
United States Patent [19]

Rao

[54]

[75]

DRAM WITH INTEGRAL SRAM
COMPRISING A PLURALITY OF SETS OF
ADDRESS LATCHES EACH ASSOCIATED
WITH ONE OF A PLURALITY OF SRAM

Inventor: G.R. Mohan Rao, Dallas, Tex.

[73] Assignee: Silicon Aquarius, Inc., Richardson,
Tex.

[21] Appl. No.: 855,944

[22] Filed: May 14, 1997

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 816,663, Mar. 13, 1997.

[51] Int. Cl.6
.. G06F 12/08

[52] U.S. Cl. 711/105; 711/104; 711/5;
711/117; 711/118

[58] Field of Search 711/5, 104, 105,
711/118, 117, 170; 395/833

[56] References Cited

U.S. PATENT DOCUMENTS

4,384,342 5/1983 Imura et al. 711/5
5,226,009 7/1993 Arimoto 365/189.04
5,577,223 11/1996 Tanoi et al. 711/118

I 1111111111111111 11111 111111111111111 11111 111111111111111 111111111111111111
US005890195A

[11] Patent Number:

[45] Date of Patent:

5,890,195
Mar. 30, 1999

5,588,130
5,603,009
5,680,570
5,761,694
5,787,457
5,835,932

12/1996 Fujishima et al. 711/118
2/1997 Konishi et al. 711/104

10/1997 Rantala et al. 711/113
6/1998 Rao ... 711/5
7/1998 Miller et al. 711/105

11/1998 Rao ... 711/5

OTHER PUBLICATIONS

Ramtron, "Specialty Memory Products ", DM2223/2233
Sync Bursting EDRAM 512kbx8 Enhanced Dynamic RAM
pp. 2-57 to 2-62 (Oct. 1994).

Primary Examiner-John W. Cabeca
Assistant Examiner-Felix B. Lee
Attorney, Agent, or Firm-James J. Murphy; Winstead
Sechrest & Minick

[57] ABSTRACT

A memory 601 comprising a plurality of static random
access cell arrays 701, and a plurality of sets of latches 703
each for storing address bits associated with data stored in a
corresponding one of the static random access cell arrays
701. Bit comparison circuitry 503 compares a received
address bit with an address bit stored in each of the plurality
of sets of latches 703 and enables access to a selected one of
the static random cell arrays 701 corresponding to the set of
latches 703 storing an address bit matching the received bit.

27 Claims, 8 Drawing Sheets

r---1

INPUT
ADDRESSES
ADDo-ADDy

r----------7 604 602~-------------,
504, I--' y700a COLUMN SRAM COL

I ADDRESS I ~ ADDR DECODE 1 I

LATCH I I I
I SRAM 701a

503, I REGISTER 1
BIT I I

COMPARE I SRAM DATA __.__ I REGISTER 2 701b LATCHES
703a, I I I 409 LRR I

ADDRESS SRAM COL I

LATCH 1 t-fi ADDR DECODE 2 h_ ?OOb
1 L----4--------.J

LRR I

ADDRESS COL DECODE/
703b./ LATCH 2 SENSE AMPS 1--,_ 405

I 7 I ROW ROW
,__ . DRAM CELL DS

I ADDRESS I ADDRESS .
ARRAY (GLOBAL DATA STROBE)

501--' LATCH DECODE
. ,__

(INTERNAL OR EXTERNAL)
\ \

I L __________ ...J
I

404 402 I

ROW ADDRESS I

INCR/DECR ~ fill I
I

702.../ AND REFRESH I
I L ___ J

U.S. Patent Mar. 30, 1999 Sheet 1 of 8 5,890,195

CPU L2 CACHE 100A

101 104 i
10 2 l . l •

\ DATA

.~ .~ ADDRESSES

10
I l 3

CORE
SYSTEM LOGIC/MEMORY

CONTROLLER - ; MEMORY

105 106

l BUS

10
I t 7

FIG. 1A
PERIPHERALS

liIB

CPU L2 CACHE 100B

lQ1 104 i
10 2 t 'l t •l

\ DATA
'

'
,, ADDRESSES

10
I t 3

CORE SYSTEM LOGIC/MEMORY
CONTROLLER MEMORY

jfil 106

10 7 l \ BUS

PCI BUS
BRIDGE l'--109

PCI BUS
I
10

PERIPHERALS
111 FIG. 1B

BUS
I

112

U.S. Patent Mar. 30, 1999 Sheet 2 of 8 5,890,195

202

CPUO

201A

205

201A

CPUO

205

202A

SYSTEM
MEMORYO

203A

MASS STORAGE

202A

MASS STORAGE

200C
\ 202A

CPUO

201A PRIVATE
MEMORYO

209A

205 MASS STORAGE

CPU1

2018

202B

SYSTEM
MEMORY1

203B

!
FIG. 2A

200A

2018 202B

204
SYSTEM MEMORY

208

FIG. 2B

202B

CPU1

201B PRIVATE
MEMORY1

209B

SYSTEM MEMORY

FIG. 2C

0 0 0

0 0 0

CPUn

201 SYSTEM
MEMORYn

203

204 ~-'-~
INPUT/OUTPUT 206

201 202

0 0 0

BUS

207 INPUT /OUTPUT 206
BUS

\
200B

202

0 0 0

CPUn

201 PRIVATE
0 0 0

MEMORYn

209n

210 INPUT/OUTPUT 206

U.S. Patent Mar. 30, 1999 Sheet 3 of 8 5,890,195
r-----------------, r-----------------,
I

I l I
I APPLICATION APPLICATION I
I I
I

I l I
I OPERATING SYSTEM OPERATING SYSTEM I
I I
I I

300~ 1

~PU]] ~~MORY]]

1

~PU]] ~~MORY]]

~300
I I
I I
I I

200 I

I DISK 1/0 DISK 1/0
I
I
L----------------- L-----------------J

FIG. 3A

APPLICATION

OPERATING SYSTEM

r-----------------,
1.-------------,1

300~ ~ §] :
: ~ ~EMORY] :

200
I ------ ___,.- I

DISK 1/0
I
I
I
I
I

L-----------------J

APPLICATION

FIG. 3B

r-----------------, r-----------------,
I
I
I
I

OPERATING SYSTEM OPERATING SYSTEM I :
.------------, I

200

300~ ~300

200

I
I
I
I

DISK 1/0 DISK 1/0

I
I
I
I

L----------------- L-----------------J
FIG. 3C

200

r--7
r---------------------,r---------------------,

RAS
CAS

CLOCKS
ADDO
ADDY

DQO

DQZ
WE
OE

POWER
CONFIG

L----

F

ROW - DRAM CELL ROW - DRAM CELL
DEC - ARRAY DEC - ARRAY

I I I I I I

ADDRESS - DRAM COL DEC v 405 ADDRESS - DRAM COL DEC ..r405

413-.. LATCHES - SENSE AMPS 413-.. LATCHES -- SENSE AMPS
AND LRR I I AND LRR I I

COMPARE -- SRAM/COL DEC v-408 COMPARE ,__ SRAM/COL DEC ..r408

COMMAND/ ~ I I ~ I I 401 a DATA LATCH 409 401 b DATA LATCH 409
CLOCK

GENERATE, 410 ------1--t-----~ L----- ------1--t-----~ \ L----- --- ---
ADDRESS

LEVEL COLUMN ADDRESSES
TRANS LA TORS 412 "' GLOBAL POWER ROW ADDRESSES " 411

- ROW
407 ASSIGNOR r---- --- ------ -- -------, r---- 1--- ------ -- .. -----,

! 401c ~ DATA LATCH 409 401d ~ DATA LATCH 409
406

ADDRESS -- SRAM/COL DEC '-408 ADDRESS ,__ SRAM/COL DEC ~408
------------,

413-.. LATCHES 413-.. LATCHES
I AND LRR DRAM COL DEC AND LRR DRAM COL DEC I - -
I COMPARE - SENSE AMPS '-405 COMPARE - SENSE AMPS '-405
I

I I

ROW - DRAM CELL ROW - DRAM CELL
DEC - ARRAY DEC - ARRAY

I L----------------------~L----------------------~ L __ J

d
•
r:JJ.
•
~
~
~ =

~
~
!""l
~ ~=
'"""' \0
\0
\0

'JJ. =­~
~
,i;;..

