US006073109A

United States Patent [(1] Patent Number: 6,073,109
Flores et al. 451 Date of Patent: Jun. 6, 2000
[54] COMPUTERIZED METHOD AND SYSTEM 4,503,499 3/1985 MaSON ...covvvriiririiiniiiiininianan 395/650
FOR MANAGING BUSINESS PROCESSES 5,040,142 8/1991 MOT wcovvuveveveeeeveeneevenreacencnaes 395/275
USING LINKED WORKFLOWS 5,301,320 4/1994 McAtee et al.cccceveevuerunnee 395/650
5,535,322 7/1996 Hechtcoovvvvniviiiiiiniinininne 395/155
[75] Inventors: Fernando Flores, Berkeley, Chauncey 5,581,691 12/1996 Hsu et al. ... 395/182.13
F. Bell, III; Pablo A. Flores, both of 5,630,069 5/1997 Flores et al. ...cocoveverevererererenenenne 705/7
Alameda; Rodrigo F. Flores, Berkeley, 5,734,837 3/1998 Flores et al. ...ccocoveverevererererenenenne 705/7
all of Calif.; Raul Medina-Mora Icaza, 5,826,239 10/1998 Du et al. .ccocveveveverereiererenerereienene 705/8
Mexico City, Mexico; John A. McAfee,
Kensington, Calif.; M.anuel Jasso OTHER PUBLICATIONS
Nuiiez, Alameda, Calif.; Thomas G.
%‘l,llfiltll?rﬂ/[gzgesl?rléri)ejllcf;lg’l;l()l;ﬁ:eﬁ' Computer Society Office Automation Symposium, Gaithers-
G. Redenbaugh, Philadelphia, Pa.; burg, MD, Apr. 27-29, 1987, Institute of Electrical and
Juan Ludlow Saldivar, Mexico City, Electronics Engineers, pp. 226-233, XP000370992; W.
Mexico; Terry A. Winograd, Stanford, Fisher et al: “FileNet: A Distributed System Supporting
Calif.; Robert P. Dunham, Pleasanton, WorkFlo; A Flexible Office Procedures Control Language”.
Calif.; Harry K. T. Wong, Danville,
Calif.; Roy 1. Gift, San Anselmo, Calif.
Primary Examiner—Jean R. Homere
[73] Assignee: Action Technologies, Inc., Alameda, A[[arney) Agen[) or Firm—Blakely Sokoloff Taylor &
Calif. Zafman
[21] Appl. No.: 08/764,131 [57] ABSTRACT
[22] Filed: Dec. 12, 1996 A system for analyzing and structuring business processes
implemented in software to provides businesses with tools to
Related U.S. Application Data manage business processes. The system i) notifies the user
[63] Continuation of application No. 08/624,206, Apr. 3, 1996 that he or Sh.e has a step (o begin or to complete; ii) prOViq.e.S
abandoned, which is a continuation of ai)plicati(;n No. the ‘,15“ with the .proper tools .to ComPlete a task; iif)
08/014,796, Feb. 8, 1993, abandoned. provides the user with the proper information to complete a
- task; 1v) allows the user to see where a task fits in the overall
[51] Imt. CL7 e R G 06F 15/173. process); v) manages proper reminders, alerts, and follow-
[52] US.ClL . 705§%,5/72()()7(;1305,~339;5//22()(?634;3§ ups to keep the process moving; vi) automates certain
. 7 ; standard procedures; vii) integrates with the organization’s
(58] Field of Se339rsc27720033200352030945‘/9207967253, existing business systems; and viii) provides application
1377, 7 B ’ ’3. 7(45 /8’ program interfaces that allow developers to develop appli-
? cations that are workflow-enabled. The system utilizes a
[56] References Cited workflow server including a transactions manager and a
database.
U.S. PATENT DOCUMENTS
4,484,280 11/1984 Hemondcocoveveveevvnvenvennncns 364/478 19 Claims, 6 Drawing Sheets
WORKFLOW SERVER

ERANSACTIOﬂ (FOLLOW-UP] (SCHEDULE)

WORKFLOW WORKFLOW insTanTiaTon | | ELOW
LANGUAGE
PROCESSOR UPDATER INTERPRETER
WORKFLOW e
EVENT ACTION: ROUTEFY
HANDLER WMANAGER ENQUEUER

