
United States Patent [19J

Flores et al.

[54] METHOD AND APPARATUS FOR
UTILIZING A STANDARD TRANSACTION
FORMAT TO PROVIDE APPLICATION
PLATFORM AND A MEDIUM
INDEPENDENT REPRESENTATION AND
TRANSFER OF DATA FOR THE
MANAGEMENT OF BUSINESS PROCESS
AND THEIR WORKFLOWS

[75] Inventors: Rodrigo F. Flores, Berkeley; Pablo A.
Flores, Alameda, both of Calif.; Raul
Medina-Mora Icaza, Mexico City,
Mexico; Thomas E. White, Monte
Sereno, Calif.; John A. McAfee,
Kensington, Calif.; Manuel Jasso
Nunez, Alameda, Calif.; Thomas G.
Buchler, Berkeley, Calif.; Roy I. Gift,
San Anselmo, Calif.

[73] Assignee: Action Technologies, Inc., Alameda,
Calif.

[21] Appl. No.: 08/855,214

[22] Filed: May 13, 1997

Related U.S. Application Data

[63] Continuation of application No. 08/420,337, Apr. 11, 1995,
abandoned, which is a continuation of application No.
08/023,056, Feb. 25, 1993.

ACTION BASED TRANSACTIONS

ERROR
WORKFLOW (RESPONSE)
ENABLED

111111 111
US006058413A

[11] Patent Number:

[45] Date of Patent:

6,058,413
May 2, 2000

[51] Int. Cl? .. G06F 9/46
[52] U.S. Cl. ... 709/101; 705/7
[58] Field of Search 395/671, 682;

705/7, 8; 709/100--108, 300-305

[56] References Cited

U.S. PATENT DOCUMENTS

5,630,069 5/1997 Flores et a!. 705/7

Primary Examiner-Alvin E. Oberley
Assistant Examiner-St. John Courtenay, III
Attorney, Agent, or Firm-Blakely Sokoloff Taylor &
Zafman

[57] ABSTRACT

The present invention is a method and apparatus which is
used to enable application developers to generate workflow
enabled applications which request services from the work
flow server component of the workflow system, remotely
and indirectly using messaging, shared databases or inter
process communications. The present invention provides a
standard transaction format (STF) for accessing such a
workflow system through STF processors via messaging,
updates to the shared databases or inter-process communi
cations. Workflow enabled applications are used by users to
act and participate in business processes and enable users
and managers to observe and query the status of workflows
and business processes.

11 Claims, 7 Drawing Sheets

--
WS TxAPI

STF TRANSACTIONS

APPLICATION
ACT PROCESSOR (UPDATE TxDB)_ DATABASE __.. INITIATE

i BOUND DATA

(WFSTATUSl I

QUERY BASED TRANSACTIONS

ERROR ::::
WORKFLOW (REQUEST) WS TxAPI TRANSACTIONS

ENABLED STF

APPLICATION
WF STATUS PROCESSOR (READ TxDB) DATABASE
PENDING ACTIONS '- --

i AVAILABLE BPs

I (RESPONSE)

RETURN WORKFLOW STATUS BASED TRANSACTIONS

ERROR
TRANSACTIONS WORKFLOW

ENABLED STF WS STFQAPI DATABASE
(RESPONSE) '-

APPLICATION PROCESSOR w (READ STFQ) NOTIFY
FOLLOW-UP
REMINDER E

ERROR

----API CALL

---- MESSAGE

THESE LINKS INDICATE
THAT ONE OF TWO

CONDITIONAL WORKFLOWS
IS INITIATED

Fig. 1

~1 CUSTOME:.f 6:0:0 _Sl PERFORMER

SERIAL 1

THIS LINK INDICATE~
THAT A SERIAL 23

d
•
\Jl
•
~
~
~ =

WORKFLOW
IS INITIATED

S2 PERFORMER ~

~
~

1:0:0
~ PARALLEL 1) P1 PERFORMER

~19

'-<
N

SERIAL 2 , ~

25

c c c

'JJ.

=~
~
'"""' 0,
-..J

0\ = Ul
00
""
~
~

U.S. Patent

w en
~
J:
D.
t-z
w
:i
w
w
a:
~
~

w en
~
:I:
D.
..J

~
0
D.
0 a:
D.

I

May 2, 2000

LL
0
en
z
0
i= -c
z
0
0

a:
w
:i
a:
0
LL
a:
w
D.

z
0
i=
0
~
LL en -t-
~ en

a:
w
:i e en
:::J
0

Sheet 2 of 7

w en
~
J:
D.
w
0
z
~
:i
a:
0
LL
a:
w
D.

a:
w
> a:
w en
m
0

w en
~
J:
D.
z
0

~
~
LL en
~

i

6,058,413

N
•

C) ·-LL

WORKFLOW SERVER

TRANSACTION]
MANAGER

(FOLLOW-UP J (SCHEDULE
MANAGER MANAGER

WORKFLOW WORKFLOW IINSTANTIATOR I
WORKFLOW

PROCESSOR UP DATER LANGUAGE
INTERPRETER

WORKFLOW AGENT STF
EVENT ACTIONS ROUTER/

HANDLER MANAGER ENQUEUER

f t f t t
* • 'IL • • - ,::;:::_ ,:::: F- -,:::.

DEFINITIONS TRANSACTIONS NAMES/ SCHEDULE ADMINISTRATION/
.._ ROUTINGS CONFIGURATION ._

WORKFLOW WORKFLOW NAMES AND SCHEDULE SERVER
TRANSACTIONS DEFINITIONS ROUTINGS ADMINISTRATION!

API API API API API

1
STF J

PROCESSOR

l I APPLICATION H
(WORKFLOW) ANALYST

ENABLED
1 BUILDER

APPLICATIO~

t
• -

STF QUEUE

REPORTER
API

t
REPORTER

l

I WORKFLOW
SERVER

I MANAGER

Fig. 3

d
•
\Jl
•
~
~
~ =

~
~

'-<
~N

N c c c

'JJ.

=~
~
~

0,
-..J

0\ = Ul
00
""
~
~

U.S. Patent May 2, 2000 Sheet 4 of 7 6,058,413

l INCOMING 1 (OUTGOING l ,, 4~

TRANSPORTER

TRANSACTION TRANSACTION
PARSER FORMA TIER

h ,,
I TRANSACTION I PROCESSOR

H

~,

WORKFLOW SERVER APIS

Fig. 4

U.S. Patent May 2, 2000 Sheet 5 of 7

STF TRANSACTION

INITBP

INITWF

CLIENT
ACT

BIND DATA

(WORKFLOW REQUEST STATUS
.

ENABLED GET AVAILABLE BPS APPLICATION)
GET PENDING ACTIONS

REQUESTED STATUS

-BOUND DATA

AVAILABLE BP

-PENDING ACTIONS

NOTIFICATION

STF
PROCESSOR

WORKFLOW
SERVER API

INITIATE BUSINESS PROCESS

INITIATE WORKFLOW

ACT IN A WORKFLOW

BIND DATA

GET WORKFLOW STATUS

GET AVAILABLE BPS

QUERY WORKFLOWS

.

- RETURN WORKFLOW STATUS

- RETURN BOUND DATA

RETURN AVAILABLE BPS

RETURN PENDING ACTIONS

NOTIFICATION

Fig. 5

6,058,413

WORKFLOW
SERVER

U.S. Patent May 2, 2000 Sheet 6 of 7

Legend:

A -+BCiassA is derived from Class B (A is-a B)

A --o B Object of Class A has a Pointer to
an object of Class B (A has-a B)

A--oB
Class A instantiates Class B

Note: TypeofTransactbns
lnit: lnitBP, lnitWF
Act: Act

6,058,413

Get: GetWFStatus,GetAvaHBPs, GetPendhgActbns
Retum: RetumWFStatus

Fig. 6

U.S. Patent May 2, 2000 Sheet 7 of 7 6,058,413

ACTION BASED TRANSACTIONS
ERROR ,.,.- :::: WORKFLOW - (RESPONSE) WS TxAPI

..._

ENABLED -- STF TRANSACTIONS
APPLICATION

ACT PROCESSOR (UPDATE TxDB) ._ DATABASE _. INITIATE
BOUND DATA

I (WFSTATUS)

QUERY BASED TRANSACTIONS

ERROR ~ ::::
WORKFLOW - (REQUEST) - STF

WS TxAPI _ TRANSACTIONS
ENABLED -

APPLICATION
WF STATUS PROCESSOR (READ TxDB) ,..._ DATABASE
PENDING ACTIONS -

jll AVAILABLE BPs

I (RESPONSE)

RETURN WORKFLOW STATUS BASED TRANSACTIONS ,.,.- -ERROR
r-- -

WORKFLOW - TRANSACTIONS

ENABLED STF WS STFQAPI DATABASE
(RESPONSE) PROCESSOR

..._ _...
APPLICATION ,.,.- -::::;

NOTIFY (READ STFQ) ,..._

FOLLOW-UP STF

REMINDER QUEUE -ERROR

----API CALL

---- MESSAGE

Fig. 7

6,058,413
1

METHOD AND APPARATUS FOR
UTILIZING A STANDARD TRANSACTION

FORMAT TO PROVIDE APPLICATION
PLATFORM AND A MEDIUM

INDEPENDENT REPRESENTATION AND
TRANSFER OF DATA FOR THE

MANAGEMENT OF BUSINESS PROCESS
AND THEIR WORKFLOWS

This is a continuation of application Ser. No. 08/420,337,
filed Apr. 11, 1995 now abandoned which is a continuation
of Ser. No. 08/023,056 filed Feb. 25, 1993.

BACKGROUND OF THE INVENTION

1. Field of the Invention

2
customer and performer are roles that participants can take
in workflows. In addition, each workflow can have observ
ers.

In a workflow, the customer is the person for the sake of
5 whom the work is done, either because they made a request

or accepted an offer. It is customers who are responsible for
evaluating performed work and determining whether this
work meets their conditions of satisfaction.

The performer is the person who is responsible for

10
completing the work and for declaring to the customer when
the work is done.

Requests and Offers are the two basic types of workflows.
There are other workflow types such as Question, Inform
and Note that are simplified derivations of Request and
Offer. The conditions of satisfaction specify the work to be

15 performed by the performer. In a request, the customer
specifies the conditions of satisfaction, and in an offer the
performer specifies them. (Then, of course, the two can enter
into negotiation about the work to be done.)

Businesses are demanding new systems that directly
support the management of business processes, systems that
bring order and coordination to the flow of work. They are
seeking to automate that part of office work that has been 20
impervious to conventional data processing and information
processing systems, which were not designed for business
process management and are not well-suited to help with it.

For example, given the sentence:
"John asked Frank to prepare the report and deliver it by

noon on Friday,"
John is the customer for this workflow, Frank is the
performer, and the conditions of satisfaction are "prepare the
report and deliver it by noon on Friday." Further, because The present invention is part of a system that, when

implemented in software, provides businesses with the tools
they need to manage business processes efficiently and
cost -effective! y.

The invention can be applied to such a system, whether
the system is a simple application, such as intelligent forms
routing, to sophisticated mission-critical enterprise-wide
systems that integrate all marketing, production, and cus
tomer fulfillment processes.

25 John asked for the report rather than Frank offering it, this
workflow is of the type Request.

Given the sentence:
"John proposed to prepare the report and deliver it by

noon on Friday for Frank,"
30 John is the performer for this workflow, Frank is the

customer, and the conditions of satisfaction are still "prepare
the report and deliver it by noon on Friday." Further because
John proposed the report rather than Frank asking for it, this The resulting system enables users of the system to take

coordinated action quickly and to manage processes pain
lessly. The results are increased productivity, reduced cycle 35

time and hence, improved customer satisfaction.

workflow is of the type Offer.
Observers of workflows take no direct action; they usually

observe for management or training purposes.
Business process maps display the workflows as loops,

and display the relevant information about each workflow
the customer, the performer, the conditions of satisfaction

Workflow-enabled systems facilitate business processes.
To do so, a workflow management system performs eight
key functions:

Notifies the user that he or she has a step to begin or to
complete.

Provides the user with the proper tools to complete a task.

Provides the user with the proper information to complete
a task.

Allows the user to see where a task fits in the overall
process.

Manages the proper reminders, alerts, and follow-ups to
keep the process moving.

Automates certain standard procedures.
Integrates with the organization's existing business sys

tems.
Provides simple application program interfaces (APis)

that allow developers to develop new custom applica
tions that are workflow-enabled.

The workflow system's architecture is designed to fit
within a variety of computer systems, collecting around
itself not only specific applications, but also system
enhancements and utilities from users and third-party devel
opers. In addition, the architecture is designed to allow for
interoperability among different applications and across
diverse platforms.

A fundamental concept of a workflow system is that any
business process can be interpreted as a sequence of basic
transactions called workflows. Every workflow has a
customer, a performer, and conditions of satisfaction. The

40 and the cycle time. FIG. 1 is a business process map having
a primary workflow 11, conditional workflows 13 and 15, a
conditional link 17, parallel workflows 19 and 21, serial
workflows 23 and 25. In a workflow system of the type used
in conjunction with the present invention, associated with

45 each workflow are various parameters such as roles, cycle
time, conditions of satisfaction or associated semantics to
the links that imply automated action or provide the frame
work for application building, all of which are necessary to

50
create a useful business process representation.

Each workflow has four phases as shown in FIG. 2. The
first phase is called the proposal phase during which a
request is made of the prospective performer by a customer
or an offer to a customer is made by a prospective performer.
The second phase is called the agreement phase during

55 which the offer is accepted by the customer or the request is
agreed to by the performer and conditions of satisfaction are
identified. Of course, during the agreement phase the origi
nal conditions of satisfaction can be negotiated by the
customer and performer until an agreement is reached. The

60 third phase is called the performance phase during which the
performer undertakes to meet the agreed to or accepted
conditions of satisfaction. When the performer believes that
the conditions of satisfaction have been met, the performer
declares completion. The last phase is the satisfaction phase

65 during which the customer determines whether or not the
conditions of satisfaction have been met by the performer,
and if so, declares satisfaction.

6,058,413
3

A workflow system incorporates the following compo
nents which are shown in FIG. 3, a workflow server and
databases, application program interfaces (APis) and work
flow server manager. In addition, a complete workflow
system of the type in which the standard transaction format 5

(STF) processors of the present invention may be utilized
includes an application builder, analyst, workflow enabled
applications and reporter components. The application
builder, analyst, workflow enabled applications and reporter
components, while useful components of a complete work-

10
flow system, do not form part of the present invention and
details concerning such components are set forth herein only
as needed for an understanding of the invention. The present
invention is concerned mainly with STF processors used in
combination with a complete workflow system.

A workflow system provides certain services as follows: 15

transactions services which are those related to initiating
and acting in workflows by users and agents;

definition services which are those related to defining the
elements of a business process and its workflows and
workflow links; 20

names and routing services which are those related to
defining organizational roles and identities;

configuration services which are provided to the system
administrator through a specific configuration database;

25
scheduling services which allow an authorized user to

create, modify and delete records of scheduled business
processes; and

STF processing services which are provided by the server
to STF processors (which are the subject of the present 30

invention as described below) through an STF queue
database.