0,
00

Ul
00
\0 =
~
\0
Ul

FIG. 5

23

INPUT
ADDRESSES
ADDO-ADDY

22 I 21

SRAM R/W OUTPUT

r------------------------------- 7
r----------7 ---------, I 413 408---- r--I
: 504, i------

'-I v---507 : I COLUMN I
I COLUMN I I ADDRESS _l

I ADDR DECODE I I I LATCH I
I I I I I
I

I • · · I
I I I I

I I I : 503...,___ I
I I DATA I BIT I
I SRAM CELL 506 I LATCHES r-I I

I ARRAY I
409 I I COMPARE I

I I I I I L--1---7-----~ I I I I ••• I LRR
I

COL DECODE/ I I
ADDRESS -

SENSE AMPS
.

l'-405
.
: 502../ LATCH I 404

I l_ I · · · I I I I
I ROW I ROW DRAM CELL I I

ADDRESS -ADDRESS I r-- ARRAY I

LATCH I DECODE I 501../
\ I I

I
L __________ J

ROW ADDRESS 402
INCR/DECR 401

I AND REFRESH l"--508
I

ID

L---J

20 I 19 I 1 s I 11 16l1sl14 13 12 11 I 10 9 s I 1 6 I s I 4 3 2 1 1 1 a

DATA ~ BURST READ BURST BURST BANK STATUS X X X X :::0 X X X X X X LAT 0 L LATENCY TYPE LENGTH CD
rr1

FIG. 8

d
•
r:JJ.
•
~
~
~ =

~
~
!""l
~ ~=
"""' \0
\0
\0

'JJ. =­~
~
Ul
0,
00

Ul
00
\0 =
~
\0
Ul

r r---------~~--~~~~~~~--------------------------, 600 -, r - - - - - - - - - - - - - - - - - - __ -,

RAS
CAS

CLOCKS
ADDO
ADDY

DQO

DOZ
WE
OE

POWER
CONFIG
MODE 0
MODE P

DS

L ___ _

404---..__ ROW - DRAM CELL v-402 404---..__ ROW - DRAM CELL v402
DEC - ARRAY DEC - ARRAY

603 I I I I I I

\ ADDRESS - COL v405 ADDRESS - COL ..,,-405
MODE LATCHES - DEC/SA LATCHES - DEC/SA

- REGISTERS
,... ,_ 60 4 ---.__ 604---..__ ~

AND LRR I I AND LRR I I

DECODE -] S~ ~HE v-602 COMPARE-] S~ ~HE _,-602 COMMAND/
CLOCK

GENERATE,
ADDRESS 601a DATA LATCH 409 601 b DATA LATCH 409

LEVEL 410 -----t-~-----~~---- -----t--1-----~ TRANSLATORS \ DATA ~---- --- 1---

POWER COLUMN ADDRESSES
210 412 "I

GLOBAL ROW ADDRESSES

""
411

- ROW
ASSIGNOR r---- ---- ----- --- ------, r---- --- ----- --- ------,

I 601c ~ DATA lATCH 409 601 d C DATA lATCH 409
406

ADDRESS _,__ SRAM CACHE "-602 ADDRESS ,__ SRAM CACHE ~602

·-- 604 ---.__ LATCHES 604'--- LATCHES
~

AND LRR ,__ COL AND LRR - COL
COMPARE - DEC/SA --....405 COMPARE - DEC/SA ~405 ------------7

I I I

FIG. 6 I ROW - DRAM CELL ROW ,___ DRAM CELL
I 404./ DEC ARRAY '---402 404_/" DEC ,___ ARRAY '---402
I

-
I ~--------------------~~--------------------~ I
L--

d
•
r:JJ.
•
~
~
~ =

~
~
!""l
~ ~=
'"""' \0
\0
\0

'JJ. =­~
~
O'I

0,
00

Ul
00
\0 =
~
\0
Ul

INPUT
ADDRESSES
ADDo-ADDy

r---1
r--- ----- ---, 602 r-------------,

604 '---1 .-------, _7M'I~ I I I I
504'-

v-
I I SRAM COL J--'-, uuu I I I I COLUMN I
~ ADDR DECODE 1 I I I I ADDRESS I

I I I I I I I LATCH I
I I I I I I

I I I I I SRAM v701a : I I I I I REGISTER 1
I 503'- I I I I BIT I

I I I I I I

I
- COMPARE I SRAM I

DATA I I I
I

r---- 701 b : I I I I - REGISTER 2 LATCHES - •--I I I I
I I I I I 409 I : 7030'- I

I LRR I I I I
SRAM COL I I I . ADDRESS .

I . . r---r ADDR DECODE 2 r--- 700b : I I I LATCH 1 I
I I I
I I I L----•

________ .J

I I LRR I
I I I

COL DECODE/ - ADDRESS -I I I

I 1 703b./ LATCH 2 I SENSE AMPS r---405 I I I
I I I I I I

I I I ROW 1---

I I ROW I • DRAM CELL DS ADDRESS ADDRESS •
(GLOBAL DATA STROBE) I I I • ARRAY I I 501_/ LATCH I DECODE 1--- (INTERNAL OR EXTERNAL) I I I

I L __________ .J \
I 404 402
I ROW ADDRESS 601 I

I NCR/DE CR I
I 702/" AND REFRESH
I L ___ J

FIG. 7

d
•
r:JJ.
•
~
~
~ =

~
~
!""l
~ ~=
'"""' \0
\0
\0

'JJ. =­~
~
-..J
0,
00

Ul
00
\0 =
~
\0
Ul

SYSTEM CLOCK

DATA STROBE

/RAS

ADDo-ADDy==:)< ROW X ________________________ _
/CAS

ADDo-ADDy __ __,X COL X ______________________ _
DO I >CDC ~

~ FIG. 9A

SYSTEM CLOCK

DATA STROBE

/RAS

ADDo-ADDy~

/CAS

ADDo-ADDy x COL X -DO ~
FIG. 9B

d
•
r:JJ.
•
~
~
~ =

~
~
!""l
~ ~=
"""" \0
\0
\0

'JJ. =­~
~
00
0,
00

Ul
00
\0 =
~
\0
Ul

5,890,195
1

DRAM WITH INTEGRAL SRAM
COMPRISING A PLURALITY OF SETS OF
ADDRESS LATCHES EACH ASSOCIATED
WITH ONE OF A PLURALITY OF SRAM

CROSS-REFERENCE TO RELATED
APPLICATION

This application for patent is a continuation-in-part of
DRAM WITH INTEGRAL SRAM AND SYSTEMS AND
METHODS USING THE SAME, U.S. patent application
Ser. No. 08/816,663 (Attorney Docket No. 17200-P00lUS),
filed on Mar. 13, 1997.

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to electronic
memories and in particular to a dynamic random access
memory (DRAM) with integral static random access
memory (SRAM), and systems and methods using the same.

BACKGROUND OF THE INVENTION

Currently available dynamic random access memories
(DRAMs) are generally based upon architectures which
share the following characteristics. First, the typical general
purpose DRAM has a single data port for writing and
reading data to and from addressed storage locations ("dual
ported" DRAMs are available which provide two data ports,
typically one random and one serial port, however, these
devices are normally limited to special memory
applications). Second, data writes and reads are only made
on a location by location basis, with each location typically
being one bit, one byte or one word wide. Specifically, in a
"random access mode", an access (read or write) is made to

2
A CPU typically exchanges data with memory in terms of

"cache lines." Cache lines are a unit of data by which
operandi and results can be stored or retrieved from memory
and operated on by the CPU in a coherent fashion. Cache

5 lines accesses are made both to cache and to system
memory.

In systems operating with CPUs having a 32-bit data 1/0
port, a cache line is normally eight (8) 32-bit words or 256
bits. In the foreseeable future, data 1/0 ports will be 64 bits

10 wide, and cache lines may be comprised of 16 64-bit data
words or 1024 bits in length. Typically, the CPU may read
a cache line from a corresponding location in memory,
perform an arithmetic or logic operation on that data and
then write the result back to the same location in system or

15 cache memory. A given location for a cache line can be in
one or more physical rows in memory and therefore an
access to cache line location may require multiple /RAS
cycles. In any event, the CPU, depending on the operating
system running, can generally access any location in

20 memory for storing and retrieving operandi and results.

Often situations arise when the results from a given
operation exceed the length of the cache line and therefore
data can no longer be processed as coherent cache line units.
For example, if the CPU performs a n by n bit integer

25 multiplication, the result could be a maximum of 2n bits. In
other words, while each operand can be retrieved from
memory as a cache line, the result exceeds the length of a
single cache line and coherency is lost. Similarly, when
operandi containing decimal points or fractions are

30 involved, exceeding the length of a cache line can also take
place. In the case of fractions, long strings of bits, which
exceed cache line length, may be required to minimize
rounding errors and therefor increase the precision of the a single location per row address strobe (/RAS) active cycle

and in a "page mode" an access is made to a single location 35
per column address strobe (/CAS) or master clock cycle of
the row addressed during the given /RAS cycle. Third, no
method has generally been established to handle contention
problems which arise when simultaneous requests for access
are made to the same DRAM unit. Current techniques for
handling contention problems depend on the DRAM and/or
system architecture selected by the designer and range, for
example, from "uniform memory-noncontention" methods

calculations.

In any computing system, and in particular multiprocess­
ing systems, the ability to operate on data as cache lines
substantially improves operating efficiency. Thus, when a
cache line is exceeded during an operation, system perfor-

40 mance is reduced. Specifically, when a cache line is
exceeded, the CPU must either access that data as two cache
lines or as a cache line and additional discrete words or
doublewords of data. As a result, extra memory cycles are
required to execute an operation and the transfer of data to "non-uniform memory access" (NUMA) methods.

