
United States Patent [19J

Flores et al.

[54] COMPUTERIZED METHOD AND SYSTEM
FOR MANAGING BUSINESS PROCESSES
USING LINKED WORKFLOWS

[75] Inventors: Fernando Flores, Berkeley; Chauncey
F. Bell, III; Pablo A. Flores, both of
Alameda; Rodrigo F. Flores, Berkeley,
all of Calif.; Raul Medina-Mora Icaza,
Mexico City, Mexico; John A. McAfee,
Kensington, Calif.; Manuel Jasso
Nunez, Alameda, Calif.; Thomas G.
Buchler, Berkeley, Calif.; Thomas E.
White, Monte Sereno, Calif.; Russell
G. Redenbaugh, Philadelphia, Pa.;
Juan Ludlow Saldivar, Mexico City,
Mexico; Terry A. Winograd, Stanford,
Calif.; Robert P. Dunham, Pleasanton,
Calif.; Harry K. T. Wong, Danville,
Calif.; Roy I. Gift, San Anselmo, Calif.

[73] Assignee: Action Technologies, Inc., Alameda,
Calif.

[21] Appl. No.: 08/764,131

[22]

[63]

[51]
[52]

[58]

[56]

Filed: Dec. 12, 1996

Related U.S. Application Data

Continuation of application No. 08/624,206, Apr. 3, 1996,
abandoned, which is a continuation of application No.
08/014,796, Feb. 8, 1993, abandoned.

Int. Cl? ... G06F 15/173
U.S. Cl. 705/8; 707/10; 395/200.33;

395/200.35; 395/200.49
Field of Search 395!209, 228,

395/377, 200.33, 200.35, 200.49; 707/10,
3; 705/8

References Cited

U.S. PATENT DOCUMENTS

4,484,289 11/1984 Hemond 364/478

WORKFLOW SERVER

111111 111
US006073109A

[11] Patent Number:

[45] Date of Patent:

6,073,109
Jun.6,2000

4,503,499
5,040,142
5,301,320
5,535,322
5,581,691
5,630,069
5,734,837
5,826,239

3/1985 Mason 395!650
8/1991 Mori .. 395/275
4/1994 McAtee eta!. 395!650
7/1996 Hecht 395/155

12/1996 Hsu eta!. 395/182.13
5/1997 Flores et a!. 705/7
3/1998 Flores et a!. 705/7

10/1998 Duet a!. 705/8

OTHER PUBLICATIONS

Computer Society Office Automation Symposium, Gaithers­
burg, MD, Apr. 27-29, 1987, Institute of Electrical and
Electronics Engineers, pp. 226-233, XP000370992; W.
Fisher et al: "FileNet: A Distributed System Supporting
WorkFlo; A Flexible Office Procedures Control Language".

Primary Examiner-Jean R. Homere
Attorney, Agent, or Firm-Blakely Sokoloff Taylor &
Zafman

[57] ABSTRACT

A system for analyzing and structuring business processes
implemented in software to provides businesses with tools to
manage business processes. The system i) notifies the user
that he or she has a step to begin or to complete; ii) provides
the user with the proper tools to complete a task; iii)
provides the user with the proper information to complete a
task; iv) allows the user to see where a task fits in the overall
process; v) manages proper reminders, alerts, and follow­
ups to keep the process moving; vi) automates certain
standard procedures; vii) integrates with the organization's
existing business systems; and viii) provides application
program interfaces that allow developers to develop appli­
cations that are workflow-enabled. The system utilizes a
workflow server including a transactions manager and a
database.

19 Claims, 6 Drawing Sheets

THESE LINKS INDICATE
THAT ONE OF TWO

CONDITIONAL WORKFLOWS
IS INITIATED

FIG. 1

IS LINK INDICATES
THAT A SERIAL

WORKFLOW
IS INITIATED

P1PERFORMER

d
•
\Jl
•
~
~
~ =

~

= ?
~~

N c c c

'JJ.

=­~
~
'"""' 0,
~

0\ =::.
~
~ = \C

WORKFLOW SERVER

TRANSACTIOj
MANAGER

(FOLLOW-UP
MANAGER

SCHEDULE J
MANAGER

WORKFLOW WORKFLOW INSTANTIATOR
WORKFLOW

PROCESSOR UPDATER LANGUAGE
INTERPRETER

WORKFLOW AGENT STF
EVENT ACTIONS ROUTER/

HANDLER MANAGER ENQUEUER

l 1
r::: - 1'-.

DEFINITIONS TRANSACTIONS NAMES/ SCHEDULE ADMINISTRATION/
ROUTINGS CONFIGURATION -

~ __:::::::----
WORKFLOW WORKFLOW NAMES AND SCHEDULE SERVER

TRANSACTIONS DEFINITIONS ROUTINGS API ADMINISTRATION
API API API API

(STF J PROCESSOR

(WORKFLOW) I APPLICATION ~
ENABLED I BUILDER ANALYST

~LICATION 1 "- 1 "-

_!

STFQUEUE -
REPORTER WORKFLOW

API SERVER
MANAGER

J
REPORTER J

Fig. 2
~

~

)

d
•
\Jl
•
~
~
~ =

~

= ?
~~

N c c c

'JJ.

=­~
~
N
0,
~

0\ =::.
~
~ = \C

U.S. Patent

w
tn cc
l:
A.

!z
w
::&
w
w
a:
CJ cc

w en
~
0.. cc en
2
0 a:
a.

I

Jun.6,2000

a:
w
::&
a:
0
u..
a:
w
0..

u.. z 0 0 en
~ z

0 if -t: tn Q -z !c 0
(.) en

Sheet 3 of 6 6,073,109

w
tn cc
l:
0..
w
0 z
c(
::E a:
0 u.
a:
w
0..

a: Ct)
w
> • a: C) w
tn
m ·-0 u.

U.S. Patent Jun.6,2000 Sheet 4 of 6

TRANSACTION
MANAGER

Fig. 4a

6,073,109

U.S. Patent Jun.6,2000

TRANSACTION
MANAGER

2

1
WORKFLOW WORKFLOW
PROCESSOR UPDATER

t
3

Sheet 5 of 6

NAMES/
ROUTINGS

FIG. 4b

6,073,109

ROUTER/
OUEUER

U.S. Patent Jun.6,2000 Sheet 6 of 6 6,073,109

TRANSACTION l~OLLOW-UP)
MANAGER _ _

1

Fig. 4c

6,073,109
1

COMPUTERIZED METHOD AND SYSTEM
FOR MANAGING BUSINESS PROCESSES

USING LINKED WORKFLOWS

This is a continuation of application Ser. No. 08/624,206
filed Apr. 3, 1996, now abandoned which is a continuation
of application Ser. No. 08/014,796 filed Feb. 8, 1993, now
abandoned.

BRIEF SUMMARY OF THE INVENTION

2
or accepted an offer. It is customers who are responsible for
evaluating performed work and determining whether this
work meets their conditions of satisfaction.

The performer is the person who is responsible for
5 completing the work and for declaring to the customer when

the work is done.
Requests and Offers are the two basic types of workflows.

There are other workflow types such as Question, Inform
and Note that are simplified derivations of Request and

10 Offer. The conditions of satisfaction specify the work to be
performed by the performer. In a request, the customer
specifies the conditions of satisfaction, and in an offer the
performer specifies them. (Then, of course, the two can enter

Businesses are demanding new systems that directly
support the management of business processes, systems that
bring order and coordination to the flow of work. They are
seeking to automate that part of office -work that has been

15
impervious to conventional data processing and information
processing systems, which were now designed for business
process management and are not well-suited to help with it.

into negotiation about the work to be done.)
For example, given the sentence:
"John asked Frank to prepare the report and deliver it by

noon on Friday,"
John is the customer for this workflow, Frank is the
performer, and the conditions of satisfaction are "prepare the

20 report and deliver it by noon on Friday." Further, Because
John asked for the report rather than Frank offering it, this
workflow is of the type Request.

The present invention is a system for analyzing and
structuring business processes that, when implemented in
software, provides businesses with the tools they need to
manage business processes efficiently and cost-effectively.

The invention can be applied to all business processes
from simple applications, such as intelligent forms routing,

Given the sentence:
"John proposed to prepare the report and deliver it by

to sophisticated mission-critical enterprise-wide systems 25

that integrate all marketing, production, and customer ful­
fillment processes.

noon on Friday for Frank,"
John is the performer for this workflow, Frank is the
customer, and the conditions of satisfaction are still "prepare
the report and deliver it by noon on Friday." Further because
John proposed the report rather than Frank asking for it, this

The resulting system enables users of the system to take
coordinated action quickly and to manage processes pain­
lessly. The results are increased productivity, reduced cycle
time and hence, improved customer satisfaction.

Workflow-enabled systems facilitate business processes.

30 workflow is of the type Offer.
Observers of workflows take no direct action; they usually

observe for management or training purposes.

To do so, a workflow management system performs eight
key functions:

35
Notifies the user that he or she has a step to begin or to

Business process maps display the workflows as loops,
and display the relevant information about each workflow­
the customer, the performer, the conditions of satisfaction
and the cycle time. FIG. 1 is a business process man having

complete.

Provides the user with the proper tools to complete a task.

Provides the user with the proper information to complete
a task.

Allows the user to see where a task fits in the overall
process.

Manages the proper reminders, alerts, and follow-ups to
keep the process moving.

Automates certain standard procedures.

Integrates with the organization's existing business sys­
tems.

Provides simple application program interfaces (APis)
that allow developers to develop new custom applica­
tions that are workflow-enabled.

The workflow system's architecture is designed to fit
within a variety of computer systems, collecting around
itself not only specific applications, Beut also system
enhancements and utilities from users and third-party devel­
opers. In addition, the architecture is designed to allow for
interoperability among different applications and across
diverse platforms.

A fundamental concept of a workflow system is that any
business process can be interpreted as a sequence of basic
transactions called workflows. Every workflow has a
customer, a performer, and conditions of satisfaction. The
customer and performer are roles that participants can take
in workflows. In addition, each workflow can have observ­
ers.

In a workflow, the customer is the person for the sake of
whom the work is done, either because they made a request

a primary workflow 11, conditional workflows 13 and 15, a
conditional link 17, parallel workflows 19 and 21, serial
workflows 23 and 25. In a workflow system according to the

40 present invention, associated with each workflow: are vari­
ous parameters such as roles, cycle time, conditions of
satisfaction or associate semantics to the links that imply
automated action or provide the framework for application
building, all of which are necessary to create a useful

45 business process representation. Each workflow has four
phases. The first phase is called the proposal phase during
which a request is made of the prospective performer by a
customer or an offer to a customer is made by a prospective
performer. The second phase is called the agreement phase

50 during which the offer is accepted by the customer or the
request is agreed to by the performer and conditions of
satisfaction are identified. Of course, during the agreement
phase the original conditions of satisfaction can be negoti­
ated by the customer and performer until an agreement is

55 reached. The third phase is called the performance phase
during which the performer undertakes to meet the agreed to
or accepted conditions of satisfaction. When the performer
believes that the conditions of satisfaction have been met,
the performer declares completion. The last phase is the

60 satisfaction phase during which the customer determines
whether or not the conditions of satisfaction have been met
by the performer, and if so, declares satisfaction.

In U.S. Ser. No. 07/600,144 filed Oct. 17, 1990, now U.S.
Pat. No. 5,216,603, and U.S. Ser. No. 07/368,179 filed Jun.

65 19, 1989, now U.S. Pat. No. 5,208,748, both owned by
Action Technologies, Inc., the assignee of the present
application, methods and systems For managing workflows,

6,073,109
3

called conversations in the referenced applications, are
described. However, the teachings in the cited references are
limited to single workflows no capability for mapping
business processes made up of a number of workflows
linked together. In U.S. Ser. No. 08/005,236 filed Jan. 15, 5

1993, now U.S. Pat. No. 5,630,069, a method and apparatus
are disclosed for creating and modifying business process
maps which is a desirable but not necessary component of
the invented system. This component is referred to as the
workflow analyst. 10

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is pictorial representation of a business process,
i.e., a set of linked workflows.

FIG. 2 is a block overview diagram of a complete 15

workflow system.

FIG. 3 is pictorial representation showing the phases of a
single workflow.

FIG. 4a is a transaction manager control flow when it 20
detects the initiation of a new business process or workflow.

FIG. 4b is a transaction manager control flow when it
detects a change in the transactions database that indicates
that a user (or an agent) has taken an act in a workflow.

FIG. 4c is a transaction manager control flow when it 25

processes the workflow events of a workflow.

DETAILED DESCRIPTION OF THE
INVENTION

4
Customer

The role in a workflow who takes a request or accepts and
offer.

Customer Satisfaction

The objective of a workflow, the accomplishment of
which is declared by the customer when the conditions
of satisfaction in the workflow have been fulfilled.

Cycle time

A measure of the time from initiation to successful
completion of a workflow phase, a complete workflow
or a business process.

Exception flow

The path in the business process workflow man which is
followed if a customer cancels or a performer revokes
or declines.

Link

A defined dependency between two workflows and the
mechanism by which dependencies between workflows
is established.

Loops (Workflow)
A workflow is represented graphically my an elliptical

loop with arrows shown in a clockwise direction
wherein each quadrant of the ellipse signifies different
phases of the workflow.

Normal flow

This is the path followed in a business prowess map when
workflows complete with customer satisfaction.

Overview 30 Observer
The present invention is a method and apparatus which is

used to enable application developers to generate workflow
enabled applications that request services from the workflow
server. These applications are used by users to act and
participate in business processes and enable managers to 35

observe and query the status of workflows and business
processes.
Definitions

A role in a workflow who cannot perform acts in the
workflow, but is informed of acts in the workflow, and
has access to the information and data associated with
the workflow.

Offer

The act by which the performer can initiate a workflow,
specifying conditions of satisfaction that he is willing
to satisfy for a customer. In describing the invention, the following terms with their

indicated definitions are used: 40
Organization roles

Act
Basic linguistic occurrence by which people intervene in

moving a workflow towards completion.
Agreement

The outcome of the negotiation phase, in which two 45

parties come to a common agreement of the conditions
of satisfaction.

Business Process
A network of workflows linked together that represent the

recurrent process by which an organization performs 50

and completes work, delivers products and services and
satisfies customers.

Business Process Map
This is a graphical representation of business process,

55
which shows its workflows and their relationship.

Primary workflow
This is the first workflow which is initiated when a

business process is initiated. Its condition of satisfac­
tion represent the condition of satisfaction of the busi- 60
ness process.

Conditional Link
Alink that indicates that only one of a group ofworkflows

will be triggered based on some condition.
Conditions of Satisfaction

Conditions declared by or agreed to by a customer. The
fulfillment of which is the purpose of a workflow.

65

Named positions in an organization who are authorized to
make certain requests, agreements, take certain actions,
set certain policies, and make certain decisions. The
kind of roles will be accountant, office manager, etc.

Performer

One of the principal roles in a workflow: the role that
commits to complete the conditions of satisfaction.

Phase

A characterization of the status of a workflow based on the
acts that have happened and the acts that are permitted.
Each workflow has four phases namely, the proposal
phase the agreement phase, the performance phase and
the satisfaction phase

Request
A customer does this act to initiate a workflow and declare

conditions of satisfaction.
Trigger

An action in a workflow which causes an action in some
other workflow.

Triggered

Action in a workflow based on certain conditions/status in
some other workflow.

Workflow

A structured set of acts between customers and performers
organized to satisfy a customer's conditions of satis­
faction.

6,073,109
5

Workflow Activation
A triggered action that enables the customer or performer

of the workflow to take the initial act of the workflow.
Workflow Initiation

An act of request or offer initiates a workflow.
Workflow Roles

The association of participants in the workflows that take
the acts in workflows; three roles are distinguished in
workflows: customer, performer, and observer.

Workflow Type
This indicates whether the workflow is of request, offer or

note type.
Services Provided By A Workflow System

5

6
the application through transactions database forms. The
server modifies the form specification to provide different
display attributes of fields in forms depending on the status
of a workflow.

e) Workflows with pending actions
Users can request to see a list of workflows with pending

actions of the ongoing business process, given the role that
the user has in the different workflows of the process. In the
NOTES environment implementation, these lists are avail-

10 able through a set of views of the transaction database.
f) Available Business Process

The following describes the services provided by a work­
flow system. These services are provided to applications via 15
calls to the workflow server APis. These workflow server
APis provide the main mechanism to interface and get
access to the services provided by the server. In an alternate
embodiment, these services can be provided via updates to
the workflow server databases rather than via calls to the
workflow server APis. 20

These appear as a functional capability of a workflow
enabled application. The workflow server reports the avail­
able business processes that a workflow: enabled application
can initiate.
Definition Services

Definition services are those related to defining the ele­
ments of a business process and its workflows and workflow
links.

a) Define a Business Process
Using the workflow application builder (or other design

application that uses the workflow: definitions API which is
the way the application builder interacts with the workflow
server), users can define the workflows and links that
constitute a business process. In this connection, references

Transactions Services
Transaction services are those related to initiating and

acting in workflows by users and agents. These services
are provided to workflow enabled applications via the
transaction API. Alternatively, the services may be
provided to workflow enabled applications through
updates to the workflow transaction database. These
services are also provided through the functions of the
workflow language specified in the definition of work­
flows.

The services provided are as follows:
a) Initiate a Workflow
Through this function, an application requests the server

to start a new workflow. For example, if a user fills an
expense report form, when it is saved, the resulting record or
document represents the initiation of a workflow, the appli­
cation will use this service to start the workflow.

For example, in a workflow enabled application in the
Lotus Notes environment (available and Lotus Corporation),
users initiate a new business process by composing a
NOTES form in the transactions database. Users initiate
workflows by editing and selecting options in forms. In other
environments users fill in proper forms and the applications
request the services via calls to the Transactions API.

b) Act in a Workflow
Through this function, an application can take action on

an existing workflow. For example, a manager's approval of
an expense report indicates the fact the manager took an act
in the workflow.

c) Workflow status and available acts
The workflow server updates and maintains the status of

the workflow after each act is taken in a workflow. The
server also updates the corresponding database records to
reflect status and the available acts for the customer and
performer such that users can see the workflow status and
the available acts (given their role in the workflow) when
they open the workflow transaction record of the transac­
tions database or when they request such status from the
server through one of the transactions API functions.

d) Bind and read process specific data (bound data)
Through this function, an application binds application

specific data to a workflow transaction. That is, this function
allows applications to read and modify the process specific
data (bound data) that the workflow server keeps in the
workflow transaction document. The specification of the
bound data (field names and their data types) are defined
through definition services. This data is directly accessible to

25 herein to the workflow application builder should be under­
stood as a reference to any design application which defines
the workflows, links, conditional links and workflow lan­
guage scripts that constitute a business process. The details
for accessing the services provided by the server so that a

30 suitable design application can be constructed should be
apparent to persons skilled in the art based upon the descrip­
tions contained herein.

b) Define a workflow
Using the workflow application builder (or other design

35 application), users can define the structure of particular
workflows that belong to the business process being defined
through a set of structure definitions (specification of records
of the workflow definitions database) and enable the appli­
cation builder (or other design application) to create, modify

40 and delete definition documents in the database.

45

Using the workflow application builder (or other design
application), users can specify the:

business processes
links and workflows and all their elements
conditional links between workflows
bound data
follow-up and reminder specification
automated action to be taken by the server

50 Names and Routing Services
Names and routing services are those related to defining

organizational roles and identities. The names and routing
services allow an authorized user to create, modify and
delete names and routing records in the names/routing

55 database. These records contain the organizational roles and
identities of the organization serviced by the server. They
also contain the routing information for each identity that
allows the server to queue notifications and reports for the
proper STF processor. These services are specified through

60 the user interface of the application builder or other design
application that uses the names/routings API of the work­
flow server.

a) Define organization roles
Using the workflow application builder (or other design

65 application) and a set of APis from the workflow library,
users can define roles used in the organization where the
workflow system is implemented.

6,073,109
7

b) Define identities
8

single workflow server for agent processing and workflow
language interpretation.

As a stand-alone server in the Micrsoft Windows
environment, a special version of the workflow server hav-

Using the workflow application builder (or other design
application) and a set of workflow definitions APis from the
workflow library, users can define identities in the organi­
zation where the workflow system is implemented.
STF Processing Services

5 ing a restricted functionality of services allows users of
workflow-enabled applications to take action and rove work­
flows to completion, but does not include the services of
automated agents or of execution of workflow language

The STF processing services are provided by the server to
STF processors (described below) through an STF queue
database. The database contains records of pending notifi­
cations and reports to be given to specific users in applica- 10

tions that the STF processors service. STF processors pro­
cess and delete these records once they are processed.
Configuration Services

The configuration services are provided to the system
administrator through a specific configuration database. 15

Through a workflow server manager which is a user inter­
face that uses the server administration API, the system
administrator can define the network configuration of the
system, the version of the servers, register STF processors,
define the authorized users, specify the log database and the 20

level of logging required.
Scheduling Services

The scheduling services allow an authorized user to
create, modify and delete records of scheduled business
processes. These records specify the date/time when the 25

server must initiate a business process as well as the recur­
rence in which this initiation should happen. These services
are specified through the user interface in the application
builder.

scripts.
Components of a Workflow System

A workflow system incorporates the following compo­
nents which are shown in FIG. 2, a workflow server and
databases, application program interfaces (APis) and work­
flow server manager. In addition, a complete workflow
system of the type in which the present invention may be
utilized includes an application builder, analyst, standard
transaction format (STF) processors, workflow enabled
applications and reporter components. The application
builder, analyst, standard transaction format (STF)
processors, workflow enabled applications and reporter
components, while useful components of a complete work-
flow system, do not form part of the present invention and
details concerning such components are set forth herein only
as needed for an understanding of the invention.

The following is a brief overview description of the
workflow server, databases, APis and workflow server man­
ager which is followed by a detailed description of these
components. Details concerning the remaining components
are provided only as needed for a complete understanding of

External Interfaces 30 the invention. In the preferred embodiment as set forth
below, the invented system is implemented using the Model,
View, Class (MVC) paradigm of object oriented program-

External interfaces provide services that are used by
end-user applications, the workflow application builder, the
workflow reporter and the STF processors. Some of these
services, such as configuration services, are provided
through specific user interfaces; others are provided by the 35

workflow APis. In an environment like NOTES (available
from Lotus Corporation), where the client interfaces interact
with the databases directly, client workflow-enabled appli­
cations access the databases directly to obtain workflow
services. They do not use a programmatic API; instead they 40

read and write workflow structures that are interpreted by
the workflow server. In other environments workflow­
enabled applications access the workflow services through
the workflow APis.
Network Architecture

The workflow server component of a workflow system is
designed to be installed at a single site, managing a single set
of databases. It can manage one or many business processes,
and, as noted above, each business process can contain one
or many workflows.

The workflow server is configured through a configura­
tion database. When the workflow server starts, it begins to
monitor and update the workflow databases as appropriate.
Each workflow server can monitor multiple definitions,
transactions, or scheduling databases, as specified in the
configuration database.

In the NOTES environment distributed access to business
process databases is achieved through the replication mecha­
nisms of NOTES.

min g.
Workflow Server

The workflow server is the center of a workflow system.
The workflow system concentrates workflow operations in
the workflow server rather than in the end user applications.
By using this client/server design, applications do not need
to have the intelligence about workflows as part of their
design. Application developers can concentrate on their
particular application development not having to worry
about workflow logic and overhead because such function­
ality is handled at the server.

FIG. 2 shows the major components of the workflow
45 server in relation to other components of a workflow system.

These components are referred to as processes and modules.
All work done by the server is performed by one of four

processes which are referred to as the transaction manager,
follow-up manager, date/time schedule manager and STF

50 schedule manager. Processes are software components or
tasks that are architected to run as separate entities from each
other. The workflow server controls the four basic processes
based upon workflow system server administration data in a
configuration database in the following manner. First, it

55 determines what STF processors need to run and spawns
those processes. Second, it determines when to run the
transaction manager and spawms that process. Third, it
determines when to run the follow-up manager and spacers
that process.

The transactions database managed by the workflow 60

server can be replicated through the standard mechanisms of
NOTES. In this way, distributed access for viewing and
changing business process status is achieved.

These processes may be separate executables or simply
separate tasks within the body of the workflow system
server.

Workflow server modules are software components that
provide a specific type of functionality. Modules are used by
the above processes and also among themselves.

A business process is designed in such a way that all the
workflows that are part of the business process are stored 65

and managed in a single NOTES (or other workflow enabled
application) database. This database is then managed by a

Organizationally the modules can be thought of as sepa­
rate libraries. These modules are the workflow processor,

6,073,109
9

workflow updater, the workflow instantiator, the workflow
language interpreter, the workflow event handler, the agent
actions manager, and the STF router/enqueuer manager.
Databases

The workflow system utilizes the following databases:
Definitions Database

10
designer to specify the business process design with its
network of workflows. The application builder, in turn,
creates or edits the workflow definitions databases that
define the business process and that will be used by the

5 workflow server. The functions performed by the workflow
application builder can alternatively be performed by a
design application that uses the workflow definitions API of
the workflow server.

The definitions database contains records of the defini­
tions of the organizations, business processes, workflows,
roles, and acts. These records contain the instructions of
what needs to be done in a workflow in a given instance.

10
These records are used by the workflow updater and work­
flow processor to determine new workflow states and avail­
able actions.

Workflow Analyst
The workflow analyst is a GUI application that allows a

business process analyst to specify the map of business
processes with its network of workflows. Its output is
readable by the application builder or equivalent which will
update the definitions database of the server. Details con­
cerning the workflow analyst may be found in co-pending
U.S. Ser. No. 08/005,236 filed Jan. 15, 1993, now U.S. Pat.

Transactions Database
The transaction database contains records of the enact­

ment of workflows. Each time a workflow is initiated or an 15

action taken within a workflow, a corresponding record is
made in the transactions database. These records include the
workflow instances, the action transactions, the current
incompletions, and the relationships between different work­
flows.

Names/Routings Database

No. 5,630,069.
Workflow Reporter

The workflow reporter is a GUT application that provides
20 an interface to the transaction databases through the work­

flow reporter API of the system. It allows the observation of
the status of current transactions as well as the history and
performance of past transactions. Further details concerning

The Names/Routings database contains records of the
roles and identities of the organization where the workflow
system is installed. It records the existing organizational
roles, the current identities and the authorizations to act in 25

one or more roles.

the workflow reporter are not needed for a complete under­
standing of the present invention. Alternatively, such reports
can be provided by an application that uses the workflow

Schedule Database
The schedule database stores the date and time when a

business process must be initiated. The date/time schedule
manager reads this database.

Administration/Configuration Database
This database stores information needed by the workflow

server to operate.
STF Queue Database
This database stores the records of notifications to be sent

to users that interact with the workflow system through an
STF processor interface.
Workflow APis

The workflow APis provide a programming interface to
access the services of the workflow server. Workflow
enabled applications, STF processors (described below) and
the application builder are all developed using these APis.
APis of the invented system are as follows: transaction API,
definitions API, reporter API, names and routings API,
schedule API and administration API.
Workflow Server Manager

The workflow server manager is a component of the
workflow system that provides a user interface for specific
services of the workflow server such as:
Server Management
Authorization Maintenance
Business Process Maintenance
Workflow Maintenance
STF Processor Maintenance
Configuration
Transaction Log Maintenance
Business Process Scheduling and Organizational Calendar

The WSM uses the workflow APis to implement the
functions and services it provides to users. Through the use
of the WSM, a user selects the scheduling function which
provides the user interface to specify the recurrent schedul­
ing of business processes as well as the specification of the
organizational calendar as specified by the schedule man­
ager.
Workflow Application Builder

The workflow application builder is a Graphical User
Interface (GUI) application that allows a business process

reporter API.
STF Processors

An additional set of mechanisms for developing
30 workflow-enabled applications are provided in a workflow

system through the definition of a standard transaction
format (STF). This format defines the semantics for access­
ing the workflow services through different types of inter­
faces: messaging, databases and inter-process communica-

35 tion.
For each one of these types of interfaces there is a

syntactic definition that specifies the specific format for the
representation of the workflow data and the process specific
data in that medium. This syntax definition constitutes an

40 STF API that a particular application will then use.
The communication and interface between workflow­

enabled applications that do not use the workflow; APis and
the server is provided by STF processors. These STF pro­
cessors map and translate between a workflow-enabled

45 application's data format and the workflow APis data ele­
ments.