Further details concerning the definition services, names
and routing services, configuration services and scheduling
services are set forth in co-pending U.S. Ser. No. 08/014,796 35

filed Feb. 8, 1993. The present invention is directed to the
STF processing services provided by a workflow system as
well as STF processors.

In addition to the foregoing services provided by a
workflow system, external interfaces to the system provide 40

services that are used by end-user applications, the workflow
application builder, the workflow reporter and the STF
processors.

A workflow system utilizes a workflow server which
concentrates workflow operations in the server rather than in 45

the end user applications.

4
a names/routings database which contains records of the

roles and identities of the organization where the work
flow system is installed;

a schedule database which stores the date and time when
a business process must be initiated;

an administration/configuration database which stores
information needed by the workflow server to operate;
and

a STF queue database which stores the records of notifi
cations to be sent to users that interact with the work
flow system through an STF processor interface.

The remaining elements of a workflow system are:
1) Workflow APis which provide a programming inter

face to access the services of the workflow server.
Workflow enabled applications, STF processors and the
application builder are all developed using these APis.
APis of a workflow system are as follows: transactions
API, definitions API, reporter API, names and routings
API, schedule API and administration API.

2) Workflow server manager which is a component of the
workflow system that provides a user interface for
specific maintenance and administration services of the
workflow server.

3) Workflow application builder which is a Graphical
User Interface (GUI) application that allows a business
process designer to specify the business process design
with its network of workflows and to automatically
generate the definitions needed for a workflow enabled
application to work.

4) Workflow analyst which is a GUI application that
allows a business process analyst to specify the map of
business processes with its network of workflows.

5) Workflow reporter which is a GUI application that
provides an interface to the transaction databases
through the workflow reporter API of the system.

6) Workflow-enabled applications which interface to the
server via the workflow APis or via direct access to the
transactions database of the workflow server, or via the
use of an STF processor which can use different inter
facing mechanisms such as messaging, database or
inter-process communication.

7) STF processors which are a set of mechanisms for
developing workflow-enabled applications are pro
vided in a workflow system through the definition of a
standard transaction format (STF). Such STF proces
sors are the subject of the present invention.

In U.S. Ser. No. 600,144 filed Oct. 17, 1990 and U.S. Ser.
No. 07/368,179 filed Jun. 19, 1989, both owned by Action
Technologies, Inc., the assignee of the present application,

All work done by the server is performed by one of three
processes which are referred to as the transaction manager,
follow-up manager and date/time schedule manager. Pro
cesses are software components or tasks that are architected
to run as separate entities from each other. The workflow
server controls the three basic processes based upon work
flow system server administration data in a configuration
database in the following manner. First, it determines when
to run the transaction manager and spawns that process.
Second, it determines when to run the follow-up manager
and spawns that process. Third, it determines when to run
the date/time schedule manager and spawns that process.

50 methods and systems for managing workflows, called con
versations in the referenced applications, are described.
However, the teachings in the cited references are limited to
single workflows with no capability for mapping business
processes made up of a number of workflows linked

These processes may be separate executables or simply
separate tasks within the body of the workflow system
server.

A workflow system also utilizes:
a definitions database which contains records of the

definitions of the organizations, business processes,
workflows, roles, and acts;

a transactions database which contains records of the
enactment of workflows;

55 together. In U.S. Ser. No. 08/005,236 filed Jan. 15, 1993 now
U.S. Pat. No. 5,630,069, a method and apparatus are dis
closed for creating and modifying business process maps
which is a desirable but not necessary component of a
workflow system. This component is referred to as the

60 workflow analyst. In U.S. Ser. No. 08/014,796 filed Feb. 8,
1993, a method and apparatus are disclosed for implement
ing a complete workflow system for managing business
processes and their workflows.

65 BRIEF SUMMARY OF THE INVENTION

The present invention is a method and apparatus which is
used to enable application developers to generate workflow

6,058,413
5

enabled applications which request services from the work
flow server component of the workflow system, remotely
and indirectly using messaging, shared databases or inter
process communications. The present invention provides a
standard transaction format (STI) for accessing such a 5

workflow system through STF processors via messaging,
updates to the shared databases or inter-process communi
cations. Workflow enabled applications are used by users to
act and participate in business processes and enable users
and managers to observe and query the status of workflows 10

and business processes.
In describing the invention, the following terms with their

indicated definitions are used:
Act

Basic linguistic occurrence by which people intervene in 15

moving a workflow towards completion.
Agreement

6
A role in a workflow who cannot perform acts in the

workflow, but is informed of acts in the workflow, and has
access to the information and data associated with the
workflow.
Offer

The act by which the performer can initiate a workflow,
specifying conditions of satisfaction that he is willing to
satisfy for a customer.
Organization Roles

Named positions in an organization who are authorized to
make certain requests, agreements, take certain actions, set
certain policies, and make certain decisions. The kind of
roles will be accountant, office manager, etc.
Performer

One of the principal roles in a workflow: the role that
commits to complete the conditions of satisfaction.
Phase

A characterization of the status of a workflow based on the
acts that have happened and the acts that are permitted. Each

The outcome of the negotiation phase, in which two
parties come to a common agreement of the conditions of
satisfaction.
Business Process

A network of workflows linked together that represent the
recurrent process by which an organization performs and
completes work, delivers products and services and satisfies

20 workflow has four phases namely, the proposal phase the
agreement phase, the performance phase and the satisfaction
phase

customers.
Business Process Map

This is a graphical representation of business process,
which shows its workflows and their relationship.
Primary Workflow

Request
A customer does this act to initiate a workflow and declare

25 conditions of satisfaction.
Trigger

An action in a workflow which causes an action in some
other workflow.
Triggered

This is the first workflow which is initiated when a 30 Action in a workflow based on certain conditions/status in
some other workflow. business process is initiated. Its condition of satisfaction

represent the condition of satisfaction of the business pro- Workflow
cess. A structured set of acts between customers and performers
Conditional Link organized to satisfy a customers conditions of satisfaction.

Alink that indicates that only one of a group ofworkflows 35 Workflow Activation
will be triggered based on some condition. A triggered action that enables the customer or performer
Conditions of Satisfaction of the workflow to take the initial act of the workflow.

Conditions declared by or agreed to by a customer. The
fulfillment of which is the purpose of a workflow.
Customer

The role in a workflow who makes a request or accepts
and offer.
Customer Satisfaction

Workflow Initiation
An act of request or offer initiates a workflow.

40 Workflow Roles
The association of participants in the workflows that take

the acts in workflows; three roles are distinguished m
workflows: customer, performer, and observer.

The objective of a workflow, the accomplishment of
which is declared by the customer when the conditions of 45

satisfaction in the workflow have been fulfilled.

Workflow Type
This indicates whether the workflow is of request, offer or

note type.
Cycle Time

A measure of the time from initiation to successful
completion of a workflow phase, a complete workflow or a
business process.
Exception Flow

The path in the business process workflow map which is
followed if a customer cancels or a performer revokes or
declines.
Link

A defined dependency between two workflows and the
mechanism by which dependencies between workflows is
established.
Loops (Workflow)

A workflow is represented graphically by an elliptical
loop with arrows shown in a clockwise direction wherein
each quadrant of the ellipse signifies different phases of the
workflow.
Normal Flow

BRIEF DESCRIPTION OF THE DRAWINGS

50 FIG. 1 is pictorial representation of a business process,
i.e., a set of linked workflows.

FIG. 2 shows the phases of a workflow.

FIG. 3 is a block overview diagram of a complete

55
workflow system including STF processors.

FIG. 4 is a block overview diagram showing the major
components of an STF processor.

FIG. 5 shows the exchange of STF transactions between
a workflow enabled application, the STF processor and

60 server.

FIG. 6 is a generic class hierarchy diagram of a STF
processor showing how the classes in STI processors are
linked.

This is the path followed in a business process map when 65

workflows complete with customer satisfaction.
FIG. 7 shows the interaction of workflow enabled

application, STF processor and workflow server for different
kinds of transactions. Observer

6,058,413

Overview

7
DETAILED DESCRIPTION OF 1HE

INVENTION

The present invention is directed to a Standard Transac
tion Format (STF) specification to address the requirements
of applications, platform and medium independent repre
sentation and transfer of data related to business processes of
a workflow system. The present invention is also directed to
STF processors which are the modules that provide the
server-side connection point for client/server interactions
using any of several STF specification variants. These STF
specification variants are messaging, updates to shared data
bases and inter-process communications. By accessing STF
processors workflow enabled applications, using a standard
transaction format, are able to request services from the
workflow server component of the workflow system,
remotely and indirectly using messaging, shared databases
or inter-process communications. In other words, the STF
specification defines the semantics for accessing the work
flow services.

For each one of these types of interfaces there is a
syntactic definition that gives the specific format for the
representation of the workflow data and the process specific
data in that medium. This syntax definition constitutes an
STF specification that a particular workflow enabled appli
cation will then use.

The communication and interface between workflow
enabled applications and the server is provided by STF
processors. These STF processors map and translate
between a workflow-enabled application's data format and
the data elements of the workflow system APis.

STF processors provide a layer for integration of many
different protocols and technologies. STF processors can be
constructed for any message transport database technology,
and inter-process communication protocol.

The interface from STF processors to the server is accom
plished through the workflow system APis. From the point
of view of workflow services, the STF processors appear to
the server as additional applications.

8
nications media typically allow synchronous connections
between client and server, message based media typically
allow only asynchronous communication between client and
server, and clients and servers which communicate through

5 a shared database can operate either synchronously or asyn
chronously.

Thus, while STF processors may be provided for several
STF specification variants, an STF processor with generic
functional requirements is described. Further, this descrip-

10 tion focuses particular attention to the requirements of an
STF processor for a messaging platform known as MHS
(message handling system) available from Novell Corpora
tion which will serve as an example case.

FIG. 4 shows the major components of an STF processor,
15 namely, a transporter module, which includes a transaction

parser and a transaction formatter, and a transaction proces
sor module. The transaction processor module processes
STF transactions received from workflow enabled applica
tions through the transporter module and sent to workflow

20 server via calls to the workflow server APis. Similarly, it
processes transactions queued by the workflow server and
passes them to the transporter module to be sent to the WEA.
The transaction processor is environment independent. The
transporter module is adapted to the STF environment (i.e.,

25 messaging, shared database or inter-process
communication) and receives incoming transactions from a
messaging application, shared database or inter-process
communication and sends outgoing transactions to a mes
saging application, shared database or inter-process com-

3D munication.
The workflow transactions API provides an interface to

the workflow server. The workflow server responds to
transactions it finds in the transactions database and updates
the workflow and places status information in the STF queue

35 database to be processed by STF processors.
STF Transactions

Since an STF processor is an application whose job is to 40

interface external systems to the workflow system, there is
one STF processor for each different type of system that
interfaces to the workflow system.

An STF transaction is a workflow transaction defined in
a specific format called Standard Transaction Format (STF).
This standard enables any application to interface to the
workflow server. An application is said to be a Workflow
Enabled Application (WEA) when it is able to send/receive
the workflow transactions in STF. STF transactions are
passed from the STF processor to the workflow server via
calls to the transactions API. Business processes can be managed across platforms in

diverse locations with diverse interconnections through the 45

management of a class of transaction called STF transac
tions. Transactions include taking acts, getting reports of
status, and notifications of acts taken by other workflow
participants, among others.

Three classes of STF processors are described, which are 50

characterized by the method of connection between client
and server, which, as previously noted are: messaging,
shared database, and inter-process communication. Within
these interfaces, STF processor variants are required to
conform to the various syntactic requirements of the com- 55

munication technology. The particulars of such variants
depend upon such syntactic requirements, however, the
implementation details of such STF processor variants
should be apparent to persons skilled in the art having
knowledge of the syntactic requirements and the descrip- 60

tions contained herein.

An STF transaction is composed of an envelope and
workflow data. The envelope provides connection and
addressing information translated by STF processors to
formats appropriate for the particular medium supported by
the STF processor. Workflow data includes workflow spe
cific data and bound process data. STF transactions are
exchanged between client and server as shown in FIG. 5.
The figure shows some types of transactions as well as the
role of the STF processor.

There are five STF transaction types as follows:

Initiating a workflow

Acting in a workflow

Requesting the status of a workflow

Requesting list of declared business processes

Requesting list of workflows with pending actions
Components of STF Transactions
STF Envelope The client/server communications medium determines

whether a client application can run synchronously with the
server-making server requests and receiving server
responses during the duration of a connection, or
asynchronously-making server requests, disconnecting,
and reconnecting later for responses. Inter-process commu-

The STF envelope is entirely platform and medium
dependent. The envelope contains addressing information.

65 In a messaging environment, the STF envelope would
typically specify user and STF processor email addresses or
equivalent. In an IPC environment (connection oriented), the

6,058,413
9

STF envelope would typically specify a logical unit identi
fier or equivalent. In a database environment, the STF
envelope would typically specify user and STF processor
identifications or equivalent.

It contains STF Processor ID for identification of a 5
particular STF processor. Essentially this is the address with
which a WEA sends an STF transaction.

For example, to address an STF processor STFPROCl in
work group ATI, a WEA in a messaging environment might
specify the STF processor address as follows:

To: STFPROCl@ATI
Workflow Data

As previously noted, workflow data includes workflow
specific data and bound process data.

10

Workflow Specific Data
All workflow transactions include a set of required work- 15

flow specific data elements that are defined by the STF
specification.

10
Mapping Between STF Transactions And Workflow Server

APis
The workflow server APis provide the following func-

tions:

Initiate a workflow

Act in a workflow

Bind process data

Get bound process data

Get field attributes

Get Workflow Status

Get Available acts

Get Available Business Processes

Get Workflows in progress and pending actions
The STF transaction set is designed to facilitate the

invocation of workflow server API functions and to return
status reports. Workflow server API functions to STF trans
action mapping is shown in Table 2. Descriptions of the
specified workflow server APis may be found in co-pending
U.S. application Ser. No. 08/014,796 filed Feb. 8, 1993.

TABLE 2

STF Transaction

The workflow specific data component of an STF trans
action contains workflow attributes required to do each of
the five types of transactions. Each type of STF transaction 20

has a different set of workflow information. The STF trans
action sent by a WEA must contain a Transaction ID
(STFID) keyword. This aids the WEA and STF processor in
identifying a transaction uniquely and helps the STF pro
cessor in sending status transactions to the WEA. Each STF
transaction also has a set of mandatory parameters called
minimal transaction parameters. Each STF transaction may
also contain other optional parameters which are called
extended set parameters.

25 (Transaction Keyword)
AWS AP!s called by STF Processor
and their purposes

An example of a minimal set of parameters for the
30

workflow specific data component of an STF transactions is
as follows:

STF type (transaction type)
STF transaction identification
An example of an extended set of parameters for the 35

workflow specific data component of an STF transac
tions is as follows:

workflow participants or users
workflow type

Initialising a
Business Process
(InitBP)

Initialise a Workflow
(InitWF)

transaction type
expected and/or requested workflow completion dates
workflow status

40
Take an Act in a WF
(Act)

Bound Process Data
Bound process data are data elements which are managed

Bind Application data
to a Workflow

by the workflow server for purposes of management and as 45

values in assignment, calculation, and flow control state
ments. Bound data elements are application-specific exten
sions to the STF specification. Examples include sales price,
image data, and quantity ordered. These additional data
elements can be used in processing and display definitions of
client applications and the processing and control of busi
ness process definitions at the workflow server. For example,

50 (Bind Data)

Get the status of a

a time sheet submission workflow includes bound process
data in the form of project names and hours worked. The
business process definition might specify that the sum of
hours worked on a particular day is used to calculate an
employee's paycheck amount which is used in a recurrent
automated workflow to cut a pay check.