Similarly, the system architectures of personal computers
(PCs) generally share a number of common features. For
example, the vast majority of today's PCs are built around

45
within the system is more difficult because the necessary
data is no longer in proper cache line data structures.

a single central processing unit (CPU), which is the system
"master." All other subsystems, such as the display
controller, disk drive controller, and audio controller then 50

operate as slaves to the CPU. This master/slave organization

Thus, the need has arisen for new memory and system
architectures in which operations can be performed on
coherent units of data, even if cache lengths are exceeded.

SUMMARY OF THE INVENTION

A memory is disclosed comprising a plurality of static
random access memory cell arrays and their plurality of sets
of latches, each for storing address bits associated with data

is normally used no matter whether the CPU is a complex
instruction set computer (CISC), reduced instruction set
computer (RISC), Silicon Graphics MIPS device or Digital
Equipment ALPHA device. 55 stored in a corresponding one of the static random access

cell arrays. Bit comparison circuitry compares a received
address bit with an address bit stored in each of the plurality
of sets of latches and enabling access to a selected one of the

Present memory and PC architectures, such as those
discussed above, are rapidly becoming inadequate for con­
structing the fast machines with substantial storage capacity
required to run increasingly sophisticated application soft­
ware. The problem has already been addressed, at least in 60

part, in the mainframe and server environments by the use
of multiprocessor (multiprocessing) architectures. Multipro­
cessing architectures however are not yet cost effective for
application in the PC environment. Furthermore, memory
contention and bus contention are still significant concerns 65

in any multiprocessing system, and in particular in a mul­
tiprocessing PC environment.

static cell arrays corresponding to the set of latches storing
an address bit matching the received bits.

A method is provided for accessing blocks of data in a
memory having a plurality of registers and a memory array.
An address is received through an address port and paired
with addresses previously stored in each of a plurality of
latches. When a match occurs between the received address
and a matching address stored in one of the latches, a register
corresponding to the latches storing the matching address is

5,890,195
3 4

pre-stored data is substantially increased. The principles of
the present invention also allow for high speed accesses
directly from the registers, in addition to traditional accesses
to the DRAM cell array.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the

accessed through a data port. When a match does not occur
between the received address and an address stored in one of
the latches, the following substeps are performed: data is
exchanged between a location in the memory array
addressed by the received address and a selected one of the 5
registers; and storing the received address in one of the
latches corresponding to the selected register. The received
address is modified to generate a modified address. Data is
then exchanged between a location in the memory array
addressed by the modified address and a second selected one

10 subject of the claims of the invention. It should be appre­
ciated by those skilled in the art that the conception and the
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry­
ing out the same purposes of the present invention. It should

of the registers while the modified address is stored in the
latches corresponding to the second selected register.

A memory is also disclosed comprising a plurality of
banks, including first and second arrays of static random
access memory cells, first and second latches, address com­
pare circuitry and a row address latch. The first latch is
provided for storing a plurality of address bits accessing
associated data stored in the first array of static cells. The
second latch is provided for storing a plurality of address bits
accessing associated data stored in the second array of static 20
cells. Address comparison circuitry is provided for compar­
ing first selected bits of a received address with address bits
stored in the first and second latches and selectively enabling
access to the first and second arrays in response. A row
address latch stores a received address and increment and 25
decrement circuitry allows for selective modification of an
address stored in the address latch. A global row assignor is
provided for selecting a bank for access in response to
second selected bits of the received address.

15 also be realized by those skilled in the art that such equiva­
lent constructions do not depart from the spirit and scope of
the invention as set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawings, in which:

FIGS. lA and lB are block diagrams respectively depict­
ing two basic system architectures typical of those found in
personal computers (PCs);

FIG. 2A depicts a multiprocessing system in which each
processor operates in conjunction with private system
memory;

FIG. 2B depicts a multiprocessing system in which each
processor operates in conjunction with a public system
memory;

FIG. 2C depicts a multiprocessing system in which each
processor operates in conjunction with both private memory

35 and public system memory;

A method is also disclosed for operating a memory having 30

a plurality of banks, each bank including a dynamic random
access memory cell array and first and second static random
access memory cell arrays. A row address is received and a
bit decoded to select a first bank for access. Selected bits of
the received row address are compared with bits stored in
first and second latches in the first bank, the first latch
holding an address associated with data stored in the first
static array and the second latch holding an address associ­
ated with data stored in the second static array of the first
bank. When a match occurs between the selected bits of the
received row address and the bits stored in the first latch,
these subsets are performed: the first static array of the first
bank is accessed; the received row address is modified to
generate a second row address; and a second bank loads a
selected one of the first and second static arrays with data 45

from the dynamic array using the second row address. When

40

FIG. 3A is a diagram illustrating a "loosely coupled"
multiprocessing architecture in which each processing node
maintains a dedicated copy of the operating system and a
dedicated copy of the applications program;

FIG. 3B depicts a "tightly coupled" multiprocessing sys-
tem in which all processing nodes share a single copy of the
operating system and a single copy of the applications
program;

FIG. 3C depicts a diagram of a "snugly coupled" multi­
processing system in which each processing node maintains
a dedicated copy of the operating system and all nodes share
a single copy of the applications program;

FIG. 4 illustrates a functional block diagram of a dynamic

50 random access memory device according to one embodi­
ment of the principles of the present invention;

a match does not occur between the selected bits of the
received row address and the bits stored in the first and
second latches of the first bank, these substeps are per­
formed: in the first bank, loading a selected one of the first
and second static arrays with data from the dynamic array
using the received row address; the received row address is
modified to generate a second row address; and, in the
second bank, selected one of the first and second static
arrays is loaded with data from the dynamic array using the 55

second row address.
Among the many advantages, the principles of the present

invention allow for the efficient accessing of blocks of data
as required by the CPU and/or the operating system. For
example, in a four bank embodiment, with two registers per 60

bank, a contiguous block of eight rows of data and associ­
ated addresses can be stored in register for fast access.
Typically, the CPU accesses data within such spatial or
temporal blocks. Thus, when the CPU requires data from
memory, and that data is already stored in register, data with 65

a given spatial or temporal locality is also most likely
already in a register. In this fashion, the number of "hits" to

FIG. 5 depicts a more detailed diagram emphasizing the
data and address routing circuitry of the memory shown in
FIG. 4;

FIG. 6 depicts a second dynamic random access memory
device according to the principles of the present invention;

FIG. 7 depicts a selected SRAM cache depicted in FIG. 6;
FIG. 8 is a diagram of the bitfields of the mode register

shown in FIG. 6; and
FIGS. 9Aand 9B illustrate respective timing diagrams for

exemplary read and write operations to the memory of FIG.
7.

DETAILED DESCRIPTION OF THE
INVENTION

The principles of the present invention and their advan­
tages are best understood by referring to the illustrated

5,890,195
5

embodiment depicted in FIGS. 1-9 of the drawings, in
which like numbers designate like parts.

6
signals required for DRAMs in the system memory or cache;
and controls general management transactions. The data
intensive chip(s) generally: interfaces CPU 101 with the data
bus 102; issues cycle completion responses; may abort

FIGS. lA and lB are block diagrams respectively depict­
ing two basic system architectures lO0A and 100B typical of
those found in personal computers (PCs). While numerous
variations on these basic architectures exist, FIGS. lA and
lB are suitable for describing the basic structure and opera­
tion of most PCs.

5 operations if their cycles are incomplete; and arbitrates for
the data path of bus 102.

Both systems lO0A and 100B include a single central
processing unit 101, CPU local data bus 102, CPU local 10

address bus 103, external (L2) cache 104, core logic/
memory controller 105, and system memory 106. In system
lO0A, the peripherals 108 are coupled directly to core
logic/memory controller 105 via a bus 107. Bus 107 in this
case is preferably a peripheral controller interface (PCI) bus, 15

although alternatively it could be an ISA, general, or special
purpose bus, as known in the art. In system 100B, core
logic/memory controller 105 is again coupled to bus 107. A
PCI bus bridge then interfaces bus 107 with a PCI bus 110,
to which the peripherals 111 couple. An additional bus 112, 20

which may be a ISA, PCI, VESA, IDE, general, or special
purpose bus, is provided for access to peripherals 111 from
an external device or system (not shown).

In single CPU systems lO0A and 100B, CPU 101 is the
"master" which, in combination with the operating system 25

and applications software, controls the overall operation of
system 100. Among other things, CPU 101 performs various
data processing functions including numerical and word
processing, generates graphics data, and performs overall
system management. CPU 101 may be, for example, a 30

complex instruction set computer (CISC), such as an Intel
Pentium™ class microprocessor, a reduced instruction set
computer (RISC), such as a Apple Power PC microprocessor,
or a very long instruction word (VLIW) machine.

CPU 101 communicates with the remainder of system 100
via CPU local address and data buses 102 and 103, each of
which may be, for example, a special bus, or a general bus,
as known in the art.

35

CPU 101 can directly communicate with core logic/
memory controller 103 or through an external (L2) cache
104. L2 cache 104 may be, for example, a 256 KByte fast
SRAM device(s). Typically, the CPU also maintains up to 16
kilobytes of on-chip (Ll) cache.

PCI bus bridges, such as PCI bus bridge 109, are also well
known to those skilled in the art. In the typical PC, the CPU
is the bus master for the entire system and hence devices
such as PCI bus bridge are slave devices which operate
under command of the CPU.