S A———
DEFINITIONS

S S—
TRANSACTIONS

oS-~ N ot - T - | ot —-
NAMES/ ADMINISTRATION/
ROUTINGS SCHEDULE CONFIGURATION STF QUEVE
S R

woreLow || worrLow || nawes anp ERVE WORKFLOW
TRANSACTIONS || DEFINITIONS || ‘RouTINGS |[SCHEDUE || apminisTRaTON|| FEFRETER SERVER
AP pe) API API MANAGER

\ |

STF
PROCESSOR

(REPORTEH)

WORKFLOW
ENABLED
APPLICATION

APPLICATION '
_(BUILDER ANALYST J

C1 CUSTOMER
0:3:1
CONDITIONAL 1

THESE LINKS INDICATE O

THAT ONE OF TWO
CONDITIONAL WORKFLOWS
IS INITIATED

FIG. 1

C1 PERFORMER

/ C2 PERFORMER
C2 CUSTOMER ﬂ;‘)\

500 S1 PERFORMER
S$1 CUSTOMER N
SERIAL 1

IS LINK INDICATES

THAT A SERIAL
CONDITIONAL 2 WORKFLOW S2 PERFORMER
IS INITIATED e
1:0:0
SERIAL 2

52 CUSTOMER

cLIENT ! PRIMARY WORKFLOW

P2 PERFORMER
1:0:0
PARALLEL 2

ﬂ;\ﬂ
g PARALLEL 1 P1 PERFORMER
P1 CUSTOMERK‘_/

aed ‘SN

0007 ‘9 ‘unf

9 JO 1 994§

60T°€LO9

WORKFLOW SERVER

TRANSACTION FOLLOW-UP SCHEDULE
MANAGER MANAGER MANAGER

WORKFLOW WORKFLOW INSTANTIATOR WORKFLOW
LANGUAGE
PROCESSOR UPDATER INTERPRETER
WORKFLOW AGENT STF
EVENT ACTIONS ROUTER/
HANDLER MANAGER ENQUEUER

API

DEFINITIONS

WORKFLOW
TRANSACTIONS

TRANSACTIONS

APl

WORKFLOW
ENABLED
APPLICATION

WORKFLOW
DEFINITIONS

NAMES/
ROUTINGS

l SCHEDULE
pemaramt®

ADMINISTRATION/ l
conFiguraTion || STF QUEUE

APl

NAMES AND
ROUTINGS

SCHEDULE
API

STF
PROCESSOR

SERVER
ADMINISTRATION
APl

REPORTER

REPORTER
AP|

l APPLICATION
. ELICATK)‘_(ANALYST J

WORKFLOW
SERVER
MANAGER

Juaed SN

0007 ‘9 'unf

9 JO T 934§

601°€LO‘9

6,073,109

Sheet 3 of 6

Jun. 6, 2000

U.S. Patent

¢ "Bi4

3ASYHd moz<s_mou_mmmlmm >Immm0|mm<_._n_ NOILLOVASILYS ——

YIWHO4H3d NOILLOVHSILYS : HIWOLSNID
40 SNOLLIGNOD

<

3ISVYH INFW3IUOV JISVHd TVSOdOHd———

U.S. Patent Jun. 6, 2000 Sheet 4 of 6 6,073,109

TRANSACTION
MANAGER

INSTANTIATOR

DEFINITIONS TRANSACTIONS

Fig. 4a

U.S. Patent Jun. 6, 2000 Sheet 5 of 6
TRANSACTION
MANAGER
2
[WORKFLOW |[WORKFLOW
PROCESSOR|| UPDATER

6,073,109

ROUTER/
QUEUER

|

TRANSACTIONS/
BOUND DATA RS

FIG. 4b

U.S. Patent Jun. 6, 2000 Sheet 6 of 6 6,073,109

TRANSACTION .
{ MANAGER] [FOLLOW Uﬂ

1

LANGUAGE IAGENT ACTIONIl ACT/STAT
INTERPRETER]| MANAGER EVEST I-SiANDELER

TRANSACTIONS

6,073,109

1

COMPUTERIZED METHOD AND SYSTEM
FOR MANAGING BUSINESS PROCESSES
USING LINKED WORKFLOWS

This is a continuation of application Ser. No. 08/624,206
filed Apr. 3, 1996, now abandoned which is a continuation
of application Ser. No. 08/014,796 filed Feb. 8, 1993, now
abandoned.