55 Workflow
(GetWFStatus)

The STF interchanges shown in FIG. 5 are realized via
client applications, STF processors, and workflow server 60

interfaces. For example, a workflow enabled application
may use MHS messages to send STF transactions to the
workflow server. STF transactions are sent as attachments to
MHS messages. The STF processor receives these
messages, identifies the STF transaction, parses the trans
action and passes information as required to the workflow

65 Get Available Business
Processes

server.

Begin Transaction
AWSTBEGINTRANSACf!ON ()
Initialise Business Process
AWSTINITBP ()
Bind Application Data to the BP
AWSTBINDAPPDATA ()
End Transaction
AWSTENDTRANSACTION ()
Begin Transaction
AWSTBEGINTRANSACf!ON ()
Initialise workflow
AWSTINITWF ()
Bind Application Data to the WF
AWSTBINDAPPDATA ()
End Transaction
AWSTENDTRANSACTION ()
Begin Transaction
AWSTBEGINTRANSACf!ON ()
Take an Act in the WF
AWSTACf!NWF ()
Query the Status of the Act
AWSTACfSTATUSQUERY ()
Bind Application Data to the WF or
BP
AWSTBINDAPPDATA ()
End Transaction
AWSTENDTRANSACTION ()
Begin Transaction
AWSTBEGINTRANSACf!ON ()
Bind Application Data to the WF or
BP
AWSTBINDAPPDATA ()
End Transaction
AWSTENDTRANSACTION ()
Get the status and dates of the WF
AWSTSTATUS ()
Get the number of available acts
AWSTNUMAVAILABLEACTS ()
Get the available acts
AWSTAVAILABLEACfS ()
Get the number of App data
structures
AWSTGETNUMAPPDATA ()
Get the App data bound of the WF
AWSTGETAPPDATA ()
Get the moment specific App Data
of the WF
AWSTGETAPPDATAFIELDATTRIBUTES ()
Get the Number of Available BPs
for specified identity

6,058,413
11

TABLE 2-continued

12
BoundData
The STF processor makes the workflow server API call to

initiate the business process and primary workflow. The
workflow name of the primary workflow need not be pro-

STF Transaction
(Transaction Keyword)

(GetAvailableBPs)

Get the Workflows
where action is
pending)
(GetPendingActions)

AWS AP!s called by STF Processor
and their purposes

AWSTNUMAVAILABLEBP ()
Get the Available BPs for
specified identity
AWSTAVAILABLEBP ()
Query for the number of Pending
WFs

s vided by the WEA. Both the Business Process Transaction
ID and the workflow name (of the primary workflow) are
returned to the WEA by the STF processor. If there was an
error, it is returned to the WEA.

10 InitWF

Notification generated
by Workflow Processor
(Return WFStatus)

AWSTNUMQUERYWF ()
Get the Pending WFs
AWSTQUERYWF ()
Poll STFQ for Notifications
AWSTPOLLSTFQUEUE ()
Get the status and dates of the WF
AWSTSTATUS ()
Get the number of available acts
AWSTNUMAVAILABLEACTS ()
Get the available acts
AWSTAVAILABLEACTS ()

15

This transaction is used to initialize a workflow (other
than the primary workflow). InitWF needs the following
parameters:
minimal transaction parameters:

STF Transaction ID
Business Process Transaction ID
Workflow name
Identity

Get the number of App data
structures

20 extended set parameters:

AWSTGETNUMAPPDATA ()
Get the App data bound of the WF
AWSTGETAPPDATA ()
Get the moment specific App Data
of the WF
AWSTGETAPPDATAFIELDATTRIBUTES () 25

In the case of a message type of interface, both the STF
processor and the Workflow Enabled Application (WEA)
read (write) messages from (into) predefined message
queues (i.e., directories). Similarly, in a database type of 30

interface they read/write records of a shared database. The
STF processor is constantly servicing requests from a WEA.
The interface of STF processor with the WEA and the server
in both these cases is asynchronous. However, in the case of
a IPC based interface, the interaction between WEA and the 35

STF processor is synchronous.
Each type of STF processor is a separate executable

(EXE). When installing the STF processor, its ID (name) is
registered in the server via the workflow server manager
module. 40

Customer Name
Performer Name
Completion Date
Reply Date
Organization Roles to Identity mapping for the workflow
BoundData

Act
This transaction specifies an Act to take in a workflow in

a business process. In the case of the Act Transaction, the
following parameters need to be passed:
minimal transaction parameters:

STF Transaction ID
Business Process Transaction ID
Workflow Name
Act to take
Identity

extended set parameters:
Completion Date
Reply Date
BoundData

To provide the necessary functionality, an STF processor
deals with these different requirements through creation of a
base Transporter class. Three subclasses are derived from
the Transporter for: Msg, Database, and IPC. From Msg,
further subclasses can be derived for the various messaging 45
platforms supported, such as MHS, VIM or MAPI. From
Database, a subclass such as for SQL can be derived. From
IPC, subclasses can be derived for environments such as
APPC. FIG. 3 shows the interrelation of these classes in the
cases of incoming and outgoing transactions.
STF Transaction Definitions

If the Completion and Reply dates are not specified then
the default values for that workflow are assumed by the
server. If there is any process data that the WEA needs to
bind to the business process or workflow instance then the
name, type and value of the bound data can also be passed
along with the Act transaction. The Act Transaction returns
whether the Act transaction has been logged successfully in

50
the Transaction database or not.

InitBP
This transaction is used to initialize a business process

and the primary workflow associated with the business
process. To initialize a business process, InitBP needs the
following parameters:
minimal transaction parameters:

STF Transaction ID
Business Process Name
Identity

extended set parameters:
Customer Name
Performer Name
CompletionDate
Response Date
Initiate Date
Organization Roles to Identity mappings for the business

process as well as the primary workflow.

Bind Data
This transaction is to bind data to a workflow or a business

process. In the case of the Bind data Transaction the fol
ss lowing parameters need to be passed:

60

65

minimal transaction parameters:
STF Transaction ID
Business Process Transaction ID
Identity
Data to be bound to the business process or workflow

instance.
extended set parameters:

Workflow Name
The Bind Data Transaction returns status as to whether the

application data has been bound to the business process or
workflow instance successfully or not.

6,058,413
13

Get Workflow Status
This transaction is used to retrieve information related to

Completion Date

Reply Dates
a workflow instance. This information includes:

14

WEA data bound to the workflow instance. Status string
List of bound data field names and attributes, when 5 Get Available Business Processes

requested. This transaction is used to get the list of business pro-
The status of the workflow instance. cesses that the specified Identity with a specific Organization
The acts available in the workflow for the role of the role can initiate. The Get Available Business Processes

specified identity.
The Get Workflow Status Transaction needs the following

10
parameters to be passed:
minimal transaction parameters:

STF Transaction ID
Business Process Transaction ID
Workflow N arne
Identity
Workflow Role of the Identity

extended set parameters:
Act or State Flag(Act or State) for bound data

15

Transaction needs the following parameters to be passed:
minimal transaction parameters:

STF Transaction ID
Identity

extended set parameters:
Business Process Status(Active or Inactive)
This transaction returns a list of business processes avail

able for the Identity.
Return WFStatus

This transaction is generated by the workflow processor
Act or State value for bound data
Return Bound Data Flag(YES or NO)
If the extended parameter, Bound Data (Boolean) is not

specified then its default value is YES and bound data fields
and attributes are returned to WEA.

20 whenever workflow participants need to be informed about
the workflow status. The STF processor polls the workflow
processor continuously for any of the Notification events. If
it finds one, it calls the Server APis to get the workflow

The Get Workflow Status Transaction returns the following:
Bound Data

25

Status String
Completion and Reply dates
List of available acts for the Identity
WF status for Act or State

Get Pending Actions
30

This transaction is used to retrieve information about
workflows for an Identity having an Organization Role from
the set of instantiated business processes with the specified
business process name, which fall into the specified time slot

35
between the start date and end date. This information
includes, for each workflow, BP Name and ID, Workflow
Name and ID, Customer ID, Performer ID, Completion and
Reply Dates, Status and form name. Essentially, it is the list
of workflows where an action is pending.

40
The Get Pending Actions Transaction needs the following

parameters to be passed:
minimal transaction parameters:

STF Transaction ID

status (exactly similar to the GetWFStatus Transaction) and
send all the workflow information to the participant.

This transaction is generated by the workflow processor
and hence requires no parameters from the WEA.
The ReturnWFStatus Transaction returns the following:

Notification string
Notification Event
Status String
Completion and Reply dates
List of available acts for the participant
Bound Data

STF Transaction Representation in a Messaging Environ
ment
The following describes the STF transaction representa

tion in a messaging environment. The STF transaction
travels as an attachment to the message. In a messaging
environment, an STF transaction has the following format.
SIGNATURE
WORKFLOW DATA Identity

Workflow Role of the Identity
extended set parameters:

45 The signature and addressing information, together consti
tute the STF Transaction Envelope.

Organization Role
Business Process Name
Start Date
End Date

50

If Organization Role is absent, then information about
workflows for the Identity in all valid Organization Roles
from the set of instantiated business processes with the
specified business process name is returned. If Business

55
Process name is absent, then information about workflows
for the Identity in all valid Organization Roles from the
complete set of instantiated business processes is returned.
If the Start Date and End Date are absent then the time slot
for the required information will span the entire database.

60
This transaction returns a list of workflows which

includes:

Signature
Each STF Transaction starts with the Signature. It could be

a line containing the following:
STFMHS-01
Workflow Data
This includes the STF type, STF instance, workflow

participants, workflow type, transaction type, start date,
expected and/or requested dates and completion dates,
workflow status etc.

STF Keyword Format
The STF keyword format in a messaging environment

consists of four fields in the following format.
<Keyword (field name)><delimiter><Field

value><terminator>
Keyword (field name)

See Table 3 below.

Business Process Name
Business Process ID
Workflow N arne
Customer Name
Performer Name

65 Delimiter
The delimiter is a character such as a ":"used to separate

the field name and the field value.

6,058,413
15

Field value
The syntax and semantics of the field value varies and will

depend on the field. The following fields have a specific
format in which data is to be sent.
Sent by WEA to STF Processor

Date
OrgRole to Identity
BoundData

Sent by STF Processor to WEA
Acts
Status
BoundData
Business Process List
Workflow List

Terminator
The terminator consists of the carriage return-line feed

pair <CR><LF>.

STF Keyword

ACT

ACTS

ACTORSTATE

ACTSTATE

BOUND DATA

5

10

16
A sample STF transaction m a messaging environment

would be as follows:

SIGNATURE

WORKFLOW DATA

TABLE 3

STFMHS-01

STFTYPE:GetWFStatus
STFID:10002
WFNAME:PrintPaySlips
BPID:10202
IDENTITY:Mani-!0
ACTORSTATE:Act
ACTSTATE:Request

15 STF Transaction Keyword Data Formats

The following describes the STF transaction keyword
data formats which are medium independent.

Description, Data Type, Format and Valid
Values

Description: Act to be taken
Data type and format: string of up to 64
characters
Valid values:
Request, Offer, Accept_ CounterOffer,
Accept_ Offer, Agree, Cancel, Counter,
CounterOffer, Counter_with_request,
Declare_ Completion,
Declare_Dissatisfaction,
Declare_Satisfaction, Decline_Request,
Decline_Offer, Decline_CounterO:Efer,
Revoke
Description: List of Acts with their
canonical and English names
Data type and format:
Canonical name of Act, English Name of
the act, ...
Where
Canonical Name of the Act - String of up
to 64 characters
English Name of the Act - String of up to
64 characters
Description: Act or State flag for which
workflow status has been requested
Data type and format: String
Valid values:
Act, State. Default is Act
Description: Act or State value
Data type and format: String
Valid values for Act:
Request_ Offer, Accept_ CounterOffer,
Accept, Offer, Agree, Cancel, Counter,
CounterOffer, Counter_with_request,
Declare_ Completion,
Declare_Dissatisfaction,
Declare_Satisfaction, Decline_Request,
Decline_Offer, Decline_CounterOffer, or
Revoke
Valid values for State:
Inactive, Initial, Request, Offer,
Recounter, OCounter, Agreement,
Completion, Satisfaction, Cancel,
Decline, or Revoke
Description: Application data associated
with a workflow
Data type and format: Bounddata format to
be sent by WEA to STF Processor:
BDfieldName, BDfieldValue; BDfieldName,
BDfieldValue
where,
BDFieldName - string of up to 64
characters
BDfieldValue - string of up to 255
characters.

BPTID

BPLIST

BPNAME

BPSTATUS

CDTIME

COMMENT

CUSTOMERID

6,058,413
17

-continued

Each bounddata field is separated by
comma and items are separated by
semicolons. The last item need not
contain a semicolon. All the fields in
BoundData are mandatory and no blank
values are allowed.
Data type and format: Bounddata format to
be sent by STF Processor to WEA
BDfieldName, BDfieldValue, AttributeFlag;
where,
BDFieldName - string of up to 64
characters
BDfieldValue - string of up to 255
characters.
AttributeFlag - string of 2 digits
specifying Attribute
Attribute Flag Values
0- Read Only
1 -Hidden
2- MustFill
3- Editable
4- Reserved
5 - Reserved
Description: Business Process Transaction
ID returned by workflow server and is
subsequently used by WEA for queries.
Data type and format: String of up to 64
characters
Description: Business Process list sent
by Workflow Processor
Data type and format: list of Business
process names and IDs
BPNAME; BPTID, BPNAME, BPTID, ...
where
BPNAME_Business Process Name of String
up to 64 characters
BPTID - Business Process Transaction ID
of String up to 64 characters
Description: Business Process Name
Data type and format: String of up to 64
characters
Description: Business Process status
required (active or inactive)
Data type and format: String
Valid values:
Active, or Inactive
Description: Customer request completion
date and time
Data type and format: Date formats
1. mm dd-yyyy HH:MM:SS
2. MMM dd yyyy HH:MM:SS
3. MMMMMMMM dd yyyy HH:MM:SS
where
mm- Month (01-12)
MMM - Month (Jan-Dec)
MMMMMMMM - - Month Name (January -
December)
dd- Day (0-31)
yyyy - Year (1970-200x)
HH - Hour (0-23)
MM - Minute (0-59)
SS - Second (0-59) This is optional
All the fields in the date and time are
mandatory except the seconds field The
delimiters separating date fields can be
blank, hyphen, forward slash,
or dot(.).
Examples of Date and Time for November
the 20th 1992 at 10 am can be specified
as:
November-20-1992 10:00,
Nov-20-1992 10:00:00, or
11-20-1993 10:00
Description: Comment associated with an
STF Transaction
Data type and format: String of up to 255
characters
Description: Workflow customer Name
Data type and format: Customer name.