STF processors provide a layer for integration of many
different protocols and technologies. STF processors can be
constructed for any message transport environment protocol,

50 database technology, and inter-process communication pro­
tocol.

The interface from STF processors to the server is accom­
plished through the work-flow APis. From the point of view
of workflow services, the STF processors appear to the

55 server as additional applications.
A standard transaction format (STF) processor is an

application whose job is to interface external systems to the
workflow system. There is one STF processor for each
different type of system that interfaces to the workflow

60 system.
Workflow-Enabled Applications

A workflow-enabled application interfaces to the server
via the workflow APis or via direct access to the transactions
database of the workflow server, or via the use of an STF

65 processor which can use different interfacing mechanisms
such as messaging, database or inter-process communica­
tion.

6,073,109
11

DESIGN AND IMPLEMENTATION DESCRIPTION
A WORKFLOW SERVER

12
FIG. 4c shows the control flow of the transaction manager

when it processes the act and state events, which are also
referred to herein as workflow events, of a workflow. In the
definitions database, each workflow definition includes

The workflow server is a set of processes, modules,
databases and APis as set forth above. The following is a
description for implementing the processes, modules, data­
bases and APis of the workflow server. Also described is a
workflow server manager which provides a user interface for
specific services of the workflow server.

5 workflow language segments (scripts) that are associated
with each act and state of the workflow.

Processes
Transaction Manager (TM) 10

The TM starts all the actions that must happen when there

In Flow #1 the transaction manager invokes the workflow
event handler indicating the workflow, act and state that
should be processed.

In Flow #2 the workflow event handler reads the script for
the act from the definitions database.

In Flow #3 the workflow event handler invokes the
workflow language interpreter to process the script.

In Flow #4 If the script indicated that an action needs to
be taken, the workflow language interpreter calls the agent
actions manager to take the workflow act on behalf of the
user.

In Flow #5 the agent actions manager updates the trans­
actions database to reflect that an act has been taken.

The workflow event handler then repeats Flow #2, but in
this case reads the script for the state of the workflow. The
process continues to Flow #3 with respect to the state.

is a change in the transactions database. The TM is the driver
for processing requests made by users through workflow­
enabled applications. The transaction manager determines
what changes in the transaction database have occurred. 15

Records that have changed in the database are detected by
the TM. The transaction manager manages a transaction
queue and services queued transactions in FIFO order.
Transactions may be entered directly by a user via forms
available in workflow-enabled applications, which use the 20

workflow transactions APis to request the services of the
workflow server, or they may be requested via an STF
Processor. The workflow event handler repeats Flow #2 and Flow #3

for the script that corresponds to the current state of the
25 primary workflow of the business process.

A workflow record that has changed, falls into one of
several different categories. It may be:

A request for initiation of a new business process;
A request for initiation of a new workflow within a

business process; or
A request for an act within a workflow.

In the preferred embodiment, the transaction manager is
implemented as follows. The transaction manager identifies
changes that have taken place in the workflow transaction
database and invokes the proper server modules to provide

Each of the different types is dealt with differently.
When there is a business process or workflow initiation

FIG. 4a shows the control flow of the transaction manager
when it detects the initiation of a new business process or
workflow. In this case the transactions database will contain

30 the services that have been requested or that those changes
represent. The transaction manager queues and services
incoming transactions by instantiating a transaction-type­
specific object.

the record for the business process or the workflow being 35

initiated.

The date/time the transaction was entered is given along
with its type and id. This date/time field is used to do FIFO
(first in-first out)queue retrievals. The earliest date/time will
always be retrieved first. In Flow #1 the transaction manager detects the initiation

of a business process or workflow in the transactions data­
base.

In Flow #2 the transaction manager calls the Instantiator
Module, which will instantiate the workflow records based
on the definition of the business process.

lTXID is the id of a transaction in the Transaction
Database. These ids are txtype dependent and can be used to

40 access transactions directly from the database.

In Flow #3 the instantiator reads the definition of the
business process or workflow from the definitions database.

In Flow #4 the Instantiator creates all the new transaction 45

records for the corresponding workflow or the business
process.

FIG. 4b shows the control flow of the transaction manager
when it detects a change in the transactions database that
indicates that a user (or an agent) has taken an act in a 50

workflow.
In Flow #1 the transaction manager detects the workflow

act being taken in the transactions database.

The following is a description in pseudo-code for imple­
menting the transaction manager process. This implemen­
tation is described in terms of a MAIN function or routine
which includes a call to a loop (MainLoop) which executes
continuously.
MAIN

The MAIN function connects to the Virtual Database
(VDB), performs the primary activity of the transaction
manager and disconnects from the Virtual Database.

The primary activity of the transaction manager is check­
ing the workflow transactions database for requests to pro­
cess. It performs this primary activity by a call to the
function MainLoop.

In Flow #2 the transaction manager calls the workflow
updater to begin processing this newly undated transaction
record.

In case of an error, the MAIN function performs a write
55 to an error log, giving the error code and the message. The

flow of the MAIN function is as follow:
In Flow #3 the workflow processor calculates next avail­

able acts, new incompletions, etc.
In Flow #4 the next available actions, incompletions, etc.

are written to the transaction records.
In Flow #5 the workflow updater checks the names

database to see if one of the identities participating in the
workflow being processed needs to be notified via an STF
processor.

60

In Flow #6 if an identity has been identified in Flow #5 65

that needs to be notified via an STF processor, then the
transaction is queued in the STF queue database.

1. Connect to the Virtual Database.

2. If connection is successful write a message to a log
provided by the workflow server manager described
below.

3. If connection is not successful, write a message to the
log and return.

4. Call function MainLoop.
5. Disconnect from the Virtual Database.
6. If disconnection is successful write a message to the

log.

6,073,109
13

7. If disconnection is not successful, write a message to
the log and return.

MainLoop

Performer response due
Performer fulfillment due

Specify the type of check

14

This function performs the primary activity of the trans­
action manager. In an unconditional loop, it checks if any 5

message has been sent from the workflow server manager
(WSM) and processes it. It then performs the main activity

Will be coming due (reminder) and how soon
Is past due (follow-up) by how much

Specify what to do for the follow-up
In each workflow transaction, the current incompletions

for each role are kept as indexed records. In addition to the
date for the incompletion, the record will contain a field for

of checking for workflow requests and invokes either the
workflow updater or the agent/action manager.

1. Check for any message for the transaction manager
from the WSM. To retrieve messages, the method
bfnGetMessage of class MESSAGEQ is called. In case
of any error, the error is written into the log file.

2. Depending on the message, the message is processed
differently, according to steps 3 and 4 below.

3. If the message is to terminate the transaction manager,
the function is terminated.

4. If the message is to indicate that the configuration has
changed then do the following:

5. The new configuration is retrieved using method
bfnGetConfiginfo of class CONFIGINFO. The new
configuration is returned in a structure that contains all
the configuration information. In case of error in
retrieving the configuration information, the error is
written in the log file.

6. The configuration database specifies the polling inter­
val and the log verbosity options. The polling interval

10 the next date and time for follow up as well as the next date
and time for reminder. The records will be indexed on these
two date fields as well. The follow-up manager works off
these incompletion records.

The follow-up manager checks if the first follow-up or
15 reminder date/time is due "now" and that "now" is not a

restricted date/time according to the organizational calendar,
and if so, retrieves the workflow language script and passes
it to the Workflow Language Interpreter for processing. The
follow-up manager deals appropriately with the case that the

20 server has been down and processes all entries that are past
due.

The following is a description in pseudo-code for imple­
menting the follow-up manager process. This implementa­
tion is described in terms of a MAIN function or routine

25 which includes a call to a loop (MainLoop) which executes
continuously.
MAIN

is the time the transaction manager sleeps between
processing cycles. The log verbosity option specifies 30

the amount of information that gets written into the log
file. The function AWSWriteToLog is used to log
activities into the log file.

The MAIN function connects to the Virtual Database
(VDB), performs the primary activity of the follow-up
manager and then disconnects from the VDB.

The primary activity of the follow-up manager is check­
ing for overdue commitments and then sending reminders or
follow-up messages. It performs this primary activity by a
call to the function MainLoop. 7. Invoke workflow updater.

8. Invoke the agent actions manager.
35 In case of an error, the MAIN function performs a write

9. Sleep for a time interval of duration Polllnterval.

10. Proceed to step 1.

to an error log, giving the error code and the message. The
flow of the MAIN function is as follow:
1. Connect to the Virtual Database.

Follow Up Manager
The follow-up manager runs periodically, scheduled per

workflow server administration tables in the administration/
configuration database. It can run asychronously to the
transaction manager. It determines when notifications, either
follow up or reminders, are to be sent and sends them.

2. If connection is successful write a message to the log.
40 3. If connection is not successful, write a message to the log

The follow-up manager detects transactions in which a 45

participant has an overdue commitment and, depending or
the workflow definition stored in the definitions database,
will execute a script, send a mail message, or take other
actions that are defined. The follow-up manager interacts
with a Workflow Incompletion Transaction class which is 50

part of the transaction database, which furnishes follo~ .up
and reminder times, in order to select workflows requmng
notification.

and return.
4. Call function MainLoop.
5. Disconnect from the Virtual Database.
6. If disconnection is successful write a message to the log.
7. If disconnection is not successful, write a message to the

log and return.
MainLoop

Follow up is specified in the workflow definition, this
specification is done through the application builder or
equivalent. For each workflow, a follow up specification can
be made for each one of the roles of the workflow as follows:

This function performs the primary activity of the follow­
up manager. In an unconditional loop, it checks if any
message has been sent from the workflow server manager
(WSM) using the workflow administration API, and pro­
cesses it. It then checks for commitments due and sends
follow-up and reminder messages if required. The flow of
MainLoop is as follows:

55
1. Check for any message for the follow up manager from

Specify when the follow-up will be done
First and last valid times

Recurrence interval

Holidays on which not to follow-up (Optional)
Days of week on which to follow-up (Optional)
Time ranges in which to follow-up (Optional)
How many times to follow-up before stopping

Specify incompletions to be followed up on
Customer response due

60

65

the (WSM). To retrieve messages, the method bfnGet­
Message of class MESSAGEQ is called. In case of any
error, the error is written into the log file.

2. Depending on the message, the message is processed
differently, according to steps 3 and 4 below.

3. If the message is to terminate the follow-up manager,
the function is terminated.

4. If the message is to indicate that the configuration has
changed, then do the following:

5. The new configuration is retrieved using method
bfnGetConfiginfo of class CONFIGINFO. The new

6,073,109
15

configuration is returned in a structure that contains all
configuration information. In case of error in retrieving
the configuration information, the error is written to the
log file.

6. The configuration database specifies the polling inter- 5

val and the log verbosity options. The polling interval
is the time the follow-up manager sleep between pro­
cessing cycles. The log verbosity option specifies the
amount of information that gets written into the log file.

7. The function FollowUp is called to perform the main 10

activity of the follow-up manager.

8. Sleep for a time interval of duration Polllnterval.

9. Proceed to step 1.
FollowUp

The FollowUp function scans the Incompletions table of
the transactions database and determines which incomple­
tions are due for reminder or follow-up. The processing is
done in two passes, one for reminders and the other for
follow-ups.

1. Set a flag to indicate if it is a reminder or follow-up
pass.

2. Get the current time. This time will be the basis for

15

20

selecting incompletions which are due. If the incomple­
tions are prior to the current date then the incompletion 25

is processed. In case of error in getting the current time,
log an error and return.

3. Using methods of class TXWFINCOMPLETION from
the transactions database, the incompletions due for
processing are retrieved. Methods bfnGetFirstln- 30

completion and bfnGetNextlncompletion retrieve the
incompletions that are due.

4. If an incompletion is due (reminder or follow-up),
methods of class TXWFINCOMPLETION are called

35
to get the Business Process Id (lBPTid), the Workflow
Id (lWFTid) and the Incompletion type(Incld). The
following methods are used:

16
workflow participant. The notification information is
retrieved using method bfnGetNotify.

8. If notification is required, then retrieve the STF Pro­
cessor Id, by using method lfnGetSTFProcld of class
NRDFIDENTITY. The notification is placed in the STF
queue of this STF processor.

9. The notification event is determined by the following
table:

Incompletion Type

Customer His Completion
Customer His Response
Customer His Completion
Performer His Response

Event Type

Performer Completion coming due
Performer Response past due
Performer Completion past due
Customer Response past due

10. Get the time when the incompletion was due i.e. the
Completion Time (this is not to be confused with he
completion time of the workflow).

11. Get the reminder or follow-up time, i.e. the time this
notification was due. (Note: It is important to distin­
guish between incompletion due time and reminder and
follow-up due time).

12. Dispatch notification. The notification is placed in the
STF Queue. Method bfnPutEvent of class TXSTF­
QUEUE places the notification.

13. Determine when the next notification is to be sent. Get
the workflow notification definition. This contains
recurring information. The next follow-up time is deter­
mined and written to the incompletion table via method
vfnPutFollowUpTime.

14. Get the next incompletion to be processed. If present,
proceed to step 4.

15. Return, processing is complete.
Date/Time Schedule Manager

The date/time schedule manager detects events which are
to be executed at a particular time. The scheduled events are
kept in the schedule database. The events are placed in the

Value

BPTid
WFrid
Incld

Methods

lfnGetBPTid
lfnGetWFrid
fnGetlncld

40 database by the workflow server manager user interface via
calls to the schedule API and are processed by the schedule
manager. The scheduled events are kept in the database in
chronologically increasing order.

5. The workflow associated with the incompletion is
retrieved from the VDB. An instance of the class
TXWFINSTANCE is created. The lBPTid and the
lWFTid are passed as parameters.

6. Depending on the incompletion, the workflow partici­
pant is determined. The logic for determining the
workflow participant is as follows:

Incompletion Workflow
Notification Type Type Role

Reminder Customer His Completion Performer
Follow-up Customer His Response Performer
Follow-up Customer His Completion Performer
Follow-up Performer His Response Customer

A schedule database entry specifies when the event will be
45 done as well as the first and last valid times for the entry,

indicating the first time it should happen and when it should
stop happening. If the first and last valid times are the same,
the schedule entry is executed once.

A recurrence interval for a schedule entry is "how often"
50 the schedule entry is executed. Recurrence intervals may be

every X minutes, every hour, every day, every month, the
third Thursday of every month, and so forth.

An organizational calendar is connected to the schedule
manager, so that entries may be tagged to not happen on

55 specific days (such as weekends or holidays like Labor Day).

60

The schedule entry may be filtered to happen only on
particular days of the week (such as Monday through
Friday).

The schedule entry may be filtered to happen only during
particular time intervals (such as any time between 8-12 or
1-5)

The first thing that the schedule manager does in a cycle
is to find events that are due now (or which are past due).

7. Check if the Identity needs notification. The Identity
attributes are retrieved from the VDB. These are stored 65

in table NRDFIDENTITY. If the Notification flag is set
then the follow-up/reminder information is sent to the

This is done by finding those with a time-out time that is less
than "now".

For each of the found entries, the schedule manager then
brings the time-out forward to "now", even if it is currently

6,073,109
17

set in the past. This function should deal properly with the
case when the server has been down.

18
8. Sleep for a time interval of duration Polllnterval.
9. Proceed to step 1.

Scheduler For each of the found entries, the schedule manager then
passes the business process initiation script to the Workflow
Language Interpreter for processing.

After the schedule entry is processed, the schedule man­
ager updates the schedule entry record for the next time out
based on the parameter set for it. If the entry needs not be
executed again, it is then removed from the schedule data­
base.

The Scheduler function scans the scheduler table of the
5 schedule database and determines which business processes

are ready to be scheduled.

The following is a description in pseudo-code for imple­
menting the schedule manager process. This implementation
is described in terms of a MAIN function or routine which
includes a call to a loop (MainLoop) which executes con­
tinuously.
MAIN

The MAIN function connects to the Virtual Database
(VDB), performs the primary activity of the Scheduler and
disconnects from the Virtual Database.

10

15

The primary activity of the schedule manager is to find 20

business processes that are scheduled for initiation and start
them.

In case of an error the MAIN function performs a write to
an error log, giving the error code and the message. The flow
of the MAIN function is as follow: 25

1. Connect to the Virtual Database.
2. If connection is successful write an message to the log.
3. If connection is not successful, write a message to the

log and return.
4. Call function MainLoop.
5. Disconnect from the Virtual Database.
6. If disconnection is successful write an message to the

log

30

7. If disconnection is not successful, write a message to 35

the log and return.
MAINLOOP

This function performs the primary activity of the sched­
ule manager. In an unconditional loop, it checks if any
message has been sent from the workflow server manager 40

(WSM) using the workflow administration API, and pro­
cesses it. It then performs the main activity of scheduling
business processes at the scheduled time.

1. Get the current time. This tine will the basis for
selecting business processes which are due to be
started. If the initiate time of the business process is
after the current date then the business process is
initiated.

2. Using methods of class SCBPSCHEDULE the business
processes due for initiating are retrieved. Methods
bfnGetFirstlncompletion and bfnGetNextlncompletion
retrieve the business processes that are due.

3. Get the Business Process Definition Id (BPDid). Use
method lfnGetBPDid of class SCBPSCHEDULE.

4. Get the Business Process Definition. Create an instance
of class DFBP for definition id BPDid.

5. Get the Business Process Name. Use method vfnGet­
BPName of class DFBP.

6. Initiate the business process. Transactions API call
AWSTINITBP is called. The Business Process Name is
a parameter to this call.

7. Determine the next ti-Le the Business Process needs to
be scheduled. The Recurring Offset is retrieved using
methods lfnGetRecTime of class SCBPSCHEDULE.

8. If the Recurring Offset is specified, the next initiate
time is computed by adding the recurring offset to the
current initiate time.

9. If the Recurring Offset is not specified, the scheduling
entry is deleted from the table.

10. Get next Business Process to be initiated. If present
proceed to step 3.

11. Return, processing is complete.
Modules

Workflow Processor
The workflow processor is the brain of the workflow

system. The workflow processor is analogous to the central
processor unit (CPU) in a computer. Both processors receive
inputs in the form of events, and both carry out logic
computations. The CPU embodies a logic processor, while

1. Check for any message for the schedule manager from
the WSM. To retrieve messages, the method bfnGet­
Message of class MESSAGE is called. In case of any
error, the error is written into the log file.

2. Depending on the message, the message is processed
differently, according to steps 3 and 4 below.

45
the workflow processor embodies the logic of workflows
with phases, cycle times, actions and roles. It contains the
structures and Finite State Machines (FSMs) that specify the
acts and actions that are available. This module is database
independent, and provides an API through which the rest of

3. If the message is to terminate the schedule manager, the
function is terminated.

4. If the message is to indicate that the configuration has
changed then do the following:

50

5. The new configuration is retrieved using method 55
bfnGetConfiginfo of class CONFIGINFO. The new
configuration is returned in a structure that contains all
configuration information. In case of error in retrieving
the configuration information, the error is written in the
log file. 60

6. The configuration constitutes the polling interval and
the log verbosity options. The polling interval is the
time the Scheduler sleeps between processing cycles.
The log verbosity option specifies the amount of infor­
mation that get written into the log file.

7. The function Scheduler is called, this performs the main
activity of the schedule manager.

65

the system interfaces with it. It is furnished with in-memory
structures providing complete act/state data of a workflow,
from which it derives updated status information returned
via these structures. The workflow processor embodies the
logic of workflows with phases, actions, roles and dates of
completion and reply.

The basic logic of the workflow server is very similar to
that used by a human manager. It asks:

What actions have happened and not happened?
That data has changed? and
What amount of time has elapsed?
The workflow updater module of the workflow server

asks the workflow processor:
What are the available acts for the customer and per­

former given the current state and the type of the
workflow?

Given an act, what is the new state of the workflow and
what incompletions change?

6,073,109
19

The workflow processor then answers with the state of the
workflow and gives the answer to the workflow updater
which updates databases, and changes the state of the
workflow.

These tasks would be impossibly complex if the number 5

of states were large and the possible actions infinite. The
present invention addresses this problem by defining a
business model that intelligently defines a few conditions
and actions as building blocks, but from which thousands of
permutations can be constructed. 10

A complete description of a suitable workflow processor
which may be used in a workflow server may be found in
U.S. Ser. No. 600,144 filed Oct. 17,1990 and U.S. Ser. No.
07/368,179 filed Jun. 19, 1989, both owned by Action
Technologies, Inc., the assignee of the present application. 15

Workflow Updater
The workflow updater module processes requests made

by users via API calls, changes to the transaction database or
by agent actions. This module processes workflow transac­
tions that have been modified, updating then with the new 20

workflow status information returned by the workflow pro­
cessor.

The workflow updater module updates the bound data in
the business process, based on the data that was provided as
part of the act that is being taken. If other scopes are defined
for a workflow, then the bound data is updated in the scope
of the workflow in which the act was taken.

25

30

The workflow updater calls the workflow processor pass­
ing to it the workflow identification, the act being taken, the
workflow role that is taking the act and the current state. The
workflow processor returns to the workflow updater the new
state of the workflow, the incompletion transitions what
incompletions need to be set, and which ones need to be
removed), the set of available acts for each one of the
workflow roles and the times that can/must be specified by 35

the users when taking each one of these available acts.

20
Performer) by invoking method bfnCheckValidAct of
the class TxwFActs.

6. Determine the new state of the workflow by calling the
workflow processor.

7. Compute the new set of incompletions by by calling the
workflow processor.

8. Compute the new set of acts and the date prompts for
the customer and performer using function
AWSTAvailableActs of the workflow processor. If any
acts are disabled then those are removed form this new
set of acts using the method bfnisDisabled of class
DFWFDisabledActs of the VDB.

9. Invoke the workflow event handler to interpret the
scripts associated with the act, state, and the primary
workflow.

10. Send notifications the workflow participants inform­
ing the completion of the act by invoking the STF
Router/Enqueuer.

Classes and the methods invoked by the workflow updater
module:

Methods Class Action

bfnCheckValidActs TxWFActs check if act is in
Available Acts Table

lfnGetCompletionTime TxWF!nstance From VDB retrieve the
Completion time

lfnGetlncompletionTime TxWFActs From VDB retrieve the
Incompletion Time

AWSTAvailableActs compute available acts
for both customer and
performer.

Workflow Instantiator
The workflow instantiator module is called by the trans­

action manager when it detects a request to initiate an
instance of a business process or a workflow. The workflow
instantiator instantiates business process and workflow
records into the transactions database. This module creates

The workflow updater maintains and updates the work­
flow transaction database. It uses the workflow; processor to
determine the status of workflows and the set of possible
actions for each one of the roles.

The workflow updater processes an act taken by a work­
flow participant i.e., the Customer or Performer. This act
could have been taken through a call to the proper transac­
tions API function, through a direct modification of the
transactions database or by the agent actions manager upon
request of the workflow language interpreter. When an act is
taken, it is recorded in a act taken database record of the
transactions database. The server sequentially processes all
acts. The following is a description in pseudo-code for
implementing the workflow updater module.

40 workflow transaction records as specified in business pro­
cess definitions whenever a workflow is initiated.

1. Use AWSWriteToLog method of the Translog class of
the Administration database to log the act taking activ­
ity.

If the transaction manager detects a change in the trans­
actions database that indicates a request for initiation of a
new business process, the instantiator reads the business

45 process definition and creates the transaction records for the
business process and for the primary workflow of the
business process according to the definition.

If the transaction manager detects a change in the trans­
actions database that indicates a request for initiation of a

50 new workflow, the instantiator reads the workflow definition
and creates the transaction record for the workflow accord­
ing to the definition.

2. Check whether there are acts to take by calling method
bpnGetFirstlnQueue of class TxWFActs in the VDB. 55

The instantiator also performs the role to identity mapping
so that the roles that are specified in the workflow definition
get mapped to the proper identities in the transaction record
of the workflow.

The following is a description of the steps for implement­
ing the workflow instantiator module.

3. Check if the act is a valid act and the act is present in
the list of available acts for an workflow participant by
invoking method bfnCheckValidAct of class TwxFActs
in the VDB.

The instantiator creates an instance of a business process.

60 It makes a copy of the definition.
4. Find out the current state, WF type, WF role, and the

Act by invoking respectively the methods
fnGetWFState, fnGetWFType, fnGetWFRole, and
fnGetAct of class TxWFActs in the VDB.

5. Check with the workflow processor to determine if the 65

act taken is consistent with the current state of the
workflow and the role of the act taker (Customer/

1. Check the length of the Business Process Name
(szBPName) is within limits. If beyond limits, return
error.

2. Validate the Instantiator Identity. Check if the name
length is within limits.

3. Check if Instantiator Identity is a valid user and
registered. Method InquireAuthorization from class

6,073,109
21

AuthMaint is used to determine if the user is valid and
registered. This function accesses the Names/Routings
database for validation, it calls the constructor of class
NRDFIDENTITY.

22
under which workflows become active and inactive, and the
conditions under which the workflow server should take
specified actions. These conditions and instructions are
expressed in the workflow language.

The workflow language interpreter interprets workflow
language scripts. These scripts or workflow language seg­
ments contain workflow commands, such as the initiation or
taking an act in a workflow. These scripts are part of the
business process definition. These scripts are automatically

4. Check if the Instantiator Identity is authorized to 5

instantiate business processes. It checks the authorities
table in the names/routings database to check if this
identity is authorized to instantiate business processes.
The authorization method InguireAuthorization from
class AuthMaint is called to determine the authoriza­
tion.

10 generated by the application builder or equivalent design
application.

5. If the Customer name is specified, check if the name
length is within limits.

6. It the Customer name is specified, check that this nave
is valid and registered method InguireAuthorization 15

from class AuthMaint is used to determine if the user is

The following is a description of the steps and syntax for
implementing the workflow language interpreter module.

The workflow language interpreter interprets both user
defined and system generated scripts, and performs the
corresponding function defined in the script. The user can
perform the following functions on a workflow. The work­
flow language interpreter interprets user-defined as well as
system generated scripts, and performs tests, functions, and

valid and registered. This function accesses the Names/
Routings database for validation, it calls the constructor
of class NRDFIDENTITY.

7. If the Performer name is specified, check if the name
length is within limits.

8. If the Performer name is specified, check that this name

20 assignments as presented in either kind of script. The syntax
and capability of the Action Workflow scripting language are
the same for the two kinds of scripts and is described as
follows:

is valid and registered. Method InguireAuthorization
from class AuthMaint is used to determine if the user is 25
valid and registered. This function accesses the Names/
Routing databases for validation, it calls the constructor
of class NRDFIDENTITY.