BRIEF SUMMARY OF THE INVENTION

Businesses are demanding new systems that directly
support the management of business processes, systems that
bring order and coordination to the flow of work. They are
seeking to automate that part of office -work that has been
impervious to conventional data processing and information
processing systems, which were now designed for business
process management and are not well-suited to help with it.

The present invention is a system for analyzing and
structuring business processes that, when implemented in
software, provides businesses with the tools they need to
manage business processes efficiently and cost-effectively.

The invention can be applied to all business processes
from simple applications, such as intelligent forms routing,
to sophisticated mission-critical enterprise-wide systems
that integrate all marketing, production, and customer ful-
fillment processes.

The resulting system enables users of the system to take
coordinated action quickly and to manage processes pain-
lessly. The results are increased productivity, reduced cycle
time and hence, improved customer satisfaction.

Workflow-enabled systems facilitate business processes.
To do so, a workflow management system performs eight
key functions:

Notifies the user that he or she has a step to begin or to

complete.

Provides the user with the proper tools to complete a task.

Provides the user with the proper information to complete
a task.

Allows the user to see where a task fits in the overall
process.

Manages the proper reminders, alerts, and follow-ups to
keep the process moving.

Automates certain standard procedures.

Integrates with the organization’s existing business sys-
tems.

Provides simple application program interfaces (APIs)
that allow developers to develop new custom applica-
tions that are workflow-enabled.

The workflow system’s architecture is designed to fit
within a variety of computer systems, collecting around
itself not only specific applications, Beut also system
enhancements and utilities from users and third-party devel-
opers. In addition, the architecture is designed to allow for
interoperability among different applications and across
diverse platforms.

A fundamental concept of a workflow system is that any
business process can be interpreted as a sequence of basic
transactions called workflows. Every workflow has a
customer, a performer, and conditions of satisfaction. The
customer and performer are roles that participants can take
in workflows. In addition, each workflow can have observ-
ers.

In a workflow, the customer is the person for the sake of
whom the work is done, either because they made a request

10

20

25

30

35

40

45

50

55

60

65

2

or accepted an offer. It is customers who are responsible for
evaluating performed work and determining whether this
work meets their conditions of satisfaction.

The performer is the person who is responsible for
completing the work and for declaring to the customer when
the work is done.

Requests and Offers are the two basic types of workflows.
There are other workflow types such as Question, Inform
and Note that are simplified derivations of Request and
Offer. The conditions of satisfaction specify the work to be
performed by the performer. In a request, the customer
specifies the conditions of satisfaction, and in an offer the
performer specifies them. (Then, of course, the two can enter
into negotiation about the work to be done.)

For example, given the sentence:

“John asked Frank to prepare the report and deliver it by

noon on Friday,”
John is the customer for this workflow, Frank is the
performer, and the conditions of satisfaction are “prepare the
report and deliver it by noon on Friday.” Further, Because
John asked for the report rather than Frank offering it, this
workflow is of the type Request.

Given the sentence:

“John proposed to prepare the report and deliver it by

noon on Friday for Frank,”
John is the performer for this workflow, Frank is the
customer, and the conditions of satisfaction are still “prepare
the report and deliver it by noon on Friday.” Further because
John proposed the report rather than Frank asking for it, this
workflow is of the type Offer.

Observers of workflows take no direct action; they usually
observe for management or training purposes.

Business process maps display the workflows as loops,
and display the relevant information about each workflow—
the customer, the performer, the conditions of satisfaction
and the cycle time. FIG. 1 is a business process man having
a primary workflow 11, conditional workflows 13 and 15, a
conditional link 17, parallel workflows 19 and 21, serial
workflows 23 and 25. In a workflow system according to the
present invention, associated with each workflow: are vari-
ous parameters such as roles, cycle time, conditions of
satisfaction or associate semantics to the links that imply
automated action or provide the framework for application
building, all of which are necessary to create a useful
business process representation. Each workflow has four
phases. The first phase is called the proposal phase during
which a request is made of the prospective performer by a
customer or an offer to a customer is made by a prospective
performer. The second phase is called the agreement phase
during which the offer is accepted by the customer or the
request is agreed to by the performer and conditions of
satisfaction are identified. Of course, during the agreement
phase the original conditions of satisfaction can be negoti-
ated by the customer and performer until an agreement is
reached. The third phase is called the performance phase
during which the performer undertakes to meet the agreed to
or accepted conditions of satisfaction. When the performer
believes that the conditions of satisfaction have been met,
the performer declares completion. The last phase is the
satisfaction phase during which the customer determines
whether or not the conditions of satisfaction have been met
by the performer, and if so, declares satisfaction.