Peripherals 107/111 may include a display controller and
associated frame buffer, floppy drive controller, disk driver
controller, and/or modem, to name only a few options.

The principles of the present invention may also be
embodied in multiprocessing devices and systems. Although
a number multiprocessing architectures exist to which the
principles of the present invention can be applied, FIGS. 2A,
2B and 2C respectively depict exemplary multiprocessor
architectures 200A, 200B and 200C for discussion purposes.

Multiprocessing system 200A is based upon n number of
CPUs 201. Each CPU 201 is associated with a dedicated
cache 202 and dedicated (private) system memory 203.
Common bus 204 allows a given CPU to exchange infor­
mation with peripherals, including mass storage subsystems
204, such as disk drives, tape drives and cartridge units, and
Input/Output subsystems 206, such as printers, displays and
keyboards.

The memory organization of system 200A is typically
categorized under the "no read/write memory access"
(NORMA) paradigm. In NORMA based systems, the pro­
cessors have no access to a common (public) memory and all
data sharing between processors occurs over communica-

4o tions links. NORMA typically is used in fully distributed Core logic/memory controller 105, under the direction of
CPU 101, controls the exchange of data, addresses, control
signals and instructions between CPU 101, system memory
105, and peripherals 108/111 via bus 107 and/or PCI bus
bridge 109. Although the core logic/memory controller
allows tasks to be shifted from the CPU, thereby allowing 45
the CPU to attend to other CPU-intensive tasks, the CPU can
always override core logic/memory controller 105 to initiate
execution of a higher priority task.

Core logic and memory controllers are widely available in
the PC industry and their selection and application well
known by those skilled in the art. The memory controller can
be either a separate device or incorporated into the same chip
set as the core logic. The memory controller is generally
responsible for generating the memory clocks and control
signals such as /RAS, /CAS, /WE (write enable), /OE
(output enable) and bank select, and monitors and controls
cell refresh. The memory controller may also have some
address generation capability for accessing sequences of
pages.

systems.

System 200B also primarily includes n number of CPUs
201, each with an associated cache 202, and coupled to the
peripheral devices through a common bus 204. In the case
of system 200B, system memory 207 is also coupled to bus
204 and is shared by all the CPUs 201. A second bus 208 is
provided as a second path for accessing system memory 207.

The memory architecture of system 200B is typically

50
designated as a uniform memory access (UMA) architec­
ture. Under the UMA paradigm, all processors have equal
access to system memory and all processors have local
cache. The uniform memory access architecture typically
provides the fastest possible interaction between processors

55
and is the common architecture used in PCs, work stations,
and other desktop computing devices. UMA based systems
are often referred to as "symmetric-multiprocessing" sys­
tems.

The core logic is typically comprised of a chip-set, with 60

one or more chips typically being "address and system
controller intensive" and one or more chips typically being
"data intensive." Among other things, the address intensive
chip(s): interfaces CPU 101 with address bus 103; maintains
cache memory, including the cache tags, sets associative 65

cache tags and other data necessary to insure cache coher­
ency; performs cache "bus snooping"; generates the control

System 200C is a system in which both private and system
memory are provided. Specifically, in addition to dedicated
cache 202, each CPU 201 is also associated with private
memory 209. Each CPU is further connected by bus 204 to
a shared system memory 210.

The memory architecture of system 200C falls under the
non-uniform memory access (NUMA) paradigm. Under the
NUMA paradigm, each processor has a private memory and
additionally shares system memory with the other proces-

5,890,195
7

sors in the system. One difficulty in a NUMA based system
is the fact that the access times for the private and system
memories may be different creating timing problems.

At the highest system level, there are a number of ways
to implement the hardware architectures shown in FIGS. 2A,
2B and 2C in a complete hardware/software system. Three
such systems are shown in FIGS. 3A-3C, respectively.

FIG. 3A is a diagram illustrating a "loosely coupled"
multiprocessing architecture. In the loosely coupled
architecture, each processing node 300 maintains a dedi­
cated copy of both the operating system and the application
programs. Loosely coupled architectures, such as that shown
in FIG. 3A, are used often in embedded systems and in
real-time systems in which tasks must be partitioned to
different processing nodes for synchronization purposes.
Embedded systems include those in which the CPU is
fabricated on the same chip as logic, memory, a signal
processor, or the like. High speed interconnects are used to
share data and pass messages between processing nodes
300. While loosely coupled systems are more fault and error
tolerant, their software programming is most often highly
complex.

FIG. 3B depicts a "tightly coupled" system. In this case,
a single copy of the operating system and a single copy of
the application program are shared and executed by a single
set of processors. Advantageously, writing software pro­
grams for a tightly coupled system is normally simpler than
for writing programs to a loosely coupled system. However,
tightly coupled systems, based only on single copies of the
application programs and operating system, are less tolerant
to errors and failures than the loosely coupled systems.

FIG. 3C is a diagram of a "snugly coupled" system in
which each processing node 300 maintains a dedicated copy
of the operating system and all nodes share a single copy of
the applications program. The snugly coupled variation is a
hybrid which provides the tolerance to failure/errors found
in loosely coupled systems while still providing the simpler
program found in tightly coupled systems.

Generally, under any of the UMA, NUMA or NORMA
paradigms, the system will act differently depending upon
the type of processor employed. For example, a CISC CPU
may be "latency" dominated while a digital signal processor
(DSP) based system may be "dataflow" dominated. Further,
pipelined processing algorithms typically are dataflow
intensive, since the processors perform operations on
streams of data received from other processors in the system
and then pass the results on to other processors.

There are major challenges which must be addressed in
the design of almost any multiprocessing system. First, if an
architecture, such as those used in system 200B or system
200C, in which a single system memory system is shared by
multiple processors, the issue of memory contention must be
addressed; a technique must be developed to handle the
situation in which several processors attempt to simulta­
neously access the shared memory. This problem is com­
pounded by the fact that the contention issues must be dealt
with from design to design, since different processors inter­
face with memory differently. For example, a RISC proces­
sor requires substantial memory space while a CISC pro­
cessor requires substantial register space.

In a memory device or subsystem with a single data
input/output port and a single address port, contention
problems can be solved by "memory locking." In this case,
while one CPU (or controller) is accessing a given memory
device or subsystem, the other CPU (controller) is "locked
out" and cannot access that same device/subsystem.

8
Memory locking is a memory management task which may
be performed by the memory management unit (MMU)
on-board the CPUs themselves or by a stand-alone device or
subsystem. In any event, memory locking reduces the effi-

5 ciency which multiprocessing was intended to increase,
since during a contention situation, at least one processor
must wait to access data.

Another major challenge is the software design. Symmet­
ric multiprocessing operating systems are preferred, since

10 this type of operating system is capable of seamlessly
passing application programs to the CPUs as they become
available. As discussed above, the selection of between
tightly, loosely and snugly coupled software architecture
requires substantial trade-offs, and in particular trade offs

15 between ease of programming and fault/error tolerance.
Further, when multiple processors (or controllers) are

coupled to the same bus, bus contention problems may also
arise. Specifically, when a shared bus is employed, only one
processor is normally granted access to the bus to perform

20 a given bus task, while the remainder of the processors
coupled to that bus must wait until their priority has been
reached. One technique for minimizing bus contention
problems, is to provide a dedicated cache for each CPU, as
shown in FIGS. 3A-3C, so that a given CPU need only

25 access the bus at times when required data are not found in
the dedicated cache. As a result, cache coherency is a major
concern in the design of a multiprocessing system. In other
words, when a given processor modifies a location in
memory, some technique must be provided for insuring that

30 the data is modified in the cache memory of each of the other
processors using the same data.

FIG. 4 is a functional block diagram of a dynamic random
access memory device 400 according to one embodiment of
the principles of the present invention. Memory 400

35 includes N number of memory banks or units 401, with four
such banks 401a, 401b, 401c, and 401d being shown in FIG.
4 for discussion; the actual number of banks will vary from
application to application, although N is preferably an even
number two or greater. Banks 401 communicate with exter-

40 nal circuitry through control and configuration circuitry 407,
discussed further below. In single CPU processing systems,
such as systems 100a and 100b, memory subsystem 400
may be used to construct system memory 102, although
many other applications in the single CPU personal com-

45 puter environment are possible, such as in the display frame
buffer. In multiprocessing architectures, such as systems
200a, 200b, and 200c, memory subsystem 400 can be used
to construct either the system memories or the local (private)
memories. Preferably, subsystem 400 is a monolithic inte-

50 grated circuit device.
Each bank 401 includes an array 402 of dynamic random

access memory (DRAM) cells arranged in N number rows
and M number columns. As is known to those skilled in the
art, each array 402 may be partitioned into multiple

55 subarrays, with the columns organized using either an open­
bitline or folded-bitline approach. Each bank 401 further
includes a traditional DRAM row decoder 404 coupled to
the array wordlines, and traditional DRAM sense amplifiers/
column decoder circuitry 405 coupled to the array bitlines.

