latch 2 (703b) of 
Bank 0, then the Bank 0 SRAM register 2 (701b) is accessed 
and the contents of the row address registers are incremented 
in all banks to load SRAM registers 1 for all banks. In this 
example, the incoming row address latched in Bank O would 
be incremented to Addr-4, in Bank 1 to Addr-3, in Bank to 
Addr-2 and Bank3 toAddr-1. SRAM registers 1 would the 

At the start of the second /RAS cycle, the contents of the 
row address latches 501 are copied to the LRR latches 703 
corresponding to the SRAM registers 701 accessed during 

25 the first /RAS cycle. Row address increment/decrement 
circuitry 702 then modifies the addresses in row address 
latches 501 as required to access the required block of data 
within DRAM and transfer that block of data into SRAM 

be loaded from DRAM in accordance to the modified 30 

addresses. 
At the start of the second /RAS cycle, the contents of row 

address registers 501 for all banks are copied to the LRR 
latches corresponding to the set of SRAM registers which 
were loaded during the first /RAS cycle. For example, if 
SRAM registers 2 (701b) were loaded during the first cycle, 
the modified contents of row address latches are transferred 
to the associated LRR latches (703b). 

35 

cache. The SRAM registers 701 not loaded during the first 
/RAS cycle are loaded during this cycle, in accordance with 
the new addresses stored in row address latches 501. At the 
start of the subsequent /RAS cycle, these addresses will be 
copied to the appropriate LRR latches 703, depending on the 
SRAM registers loaded. 

Although the invention has been described with reference 
to a specific embodiments, these descriptions are not meant 
to be construed in a limiting sense. Various modifications of 
the disclosed embodiments, as well as alternative embodi-

40 ments of the invention will become apparent to persons 
skilled in the art upon reference to the description of the 
invention. It is therefore, contemplated that the claims will 
cover any such modifications or embodiments that fall 

In the second /RAS cycle, the second set of SRAM latches 
are loaded. Continuing with the example where the first 
/RAS cycle loaded SRAM registers 1, with Bank 0 being the 
accessed bank, the modified row address in the Bank O row 
address latch is decremented back to Addr, in Bank 1 to 
Addr+ 1, in Bank 2 to Addr+2, and Bank 3 to Addr+3. These 

45 
twice-modified addresses are used to load SRAM registers 2 
from DRAM and at the start of the following /RAS cycle are 
loaded into the corresponding LRR latches 2. 

In the case where SRAM registers 2 where loaded during 
the first /RAS cycle, the addresses could be modified as 50 
follows for purposes of loading SRAM registers 1 during the 
second /RAS cycle. If Bank 0 is the accessed bank, the 
contents of its row address latches are decremented to the 
original input address Addr. Similarly the addresses in the 
Banks 1, 2 and 3 are respectively modified to become 55 
Addr+l, Addr+2 and Addr+3. 

The procedure is the same no matter which bank is 
accessed through the DQ port (thereby determining the 
address modification sequence) and no matter how the row 
address MSBs are modified. In sum, numerous sequences 60 

and address modifications are possible, as required to access 

within the true scope of the invention. 
What is claimed is: 
1. A memory comprising: 
a plurality of static random access memory cell arrays; 
a plurality of sets of latches each for storing address bits 

associated with data stored in a corresponding one of 
said static random access cell arrays; and 

bit comparison circuitry for comparing a received address 
bit with an address bit stored in each of said plurality 
of sets of latches, and enabling access to a selected one 
of said static cell arrays corresponding to a said set of 
latches storing an address bit matching said received 
bits. 

2. The memory of claim 1 and further comprising: 
a dynamic random access memory cell array; and 
circuitry for selectively exchanging data between said 

dynamic random access array to a selected one of said 
static random access memory arrays. 

a predetermined block of data, with a given spacial and/or 
temporal coherency, in the SRAM registers. 

When no match occurs between the received row address 
MSBs and any of the row addresses MSBs stored in SRAM 
registers 703 and the access bank selected by global row 
assignor 406, the accessing procedure changes. In this case, 

3. The memory of claim 1 and further comprising column 
decoder circuitry including a plurality of column decoders, 
each said column decoder for accessing a corresponding one 

65 of said static random access cell arrays. 
4. The memory of claim 1 wherein and further compris-

ing: 
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a row address latch for storing said received address bits; 
and 

20 
13. The memory of claim 12 wherein said mode control 

register includes a field for storing bits selectively activating 
and deactivating selected ones of said banks. circuitry for modifying address bits stored in said address 

latch to produce second address bits. 
5. The memory of claim 1 wherein said received address 

bits and said address bits stored in said latches comprise row 
address bits. 

14. The memory of claim 12 wherein said mode control 
5 register includes a field for storing bits defining a sequence 

for accessing said plurality of banks. 