9. If the Completion date is specified, check if the date
string length is within limits.

10. If the Completion date is specified, convert the date
string to long format.

11. If the Reply date is specified, check if the date string
length is within limits.

30

12. If the Reply date is specified, convert the date string 35

to long format.
13. If the Initiate date is specified, check if the date string

length is within limits.
14. If the Initiate date is specified, convert the date string

to long format.
15. If Completion and Reply dates are specified, the Reply

date should be before the Completion date.
16. If the Initiate date, if specified, it should be the earliest

40

of all specified dates.
45

17. Create an instance of this business process. The
constructor for class TXBPINSTANCE is called for
this purpose.

Language Syntax
A statement of the language is either an If Statement, an

Action Statement or an Assignment Statement. An If State­
ment is either:

If <boolean expression> statement 1 ... statement n
endif

or
If <boolean expression> statement 1 ... statement s
else statement s+ 1 ... statement n endif
where <boolean expression> is:

TRUE
FALSE
<boolean expression> AND <boolean expression>
<boolean expression> OR <boolean expression>
<bound data name> OPERATION <numeric term>
ISINSTATE (workflow name, state name)
ISNOTINSTATE (workflow name, state name)

where OPERATION is
equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to

An Action Statement is either:
INITIATE workflow name,
ACTIVATE workflow name, or
ACT workflow name, act name 18. The central workflow instance is created. The con­

structor for class TXWFINSTANCE is called for this 50 An Assignment Statement is either:

purpose.
19. Check for each organization role to identity any

mapping which is specified at the time of initiation
which overrides the mapping specified in the definition
of the workflow, that the organization role and identity 55
do exist. To verify that the organization role is present,
the constructor for class NRDFORGROLE is called. To
verify that the identity is present, the constructor for
class NRDFIDENTITY is called.

20. Store the organization role in classes TXBPASSIGN 60

and TXWFASSIGN from the transaction database
classes to identity overrides. The constructors are
called for these two classes.

21. Return status.
Workflow Language Interpreter 65

Workflow definitions are stored in the definitions data­
base. Included in these workflow definitions are conditions

<bound data name> = <bound data name>
or

<bound data name> = <numeric term>

2. Capability
The above-described syntax enables a script writer to start

workflows, to act in workflows, to change bound data
associated with a workflow, to test sound data associated
with a workflow and conditional upon the results follow one
or another distinctly different course of action.

The workflow language interpreter can be divided into the
following functional modules:

1. The Lexical Analyzer which defines the Workflow
Language grammar.

2. The Parser which parses the workflow scripts and
invokes the corresponding semantic routines associated
with the commands in the script.

6,073,109
23

The main implementation details are as follows:
24

The following is a description of the steps for implement­
ing the agent actions manager module.

The agent actions manager is invoked by the workflow
language interpreter when it finds a workflow action or

1. The workflow event manager calls the workflow language
interpreter and passes to it the Business Process Transac­
tion ID, the Workflow Transaction ID, and the Script Type
to be executed.

2. Using this information the workflow language interpreter
retrieves the appropriate workflow script from the defi­
nitions database using method bfnGetScriptName of the
class DFWFActState.

5 external function to be performed in a workflow language
script. If the workflow needs to be instantiated the instan­
tiation is done by the workflow instantiator module. After
instantiation a flag is set to indicate if activation or initiation

3. For the command Instantiate, the instantiator is invoked.
10

4. For the command Activate, the workflow updater is
invoked.

5. For the command TakeAnAct, the workflow updater is
invoked.

6. For external functions, the workflow language interpreter
invokes the external function passing the specified param- 15

eters.
Workflow Event Handler

The workflow event handler is called by the transaction
manager to process the actions associated to acts and states
in the workflow definition which are specified for a given 20

workflow when an action is taken or a state reached in the
workflow. It accomplishes this my reading the business
process definition and by reading the workflow status infor­
mation of the workflow transaction.

The workflow event handler also locks in the definitions 25

database for the workflow language scripts associated with
acts and states of the workflow. The workflow event handler
retrieves the language script corresponding to the act that
was taken and passes the script to the workflow language
interpreter for processing. The workflow event handler 30

retrieves the language script corresponding to the state of the
workflow and passes the script to the workflow language
interpreter for processing. Then the workflow event handler
retrieves the appropriate scripts associated with the states of
the connecting workflows and passes the to the workflow 35

language interpreter. Finally the workflow event handler
retrieves the language script for the primary workflow of the
business process for the current state of that workflow and
passes that script to the workflow language interpreter for
processing. 40

The following is a description of the steps for implement­
ing the workflow event handler module. The workflow event
handler invokes the method AWSScriptToExecute of the
workflow language interpreter to execute the following
scripts associated with a workflow:
1. The system generated act script
2. The user generated act script

45

is required. The agent action manager scans for all work­
flows which have this flag set and processes them. The
process is described below.

1. Log the activity using the method AWSWriteToLog.

2. Obtain the current date and time.

3. Get the next workflow to act on by using method
TxWINSTANCE of class TXWFINSTANCE, which is
the act to take queue.

4. If the workflow to be processed is the primary work­
flow then change the Business Process status to "IN_
PROGRESS". The methods to use are bfnlsCentralWF
and bFnSetBPStatus.

5. If the Customer, Performer and Observer(s) are not
specified, then pick up defaults and assign all the
workflow participants. The methods to use are
lfnGetCustld, lfnGetPerfld, lfnPutCustld and lfnPut­
Perld.

6. Specify the default Reply and Completion time using
methods lfnGetReplayDate and lfnGetCompletion­
Time of class TxWFINSTANCE. If these times not
present, obtain them through the definition defaults by
using methods bfnGetCycleTimes of class DFWFCY­
CLETIMES in the VDB. Assign the default using the
methods bfnPutReplyDate and bfpPutCompletionTime
of class TxWFINSTANCE.

7. Set up environment for first act to be taken. The act is
dependent on the workflow type, request act in a
workflow of type request and offer act in a workflow of
type offer.

8. Make an entry in the Available Acts Table using method
bfnPutAct of the class obAvlActs.

9. Take the first act if the workflow is to be Initiated. The
act to be taken is placed in the act to process queue
using method obTxWFacts of class TXWDACTS. Log
the message using AWSLogMessage.

10. The flag is reset to indicate that the processing is
complete using method bfnResetlnstantiate of class
obTxWFINSTANCE. 3. The system generated state script

4. The user generated state script
5. The system generated state script of all the

workflows

Methods and Modules invoked by Agent Actions Manager
connected 50 Module

6. The user generated state script of all the connected
workflows

7. The system generated state script of the primary workflow
8. The user generated state script of the primary workflow

To implement steps 7 and 8, the method bfnlsCentralWF
of class obTxWFINSTANCE is used to determine the Cur­
rent WF is the primary workflow. Method obWFinstance is
used to obtain the primary workflow.
Agent Actions Manager

The agent actions manager module executes the com­
mands specified in a script. These include Initiate, Act,
Follow-up as well as external functions. In this form the
agent action manager is taking workflow acts by an "agent"

55

60

on behalf of some role in the workflow. The commands that 65

the "agents" execute are specified through the workflow
language.

Methods Class Action

lfnGetBPTid TxBPINSTANCE get the BP Transaction Id
lfnGetWFrid TxWFINSTANCE get the WF Transaction Id
bfnSetBPStatus TxBPINSTANCE set the status of BP

instance
lfnGetPerfld get the performer Id
lfnGetCustld TxWFNSTANCE get the customer Id
lfnGetCompletionTime TxWFNSTANCE get cycle time of the WF
TxWFActs queue the act to be taken

STF Router/Enqueuer
The STF Router/Enqueuer module is called by the work­

flow updater to determine if the workflow currently being
processed has a participant who must be notified in this
workflow via an STF Processor. The router queues such

6,073,109
25

transactions in the STF queue database for the appropriate
STF processor to process.

The following is a description of the steps for implement­
ing the STF router/enqueuer module.

1. The STF router/enqueuer first retrieves the BP and WF 5

definition given the current WF transaction instance by
using the methods TXBPINSTANCE and obTxWFIN­
STANCE of classes TXBPINSTANCE and TXWFIN­
STANCE.

2. Using the BP and WF Ids, the follow-up definition is
retrieved from the definitions database using method
DFWFollowUp of class DFWFFOLLUP. If no notifi­
cation required, just return.

10

3. Get the notification status by using method NRDflden- 15
tity of class NRDFIDENTITY. If there is no need to do
notification, just return. This is achieved through the
method bfnGetNotify of class NRDfldentity in the
VDB.

4. Get the STFProcld using method lfnGetSTFProcld of 20

class NRDfldentity.

5. Write the Notification event in the STF queue database
using method bfnPutEvent of class TxSTFQUEUE.
The date and time is computed.

Databases 25

Virtual Database

26
datetimeoffset

Datetimeoffset is a unit of time. Its value can range from
seconds, days, weeks, and months, but is expressed in
seconds.

incompletion

The various incompletions that need to be managed for
the Customer and Performer in terms of Completions
and Responses.

incompletion={CMC, CMR, CHC, CHR, PMC, PMR,
PHC, PHR}

1st letter-C for Customer, P for Performer

2nd letter-M for My, H for His

3rd letter-C for Completion, R for Response
notification

This domain class specifies the events which require
notification.

notification= { Pe rfo rme rRe sp o nse Pas tDue,
Performer Co mp le tio nP as tD ue,
Pe rfo rme rC o mp le tio nCo min gDue,
CustomerReponsePastDue, Act}

objecttype

objecttype={BP, WF, STFProcessor}
privileges

privileges={ create, delete,
assign privileges}

state

modify, activate, schedule, The present invention utilizes a Virtual Database for
implementing the databases used by the system. The Virtual
Database (VDB) is designed to be a collection of classes and

30
methods. "Virtual" because it is DBMS independent. The
VDB contains all the necessary storage structures to support
the operations of the Workflow Server. More importantly, it
defines a collection of methods for the manipulation of these
structures and their instances. The basic domain as well as
the classes for workflow definitions, transactions, schedules,
names and routing, STF queue and server administration and
configuration are described below. These classes define the
attributes and methods for the data manipulation supporting
the Workflow Server.

state ~ { request/offer, inactive, initial(after activation)
agreement, completion, satisfaction, counter, decline, cancel

35 revoke}

Basic Domain Classes
The basic domain classes used in the server are listed here

in alphabetic order.
act

act = { request, offer, decline-request, agree, declare-
complete, declare-satisfaction, cancel, revoke, accept-
offer, decline-offer, counter-offer, accept-counter-
offer, decline-counter-offer, counter-with-request,
declare-dissatisfaction, question, answer, inform, open­
speculation, continue-speculation, revise-offer, revise­
request, follow-up, note, comment, initiate, activate,
cancel-new-request, revoke-new-promise, revoke-new-offer,
commit-to-commit, interim-report, delegate, accept­
delegation, decline-delegation, cancel-delegation,
declare-complete-delegation, declare-satisfaction­
delegation, revoke-delegation, start-with-promise,
accept-starting-promise, decline-starting-promise }

bpstatus

bpstatus={inprogress, completed, aborted, suspended}
configuration

configuration={ optionl, option2, ... }
datetime

Time is a built-in domain in the Virtual Database. Its
counter part in the underlying DBMS will provide the
actual implementation.

40

string

String is defined to be a character string which varying
length.

txstatus

Status of the a transaction.

txstatus={pending, inprogress, complete}

45
txtype

List of various types of transactions processed by the
server.

50
txtype ~ { initbp, initwf, actinwf, bindappdata, getbounddata,
getbounddatafieldattributes, status, availableacts, querywf,
availablebp, acthistory, notificationstring }

55

60

wfrole

wfrole={ customer, performer, observer }
wftype

wftype={ request, offer, note}

Definitions Database

DFBP

This class contains the Business Process (BP) definitions
which includes information such as the BP Name, the BP
Version, The person (ID) who created the BP, The date when

65 this information was last modified, The Server ID which is
the Home Server of this BP and the natre of the file which
contains the mapping of this BP.

6,073,109

Attributes :

!DEN
CHAR
!NT
!DEN
LONG
!DEN
CHAR

Methods :

DFBP

BOOL bfnDelete

!DEN lfnGetBPDid

INT ifnGetversion

!DEN lfnGetLastModDate

BOOL bfnPutBPMap

BOOL bfnGetBPMap

BOOL bfnNumListBP

BOOL bfnListBP

BOOL bfnListDFBP

27

lBPDid
szBPName [BPNAME_LEN]
iVersion
lBPAdmin
lLastModDate
lHomeServerld
szBPmap [BLOBNAME_LEN]

The Constructor of this Class:
Depending on its first
parameter it returns the first
record from the table which
matches the predicate, or
creates a new Business Process
in the Table with the given
parameters, or creates a new
version of an existing
Business Process with the
given parameters
Deletes the record whose
parameters matches the DFBP
class attributes
Returns the BPDid of the BP in
context to the Class
attributes
Returns the BP Version of the
BP in context to the Class
attributes
Returns the Date when the BP
Definition was last modified
in context to the Class
attributes
Creates/Appends to the Map
file of the BP, the data in
memory.

5

10

15

20

25

30

35

40

!NT
CHAR
CHAR
CHAR
CHAR
CHAR

Methods :

DFWF

BOOL bfnModify

28

-continued

iRepeatFieldFactor
szCustFormName[FORMNAME_LEN]
szPerFormName[FORMNAME_LEN]
szObsFormName[FORMNAME_LEN]
szlnitFormName[FORMNAME_LEN]
szCOS[COS_LEN]

Constructor of this class which
depending on its first parameter it
returns the first record from the
table which matches the predicate
or creates a new Workflow
Definition in the Table with the
given parameters
Modifies the Workflow Definition
of an existing workflow (in context
of the Class attributes) in the

BOOL bfnModifyForms
Table with the given parameters
Modifies the form names of an
existing workflow (in context of
the Class attributes) in the Table
with the given form names
Appends/ Creates the conditions of
satisfactions of an existing
workflow (in context of the Class
attributes) in the Table with the
given COS

BOOL bfnPutCOS

BOOL bfnGetCOS

!DEN lfnGetWFDid

WFTYPE fnGetWFType

!DEN lfnGetCustOrgRole

!DEN lfnGetPerfOrgRole

DFWFOBS

Retrieves the Conditions of
Satisfaction of an existing
workflow (in context of the Class
attributes)
Returns the WFD!d of an existing
workflow (in context of the Class
attributes)
Returns the WF type of an existing
workflow (in context of the Class
attributes)
Returns the customer ID of an
existing workflow (in context of
the Class attributes)
Returns the performer ID of an
existing workflow (in context of
the Class attributes)

VOID vfnGetBPName

Retrieves the specified number
of bytes from the Map file.
Returns the Number of BPs for
which there exists a
Transaction in the Tx Database
Returns the List of BPs for
which there exists a
Transaction in the Tx Database
Returns the list of all BPs
defined in the Definitions
Database.
Returns the BP Name of the BP
in context to the Class
attributes

This class contains the workflow observer definitions
which includes information such as the WFDid, the BPDid

45 to which this workflow belongs, the Observer ID for the WF.

DFWF

This class contains the Workflow definitions which
include information such as the a Name, the WFDid, the 50

BPDid to which this workflow belongs, the type of workflow
(primary or non primary), the default IDs of the customer
and performer for this WF, the Repeat IF adn factor in case
of repetitive WFs, the form names and the Conditions of
satisfaction 55

Attributes :

!DEN lBPDid 60

!DEN lWFDid
BOOL bCentralWFFlag
CHAR szWFName[WFNAME_LEN]
WFTYPE WFType
!DEN lCusOrgRole
!DEN lPerOrgRole 65

!NT iRepeatFieldld

Methods :

DFWFOBS

Attributes :

!DEN
!DEN
!DEN

BOOL bfnDelete

BOOL bfnGetWFObsList

lBPDid
lWFDid
!Observer

The constructor for this
Class, which depending on its
first parameter it: creates a
new Workflow Observer
Definition in the Table with
the given parameters, or
returns the first record from
the table which matches the
predicate
Deletes the record whose
parameters matches the
DFWFOBS class attributes
Returns the List of Observers
defined for the workflow (in
context of the Class

6,073,109

!NT nfnGetWFObsCount

DFBPCONTAINER

29

-continued

Attributes)
Returns the Number of
Observers defined for the
workflow (in context of the
Class Attributes)

5

This class contains the Business Process Container Infor- 10

mation (the Container ID for a particular BP).

Attributes :

!DEN
!DEN

lBPDid
lContainerld

15

BOOL
!DEN
!DEN
BOOL
STATE

Methods :

DFLINK

BOOL bfnGetWFLinks

DFBPASSIGN

30

-continued

bFromActOrState
lFromActOrStateld
lToWFid
bToActOrState
To State

The Constructor for this
Class that creates a new
Link record with the
given parameters. Using
WFName WFID is first got
from DFWF
Returns all the links to
a given WFID

Methods :

DFBPCONTAINER Creates a new Container Definition
for a BP with the given parameters
(in context of the Class

This class contains all the Identity to Organization role
20 mappings at the Business process level.

!DEN lfnGetContainerld

DFFIELD

Attributes) It also inserts a
record in another table
(DFCONTAINER) with the Container
ID and the number of fields
Returns the Container ID (in
context of the Class Attributes)

25

This class contains the Container Field Information which
30

includes the Container ID to which the field belongs, the
Field ID, the data type of the field, its maximum length, its
attributes, and its initial Value.

Attributes :

!DEN
!DEN
!NT
!NT
ATTRIBUTES
CHAR

Methods :

OFFIELD

DFLINK

lContainerld
lFieldld
iDataType
iMaxLen
Attr
szlnitVal[INIT_ VAL_
LEN]

Creates a new Container field
record with the given
parameters. It also inserts a
record in another table
(DFBDFIELDLIST) with the
BPDid, the Field ID and the
field name.

35

40

45

50

This class contains the Workflow Link Information which 55

includes the BPDid to which this LINK belongs, the ID of
the workflow from which the LINK starts, whether the link
starts from an act or from a state, the act/state IDs from
which the Link starts and at which link ends, and the
Destination State ID.

Attributes :

!DEN
!DEN

lBPDid
lFromWFid

60

65

Attributes :

!DEN
!DEN
!DEN

Methods :

DFBPASSIGN

!DEN lfnGetldentity

DFWFASSIGN

lBPDid
lldentityld
lOrgRole

The constructor of this
class that depending on
its first parameters
creates a new BP
assignment in a given
BPDid with the given
parameters or returns the
first record from the
table which matches the
predicate
Returns the Identity ID
(in context of the Class
attributes)

This class contains all the Identity to Organization role
mappings at the Workflow level.

Attributes :

!DEN
!DEN
!DEN
!DEN
WFROLE

Methods :

DFWFASSIGN

!DEN lfnGetldentity

lBPDid
lWFDid
lldentityld
lOrgRole
WFRole

The constructor of this
class that depending on
its first parameter it
creates a new workflow
assigninent in a given
WFDid and BPDid with the
given parameters or
returns the first record
from the table which
matches the predicate
Returns the Identity ID
(in context of the Class
attributes)

6,073,109
31

DFBPNOTIFICATION
This class contains all notification string information at

BP Level.

Attributes :

!DEN
NOTIFICATION
CHAR

Methods :

DFBPNOTIFICATION

BOOL bfnGetEventString

DFWFNOTIFICATION

lBPDid
NEvent
szNstring[NSTRING_LEN]

This is the constructor for
this class that creates a
new BP notification for a
given BPDid
Returns the BP notification
string of an event in a BP

5

10

15

This class contains all notification string information at
20

workflow level

Attributes :

!DEN
!DEN
NOTIFICATION
CHAR

Methods :

DFWFNOTIFICATION

BOOL bfnGetEventString

DFWCYCLETIMES

lBPDid
lWFDid
NEvent
szNstring[NSTRING_LEN]

This is the constructor
for this class that
creates a new workflow
notification for a given
WFDid and BPDid
Returns the workflow
notification string of an
event at workflow level.

This class contains all the Cycle times defined for a
workflow.

Methods :

Attributes :

!DEN
!DEN
LONG
LONG
LONG
LONG

DFWFCYCLETIMES

BOOL bfnGetCycleTimes

DFWFCYCLETIMES

!DEN lfnGetWFDid

lBPDid
lWFDid
1Time1
1Time2
1Time3
1Time4

This is the constructor
for this class that
creates a new record with
the given cycle times for
a given WFDid and BPDid
Returns the cycle times
(in context of the Class
Attributes)
Returns the first record
from the table which
matches the predicate
Returns the WFDid (in
context of the Class
Attributes)

25

30

35

40

45

50

55

60

65

32
DFWFDISABLEDACTS

This Class contains information of all the Disabled Acts.

Attributes :

!DEN
!DEN
WFROLE
ACT

Methods :

DFWFDISABLEDACTS

BOOL bfnlsDisabled

DFWFACTSTATE

lBPDid
lWFDid
WFRole
Actld

This is the constructor
for this class that
creates a new record
with the given WFrole
and Actld for a given
WFDid and BPDid
Returns whether a
particular Act for a
particular WFRole in a
given workflow is
disabled or not.

This contains all the definitions of the workflow acts and
States (their names and IDs) for all business processes and
their workflows.

Attributes :

lBPDid
lWFDid
bActOrState
ActOrS tate

!DEN
!DEN
BOOL
!NT
CHAR
CHAR
CHAR

szUserDefName[USERDEF _STRING_LEN]
szGenScript[BLOBNAME_LEN]
szUserScript[BLOBNAME_LEN]

Private Methods :

BOOL bfnlsAvail

BOOL bfnGetScriptName

Methods :

DFWFACTSTATE

BOOL bfnPutScript

DFWFACTSTATE

BOOL bfnGetWFScript

DFWFCONTAINER

Returns whether an Act/
state is Available for a
given Workflow.
Returns the Script Name
given the BP and WF Dlds
the Act/State and the
type of script (User
Defined or System
Generated) required.

This is the Constructor
for this Class that
creates a new record with
the given Act/State , and
user defined name for a
given WFDid and BPDid
Inserts the given Script
into a blob file
Returns the first record
from the table which
matches the predicate
Returns the required data
from the script file (In
context of the Class
Attributes) given the
Script Type

This class contains the Workflow Container Information
(the Container ID for a particular workflow in a given BP).

6,073,109

Attributes :

!DEN
!DEN
!DEN

Methods :

DFWFCONTAINER

!DEN lfnGetContainerld

33

lBPDid
lWFDid
lContainerld

Creates a new Container
Definition for a workflow with
the given parameters (in
context of the Class
Attributes)
Returns the Container ID (in
context of the Class
Attributes)

DFWFACTSTATEBDREF
This Class contains the workflow Act/State Bound Data

reference information.

Attributes :

!DEN
!DEN
BOOL
!NT
WFROLE
!DEN

Methods :

DFWFACfSTATEBDREF

!DEN lfnGetContainerld

BOOL bfnGetFieldAttrList

BOOL bfnGetNumFieldAttrList

DFWFFOLLOWUP

lBPDid
lWFDid
bActOrState
ActOrStateld
WFRole
lContainerld

The Constructor for this
Class that inserts a
record with the with the
given parameters
Returns the Container ID
(in context of the Class
Attributes)
Returns the list of
Field Attributes for the
given conditions
(parameter values)
Returns the number of
Field Attributes for the
given conditions
(parameter values)

This class contains all the Follow-up information of a
workflow.

Attributes :

!DEN lBPDid
!DEN lWFDid
BOOL bPRFUFlag
BOOL bPRFURecur
LONG lPRFUOffset
!NT iPRFUCount
BOOL bPCFUFlag
BOOL bPCFURecur
LONG lPCFUOffset
!NT iPCFUCount
BOOL bCRFUFlag
BOOL bCRFURecur
LONG lCRFUOffset
!NT ICRFUCount
BOOL bPCRemFlag
LONG lPCRemOffset
BOOL bActNotifyFlag

5

10

15

20

25

30

35

40

34

-continued

Methods :

DFWFFOLLOWUP

BOOL bfnGetPerfResplnfo

BOOL bfnGetPerfComplnfo

BOOL bfnGetCustResplnfo

BOOL bfnGetPerfRemlnfo

BOOL bfnGetActNotifyFlag

DFBDFIELDLIST

Attributes :

The constructor of this class
that depending on its first
parameter inserts a record in
the FollowUp Table with the
Given parameters or returns
the first record from the
table which matches the
predicate
Returns the Performer
Response Information (in
context of the Class
Attributes)
Returns the performer
Completion Information (in
context of the Class
Attributes)
Returns the Customer Response
Information (in context of
the Class Attributes)
Returns the Performer
Reminder Information (in
context of the Class
Attributes)
Returns the Notify flag (in
context of the Class
Attributes)

!DEN
char
!DEN

lBPDid
szFieldName[FIELDNAME_LEN]
lFieldld

Methods
No Methods

Transactions Database

TXBPINSTANCE
This Class contains information of all instances of Busi­

ness Process Transactions. This information consists of the
Transaction ID of the Business Process (BPTid), the Busi-

45 ness Process definition ID (BPDid), the BP Status and
whether the BP Instance is active or not.

Attributes :
50

!DEN lBPTid
!DEN lBPDid
BOOL blsActive
BPSTATUS BPStatus

55 Methods :

TXBPINSTANCE The Constructor for this Class that
returns the first record from the
table which matches the predicate

Createlnstance Creates an instance of the given BP

60 in the Transactions Database table
(TXBPINSTANCE) blsActive will still
be FALSE

BOOL bfnActivate Changes the Status (b!sActive) of
the current BP (In context to the
Class Attributes) from FALSE to TRUE

65
BOOL bfnSetBpStatus Sets the BPStatus to the given

status ID(In context to the Class
Attributes)

!DEN lfnGetBpDid

!DEN lfnGetBpTid

BOOL bfnNumListBP

BOOL bfnListBP

BOOL bfnDelete

BOOL bfnAbort

BOOL bfnSuspend

BOOL bfnNumListQueryQF

BOOL bfnListQueryWF

TXBPASSIGN

6,073,109
35

-continued

Returns the BPDid of the Business
Process Instance (In context to the
Class Attributes)
Returns the BPTid of the Business
Process Instance (In context to the
Class Attributes)
Returns the number of BPs that have
been Instantiated
Returns a list of all BPs that have
been Instantiated to memory or to
the file specified
Deletes the BP transaction
(specified by the class attributes)
from the table.
Sets the BPStatus to ABORT (In
context to the Class Attributes)
(Further Actions are yet to be
defined)
Sets the BPStatus to SUSPEND (In
context to the Class Attributes)
(Further Actions are yet to be
defined)
Returns the number of BP Instances
(instantiated between the specified
start date and the end dates)for the
given Identity, having the specified
Organization Role, (If bPending is
TRUE then only those BPs are
included where Acts are pending)
Returns a list of all BP Instances
(instantiated between the specified
start date and the end dates)for the
given Identity, having the specified
Organization Role, (If bPending is
TRUE then only those BPs are
included where Acts are pending)

5

36
former for this workflow Instance, the conditions of satis­
faction for this workflow and whether this workflow
instance has been instantiated or not

Attributes:

!DEN
!DEN

lBPTid
lWFTid

10 BOOL bCentralWFFlag
!DEN lWFDid
DATETIMET lReplyDate
DATETIMET lCompletionTime
DATETIMET llnitiateTime
STATE Stateid

15 !DEN lCustld
!DEN lPerfld
BOOL bCOSFlag
CHAR szCondOfSatisfn[BLOBNAME_LEN]
BOOL binstantiate

20
Methods:

TXWFINSTANCE The Constructor for this
Class that returns the first
record from the table which
matches the predicate

BOOL Creates an Instance of the
25 bfninstantiateCentralWF Primary workflow of a BP

Instance, given the BPDid and
BPTid with the given
parameters. For the given
BPDid, the workflow with CWF
Flag TRUE is fetched from the

30 DFWF table to create this CWF
instance. A new WFTid for

BOOL bfnCreateinstance

this workflow Instance is
returned
Creates an Instance of the

This class contains all the Identity to Organization role 35

mappings at the BP level for BP Transaction. These map­
pings if present override the corresponding DFBPASSIGN
mapping for a given BPDid for that particular instance of the
BP (BPTid). BOOL bfnSetState

non Primary workflow of a BP
Instance, given the BPDid and
BPTid with the given
parameters. A new WFTid for
this workflow Instance is
returned
Sets the STATE of the given
workflow Instance to the
state specified.