In U.S. Ser. No. 07/600,144 filed Oct. 17, 1990, now U.S.
Pat. No. 5,216,603, and U.S. Ser. No. 07/368,179 filed Jun.
19, 1989, now U.S. Pat. No. 5,208,748, both owned by
Action Technologies, Inc., the assignee of the present
application, methods and systems For managing workflows,

6,073,109

3

called conversations in the referenced applications, are
described. However, the teachings in the cited references are
limited to single workflows no capability for mapping
business processes made up of a number of workflows
linked together. In U.S. Ser. No. 08/005,236 filed Jan. 15,
1993, now U.S. Pat. No. 5,630,069, a method and apparatus
are disclosed for creating and modifying business process
maps which is a desirable but not necessary component of
the invented system. This component is referred to as the
workflow analyst.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is pictorial representation of a business process,
i.e., a set of linked workflows.

FIG. 2 is a block overview diagram of a complete
workflow system.

FIG. 3 is pictorial representation showing the phases of a
single workflow.

FIG. 4a is a transaction manager control flow when it
detects the initiation of a new business process or workflow.

FIG. 4b is a transaction manager control flow when it
detects a change in the transactions database that indicates
that a user (or an agent) has taken an act in a workflow.

FIG. 4c¢ is a transaction manager control flow when it
processes the workflow events of a workflow.

DETAILED DESCRIPTION OF THE
INVENTION
Overview
The present invention is a method and apparatus which is
used to enable application developers to generate workflow
enabled applications that request services from the workflow
server. These applications are used by users to act and
participate in business processes and enable managers to
observe and query the status of workflows and business
processes.
Definitions
In describing the invention, the following terms with their
indicated definitions are used:
Act
Basic linguistic occurrence by which people intervene in
moving a workflow towards completion.
Agreement
The outcome of the negotiation phase, in which two
parties come to a common agreement of the conditions
of satisfaction.
Business Process
A network of workflows linked together that represent the
recurrent process by which an organization performs
and completes work, delivers products and services and
satisfies customers.
Business Process Map
This is a graphical representation of business process,
which shows its workflows and their relationship.
Primary workflow
This is the first workflow which is initiated when a
business process is initiated. Its condition of satisfac-
tion represent the condition of satisfaction of the busi-
NESS Process.
Conditional Link
Alink that indicates that only one of a group of workflows
will be triggered based on some condition.
Conditions of Satisfaction
Conditions declared by or agreed to by a customer. The
fulfillment of which is the purpose of a workflow.

10

15

20

25

30

35

40

45

55

60

4

Customer

The role in a workflow who takes a request or accepts and
offer.
Customer Satisfaction

The objective of a workflow, the accomplishment of
which is declared by the customer when the conditions
of satisfaction in the workflow have been fulfilled.

Cycle time

A measure of the time from initiation to successful
completion of a workflow phase, a complete workflow
or a business process.

Exception flow

The path in the business process workflow man which is
followed if a customer cancels or a performer revokes
or declines.

Link

A defined dependency between two workflows and the
mechanism by which dependencies between workflows
is established.

Loops (Workflow)

A workflow is represented graphically my an elliptical
loop with arrows shown in a clockwise direction
wherein each quadrant of the ellipse signifies different
phases of the workflow.

Normal flow

This is the path followed in a business prowess map when
workflows complete with customer satisfaction.
Observer

A role in a workflow who cannot perform acts in the
workflow, but is informed of acts in the workflow, and
has access to the information and data associated with
the workflow.

Offer

The act by which the performer can initiate a workflow,
specifying conditions of satisfaction that he is willing
to satisfy for a customer.

Organization roles

Named positions in an organization who are authorized to
make certain requests, agreements, take certain actions,
set certain policies, and make certain decisions. The
kind of roles will be accountant, office manager, etc.