60 The row and column decoders are preferably organized in
hierarchical fashion in which a main decoder and one or
more levels of subdecoders/drivers are used. Generally, each
row decoder 404, in response to a row address, selects one
of N rows for access during an active cycle when the row

65 address strobe /RAS is in a logic low state. Column decoder
selects P number of pages (locations) of C number of
columns (bits) from the M total number of columns in

5,890,195
9

response to P number of column addresses for access during
an active cycle.

10
sented to the fine granularity row decoders 404 and the least
significant bits to the global row assignor 406. The most
significant row address bits from the previous (last) /RAS
cycle are transferred to last row read address latch 502.

Global row assignor 406 performs a "coarse granularity
decoding" using L number of least significant row address
bits from each received row address. Specifically, all banks
401 are active during each /RAS cycle, and global row
assignor using the L least significant row address bits to
select. Row decoders 404 consequently decode the Y-L
number of remaining most significant address bits to simul­
taneously select one row per /RAS cycle in each DRAM
array during a DRAM access.

5 Comparison circuitry 503 compares the most significant row
address bits latched into row address latch 501 and the last
read row address held in latch 502. During each /CAS cycle,
one or more column addresses are received at address port
AddO-AddY and latched into column address latch 504

10
with each falling edge of /CAS.

SRAM registers 506 store data associated with the
address bits stored last read address latch 502 (i.e., assuming
that row addresses and data are considered together as a data
structure, the row address MSBs comprise the row field and

Control circuitry 407 receives conventional DRAM con­
trol signals and clocks from an external source, such as
processor 101 or core logic 105 in system 100 or CPUs 201
in multiprocessing systems 200A-200C. These signals
include a synchronous clock (SCLK), a row address strobe
(IRAS), a column address strobe (/CAS), read/write select
(RAN) and output enable (/OE), along with data (DQ) and
addresses (Aaa)- Control circuitry 407 also inputs a configu­
ration bit (CONFIG), discussed below. In the preferred
embodiment, the address input port is multiplexed in a
conventional manner wherein row addresses and column
addresses are received sequentially at the same pins and
latched in with /RAS and /CAS respectively.

15
the data bits, the data field). A second column decoder 507
is provided to access locations in SRAM registers 506. Row
address increment/decrement and refresh control circuitry
508, when enabled, steps through the rows of array 402 to
perform cell refresh through the DRAM sense amps and

20
implements the address transformations detailed below.

Preferred methods of operating memory 400 can now be
described. During an access, a row address is first received
at address pins AddO-AddY. On the falling edge of /RAS,
the least significant row address bits (in the four bank

25 embodiment, the two least significant bits) are passed to
global row assignor 406 and the remaining most significant
bits are latched into row address latch 501 of each bank 401.
The most significant bits stored in each row address latch
501 from the previous /RAS cycle are transferred into the

According to the principles of the present invention, each
bank 401 further includes static random access memory
(SRAM)/SRAM column decoder circuitry 408. SRAM cir­
cuitry 408 will be discussed in further detail in conjunction
with FIG. 6, but can generally be described at this point as
follows. First, a linear array of M number of SRAM cells is 30

included for storing a row of data transferred from the
corresponding DRAM array 402. Second, SRAM column
decoder circuitry is included for page access (reads or
writes) of C-bit wide pages of data to the row of data in
SRAM array in response to one or more column addresses. 35

Data latches 409 interface the DRAM sense amplifiers/
column decoders 405 and the SRAM column decoders 408
with a data bus 410. Column addresses are transferred via a
column address bus 411 and row addresses by a row address

40
bus 412.

corresponding LRR address latch 502.
In a first method of reading, the bit CONFIG at the input

to memory 400 is set to a logic low. Global row assignor 406
determines from the current least significant row address bits
the bank 401 which corresponds to the address space of the
received address. The comparator 503 of the corresponding
bank 401 is enabled such that during the period between the
falling edge of /RAS and the first high to low transition of
/CAS, that comparator 503 compares the current address
most significant bits in the corresponding row address latch
501 and bits stored in LRR address latch 502. If a match
occurs for the given bank, the SRAM column address
decoders 507 are selected and set-up to access the complete
SRAM cell array 506 of that bank. Column addresses
received at the address port AddO-AddY are latched into

Address latches and last row read (LRR) compare cir­
cuitry 413 includes latches for storing the current row and
column addresses received at the address port AaaO-Aaa Y.
Also included as part of circuitry 413 are latches for storing
the high order (MSB) row address bits of the last row read
(LRR) and comparison circuitry for comparing the stored
LRR bits to the high order bits (MSB) of the current row
address.

45 column address latches 504 of each bank and each SRAM

It should be noted that while in the illustrated embodiment 50

the least significant row address bits are processed by global
assignor 406 and the most significant row address bits are
used internal to the banks 401 to select individual rows of
cells, other arrangements will just as easily apply. For
example, a given number of most significant row address 55

bits could be used by global row assignor 406 and the
remaining least significant bits used for individual row
select. Further, either big- or little-endian data structures can
be used. The number of address bits presented to the SRAM
cache of a given bank 408 is identical to the number of MSB 60

address bits presented to DRAM row decoder 404.
FIG. 5 is a more detailed diagram emphasizing the data

and address routing circuitry of a selected bank 401.
Addresses are received in a multiplexed fashion at the
address port AddO-AddY. The row address bits are latched 65

on the falling edge of /RAS (which follows the SCLK) into
row address latch 501. The most significant bits are pre-

column decoder 507 accordingly allows access to a C-bit
word per each of P number of column addresses latched-in
with /CAS. The accesses are implemented through a C-bit
wide data bus 410; if for example, each bank is organized as
a by 16 device, data bus 410 is 16-bits wide and so on.
Preferably, the selected (enabled) bank is the only bank 401
accessed via data bus 410, the word of data in the data
latches 409 of the other banks is simply not used.

If the address bits in latches 501 and 502 do not match for
the bank 401 addressed by the received row address LSBs,
access must be made to the corresponding DRAM array.
Specifically, for a read to the addressed bank 401, the row is
selected by DRAM row decoder 404 from the corresponding
DRAM array 402 and an entire row of data transferred to the
associated SRAM array 506 for output when the column
addresses are presented. For the remaining banks 401, the
MSBs are incremented or decremented using the corre­
sponding row address increment circuitry 508. A row of data
for these banks is similarly transferred to the corresponding
SRAM arrays 507.

Assume for example, in the illustrated four bank system,
that the received row address has LSBs 01 indicating the

5,890,195
11

address space of bank 401b (Bankl) is to be accessed.
Global row assignor 406 hence enables Bankl to make the
comparison of the row current address MSBs and the bits
stored in the Bankl LRR latch. The row address MSBs as
received are not modified for transferring data from the bank 5

401b DRAM array 402 to the Bankl SRAM array. However,
for bank 401a (Bank0) the row address MSBs are decre­
mented by 01 by the corresponding row increment circuitry
508 and the row address MSBs for banks 401c (Bank2) and
401d (Bank3) are incremented by 01 and 10 respectively. In 10

other words, if the address to Bankl (the received row
address MSBs) is designated addressA+l, then addressA+l

12
the present invention. In embodiment 600, as shown in FIG.
6, an SRAM cache unit 602 is included in each bank 601.
SRAM cache units 602 will be described in detail in
conjunction with FIG. 7; however, each SRAM cache 602
can be generally described as having a plurality of SRAM
arrays (registers), each having a corresponding dedicated
SRAM column decoder. DRAM 600 further includes a set of
mode registers and input for receiving a global data strobe
(DS). Address latches and LRR decode circuitry 604 are
appropriately expanded to control the multiple SRAM
embodiments, as will be demonstrated in FIG. 7. Mode
register 603 and the functioning of the global data strobe
(DS) will also be discussed further below.

As shown in FIG. 7, each SRAM cache 602 includes a
is decremented by one such that Bank0 receives address AO
and incremented such that Bank2 receives address A+2 and
Bank3 receives address A+3. These addresses are used to
access the associated bank's DRAM array 402 and the
accessed data in DRAM transferred to the SRAM arrays.
The new addresses are stored in address latches 501.

15 plurality of SRAM column decoders 700 coupled to a
corresponding SRAM register 701. In the illustrated
embodiments, two SRAM registers 701a and 701b, associ­
ated with a pair of SRAM column decoders 700a and 700b
shown for brevity and clarity. However, it should be recog-During accessing of the addressed bank, assuming again

for discussion purposes BANKl, the DRAM of any bank,
including in this case the DRAM array 402 of Bankl can be
refreshed. The DRAM column decoders 405 isolate the
corresponding DRAM arrays 402 from the SRAM arrays
408. Thus, while data is being accessed from the SRAM
array of the selected bank 401, any or all of the DRAM 25

arrays 402 can be refreshed without disturbing the data in the
SRAM arrays. Refresh is preferably performed by incre­
menting the row addresses in each bank using increment and
refresh circuitry 508 and latching each row of data using the
DRAM sense amplifiers 405 in a conventional fashion.

20 nized that an SRAM cache 602 may be constructed with
additional SRAM registers 700 along with a corresponding
number of SRAM decoders 701.