18

ENDDTIME

ERROR

ERRORMSG

FORMID

IDENTITY

IDTIME

NOTIFICATION

NOTIFICTYPE

OBSERVERID

ORG2IDENTITY

ORGROLE

PENDINGACfiONS

6,058,413
19

-continued

String of up to 64 characters
Description: End of date and time range
for Get Pending Action
Data type and format: Date format (as in
CDTIME)
Description: Error code returned by
Workflow Processor to an STF Transaction
Data type and format: String of digits up
to 8 characters
Description: Error message corresponding
to ERROR
Data type and format: String of up to
1024 characters
Description: ID for form in WF
definition, returned as part of Bound
Data
Data type and format: String of up to 64
characters
Description: Identity who is participant
in the Workflow
Data type and format: String of up to 64
characters
Description: Initiate time of a Business
Process or Workflow
Data type and format: Date format (as in
CDTIME)
Description: Notification string returned
by Workflow Processor to WEA
Data type and format: String of up to 255
characters specifying the Notification
string
Possible strings are
Performer response past due, Performer
completion past due, Performer completion
coming due, Customer Response past due,
Act taken.
Description: Notification Type returned
by the Workflow Processor to the WEA
Data type and format: String of 1 digit
Notification event types
0- Follow Up
1- Follow Up
2- Reminder
3- Follow Up
4 -Act
Description: Name of observer in workflow
Data type and format: String of up to 64
characters
Description: Organizational Role to
Identity Mapping for the workflow
Data type and format: Organization roles
and identities list
ORGROLE~IDENTITY;ORGROLE~IDENTITY; ...
where
ORGROLE - String of up to 64 characters
IDENTITY - String of up to 64 characters
All the fields in ORG2IDENTITY are
mandatory and no blank values are
allowed.
Description: Organizational Role of the
Identity
Data type and format: String of up to 64
characters
Description: List of Work:flows where some
act is pending
Data type and format: List of Workflows
where actions are pending
BPNAME, BPTid, WFNAME, CUSTOMER,
PERFORMER, COMPLETIONDATE, REPLYDATE,
STATUS; ...
where
BPNAME - Business Process Name of String
up to 64 characters
BPTid - Business Process Transaction ID
of String up to 64 characters
WFNAME - Workflow Name of String up to 64
characters
CUSTOMER - Customer Name of String up to
64 characters

20

PERFORMERID

RDTIME

RTNBOUNDDATA

RTNSTATUS

STARTDTIME

STATUS

STFID

STFTYPE

STFVER

WFNAME

6,058,413
21

-continued

PERFORMER - Performer Name of String up
to 64 characters

COMPLETIONDATE- Completion Date (as
inCDTIME)
REPLYDATE- Reply Date (as in CDTIME)
STATUS - Status string

Description: Name of Performer in the
Workflow
Data type and format: Performer Name.
String of up to 64 characters
Description: Date and Time by which a
participant asks for a response to his
act.

Data type and format: Date format (as in
CDTIME)
Description: Flag indicating whether to
return application data to WEA
Data type and format: String
Valid values:
Yes, No. Other than 'No' will be taken as
'Yes' and Default is Yes
Description: Flag indicating whether to
return status to WEA
Data type and format: String
Valid values:
Yes, No. Other than 'No' will be taken as
'Yes' and Default is Yes
Description: Start date for Pending
Actions
Data type and format: Date format (as in
CDTIME)
Description: Status of Workflow
Data type and format: Workflow status
string format

WFStatus , Completion Datel, Reply Datel,
Completion Date2, Reply Date2
WFStatus - A string of up to 64
characters containing the WF status
string

Possible values are,
Inactive, Initial, Request, Offer,
Recounter, Counter, Agreement,

Completion, Satisfaction, Cancel,
Decline, or Revoke
Completion datel - Completion requested
by Customer (Completion due for
Performer) with format as in CDTIME
Reply Datel - Reply due to Performer from
Customer (Reply due to customer from
Performer) with format as in CDTIME
Completion Date2 - Completion due by
Performer (Completion requested by
Customer from Performer) with format as
in CDTIME
Reply Date2 - Reply due by Performer to
Customer (Reply due by Customer from
Performer) with format as in CDTIME
Description: STF Transaction ID specified
byWEA
Data type and format: String of up to 255
characters

Description: STF Transaction Type
Data type and format: String of up to 64
characters

Description: STF Transaction Version

Data type and format: String of up to 64
characters

Description: Workflow Name

Data type and format: String of up to 64

characters

22

6,058,413

WFROLE

Type

InitBP
InitWF
Act
Bind Data
Get Workflow Status
Get Available Business
Processes
Get Pending Actions
Return WF Status

23

-continued

Description: Identity's role in workflow
Data type and format: String of up to 64
characters
Valid Values:
Customer, Performer, Observer

Transaction types (STFTYPE)

Identifier

INITBP
INITWF
ACT
BIND DATA
GETWFSTATUS
GETAVAILBPROCS

GETPENDINGACTIONS
RETWFSTATUS

24

20

The STI transaction is placed in an attachment file. This
file needs to be specified in the attachment IPM Header. An
STF processor makes use of the following SMF headers
from the MHS Message to retrieve addressing information
for the STF Transaction. Other header information is 25

ignored by the STF Processor.

-continued

ORG2IDENTITY:Mani-ID~Ac.Officer;Ted-ID~Ac.Mgr

BOUNDDATA:GRS-BAS,40.00;EMPNAME,Bhat
RTNSTATUS:YES

From
To
Attachment
The following are the complete STF transactions as received

by a STF processor from a WEA via MHS. It also
illustrates the STF Transaction sent by STI Processor in
reply to the WEA via MHS.

Example of MHS message header file received (from WEA)
by STF Processor through MHS

MHS Message

SMF-70
001From: Mani@Host2
001To: STFPROC1@Host1
200Attachment: FILE1.STF
... (other info put by MHS ,
but ignored by STF Processor)

Example of MHS message header created by the STF
Processor in response to the above header file (To WEA)

SMF Message
SMF-70
001From: STFPROC1@Hos1
001To: Mani@Host2
200Attachment: STFOOOOO
InitBP
Attachment file containing InitBP Transaction

COMMENT: This is an example of InitBP
STFVER:STFMHS-01
STFTYPE:InitBP
BPNAME:STAFFPAYROLL
IDENTITY:Mani-!0
STFID:10401
CUSTOMERID:Lakshman-!0
PERFORMERID:Manoj-ID
CDTIME:01-02-1993 17:00
RDTIME:01-02-1993 09:00
IDTIME:01-02-1993 17:00

The corresponding workflow server API Calls would be:
AWSTBeginTransactionO

30 AWSTinitBPQ;
AWSTBindAppDataQ;
AWSTEndTransactionO

The values returned by the workflow server APis will be
sent to the WEA as Return Status transaction (if WEA had

35 set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES). ERROR keyword is set to
0 if there was no error processing the Transaction. Otherwise
ERROR will be set to a value and the error message
corresponding to the ERROR will be sent in ERRORMSG.

40

45

50

Attachment file containing ReturnStatus to InitBP
Transaction:

STFTYPE:ReturnStatus
STFID:10401
BPID:10000
WFNAME:FixBugs
ERROR:OOOOOOOO
ERRORMSG:Transaction with workflow
server is successful

Suppose that an error occurred in the InitBP Transaction
that BPNAME keyword was not found, then the values

55
returned by the workflow server APis will be sent to the
WEA as Return Status transaction (if WEA had set
RTNSTATUS to YES. By default, STF Processor assumes
RTNSTATUS as YES).

60

65

Attachment file containing ReturnStatus to InitBP Transaction
for Error:

STFTYPE:ReturnStatus
STFID:10401
ERROR:00000197
ERRORMSG:Could not find keyword(s):

25

-continued

BPNAME.
InitWF
Attachment file containing InitWF Transaction

STFVER:STFMHS-01
STFTYPE:InitWF
STFID: 10402
BPID:10000
WFNAME:PrintPaySlips
IDENTITY:Mani-!0
CUSTOMERID:Lakshman-!0
PERFORMERID:Manoj-ID
CDTIME:02-01-1993 17:00
RDTIME:Feb-01-1993 17:00
IDTIME:February-01-1993 10:00
ORG2IDENTITY:Manoj-ID~Pgmr;Lakshman-ID~Analyst

RTNSTATUS:YES

6,058,413

5

10

15

server is successful
Bind Data

26

-continued

Attachment file containing Bind Data Transaction

STFVER:STFMHS-01
STFTYPE:BindData
BPID:10000
STFID: 10407
WFNAME:PrintPaySlips
IDENTITY:Mani-!0
RTNSTATUS:YES
BOUNDDATA:GRS-BASIC, 3000.00; GR7-BASIC, 3500.00;
GRG-BASIC, 4000.00;PAYDATE, 02-01-1993 17:00

The corresponding workflow server API call for the Bind
Data Transaction would be:

The corresponding workflow server API calls would be:
AWSTBeginTransactionO
AWSTBindAppDataQ;

AWSTBeginTransactionO
AWSTinitWFQ;
AWSTBindAppDataQ;
AWSTEndTransactionO

20 AWSTEndTransactionO

The values returned by the workflow server APis will be
sent to the WEA as Return Status transaction (if WEA had 25

set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES).

The values returned by the workflow server APis will be
sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES).

Attachment file containing ReturnStatus to Bind Data
Transaction

Attachment file containing ReturnStatus to InitWF Transaction

STFTYPE:ReturnStatus
STFID:10401
ERROR:OOOOOOOO
ERRORMSG:Transaction with workflow
server is successful
Act
Attachment file containing Act Transaction

STFVER:STFMHS-01
STFTYPE:Act
BPID:10000
STFID:10403
WFNAME:PrintPaySlips
ACT:Agree
IDENTITY:Mani-!0
CDTIME:02-01-1993 17:00
RDTIME:02-01-1993 17:00
BOUNDDATA:GRS-BASIC, 3000.00; GR7-BASIC, 3500.00
RTNSTATUS:YES

The corresponding workflow server API calls would be:
AWSTBeginTransactionO
AWSTActlnWFQ;
AWSTActStatusQueryQ;
AWSTBindAppDataQ;
AWSTEndTransactionO

The values returned by the workflow server APis will be
sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES).

Attachment file containing ReturnStatus to Act Transaction

STFTYPE:ReturnStatus
STFID:10403
ERROR:OOOOOOOO
ERRORMSG:Transaction with workflow

30

35

40

45

STFTYPE:ReturnStatus
STFID: 10407
ERROR:OOOOOOOO
ERRORMSG:Transaction with workflow
server is successful
Get Workflow Status
Attachment file containing Get Workflow Status Transaction

STFVER:STFMHS-01
TIME:Sep-24-1992 10:40
STFTYPE:GetWFStatus
BPID:100000
WFNAME:PrintPaySlips
STFID: 10404
WFROLE Customer
IDENTITY:Mani-!0
RTNSTATUS:YES
RTNBOUNDDATA:YES
ACTORSTATE:Act
ACTSTATE:Agree

Since this transaction is used to retrieve all information
related to a workflow instance, it maps to several workflow

50
server APis
The corresponding workflow server API Calls would be:
AWSTStatusQ;
AWSTAvailableActsQ;
AWSTGetAppDataQ;

55
The values returned by the workflow server APis will be

sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES). If RTNBOUNDDATAis set
to YES, then BoundData is returned to the WEA. The Bound

60
Data attribute sent by workflow server is the "moment"
attribute flag of a workflow if the Bound data is required for
a state.

65 Attachment file containing ReturnStatus to Get Workflow
Status Transaction

27

-continued

STFTYPE: ReturnStatus
STFID: 10404
STATUS: Completed, 02-01-1993 17:00, 02-01-1993
17:00, 02-01-1993 17:00; 02-01-1993 17:00
ACTS: Agree, PrintSlips
FORMID: SAMPLEFORM
BOUNDDATA: GRS-BASIC, 3000.00, 01; GR7-BASIC,
3500.00, 01; GR6-BASIC, 4000.00, 01
ERROR: 00000000
ERRORMSG: Transaction with workflow server is
successful

Note: STATUS and ACTS keyword format
STATUS: WFStatus, Completion Date1, Reply Date1, Completion
Date2, Rep! y Date2
where,

WFStatus string Workflow status string
(Inactive, Initial, Request, Offer, Recounter,
Counter, Agreement, Completion, Satisfaction,
Cancel, Decline, or Revoke)

Completion Date1 Completion requested by Customer
(Completion due for Performer)

Reply Date1 Reply due to Performer from Customer
(Reply due to customer from Performer)

Completion Date2 Completion due by Performer
(Completion requested by
Customer from Performer)

Reply Date2 Reply due by Performer from Customer
(Reply due by Customer from Performer)

ACTS: Act Type, Act Name
where,

Act Type string Act Type string (Request, Offer,
Accept_ CounterOffer, Accept_ Offer,
Agree, Cancel, Counter, CounterOffer,
Counter_ with_request,
Declare_ Completion,
Declare_Dissatisfaction,
Declare_satisfaction, Decline_Request,
Decline_Offer, Decline_CounterO:Efer,
Revoke, or Null)

Act Name Act Name string.

Get Available Business Processes
Attachment file containing Get Available Business Processes
Transaction

STFVER: STFMHS-01
STFTYPE: GetAvailableBPs
STFID: 10405
IDENTITY: Mani-ID
BPSTATUS: Active

6,058,413

5

10

15

28

-continued

BPLIST:BugReportingSystem, 1000;

BugReportingSystem, 10001

ERROR:OOOOOOOO

ERRORMSG:Transaction with workflow server is

successful

Get Pending Actions

Attachment file containing Get Pending Actions Transaction

STFVER:STFMHS-01

STFID:10406

STFTYPE:GetPendingActions

WFROLE:Performer

ORGROLE:Ac. Officer

BPNAME:STAFFPAYROLL

IDENTITY:Mani-!0

STARTDTIME:02-01-1993 17:00

20 ENDDTIME:02-01-1993 17:00

RTNSTATUS:YES

The Get Pending Actions returns information about the
25 workflows for the specified identity (having the specific

Organization role) from the set of instantiated business
processes with the specified Business Process name.

The corresponding workflow server API Call would be:

30 AWSTQueryWFQ;

35

40

45

The values returned by the workflow server APis will be
sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES)

Attachment file containing ReturnStatus to Get Pending
Actions Transaction

STFTYPE:ReturnStatus
STFID:10405
PENDINGACTIONS:WFNAME1;WFNAME2
ERROR:OOOOOOOO
ERRORMSG:Transaction with workflow server is
successful
Return WFStatus
Attachment file containing Return WFStatus Transaction

None

The Get Available Business Processes returns the list of
Business Processes that the identity (in the specific role) can 50

initiate. The BPSTATUS is an optional parameter which
specifies whether active or inactive (all) BPs are required by
the WEA.