Attributes :

!DEN
!DEN
!DEN

Methods :

TXBPASSIGN

lBPTid
lOrgRole
lldentityid

The constructor of this
class that depending on
its first parameter

40

45

50

BOOL bfnGetlnstantiate

BOOL bfnModify

!DEN lfnGetCustld creates a new BP
assignment in a given
BPTid with the given
parameters or returns the
first record from the
table which matches the
predicate

55 !DEN lfnGetPerfld

!DEN lfnGetldentity

TXWFINSTANCE

Returns the Identity ID
(in context of the Class
attributes)

60

This Class contains information of all instantiated Work­
flows. This information consists of the Transaction ITDs of
the Workflow (WFTid) and the Business Process (BPTid) to
which it belongs, whether it is a Primary workflow or not, 65

the Workflow definition ID (WFDid), the reply, completion
and initiate date, the present State, the Customer and Per-

BOOL bfnGetStateName

BOOL bfnGetFormName

Returns the Status of the
Instantiate flag for the
given workflow Instance (In
context of the Class
Attributes). This indicates
if the specified workflow
instance has been
instantiated or not.
Modifies the specified
parameters in the WFinstance
(In context of the Class
Attributes) and returns the
WFTid
Returns the Customer ID for
the given workflow Instance
(In context of the Class
Attributes)
Returns the Performer ID for
the given workflow Instance
(In context of the Class
Attributes)
Returns the User Defined
State Name corresponding to
the current state of the
workflow Instance. (In context
of the Class Attributes).
Returns the form name
(corresponding to the WFRole)
of the workflow Instance. (In
context of the Class
Attributes)

BOOL bfnisCentralWF

!DEN lfnGetBPTid

!DEN lfnGetWFTid

BOOL
bfnResetlnstantiate
!DEN lfnGetWFDid

STATE ifnGetState

BOOL bfnGetPending

BOOL bfnPutCOS

BOOL bfnGetCOS

BOOL bfnPutCustld

BOOL bfnPutPerfld

37

-continued

Returns TRUE if the current
WF is a primary WF
Returns the BPTid for the
given workflow Instance (In
context of the Class
Attributes)
Returns the WFTid for the
given workflow Instance (In
context of the Class
Attributes)
Sets the Instantiate Flag to
FALSE
Returns the WFDid for the
given workflow Instance (In
context of the Class
Attributes)
Returns the current State of
the given workflow Instance
(In context of the Class
Attributes.
Return whether or not an act
is pending for this Workflow
Instance
Creates/Appends to the Blob
file of the workflow
Instance, the COS data in
memory
If the COSFlag is TRUE it
retrieves the specified
number of bytes from the Blob
file of this workflow
Instance containing the
Conditions of Satisfaction
else the COS is retrieved
from the workflow Definitions
table
Modifies the Customer ID for
this WF Instance to the given
ID(in context of the Class
attributes)
Modifies the Performer ID for
this WF Instance to the given
ID(in context of the Class
attributes)

LONG lfnGetReplyDate Returns the Reply date for
this workflow Instance(in
context of the Class
attributes)

LONG lfnGetCompletionTime Returns the Completion date
for this workflow Instance(in
context of the Class
attributes)

BOOL bfnPutReplyDate Modifies the Reply date for
this WF Instance to the given
date(in context of the Class
attributes)

BOOL bfnPutCompletionTime Modifies the Completion date
for this WF Instance to the
given date(in context of the
Class attributes)

BOOL bfnGetCOSFlag Returns the COS Flag for this
workflow Instance(in context
of the Class attributes)

BOOL bfnPutCOSFlag Modifies the COS Flag for
this WF Instance to the given
value(in context of the Class
attributes)

TXWFOBS

6,073,109

5

10

15

Attributes :
private:

!DEN
!DEN
!DEN

Methods :

TXWFOBS

TXWFASSIGN

38

lBPTid
lWFTid
!Observer

The constructor of this class
that depending on its first
parameter it creates a new
Workflow Observer Transaction
in the Table with the given
parameters or returns the
first record from the table
which matches the predicate

20 This class contains all the Identity to Organization role
mappings at the Workflow level for Workflow Instances.

25

30

35

40

45

Methods :

Attributes :
private:

!DEN
!DEN
!DEN
!DEN
WFROLE

TXWFASSIGN

WFROLE fnGetWFRole

!DEN lfnGetldentity

TXWFINCOMPLETION

lBPTid
lWFTid
lOrgRole
lldentityid
WFRole

The constructor of this
class that depending on its
first parameter returns the
first record from the table
which matches the predicate
or creates a new workflow
assignment in a given WF
Instance (WFTid) for a BP
Instance (BPTid) with the
given parameters
Returns the WFRole (in
context of the Class
attributes)
Returns the Identity ID (in
context of the Class
attributes)

This class contains the Incompletions information for all

50
Instantiated workflow

Attributes:

55 !DEN
!DEN
INCOMPLETION
LONG
LONG
LONG

60
LONG

Methods:

TXWFINCOMPLETION

lBPTid
lWFTid
Incld
lCompletionTime
lFollowUpTime
lReminderTime
!Count

This class contains the Workflow Observer Transactions
information which includes information such as the WFTid, 65
the BP Instance (BPTid) to which this workflow belongs,
and the Observer ID for the workflow instance.

The Constructor for this
class that returns the
first record from the table
which matches the predicate
or inserts a new workflow

6,073,109
39

-continued

Incompletion for a given
workflow Instance (WFrid)
for a BP Instance (BPTid)
with the given parameters

!DEN lfnGetBPTid Returns the BPTid for the
workflow Instance (in
context of the Class
attributes)

!DEN lfnGetWFrid Returns the WFrid for the
workflow Instance (in
context of the Class
attributes)

INCOMPLETION fnGetlncld Returns the Incompletion ID
for the WF Instance (in
context of the Class
attributes)

DATETIMET Returns the Completion Time
lfnGetCompletionTime for the WF Instance (in

context of the Class
attributes)

VOID vfnPutCompletionTime Modifies the Completion
time for this workflow
Instance to the given
time(in context of the
Class attributes)

DATETIMET lfnGetFollowUpTime Returns the FollowUp Time
for the WF Instance (in
context of the Class
attributes)

VOID vfnPutFollowUpTime Modifies the follow up time
for this workflow Instance
to the given time(in
context of the Class
attributes)

DATETIMET lfnGetReminderTime Returns the Reminder Time
for the workflow Instance
(in context of the Class
attributes)

VOID vfnPutReminderTime Modifies the Reminder Time
for this workflow Instance

BOOL bfnGetFirstlncompletion

BOOL bfnGetNextlncompletion

LONG lfnGetCount

VOID vfnincCount

TXWFAVAILACTS

to the given time(in
context of the Class
attributes)
Returns TRUE if a record
for the given
reminder/followup prior to
the given time is available
and the Incompletion
information is made
available in the Class
Attributes.
Returns TRUE if the next
record for the given
reminder/followup prior to
the given time is available
and the Incompletion
information is made
available in the Class
Attributes.
Returns the Count (number
of incompletions) for the
workflow Instance (in
context of the Class
attributes)
Increments the count.

This class contains information of available acts for a
Workflow Instance.

Attributes :

!DEN
!DEN
WFROLE

lBPTid
lWFTid
WFRole

5

10

15

20

25

ACT
BOOL
BOOL

Methods :

TXWFAVAILACTS

BOOL bfnNumAvailActs

BOOL bfnList

BOOL bfnDeleteAllActs

BOOL bfnGetReplyFlag

40

-continued

Act
bReplyFlag
bCompletionFlag

The constructor for this Class
that returns the first record
from the table which matches
the predicate or inserts a new
Available Act for a given
workflow Instance (WFrid) for
a BP Instance (BPTid) with the
given parameters
Returns the number of Acts
available for a given WFRole
in a WFinstance. The Impure
Flag indicates whether an Act
is waiting to be processed by
the Transaction Manager
Returns the list of Acts
available for a given WFRole
in a WFinstance. The Impure
Flag indicates whether an Act
is waiting to be processed by
the Transaction Manager
Deletes all the Acts for a
given workflow instance from
the Available Acts table
Returns the value of the Reply
Flag for the WF Instance (in
context of the Class
attributes)

30 BOOL bfnGetCompletionFlag Returns the Completion Flag
for the workflow Instance (in
context of the Class
attributes)

35 TXWFACTS

This class contains information of Acts that are to be taken
(Queue) in all Workflow instances.(Acts taken by the client
but not yet processed by the Server).

40

Attributes:

!DEN
BOOL

45 !DEN
!DEN
ACT
WFROLE
LONG
LONG

50 !DEN
DATETIMET
DATETIMET
BOOL
LONG

55 Methods:

TXWFACTS

60

65

lTxid
bSTFFlag
lBPTid
lWFrid
Actid
WFRole
lReplyTime
!Completion Time
!Who
lWhenRegistered
lWhenTaken
bProcessed
!Return Code

The Constructor for this
Class that or inserts a new
WF Act into the table (Actld)
for a given WF Instance
(WFrid) in a BP Instance
(BPTid) with the given
parameters or inserts a new
WF Act into the table (Actld)
for a given WF Instance
(WFrid) in a BP Instance
(BPTid) with the given
parameters. It also inserts a
record in the table

6,073,109
41

-continued

!DEN lfnGetTxld

BOOL bfnGetReturns

VOID vfnPutRetValue
BOOL bfnGetFirstlnQueue

VOID vfnActComplete

BOOL bfnCheckValidAct

!DEN lfnGetBPTid

!DEN lfnGetWFTid

ACT fnGetAct

WFROLE fnGetWFRole

STATE fnGetWFState

WFTYPE fnGetWFType

DATETIMET
lfnGetlncompletionTime

DATETIMET
lfnGetCompletionTime

DATETIMET lfnGetReplyTime

BOOL bfnNumListActTaken

BOOL bfnListActTaken

TXSTFADDINFO

TXSTFADDINFO or returns the
first record from the table
which matches the predicate
returns the Tx ID for the Act
that has to be taken (in
context of the Class
attributes)
Returns the parameters
STFProcld, ReturnCode from
the current Class attribute
values. It also returns
STFTx!D and Userld (from
TXSTFADDINFO)
Modifies the Return Code.
Returns the first Act (to be
processed) from the Queue)
Updates the bProcessed flag
to TRUE
Checks if the given Act is
valid for the WFRole
Returns the BPTid to which
this Act belongs (in context
of the Class attributes)
Returns the WFTid to which
this Act belongs (in context
of the Class attributes)
Returns the Actid of this Act
belongs (in context of the
Class attributes)
Returns the WFRole taking
this Act (in context of the
Class attributes)
Returns the State of this Act
(in context of the Class
attributes)
Returns the WFType (got from
DFWF) of the workflow to
which this Act belongs(in
context of the Class
attributes)
Returns the completion/reply
time for the given
Incompletion
Returns the completion time
(in context of the Class
attributes)
Returns the reply time (in
context of the Class
attributes)
Returns the Number of acts
present in the Queue for the
given BPTid and WFTid
Returns the list of acts
present in the Queue for the
given BPTid and WFTid to
memory or a specified file

This class contains additional information for all transac­
tions which come via the STF Processor

Attributes:

!DEN
!DEN
!DEN
!DEN

TXSTFQUEUE

lTxid
lSTFProcld
lSTFTxld
lUserld

This class contains information of all outgoing Transac­
tions via the STF Processor.

5

10

15

20

25

30

35

40

45

50

55

60

65

Attributes:

!DEN
!DEN
!DEN
NOTIFICATION
!DEN
DATETIMET
DATETIMET
DATETIMET
DATETIMET
!DEN

Methods:

TXSTFQUEUE

BOOL bfnGetEvent

BOOL bfnSetReadTime

BOOL bfnPutEvent

TXBPBD

42

lSTFProcessor
lBPTid
lWFTid
NEvent
lUserld
lCompletionTime
lNotificationTime
lWhenRegistered
lWhenRead
lTxld

The Constructor for this
class
returns the earliest Message
Record (When Registered has
the earliest date, and
WhenRead is 0) from the STF
Queue for the given STF
Processor
Sets the WhenRead DateTime
field to the given Value (In
context to the Class
Attributes)
Inserts a record into the
STFQueue with the given
parameters (Sets WhenRead to
0 and WhenRegistered to the
Current Time).

This class contains BP level Bound Data field IDs and
values related to all BP Instances

Attributes:

!DEN
!DEN
CHAR

Methods:

TXBPBD

TXWFBD

lBPTid
lFieldld
szValue [!NIT_ VAL_LEN]

The constructor of this class
that depending on its first
parameter that inserts a
Record in the TXBPBD table
for the given BP Transaction
with BPTid and Fieldld (which
is obtained from DFFIELDLIST
using the Field Name) and the
field value or returns all
the Bound Data fields
(associated with the given BP
Instance, BPTid). to
specified file/memory or
returns the number of Bound
Data fields associated with
the given BP Instance (BPTid)

This class contains workflow level Bound Data field IDs
and values related to all instantiated WFs in BP Instances

Attributes:

!DEN
!DEN
!DEN
CHAR

lBPTid
lWFTid
lFieldld
szValue[INIT_ VAL_LEN]

6,073,109

Methods:

TXWFBD

Global Method:

BOOL bfnisPure

43

-continued

The constructor of this
class that depending on its
first parameter inserts a
record in the TXWFBD table
for the given WF Instance
(WFrid) in the specified BP
Transaction with WFfid,
BPTid, Fieldid (which is
obtained from DFFIELDLIST
using the Field Name) and
the field value or returns
the number of Bound Data
fields associated with the
given WF Instance in the
specified BP Transaction
(BPTid) returns all the
Bound Data fields
(associated with the given
WF Instance in the
specified BP
Transaction(BPTid)). to
specified file/memory

This method returns TRUE if
there are no acts pending
in the TXWFACTS Queue for
the given WF Instance in
the specified BP
Transaction. If there are
acts in the Queue then it
returns FALSE.

Names and Routings Database

5

10

15

20

25

30

DFSTFPROC 35

This class contains information of all STF Processors
including their IDs, names and network addresses.

Attributes:

lSTFProcld !DEN
CHAR
CHAR

szSTFProcName[STFPROCNAME_LEN]
szNetAddress[NETADDRESS_LEN]

Methods:

DFSTFPROC

BOOL bfnGetSTFProcName

BOOL bfnGetNetAddress

BOOL bfnDelete

BOOL bfnListSTFProcs

The Constructor for this
Class that returns the first
record from the table which
matches the predicate or
inserts a Record in the
DFSTFPROC table for the given
STF Processor Name and
Network Address it generates
the STFProcld and returns it
Returns the STF Processor
Name (in context of the Class
attributes)
Returns the Network Address
of the STF Processor (in
context of the Class
attributes)
Deletes the record from the
DFSTFPROC table whose values
are in context of the class
attributes.
Returns information of all
STF Processors in a set of
Structures.

40

45

50

55

60

65

44
NRDFORGROLE
This Class contains the Organization Role ID to Organi­

zation Role Name mapping.

Attributes:

!DEN lOrgRole
CHAR szOrgName[ORGROLE_LEN]

Methods:

NRDFORGROLE The Constructor for this
Class that returns the first
record from the table which
matches the predicate or
inserts a Record in the
NRDFORGROLE table containing
the OrgRole ID and the
corresponding Name

!DEN lfnGetOrgRole Returns the OrgRole ID (in
context of the Class

BOOL bfnDelete
attributes)
Deletes the record from the
NRDFORGROLE table whose
values are in context of the
class attributes.

NRDFIDENTITY
This class contains information related to all the Identities

including their Name, Network Address, Postal Address,
Phone/Fax and other information.

Attributes:

!DEN
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
BOOL
!DEN

Methods:

lldentityid
szidentityName[IDENTITY _LEN]
szNetAddress[NETADDRESS_LEN]
szPostalAddress[POSTALADDRESS_LEN]
szPhone[PHONE_LEN]
szFax[PHONE_LEN]
szDepartment[DEPARTMENT_LEN]
szTitle[TITLE_LEN]
szLocation[LOCATION_LEN]
szComment[COMMENT_LEN]
bNotify
lSTFProcld

NRDFIDENTITY The Constructor for this
class that returns the

BOOL bfnDelete

BOOL bfnGetNotify

!DEN lfnGetSTFProcld

first record from the table
which matches the predicate
or inserts a Record in the
NRDFIDENTITY table
containing the Identityid,
the corresponding Identity
name, and other Identity
information obtained from
the given parameters
Deletes the record from the
NRDFIDENTITY table whose
values are in context of
the class attributes.
Returns the Notify Status
(in context of the Class
attributes). Notify Status
will be TRUE if the
Identity wants a
Notification of an event.
Returns the STF Processor
ID (in context of the Class
attributes). If the
Identity is not an STF
Processor then 0 is
returned.

6,073,109

!DEN lfnGetldentityid

45

-continued

Returns the Identity ID (in
context of the Class
attributes).

BOOL bfnGetldenNameList Returns information of all
Identities in a set of
Structures.

NRDFGROUP

This class contains all the Groupld to Group Name
mapping.

Attributes:

!DEN
CHAR

lGroupid
szGroupName[GROUPNAME_LEN]

Methods:

NRDFGROUP

BOOL bfnDelete

!DEN lfnGetGroupid

The Constructor for this
class that returns the first
record from the table which
matches the predicate or
inserts a Record in the
NRDFGROUP table containing
the Groupid, and the
corresponding Group name
Deletes the record from the
NRDFGROUP table whose values
are in context of the class
attributes.
Returns the Group ID (in
context of the Class
attributes).

NRDFGROUPASSIGN

This class contains all the Groupld to Identityld mapping.

Attributes:

!DEN
!DEN

Methods:

NRDFGROUPASSIGN

BOOL bfnDelete

BOOL bfnNumListGroup

BOOL bfnListGroup

BOOL bfnNumListlden

BOOL bfnListlden

lGroupid
lldentityid

The Constructor for this class
that returns the first record
from the table which matches
the predicate or inserts a
Record in the NRDFGROUPASSIGN
table containing the Groupid,
and the Identity Id
Deletes the record from the
NRDFGROUPASSIGN table whose
values are in context of the
class attributes.
Returns the number of Groups
which contain the given
Identityid as a member
Returns information of all
Groups which contain the given
Identityid as a member, to
file or memory as specified
Returns the number of
Identities in the specified
Group!D
Returns information of all
Identities which belong to the
specified group, to file or
memory as specified

46
NRDFGROUPROLEASSIGN

5
Attributes:

!DEN
!DEN

Methods:

10 NRDFGROUPROLEASSIGN

15

BOOL bfnDelete

20 BOOL bfnNumListRole

BOOL bfnListRole

25

BOOL bfnNumListGroup

BOOL bfnListGroup

30

35

lGroupid
lOrgRole

The Constructor for this
class that returns the first
record from the table which
matches the predicate or
inserts a record in the
NRDFGROUP- ROLEASSIGN table
containing the Groupid, and
the Organization Role
Deletes the record from the
NRDFGROUP- ROLEASSIGN table
whose values are in context
of the class attributes.
Returns the number of Groups
which contain the given
Organization Role as a member
Returns information of all
Groups which contain the
given Organization Role as a
member, to file or memory as
specified
Returns the number of
Organization Roles in the
specified GroupiD
Returns information of all
Organization Roles which
belong to the specified
group, to file or memory as
specified

NRDFIDENROLEASSIGN

This class contains all the Identityld Organization Role
mapping.

40

Attributes:

!DEN
45 !DEN

Methods:

NRDFIDENROLEASSIGN

50

55 BOOL bfnDelete

BOOL bfnNumListRole

60 BOOL bfnListRole

BOOL bfnNumListldentity
65

lldentityid
lOrgRole

The Constructor for this class
that returns the first record
from the table which matches
the predicate or inserts a
Record in the NRDFIDEN­
ROLEASSIGN table containing
the Identityid, and the
Organization Role
Deletes the record from the
NRDFIDEN- ROLEASSIGN table
whose values are in context of
the class attributes.
Returns the number of Org.
Roles which contain the given
Identityid as the Identity Id
Returns information of all
Org. Roles which contain the
given Identityid as the
Identity ID, to file or memory
as specified
Returns the number of
Identities with the specified
Org. Role

BOOL bfnListldentity

Schedule Database

47

-continued

Returns information of all
Identities with the specified
Org. Role, to file or memory
as specified

6,073,109

5

Methods:

BOOLGrant

BOOLRevoke

48

-continued

Updates the privileges of the
specified Identity to the
given set of Privileges
Revokes the specified
privileges from the specified
Identity

This class contains all the Business Process schedule 10

information including time when it has to be next initiated
and the Recurring period of that BP

BOOL InquireAuth Returns the Privileges of the
specified Identity

SCBPSCHEDULE

Attributes:

!DEN
DATETIMET
DATETIMET

Methods:

SCBPSCHEDULE

BOOL bfnDelete

DATETIMET lfnGetlnitTime

DATETIMET lfnGetRecTime

!DEN lfnGetBPDid

VOID vfnPutlnitTime

BOOL bfnGetFirstBPSchedule

BOOL bfnGetNextBPSchedule

AWSAUTH

lBPDid
llnitTime
lRecPeriod

The Constructor for this
class that inserts a Record
in the SCBPSCHEDULE table
for the given STF Processor
Name and Network Address It
generates the STFProcld and
returns it or returns the
first record from the table
which matches the predicate
Deletes the record from the
SCBPSCHEDULE table whose
values are in context of the
class attributes.
Returns the Initiation Time
of the BP (in context of the
Class attributes)
Returns the Recurring period
of the BP (in context of the
Class attributes)
Returns the BP ID (in
context of the Class
attributes)
Updates the Initiation Time
for the BP with the
specified time (in context
of the Class attributes)
Returns the first BP
scheduled to be Initiated
(Where the InitTime is less
than the specified time)
(the Class attributes are
updated)
Returns the next BP
scheduled to be Initiated
(Where the InitTime is less
than the specified time)
(the Class attributes are
updated)

This class contains information related to each Identities
database access privileges.

Attributes:

!DEN
OBJECT_TYPE
PRIVILEGES

lldentityld
Objectld
Privilege

CONFIGINFO
This Class contains the configuration information of a

15 particular installation including the path and file name of the
Logfile, the interval of the Server polling, the path of the
Blob file and the maximum number of BP instances.

20

25

30

35

40

45

50

Attributes:

CHAR
CHAR
!NT
CHAR
!NT
LOGOPTIONS

Methods:

szLogFilePath[LOGFILEPATH_LEN]
szLogFileName[LOGFILENAME_LEN]
iPolllnterval
szBlobFilePath[BLOBFILEPATH_LEN]
iMaxBP!nst
LogOpts

BOOL bfnSetConfiglnfo Sets the configuration of an
installation to the specified
values

BOOL bfnGetConfiglnfo

ERRMSG

Returns the Configuration of
the Installation.

Contains the Error code to error Number mapping.

Attributes:

!NT
LONG

Methods:

ERRMSG

BOOL bfnPutErrNo

!NT ifnGetErrNo

MESSAGEQ

lErrNo
lErrCode

The Constructor for this
Class
Inserts a record with an
ErrNo and the corresponding
ErrCode,
Gets the ErrNo corresponding
to the specified ErrCode.

This Class contains the Message Queue which is used by
55 the components of the Server for internal communication.

60

65

Attributes:

PROCESS
PROCESS
MESSAGE
LONG
LONG
LONG
LONG
CHAR

Sender
Recipient
Message
1Param1
1Param2
1Param3
1Param4
szParam[PARAM_LEN]

DATETIMET
Methods

MESSAGEQ

49

-continued

lWhenPosted

The Constructor for this
class

BOOL bfnPostMessage Puts the given message into
the Message Queue with the
specified Sender and
Recipient fields

BOOL bfnGetMessage Gets the first message marked
to the specified recipient

BOOL bfnFlushMessage
from the Message Queue.
Deletes all messages from the
Message Queue.

Administration and Configuration Database

ServerMgmt
Attributes

lServerld
szServerName

Methods
Start Server
StopServer

Login

Server Management

identifier
string[sz_servername]

/* The method
StopServer should find
all BPs that have the
server as Home & issue
warning to the current
users */

Logout
ListLogiuActvities

UserMaint
Attributes

Userld
LoginName
Password

Methods
AddNewUser
Remove User
ModifyUserlnfo

User Maintenance

ref(Identity) or ref(Group)
string
string

Authorization Maintenance

Object
Attributes

Objectld ref(BP) or ref(WF) or
ref (STFProcessor)

objecttype ObjectType
AuthMaint

Attributes
User
Objectld
Privilege
GrantOption

ref(User)
ref(Object)
privilege
boo!

Methods

BPMaint

Grant
Revoke
InquireAuthorization

Business Process Maintenance

Methods
AbortBP
DeleteBP
SuspendBP
ResumeBP
ArchiveBP
ListAvailBPs
ListActiveBPs
DeleteBPDefinition

6,073,109

5

10

15

20

25

30

50

-continued

Administration and Configuration Database

Workflow Maintenance

WFMaint
Methods

ListAllWF
STF Processor Maintenance

STFMaint
Methods

RegisterSTFProc
DeregisterSTFProc

Backup and Restore

Backup
Attributes

BP!d string /* Business Process
name is NULL, implies
backup/restore entire
DB*!

BackupDate time
BackupTime time
BackupMedia en urn

Methods
Backup
Restore

Database Management

DBMgmt
Methods

CheckDatabase
IndexDatabase
ReorganizeDatabase

Config
Attributes

Configuration

MaxUserCount int
35 MaxOpenBPs int

Version string
Methods

SetConfiguration
GetConfiguration

40 STF Queue Database
STF Additional Information Class
The server as a service stores additional fields required by

STF processors. The STF Processor Id, the STF Transaction
Id and the Userid are stored.

45 TxSTFAddllnfo
The STF Queue database is implemented through two

classes TXSTFADDINFO and TXSTFQUEUE which are
desribed with other classes of the transaction database.
B. WORKFLOW APis

50 Workflow Transactions API
This section describes the functions performed by the

transactions API. A description of each function is set forth
followed by the syntax of a call to the function, with
specification of each parameter passed to the function. From

55 this information, a suitable code segment can be written to
implement the function.
AWSTINITBP
Description

This function creates a new instance of a previously
60 defined Business Process (BP). The BP Name is passed and

a BP Id is returned. This Id will be required for all subse­
quent calls to this API. This call also activates the Primary
workflow. To create this instance of the Business Process the
Name specified for the IdentityName must be authorized.

65 Optionally the mapping of Organization Role Names to
Identity Names may be provided. This overrides the default
mapping (if any).

6,073,109
51

Syntax
VOID FAR PASCAL AWSTINITBP(S1RING szBPName,

STRING szinitiatorName, STRING szCustomerName,
STRING szPerformerName, DATETIMESTRING
szCompletionDate, DATETIMESTRING

5
szResponseDate, DATETIMESTRING szinitiateDate,
INT iCount, LPORG2ID lpOIPtr, LPIDEN lpBPTid,
STRING szCWFName, LPERRCODE lpError)

52
STRING szCustomerName, STRING szPerformerName,
DATE TIMES TRING szComple tionD ate,
DATETIMESTRING szResponseDate,
DATETIMESTRING szinitiateDate, INT iCount,
LPORG2ID lpOIPtr, LPERRCODE lpError)

Parameters

10 Name Type Description

Parameters

Name Type

szBPName STRING

lBPTid

Description

Business Process Name.

BPTID Business Process
Transaction Id.
The Id of a previously
instantiated BP.

This BP must have
previously been defined
and the name known to the
server.

15 szWFName STRING The name of the workflow
to be initiated. The primary
workflow can be initiated
prior to an initiation date
specified in the
AWSINITBP function, or a
previously specified intia­
tion date changed using this
function by specifying the
name of the primary
workflow. If the specified
workflow is not the

szlnitiatorName

szCustomerName
szPerformerName
szCompletionDate

szResponseDate

szlnitiateDate

iCount

lpO!Ptr

lpBPTid
szCWFName

lpError

STRING Name of the person or
identity initiating the
business process. The
identity must be
authorized to activate the
business process.