Additionally, a corresponding number of LRR latches 703
are provided to support the multiple SRAM registers 701.
Hence, if in a given embodiment includes n number of
registers 701, there will preferably also be n number of LRR
registers 704, although this is not an absolute requirement.
In the illustrated embodiment where two SRAM registers
701a and 701b are depicted, a corresponding pair of LRR

30 latches 704a and 704b are also shown.

35

DRAM cell array 402, row address decoder 404, address
latches/LRR comparison circuitry 413 and row address
increment/decrement and refresh circuitry 702 all substan­
tially operate as described above.

Assume that each DRAM cell array 402 is arranged in m
number of rows and n number of columns. Row address
decoder 404 will be coupled with the wordline controlling
access to each row of cells. In the most straightforward

In the preferred embodiment, once the data in the SRAM
array 506 of the addressed (selected) bank has been
accessed, the /RAS cycle is complete. The data in the SRAM
arrays 506 of the remaining banks 401 is available through
the associated data latches 409, and could be used, but
typically is reserved for future /RAS cycles. The current row
address MSBs for the selected banks and the new row
address MSBs are transferred to the LRR registers during
the next /RAS cycle. The corresponding data remain in the
SRAM arrays. Advantageously, since the CPU and/or oper­
ating system typically accesses data within temporally or
spatially adjacent areas in memory, the probability is sub­
stantial that a match will occur.

40
embodiment, n number of sense amplifiers are provided with
one sense amplifier coupled to bitline associated with each
column of cells. DRAM column decoder/sense amplifiers
405 includes a data interface with SRAM column decoders
700 allowing data to be exchanged, between DRAM array

45
402 and SRAM registers 701, either individually or in
combination. SRAM and DRAM column decoders 700 and

For a write operation the following is the preferred
method. An address is received at address portAddO-AddY.
From the LSBs, global row assignor 406 determines the
bank 401 assigned to the corresponding row address space.
Assume again for example, the LSBs are 01, addressing
bank 401b (Bankl). The received row MSBs are taken as the

50
address to the Bankl DRAM array 402. As was done above,
the row address increment circuitry 508 for Bank0 decre­
ments the received row MSBs to obtain a row address to the
Bank0 DRAM array and increments the received MSBs by
01 and 10 to obtain row addresses to the DRAM arrays of

55
Bank2 and Bank3 respectively. The MSB row address bits
for each bank 401 is written into the respective bank's LRR
register 502.

In a second method of accessing, the CONFIG bit at the
input to memory 400 is set high. In this case, during an 60
access, the MSBs of a received address are compared by all
the comparators 503. If a match occurs in any one or more
banks 401, the data from all the banks is taken, although the
data from the non-matching banks may be discarded or left
in the data latches.

FIG. 6 depicts a second Dynamic Random Access
Memory (DRAM) device 600 according to the principles of

65

402 are all coupled to column address latch 504.
In the illustrated embodiment, where DRAM array 402 is

n columns wide and each SRAM register 701 correspond­
ingly is a linear array of n number of cells disposed in a
single row. In the present example therefore, the cache width
is n and the cache depth is two. Each row in either cache or
DRAM memory stores p number of cache lines, wherein p
equals m divided by b, the number of bits per cache line.

The multiple SRAM register/column decoder structure of
each SRAM cache 602 has further advantages. For example,
if SRAM column address decoders 700 are static devices,
then while DRAM cell array 402 of any bank 601 is in
precharge (i.e., /RAS high), one or more of the correspond­
ing SRAM registers 701 can be accessed either in a random
or page fashion. Of course, column address decoders 700
can be dynamic devices which are inactive during the period
when /RAS is high thereby providing for substantial power
savings across the banks 601 of device 600.

SRAM registers 701 of given bank 601 can be used in
various combinations with the associated DRAM cell array
402 and its column decoder 405 to optimize data exchanges.

5,890,195
13 14

The conventional control signals /RAS, /CAS, /CS and
/WE are used to control the loading of mode registers 603.
There are many combinations of the states of these signals
which can send device 603 into the Load Mode Registers

For example, one SRAM register 701 of the selected bank
601 can access data through the device data port (DQ), while
simultaneously data can be exchanged between the associ­
ated DRAM cell array 402 and any of the remaining SRAM
registers 701 in the same cache unit 602. At the same time,
data exchanges can occur between the SRAM registers 701
and the associated DRAM cell array 402 of each of the other
banks 601.

For any SRAM registers 701 in device 600 which are not
being accessed through the device 1/0 port, a number of
different data exchanges between the data cell array 402 and
the SRAM registers 701 can be set up. Among other things,
the contents of a SRAM register 701 can be copied to a row

5 state. For example, a chip select signal /CS (FIG. 6), /RAS,
/CAS and /W could all be set to a logic low state. In response
to this combination of input signals, each of the banks 601
would be deactivated. The mode control data can then be
loaded into mode registers 603, preferably timed by the

10 system clock.

FIG. 8 is a diagram of the bitfields of mode registers 603.
Each of these bitfields can be described as follows.

in the corresponding DRAM cell array 402 or vice versa;
data can be copied from DRAM to a SRAM register. During
accesses through the data port (DQ) each port can be
individually configured such that reads and writes are made
to the cache unit 602 only, to the DRAM cell array 402 only,

Bits 0---2 set the burst length for device 600. The burst
length is the number of words clocked into or out of data

15 latches 409 of the bank 601 being accessed.

or to both an SRAM register 701 in the cache 602 and to the
DRAM array 402.

Bit 3 defines the burst type. In the illustrated embodiment,
if zero is written into the bit 3 position, the burst output will
be serial and if a Logic One is written thereto, an interleaved

20
burst will take place.

The multiple SRAM register embodiment 600 allows for
the selective implementation of one of a number of address­
ing schemes. For example, assume that global row assignor
406 has taken the received least significant row address bits
and has selected BANK 1 for access. Assuming a two 25
SRAM register embodiment, the most significant row
address bits are then compared with two addresses stored in
the LRR address latch 502 (one corresponding to each row
of data stored in a corresponding SRAM register 701). If a
match occurs, then the SRAM register 701 corresponding to 30
the matching addresses is accessed. In this case the prob­
ability of a match (cache hit) are increased since the number
of SRAM registers in which the desired data could possibly
be stored in has increased.

Alternatively, the multiple registers 701 of each bank 601 35
could be considered as residing in a single address space. In
this case, the most significant bits of an incoming row
address are compared against a single stored LRR address.
If a match occurs, all of the SRAM registers of the given
bank are then accessed in a predetermined sequence. Among 40
other things, this scheme would allow paging of data in
multiple page lengths, depending on the length of each row

The bitfield comprised of bits 4--6 define the read latency.
Typically, it takes (slightly) longer to perform a write than it
does to perform a read. A read after write, or write after read
takes even longer, in today's commercial SDRAM's, espe­
cially when one switches from Bank X to Bank Y. In this
invention, since all banks are normally 'on', there is no such
penalty. In other words, the minimum write latency is
slightly longer than the minimum read latency. These bits
therefore allow the read latency to be adjusted to optimize
read/write timing. Specifically, the burst latency is the delay
in the output of the first bit of a burst of data from the high
to low transition of /CAS. The desired delay is generated
using an internal clock optimized for DRAM operations
with SRAM register operations.

In the illustrated embodiment, the bitfield consisting of
bits 7-8 and the bitfield consisting of bits 14-16 are reserved
for future use.

Bit 9 is used to select between single word bursting and
bursting in bursts of the length specified in the burst length
register. For example, if a zero is written into the bit 9
position, then the write burst length will be as defined by the
burst length bits written into the bitfield 0-2. If a logic one
is loaded into bit position 9, the write burst length will be
one word. In other words, writes will be made on a word by

in SRAM and the number of SRAM registers accessed.
Provisions can be made during the setup of Mode Registers
603 to accomplish varying embodiments. 45 word basis.

In an additional alternative, data can be loaded from the
DRAM arrays such that the data in a selected SRAM register
in a given bank is associated with an address non-contiguous
with the addresses associated with the contents of other
registers in that bank. For example, row address increments/
decrements 501 could be configured such that if Bank 0,
SRAM register 701a is loaded with data corresponding to
Addr0, the associated register 701b is loaded with data
corresponding to Addr4. For bank 1 registers 701a and 701b

Bit 12 controls the data strobe. If a logic zero is written
into bit position 12, an internal delay locked loop (DLL)
clock generator is the selected source for the global data
strobe (DS). In contrast, if a logic one is written to this bit

50 position, external data strobe clock is selected over the
internally generated clock. The external clock is an addition
to the Synchronous System Clock, master clock or primary
clock to device 600.

are respectively loaded with data corresponding to Addrl 55

and Addr5. Similarly, the SRAM registers of Bank 2 hold
data at addresses Addr2 and Addr6 and Bank 3 data at
addresses Addr3 and Addr7. Numerous other combinations/
permutations are possible.

Data Strobe (DS), internal or external, can be (for
example) timed off /CAS, for BOTH read and write opera­
tions; or for read only.