This Transaction is generated by the Workflow Processor
whenever the Workflow participants are needed to be
informed about the Workflow status. The STF Processor will
poll the Workflow Processor continuously for any of the

The corresponding workflow server API Call would be:
AWSTAvailableBPQ;

The values returned by the workflow server APis will be
sent to the WEA as Return Status transaction (if WEA had
set RTNSTATUS to YES. By default, STF Processor
assumes RTNSTATUS as YES)

Attachment file containing ReturnStatus to Get Available BPs
Transaction

STFTYPE:ReturnStatus
STFID:10405

55
Notification events. If it finds one, it calls the Server APis to
get the Workflow Status (exactly similar to the GetWFStatus
Transaction) and send all the workflow information to the
participant.

60

65

The corresponding workflow server API Calls would be:

AWSTBeginTransactionO

AWSPollSTFQueueQ

AWSTStatusQ;

AWSTAvailableActsQ;

AWSTGetAppDataQ;

AWSTEndTransactionO

6,058,413
29

The values returned by the workflow server APis will be
sent to the WEA as Notification transaction.

Attachment file containing Return WFStatus Transaction

STFTYPE:Return WFStatus

NOTIFICATION:Performer Response Past Due

NOTIFICTYPE:1

STATUS:Completed,02-01-1993 17:00,02-01-1993

17:00,02-01-1993 17:00,02-01-1993 17:00

ACTS:Agree, PrintSlips

FORMID:SAMPLEFORM

BOUNDDATA:GRS-BASIC, 3000.00,01; GR7-BASIC,

3500.00,01; GR6-BASIC, 4000.00,01

30

-continued

ACTOR STATE 3

5

Incoming Transactions

STF Trans ID Keyword Value
10

Outgoing Transactions

STF Trans ID Keyword Value

15 where the STF Trans ID column contains STF transaction
identification, the keyword column contains a keyword
index corresponding to the keyword index table; and the
value column contains one of the valid values from the STF
Transaction Keyword Data Formats table.

STF Transaction Representation in a Database Environment 20

In the case of a shared database environment, the STF

STF Transaction Representation in an Inter-Process Com
munication Environment
The STF transaction in an IPC environment is represented

by a set of parameters in a remote procedure call, in a
manner similar to the parameters of a workflow API call as
described in U.S application Ser. No. 08/014,796 filed Feb.

transaction format is a set of tables.

Each table has a record structure as follows:

Table Name

Act
Acts

BindData

BoundData
BusinessProcessList
Error

GetAvailableBPs
GetPendingActs
GetWFStatus
InitBP

InitWF
Org2Identity

PendingActions

Return WFStatus

WorkflowStatus

Description

Data required Act
List of canonical acts and their
English names
Binding Application specific Data to
Workflow
Application specific Bound Data
List of Available Business Processes
Error information returned by STF
Processor to the WEA
Get Available Transactions
Get Pending Actions Transaction
Get Workflow Status Transaction
Initialize Business Process
Transaction
Initialize Workflow Transaction
Organizational Role to Identity
Mapping
List of Workflows where some act is
pending
Return Workflow Status
(Notification) Transaction
Workflow Status data returned by
GetWFStatus and ReturnWFStatus

25 8, 1993.
STF Processors

The following is a description of the three types of STF
processors needed for messaging, shared database and inter
process communication. Details for the messaging type are

30 explained by way of an example using MHS and VIM.

35

Details needed for the shared database type by way of
examples using SQL. Details for the inter-process commu
nication type should be apparent to persons skilled in the art
from this description.

In the preferred embodiment as set forth below, the
invented system is implemented using the Model, View,
Class (MVC) paradigm of object oriented programming.
Transporter Module

The transporter module of an STF processor handles the
40 reception of inputs arriving via messaging, shared database

or IPC and the preparation of outputs via messaging, shared
database or IPC. The transporter recognizes, reads and
writes entire transactions. The transporter accesses all items
of bound data or transaction data via keyword entries. Client

45 input/output content is required to be formatted as keyword,
value(s), flags for each item of a transaction or bound data.

The transporter class provides basic interaction with the

Each table consists of a set of columns in a relational
table. The first field in the table is the Transaction ID which

50

WEA software. In the case of MHS, for example, the
transporter class provides the messaging interface. It gets
and puts messages and passes them to the TxParser, which
is a class that understands and reads the MHS message and

is the primary key for the table-its value can never be void.
Other fields may contain void values depending upon
whether those fields are of the minimal set or the extended
set of parameters of the respective STF transaction.

An alternative implementation of the STF transaction
representation in a database environment would consist of
three tables as follows:

Keyword Index Table

STF Keyword

ACT
ACTS

Index

2

extracts from it the STF transaction. The transporter also
receives the message from the TxFormatter which is a class
that constructs the message in MHS format. When a devel-

ss oper creates a new STF processor, it is necessary to derive
from the subclasses of the transporter class an interface to
the required transport medium to the STF processor.

The TxProcessor and STF _Transaction (STF _Tx)
classes form the core of the STF processor. The TxProcessor

60 is the controlling class that keeps track of transactions
queued up to be done. The STF _Tx creates all the objects
which between them contain all the methods necessary to
interface to the workflow server.

Since the STF processor converts a WEA-formatted trans-
65 action into a workflow server-formatted transaction, the

transaction classes center the conversion process and pro
vide methods to both sides of the conversion.

6,058,413
31

Transaction Processor
The TxProcessor is the central controller class m STF

Processor. It has pointers to Error, INIFile, Transporter,
TxParser, TxFormatter and STF _Tx base classes in the STF
Processor. FIG. 6 illustrates the generic class hierarchy 5

diagram of a STF processor and how the classes in STF
processors are linked.

TxProcessor has methods to process input and output
transactions. The TxProcessor constructor instantiates 10
TransMsgMHS (for a messaging environment based on
MHS), TxParser and TxFormatter.

Within the TxProcessor method, to process input
Transactions, a parser method to get input from Transporter
is called which loads the input transaction.

Next, STF _Tx is instantiated in inbound or outbound
mode depending upon TXProcessor method for processing
input or output Transactions.

15

Pointers to Transporter, TxParser and TxFormatter are 20
passed on to STF _Tx private data members through the
constructor. The STF _Tx constructor then gets the Trans
action Type by calling parser method for processing inbound
Transactions or calls a method for polling STFQ for pro
cessing outbound Transactions. 25

Depending upon the Transaction Type appropriate trans
action objects are instantiated which in turn process the
Bound data, Envelope data and call appropriate workflow
server APis.

The return status of the workflow server API's is handled
30

32

-continued

szSTFExeFilName
szSTFErrFilName

STF EXE file name
Error log file name

Public Methods

Method Name

IN!File(PSZ psz!N!FilName)

USHORT uFilliN!Data()

BOOL bParse!N!Line(PSZ
pszLinebuf, PPSZ
ppszltemNames, PSZ pszValue,
USHORT *pulndex)

PSZ pszGet!N!FilName()

PSZ pszGetSTFProc!D()

PSZ pszGetSTFExeFilName()

PSZ pszGetSTFErrFilName()

PSZ pszGetSTFVariantName()

Class name: STFTransporter
Class description

Method Description

Constructor updates the IN!
file name sz!N!FilName
reads the IN! file and fills
the IN! file information in
the attributes
parses IN! file line using
array of IN! keywords and
returns value and index
associated with the IN! file
keyword
returns IN! file name stored
in sz!N!FilName
returns the STF Processor
name stored in szSTFProc!D
returns the EXE file name of
STF Processor stored in
szSTFExeFilName.
returns the error log file
name stored in
szSTFErrFilName.
returns the STF variant name
stored in szSTFVariantName

by creating a return Transaction which is internally passed
over to TxFormatter for onward delivery to Transporter.
Cleanup operation is done by calling TxProcessor's methods
to do the same. This completes one inbound or outbound
transaction processing

All the output transactions are processed. If there are no
output transactions pending, a message is posted to process
input transactions.

This is an abstract base class which is responsible for
getting WEA inputs and returning responses to the WEA. It
contains methods to interface with the external environment
as well as provides methods for TxParser, TxFormatter and
Envelope objects for reading and writing transactions and

35 user information. The STFTransporter class contains a set of
virtual methods which are overloaded by the methods of the
appropriate derived classes(STFTransMsg, STFTransDb or
the STFTransiPC class). In the case of messaging environ
ment like MHS, the STFTransporter virtual methods are

40 replaced by the methods of the STFTransMsgMHS class. STF Processor Class Descriptions

Class Name: INIFile

Class Description

This is the INI file base class that handles STF Processor 45
INI file loading. The INI file is created during STF Processor
installation. STF Processor will assume a default STF.INI in
the current directory. If the STF.INI is not found in the
current directory, it will be searched in PATH environment
variable. The INI file is similar to OS/2 INI files. The INI file 50

will have keywords and values. Following is the content of
the INI file in STF Processor Verl.O.

STFProcessorName: STFPROC1
ErrorLogFile: C:\TEMP
Super Class
None

55

STFTransporter accepts and passes an array of strings con
taining Transaction items, values, and flags to the TxParser.

Super Class
None
Sub Classes
STFTransMsg, for handling Messaging environment
STFTransDB for handling Database environment
STFTrans!PC for handling !PC environment
Classes Used
None
Attributes

Attribute Name Attribute Description

None None

Public Methods

Method Name Method Description sub Classes
None
Classes Used
None
Attributes

60 virtual USHORT
uGetlnputTx(PPSZ
ppszAWESTF!nputTx, USHORT*
u!TCount, BOOL*pbMore)

A pure virtual method which
will be overloaded by
appropriate method of derived
classes STFfransMsg,
STFTranSDB, STFTrans!PC.
Overloaded methods get a
reference to array of

Attribute Name

sz!N!FilName
szSTFProc!D

Attribute Description

IN! file name
STF Processor ID

65

pointers to strings

6,058,413
33 34

-continued -continued

containing transaction items,
values, flags from the WEA
input

Public Methods

virtual BOOL
b Write WEAOutput(PPSZ
ppszFmtOutput, USHORT
uFOCount)

5

Method Name

STFTransMsg()

A pure virtual method that is
overloaded by appropriate
public methods of the derived
classes STFfransMsg,
STFTransDB, STFTransiPC. It
creates the Transaction
header and posts it along
with the attachment file (in
case of messaging

10 USHORT uGetlnputTx(PPSZ
ppszAWESTFinputTx, USHORT*
uiTCount, BOOL *pbMore)

virtual BOOL
bGetlnUserinfo(PPSZ
ppszinUserinfo, USHORT*
puinU!Count)
virtual BOOL
bPutOutUserinfo(PPSZ
ppszOutUserinfo, USHORT
uOutUICount)

virtual BOOL bDeleteTx(USHORT
*uDeleteTxFlag)

Class Name: STITransMsg
Class Description

environment) as output to WEA
application. It returns
Boolean indicating success or
failure of the posting
operation. This method is
used by formatter to send
transactions to WEA.
A pure virtual method that is
overloaded by methods of
derived classes STFfransMsg,
STFTransDB, STFTransiPC
A pure virtual method that is
overloaded by appropriate
methods of derived classes
STFTransMsg, STFTransDB,
STFTransiPC
A virtual method that is
overloaded by appropriate
methods of derived classes.
The overloaded method marks
inputs from WEA as read. It
is called once an Input from
WEA is completely processed.

STFTransMsg derived class consists of a set of public

15

20

25

30

35

methods which overload the appropriate methods of the
STFTransporter class to incorporate message specific fea
tures. The STFTransMsg derived class also contains a set of
protected virtual methods which are used in defining the set

40
of the STFTransMsg public methods, i.e. in writing the code
of these public methods. This set of protected virtual meth
ods in turn is overloaded by the methods of the derived class
STFTransMsgMHS in case of messaging environment based
on MHS and by methods of STITransMsgVIM derived

45
class in the case of a messaging environment based on VIM.

Super Class
STFTransporter
Sub Classes
STFTransMsgMHS handles MHS messaging environment
STFTransMsgVIM handles VIM messaging environment
Classes Used
None

50

BOOL bWriteWEAOutput(PPSZ
ppszFmtOutput, USHORT
uFOCount)

Attributes

Attribute Name Attribute Description

55 BOOL bGetlnUserinfo(PPSZ
ppszinUserinfo, USHORT*
pinU!Count)

ppszinUserinfo

uinUserinfoCount

ppszOutUserinfo

uOutUserinfoCount

input user info used for
storing addressing
information of inbound
transactions.
number of elements in
ppszinUserinfo.
Output user Info used for
addressing outbound
transactions.
number of elements in
ppszOutUserinfo

60

65

Method Description

Constructor used for
initializing private data
members of STFTransMsg class.
This method uses protected
virtual methods which are
overloaded by appropriate
methods of STFTransMsgMHS and
STFTransMsgVIM derived
classes. It gets the inbound
transaction, user information
and number of strings present
in Input transaction and user
information data structures
respective! y. The user
information data is stored in
its private data members.
Various arguments are
described below.
1. ppszWEASTFinputTx
argument receives reference
to array of pointers to
strings containing
transactions sent by WEA.
2. uiTCount specifies count
of strings in
ppszWEASTFinputTx.
3 pMore flag indicates if
more unread input messages
are present. This flag is
useful in processing multiple
input transactions.
This method accepts
parameters for creating an
outbound transaction to be
sent to WEA. It accepts array
of pointers to strings from
which a return Transaction is
formulated (In case of
messaging environment it
creates an attachment file)
and posts the message along
with formulated
transaction (attachment file
in Messaging environment) as
WEA output. It makes use of
protected virtual methods
that are overloaded by the
appropriate methods of
STFTransMsgMHS and
STFTransMsgVIM derived
classes. Various arguments
are given below:
1. ppszFmtOutput argument
contains formatter output
Transaction for onward
delivery to WEA.
2. uFOCount argument
specifies number of strings
in ppszFmtOutput.
This method gets User
Information that is stored in
ppszinUserinfo private data
member. This is used for
addressing the responses to
the current transaction. The
various arguments passed are
given as under.
1. ppszinUserinfo argument
contains Input user
information for addressing
purpose.
2. pinUICount points to
number of strings in
ppszUserinfo.

6,058,413
35

-continued

BOOL bPutOutUserinfo(PPSZ
ppszOutUserinfo, USHORT
uOutUICount)

BOOL bDeleteTx(USHORT
*uDeleteTxFlag)

-STFTransMsg()

This method accepts user
information to be used within
transporter for addressing
outbound transaction. The
various arguments are
described below:
1. ppszOutUserinfo argument
contains array of pointers to
strings containing user
information for addressing
outbound transaction.
2. uOutUICount specifies
number of strings in
ppszOutUserinfo data
structure.
This method marks the input
messages from WEA as read
once they are processed and
deletes the memory allocated
for private data members of
STFTransMsg.
Destructor used for deleting
ppszinUserinfo data member.