6. A method of accessing blocks of data in a memory 
having a plurality registers and a memory array, comprising 
the steps of: 

receiving an address through an address port; 
comparing the received address with addresses previously 

stored in each of a plurality of latches; 

15. The memory of claim 14 wherein said mode control 
register includes a field for storing a read/write selection bit. 

16. The memory of claim 14 wherein each of said banks 
further comprises an array of rows and columns of dynamic 

10 
random access memory cells. 

when a match occurs between the received address and a 
matching address stored in a one of the latches per- 15 

forming the substep of accessing a register correspond­
ing to the latches storing the matching address through 
a data port; 

17. The memory of claim 16 wherein each of said banks 
further includes: 

a first column address decoder for accessing a column of 
cells in said first static cell array; 

a second column decoder for accessing a column of cells 
in said second static array; and 

a third column decoder for accessing a column of cells in 
said dynamic cell array. 

when a match does not occur between the received 
address and an address stored in one of the latches, 
performing the substeps of: 
exchanging data between a location in the memory 

array addressed by the received address and a 
selected one of the registers; and 

18. The memory of claim 17 wherein each of said banks 
20 

further comprising a data latch coupled to said column 
decoders of said bank, said data latch exchanging data with 
said bank in response to a global data strobe. 

storing the received address in one of the latches 
corresponding to the selected register; 

19. The memory of claim 16 and further comprising 
circuitry for selectively exchanging data between said 

~ d dynamic cell array and a selected one of said first and secon 
cell arrays. 

modifying the received address to generate a modified 
address; 

exchanging data between a location in the memory array 
addressed by the modified address and a second 
selected one of the registers; and 

20. A method of operating a memory having a plurality of 
banks, each bank including a dynamic random access 
memory cell array and first and second static random access 

30 
memory cell arrays, the method comprising the steps of: 

storing the modified address in of one of the latches 
corresponding to the second selected register. 

7. The method of claim 6 wherein said step of accessing 
35 

comprises a step of accessing a plurality of locations in the 
register in response to a plurality of column addresses. 

8. The method of claim 6 wherein said step of accessing 
comprises a step of accessing a plurality of selected registers 
~~ri~. ~ 

9. The method of claim 8 wherein said step of accessing 
comprises a step of accessing a plurality of selected registers 
in serial. 

10. The method of claim 6 and further performing the 
substep when a match does not occurs of accessing the 

45 
selected location through the data port. 

11. A memory comprising: 
a plurality of banks each comprising: 

first and second arrays of static random access memory 
cells; 

a first latch for storing a plurality of address bits 
accessing associated data stored in said first array; 

a second latch for storing a plurality of address bits 
accessing associated data stored in said second array; 

50 

address compare circuitry for comparing first selected 55 
bits of a received address with address bits stored in 
said first and second latches and selectively enabling 
access of said first and second arrays in response; 

a row address latch for storing a received address; 
increment and decrement circuitry for selectively modi- 60 

fying an address stored in said address latch; and 
a global row assignor for selecting a said bank for access 

in response to second selected bits of said received 
address. 

12. The memory of claim 11 and further comprising a 65 

mode control register for storing mode control for storing 
information for configuring said memory. 

receiving a row address; 
decoding a bit of the row address to select a first bank for 

access; 
comparing a selected bits of the received row address with 

bits stored in first and second latches in the first bank, 
the first latch holding an address associated with data 
stored in the first static array and the second latch 
holding an address associated with data stored in the 
second static array of the first bank; 

when a match occurs between the selected bits of the 
received row address and the bits stored in the first 
latch, performing the substeps of: 
accessing the first static array of the first bank; 
modifying the received row address to generate a 

second row address; and 
in a second bank, loading a selected one of the first and 

second static arrays with data from the dynamic 
array using the second row address; and 

when a match does not occur between the selected bits of 
the received row address and the bits stored in the first 
and second latches of the first bank, performing the 
substeps of: 
in the first bank, loading a selected one of the first and 

second static arrays with data from the dynamic 
array using the received row address; 

modifying the received row address to generate a 
second row address; and 

in the second bank, loading a selected one of the first 
and second static arrays with data from the dynamic 
array using the second row address. 

21. The method of claim 20 wherein said step of per­
forming substeps when a match occurs further includes the 
substep of storing the modified address in the latch in the 
second bank associated with the selected static array. 

22. The method of claim 20 wherein said step of per­
forming substeps when a match does not occur further 
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comprises the substep of storing the received address in the 
latch in the first bank associated with the selected static array 
in the first bank. 

23. The method of claim 20 wherein said step of per­
forming substeps when a match does not occur further s 
comprises the substep of storing the modified address in the 
latch in the second bank associated with the selected static 
array in the second bank. 

24. The method of claim 20 wherein said step of per­
forming substeps when a match occurs comprises the sub- 10 

steps of: 
generating a third row address; 

22 
loading a second selected one of the first and second static 

arrays of the second bank using the fourth row address; 
and 

storing the fourth address in the latch associated with the 
selected static array. 

26. The method of claim 20 wherein said step of per­
forming substeps when a match does not occur further 
comprises the substeps of: 

generating a third row address; 
loading a second selected one of the first and second static 

arrays of the first bank; and 
storing the third row address in the latch associated with 

the second selected on of the arrays. 
loading in the second static array in the first bank using 

the third row address; and 

storing the third address in the second latch of the first 
bank. 

27. The method of claim 26 wherein said step of per-
15 forming subsets when a match does not occur further 

comprises the substeps of: 

25. The method of claim 24 wherein said step of per­
forming substeps when a match occurs further comprises the 
steps of: 

generating a fourth row address; 

generating a fourth row address; 
loading a second one of the first and second static arrays 

of the second bank using the fourth row address. 

* * * * * 