Performer

One of the principal roles in a workflow: the role that
commits to complete the conditions of satisfaction.
Phase
A characterization of the status of a workflow based on the
acts that have happened and the acts that are permitted.
Each workflow has four phases namely, the proposal
phase the agreement phase, the performance phase and
the satisfaction phase
Request
A customer does this act to initiate a workflow and declare
conditions of satisfaction.
Trigger
An action in a workflow which causes an action in some
other workflow.
Triggered
Action in a workflow based on certain conditions/status in
some other workflow.
Workflow

Astructured set of acts between customers and performers
organized to satisty a customer’s conditions of satis-
faction.

6,073,109

5
Workflow Activation
A triggered action that enables the customer or performer
of the workflow to take the initial act of the workflow.
Workflow Initiation

An act of request or offer initiates a workflow.
Workflow Roles

The association of participants in the workflows that take

the acts in workflows; three roles are distinguished in
workflows: customer, performer, and observer.
Workflow Type
This indicates whether the workflow is of request, offer or
note type.
Services Provided By A Workflow System

The following describes the services provided by a work-
flow system. These services are provided to applications via
calls to the workflow server APIs. These workflow server
APIs provide the main mechanism to interface and get
access to the services provided by the server. In an alternate
embodiment, these services can be provided via updates to
the workflow server databases rather than via calls to the
workflow server APIs.

Transactions Services

Transaction services are those related to initiating and
acting in workflows by users and agents. These services
are provided to workflow enabled applications via the
transaction API. Alternatively, the services may be
provided to workflow enabled applications through
updates to the workflow transaction database. These
services are also provided through the functions of the
workflow language specified in the definition of work-
flows.

The services provided are as follows:

a) Initiate a Workflow

Through this function, an application requests the server
to start a new workflow. For example, if a user fills an
expense report form, when it is saved, the resulting record or
document represents the initiation of a workflow, the appli-
cation will use this service to start the workflow.

For example, in a workflow enabled application in the
Lotus Notes environment (available and Lotus Corporation),
users initiate a new business process by composing a
NOTES form in the transactions database. Users initiate
workflows by editing and selecting options in forms. In other
environments users fill in proper forms and the applications
request the services via calls to the Transactions API.

b) Act in a Workflow

Through this function, an application can take action on
an existing workflow. For example, a manager’s approval of
an expense report indicates the fact the manager took an act
in the workflow.

¢) Workflow status and available acts

The workflow server updates and maintains the status of
the workflow after each act is taken in a workflow. The
server also updates the corresponding database records to
reflect status and the available acts for the customer and
performer such that users can see the workflow status and
the available acts (given their role in the workflow) when
they open the workflow transaction record of the transac-
tions database or when they request such status from the
server through one of the transactions API functions.

d) Bind and read process specific data (bound data)

Through this function, an application binds application
specific data to a workflow transaction. That is, this function
allows applications to read and modify the process specific
data (bound data) that the workflow server keeps in the
workflow transaction document. The specification of the
bound data (field names and their data types) are defined
through definition services. This data is directly accessible to

10

15

20

25

30

35

40

45

50

55

60

65

6

the application through transactions database forms. The
server modifies the form specification to provide different
display attributes of fields in forms depending on the status
of a workflow.

¢) Workflows with pending actions

Users can request to see a list of workflows with pending
actions of the ongoing business process, given the role that
the user has in the different workflows of the process. In the
NOTES environment implementation, these lists are avail-
able through a set of views of the transaction database.

f) Available Business Process

These appear as a functional capability of a workflow
enabled application. The workflow server reports the avail-
able business processes that a workflow: enabled application
can initiate.
Definition Services

Definition services are those related to defining the ele-
ments of a business process and its workflows and workflow
links.

a) Define a Business Process

Using the workflow application builder (or other design
application that uses the workflow: definitions API which is
the way the application builder interacts with the workflow
server), users can define the workflows and links that
constitute a business process. In this connection, references
herein to the workflow application builder should be under-
stood as a reference to any design application which defines
the workflows, links, conditional links and workflow lan-
guage scripts that constitute a business process. The details
for accessing the services provided by the server so that a
suitable design application can be constructed should be
apparent to persons skilled in the art based upon the descrip-
tions contained herein.

b) Define a workflow

Using the workflow application builder (or other design
application), users can define the structure of particular
workflows that belong to the business process being defined
through a set of structure definitions (specification of records
of the workflow definitions database) and enable the appli-
cation builder (or other design application) to create, modify
and delete definition documents in the database.