Protected Methods

Method Name

virtual BOOL bCreateMsg(PPSZ
ppszFmtOut, USHORT
uFmtOutCount)

virtual BOOL bSetMsgHdr()

virtual BOOL bSendMsg()

virtual BOOL
bQueryNewMsg(BOOL *pbMore)

virtual BOOL bOpenMsg()

virtual BOOL
bMarkMsgRead(USHORT

Method Description

This is a protected virtual
method that is overloaded by
appropriate member functions
of STFTransMsgMHS and
STFTransMsgVIM derived
classes. It creates an
attachment file from array of
pointers to strings passed as
argument to it.
This is a protected virtual
function that will be
overloaded by bSetMsgHdr()
methods of STFTransMsgMHS or
STFTransMsgVIM derived
classes. It creates the
message header structure from
array of pointers to string
containing user information
like receiver name and
address as input
This is a protected virtual
function that will be
overloaded by bSendMsg()
methods of STFTransMsgMHS or
STFTransMsgVIM derived
classes. It posts the
attachment file and message
as output to WEA.
This method is overloaded by
bQueryNewMsg() method of
STFTransMsgMHS or
STFTransMsgVIM derived
classes. It polls for WEA
input and returns Boolean
indicating presence or
absence of WEA input. It as
well sets the more flag in
case more unread messages are
present.
This method is overloaded by
bOpenMsg() method of
STFTransMsgMHS or
STFTransMsgVIM derived
classes. It opens and reads
the incoming unread message
file for attachment file name
and user information.
This method is overloaded by
bMarkMsgRead() functions of

5

10

36

-continued

*uDeleteTxFlag);

virtual BOOL bGetMsgltem(PPSZ
ppszinputTx, USHORT*
puinputTx)

STFTransMsgMHS or
STFTransMsgVIM derived
classes.
This method is overloaded by
bGetMsgltem() method of
STFTransMsgMHS or
STFTransMsgVIM derived
classes. It passes reference
to array of pointers
containing item names, values
and flags of the transaction.
It will be used by
bGetlnputTx() public method
of this class.

15 virtual BOOL bCloseMsg() This method closes all the
resources opened by
bOpenMsg() method.

Class Name: STFTransMsgMHS
20 Class Description

25

30

35

40

45

50

55

60

The STFTransMsg MHS derived class consists of a set of
public methods which overload the methods of the
STFTransMsg derived class. This set of public methods are
specific to MHS messaging environment.

Attribute Name

piniFile
ppszMsgHdr

uMsgHdrCount

hOutMsgFil
pszinAttFilName
pszOutAttFilName
psz U nreadMs gFilN arne

szinMsgFilPath

szinAttFilPath

szSndMsgFilPath

szSndAttFilPath

pszStfAppName
szSMF-70[]

szFrom[]

szTo[]

szAttachment[]

szStf

Method Name

Super Class
STFTransMsg
Sub Classes
None
Classes Used
None
Attributes

Attribute Description

pointer to INIFile
array of pointers to store
message header.
number of elements in
ppszMsgHdr
Output message file handle.
Input attachment file name
Output attached file name.
Input Unread message file
name
Input message mail directory
path.
Input parcel
directory(attached file) path
Output message directory
path.
Output parcel
directory(attached file)
path.
STF Application name.
constant char string
containing SMF signature SMF-
70
constant char string
containing SMF "From:"field.
constant char string
containing SMF "To:" field.
constant char string
containing SMF "Attachment:"
field.
constant string containing
STF keyword.

Private Methods

Method Description

65 BOOL bSetPath() This method sets up the paths specific
to MHS messaging environment. Returns

PSZ pszGetMHSMV()

Method Name

STFrransMsgMHS()

virtual BOOL
bCreateMsg(PPSZ
ppszFmtOut, USHORT
uFmtOutCount)

virtual BOOL
bSetMsgHdr()

virtual BOOL
bSendMsg()

virtual BOOL
bQueryNewMsg(BOOL
*pbMore)

virtual BOOL
bOpenMsg()

6,058,413
37

-continued

true if paths are set properly.
This method returns the master volume
environment variable MV necessary for
setting up the MHS environment.

Public Methods

Method Description

Constructor of STFrransMsgMHS class. It
initializes private data members of
STFrransMsgMHS
This creates a temporary file from
array of pointers to strings passed by
formatter in ppszFmtOut and assigns the
unique file name created to
pszOutAttFilName data member. The
steps followed by this method are given
below.
1. Create a unique file from a global
integer variable which is appended with
STF keyword.
2. Open the file using DOS Open
command in non-shareable, write only
mode.
3. Writes strings from ppszFmtOut
into file separating them with a new
line character (OxOD OxOA)
The procedure followed by this method
to accomplish its task is broadly
categorized in following steps.
1. Allocate storage for ppszMsgHdr
data member.
2. Create SMF message header as array
of strings in ppszMsgHdr using
ppszOutUserinfo and uOutUserinfoCount
for recipient (To:) field.
3. Assign the attachment file name
created by bCreateMsg() method
(pszOutAttFilName) to Attachment field
of SMF header.
4. Assign the Attachment type field
of SMF header as STF.
5. Assign From:field of SMF to
application name given by pszStfAppName
variable.
This method creates a message file from
array of pointers to strings compiled
by bSetMsgHdr() in ppszMsgHdr data
structure in output mail directory.
This completes the posting operation of
SMF message in MHS environment. It
returns Boolean indicating success or
failure of the operation. The steps
followed in this method are given
below:
1. Create a unique file from a global
integer variable which is appended with
STF keyword.
2. Open the file using DosOpen
command in non-shareable, write only
mode.
3. Writes strings from ppszMsgHdr
into file separating them with a new
line character (OxOD OxOA)
This method polls the (STF processor)
mail directory to check for incoming
messages. Returns Boolean indicating
presence or absence of inputs from WEA
and stores the name of first unread
file in pszUnreadMsgFilName private
data member. It as well updates a more
flag if more unread messages are
present.
This method opens up the first unread
message given by private data member
pszUnreadMsgFilName, scans message file
for attachment file name and From
fields. The steps followed by this

5

10

virtual BOOL
15 bGetMsgltem(PPSZ

ppszinputTx,
USHORT*,
pinputTxCount)

20

25

virtual BOOL
bCloseMsg()

30 virtual BOOL
bMarkMsgRead(USHORT
*uDeleteTxFlag)
-STFrransMsgMHS()

35

38

-continued

method are given below.
1. Opens the file given by
pszUnreadMsgFilName using fopen() in
read only mode.
3. Reads contents of file using
fgets() function and compares each
string with szAttachment. Extracts the
name of file and sets it in
pszinAttFilName data member.
4. Similarly compare each string with
szFrom to get the sender of the message
and assign it in pszinUserinfo field
data member.
This method formulates an array of
pointers to strings in ppszinputTx and
pointer to count of strings contained
in pinputTxCount from the data read
from pszinAttFilName member. The steps
followed in this method are given
below.
1. Opens attachment file given by
pszOutAttFilName and szinAttPath using
fopen() function.
2. Allocate memory for ppszinputTx
elements.
3. Reads the contents of file line by
line using fgets() function and stores
it as a string in ppszinputTx.
4. Sets the number of lines read in
pinputTxCount.
5. Closes attachment file.
Closes all the resources opened by
bOpenMsg() method.
This method stamps the messages as read
after a transaction is processed.

Destructor for STFrransMsgMHS. It
deletes memory for some of its private
data members.

Class Name: STFTransMsgVIM
Class Description
The STITransMsg VIM derived class consists of a set of

40
public methods which overload the methods of the
STFTransMsg derived class. This set of public methods are
specific to VIM messaging environment.

45

50 Attribute Name

vSession
vMsg
vinMsg

55 vRef
vContainer

60
Method Name

TransMsg VIM(INIFILE
*piNIFile)

Super Class
STFrransMsg
Sub Classes
None
Attributes

Attribute Description

VIM session identifier
VIM open message identifier
VIM open Message identifier
for inbound message
VIM message reference position
VIM open message container
identifier

Public Methods

Method Description

Constructor of STFTransMsg VIM
object. It opens a VIM session
using VIMOpenSession() API
call.

virtual BOOL CreateMsg(PPSZ
65 ppszFmtOut, USHORT

uFmtOutCount)

This method creates an
outbound message. It uses the
VIMCreateMsg() VIM API

6,058,413
39 40

-continued -continued

virtual BOOL SetMsgHdr()

virtual BOOL SendMsg()

provided in VIM.DLL.
It gets pointer to string
containing user information
like sender, recipient from
TransMsg methods from which it
creates the message header
using following VIM API calls
1. VIMSetMessageHeader()

5

Classes Used
None
Attributes

Attribute Name

ppszDBServerinfo

10 uDBServerinfoCount

Attribute Description

Database Management System
Information
number of elements in
ppszDBServerinfo

2. VIMSetMessageRecipient()
This method posts the message
along with attachment file
using following VIM API calls.
1. VIMSetMessageltem
associates an attachment file
with message formulated by
VIMCreateMessage()

Public Methods

virtual BOOL
QueryNewMsg(BOOL
*pMore)

virtual BOOL OpenMsg()

virtual BOOL GetMsgltem(PPSZ
ppszinputTx, USHORT *
uinputTxCount)

virtual BOOL CloseMsg()

virtual BOOL MarkMsgRead()

-TransMsgVIM()

Class Name: STITransDB

2. VIMSendMessage() posts
the message along with
attachment file.
This method polls the mail
directory to check for new
messages. Uses following VIM
API calls
1. VIMOpenMessageContainer()
opens a message container
containing inbound mail.
2. VIMEnumerateMessages()
enumerates the messages and
gets the message reference of
first unread message.
Opens the incoming message
using VIMOpenMessage() method
provided by VIM.DLL..
This method extracts the
attachment file information
from container box using
following VIM API calls.
1. VIMEnumerateMessageltems()
enumerates the message for
attachment files.
2. VIMGetMsgltem() extracts
the attachment file item and
stores the contents in
ppszinputTx.
Closes all the resources
opened using VIMCloseMessage()
API call.
This method stamps the
messages after they are read.
It uses VIMMarkMessageRead()
method of VIM.DLL.
Destructor of STFrransMsgVIM.
Closes a VIM session using
VIMCloseSession() function.

Method Name

15
STFrransDB()

USHORT uGetlnputTx(PPSZ
ppszAWESTFinputTx, USHORT*

20
uinTxCount,
BOOL *pbMoreinputs)

25

30

BOOL bWriteWEAOutput(PPSZ
35 ppszFmtOutput, USHORT

uFOCount)

40

45

Class Description 50

STFTransDB derived class consists of a set of public
methods which overload the appropriate methods of the
STFTransporter class to incorporate Database specific fea
tures. The STFTransDB derived class also contains a set of
protected virtual methods which are used in defining the set 55

of the STFTransDB public methods, i.e. in writing the code
of these public methods. This set of protected virtual meth
ods in turn is overloaded by the methods of the derived class
STFTransDBSQL in case of Database environment based on
SQL ~

BOOL bGetlnDBinfo(PPSZ
ppszDBServerinfo, USHORT*
pDBinfoCount)

Super Class
STFTransporter
Sub Class

BOOL bPutOutDBinfo(PPSZ
ppszDBServerinfo, USHORT

65 uOutDBCount)
STFTransDBSQL handles SQL Database environment

Method Description

Consructor used for
initializing the database
management system information.
This method uses protected
virtual methods which are
overloaded by appropriate
methods of STFrransDBSQL derived
class. It gets the inbound
transaction, database server
information.
1. the ppszAWEASTFinputTx
argument receives reference to
array of pointers to strings
containing transactions sent by
WE A.
2. ulnTxCount specifies count
of strings in
ppszAWEASTFinputTx.
3 pMoreinputs flag indicates
if more unread STF database
records are present. This flag
is useful in processing multiple
input transactions.
This method accepts parameters
for creating an outbound
transaction to be sent to WEA.
It accepts array of pointers to
strings from which a return
Transaction is formulated as a
database record and writes it
onto the STF shared database. It
makes use of protected virtual
methods that are overloaded by
the appropriate methods of
STFTransDBSQL derived class.
Various arguments are given
below.
1. ppszFmtOutput argument
contains formatter output
Transaction for onward delivery
to WEA.
2. uFOCount argument specifies
number of strings in
ppszFmtOutput.
This method gets STF database
and dictionary information that
is stored in ppszDBServerinfo
private data member. This is
used for writing the database
records onto STF Database. The
various arguments passed are
given as under.
1. the ppszDBServerinfo
argument contains Input STF
Database management system
information for reading and
writing records to the database.
2. pDBinfoCount points to
number of strings in
ppszDBServerinfo.
This method accepts database
management system information to
be used within the transporter
for addressing outbound

6,058,413

BOOL bDeleteTx(USHORT
*uDeleteTxFlag)

-STFTransDB()

Method Name

virtual BOOL
bCreateSTFRecord(PPSZ
ppszFmtOut,
USHORT uFmtOutCount)

41

-continued

transaction.
The various arguments are
described below.
1. the ppszDBServerlnfo
argument contains array of
pointers to strings containing
user information for addressing
outbound transaction.
2. uOutDBCount specifies
number of strings in
ppszDBServerlnfo data structure.
This method marks the input
database record from WEA as read
once they are processed and
deletes the memory allocated for
private data members of
STFTransDB.
Destructor used for deleting
ppszDBServerlnfo data member.

Protected Methods

Method Description

This is a protected virtual
method that will be overloaded
by appropriate member functions
of STFTransDBSQL derived class.
It creates a database record
from array of pointers to
strings passed as argument to
it.

virtual BOOL
bQueryNewSTFRecord(BOOL
*pbMore)

This method is overloaded by
bQueryNewSTFRecord() method of
STFTransDBSQL derived class. It
polls for AWEA records written

virtual BOOL
bDeleteSTFRecord(USHORT
*uDeleteTxFlag).
virtual BOOL
bReadSTFRecord(PPSZ
ppszlnputTx,
USHORT* pulnputTx)

onto STF Database and returns
Boolean indicating presence or
absence of AWEA input. It also
sets the more flag in case more
unread records are present in
the STF Database.
This method is overloaded by
bDeleteSTFRecord() method of
STFTransDBSQL derived class.
This method is overloaded by
bReadSTFRecord() method of
STFTransDBSQL derived class. It
passes reference to array of
pointers containing STF keyword
names, values and flags of the
transaction. It is used by
bGetlnputTx() public method of
this class.

Class Name: STITransDBSOL
Class Description
The STFTransDBSQL derived class from STFTransDB

consists of a set of public methods which overload the
methods of the STFTransDB derived class. This set of public
methods are specific to SQL Database Server environment.

Attribute Name

pszSQLDBName
ppszSQLTabName

Super Class
STFTransDB
Sub Classes
None
Classes Used
None
Attributes

Attribute Description

SQL database name
Array of SQL tables in the

uSQLTabCount
5

42

-continued

SQL database.
number of tables in the SQL
database

Private Methods
None
Public Methods

10 Method Name

STFTransDBSQL()

virtual BOOL
15 bCreateSTFRecord(PPSZ

ppszFmtOut, USHORT
uFmtOutCount)

20

virtual BOOL
bQueryNewSTFRecord(BOOL
*pbMore)

25 virtual BOOL
bReadSTFRecord(PPSZ
ppszlnputTx, USHORT*
plnputTxCount)

30 virtual BOOL
bDeleteSTFRecord(USHORT
*uDeleteTxFlag)
-STFTransDBSQL()

35

Class Name: TxParser

40

Class Description

Method Description

Constructor of STFTransDBSQL
class. It initializes private
data members of STFTransDBSQL
This creates record in the
output STF DB tables and writes
strings from ppszFmtOut into the
database tables.
This method polls the STF
processor database tables for
new transactions with
Transaction ID as the key.
Returns Boolean indicating
presence or absence of inputs
from WEA and stores the WEA
input record. It updates a more
flag if more unread records are
present in the STF database.
This method formulates an array
of pointers to strings in
ppszlnputTx and pointer to count
of strings contained in
plnputTxCount from the data read
from the STF database tables.
This method deletes the
processed STF Record from the
STF SQL database tables.
Destructor for STFTransDBSQL It
deletes memory for some of its
private data members.