Bit position 13 holds a bit which defines the adjustment
resolution of the read data latency. If a zero is written into

60 bit position 13, then the data latency is programmed in
integers of the system clock CLK (e.g., latencies of 1, 2, 3,
... n CLK periods). If a logic one is written into bit position
13, data latency is set in 0.5 clock increments (e.g., latencies

Mode register 603, is "set" by the CPU (or core logic, at
CPU's command) to operationally configure memory device
600. These registers may be loaded either through the data
port (DQ), the address port (ADDJ or a dedicated mode
register data port (MODE O-MODE P, FIG. 6). Preferably,
either the data port or the address port is used for loading the 65

mode register 603 since they are sufficiently wide and no
additional pins to the device are required.

of 0.5, 2.5, 3.5 ... CLK periods).
The bitfield consisting of bits 17-20 holds the bank status

bits. Using these bits, the CPU (and corelogic) and operating
system can selectively activate and deactivate banks 601.

5,890,195
15

Hence, the CPU is given the ability to repeatedly access a
specified amount of memory. Further, by appropriately set­
ting this register, predictive/speculative execution of instruc­
tions by the CPU can be implemented. The bit encoding for
banks status bitfield is provided in Table 1.

TABLE I

Bank Status
Register Bits Bank Status

20 19 18 17 Bank,, Bank,,., Bank,,.2 Bank,,.3

0 0 0 0 A D D D
0 0 0 D A D D
0 0 0 D D A D
0 0 D D D A
0 0 0 A A D D
0 0 D A A D
0 0 D D A A
0 A D D A

0 0 0 A D A D
0 0 D A A D
0 0 D A D A
0 A A A D

0 0 D A A A
0 A D A A

0 A A D A
A A A A

A-Active
D - Deactivated

The bitfield consisting of bit positions 21 and 22 is the
SRAM output field. This field allows the CPU and operating
system to selectively sequence through banks 601. The
encoding for this field is provided in Table. II. In Table II,
Bankn represents the bank which contains the target data, as
identified by bit comparison circuitry using the procedure
described above. From then on, depending on the bank
status register bits, additional banks can be accessed in
specified sequence.

Register
Bit
22

0
0

Register
Bit
21

0

0

TABLE II

Bank Access Sequence

Bank,, - Bank,,., - Bank,,.2 - Bank,,.3

Bank,, - Bank,,., - Bank,,.2

Bank,, - Bank,,.,
Bank,, only

Assume for discussion purposes that an 01 is written into
SRAM output bitfield. Also assume that, from the row
address, comparator 502 has identified Bank 2 (601b) as the
bank initially containing desired data. For the case where
each bank includes two SRAM registers 701, the first SRAM
register 701a of bank 2 is accessed followed by the second
SRAM register 701b for that bank. In response to the 01
programmed into the SRAM output field, the next bank
accessed is bank Bn+ 1 (i.e., Bank3) is accessed, with SRAM
register 1 and SRAM register 2 sequentially accessed from
Bankl. The process repeats itself for Bankn+2 (i.e., Bank4)

16
Bit position 23 maintains a read/write selection bit. When

a zero is set in bit position 23, a write is performed through
the bank or banks identified in the SRAM output bitfield
(bits 22-21). Similarly, when a logic one is set into bit

5 position 23 a read operation is made from the identified bank
or banks in accordance with the SRAM output bitfield.

10

FIG. 9A and 9B are respective timing diagrams for the
read and write operations according to the principles of the
present invention.

As is shown in FIG. 9A, a read from device 600 is timed
by the system clock (which in synchronous embodiments,
comprises the master clock). The Data strobe (DS) clocks
data out of the data latches 409 for the bank 601 being
accessed. As indicated above, the data strobe can be gener-

15 ated either internal to device 600 or externally. In the
embodiment shown in FIG. 9A, the data strobe is generated
by doubling the frequency of the system clock. Tripling,
quadrupling data rates can also be accomplished.

20

25

On the falling edge of /RAS, a row address is input
through the data port Add

0
-Addy and shortly thereafter

becomes valid. The row address bits are then processed as
discussed above using the global row assignor 406 and LRR
address latch 502 and bit compare circuitry 503 of the
selected bank.

On the falling edge of /CAS, an initial row address is input
through the address port Add

0
-Addy- Shortly thereafter, the

column address becomes valid. Data is then output through
the data port (DQ), starting at the initial column address,

30
after the programmed read latency (FIG. 8) express. Words
of data are output through data latches 409 of the initial bank
in response to the rising edges of the data strobe. If plurality
of banks have been selected for the read access, a bank
switch is made once the data is SRAM registers 701a and

35
701b of the initial bank have been paged out. The paging
from the next bank in the loop starts from the initial address
latched in the column address latches 504 with the column
address strobe.

As is shown in FIG. 9B, a write access to device 600 is

40 similar to a read access. Timing is again controlled by the
system clock, /CAS, /RAS and /WE and the data strobe
(DS). The strobes /RAS and /CAS also time the input and
validation of the addresses. The most significant difference
in the timing of the write operation is that there is a fixed

45 latency between the latching of the column address and
writing of the first bit of data. In other words, while the read
latency can be adjusted using the Read Latency Field, no
provision is required to adjust the write latency. Again, data
are written by words starting at the location corresponding

50 to the received column address from SRAM register 1 of the
initial bank and continuing through the locations of SRAM
register 2. At the conclusion of the write to SRAM register
2, the writes switch to register 1 of the next bank in the loop,
starting with the location corresponding to the column

55 address latched in that banks column address latch 504.

In this example, the loop of accesses from Banks 2, 3 and 4
can continue as long as the CPU needs to repeatedly access 60

those locations. It should be recognized that the access could
also be made from the bank DRAM cell arrays 402 for the
given bank in addition to the SRAM registers.

As discussed above, data can be loaded into the SRAM
registers can be accessed in a number of different ways,
include non-contiguous accessing within a bank, between
banks, or both. For example, consider the case where Bank
0 registers 701a and 701b are respectively accessed with
Addr0 and Addr4, the SRAM registers of Bank 1 with
addresses Addrl and Addr5, the SRAM registers of Bank 2
with addresses Addr2 and Addr6, and the Bank 3 data at
addresses Addr3 and Addr7. This type of access can be
implemented as follows.

If the looping option is chosen, the CPU and the operating
system must be configured to recognize how data are stored 65

and retrieved from the sequence of banks such that the
proper data is accessed at the proper time.

During a first /RAS cycle. A row address is received at the
address (DQ) port. On the falling edge of /RAS the row

5,890,195
17

address MSBs are latched in the row address latches 501 of
all the banks. The LSBs of the row address are again used
by the global row assignor to enable comparison circuitry
503 of one selected bank being accessed. For that bank,
comparison circuitry 503 compares the incoming row 5

address MSBs with the LRR row address MSBs stored in
each of the plurality of LRR latches 703 for the selected
bank.

18
no SRAM registers 701 are accessed through the DQ port
and all SRAM registers 701 (if desired) are loaded from
DRAM.

During the first /RAS cycle, the received row address
MSBs latched in and then used to transfer data from the
DRAM array 402 of the bank being accessed to a selected
one of the plurality of SRAM registers (arrays) 701. The
choice of which SRAM register 701 to be loaded can be a
function of anyone of a number of factors. For example, it Assume that Bank O is the bank being accessed and that

a match occurs between the incoming row address MSBs
(Addr) and the bits stored in LRR latch 1. In response to
/CAS and the incoming column addresses, SRAM register 1
of Bank O is accessed. For Bank 0, the address row address
register is incremented to produce addressAddr+4. This new
address is used to access Bank O DRAM array 402 and load
Bank 0 SRAM register 2 (701b). At the same time, the
incoming address in row latch 501 of Bank 1 is incremented

10
may be the encoding of the address bits themselves (e.g. odd
parity sends the data to one register and even parity to
another register) or to obtain specific temporal locality (e.g.
the register which has not be reloaded in the immediately
previous cycle or cycles). At the same time, the received row
address MSBs are modified in the address latches 501 of the

to Addr+S, in the Bank 2 row address latch to Addr+6 and
in the Bank 3 row address latch to Addr+ 7. These modified
addresses are used to transfer data between each bank's
DRAM array of its SRAM register 2 (701b).

15 remaining banks, as desired to define the first half of a block
of data to be stored in SRAM. Preferably these registers
correspond to the SRAM register selected in the accessed
bank (i.e. if register 1 is loaded in the accessed bank, register
1 is loaded in the remaining bank). The SRAM registers 701

20 of these banks are subsequently loaded using the modified
addresses.

It should be noted that if the incoming row address MSBs
instead matched with the bits in an LRR Latch 2 (703b) of
Bank 0, then the Bank 0 SRAM register 2 (701b) is accessed
and the contents of the row address registers are incremented
in all banks to load SRAM registers 1 for all banks. In this
example, the incoming row address latched in Bank O would
be incremented to Addr-4, in Bank 1 to Addr-3, in Bank to
Addr-2 and Bank3 toAddr-1. SRAM registers 1 would the

At the start of the second /RAS cycle, the contents of the
row address latches 501 are copied to the LRR latches 703
corresponding to the SRAM registers 701 accessed during

25 the first /RAS cycle. Row address increment/decrement
circuitry 702 then modifies the addresses in row address
latches 501 as required to access the required block of data
within DRAM and transfer that block of data into SRAM

be loaded from DRAM in accordance to the modified 30

addresses.
At the start of the second /RAS cycle, the contents of row

address registers 501 for all banks are copied to the LRR
latches corresponding to the set of SRAM registers which
were loaded during the first /RAS cycle. For example, if
SRAM registers 2 (701b) were loaded during the first cycle,
the modified contents of row address latches are transferred
to the associated LRR latches (703b).