STRING Customer Identity Name.
STRING Performer Identity Name.
DATETIMESTRING The date by which the

Primary workflow must be
completed.

DATETIMESTRING The date by which
negotiation must be
complete.

DATETIMESTRING The Date when this
workflow is to be
initiated by the server.
If this date is not
specified then the
Business Process is

!NT

LPORG2ID

LPIDEN
STRING

LPERRCODE

initiated immediately.
The number of Organ­
ization Role to Identity
mapping entities.
Pointer to an array of
structures which contains
the mapping of
Organization Role to
Identities. In the
structure ORG2ID, the
application must set the
GLOBAL or LOCAL flag
to identify whether the
ORG2ID overriding is at
BP level or at WF level.
returns BPTid.
returns the name of
Primary Workflow.
Error Code.

20

25

szlnitiatorName

30

szCustomerName

35 szPerformerName

szCompletionDate

40
szResponseDate

szlnitiateDate

45

iCount

STRING

STRING

STRING

DATETIMESTRING

DATETIMESTRING

DATETIMESTRING

!NT

primary workflow, then the
Business Process this
workflow belongs to must
have already been initiated.
The Identity Name of the
person initiating the
workflow. The workflow
will be initiated only if
the identity has the
authorization.
The Identity Name of the
person who is the Customer
for this workflow.
The Identity Name of the
person, who is the Per­
former for this workflow.
The date by which this
workflow must be
completed.
The date by which negotia­
tion must be complete.
The Date when this
workflow is to be initiated
by the server. If this date is
not specified then the
workflow is initiated
immediately. This date can
be specified only for the
Primary workflow.
The number of Organ­
ization Role to Identity
mapping entities.

50 lpO!Ptr LPORG2ID Pointer to an array of
structures which contains The function returns the Business Process

BPTid and Primary WF name, szCWFName.
AWSTINITWF
Description

Instance Id,

lpError LPERRCODE

a mapping of Organization
Role to Identity Names.
Error Code.

55
Return Value

The business process this workflow belongs to must have
been instantiated. The application must supply the Business
Processes' Business Process Transaction Id. The Identity
Names of the Customer and Performer are optional if
defaults have been specified. The dates for completion and
reply are optional. If these dates are NULL values, the
defaults specified by the workflow's definition (if any) will 60

be used. The Initiate date is optionally specified only for the
Primary workflow to initiate it at a later date. Optionally the
mapping of Organization Roles to Identity Names may be
passed. These override the default mapping if any.
Syntax
VOID FAR PASCAL AWSTINITWF(BPTID lBPTid,

STRING szWFN arne, STRING szinitiatorN arne,

None
AWSTACTINWF
Description

This function instructs the workflow server to perform the
act specified in the specified workflow of a specific business
process. The Business Process Transaction ID and Workflow
Name must be specified. The identity performing the act
must be specified. The server records the act to be taken and
updates the workflow. The server may take an unspecified

65 time to take the act because of the queuing of the acts to be
taken. If the client application issues a query when the act is
pending, the application will receive status values which are

6,073,109
53

not updated and this will be indicated by CLEAR or PEND­
ING flag of the query APIS.
Syntax

Syntax
54

VOID FAR PASCAL AWSTACTINWF (STRING
szSTFProcName, STRING szSTFTxName, STRING 5
szSTFUserName, BPTID lBPTid, STRING szWFName,
ACT Act, DATETIMESTRING szCompletionDate,
DATETIMESTRING szReplyDate, STRING
szParticipantName, LPIDEN lpTxid, LPERRCODE

VOID FAR PASCAL AWSTACTSTATUSQUERY (IDEN
lTxid, STRING szSTFProcName, STRING
szSTFTxName, STRING szSTFUserName, LPER­
RCODE lpError)

Parameters
lpError)

Name Type

szSTFProcName STRING

szSTFTxName STRING

szSTFUserName STRING

lBPTid BPTID

szWFName STRING

Parameters

Description

Only the transaction calls
made via STF Processor
will pass this. Workflow
applications which direct! y
use this call should set this
field to NULL.
Only the transaction calls
made via STF Processor
will pass this. Workflow
applications which direct! y
use this call should set this
field to NULL.
Only the transaction calls
made via STF Processor
will pass this. Workflow
applications which direct! y
use this call should set this
field to NULL.
Business Process
Transaction Id.
The Id of a previously
instantiated BP.
The Transaction Id of the
workflow in which to take
the act.

Act ACT The act to take, e.g.,
Request, Agree, etc.

szCompletionDate DATETIMESTRING Completion date can be
optionally specified when­
ever permitted or
recommended has to be
specified for all Customer/
Performer Counter Acts.

lReplyDate DATETIMESTRING Reply date has to be speci­
fied for the following acts:
Customer/Performer
Counters, Declare
Completion and Declare
dissatisfaction.

szlnitiatorName STRING Identity of the person
requesting the act.

lpTxid LPIDEN Unique Transaction Id re­
turned by the API. This Id
is used to inquire about the
status of taking the Act.

lpError LPERRCODE Error code returned by the
server.

Return Value
The unique transaction Id generated by the server is

returned. The application calling the transaction API,
AWSTACTINWF can use this Id to inquire about the status
of the Act. The API call to be used is AWSTACTSTA­
TUSQUERY.
AWSTACTSTATUSQUERY
Description

This function gets the status of the Act requested by the
AWEA via the transaction API call AWSTACTINWF. The

10 Name Type Description

15

20

25

30

35

lTxid

szSTFProcName

szSTFTxName

szSTFUserName

lpError

Return Value

!DEN Unique Transaction Id
returned by the API -
AWSTACTINWF. This Id is to be
used to identify the Act
being inquired about.

STRING Only the transaction calls
made via STF Processor will
get back the corresponding
!d. Workflow applications
which directly use the
Transaction API can ignore
this parameter.

STRING Only the transaction calls
made via STF Processor will
get back the corresponding
!d. Workflow applications
which directly use the
Transaction API can ignore
this parameter.

STRING Only the transaction calls
made via STF Processor will
get back the corresponding
!d. Workflow applications
which directly use the
Transaction API can ignore
this parameter.

LPERRCODE Error code returned by the
server. This indicates
whether the Act was taken
successfully or an error
occurred.

In case the call is made by a workflow application via an
40 STF Processor, then the szSTFProcName, szSTFTxName

and the szUserName are returned along with Error (which
indicates the status of the Act). If the call is made by an
application directly, then the Application needs to check
only the error code.

45 AWSTBINDAPPDATA
Description

Binds data to a business process or workflow instance.
Application data can be attached or bound to a business
process or workflow. Later this information can be retrieved.

50 The data field name and data value are supplied. Data type
is specified at definition time. Any number of data items may
be bound. When data is bound to the business process, the
workflow name is specified by NULL.
Syntax

55 VOID FAR PASCAL AWSTBINDAPPDATA (BPTID
lBPTid, STRING szWFName, STRING
szParticipantN arne, INT iFields, LPTXBDFIELD­
STRUCT lpTxBDFieldStructPtr, LPERRCODE lpError)

60

Parameters

Name Type Description

Status indicates whether the act was taken successfully or an 65 lBPTid

error occurred. In case of an error, a diagnostic error code
BPTID Business Process

Transaction !d. The

will be returned.

55

-continued

Parameters

Name Type

szWFName STRING

szParticipantName STRING

iFields !NT

lpTxBDFieldStructPtr LPTXBDFIELDSTRUCT

6,073,109

Description

Id of a previously
instantiated BP.
The name of the
workflow in which
to bind the data.
The workflow name
is specified as
NULL if data is to
be bound to the
business process.
Identity of the
person requesting
binding of
application data.
The number of
fields to bind with
the workflow
A pointer to a
array of structures
containing the
field name, type,
size and the field
value. The
structure
BDFIELDSTRUCf
contains an element
of type
ATTRIBUTES.
This parameter will

5 Name

WFRole

10
szParticipantName

lpiFieldsPtr

15
bFileOrMemory

lpBDFieldStructPtr

20

25

56

-continued

Parameters

Type

WFROLE

STRING

LPINT

BOOL

LPBDFIELDSTRUCf

Description

The WFRole of the
participant. This need only
be specified if the
participant has more than
one role in the workflow.
The name of the person or
identity requesting
Application Data associated
with the workflow.
The number of bound data
field to be retrieved.
Flag to indicate File or
Memory mode of receipt of
data from the API.
A pointer to an array of
structures, where the field
name, type and the field
values are returned. The
structure
ADFIELDSTRUCf
contains an element of type
ATTRIBUTES. This
parameter is to be ignored
by the Application. The
API returns the list of
attributes if
bFileOrMemory

be ignored by the 30

is ITS MEMORY
Application Data fields
defined as HIDDEN for the
particular WFRole,
requesting Participant, and
current workflow state are
returned as NULL strings.
File name where the API
should deposit the results of
the call if the flag
bFileOrMemory is
ITS_FILE.

lpError LPERRCODE

Return Value
Data is bound to the workflow.

AWSTGETAPPDATA
Description

API.
Error code returned
by the server.

A set of data fields and values are returned corresponding

szFileName

35

lpError

STRING

LPERRCODE Error code returned by the
server.

to the data fields bound to a workflow instance. The number 40

of fields and for each field the field name, type and its value
are returned.
Syntax
VOID FAR PASCAL AWSTGETAPPDATA (BPTID

lBPTid, STRING szWFName, STRING szFormName,
WFROLE WFRole, STRING szParticipantName, LPINT
lpiFieldsPtr, BOOL bFileOrMemory, LPADFIELD­
STRUCT lpADFieldStructPtr, STRING szFileName,
LPERRCODE lpError)

Name

lBPTid

szWFName

szFormName

Parameters

Type Description

BPTID Business Process
Transaction !d. The Id of a

STRING

STRING

previously instantiated BP.
The name of the workflow
from which to retrieve
bound data. The workflow
name should be set to
"GLOBALBPDATA"" to
retrieve business process
bound data.
The form name is returned.
This was stored along with
the bound data.

Return Value

lpiFields contains the number of fields retrieved.
45 BDFieldStruct contains the field name, field type and field

value for all the fields retrieved.

AWSTGETAPPDATAFIELDATTRIBUTES

50 Description

This functions returns the list of application data field
names and their attributes for a specified act or state for a
specific workflow of a Business Process. The attributes

55 returned are Read-Only, Editable and Hidden. These
attributes are Boolean.

Syntax

60
VOID FAR PASCAL

AWSTGETAPPDATAFIELDATTRIBUTES(BPTID
lBPTid, STRING szWFName, BOOL bActORState,
ACTSTATE ActOrState, STRING szFormName,
STRING szParticipantName, WFROLE WFRole, LPINT

65 lpiFields, LPFLDNAMEATTR IpFldNameAttr, BOOL
bFileOrMemory, STRING szFileName, LPERRCODE
lpError)

6,073,109
57

Parameters

Name Type

lBPTid BPTID

szWFName STRING

bActOrState BOOL

ActOrS tate ACTS TATE

szFormName STRING

szParticipantName STRING

WFRole WFROLE

lpiFieldsPtr LPINT

Description

Business Process
Transaction !d. The Id
of a previously
instantiated BP.
The Transaction Id of
the workflow from
which to retrieve field
attributes of the bound
data.
Boolean flag to
indicate the type of the
ACTS TATE
parameter.
The field attributes
specified for this act
or state are returned.
The form name is
returned. This was
stored along with the
bound data.
The name of the
person or identity
requesting Field
Attributes of the
Application Data
associated with the
workflow.
The workflow role of
the identity.
The number of bound
data fields for which
the attributes are
returned.

lpWFMomentBDField LPWFMOMENTBDFIE- A pointer to a array of
LDSTRUCT structures containing

5 Name

lBPTid

szWFName
10

szParticipantName

WFRole

15

lpCurrent

Type

BPTID

STRING

STRING

WFROLE

LPINT

58

Parameters

Description

Business Process Transaction Id.
The Id of a previously
instantiated BP.
The workflow name whose status
is desired
The status of the workflow is
returned with respect to this
Identity.
The WFRole of the participant.
This field is only required if the
participant is both customer and
performer.

20
lpStatusPtr LPSTATUS

The current status - CLEAR i.e.:,
no Acts in the queue waiting to be
serviced or PENDING i.e .. , some
acts are in the queue yet to be
serviced.
The STATUS structure contains

lpError
25

Return Value

LPERRCODE

the Status String and various
Completion and Reply dates. These
dates depend on the role of the
Identity.
Error code returned by the server.

Structure Status contains the status of the specified work­
flow.

30 Element Status.StatusString contains the string describing
the current state of the workflow.

The following Completion and Reply dates are returned:

the field name and 35

bFileOrMemory BOOL

szFileName STRING

lpError LPERRCODE

Return Value

field attributes.
Flag to indicate File or
Memory mode of
receipt of data from
the API.
File name where the
API should deposit the
results of the call if
the flag
bFileOrMemory is
ITS FILE.
Error code returned by
the server.

40

Customer

Completion requested
Reply due to Performer
Completion due by Performer
Reply due by Performer

Performer

Completion due
Rep! y due to Customer
Completion requested by Customer
Reply due by Customer

Not all dates are returned, depending on the present state
of the workflow the relevant dates are returned.
AWSTAVAILABLEACTS

45 Description
Returns a structure that contains the list of available acts

in the specified workflow for the role that the participant has
in the workflow.

lpiFieldPtr is updated with the number of fields for which
50

the field attribute is returned.

Syntax
VOID FAR PASCAL AWSTAVAILABLEACTS(BPTID

lBPTid, STRING szWFName, WFROLE WFRole,
STRING szParticipantName, BOOL cDialog, BOOL
bFileOrMemory, LPINT lpiCountPtr, STRING szFileName,
LPACTINFO ActPtr, LPERRCODE lpError)

FieldStruct contains the field attributes for the specified
act.

AWSTSTATUS

Description

This function returns status of the workflow instance for
a specific participant. The state of the workflow, the current
incompletions with the dates, etc. Information is returned in
the STATUS structure.

Syntax

VOID FAR PASCAL AWSTSTATUS(BPTID IBPTid,
STRING szWFN arne, STRING szParticipantN arne,
WFROLE WFRole, LPINT lpcurrent, LPSTATUS
lpStatusPtr, LPERRCODE lpError)

55

60 Name

lBPTid

szWFName

65 WFRole

Type

BPTID

STRING

WFROLE

Parameters

Description

Business Process Transaction Id.
The Id of a previously instantiated
BP.
The name of the workflow whose
status is desired
The workflow role of the identity.
This field is only required if the

6,073,109
59

-continued

Parameters

Name Type Description

participant is both customer and
performer in the workflow.

szParticipantName STRING The name of the person or identity
for which the list of available acts
is returned.

cDialog BOOL If cDialog is TRUE, then a dialog
box is presented to the user to
select a specific act. In this case,
the list of available actions
returned by this function will be
the selected one. If cDialog is
FALSE, then no dialog box is
presented and all available
acts are returned.

bFileOrMemory BOOL Flag to indicate File or Memory
mode of receipt of data from the
API.

lpiCountPtr LPINT Number of acts returned in the
structure

szFileName STRING File name where the API should
deposit the results of the call if
the flag bFileOrMemory is
ITS FILE.

lpActPtr LPACTINFO A pointer to an array of structures
which contains the list of acts,
i.e., Act Names, user-defined
names for the acts.

lpError LPERRCODE Error code returned by the server.

5 Name

WFRole

10

szBPName

15

szStartDate,
szEndDate

20

bPending

25

60

-continued

Parameters

Type

WFROLE

STRING

Description

The workflow role of the
identity. This field is only
required if the participant is
both customer and
performer or is an observer
in the workflow.
The workflows are selected
only for the specified
BPName. If BPName is
NULL, then relevant
workflows are selected
regardless of the business
process.

DATETIMESTRING These dates specify a date
range of due dates for
which the list is
constructed. If StartDate is
NULL then the list
includes all relevant
workflows.

BOOL If Pending is TRUE then
the list work:flows includes
only those workflows
where action is pending.
The workflows which
needs to be initiated are
also included. Otherwise it
includes work:flows where
action is not pending.

30 cDialog BOOL If cDialog is TRUE, then

Return Value

lpiCountPtr is updated with the number of possible acts
the Identity can take in the current workflow. The structure
array passed is filled with the Acts Names and user-defined
names.
AWSTQUERYWF

Description

35

This function returns the list of workflows that the named
person or identity has as a specific Organization Role. The 40
list of workflows is selected from the set of instantiated
business processes that have the same business process
name. The workflow status for each workflow is returned.

Syntax

bFileOrMemory

szFileName

BOOL

STRING

a dialog box is presented to
the user to select a specific
workflow. In this case, the
list of workflows returned
by this function will be
the selected one.
If cDialog is FALSE, then
no dialog box is presented
and all available workflows
are returned.
Flag to indicate File or
Memory mode of receipt of
data from the API.
File name where the API
should deposit the results of
the call if the flag
bFileOrMemory is
ITS_FILE.

45 lpiCount VOID FAR PASCAL AWSTQUERYWF(STRING
szParticipantN arne, STRING szOrgRole, WFROLE
WFRole, STRING szBPName, DATETIMESTRING
szStartDate, DATETIMESTRING szEndDate, BOOL
bpending, BOOL cDialog, BOOL bFileOrMemory,
LPINT lpiCount, STRING szFileName, LPWFSNAP- 5o

SHOT lpWFSnapShot, LPERRCODE lpError)

LPINT Returns the count of
workflows selected.

Parameters

Name Type

szParticipantName STRING

szOrgRole STRING

Description

The participant for which
the list of workflows is
returned.
The organization role of the
participant. Only workflows
that have this specific
OrgRole are selected. If
OrgRole is specified as
NULL then all workflows
are selected regardless of
the role.

55

60

65

lpWFSnapShot LPWFSNAPSHOT

lpError LPERRCODE

Return Value

Pointer to a list of selected
workflows. Each workflow
includes Business Process
name & Id, Workflow
name, Customer,
Performer, Completion and
Reply Dates, Status
and Form name
Error code returned by the
server.

lpiCount, the number of workflows in the list.

lpWFList points to a list of WFLIST structures.

The structure returns several dates depending on role of
the Identity.

6,073,109
61 62

Customer Performer Parameters

Completion requested Completion due 5 Name Type Description
Reply due to Performer
Completion due by Performer
Reply due by Performer

Reply due to Customer --------------------------
Completion requested by Customer szParticipantName STRING The participant for which

the list of Acts taken is
returned.

Reply due by Customer

lBPTid

Not all dates are returned, depending on the present state 10 szWFName

of the workflow the relevant dates are returned

BPTID
STRING

Business Process id
The workflow name for
which the list of acts
taken is returned. If no
name is specified, i.e.,
the string is null, then
the act history for the
entire Business Process
is returned.

AWSTAVAILABLEBP

Description

This function returns a list of BP Names. 15

Syntax

VOID FAR PASCAL AWSTAVAILABLEBP(STRING
szParticipantN arne, BOOL cDialog, INT iBPStatus,
LPINT lpiCount, BOOL bFileOrMemory, LPBPINFO
lpBPinfo, STRING szFileName, LPERRCODE lpError) 20

Parameters

lpiCount

bFileOrMemory

szFileName

LPINT

BOOL

STRING

Pointer to an integer.
The function returns
number of Acts returned.
Flag to indicate file or
memory mode of receipt of
data from the API.
File name where the API
should deposit the
results of the call if
the flag bFileOrMemory is
ITS_FILE.

Name Type Description
25 lpActsList LPACTSTAKENLIST Pointer to

ACTSTAKENLIST

szParticipantName

cDialog

iBPStatus

lpiCount
bFileOrMemory

lpBP!nfo

szFileName

lpError

Return Value

STRING

BOOL

!NT

LPINT
BOOL

LPBPINFO

STRING

LPERRCODE

The participant for which the list
of BPs is returned.
If cDialog is TRUE, then a dialog
box is presented to the user to
select a specific BP. In this case,
the list of BPs returned by this
function will be the selected one.
If cDialog is FALSE, then no
dialog box is presented and all
available BPs are returned.
Indicate the iBPStatus required.
ACTIVE_BPS select only
active BPs. The flag INACTIVE
selects all BPs in the definition
database.
The number of BPs returned.
Flag to indicate file or memory
mode of receipt of data from the
API.
A pointer to an array of BPINFO
structures that contain the business
process name and Id.
File name where the API should
deposit the results of the call if
the flag bFileOrMemory is
ITS FILE.
Error code returned by the server.

lpiCount, the number of workflows in the list.

BPListPtr points to a linked list of BPINFO structures that
contain the Business Process Name & Id.

AWSTACTHISTORY

Description

This call returns a list of Acts taken in the specified
business process for a specific workflow. If workflow name

lpError

30 Return Value

LPERRCODE Error code returned by
the server.

lpiCount, the number of Acts in the list.
lpActsList points to a list of ACTS TAKEN structures that

contain Business Process Name & id, Workflow Name & id,
Act N arne & id, Act Date and the ParticipantN arne who took
the act.

35 AWSTGETNSTRING
Description

The notification string for the event is retrieved. If no such
string is present for the workflow then default string asso­
ciated with the Business Process is retrieved. If no default

40 string is present then a null string is returned.
Syntax
VOID FAR PASCAL AWSTGETNSTRING(BPTID

lBPTid, STRING szWFName, EVENT
NotificationEvent, STRING szNotificationString, LPER-

45 RCODE lpError)

50 Name

lBPTid
szWFName
NotificationEvent

55 szNotificationString

lpError

Parameters

Type

BPTID
STRING
EVENT

STRING

LPERRCODE

Description

Business Process id
Workflow name.
This parameter specifies the
event
The notification string
returned.
Error code returned by the
server.

Notification Events
is NULL, then the history of the entire business process, i.e.,

60
list of all acts taken of all workflows is returned. Event Notification Type

Syntax
VOID FAR PASCAL AWSTACTHISTORY(STRING

szParticipantName, BPTID lBPTid, STRING
szWFName, LPINT lpiCount, BOOL bFileOrMemory, 65

STRING szFileName, LPACTSTAKENLIST lpActsList,
LPERRCODE lpError)

Performer Response past due
Performer Completion past due
Performer Completion coming due
Customer Response past due
Act taken

Follow-up
Follow-up
Reminder
Follow-up
Act

6,073,109
63

Return Value

szNotificationString will contain the notification string

AVVSTPOLLSTFQUEUE

Description

This call returns the notification event to the STF Pro­
cessor. If the notification event is "Act Taken", then the
parameter lpTxid will contain the transaction Id of the Act.

Syntax

VOID FAR PASCAL AVVSTPOLLSTFQUEUE(STRING
szSTFProcessorName, LPIDEN lpBPTid, STRING
szVVFName, LPINT lpEvent, LPIDEN lpTxid, STRING
szP articip an tN arne, DATE TIMES TRING
szComple tion Time, DATE TIMES TRING
szNotificationTime, LPERRCODE lpError)

Parameters

Name Type

szSTFProcessorName STRING
lpBPTid LPIDEN

szWFName STRING

lpEvent LPINT

lpTxld LPIDEN

szParticipantName STRING

szCompletionTime DATETIMESTRING

Description

STF Processor Name
BPTid of the BP instance
which has some
notification to be sent
to the application.
WFName of the WF
instance
The Event Id is returned
here.
Txld of the Act if Event
is "Act Taken""
The participant's name is
returned.
Completion date & time
is returned. This is the
date and time when the
event was due. For
example, the instance
when Performer
Response is due.

szNotificationTime DATETIMESTRING Notification date & time

lpError LPERRCODE

Notification Events

Event

Performer Response past due
Performer Completion past due
Performer Completion coming due
Customer Response past due
Act taken

Return Value

AVVSTNUMAVAILABLEACTS

Description

is returned. This is the
instant when this
notification was placed
in the STF queue.
Error code returned by
the server.

Notification Type

Follow-up
Follow-up
Reminder
Follow-up
Act

64

Parameters

5 Name Type Description

lBPTid BPTID Business Process
Transaction !d. The Id of a
previously instantiated BP.

szWFName STRING The name of the workflow
10 whose status is desired

WFRole WFROLE The workflow role of the
identity.

szParticipantName STRING The participant for which
the list of available acts
is returned.

15 lpiCountPtr LPINT Number of acts returned in
the structure

lpError LPERRCODE Error code returned by the
server.

20 Return Value

lpiCount is updated with the number of possible acts the
Identity can take in the current workflow.

AVVSTGETNUMAPPDATA

25 Description

Number of data fields are returned corresponding to the
data fields bound to a workflow instance.

Syntax

30 VOID FAR PASCAL AVVSTGETNUMAPPDATA (BPTID
lBPTid, STRING szVVFTName, VVFROLE VVFRole,
STRING szParticipantName, LPINT lpiFieldsPtr, LPER­
RCODE lpError)

35

Parameters

Name Type Description

40 lBPTid BPTID Business Process Transaction
!d. The Id of a previously
instantiated BP.

szWFName STRING The name of the workflow from
which to retrieve bound data.
The transaction id should be

45 null to retrieve business
process bound data.

WFRole WFROLE The WFRole of the Identity
szParticipantName STRING The name of the person or

identity requesting
Application Data associated

50
with the workflow.

lpiFieldsPtr LPINT The number of bound data
field retrieved.

lpError LPERRCODE Error code returned by the
server.

55
Return Value

lpiFields contains the number of fields retrieved.

AVVSTNUMAVAILABLEBP

Returns number of available acts in the specified work- 60

flow for the role that the identity has in the workflow.
Description

This function returns the number of BPs that satisfy a
query. Syntax

VOID FAR PASCAL AVVSTNUMAVAILABLEACTS
(BPTID lBPTid, STRING szVVFName, VVFROLE
VVFRole, STRING szParticipantName, LPINT
lpiCountPtr, LPERRCODE lpError)

Syntax

65 VOID FAR PASCAL AVVSTNUMAVAILABLEBP
(STRING szParticipantName, INT iBPStatus, LPINT
lpiCount, LPERRCODE lpError)

6,073,109
65

Parameters

Name Type Description

szParticipantName STRING The participant for which the
list of BPs is returned.

iBPStatus !NT Indicate the iBPStatus
required. ACf!VE_BPS only can
be selected or all BPs in the
definition could be selected.

lpiCount LPINT The number of BPs returned.
lpError LPERRCODE Error code returned by the

server.

Return Value

lpiCount, the number of workflows in the list.

AWSTNUMACTHISTORY

Description

This call returns the number of Acts taken in the specified
business process for a specific workflow. If workflow Id is
NULL, then the history of the entire business process, i.e.,
the number of all acts taken of all workflows is returned.

Syntax

66

Parameters

5 Name Type

10

15

20

25

szParticipantName STRING

szOrgRole

szBPName

szStartDate
szEndDate

bPending

STRING

STRING

DATETIMESTRING
DATETIMESTRING

BOOL

Description

The participant for which
the list of workflows is
returned.
The organization role of the
participants. Only work­
flows that have this specific
OrgRole are selected. If
OrgRole is specified as
NULL then all workflows
are selected regardless of
the role
The workflows are selected
only for the specified
BPName. If BPName is
NULL, then relevant
workflows are selected
regardless of the business
process.
StartDate for query list.
End Date for query list.
These dates specify a date
range of due dates for
which the list is
constructed. If StartDate is
NULL then the list includes
all relevant workflows.

VOID FAR PASCALAWSTNUMACTHISTORY(STRING
szParticipantName, BPTID lBPTid, STRING

30
szWFName, LPINT lpiCount, LPERRCODE lpError)

If Pending is TRUE then
the list work:flows includes
only those workflows
where action is pending.
The workflows which needs
to be initiated are also
included. Otherwise it
includes work:flows where
action is not pending.
Returns the count of
workflows selected.