This class parses the WEA input which is stored as an
45 array of strings stored in the attributes. It has methods for

parsing and returning keyword values from input STF
Transactions. Please refer to Appendix-B for a list of key
words and their explanations. The TxParser object is created
by the TxProcessor for getting Input Transaction from

50 STFTransporter.

55

Super Class
None
Sub Classes
None
Classes Used
STFTransporter - used to get STF Transaction strings.

60

Attribute Name

pTransporter

65
ppszlnSTFTx

Attributes

Attribute Description

Pointer to STFTransporter
base class
pointer to array of strings
containing input transactions
read from transporter.

6,058,413
43

-continued

ulnSTFrxCount Number of strings stored in
ppszlnSTFrx

Method Name Method Description

Public Methods

TxParser (STFTransporter
*pTransporter)

USHORT
uGetTranslnput (BOOL
*pbMoreTx)

BOOL blsSTFTxKwdExist (PSZ
pszKwd)

!NT ilsSTFrxKwdExist (PSZ
pszKwd)

PSZ pszParseSTFValue (PSZ
pszKwd, CHAR *pcFlag,
USHORT * puPrsStatus)

Constructor that accepts pointer
to STFfransporter and stores it in
its private data member.
This method calls the
STFrransporter method
bGetlnputTx 0 to get the STF
Transaction and stores it in
ppszlnSTFrx
This method checks whether the
given keyword exists in the
ppszlnSTFrx. It returns TRUE if
the keyword exists, else FALSE.
This method checks whether the
given keyword exists in the
ppszlnSTFrx. It returns the index
of the keyword in ppszlnSTFrx
array of strings and returns -1 if
the keyword was not found.
This method returns the keyword
value associated with the pszKwd
and updates the STF keyword type
flag in pcFlag.

BOOL bGetSTFTxType This method updates the puType
(USHORT *puType) with the STF Transaction type.

The following methods are used to get STF Transaction keyword
values are overloaded for different keyword types.

USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, PPSZ ppszKwdValue)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, USHORT *puKwdValue)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, !NT *piKwdValue)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, LONG *plKwdValue)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, BOOL *pbKwdValue)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, LPDATETIMET
pDateTime)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, LPORG2ID pORG2ID,
!NT *piCount)
USHORT
uGetSTFrxKwdValue (PSZ
pszKwd, LPTXBDFIELDSTRUCT
pBData, !NT *piCount)
BOOL bchecklnputTx 0

VOID vDeleteParserData 0

-TxParser 0

Class Name: TxFormatter
Class Description

This method updates the keyword
value ppszKwdValue associated
with the pszKwd keyword.
This method updates the keyword
value puKwdValue associated with
the pszKwd keyword.
This method updates the keyword
value piKwdValue associated with
the pszKwd keyword.
This method updates the keyword
value plKwdValue associated with
the pszKwd keyword.
This method updates the keyword
value pbKwdValue associated with
the pszKwd keyword.
This method updates the keyword
value structure pDateTime.

This method updates the
structure pORG2ID and the count
associated with the pszKwd.

This method updates the
structure pBData and the count
associated with the pszKwd.

Checks if data is present in
ppszlnSTFrx.
Deletes data stored in
ppszlnSTFrx and resets the
ulnSTFTxCount.
This method is the destructor
which deletes the transaction
data.

5

10

15

44
STFTransporter method and pass array of STF keyword
strings stored by the TxFormatter. The TxFormatter keeps
on accumulating STF keyword strings till it gets bFmtEnd()
message. The bFmtEnd() will call STFTransporter method
to write the STF Transaction to the WEA.

Super Class
None
Sub Classes
None
Classes Used
STF _Tx STF _Tx class to get the STFTransporter
pointer
STFrransporter STFrransporter class to output the STF
Transaction
Attributes

Attribute Name Attribute Description

20
ppszOutSTFrx data structure containing

output transaction.
Number of strings in
ppszOutSTFrx.

uOutSTFrxCount

25
Method Name

TxFormatter()

Public Methods

Method Description

This method is he constructor
for this class which
initializes the attributes.

30 BOOL bFmtStart() This method starts the
formatter initializing the
array of pointers to hold the
STF keywords and values. This
is equivalent to opening a
file.

35 BOOL bFmtEnd(STF _Tx *pSTF _Tx) This method signals the
formatter that all the data

40

45

50

55

that needs to be sent to WEA
has been formatted and can
call STFTransporter method to
write the STF Transaction to
the output. This is equivalent
to closing and flushing a
file.

The following methods are used to format STF Transac
tion keyword and value are overloaded for different keyword
types.

Method Name

BOOL bFmtKwd (PSZ pszKwd,
PSZ pszKwdValue)

BOOL bFmtKwd (PSZ pszKwd,
!NT iKwdValue)

BOOL bFmtKwd (PSZ pszKwd,
USHORT uKwdValue)

Method Description

This method formats the pszKwd
and pszKwdValue in the form
pszKgwd:pszKwdValue.
This method formats the pszKwd
and iKwdValue in the form
pszKwd:iKwdValue.

60 BOOL bFmtKwd (PSZ pszKwd,
LONG lKwdValue)

This method formats the pszKwd
and uKwdValue in the form
pszKwd:uKwdValue.

This class contains methods to produce STF Transaction
from keyword values for the STFTransporter. This class will
hide the Transaction from knowing about the external inter
face to WEA. It will essentially format the data required by 65

the STFTransporter to output an STF Transaction. This class

BOOL bFmtKwd (PSZ pszKwd,
LPWFLIST pWFList, !NT iCount)

This method formats the pszKwd
and lKwdValue in the form
pszKwd:lKwdValue.
This method formats the pszKwd
and pwFList contents in the
form
pszKwd:pWFList[O];pWFList[1]; ...
pWFList [iCount-1]

is used by Transaction class. The TxFormatter will call

6,058,413
45

-continued

Method Name

BOOL bFmtKwd (PSZ pszKwd,
LPBPLIST pBPList, !NT iCount)

BOOL bFmtKwd (PSZ pszKwd,
LPSTATUS pStatus)

BOOL bFmtKwd (PSZ pszKwd,
LPACTINFO pActlnfo, !NT
iCount)

-TxFormatter ()

Class Name: Envelope

Class Description

Method Description

This method formats the pszKwd
and ppBPList contents in the
form
pszKwd:pBPList[O];pBpList[1]; ...
pBpList [iCount-1]
This method formats the pszKwd
and pStatus contents in the
form pszKwd:pStatus
This method formats the pszKwd
and ppActlnfo contents in the
form
pszKwd:pActlnfo[O];pActlnfo[1]; ...
pActlnfo[iCount-1]
This method is the destructor
for this class which de
initializes the attributes.

This class handles addressing information of WEA. It is
used by STF _ Tx, BoundData and Transaction classes.

Super Class
None
Subclass
None
Classes Used
STF _Tx used to access STFfransporter, BoundData
and Transaction methods.
STFTransporter used to get addressing information of
inbound transactions.
Transaction used to get addressing information of
outbound transactions.
BoundData used to get addressing information of
outbound transactions.
Attributes

Attribute Name

ppszlnUserlnfo

ulnUserlnfoCount
ppszOutUserlnfo

uOutUserlnfoCount

Attribute Description

pointer to array of strings
containing inbound user
information.
Number of items in ppszlnUserlnfo
pointer to array of strings
containing outbound user info.
Number of items in ppszOutUserlnfo

Public Methods

Method Name

Envelope()

BOOL bPutlnUserlnfo(STF _Tx
*pSTF_Tx)

PSZ pszGetlnUserlnfo()

BOOL bPutOutUserlnfo(STF _Tx
*pSTF _Tx, PSZ pszUserlnfo)

Method Description

This method is the
constructor which initializes
the attributes.
This method calls transporter
method bGetlnUserlnfo() to
get addressing information of
currently processed inbound
transaction and stores it in
its private data member.
This method returns a string
containing addressing
information which is built
from various elements of
ppszlnUserlnfo.
This method accepts string
containing user information
converts it into appropriate
format as required by
STFTransporter for addressing
and calls STFTransporter
method for handing user

46

-continued

5 BOOL bGetOutUserlnfo(PPSZ
ppszOutUserlnfo, USHORT
*puOutUserlnfoCount)
-Envelope()

information for current
Outbound transaction.
This method returns the
outbound user information
stored in the attributes.
This method is the destructor
which de-initializes the
attributes.

10

Class Name: BoundData
Class Description
This class stores and handles all bound data associated

15 with a transaction.

20

Super Class
None
Sub Classes
None
Classes Used
STF _Tx, STFTxKwd
Attributes

25 Attribute Name

pSTFTx
szBDKwd
szFormName
iBDCount

30
pBoundData

Attribute Description

Pointer to STF _Tx object
BOUND DATA keyword string
Form Name
Number of BD structures
Pointer to array of Bound Data
structures

Public Methods

Method Name

35 BoundData(STF _Tx *pSTF _Tx)

40

45

USHORT uPutlnTxBoundData()

BOOL bPutGetTxBoundData(BOOL
bActOrState, !NT iActOrState)

BOOL bPutRtnTxBoundData(LONG
50 lTxld)

55

BOOL bBindAppData()

60
PSZ pszGetBoundDataStream()

- BoundData()

65

Method Description

This method is the
constructor which updates
pSTFTx with the passed
parameter and szBDKwd by
instantiating STFTxKwd
This method updates the bound
data attributes from the
input transaction using
TxParser method.
This method gets the
ActOrState Flag and
ActOrState value and updates
the bound data attributes by
calling AWSTGetBoundData()
and
AWSTGetBDFieldAttributes().
This method is for 'Get' type
of transactions.
This method gets the
Transaction ID and calls the
overloaded methods of
AWSTGetBoundData() and
AWSTGetBDFieldAttributes()
and updates the bound data
attributes. This method is
for 'Return' type of
transactions.
This method is used to call
AWSTBindAppData() to bind the
application data with respect
to a business process or a
workflow.
This method is used to return
the bound data structure
values as a string.
This method is the destructor
which de-initializes the
attributes.

Class Name: STI TX
Class Description

47
6,058,413

48

-continued
This class is used to process the inbound as well as the

outbound transactions. It has methods to get the transaction
type. It initiates the Transaction class based on the transac- 5

tion type.

pTxFormatter
pSTF_Tx
piNIFile

Pointer to TxFormatter class
Pointer to STF _Tx class
Pointer to INIFile class

Super Class
None
Sub Classes
None
Classes Used
Transaction, STFfransporter, TxParser, TxFormatter,
INIFile, Envelope, and BoundData.
Attributes

Attribute Name

uinOrOutTx

uTxType
lTx!D

bConstrFailed

pTransaction
pTransporter
pTxParser
pTxFormatter
piNIFile
pEnvelope
pBD

Private Methods
None
Public Methods

Method Name

STF _Tx(USHORT uinOrOutTx,
STFfransporter *pTransporter,
TxParser *pTxParser,
TxFormatter *pTxFormatter,
INIFile *piNIFile)

-STF_Tx()

Class Name: TxProcessor
Class Description

Attribute Description

Flag to indicate Inbound or Outbound
Transaction
Transaction type
Transaction ID assigned by the
workflow server
Flag to indicate whether STF _Tx
constructor failed or not
Pointer to Transaction class
Pointer to STFfransporter class
Pointer to TxParser class
Pointer to TxFormatter class
Pointer to INIFile class
Pointer to Envelope
Pointer to BoundData

Method Description

This method is the
constructor which accepts the
mode which indicates whether
input or output transaction.
Based on this mode, it
instantiates the transaction
objects.
This method is the destructor
which deletes all data
related to transaction
instantiated in the
constructor.

This is the main controlling class of STF processor. It has
pointers to STFTransporter TxParser, TxFormatter and
STF _Tx and INIFile classes in the STF Processor. TxPro
cessor will be instantiated once during an STF Session (in
the main program).

Super Class
None
Subclass
None
Classes Used
STFTransporter, TxParser, TxFormatter, STF _Tx and
INIFile.
Attributes

Attribute Name

pTransporter
pTxPrs

Attribute Description

Pointer to STFfransporter class
Pointer to TxParser class

Public Methods

Method Name

10 TxProcessor()

BOOL bProcessinputTx(BOOL
15 *pbMoreTx)

BOOL bProcessOutputTx()

20
- TxProcessor()

25 Class Name: Transaction

Class Description

Method Description

This method is the constructor
of TxProcessor which
instantiates STFfransporter,
TxParser, TxFormatter and
INIFile.
This method processes the input
Transaction data by
instantiating STF _Tx in Input
mode.
This method processes the output
Transaction data by
instantiating STF _Tx in Output
mode.
This method is the destructor of
TxProcessor which deletes all
data member pointers.

This class is the base class for the various types of WEA
transaction classes It has virtual method to process the
required Transactions.

30

35

40

45

Super Class
None
Sub Classes
InitBP, InitWF, Act, BindData, GetWFStatus,
GetPendingActions, GetAvailableBPs, Return WFStatus
Classes Used
STF_Tx
Attributes

Attribute Name

pSTF_Tx
bRtnStatus

bRtnBData

lAWSTError

BPTid
WFTid
Identity

Attribute Description

Pointer to STF _Tx class
Flag to indicate whether WEA
requested Status of Transaction
Flag to indicate whether WEA
requested Bound Data
Error returned by workflow server
API(s)

50 ppszSTFTxid

Business Process Transaction ID
WorkFlow Transaction ID
Identity of the person who is
initiating the Transaction.
STF Transaction ID sent by WEA

Public Methods

Method Name Method Description

55 Transaction(STF _Tx *pSTFTx) This method is the constructor
which accepts the pointer to
STF _Tx class and substitutes it
in pSTF _Tx data member.

virtual BOOL bDolt()

60

-Transaction()

65

This virtual method is used to
call workflow server API(s) and
Formatter to process the
Transactions. By default it
processes invalid Transactions.
This method is the destructor
which de-allocates all the
memory occupied by data
members.

6,058,413

Class Name: STITxKwd
Class Description

49 50

-continued
This class defines STF Transaction keywords. This is used

by the Transaction class to get keyword string and values for
calling workflow server APis and to send return values of 5

workflow server APis to TxFormatter. The constructor of
this class gets the keyword string from Resource.