35

cache. The SRAM registers 701 not loaded during the first
/RAS cycle are loaded during this cycle, in accordance with
the new addresses stored in row address latches 501. At the
start of the subsequent /RAS cycle, these addresses will be
copied to the appropriate LRR latches 703, depending on the
SRAM registers loaded.

Although the invention has been described with reference
to a specific embodiments, these descriptions are not meant
to be construed in a limiting sense. Various modifications of
the disclosed embodiments, as well as alternative embodi-

40 ments of the invention will become apparent to persons
skilled in the art upon reference to the description of the
invention. It is therefore, contemplated that the claims will
cover any such modifications or embodiments that fall

In the second /RAS cycle, the second set of SRAM latches
are loaded. Continuing with the example where the first
/RAS cycle loaded SRAM registers 1, with Bank 0 being the
accessed bank, the modified row address in the Bank O row
address latch is decremented back to Addr, in Bank 1 to
Addr+ 1, in Bank 2 to Addr+2, and Bank 3 to Addr+3. These

45
twice-modified addresses are used to load SRAM registers 2
from DRAM and at the start of the following /RAS cycle are
loaded into the corresponding LRR latches 2.

In the case where SRAM registers 2 where loaded during
the first /RAS cycle, the addresses could be modified as 50
follows for purposes of loading SRAM registers 1 during the
second /RAS cycle. If Bank 0 is the accessed bank, the
contents of its row address latches are decremented to the
original input address Addr. Similarly the addresses in the
Banks 1, 2 and 3 are respectively modified to become 55
Addr+l, Addr+2 and Addr+3.

The procedure is the same no matter which bank is
accessed through the DQ port (thereby determining the
address modification sequence) and no matter how the row
address MSBs are modified. In sum, numerous sequences 60

and address modifications are possible, as required to access

within the true scope of the invention.
What is claimed is:
1. A memory comprising:
a plurality of static random access memory cell arrays;
a plurality of sets of latches each for storing address bits

associated with data stored in a corresponding one of
said static random access cell arrays; and

bit comparison circuitry for comparing a received address
bit with an address bit stored in each of said plurality
of sets of latches, and enabling access to a selected one
of said static cell arrays corresponding to a said set of
latches storing an address bit matching said received
bits.

2. The memory of claim 1 and further comprising:
a dynamic random access memory cell array; and
circuitry for selectively exchanging data between said

dynamic random access array to a selected one of said
static random access memory arrays.

a predetermined block of data, with a given spacial and/or
temporal coherency, in the SRAM registers.

When no match occurs between the received row address
MSBs and any of the row addresses MSBs stored in SRAM
registers 703 and the access bank selected by global row
assignor 406, the accessing procedure changes. In this case,

3. The memory of claim 1 and further comprising column
decoder circuitry including a plurality of column decoders,
each said column decoder for accessing a corresponding one

65 of said static random access cell arrays.
4. The memory of claim 1 wherein and further compris-

ing:

5,890,195
19

a row address latch for storing said received address bits;
and

20
13. The memory of claim 12 wherein said mode control

register includes a field for storing bits selectively activating
and deactivating selected ones of said banks. circuitry for modifying address bits stored in said address

latch to produce second address bits.
5. The memory of claim 1 wherein said received address

bits and said address bits stored in said latches comprise row
address bits.

14. The memory of claim 12 wherein said mode control
5 register includes a field for storing bits defining a sequence

for accessing said plurality of banks.

6. A method of accessing blocks of data in a memory
having a plurality registers and a memory array, comprising
the steps of:

receiving an address through an address port;
comparing the received address with addresses previously

stored in each of a plurality of latches;

15. The memory of claim 14 wherein said mode control
register includes a field for storing a read/write selection bit.

16. The memory of claim 14 wherein each of said banks
further comprises an array of rows and columns of dynamic

10
random access memory cells.

when a match occurs between the received address and a
matching address stored in a one of the latches per- 15

forming the substep of accessing a register correspond­
ing to the latches storing the matching address through
a data port;

17. The memory of claim 16 wherein each of said banks
further includes:

a first column address decoder for accessing a column of
cells in said first static cell array;

a second column decoder for accessing a column of cells
in said second static array; and

a third column decoder for accessing a column of cells in
said dynamic cell array.

when a match does not occur between the received
address and an address stored in one of the latches,
performing the substeps of:
exchanging data between a location in the memory

array addressed by the received address and a
selected one of the registers; and

18. The memory of claim 17 wherein each of said banks
20

further comprising a data latch coupled to said column
decoders of said bank, said data latch exchanging data with
said bank in response to a global data strobe.

storing the received address in one of the latches
corresponding to the selected register;

19. The memory of claim 16 and further comprising
circuitry for selectively exchanging data between said

~ d dynamic cell array and a selected one of said first and secon
cell arrays.

modifying the received address to generate a modified
address;

exchanging data between a location in the memory array
addressed by the modified address and a second
selected one of the registers; and

20. A method of operating a memory having a plurality of
banks, each bank including a dynamic random access
memory cell array and first and second static random access

30
memory cell arrays, the method comprising the steps of:

storing the modified address in of one of the latches
corresponding to the second selected register.

7. The method of claim 6 wherein said step of accessing
35

comprises a step of accessing a plurality of locations in the
register in response to a plurality of column addresses.

8. The method of claim 6 wherein said step of accessing
comprises a step of accessing a plurality of selected registers
~~ri~. ~

9. The method of claim 8 wherein said step of accessing
comprises a step of accessing a plurality of selected registers
in serial.

10. The method of claim 6 and further performing the
substep when a match does not occurs of accessing the

45
selected location through the data port.

11. A memory comprising:
a plurality of banks each comprising:

first and second arrays of static random access memory
cells;

a first latch for storing a plurality of address bits
accessing associated data stored in said first array;

a second latch for storing a plurality of address bits
accessing associated data stored in said second array;

50

address compare circuitry for comparing first selected 55
bits of a received address with address bits stored in
said first and second latches and selectively enabling
access of said first and second arrays in response;

a row address latch for storing a received address;
increment and decrement circuitry for selectively modi- 60

fying an address stored in said address latch; and
a global row assignor for selecting a said bank for access

in response to second selected bits of said received
address.

12. The memory of claim 11 and further comprising a 65

mode control register for storing mode control for storing
information for configuring said memory.

receiving a row address;
decoding a bit of the row address to select a first bank for

access;
comparing a selected bits of the received row address with

bits stored in first and second latches in the first bank,
the first latch holding an address associated with data
stored in the first static array and the second latch
holding an address associated with data stored in the
second static array of the first bank;

when a match occurs between the selected bits of the
received row address and the bits stored in the first
latch, performing the substeps of:
accessing the first static array of the first bank;
modifying the received row address to generate a

second row address; and
in a second bank, loading a selected one of the first and

second static arrays with data from the dynamic
array using the second row address; and

when a match does not occur between the selected bits of
the received row address and the bits stored in the first
and second latches of the first bank, performing the
substeps of:
in the first bank, loading a selected one of the first and

second static arrays with data from the dynamic
array using the received row address;

modifying the received row address to generate a
second row address; and

in the second bank, loading a selected one of the first
and second static arrays with data from the dynamic
array using the second row address.

21. The method of claim 20 wherein said step of per­
forming substeps when a match occurs further includes the
substep of storing the modified address in the latch in the
second bank associated with the selected static array.

22. The method of claim 20 wherein said step of per­
forming substeps when a match does not occur further

5,890,195
21

comprises the substep of storing the received address in the
latch in the first bank associated with the selected static array
in the first bank.

23. The method of claim 20 wherein said step of per­
forming substeps when a match does not occur further s
comprises the substep of storing the modified address in the
latch in the second bank associated with the selected static
array in the second bank.

24. The method of claim 20 wherein said step of per­
forming substeps when a match occurs comprises the sub- 10

steps of:
generating a third row address;

22
loading a second selected one of the first and second static

arrays of the second bank using the fourth row address;
and

storing the fourth address in the latch associated with the
selected static array.

26. The method of claim 20 wherein said step of per­
forming substeps when a match does not occur further
comprises the substeps of:

generating a third row address;
loading a second selected one of the first and second static

arrays of the first bank; and
storing the third row address in the latch associated with

the second selected on of the arrays.
loading in the second static array in the first bank using

the third row address; and

storing the third address in the second latch of the first
bank.

27. The method of claim 26 wherein said step of per-
15 forming subsets when a match does not occur further

comprises the substeps of:

25. The method of claim 24 wherein said step of per­
forming substeps when a match occurs further comprises the
steps of:

generating a fourth row address;

generating a fourth row address;
loading a second one of the first and second static arrays

of the second bank using the fourth row address.

* * * * *