Parameters

Name Type Description

szParticipantName

lBPTid
szWFName

lpiCount

lpError

Return Value

STRING

BPTID
STRING

LPINT

LPERRCODE

The participant for which
the list of Acts taken is
returned.
Business Process id
The workflow name for which
the list of acts taken is
returned. If no name is
specified, i.e., the string
is null, then the act
history for the entire
Business Process is
returned.
Pointer to an integer. The
function returns number of
Acts returned.
Error code returned by the
server.

lpiCount, the number of Acts in the list.

AWSTNUMQUERYWF

Description

This function returns number of workflows that a partici­
pant is a member of as a specific Organization Role.

Syntax

VOID FAR PASCAL AWSTNUMQUERYWF(STRING
szParticipantN arne, STRING szOrgRole, STRING
szBPName, STRING szStartDate, STRING szEndDate,
BOOL bpending, LPINT lpiCount, LPERRCODE
lpError)

35 lpiCount LPINT

40

45

50

55

ipWFSnapShot LPWFSNAPSHOT Pointer to a list of selected
workflows. Each workflow
includes Business Process
name & Id, Workflow

ipError LPERRCODE

Return Value

name & Id, Customerld,
Performerld, Completion
and Rep! y Dates, Status and
form name
Error code returned by the
server.

lpiCount, the number of workflows in the list.

Customer

Completion requested
Reply due to Performer
Completion due by Performer
Reply due by Performer

Performer

Completion due
Rep! y due to Customer
Completion requested by Customer
Reply due by Customer

Not all dates are returned, depending on the present state
of the workflow the relevant dates are returned.
AWSTSETCOS
Description

60 This function specifies the Conditions of Satisfaction
(COS) associated with a workflow of a Business Process
Instance. The COS is inserted as a series of memory blocks.
This function requires the Business Process context and
workflow to be setup before execution.

65 Syntax
VOID FAR PASCAL AWSTSETCOS (IDEN lBPTid,

STRING sztJFName, LPMEM lpCOS, LPINT

6,073,109
67

lpiMemBlockSize, INT iPositionNotify, LPERROR­
CODE lpError)

Name

lBPTid

szWFName
lpCOS

lpiMemBlockSize

iPositionNotify

lpError

Return Value
AWSTGETCOS
Description

Parameters

Type

BPTID

STRING
LPMEM

LPINT

!NT

LPERRORCODE

Description

Business Process Transaction
!d. The Id of a previously
instantiated BP.
The name of the workflow.
Pointer to a memory chunk
which stores COS (BLOB).
Memory allocated for storing
COS in bytes.
This variable identifies the
first COS buffer, subsequent
COS buffers and the last one.
It should be set to 0 to
identify first buffer, 1 to
identify subsequent buffers.
Error code returned.

68

Parameters

5 Name Type Description

lBPTid BPTID Business Process Transaction Id.
The Id of a previously
instantiated BP.

szWFName STRING The workflow name for which the
10 transaction id is required

1pWFTid LPIDEN The Transaction Id of the workflow
is returned.

1pError LPERRCODE Error code returned.

15 Return Value
Workflow Definitions API
AWSDBEGINBP
Description

This call creates a new Business Process. The Business

20
Process name is specified as a parameter. The Business
Process name should be unique. If a Business Process with
the same name is present, the current definition is overwrit­
ten as a new version. This takes place only if there are no
active instances of the current business processes. The
version number is maintained internally by the server.

The function gets the COS associated with the specified 25

workflow of a Business Process. The COS is returned as a
The AWSDBeginBP should be the first call when defining

a business process and no other AWSDBeginBP call should
be in progress. Every AWSDBeginBP has to be closed by a
AWSDEndBP call. The AWSDEndBP should be the last call
and ends the definition of a business process.

series of memory blocks. The memory block pointer and the
block size allocated is passed to this function and the number
of bytes actually written in the memory block is returned.
For the first call, the contents of the variable pOffset must be 30

set to zero (0). This indicates the start of the memory block
transfers. The caller will be notified with a negative value in
the Offset variable to indicate end of the block transfers.

AWSDBeginBP sets up a context for the business process
and all subsequent calls require this context. The AWS­
DEndBP closes this context.
Syntax

Syntax
VOID FAR PASCAL AWSTGETCOS (IDEN lBPTid, 35

STRING szWFName, LPMEM lpCOS, LPINT
lpiMemBlockSize, LPLONG lpOffset, LPERRORCODE
lpError)

VOID FAR PASCAL AWSDBEGINBP(STRING
szBPName, IDEN lBPAdmin, LPERRCODE lpError)

Parameters

Name

lBPTid

szWFName
1pCOS

lpiMemBlockSize

lpOffset

lpError

Return Value

Parameters

Type

BPTID

STRING
LPMEM

LPINT

LPLONG

LPERRCODE

Description

Business Process Transaction Id.
The Id of a previously
instantiated BP.
The name of the workflow.
Pointer to a memory chunk which
stores COS (BLOB).
Memory allocated for storing COS
in bytes.
Initially, the caller must set
this to zero. Each block
transfer changes the value
contained in this variable and
the caller can only check the
value returned here. This will
be negative if end is reached.
Error code returned.

Number of bytes actually written.
Description

This function returns the workflow transaction id of a
workflow in a business process instance.
Syntax
VOID FAR PASCAL AWSTGETWFTID (IDEN lBPTid,

STRING szWFName, LPIDEN lpWFTid, LPERROR­
CODE lpError)

40 Name Type

szBPName STRING

45

1BPAdmin !DEN

50

1pError LPERRCODE

55 Return Value
Error code is returned.

AWSDENDBP
Description

Description

The Business Process name.
This name should be unique.
If a business process with
the same name is present, the
current definition is over
written as a new version.
There should be no active
instances of the current
definition for this to occur.
The Identity of the person
creating this business
process. The Identity should
have the rights to create
business processes.
Error code returned.

Close the currently open business process. A call to
60 AWSDENDBP should be preceded by a call to AWSDBE­

GINBP.
AWSDENDBP should be the last call peahen defining a

business process. Every AWSDBEGINBP has to be closed
by a AWSDENDBP. The AWSDENDBP should be the last

65 call and ends the definition of a business process. The
AWSDENDBP closes the context set up by AWSDBE­
GINBP.

6,073,109
69

Note: AWSDENDBP should be called only after a AWS­
DENDWF call has been made.
Syntax
VOID FAR PASCAL AWSDENDBP(LPERRCODE

lpError)

Parameters

Name Type Description

1pError LPERRCODE Error code returned.

Return Value
Error code is returned.

AWSDDELETEBP
Description

Deletes a Business Process. The delete is successful only

5

10

70
Return Value

Error code is returned.
AWSDBEGINWF
Description

Creates a new workflow in a Business Process. The
workflow name is specified as a parameter. The workflow
name should be unique. If a workflow with the same name
is present, then the context for this workflow is set up.

The AWSDBEGINWF should be the first call when
defining a workflow and no other AWSDBEGINWF call
should be in progress. Every AWSDBEGINWF has to be
closed by a AWSDENDWF call.

AWSDBEGINWF sets up a context for the workflow and
15 all subsequent workflow calls require this context. The

AWSDENDWF closes this context.
Syntax

if the Business Process has no active instances in the activity
database. This function is used to remove business processes 20

no longer in use. This function is called only if the business
process is not in progress.

VOID FAR PASCAL AWSDBEGINWF(STRING
szWFName, LPERRCODE lpError)

Syntax
VOID FAR PASCAL AWSDDELETEBP(STRING

szBPName, IDEN lBPAdmin, LPERRCODE lpError)

Parameters

Name Type

szBPName STRING

1BPAdmin !DEN

1pError LPERRCODE

Return Value
Error code is returned.

AWSDSETBPBOUNDDATA
Description

Description

The name of the business
process to delete. There
should be no active instances
for this BPName.
The Identity of the person
deleting this business
process. The Identity should
have the rights to delete
this business processes.
Error code returned.

Define the list of bound data fields associated with the
business process. The field name, type, size, attributes and
initial value, if any, are specified.
Syntax

25
Name Type

szWFName STRING

1pError LPERRCODE

Parameters

Description

The workflow name. This name
should be unique.
Error code returned.

30 Return Value

Error code is returned.
AWSDENDWF
Description

35 Close the currently open workflow. A call to AWS-
DENDWF should be preceded by a call to AWSDBE­
GINWF.

The AWSDENDWF should be the last call when defining
a workflow. Every AWSDBEGINWF has to be closed by a

40 AWSDENDWF call. The AWSDENDWF should be the last
call and ends the definition of a workflow. The AWS­
DENDWF closes the context set up by AWSDBEGINWF.

Syntax

VOID FAR PASCAL AWSDENDWF(LPERRCODE
45 lpError)

Parameters
VOID FAR PASCAL AWSDSETBPBOUNDDATA(INT 5o

iFields, LPBDFIELDSTRUCT lpBDFieldStructPtr,
LPERRCODE lpError)

Name

1pError

Type Description

LPERRCODE Error Code returned.

Name

iFields

1pBDFieldStructPtr

1pError

Parameters

Type Description

!NT The number of fields to
attach with the business
process.

LPBDFIELDSTRUCT A pointer to an array of
structures containing
field name, type, size,
attributes and initial
value, if any.

LPERRCODE Error code returned.

55 Return Value
Error code is returned.

AWSDSETWFINFO

Description

60
Specify workflow information. The workflow type, the

organization role for the customer and performer, the time
offsets for completion and reply are specified. This call must
be made only after AWSDBEGINWF is called.

Syntax

65 VOID FAR PASCAL AWSDSETWFINFO(WFTYPE
WFType, BOOL bCentralWF, IDEN !Customer, IDEN
Performer, LPERRCODE IpError)

6,073,109

Name

WFrype

bCentralWF

1Customer

1Performer

1pError

Return Value

71

Parameters

Type Description

WFTYPE This specifies the type of
workflow, i.e., Request or
Offer or Note.

BOOL Flag to indicate if this
workflow is the central
workflow of the Business
Process. This flag is TRUE if
it is the central workflow,
FALSE otherwise.

ORGROLEID

ORGROLEID

LPERRCODE

The Organization Role of the
Customer.
The Organization Role of the
Performer.
Error code returned.

Error code is returned.
AWSDSETWFCYCLETIME
Description

Set the various cycle times associated with the workflow.
Depending on the workflow type-Request or Offer, the
response time for each act of the workflow may be specified.
The table below enumerates the various times that can be
stored.

Read table below as:

<OrgRolel> must <Actionl> [after <0rgRole2> <Action2>]within time
<time>

S1. OrgRole1 Action1 OrgRole2 Action2

For Request type workflow:

Customer Request
2 Performer Respond Customer Request
3 Performer Complete Customer Request
4 Customer Respond Performer Declares completion

For Offer type workflow:

Performer Offer
2 Customer Respond Performer Offer
3 Performer Complete Customer Agreement
4 Customer Respond Performer Declares completion

Note: The call must be made only after function AWSDSETWFINFO is
called.

Syntax

Return Value
Error code is returned.

AWSDDISABLEWFACT
Description

72

5 Disable a set of workflow acts for a specific workflow
role. By default all acts are enabled for a workflow. This call
facilitates disabling specific acts. This call must be made
only after a call to AWSDBEGINWF.
Syntax

10 VOID FAR PASCAL AWSDDISABLEWFACT(WFROLE
WFRole, INT iCount, LPACTINFO ActPtr, LPER­
RCODE lpError)

15

20

25

30

Parameters

Name Type Description

WFRole WFROLE The Workflow Role for which
the acts are to be disabled.

iCount !NT The number of acts to
disable.

ActPtr LPACTINFO A pointer to an array of
structures which contains the
list of acts to disable. The
number of acts is specified
by parameter nCount

1pError LPERRCODE Error code returned.

Return Value
Error code is returned.

AWSDSETACTUSERDEFINEDNAME
Description

Set the user-defined description for the workflow Acts.
The list of acts and the equivalent user-defined names are

35 provided. This call must be made only after a call to
AWSDBEGINWF.

40

45

Syntax
VOID FAR PASCAL

AWSDSETACTUSERDEFINEDNAME(INT iCount,
LPACTINFO ActPtr, LPERRCODE lpError)

Name Type

iCount !NT

ActPtr LPACTINFO

Parameters

Description

The number of acts for which
the user-defined name has
been provided.

VOID FAR PASCAL AWSDSETCYCLETIME 5o

(LPCYCLETIME lpCycleTime, LPERRCODE lpError)

A pointer to an array of
structures which contains the
list of acts, i.e., Act Names
and user-defined Names for
the acts.

Name

1 pCycleTime

1pError

Parameters

Type

LPCYCLETIME

LPERRCODE

Description

Pointer to an array of time
offsets. Depending on the
workflow type the array
elements refer to different
times are listed in the
tables above. Since the
number of cycle times for
each workflow type is known,
the count is not required.
Error Code returned.

55

1pError LPERRCODE Error code returned.

Return Value
Error code is returned.

AWSDSETSTATEUSERDEFINEDNAME
Description

60 Set the User-defined description for the workflow states.
The list of states and the equivalent user-defined names are
provided. This call must be made only after a call to
AWSDBEGINWF.
Syntax

65 VOID FAR PASCAL
AWSDSETSTATEUSERDEFINEDNAME(INT iCount,
LPSTATEINFO StatePtr, LPERRCODE lpError)

6,073,109
73

Parameters

Name Type

iCount !NT

StatePtr LPSTATEINFO

lpError LPERRCODE

Return Value
Error code is returned.

AWSDSETACTSCRIPT
Description

Description

The number of states for
which the user-defined name
has been provided.
A pointer to an array of
structures which contains the
list of states, i.e., State
Names and user-defined names
for the states.
Error code returned.

Set the workflow script for an Act. The act and the script
text are the parameters to this function. This call must be
made only after a call to AWSDBEGINWF.
Syntax
VOID FAR PASCAL AWSDSETACTSCRIPT(ACT Act,

LPMEM lpActScript, BOOL bScriptType, LPINT
lpiMemBlockSize, INT iPositionNotify, ERRORCODE
&Error)

Parameters

Name Type

Act ACT

lpActScript LPMEM

bScriptType BOOL

lpiMemBlockSize LPINT

iPositionNotify !NT

lpError LPERRCODE

Return Value
Error code is returned.

Description

The type of act, e.g.,
Request, Agree, etc.
The workflow script
associated with the act. The
script is executed when the
corresponding act in the
workflow is executed.
Script Type is a Boolean flag
which indicates whether the
script is System generated or
user generated.
Size of the memory block in
bytes.
This variable identifies the
first script buffer,
subsequent buffers and the
last one. It should be set to
0 to identify first map
buffer, 1 to identify
subsequent map buffers and to
2 to indicate last buffer.
Error code returned.

Act script added to the workflow.
AWSDSETSTATESCRIPT
Description

Set the workflow script for a State. The state and the script
text are the parameters to this function. This call must be
made only after a call to AWSDBEGINWF.

Syntax

VOID FAR PASCAL AWSDSETACTSCRIPT(STATE
State, LPMEM lpStateScript, BOOL bScriptType, LPINT
lpiMemBlockSize, INT iPositionNotify, LPERROR­
CODE lpError)

5 Name Type

State STATE

lpStateScript LPMEM
10

bScriptType BOOL

15

lpiMemBlockSize LPINT

iPositionNotify !NT

20

74

Parameters

Description

The type of state, e.g.,
Initiate, Negotiation,
Completing, Satisfied, etc.
The workflow script associated
with the state. The script is
executed when the workflow
transits to the specified
state.
Script Type is a Boolean flag
which indicates whether the
script is System generated or
user generated.
Size of the memory block in
bytes.
This variable identifies the
first script buffer,
subsequent buffers and the
last one. It should be set to
0 to identify first map
buffer, 1 to identify
subsequent map buffers and to
2 to indicate last buffer.

lpError
25

LPERRCODE Error code returned.

Return Value
Error code is returned.
State script added to the workflow.

30
AWSDSETWFBOUNDDATAFIELDS
Description

Define the list of bound data fields associated with the
workflow. The field name, type, size, default attributes and
initial value, if any, are specified.
Syntax

35 VOID FAR PASCAL

40

45

50

55

AWSDSETWFBOUNDDATAFIELDS(INT iFields,
LPBDFIELDSTRUCT lpBDFieldStructPtr, LPER­
RCODE lpError)

Parameters

Name Type

iFields !NT

lpBDFieldStructPtr LPBDFIELDSTRUCT

lpError LPERRCODE

Return Value

Description

The number of fields to
attach with the
workflow.
A pointer to an array
of structures
containing field name,
type, size, default
attributes and initial
value, if any.
Error code returned.

The bound data fields are attached to the workflow.
Error code is returned.

AWSDSETWFBDFIELDATTRIBUTE
Description

Define the field attributes of bound data fields associated
60 with the workflow. The field attributes, Read-only, Editable,

Hidden and MustFill, may be specified for each Act and/or
State for a specific workflow role.

A call to AWSDSETWFBDFIELDATTRIBUTE must be
made only after calling AWSDSetWFBoundDataFields.

65 Syntax
VOID FAR PASCAL

AWSDSETWFBDFIELDATTRIBUTE(INT iFields,

6,073,109
76 75

LPWFMOMENTBDFIELDSTR UCT
lpWFMomentBDFieldStruct, LPERRCODE lpError)

A reminder may be sent before Completion or Reply is
due. The reminder is sent at a time interval specified before

------"Parameters

Name Type

iFields !NT

Description

The number of fields
to attach with the
workflow.

lpWFMomentBDFieldStruct LPWFMOMENTBDFIELDSTRUCf A pointer to an array

lpError LPERRCODE

of structures
containing field name,
Act or State, Workflow
Role and attributes.
The attributes are:
Read-only, Editable,
Hidden and MustFill.
Error code returned.

20

Return Value
Error code is returned.

the event is due. Reminders may be disabled. A reminder is
sent only once.

Syntax The attributes of the bound data fields are attached to the
workflow.
AWSDSETFORMINFO
Description

Specify workflow form names for Customer, Performer
and Observer.

25 VOID FAR PASCAL AWSDSETFOLLOWUP(BOOL
bPCFUFlag, TIMEOFFSET PCFUOffset, BOOL
bPCFURecur, INT iPCFUCount, BOOL bPRFUFlag,
TIMEOFFSET PRFUOffset, BOOL bPRFURecur, INT

Syntax
VOID FAR PASCAL AWSDSETFORMINFO(STRING 30

szCusForm, STRING szPerForm, STRING szObsForm,
STRING szinitForm, LPERRCODE lpError)

Name Type

szCusForm STRING

szPerForm STRING

szObsForm STRING

szlnitForm STRING

Parameters

Description

Form name for Customer of
workflow
Form name for Performer of
workflow
Form name for Observer of
workflow
!nit form name of the
workflow

lpError LPERRCODE Error code returned.

Return Value
Error code is returned.
Form names attached to the workflow

AWSDSETFOLLOWUP
Description

35

40

45

50

iPRFUCount, BOOL bCRFUFlag, TIMEOFFSET
CRFUOffset, BOOL bCRFURecur, INT iCRFUCount,
TIMEOFFSET PCRemOffset, BOOL bPCRemFlag,
BOOL bActNotifyFlag, LPERRCODE lpError)

Name

bPCFUFlag
PCFUOffset

bPCFURecur

iPCFUCount

bPRFUFlag

Parameters

Type Description

BOOL Performer completion follow-up flag.
TIMEOFFSET A follow-up message is sent

at an interval, specified by
PCFUOffset, after performer
completion is past due.

BOOL If enabled, recurring
notifications are sent at
every PCFUOffset interval as
many as PCFUCount times.

!NT Number of times the follow-up
notifications should be sent
after performer completion is
past due.
If this parameter is not
specified, and PCFUFlag is
set, then notifications are
sent till performer
completes.

BOOL Performer response follow-up
flag

Set up follow-up information associated with the work­
flow. The follow-up time offsets for Completion, Reply and
Reminder are specified. 55 PRFUOffset TIMEOFFSET A follow-up message is sent

at an interval, specified by
this parameter after
Performer reply is past due.

A follow-up is sent after the Completion is past due. It is
sent at the specified time interval after it is past due. If the
recurring flag for Completion is set, then till Completion,
follow-up messages are sent at every time interval specified.
The maximum number of times a follow-up notification is 60

sent could be set using this call.
A follow-up is sent after the Reply is past due. It is sent

at the specified time interval after it is past due. If the
recurring flag for Reply is set, then till Reply has been sent,
follow-up messages are sent at every time interval specified. 65

The maximum number of times a follow-up notification is
sent could be set using this call.

bPRFURecur

iPRFUCount

BOOL If enabled, recurring
notifications are sent at
every PRFUOffset interval as
many as PRFUCount times. If
PRFUFlag is set TRUE and
PRFUCount is not specified,
then follow-up messages are
sent until performer replies.

!NT Number of times the follow-up
notifications should be sent
after performer Completion is

6,073,109

Name

bCRFUFlag

CRFUOffset

bCRFURecur

iCRFUCount

Type

BOOL

77

-continued

Parameters

Description

past due.
If this parameter is not
specified, and PRFUFlag is
set, then notifications are
sent till performer
completes.
Customer response follow-up
flag

TIME OFFSET A follow-up message is sent
at an interval, specified by

BOOL

!NT

this parameter after customer
reply is past due.
If enabled, recurring
notifications are sent at
every CRFUOffset interval as
many as CRFUCount times.
Number of times the follow-up
notifications should be sent
after Customer Completion is
past due.
If this parameter is not
specified, and CRFUFlag is
set, then notifications are
sent till customer replies.

PCRemOffset TIMEOFFSET A reminder is sent at an
interval PCRemOffset before
Completion or Reply is due.

bPCRemFlag BOOL If this flag is enabled,
reminders are sent. If
disabled, no reminders are
sent.

bActNotifyFlag BOOL Indicates notification
status. If set to TRUE,
notification is enabled else
if set to FALSE, it is
disabled.

lpError LPERRCODE Error code returned.

Return Value
Error code is returned.
Follow-up information attached to the workflow

AWSDSETLINK
Description

Specify a in coming link to a workflow. For each link, the
source workflow name, triggering and triggered information

5

10

15

20

78

-continued

Parameters

Name

FActS tate

szTWFName

bTActOrState

TActState

lpError

Return Value

Type

ACTSTATEID

STRING

BOOL

ACTSTATE

LPERRCODE

Description

The act or state from where
the link starts.
The destination or "to"
workflow name. The name of
the workflow to which the
link is targeted.
Flag to indicate if it is an
Act or State link at
destination.
The act or state where the
link ends.
Error code returned.

Link information attached to the workflow
Error code is returned.

AWSDPUTMAP

Description

Associates a map file with the specified Business Process.
25 The map file is inserted as a series of memory blocks. This

function requires the business process context to be setup
before execution.

Syntax

VOID FAR PASCAL AWSDPUTMAP (LPMEM
30 lpMapMemPtr, LPINT lpiMemBlockSize, INT

iPositionNotify, LPERRCODE lpError)

35

Name Type

lpMapMemPtr LPMEM

40 lpiMemBlockSize LPINT

iPositionNotify !NT

Parameters

Description

Pointer to a memory block
containing map.
Size of the memory block in
bytes.
This variable identifies the

is provided. Triggering information constitutes whether the 45

link is anchored at an act or state and the act/state name.
Triggered information constitutes whether the link termi­
nates at an act or state and the act/state name.

lpError LPERRCODE

first map buffer, subsequent map
buffers and the last one. It
should be set to 0 to identify
first map buffer, 1 to identify
subsequent map buffers.
Error code returned.

Note: AWSDSETLINK must be called only after all
workflows have been created using AWSDBEGINBP.
Syntax
VOID FAR PASCAL AWSDSETLINK(STRING

szFWFName, BOOL bFActOrState, ACTSTATEID
FActState, STRING szTWFName, BOOL bTActOrState,
ACTSTATEID TActState, LPERRCODE lpError)

Name Type

szFWFName STRING

bFActOrState BOOL

Parameters

Description

The source or "from" workflow
name. The name of the
workflow where a link is
anchored.
Flag to indicate if it is an
Act or State link at source.

Return Value

50 Error code is returned.

AWSDGETMAP

Description
Get the map file associated with the specified Business

55
Process. The map file is returned as a series of memory
blocks. The memory block pointer and the block size
allocated is passed to this function and the number of bytes
actually written in the memory block is returned. Initially,
the caller must pass a zero in the Offset variable to indicate

60
start of the block transfers. The caller will be notified with
a negative value in the Offset variable to indicate end of the
block transfers.

65

Syntax

VOID FAR PASCAL AWSDGETMAP (STRING
szBPName, LPMEM lpMapMemPtr, LPINT
lpiMemBlockSize, LPLONG lpOffset, LPERRCODE
lpError)

6,073,109

Name Type

szBPName STRING

lpMapMemPtr LPMEM

lpiMemBlockSize LPINT

lpOffset LPLONG

79

Parameters

Description

Business Process N arne with which
to associate the map.
Pointer to a memory block where
map can be returned.
Size of the memory block in
bytes.

lpError LPERRCODE

Initially, the caller must set
this to zero. Each block
transfer changes the value
contained in this variable and
the caller can only check the
value returned here. This will
be negative if end is reached.
Error code returned.

Return Value
Number of bytes actually written.
Error code is returned.

AWSDBPADDROLEASSIGNMENT
Description

5

10

15

80
Syntax
VOID FAR PASCAL AWSDGETBPVERSION (IDEN

lldentity, STRING szBPName, LPINT lpiVersion, LPER­
RCODE lpError)

Parameters

Name Type Description

lldentity !DEN Identity Id to be mapped with
OrgRole.

szBPName STRING The name of the BP for which the
version number is requested

lpiVersion LPINT Pointer to an integer which holds
the version number of BP

lpError LPERRCODE Error code returned.

Return Value
AWSDGETLASTMODIFIEDDATE

20 Description
This function returns the last modified date of the Busi­

ness Process specified.
Syntax

Sets the Organization Role to Identity mapping at the
25

Business Process level.

VOID FAR PASCAL AWSDGETLASTMODIFIEDDATE
(STRING szBPName, LPDATETIME pdtLastModified,
LPERRCODE lpError)

Syntax
void FAR PASCAL AWSDBPADDROLEASSIGNMENT

(IDEN lldentity, IDEN lOrgRoleid, LPERRCODE
lpError)

Name

lldentity
lOrgRoleld

lpError

Parameters

Type Description

!DEN Organization Role id.
!DEN Identity Id to be mapped

with OrgRole
LPERRCODE Error code returned.

Return Value
AWSDWFADDROLEASSIGNMENT
Description

Parameters
30

Name Type

szBPName STRING

35
lpdtLastModified LPDATETIME

lpError LPERRCODE

Description

The name of the BP for which
the last modified date is
requested
The pointer to the DATETIME
type which holds the last
modified date of the Business
Process.
Error code returned.

40 Return Value
AWSDSETBPNOTIFICATION
Description

Sets the Organization
workflow level.

Role to Identity mapping at the
45

The notification string for the event is set with respect to
the current BP context.
Syntax

Syntax
void FAR PASCAL AWSDWFADDROLEASSIGNMENT

(IDEN lldentity, IDEN lOrgRoleid, WFROLE WFRole,
LPERRCODE lpError)

Name

lldentity

lOrgRoleld
WFRole

lpError

Parameters

Type

!DEN

!DEN
WFROLE

LPERRCODE

Return Value
AWSDGETBPVERSION

Description

Identity Id to be mapped
with OrgRole.
Organization Role id.
Workflow role of the
identity.
Error code returned.