Method Name

USHORT
uGetKwdValue(LPORG2ID
p0rg2ID, !NT *piCount)

Method Description

object using Parser's method
bGetSTFTxKwdValue().
This method outputs the keyword
values in p0rg2ID and pi Count
corresponding to the data
member szKwd stored in the
object using Parser's method
bGetSTFTxKwdValue(). Super Class

None
Sub Classes
None
Classes Used
TxParser STF Transaction Parser
Attributes

Attribute Name

pSTF_Tx

szKwd

Attribute Description

Pointer to STF _Tx class (to get
Parser pointer)
STF Keyword string

Public Methods

Method Name

STFTxKwd(STF _Tx *pSTFTx,
USHORT uKwd!D)

PSZ pszGetKwd()

VOID vGetKwd(PSZ pszKwd)

USHORT uGetKwdValue(PPSZ
ppszKwdValueStr)

Method Description

This constructor accepts the
pointer to STF _Tx class and the
keyword ID (defined in the
Resource). It fills the szKwd
data member corresponding to
uKwd!D from the Resource.
This method returns szKwd
stored in the object.
This method updates pszKwd with
szKwd stored in the object.
This method assumes that the
caller allocates memory for
pszKwd.
This method outputs the keyword
value corresponding to the
szKwd stored in the object
using Parser's method
bGetSTFTxKwdValue().

The following methods are overloaded for different key
word data types.

Method Name

USHORT uGetKwdValue(USHORT
*puKwd)

USHORT uGetKwdValue(INT
*piKwd)

USHORT uGetKwdValue(LONG
*plKwd)

USHORT uGetKwdValue(BOOL
*pbKwd)

USHORT
uGetKwdValue(LPDATETIMET
pDateTime)

Method Description

This method outputs the keyword
value in puKwd corresponding to
the data member szKwd stored in
the object using Parser's
method bGetSTFTxKwdValue().
This method outputs the keyword
value in piKwd corresponding to
the data member szKwd stored in
the object using Parser's
method bGetSTFTxKwdValue().
This method outputs the keyword
value in plKwd corresponding to
the data member szKwd stored in
the object using Parser's
method bGetSTFTxKwdValue().
This method outputs the keyword
value in pbKwd corresponding to
the data member szKwd stored in
the object using Parser's
method bGetSTFTxKwdValue().
This method outputs the keyword
value in pDataTime
corresponding to the data
member szKwd stored in the

10

-STFTxKwd() This method is the destructor
which does nothing.

15
Class Name: InitBP

Class Description

This class is derived from Transaction class and it has
20 methods to call workflow server API and the TxFormatter.

25

Super Class
Transaction
Sub Classes
None
Classes Used
STF _Tx, STFTxKwd.
Attributes

30 Attribute Name Attribute Description

None None

Private Methods

35 Method Name Method Description

40

45

BOOL bCallAPI()

BOOL bCallFormatter(STF _Tx
*pSTF_Tx)

This method is used to call
the workflow server API to
initiate business process. To
get the parameters needed for
the workflow server API call,
it instantiates the STFTxKwd
objects for different
parameters.
This method is used to call
TxFormatter to format the
return values got from
workflow server API. Using
pSTF _Tx, it gets the pointer
to TxFormatter.

Public Methods

50 Method Name Method Description

InitBP(STF _Tx *pSTFTx) This method is the constructor
which accepts the pointer to

55 virtual BOOL bDolt()

STF _Tx class which will be used
by other methods of this class.
This method calls the private
methods bCallAPI() and
bCallFormatter() to process

60

65

-InitBP()

Class Name: InitWF

Class Description

this Transaction.
This method is the destructor
which de-initializes all the
attributes.

This class is derived from Transaction class and it has
methods to call workflow server API and the TxFormatter.

6,058,413

Attribute Name

None

Method Name

BOOL bCallAPI()

51

Super Class
Transaction
Sub Classes
None
Classes Used
STF _Tx, STFTxKwd.
Attributes

Attribute Description

None

Private Methods

Method Description

This method is used to call the
workflow server API to initiate
workflow. To get the parameters
needed for the workflow server
API call, it instantiates the
STFTxKwd objects for different
parameters.

BOOL
bCallFormatter(STF _Tx
*pSTF_Tx)

This method is used to call
TxFormatter to format the return
values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

Public Methods

Method Name Method Description

InitWF(STF _Tx *pSTFTx) This method is the constructor
which accepts the pointer to

virtual BOOL bDolt()

STF _Tx class which will be used
by other methods of this class.
This method calls the private
methods bCallAPI() and
bCallFormatter() to process this
Transaction.

-InitWF() This method is the destructor
which de-initializes all the
attributes.

Class Name: Act

Class Description

This class is derived from Transaction class and it has
methods to call workflow server API and the TxFormatter.

Attribute Name

None

Method Name

BOOL bCallAPI()

Super Class
Transaction
Sub Classes
None
Classes Used
STFTxKwd, STFTxKwd.
Attributes

Attribute Description

None

Private Methods

Method Description

This method is used to call the
workflow server API(s) to act on
a workflow. To get the
parameters needed for the
workflow server API call, it
instantiates the STFTxKwd
objects for different
parameters.

5

52

-continued

BOOL bCallFormatter(STF _Tx This method is used to call
*pSTF _Tx) TxFormatter to format the return

values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

Public Methods

10 Method Name Method Description

Act(STF _Tx *pSTFTx) This method is the constructor
which accepts the pointer to STF _Tx
class which will be used by other
methods of this class.

15 virtual BOOL bDolt() This method calls the private
methods bCallAPI() and
bCallFormatter() to process this
Transaction.

20

25

30

35

40

-Act()

Class Name: BindData
Class Description

This method is the destructor which
de-initializes all the attributes.

This class is derived from Transaction class and it has
methods to call workflow server API and the TxFormatter.

Attribute Name

None

Method Name

BOOL bCallAPI()

Super Class
Transaction
Sub Classes
None
Classes Used
STFTxKwd
Attributes

Attribute Description

None

Private Methods

Method Description

This method is used to call the
workflow server API to bind the
application data to a business
process or a workflow. It
instantiates Bound Data object

45
BOOL bCallFormatter(STF _Tx
*pSTF_Tx)

to perform this operation.
This method is used to call
TxFormatter to format the return
values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

50

Method Name

BindData(STF _Tx *pSTFTx)

55

virtual BOOL bDolt()

Public Methods

Method Description

This method is the constructor
which accepts the pointer to
STF _TX class which will be used by
other methods of this class.
This method calls the private
methods bCallAPI() and
bCallFormatter() to process this
Transaction.

60 - BindData() This method is the destructor
which de-initializes all the
attributes.

Class Name: GetWFStatus
65 Class Description

This class is derived from Transaction class and has
methods to call workflow server API and the TxFormatter.

6,058,413

Attribute Name

pStatus

iActCount

ppActlnfo

Method Name

BOOL bCallAPI()

53

Super Class
Transaction
Sub Classes
None
Classes Used
STFrxKwd, STFrxKwd.
Attributes

Attribute Description

Structure which has the Status
string
Number of Actlnfo structures
returned
Array of Actlnfo structures

Private Methods

Method Description

This method is used to call the
workflow server API(s) to get the
status of the workflow. To get
the parameters needed for the
workflow server API call(s), it
instantiates the STFTxKwd objects
for different parameters. To
process Bound Data related
information, it instantiates
Bound Data object.

BOOL bCallFormatter(STF _Tx
*pSTF_Tx)

This method is used to call.
TxFormatter to format the return
values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

Public Methods

Method Name Method Description

GetWFStatus(STF _Tx *pSTFrx) This constructor which accepts
the pointer to STF _Tx class
which will be used by other
methods.

virtual BOOL bDolt() This method calls the private
methods bCallAPI() and
bCallFormatter() to process this
Transaction.

-GetWFStatus() This method is the destructor
which de-initializes all the
attributes.

Class Name: GetPendingActions

Class Description

This class is derived from Transaction class and it has
methods to call workflow server API and the TxFormatter.

Attribute Name

iWFCount

ppWFList

Super Class
Transaction
Subclass
None
Classes Used
STF _Tx, STFTxKwd.
Attributes

Attribute Description

Number of WorkFlow list
structures returned
Array of WorkFlow structures

54

-continued

Private Methods

5 Method Name Method Description

BOOL bCallAPI() This method is used to call the
workflow server API to get the
list of workflows for which
actions are pending.

10 BOOL bCallFormatter(STF_Tx
*pSTFrx)

This method is used to call
TxFormatter to format the return
values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

15

20

Method Name

GetPendingActions(STF _Tx
*pSTFrx)

virtual BOOL bDolt()

Public Methods

Method Description

This method is the constructor
which accepts the pointer to
STF _Tx class which will be used by
other methods of this class.
This method calls the private
methods bCallAPI() and
bCallFormatter() to process this
Transaction.

-GetPendingActions()
25

This method is the destructor
which de-initializes all the
attributes.

30

35

40

Class Name: GetAvailableBPs

Class Description

This class is derived from Transaction class and it has
methods to call workflow server API and the TxFormatter.

Attribute Name

iBPCount

Super Class
Transaction
Sub Classes
None
Classes Used
STF _Tx, STFrxKwd.
Attributes

Attribute Description

Number of Business Process
list structures returned

45 pBPList Array of Business Process
structures

Method Name
50

BOOL bCallAPI()

BOOL
55 bCallFormatter(STF _Tx

*pSTF_Tx)

60 Method Name

GetAvailableBPs(STF _Tx
*pSTFrx)

65 virtual BOOL bDolt()

Private Methods

Method Description

This method is used to call the
workflow server API to get the
list of available business
processes.
This method is used to call
TxFormatter to format the return
values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

Public Methods

Method Description

This method is the constructor
which accepts the pointer to
STF _Tx class which will be used by
other methods of this class.
This method calls the private
methods bCallAPI() and

6,058,413

-GetAvailableBPs()

55

-continued

bCallFormatter() to process this
Transaction.
This method is the destructor
which de-initializes all the
attributes.

Class Name: ReturnWFStatus
Class Description
This class is derived from Transaction class and has

methods to Poll for workflow processor generated Notifica
tions and call workflow server API for getting Workflow
status and Bound Data. It also calls the TxFormatter to send
the WF status data to the WEA.

Super Class
Transaction
Sub Classes
None
Classes Used
STFTxKwd, STFTxKwd.
Attributes

Attribute Name

pStatus

iActCount

ppActlnfo

Attribute Description

Structure which has the Status
string
Number of Actlnfo structures
returned
Array of Actlnfo structures

Private Methods

Method Name

BOOL bCallAPI()

BOOL bCallFormatter(STF _Tx
*pSTF_Tx)

Method Description

This method is used to call the
workflow server API(s) to get the
status of the workflow. To get
the parameters needed for the
workflow server API call(s), it
instantiates the STFTxKwd objects
for different parameters. To
process Bound Data related
information, it instantiates
Bound Data object.
This method is used to call
TxFormatter to format the return
values got from workflow server
API. Using pSTF _Tx, it gets the
pointer to TxFormatter.

Public Methods

Method Name

ReturnWFStatus(STF _Tx
*pSTFTx)

virtual BOOL bDolt()

-ReturnWFStatus()

Class Name: Error
Class Description

Method Description

This constructor which accepts the
pointer to STF _Tx class which will
be used by other methods.
This method polls to Notification
events in the STD queue of the
server. If it finds an event, the
appropriate workflow server APis are
called to obtain WF status.
This method is the destructor which
de-initializes all the attributes.

56
ASCII error log file whose path is specified in the STF
Processor initialization file (INI file). All fatal errors will be
logged and displayed on the STF Processor display as
pop-up dialog boxes and after user intervention, the STF

5 Processor will shut down. Please Refer to Sec. 10 for details
of error handling in STF Processor. The Error object is
Global which is used by all the classes in STF Processor
when error logging is required. The format of error logged
in the error log file is:

10

<STF Processor Name><Date:Time><Errorcode ><Error Message>
e.g.
<STF01><12-14-92 12:30:00><00000168><Could not find

15 keyword(s):BPNAME>
Super Class
None
Sub Classes
None
Class Used

20 IN!File Initialization file class to obtain the error
log file specification.

25

30

35

40

45

50

55

60

Attributes

Attribute Name

iErrcode

pszErrlogStr

szErrLogFile

pEIN!File

Method Name

Error()

VOID vPutError(LONG
lErrCode, BOOL
bFatalFlag, PSZ
pszParam1, PSZ pszParam2,
PSZ Param3)

PSZ pszGetErrMsg()

-Error()

We claim:

Attribute Description

Error Code (corresponding to
string table ID in Resource
file)
Error log string
Whether the error is fatal or
not
Error log file path (from
IN!File)
pointer to IN! file

Public Methods

Method Description

This method is the constructor
which initializes data members.
This method updates Error code and
message and writes it into error
log file. The error string
pszErrLogstr corresponding to
iErrCode is accessed from the
Resource. If bFatalFlag is TRUE,
then the error message is logged
and then popped up on the screen.
If there is an error in logging,
it is treated as a fatal error.
The parameters are substituted to
the error message loaded from the
Resource. These parameters are
defaulted to NULL if not
specified.
This method gets the error message
stored in pszErrLogStr.
This method is the destructor
which reinitializes all data
members.

1. A computer program for interfacing a workflow
enabled application to a workflow system comprising:

This class is used for error handling. It records the errors
during an STF Processor session. The error object is updated
with error information by other objects in the STF Processor
whenever an error occurs. The error messages are stored in 65

a Resource file (RC) and is loaded as and when required.
Whenever a non-fatal error occurs, it will be logged in an

a) transporter means for i) receiving from said workflow
enabled application incoming data and parsing said
received data to extract from said received data work
flow transaction information in a predetermined stan
dard transaction format, said predetermined standard
transaction format being adapted to address require
ments of applications, platforms and medium indepen
dent representations and transfers of data related to
business processes of said workflow system, and ii)
sending to said workflow enabled application outgoing

6,058,413
57

workflow transaction information which has been for
matted in said predetermined standard transaction for
mat;

b) transaction processor means for i) processing said
workflow transaction information which has been
received and parsed by said transporter means to pre
pare said workflow transaction information for sending
to and use by an application program interface of said
workflow system, and ii) processing workflow trans
action information received from said application pro
gram interface of said workflow system for sending to
said transporter means to prepare said received work
flow transaction information for formatting into said
predetermined standard transaction format, sending to
and use by said workflow enabled application.

2. The system defined by claim 1 wherein said standard
transaction format workflow transaction information
received from said workflow enabled application is at least
one of an action based transaction and a query based
transaction.

58
4. The system defined by claim 1 wherein said predeter

mined standard transaction format comprises an envelope
and workflow data.

5. The system defined by claim 2 wherein said action

5
based transaction is one of initiate business process, initiate
workflow, act in a workflow and bind data.

6. The system defined by claim 2 wherein said query
based transaction is one of request workflow status, get
available business processes and get pending actions.

7. The system defined by claim 4 wherein said envelope
10 contains address information which is platform and envi

ronment dependent.
8. The system defined by claim 4 wherein said workflow

data contains workflow specific data and bound process
data.

15 9. The system defined by claim 8 wherein said workflow
specific data includes standard transaction format transac
tion type and standard transaction format identification.

10. The system defined by claim 8 wherein said bound
process data are data elements used by a workflow server for

20
management purposes.

3. The system defined by claim 1 wherein said standard
transaction format workflow transaction information sent to
said workflow enabled application is at least one of
requested workflow status, returned bound data, returned
available business processes, returned pending actions and 25

notification.

11. The system defined by claim 9 wherein said workflow
specific data further comprises at least one of workflow
participants, workflow type, transaction type, expected
workflow completion date, requested workflow completion
date and workflow status.

* * * * *