50

55

60

Description 65

Get the current BP Version for the specified BP name. The
function returns the Business Process Version.

void FAR PASCAL AWSDSETBPNOTIFICATION
(EVENT NotificationEvent, STRING
szNotificationString, LPERRCODE lpError)

Parameters

Name Type Description

NotificationEvent EVENT This parameter notifies the
event

szNotificationString STRING The notification string.
lpError LPERRCODE Error code returned.

Notification Events

Event Notification Type

Performer Response past due
Performer Completion past due
Performer Completion coming due
Customer Response past due

Follow-up
Follow-up
Reminder
Follow-up
Act Act taken

6,073,109
81

Return Value
AWSDSETWFNOTIFICATION
Description

The notification string for the event is set with respect to
the current WF context.
Syntax
void FAR PASCAL AWSDSETWFNOTIFICATION

(EVENT NotificationEvent, STRING
szNotificationString, LPERRCODE lpError)

Name Type

NotificationEvent EVENT

szNotificationString STRING

Parameters

Description

This parameter notifies the
event

lpError LPERRCODE
The notification string.
Error code returned.

Notification Events

Event

Performer Response past due
Performer Completion past due
Performer Completion coming due
Customer Response past due
Act taken

Return Value
AWSDSETCOS
Description

Notification Type

Follow-up
Follow-up
Reminder
Follow-up
Act

This function specifies COS associated with a workflow
of a Business Process. The COS is inserted as a series of
memory blocks. This function requires the Business Process
context and workflow to be setup before execution.
Syntax
VOID FAR PASCAL AWSDSETCOS (LPMEM lpCOS,

LPINT lpiMemBlockSize, INT iPositionNotify, LPER­
RORCODE lpError)

Name Type

lpCOS LPMEM

lpiMemBlockSize LPINT

iPositionNotify !NT

Parameters

Description

Pointer to a memory chunk
which stores COS (BLOB).
Memory allocated for
storing COS in bytes.
This variable identifies
the first COS buffer,
subsequent COS buffers and
the last one. It should be
set to 0 to identify first
buffer, 1 to identify
subsequent buffers and to 2
to indicate last buffer;

lpError LPERRORCODE Error code returned.

Return Value
AWSDGETCOS

5

10

15

20

25

82
Syntax
VOID FAR PASCAL AWSDGETCOS (STRING

szBPName, STRING szWFName, LPMEM lpCOS,
LPINT lpiMemBlockSize, LPLONG lpOffset, LPER­
RORCODE lpError)

Parameters

Name Type Description

szBPName STRING Business Process Name
szWFName STRING Workflow Name
lpCOS LPMEM Pointer to a memory chunk which

stores COS (BLOB).
lpiMemBlock LPINT Memory allocated for storing COS
Size in bytes.
lpOffset LPLONG Initially, the caller must set

this to zero. Each block transfer
changes the value contained in
this variable and the caller can
only check the value returned
here. This will be negative if
end is reached.

lpError LPERRCODE Error code returned.

Return Value
Number of bytes actually written.

AWSDWFADDOBSROLE
Description

Sets the Observer Organization Role(s) at the workflow
level.

30 Syntax

35

40

45

50

55

VOID FAR PASCAL AWSDWFADDOBSROLE (IDEN
lOrgRoleid, LPERRCODE lpError)

Name

lOrgRoleld
lpError

Parameters

Type

!DEN
LPERRCODE

Return Value
AWSDWFDELETEOBSROLE
Description

Description

Organization Role id.
Error code returned.

Deletes the Observer Organization Role(s) at the work­
flow level.
Syntax
VOID FAR PASCAL AWSDWFDELETEOBSROLE

(IDEN lOrgRoleid, LPERRCODE lpError)

Name

lOrgRoleld
lpError

Parameters

Type Description

!DEN
LPERRCODE

Organization Role id.
Error code returned.

Description Return Value
The function gets the COS associated with the specified Names and Routings API

workflow of a Business Process. The COS is returned as a 60 AWSNADDORGROLE
series of memory blocks. The memory block pointer and the
block size allocated is passed to this function and the number
of bytes actually written in the memory block is returned.
For the first call, the contents of the variable pOffset must be
set to zero (0). This indicates the start of the memory block 65

transfers. The caller will be notified with a negative value in
the Offset variable to indicate end of the block transfers.

Description
Add a new Organization Role name to the server. This

name should be unique. The Organization Role Id is
returned.

Syntax
VOID FAR PASCAL AWSNADDORGROLE(STRING

szOrgRoleName, LPIDEN lpOrgRoleid, IDEN

6,073,109
83

lAuthorizeidentity, LPERRCODE lpError)

Name Type

szOrgRoleName STRING

lpOrgRoleid LPIDEN

lAuthorizeidentity !DEN

Parameters

Description

The Organization Role name to
add to the server. The name
should be unique.
The OrgRoleid is returned on
successful addition of
Organization role name to the
server.
Identity of the person adding
the name to the server. The
Identity must be authorized
to add names.

lpError LPERRCODE This is set to a non-zero
value on error

Return Value

The Organization Role Id, OrgRoleid is returned by the
function.

AWSNINQUIREORGROLE

Description

Inquire if a specified Organization Role is present in the
server database. If present, the Organization Role Id is
returned.

Syntax

VOID FAR PASCAL AWSNINQUIREORGROLE
(STRING szOrgRoleNarne, LPIDEN lpOrgRoleid, IDEN

5

10

15

20

84

Parameters

Name Type Description

lOrgRoleid ORGROLEID The Organization Role Id
that needs to be deleted
from the Sever database.

lAuthorizeidentity !DEN Identity of the person
removing the name from the
server database. The
Identity must be authorized
to delete names.

lpError LPERRCODE This is set to a non-zero
value on error

Return Value
Organization Role deleted from the server database.

AWSNADDIDENTITY
Description

Add a new Identity to the server. The Identity name
should be unique. The Identity Id is returned. Along with the
name, Net Address, Postal Address, Phone, Fax,
Department, Title, Location and comments may be speci­
fied.
Syntax

25 VOID FAR PASCAL AWSNADDIDENTITY(STRING
szidentityName, STRING szNetAddress, STRING
szPostalAddress, STRING szphone, STRING szFax,
STRING szDent, STRING szTitle, STRING szLocation,
STRING szComment, BOOL bNotify, IDEN lSTFProcld,

30 LPIDEN lpidentity, IDEN lAuthorizeidentity, LPER­
RCODE lpError)

lAuthorizeidentity, LPERRCODE lpError) 35
Parameters

Parameters

Name Type

szOrgRoleName STRING

lpOrgRoleid LPIDEN
lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value

Description

The Organization Role name
that needs to be searched.
If present, the Id
associated with the name is
returned.
The OrgRoleid is returned.
Identity of the person
inquiring the presence of
the name in the server
database. The Identity must
be authorized to Inquire.
This is set to a non-zero
value on error

40

45

50

Name

szidentityName

szNetAddress

szPostalAddress

szPhone

szFax

szDept

szTitle

szLocation
szComment

bNotify
lSTFProcessor
lpidentity

Type

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING
STRING

Description

The name of the person to add
to the server database. The
name should be unique.
The complete network address
of the Identity being added.
The Mailing address of the
Identity being added
The Phone number of the
Identity being added.
The Fax number of the
Identity being added.
The Department name of the
Identity being added.
The Official title
(designation) of the Identity
being added.

55 lAuthorizeidentity

BOOL
!DEN
LPIDEN
!DEN

The Location of the Identity.
Miscellaneous information
associated with the Identity.
Notify via STF Processor
The STF Processor to use
Identity Id is returned.
Identity of the person adding
the name to the server. The
Identity must be authorized
to add names.

The Organization Role Id, OrgRoleid, is returned by the
function.

AWSNDELETEORGROLE

Description

Delete an Organization Role name from the server.

Syntax

60

VOID FAR PASCAL AWSNDELETEORGROLE(IDEN 65

lOrgRoleid, IDEN lAuthorizeidentity, LPERRCODE
IpError)

lpError

Return Value

LPERRCODE This is set to a non-zero
value on error

The Identity Id of the person added is returned.
AWSNINQUIREIDENTITY
Description

Inquire if the specified Identity is present in the server
database. If present, the Identity Id is returned by the
function.

6,073,109
85

Syntax
VOID FAR PASCAL AWSNINQUIREIDENTITY

(STRING szidentityName, LPIDEN lpidentity, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Parameters

Name Type

szidentityName STRING

lpidentity LPIDEN
lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value

Description

The IdentityName that needs
to be searched. If present,
the Id associated with the
name is returned.
Identity Id is returned.
Identity of the person
inquiring the presence of the
name in the server database.
The Identity must be
authorized to inquire.
This is set to a non-zero
value on error

The Identity Id, is returned by the function.
AWSNDELETEIDENTITY
Description

Delete an Identity name from the server database.
Syntax
VOID FAR PASCAL AWSNDELETEIDENTITY(IDEN

lldentityid, IDEN lAuthorizeidentity, LPERRCODE
lpError)

Name Type

lldentityid !DEN

lAuthorizeidentity !DEN

Parameters

Description

The Identity Id that needs to
be deleted from the Sever
database.
Identity of the person
removing the name from the
server database. The Identity
must be authorized to delete
names.

lpError LPERRCODE This is set to a non-zero
value on error

Return Value
lldentity deleted from the server database.

AWSNADDGROUP
Description

Add a new Group to the server. The Group name should
be unique. The Group id is returned.
Syntax

86

-continued

Parameters

5 Name Type Description

lAuthorizeidentity !DEN

10 lpError LPERRCODE

lldentity of the person
adding the groups to the
server. The Identity must be
authorized to add groups.
This is set to a non-zero
value on error

15

Return Value

The Group Id added is returned.

AWSNINQUIREGROUP

Description

Inquire if the specified Group is present in the server

20
database. If present, the Group Id is returned by the function.

25

30

35

40

Syntax

VOID FAR PASCAL AWSNINQUIREGROUP(STRING
szGroupName, LPIDEN lpGroupid, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Parameters

Name Type Description

szGroupName STRING The GroupName to search. If
present, the Id associated
with the name is returned.

lpGroupid LPIDEN The group Id is returned.
lAuthorizeidentity !DEN Identity of the person

inquiring the presence of the
Group name in the server
database. The Identity must
be authorized to inquire.

lpError LPERRCODE This is set to a non-zero
value on error

Return Value
The Group Id, is returned by the function.

AWSNDELETEGROUP
45 Description

50

Delete a Group from the server database.

Syntax

VOID FAR PASCAL AWSNDELETEGROUP(IDEN
lGroupid, IDEN lAuthorizeidentity, LPERRCODE
lpError)

VOID FAR PASCAL AWSNADDGROUP(STRING 55

szGroupName, LPIDEN lpGroupid, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Name

lGroupid

Type

Parameters

Description

The Group Id that needs to be
deleted from the Sever
database

Name Type

szGroupName STRING

lpGroupid LPIDEN

Parameters

Description

The name of the Group to add
to the server database. The
name should be unique.
The group Id is returned.

!DEN

60 lAuthorizeidentity !DEN

lpError LPERRCODE

65

Identity of the person
removing the name from the
server database. The Identity
must be authorized to delete
names.
This is set to a non-zero
value on error

6,073,109
87

Return Value
Group deleted from the server database.

AWSNADDGROUPASSIGNMENT
Description

Add an Identity to a Group. An Identity may be a member
of several groups. To each group the Identity has to be
assigned separately. The Identity inherits the rights a Group
has.
Syntax
VOID FAR PASCAL AWSNADDGROUPASSIGNMENT

(IDEN lGroupid, IDEN lGroupMemberid, IDEN
lAuthorizeidentity, LPERRCODE lpError)

5

10

88
lGroupid, IDEN lGroupMemberld, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Name Type

lGroupld !DEN

lGroupMemberld !DEN

lAuthorizeldentity !DEN

Parameters

Description

The Groupld of the group from
which to remove GroupMember.
The Identity of the person
being removed from the Group,
identified by Groupld.
The Identity of the person
deleting. The person must

Parameters 15 lpError LPERRCODE
have the authority to delete.
This is set to a non-zero

Name Type

lGroupld !DEN

lGroupMemberld !DEN

lAuthorizeldentity !DEN

lpError LPERRCODE

Return Value

Description

The Group Id of the group,
the GroupMember wishes to be
a member of.
The Identity of the person
being assigned to the Group,
identified by Groupld.
The Identity of the person
assigning GroupMember to
Group. The person must have
the authority to make this
assignment.
This is set to a non-zero
value on error

GroupMember added to Group.
AWSNINQUIREGROUPASSIGNMENT
Description

Verify if an identity is a member of a group.
Syntax
BOOL FAR PASCAL

AWSNINQUIREGROUPASSIGNMENT(IDEN
lGroupid, IDEN lGroupMember, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Parameters

Name Type Description

lGroupld !DEN The Groupld of the group to
verify if Group Member a
member of.

lGroupMember !DEN The Identity of the person
being verified if member of
the group, identified by
Group I d.

lAuthorizeldentity !DEN The Identity of the person
inquiring. The person must
have the authority to
inquire.

lpError LPERRCODE This is set to a non-zero
value on error

Return Value
The function returns TRUE if the Identity is a member of

the group.
AWSNDELETEGROUPASSIGNMENT
Description

Remove an identity from the membership of a group. The
identity ceases to be a member of the specified group.
Syntax
VOID FAR PASCAL

AWSNDELETEGROUPASSIGNMENT(IDEN

value on error

Return Value
The Identity is removed from the group.

20
AWSNGETGROUPLIST
Description

Determine the list of groups an Identity is a member of.
This function returns a list and a count.

25 Syntax

30

VOID FAR PASCAL AWSNGETGROUPLIST(IDEN
lGroupMemberld, LPINT lpiCount, BOOL
bFileOrMemory, LPGENERALINFO lpGroupinfoArray,
STRING szFileName, IDEN lAuthorizeidentity, LPER-
RCODE lpError)

Parameters

35 Name Type Description

lGroupMemberld !DEN

lpiCount LPINT

40

bFileOrMemory BOOL

The Identity of the person
being assigned to the Group,
identified by Groupld.
Pointer to a counter. The
number of groups GroupMember
is a member of. This value is
returned.
Flag to indicate File or
Memory mode of receipt of
data from the API.

45
lpGrouplnfoArray LPGENERALINFO The list of groups

GroupMember is a member of.
For each group, the Group Id
and Group Name are returned.
A pointer to an array of
Group Ids and Group Names is
returned

50 szFileName STRING File name where the API
should deposit the results of
the call if the flag
bFileorMemory is ITS_FILE.
The Identity of the person
Inquiring. The person must
have the authority to

lAuthorizeldentity !DEN

55

lpError LPERRCODE
Inquire.
This is set to a non-zero
value on error

60 Return Value
The count of groups and a list of Groupid and Group­

Name returned.
AWSNGETGROUPMEMBERS
Description

65 Get the list of all members in a group. The Identity of each
member in a group is returned. The IdentityName is also
returned.

6,073,109
89 90

Syntax
void FAR PASCAL AWSNGETGROUPMEMBERS(IDEN

lGroupid, LPINT lpiCount, BOOL bFileOrMemory,
LPGENERALINFO lpMemberinfoArray, STRING
szFileName, IDEN lAuthorizeidentity, LPERRCODE 5

lpError)
Name Type

-continued

Parameters

Description

Name

lGroupid

lpiCount

bFileOrMemory

lpGenerallnfoArray

szFileName

lAuthorizeidentity

lpError

Return Value

Parameters

Type

!DEN

LPINT

BOOL

Description

The Groupid of the group
from which to retrieve
list of members.
Pointer to nCount, the
number of members in the
Group.
Flag to indicate File or
Memory mode of receipt
of data from the API.

LPGENERALINFO A list of members in the

STRING

!DEN

LPERRCODE

group is returned. The
list contains the
Identityid and
Identity Name of each
member.
lpGenerallnfoArray is a
pointer to an array.
File name where the API
should deposit the
results of the call if
the flag bFileOrMemory
is ITS FILE.
The Identity of the
person inquiring. The
person must have the
authority to inquire.
This is set to a non­
zero value on error

List of members returned.
AWSNADDROLEASSIGNMENT
Description

Assign an Identity or a Group to an Organization Role.
The Identity or all members of the group are assigned the
specific Organization Role. Follow-up flags to enable/
disable Reminders and Follow-up messages may be speci­
fied here. If an assignment is already present then the new
Follow-up flags are assigned.
Syntax
VOID FAR PASCAL AWSNADDROLEASSIGNMENT

(BOOL bGroupOridentity, IDEN lAssigneeid, IDEN
lOrgRoleid, IDEN lAuthorizeidentity, LPERRCODE
lpError)

Name Type

bGroupOridentity BOOL

!Assignee IDEN/IDEN

Parameters

Description

Flag to indicate if Assignee
is an identity or a Group. If
GroupOridentity is TRUE, then
Assignee contains a Groupld,
otherwise it is an Identity.
The id of the Identity or
Group being assigned the
Organization Role. If a Group
is being assigned, then all
members of the group inherit
the Role

10

15

lOrgRoleid ORGROLEID

lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value

The Organization Role the
Identity or Group will be
assigned.
The Identity of the person
assigning role. The person
must have the authority to
make this assignment.
This is set to a non-zero
value on error

Identity/Group assigned Organization Role.

AWSNINQUIREROLEASSIGNMENT

20
Description

Verify if a specific Identity is associated with an Organi­
zation Role. The function returns a flag. The Identity is first
checked if it is associated with the Organization Role. If no
association is found, then a check is made if an association

25 exists with any of the groups Identity is a member of.

30

35

40

45

50

Syntax

BOOL FAR PASCAL
AWSNINQUIREROLEASSIGNMENTEXTENDED
(BOOL bGroupO ridentity, IDEN !Assignee, IDEN
lOrgRoleid, IDEN lAuthorizeidentity, LPERRCODE
lpError)

Name

bGroupOridentity

!Assignee

lOrgRoleid

lAuthorizeidentity

lpError

Return Value

Parameters

Type

BOOL

!DEN

!DEN

!DEN

LPERRCODE

Description

Flag to indicate if Assignee
is an identity or a Group. If
GroupOridentity is TRUE, then
Assignee contains a Groupld,
othervvise it is an Identity.
The id of the Identity being
inquired.
The Organization Role being
verified for the Assignee.
The Identity of the person
inquiring the association.
The person must have the
authority to inquire.
This is set to a non-zero
value on error

The function returns a TRUE if the association is present,

55 FALSE otherwise. If the association exists then the Follow­
up flags are also returned.

AWSNDELETEROLEASSIGNMENT

Description

60
Disassociate an Identity or Group from a specific Orga-

nization Role. The Identity or all members of the group
cease to be associated with the Organization Role.

Syntax

VOID FAR PASCAL
65 AWSNDELETEROLEASSIGNMENT(BOOL

bGroupOrldentity, IDEN !Assignee, IDEN
lAuthorizeidentity, LPERRCODE lpError)

6,073,109
91

Parameters

Name Type

bGroupOridentity BOOL

!Assignee !DEN

lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value
AWSNGETROLELIST
Description

Description

Flag to indicate if Assignee
is an Identity or a Group. If
GroupOridentity is TRUE, then
Assignee contains a Groupld,
otherwise it is an Identity.
The id of the Identity or
Group being disassociated.
The Identity of the person
deleting the association. The
person must have the
authority to delete.
This is set to a non-zero
value on error

Determine the list of Roles that are assigned to a specific
Identity or Group. This function returns a list of Organiza­
tion Roles and a count.
Syntax
VOID FAR PASCAL AWSNGETROLELIST(BOOL

bGroupOridentity, IDEN !Assignee, LPINT lpiCount,
BOOL bFileOrMemory, LPGENERALINFO
lpOrgRoleinfoArray, STRING szFileN arne, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Parameters

Name Type

bGroupOridentity BOOL

!Assignee !DEN

lpiCount LPINT

bFileOrMemory BOOL

lpOrgRoleinfoArray LPGENERALINFO

szFileName STRING

lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value
List and Count returned.

Description

Flag to indicate if
Assignee is a Identity or
a Group. If
GroupOridentity is TRUE,
then Assignee contains a
Groupld, othelVlise it is
The id of the Identity or
Group being inquired.
Pointer to a counter. The
number of Organization
Roles an Identity/Group is
assigned.
Flag to indicate File or
Memory mode of receipt of
data from the API.
The list of Organization
Roles Assignee is assigned
to. For each Role, the
OrgRole, Follow-up flags
and the description are
returned. A pointer to a
list of OrgRoles and
description is returned.
File name where the API
should deposit the results
of the call if the flag
bFileOrMemory is
ITS_FILE.
The Identity of the person
Inquiring. The person must
have the authority to
Inquire.
This is set to a non-zero
value on error

AWSNGETIDENASSIGNEELIST

92
Description

Determine the list of Identities that are assigned to a
specific Organization Role. This function returns a list of
Identities and their names.

5 Syntax
VOID FAR PASCAL AWSNGETIDENASSIGNEELIST

(IDEN lOrgRoleid, LPINT lpiCount, BOOL
bFileOrMemory, LPASSIGNEE lpideninfoArray,
STRING szFileName, IDEN lAuthorizeidentity, LPER-

10 RCODE lpError)

15
Name

lOrgRoleid

lpiCountPtr
20

bFileOrMemory

25
lpideninfoArray

30

szFileName

Parameters

Type

!DEN

LPINT

BOOL

LPASSIGNEE

STRING

Description

The Organization Role for
which list of Assignees is
being returned.
Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the
Organization Role OrgRole
Flag to indicate File or
Memory mode of receipt of
data from the API.
List of identities who are
associated with a specific
organization role. The
bNotify flag associated with
the Identity is also
returned. A pointer to a list
is returned.

35
lAuthorizeidentity !DEN

File name where the API
should deposit the results of
the call if the flag
bFileOrMemory is ITS_FILE.
The Identity of the person
requesting the list. The

40

45

person must have the
authority to inquire.

lpError LPERRCODE This is set to a non-zero
value on error

Return Value
List and Count returned.

AWSNGETGROUPASSIGNEELIST
Description

Determine the list of Identities and Groups that are
assigned to a specific Organization Role. This function
returns a list of Identities and Group and their names.
Syntax

50
VOID FAR PASCAL AWSNGETGROUPASSIGNEELIST

(IDEN lOrgRoleid, LPINT lpiCount, BOOL
bFileOrMemory, LPGENERALINFO lpGroupinfoArray,
STRING szFileName, IDEN lAuthorizeidentity, LPER­
RCODE lpError)

55

Name

60 lOrgRoleid

lpiCountPtr

65

Parameters

Type

ORGROLEID

LPINT

Description

The Organization Role for
which list of Assignees
is being returned.
Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the
Organization Role OrgRole

6,073,109
93

-continued

Parameters

Name Type

bFileOrMemory BOOL

Description

Flag to indicate File or
Memory mode of receipt of
data from the API.

lpGrouplnfoArray LPGENERALINFO List of groups who are
associated with a

szFileName STRING

lAuthorizeldentity !DEN

lpError LPERRCODE

Return Value
List and Count returned.

AVVSNCREATESTFDEFN
Description

specific organization
role. A pointer to a list
is returned.
File name where the API
should deposit the
results of the call if
the flag bFileOrMemory is
ITS FILE.
The Identity of the
person requesting the
list. The person must
have the authority to
inquire.
This is set to a non-zero
value on error

Create an entry in the STF Processor table. The processor
name and the network address is maintained. The STF
Processor Id is returned.
Syntax
VOID FAR PASCAL AVVSNCREATESTFDEFN(STRING

szSTFProcName, STRING szNetAddress, LPIDEN
lpSTFProcld, IDEN lAuthorizeidentity, LPERRCODE
lpError)

Parameters

Name Type

szSTFProcName STRING

szNetAddress STRING

lpSTFProcld LPIDEN
lAuthorizeldentity !DEN

lpError LPERRCODE

Return Value
STFProcessorld returned.

AVVSNGETSTFDEFN
Description

Description

The name of the STF
Processor.
The network address of the
location of the STF
Processor. The processor must
exist for this call to return
successfully.
The STFProc Id is returned.
The Identity of the person
Creating the STF definition.
The identity must be
authorized to create STF
definition.
This is set to a non-zero
value on error

5 Name Type

lSTFProcld !DEN
szSTFProcName STRING

szNetAddress STRING
10

lAuthorizeldentity !DEN

94

Parameters

Description

The STF Processor !d.
The name of the STF Processor
is returned.
The network address of the
location of the STF Processor
is returned.
The Identity of the person
inquiring the STF definition.
The identity must be
authorized to inquire.

15 lpError LPERRCODE This is set to a non-zero
value on error

Return Value
STFProcessor name and net address returned.

20 AVVSNDELETESTFDEFN
Description

Delete the STF definition from the STF Processor table
for a specific STF Processor Id.
Syntax

25 VOID FAR PASCAL AVVSNDELETESTFDEFN(IDEN
STFProcld, IDEN lAuthorizeidentity, LPERRCODE
lpError)

30
Parameters

Name Type Description

STFProcld !DEN The STF Processor !d.

35
lAuthorizeldentity !DEN The Identity of the person

deleting the STF definition.
The identity must be
authorized to delete.

40

lpError

Return Value

LPERRCODE This is set to a non-zero
value on error

STFProcessor name and net address returned.
AVVSNGETNUMGROUPLIST
Description

45 Determine the number of groups an Identity is a member
of. This function returns a count.
Syntax
VOID FAR PASCALAVVSNGETNUMGROUPLIST(IDEN

lGroupMemberld, LPINT lpiCount, BOOL
5o bFileOrMemory, LPGENERALINFO lpGroupinfoArray,

IDEN lAuthorizeidentity, LPERRCODE lpError)

55 Parameters

Name Type Description

lGroupMemberld !DEN

Get the STF definition from the STF Processor table for 60

a specific STF Processor Id. The processor name and the
network address are returned.

lpiCount LPINT

The Identity of the person
being assigned to the
Group, identified by
Group I d.
Pointer to a counter. The
number of groups
GroupMember is a member
of. This value is

Syntax
VOID FAR PASCAL AVVSNGETSTFDEFN(IDEN

lSTFProcld, STRING szSTFProcName, STRING
szNetAddress, IDEN lAuthorizeidentity, LPERRCODE
lpError)

65 bFileOrMemory BOOL
returned.
Flag to indicate File or
Memory mode of receipt of

6,073,109
95

-continued

Parameters

Name Type

lpGroupinfoArray LPGENERALINFO

szFileName STRING

lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value

Description

data from the API.
The list of groups
GroupMember is a member
of. For each group, the
Group Id and Group Name
are returned. A pointer to
an array of Group Ids and
Group Names is returned
File name where the API
should deposit the results
of the call if the flag
bFileOrMemory is ITS_FILE.
The Identity of the person
Inquiring. The person must
have the authority to
Inquire.
This is set to a non-zero
value on error

The count of groups is returned.
AWSNGETNUMGROUPMEMBERS
Description

Get the number of all members in a group.
Syntax

96

-continued

Parameters

5 Name Type Description

!Assignee !DEN
10

lpiCount LPINT

lAuthorizeidentity !DEN

15

lpError LPERRCODE

GroupOridentity is TRUE, then
Assignee contains a Groupld,
othervvise it is
The id of the Identity or
Group being inquired.
Pointer to a counter. The
number of Organization Roles
an Identity/Group is
assigned.
The Identity of the person
Inquiring. The person must
have the authority to
Inquire.
This is set to a non-zero
value on error

20 Return Value
AWSNGETNUMIDENASSIGNEELIST
Description

Determine the number of Identities that are assigned to a
specific Organization Role.

25 Syntax

void FAR PASCAL AWSNGETNUMGROUPMEMBERS
(ID EN lGroupid, LPINT lpiCoun t, IDEN 30

lAuthorizeidentity, LPERRCODE lpError)

VOID FAR PASCAL AWSNGETIDENASSIGNEELIST
(IDEN lOrgRoleid, LPINT lpiCount, IDEN
lAuthorizeidentity, LPERRCODE lpError)

Parameters

Name Type

lGroupid !DEN

lpiCount LPINT

lAuthorizeidentity !DEN

lpError LPERRCODE

Return Value

Description

The Groupid of the group
from which to retrieve
list of members.
Pointer to nCount, the
number of members in the
Group.
The Identity of the person
inquiring. The person must
have the authority to
inquire.
This is set to a non-zero
value on error

Number of members returned.
AWSNGETNUMROLELIST
Description

Determine the number of Roles that are assigned to a
specific Identity or Group.
Syntax
VOID FAR PASCAL AWSNGETNUMROLELIST(BOOL

bGroupOridentity, IDEN !Assignee, LPINT lpiCount,
IDEN lAuthorizeidentity, LPERRCODE lpError)

Name Type

bGroupOridentity BOOL

Parameters

Description

Flag to indicate if Assignee
is a Identity or a Group. It

Parameters

Name Type Description

35 lOrgRoleid !DEN The Organization Role for
which list of Assignees is
being returned.

lpiCountPtr LPINT

40

lAuthorizeidentity !DEN

Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the
Organization Role OrgRole
The Identity of the person
requesting the list. The
person must have the
authority to inquire.

45 lpError LPERRCODE This is set to a non-zero
value on error

Return Value
AWSNGETNUMGROUPASSIGNEELIST

50 Description
Determine the list of Identities and Groups that are

assigned to a specific Organization Role. This function
returns a list of Identities and Group and their names.
Syntax

55 VOID FAR PASCAL

60

AWSNGETNUMGROUPASSIGNEELIST(IDEN
lOrgRoleid, LPINT lpiCount, IDEN lAuthorizeidentity,
LPERRCODE lpError)

Parameters

Name Type Description

65 lOrgRoleid ORGROLEID The Organization Role for
which list of Assignees is

6,073,109
97

-continued

Parameters

Name Type

lpiCountPtr LPINT

lAuthorizeidentity !DEN

lpError

Return Value
Schedule API

LPERRCODE

Description

being returned.
Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the
Organization Role OrgRole
The Identity of the person
requesting the list. The
person must have the
authority to inquire.
This is set to a non-zero
value on error

The following is a description of the functions performed
by the components of the Schedule API for implementation
of the Schedule API.
AWSSPUTBPSCHEDULE
Description

The schedule information associated with a business
process is stored in the server. The time when the business
process needs to be initiated and recurrence information are
stored.
Syntax
VOID FAR PASCAL AWSSPUTBPSCHEDULE(STRING

szBPName, DATETIMET llnitTime, DATETIMET
lRecurPeriod, IDEN lAuthorizeidentity, LPERRCODE
lpError)

Parameters

Name Type

szBPName STRING

llnitTime DATETIMET

!Recur Period DATETIMET

lAuthorizeidentity IDENTITY

lpError LPERRCODE

Return Value

Description

Business Process name. The
business process for which
schedule information needs to
be attached.
The first time when the
business process is
initiated. If this is not
specified, then the business
process is not initiated by
the Scheduler.
If specified, the business
process is initiated at every
RecPeriod interval.
Identity of the person
placing scheduler request.
This is set to a non-zero
value on error

Schedule information stored in the server.
AWSSGETBPSCHEDULE
Description

The schedule information associated with a business
process is returned. The initiation time and recurrence
information are returned.
Syntax

98

Parameters

5 Name Type Description

szBPName STRING Business Process Name. The
business process for which
schedule information is
returned.

10 lAuthorizeidentity !DEN Identity of the person
requesting scheduler
information.

15

lpError

Return Value

LPERRCODE This is set to a non-zero
value on error

Schedule information, initiation time and recurring period
returned.
AVVSSDELETEBPSCHEDULE

20 Description
The schedule information associated with a business

process is removed. However, currently active instances of
the business process remain unaffected.
Syntax

25 VOID FAR PASCAL AWSSDELETEBPSCHEDULE
(STRING szBPName, IDEN lAuthorizeidentity, LPER­
RCODE lpError)

30

Name Type

szBPName STRING

35

lAuthorizeidentity !DEN

Parameters

Description

Business Process Name.
The business process for
which schedule
information has to be
deleted.
Identity of the person
deleting scheduler
information

40 lpError LPERRCODE This is set to a non-zero
value on error

Return Value
Schedule information deleted.

45 Server Administration API
The following details the methods of workflow server

manager (WSM) classes, which are also the internal APis
that are used to achieve the functionality of the workflow
server manager.

50
AWS StartServer

This call starts the workflow server reading the configu­
ration information from a parameter file. The server can be
shutdown by issuing AWSStopServer call. The API estab-

55 lishes a session of the workflow server with the underlying
database server and starts the workflow server operations.
Syntax

60

void FAR PASCAL AWSStartServer
Parameters

None.
Return Value

Success-AWSError=O
Failure-AWSError<>O

AWSStopServer
VOID FAR PASCAL AWSSGETBPSCHEDULE(STRING 65

szBPName, IDEN lAuthorizeidentity, LPERRCODE
lpError)

This call stops the workflow server operations. The trans­
action manager No requests from client applications are
processed after this call is made.

6,073,109
99

Syntax

void FAR PASCAL AWSStopServer

Parameters

None.

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSGrant

This call grants the specified privileges to the user by
creating an authorization record for the user, object and the
action in the privileges table. The granted privileges can be
revoked by calling AWSRevoke function.

Syntax

void FAR PASCAL AWSGrant(IDENUserld, eObject,
eAction)

Parameters

Name Type

IDENUserid IDENTITY

eObject OBJECT

eAction ACTION

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSRevoke

Description

Id of the user who is being
granted with the privilege.
Object on which privilege is
being granted.
Action for which the
privileges are being granted.

This call revokes the privileges granted to the user with a
previous call to AWSGrant by deleting the record for user,
object, and action form authorization table.

Syntax

void FAR PASCALAWSRevokePrivilege(IDENUserName,
eObject, eAction)

Parameters

Name Type

IDENUserName IDENTITY

eObject OBJECT

eAction ACTION

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSAbortBP

Description

Id of the user whose
privilege is being revoked.
Object on which privilege is
being revoked.
Action for which the
privileges are being revoked.

This call marks specified business process instance in
transaction database as aborted by changing the status of BP
Transaction instance class (TxBPinstance).

Syntax

void FAR PASCAL AWSAbortBP(lpszBPTid)

5

10

15

100

Parameters

Name Type

lpszBPT!d STRING

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSDeleteBP

Description

Instance of the Business
Process that has to be
aborted.

This call deletes specified business process instance from
transaction database.

20
Syntax

25

30

35

void FAR PASCAL AWSDeleteBP(lpszBPTid)

Parameters

Name Type

lpszBPT!d STRING

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSSuspendBP

Description

Instance of the Business
Process that has to be
deleted from Transaction
database.

This call suspends the execution of specified business

40
process instance by changing the status of BP transaction
instance class (TxBPinstance). No transactions can take
place on the business process till it is restarted again by a call
to AWSRestartBP.

Syntax
45 void FAR PASCAL AWSSuspendBP(lpszBPTid)

50

55

60

65

Parameters

Name Type

lpszBPT!d STRING

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSResumeBP

Description

Instance of the Business
Process that has to be
suspended.

This call restarts specified business process instance in
transaction database, suspended previously by a call to
AWSSuspendBP.

Syntax

void FAR PASCAL AWSResumeBP(lpszBPTid)

101

Parameters

Name Type

lpszBPTid STRING

Return Value
Success-AWSError=O
Failure-AWSError<>O

AWSArchiveBP

Description

Instance of the Business
Process that has to be
restarted.

6,073,109

5

10

102
AWSDeleteBPDefinition

This call deletes the definition of specified business
process from the definitions database by using VDB method
DeleteBP of class DffiP.

Syntax

void FAR PASCAL AWSDeleteBPDefinition(lpszBPDid)

Parameters

Name Type Description

lpszBPD!d STRING

This call archives a business process or all completed
15

business processes on the specified media. The archived
business processes are deleted from the database. This
function will in turn use AWSBackup function for backing

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSListActive WF

Id of the Business Process
that has to be deleted from
definitions database.

up the data on a different media.
Syntax
void FAR PASCAL AWSArchiveBP(lpszBPName, 20

eArchiveMedia, ArchiveTime, ArchiveDate)
Parameters

None.

Name Type

lpszBPName STRING

eArchiveMedia ENUM

Archive Date TIME

AcrhiveTime TIME

Return Value
Success-AWSError=O
Failure-AWSError<>O

AWSListAvailBPs

Description

The Business Process name.
This name should be unique.
If a business process with
the same name is present, the
current definition is over
written as a new version.
There should be no active
instances of the current
definition for this to occur.
The media to which the
business process is to be
archived.
The date on which archiving
is done.
The time on which archiving
is done.

This call lists all the business processes by running
through the definitions database to find out all instances of
BP definition class (DffiP).
Syntax
void FAR PASCAL AWSListAvailBPs
Parameters

None.
Return Value

Success AWSError=O
Failure-AWSError<>O

AWSListActiveBPs
This call lists all the active business processes by running

through the transactions database and finding out all
instances of TxBPinstances that have status as 'Active'.
Syntax
void FAR PASCAL AWSListActiveBPs
Parameters

None.
Return Value

Success-AWSError=O
Failure-AWSError<>O

This call lists all active workfiows in the specified busi­
ness process by using VDB method ListBP of class TxB-

25 Plnstance.

30

35

40

Syntax

void FAR PASCALAWSListActiveWF(lpszBPName)

Parameters

Name Type

lpszBPName STRING

Return Value

Success-AWSError=O

Failure-AWSError<>O

AWSRegister

Description

Name of the Business Process
whose active workflows are to
be listed.

This call registers the new STF Processor name in the
Names and Routing database by using VDB method Creat-

45 eSTFDefn.

Syntax

void FAR PASCAL AWSRegister(lpszSTFProcessorName)

50

Parameters

Name Type

lpszSTFProcessorName STRING
55

Return Value

Success-AWSError=O
Failure-AWSError<>O

60 AWSDeregister

Description

The STF Processor name.

This call deregisters an STF Processor name from the
server Names and Routing database, previously registered
by AWSRegister call.

65 Syntax

void FAR PASCAL AWSDeregister
(lpszSTFProcessorN arne)

6,073,109
103

Parameters

Name Type Description

lpszSTFProcessorName STRING The STF Processor name.

Return Value
Success-AWSError=O
Failure-AWSError<>O

AWSCheck
This call checks a particular workflow server database for

consistency and integrity. The API will in turn use appro-

Failure-AWSError<>O
AWSGetConfiguration

104

This call reads the configuration information from the
parameter file, earlier written by calling AWSSetConfiginfo.

5 Syntax

10

void FAR PASCAL AWSGetConfiguration(iMaxBPCount,
lpszVersion, lpszLogFileName, lpszLogFilePath)

Parameters

Name Type Description

iMaxBPCount !NT Maximum number of active

priate database APis to provide the functionality. 15
business processes on the
server.

Syntax
void FAR PASCAL AWSCheck
Parameters

None.
Return Value

Success-AWSError=O
Failure-AWSError<>O

AWSindex
This call reindexes a particular workflow server database.

20

The API will in turn use appropriate database APis to 25

achieve the functionality.
Syntax
void FAR PASCAL AWSindex
Parameters

None.
Return Value

Success-AWSError=O
Failure-AWSError<>O

AWSReorganize

30

This call reorganizes a particular workflow server 35

database, to permanently remove the records marked for
deletion. The API will in turn use appropriate database APis
to achieve the functionality.
Syntax
void FAR PASCAL AWSReorganize 40

Parameters
None.

lpszVersion STRING
lpszLogFileName STRING
lpszLogFilePath STRING

Return Value
Success-AWSError=O
Failure-AWSError<>O

AWSWriteToLog

Version number.
Transaction log file name.
Path where transaction log
file will be written.

This call causes transaction information to be written to
the workflow server log file.
Syntax
void FAR PASCAL AWSWriteToLog(lpszTransinfo)

Parameters

Name Type

lpszTranslnfo STRING

Return Value
Success-AWSError=O
Failure-AWSError<>O

Reporter API
Get all the BP Names

Input Parameters:
None

Description

Transaction information to be
written to log.

Return Value
Success-AWSError=O
Failure-AWSError<>O

AWSSetConfiguration
45 Output Parameters:

This call updates the configuration information in the
parameter file. The information can later be retrieved by
making a call to AWSGetConfiguration.
Syntax
void FAR PASCAL AWSSetConfiginfo(iMaxBPCount,

pszVersion, lpszLogFileName, lpszLogFilePath)

Parameters

Name Type

iMaxBPCount !NT

lpszVersion STRING
lpszLogFileName STRING
lpszLogFilePath STRING

Return Value
Success-AWSError=O

Description

Maximum number of active
business processes on the
server.
Version number.
Transaction log file name.
Path where transaction log
file will be written.

Array of BP Names and their versions existing in the
database

Get BP information using BP name
Input Parameters:

50 BP Name

55

BP Version
Output Parameters:

BP Owner
BP Administrator
Primary Workflow N arne
Projected cycle time
Get BP Instance ids of a BP

Input Parameters:
BP name

60 Output Parameters:
Array of BP instance ids.
Get Workflow Names of a BP

Input Parameters:
BP name

65 Output Parameters:
List of workflow names
Get BP Instance data

6,073,109
105

Input Parameters:
BP instance id

Output Parameters:
BP instance status
BP name
Primary workflow instance id
List of workflow instance ids.
Get Workflow Instance Ids of a Workflow

Input Parameters:
Workflow name

Output Parameters:
List of workflow instance ids along with its BP instance

ids.
Get Workflow Definitional Data

Input Parameters:
BP name
Workflow name

Output Parameters:
Workflow computed cycle time
Workflow type
Customer's organization role
Performer's organization role
Observers' organization roles
Customer's default identity
Performer's default identity
Observers' default identities
timel (Customer request cycle time)
time2 (Performer response cycle time)
time3 (Performer completion cycle time)
time4 (Customer declare satisfaction cycle time)
Conditions of satisfaction
Get Workflow Instance Data

Input Parameters:
BP instance id.
Workflow instance id.

Output Parameters:
The current workflow state
Workflow name
Customer identity
Performer identity
Observer identities
Workflow starting time
User specified completion time
Workflow actual completion time
User specified cycle time of phasel
User specified cycle time of phase2
User specified cycle time of phase3
User specified cycle time of phase4
Actual cycle time of phasel
Actual cycle time of phase2
Actual cycle time of phase3
Actual cycle time of phase4
Get Workflow Summary Historical Data

Input Parameters:
BP name
Workflow name

Output Parameters:
Average completion time of a workflow
Best completion time of a workflow

106
Worst cycle time for the performer response of a work­

flow
Average cycle time for the performer completion of a

workflow
5 Best cycle time for the performer completion of a work-

flow
Worst cycle time for the performer completion of a

workflow
Average cycle time for the customer declare-satisfaction

10 of a workflow
Best cycle time for the customer declare-satisfaction of a

workflow
Worst cycle time for the customer declare-satisfaction of

the workflow
15 Total number of instances of a workflow

Number of workflow instances which were delayed
Average delay of delayed workflow instances
Maximum delay of the workflow
Number of workflow instances which were canceled

20 Number of workflow instances which were revoked
Number of workflow instances which were declined
Number of workflow instances with customer request

phase delayed
Average delay in customer request phase

25 Maximum delay in customer request phase
Number of workflow instances with performer response

phase delayed
Average delay in performer response phase
Maximum delay in performer response phase

30 Number of workflow instances with performer comple-
tion phase delayed

Average delay in performer completion phase
Maximum delay in performer completion phase
Number of workflow instances with customer declare-

35 satisfaction phase delayed
Average delay in customer declare-satisfaction phase
Maximum delay in customer declare-satisfaction phase
Get Acts Taken in a Workflow instance

Input Parameters:
40 BP instance id

45

Workflow instance id
Output Parameters:

The following details of acts taken:

Act Taken

Identity who took the act

When the act was registered

Complete by time of the act
Respond by time of the act

50 When the act was performed

55

Get BP Names of a BP Collection
Input Parameters:

Selection criteria based on (refer BP Collection query
dialog box in section 6.3.1):

BP Name

Worst completion time of a workflow 60

Customer, performer and observer organizational roles

Customer, performer and observer default identities
Check primary/all workflow(s) flag

Include all/latest version(s) flag
Average cycle time for the customer request of a work-

flow
Best cycle time for the customer request of a workflow
Worst cycle time for the customer request of a workflow
Average cycle time for the performer response of a 65

workflow
Best cycle time for the performer response of a workflow

Output Parameters:
The following details of selected BPs:
BP Name
BP Version
BP Owner
BP Administrator

6,073,109
107

Primary Workflow N arne

Get BP Instance ids of a BP
Input Parameters:

BP name
Selection criteria based on (refer BP Instance Selection 5

dialog box in section 6.3.5):

From and To Dates

Customer, performer, observer identities

Check primary/all workflow(s) flag

Include exceptions(Delay/Cancel/Revoke/Decline/
Normal) flag

Output Parameters:
Array of BP instance ids.

C. WORKFLOW SERVER MANAGER (WSM)

10

15

The following is a description of the workflow server
manager (WSM) component of the workflow system. The
WSM uses the workflow APis to implement the functions
and services it provides to users. The WSM is a component
of the workflow system that provides a user interface for 20

specific services of the workflow server such as:

Server Management

Authorization Maintenance

Business Process Maintenance

Workflow Maintenance

STF Processor Maintenance

Configuration

25

Transaction Log Maintenance 30

Business Process Scheduling and Organizational Calen­
dar

Through the use of the WSM, a user selects the scheduling
function which provides the user interface to specify the
recurrent scheduling of business processes as well as the 35

specification of the organizational calendar as specified by
the schedule manager.
Workflow Server Manager classes

The following is a description of the WSM classes with
their attributes and methods.
Server Management
Server

40

This class handles server management activities, such as
server startup, shutdown, etc. Startup establishes a workflow 45
server session with the underlying database server and starts
up transaction manager activities.

Attributes

lpszServer!D
Methods

AWSStartServer

AWSStopServer

string

The method starts the
server operations by
opening a session with
the underlying database
server and starts
Transaction Manager
operations.
The method notifies all
active users about the
shutdown, disconnects
from database server,
and shuts down the
Transaction Manager
operations.

50

55

60

65

108
Authorization Maintenance
Object

This class provides methods to create objects.

Objectld
eObjectType

Authorization

Attributes

ref(BP) or ref(WF)
objecttype
Enumerations of Objects are
Business Processes
Work:flows

This class provides methods to grant/revoke authorities to
users to act on objects.

Attributes

IDENUser
Objectld
eAction

bGrantOption
Methods

AWSGrant

AWSRevoke

AWS!nquire

Business Process Maintenance
BPMaint

ref (NRDF!dentity)
ref(Object)
actions
Enumerations for Actions
are

boo!

Create
Delete
Modify
Instantiate
View

The method grants
authority to a user to
make the specified act on
the specified object.
The method revokes a
previously granted
authority form the user.
The method is used to
inquire whether user has
authority to make
specified act on the
specified object.

This class provides methods to maintain business pro­
cesses in definitions and transactions databases. It provides
methods for archiving all completed business processes.

Methods

AWSAbortBP The method aborts a BP
instance.

AWSDeleteBP The method deletes the
specified BP instance
from the transaction
database.

AWSSuspendBP The method suspends the
operations of a BP
instance temporarily.

AWSResumeBP The method resumes a BP
instance previously
suspended.

AWSArchiveBP The method archives a BP
instance or all completed
BPs.

AWSListAvailBPs The method lists all BPs
available in definitions
database.

6,073,109
109

-continued

AWSListActiveBPs

AWSDeleteBPDefinition

Workflow Maintenance
WFMaint

Methods

The method lists all BPs
active in transactions
database.
The method deletes a BP
definition from
definitions database.

This class handles housekeeping of workflows in a busi­
ness process.

AWSListActiveWF

Methods

The method lists all
active workflows for a
BP instance.

STF Processor Maintenance
STFProcessor

This class handles registration and deregistration of STF
Processors in Names and Routing database.

AWSRegister

AWSDeregister

Database Management
DBMgmt

Methods

The method registers an
STF Processor in Names
and Routing database.
The method deregisters
an STF Processor from
Names and Routing
database.

This class handles various database management
functions, such as checking a particular workflow server
database for integrity, reindexing the database, and reorga­
nizing the database.

AWSCheck

AWS!ndex

AWSReorganize

Configuration
Config

Methods

The method checks the
database for consistency
and coherency.
The method reindexes the
database.
The method reorganizes
the database.

This class provides methods to set and inquire various
configurable parameters.

Attributes

iMaxOpenBps
lpszVersion

int
string

5

10

110

-continued

lpszLogFileName
lpszLogFilePath
Methods

AWSSetConfiguration

AWSGetConfiguration

Transaction Log Maintenance
TransLog

string
string

The method set the
configuration parameters
to specified value.
The method retrieves
configuration parameters
from the file.

15 This class provides methods to maintain transaction log.

20

25

The workflow processor uses this method to write all
changes in the workflow status to the log.

AWSWriteToLog

We claim:

Methods

The method writes the
specified string to the
transaction log.

1. A computer system for managing a plurality of business
processes, each business process having a business process
definition with a plurality of linked workflows, each work-

3D flow having a corresponding workflow definition, said work­
flow definition representing commitments that a user having
a predetermined role makes and completes to satisfy a
customer of the workflow comprising:

a) workflow server means for providing services to work-
35 flow enabled applications that allow users to act taking

one of a plurality of available acts defined in one of said
business processes, said workflow server means includ­
ing a transaction manager providing for each of said
business processes:

40 transaction services for
1. receiving instructions to initiate and initiating work­

flows of said business processes;
2. taking actions in said workflow initiated business

processes;
45 3. updating and maintaining workflow status after each

50

55

60

act is taken in each of said initiated workflows of said
business process and keeping track of pending work­
flow activities, wherein said taken act is one of an act
of a user and an act automatically taken by the
transaction manager based on said business process
definition and said workflow definition of a prede­
termined one of said workflows of said business
process, wherein said workflow status represents all
acts that are pending for said user having a prede-
termined role in said initiated workflow;

4. making available to said workflow enabled applica­
tions available business processes that a predeter­
mined one of said workflow enabled applications can
initiate and specifying available acts that a user of
said predetermined workflow enabled application
can take in each of the initiated workflows of each of
the available business processes;

b) database means for storing records of business process
transactions.

65 2. The system defined by claim 1 wherein said database
means is for storing records of the date and time when a
business process must be initiated.

6,073,109
111 112

ii) the defined roles and defined identities within an
organization utilizing the workflow system.

3. The system defined by claim 1 wherein said database
means is for storing configuration information used by the
workflow server means.

4. The system defined by claim 1 wherein said database
means is for storing notifications to be sent to users that
interact with the workflow system through a standard trans­
action format processor interface.

15. A computer system for managing business processes,
each business process including a plurality of linked

5 workflows, comprising:

5. The system defined by claim 1 further comprising
application program interface means for providing an inter­
face to the server means to enable workflow enabled appli-

10
cations to obtain access to the services provided by the
server means.

6. The system defined by claim 1 wherein said workflow
server means provides transaction services for binding appli­
cation specific data to a workflow transaction.

7. The system defined by claim 1 wherein said business 15

process includes a plurality of workflows with workflow
links coupling predetermined ones of said plurality of work­
flows and said workflow server means provides definitions
services for defining elements of a business process, its
workflows and workflow links. 20

8. The system defined by claim 1 wherein said workflow
server means provides definitions services for defining struc­
tures for the workflows of a business process.

9. The system defined by claim 1 wherein said workflow
server means provides names and routing services for defin- 25
ing roles, defining assignments, defining identities and
defining the assignment of identities to roles.

10. The system defined by claim 1 wherein said workflow
server means provides configuration services for defining a
network configuration of the workflow system, the version

30 of the server means, registering standard transaction format
processors, defining users and roles, specifying a log data­
base and a level of logging required.

11. The system defined by claim 1 wherein said workflow
server means provides scheduling services for allowing an
authorized user to create, modify and delete records of 35

scheduled business processes.
12. The system defined by claim 1 further comprising

means for updating the workflow server databases as an
interface to the server means to enable workflow enabled
applications to obtain access to services provided by the 40

server means.
13. The system defined by claim 1 wherein a predeter­

mined workflow script is executed when at least one of i) an
act is taken by an individual; ii) an act is taken by the system;
and iii) a workflow entering a predetermined state occurs, 45

said predetermined workflow script being part of said
business process definition.

14. A computer system for managing business processes,
each business process including a plurality of linked

50
workflows, by providing services that allow designers to
analyze and design business processes and applications
comprising:

a) workflow server means for providing:
i) definitions services for:

1. defining elements of a business process, its work­
flows and workflow links;

2. defining structures for the workflows of the business
process;

ii) names and routing services for:
1. defining at least two roles associated with each of the

workflows;
2. defining identities associated with said defined roles;

b) database means for storing records of:

55

60

i) definitions of an organization, business processes of the 65

organization, workflows of the business processes, said
roles and acts associated with the workflows;

a) workflow server means for providing services to work­
flow enabled applications that allow users to act and
participate in said business processes, said workflow
server means including a transaction manager, said
transaction manager providing:

transaction services for
1. receiving requests for new workflows and initiating

the requested new workflows;
2. taking actions in workflows initiated by said trans­

action services of said workflow server means;
3. updating and maintaining workflow status after each

act of a user is taken in a predetermined one of said
initiated workflows and keeping track of pending
workflow activities;

4. making available to said workflow enabled applica­
tions available business processes that a predeter­
mined one of said workflow enabled applications can
initiate;

b) database means for storing records of:
i) definitions of an organization, business processes of the

organization, workflows of the business processes,
roles and acts associated with the workflows, said
workflow definitions representing commitments that
users having predetermined roles make and complete to
satisfy customers of the workflows;

ii) workflow transactions;
iii) the defined roles and defined identities of customers,

performers and observers utilizing the workflow sys­
tem.

16. The system defined by claim 15 wherein said database
means is further for storing records of incompletions.

17. A computer implemented method for managing a
plurality of business processes, each business process hav­
ing a business process definition with a plurality of linked
workflows, each workflow having a corresponding work­
flow definition, said workflow definition representing com­
mitments that a user having a predetermined role makes and
completes to satisfy a customer of the workflow, said
method comprising the steps of:

a) providing services to workflow enabled applications
that allow users to act taking one of a plurality of
available acts defined in one of said business processes,
said workflow server means including a transaction
manager providing for each of said business processes
transaction services for
1. receiving instructions to initiate and initiating work­

flows of said business processes;
2. taking actions in said workflow initiated business

processes;
3. updating and maintaining workflow status after each

act is taken in each of said initiated workflows of said
business process and keeping track of pending work­
flow activities, wherein said taken act is one of an act
of a user and an act automatically taken by the
transaction manager based on said business process
definition and said workflow definition of a prede­
termined one of said workflows of said business
process, wherein said workflow status represents all
acts that are pending for said user having a prede­
termined role in said initiated workflow;

4. making available to said workflow enabled applica­
tions available business processes that a predeter-

6,073,109
113

mined one of said workflow enabled applications can
initiate and specifying available acts that a user of
said predetermined workflow enabled application
can take in each of the initiated workfiows of each of
the available business processes;

b) storing records of business process transactions.
18. The system defined by claim 1 further comprising a

schedule manager providing schedule services for

1. determining which business processes are due to be
initiated;

5

114
2. sending instructions to said transaction manager to

initiate said determined business processes.
19. The system defined by claim 1 further comprising a

follow-up manager providing follow-up services for:

1. determining when follow-up or reminder notifications
are to be sent to a user;

2. sending said notifications.

* * * * *