Using the workflow application builder (or other design
application), users can specify the:

business processes

links and workflows and all their elements

conditional links between workflows

bound data

follow-up and reminder specification

automated action to be taken by the server
Names and Routing Services

Names and routing services are those related to defining
organizational roles and identities. The names and routing
services allow an authorized user to create, modify and
delete names and routing records in the names/routing
database. These records contain the organizational roles and
identities of the organization serviced by the server. They
also contain the routing information for each identity that
allows the server to queue notifications and reports for the
proper STF processor. These services are specified through
the user interface of the application builder or other design
application that uses the names/routings API of the work-
flow server.

a) Define organization roles

Using the workflow application builder (or other design
application) and a set of APIs from the workflow library,
users can define roles used in the organization where the
workflow system is implemented.

6,073,109

7

b) Define identities

Using the workflow application builder (or other design
application) and a set of workflow definitions APIs from the
workflow library, users can define identities in the organi-
zation where the workflow system is implemented.

STF Processing Services

The STF processing services are provided by the server to
STF processors (described below) through an STF queue
database. The database contains records of pending notifi-
cations and reports to be given to specific users in applica-
tions that the STF processors service. STF processors pro-
cess and delete these records once they are processed.
Configuration Services

The configuration services are provided to the system
administrator through a specific configuration database.
Through a workflow server manager which is a user inter-
face that uses the server administration API, the system
administrator can define the network configuration of the
system, the version of the servers, register STF processors,
define the authorized users, specify the log database and the
level of logging required.

Scheduling Services

The scheduling services allow an authorized user to
create, modify and delete records of scheduled business
processes. These records specify the date/time when the
server must initiate a business process as well as the recur-
rence in which this initiation should happen. These services
are specified through the user interface in the application
builder.

External Interfaces

External interfaces provide services that are used by
end-user applications, the workflow application builder, the
workflow reporter and the STF processors. Some of these
services, such as configuration services, are provided
through specific user interfaces; others are provided by the
workflow APIs. In an environment like NOTES (available
from Lotus Corporation), where the client interfaces interact
with the databases directly, client workflow-enabled appli-
cations access the databases directly to obtain workflow
services. They do not use a programmatic API; instead they
read and write workflow structures that are interpreted by
the workflow server. In other environments workflow-
enabled applications access the workflow services through
the workflow APIs.

Network Architecture

The workflow server component of a workflow system is
designed to be installed at a single site, managing a single set
of databases. It can manage one or many business processes,
and, as noted above, each business process can contain one
or many workflows.

The workflow server is configured through a configura-
tion database. When the workflow server starts, it begins to
monitor and update the workflow databases as appropriate.
Each workflow server can monitor multiple definitions,
transactions, or scheduling databases, as specified in the
configuration database.

In the NOTES environment distributed access to business
process databases is achieved through the replication mecha-
nisms of NOTES.

The transactions database managed by the workflow
server can be replicated through the standard mechanisms of
NOTES. In this way, distributed access for viewing and
changing business process status is achieved.

A business process is designed in such a way that all the
workflows that are part of the business process are stored
and managed in a single NOTES (or other workflow enabled
application) database. This database is then managed by a

10

15

20

25

30

35

40

45

50

55

60

65

8

single workflow server for agent processing and workflow
language interpretation.

As a stand-alone server in the Micrsoft Windows
environment, a special version of the workflow server hav-
ing a restricted functionality of services allows users of
workflow-enabled applications to take action and rove work-
flows to completion, but does not include the services of
automated agents or of execution of workflow language
scripts.

Components of a Workflow System

A workflow system incorporates the following compo-
nents which are shown in FIG. 2, a workflow server and
databases, application program interfaces (APIs) and work-
flow server manager. In addition, a complete workflow
system of the type in which the present invention may be
utilized includes an application builder, analyst, standard
transaction format (STF) processors, workflow enabled
applications and reporter components. The application
builder, analyst, standard transaction format (STF)
processors, workflow enabled applications and reporter
components, while useful components of a complete work-
flow system, do not form part of the present invention and
details concerning such components are set forth herein only
as needed for an understanding of the invention.

The following is a brief overview description of the
workflow server, databases, APIs and workflow server man-
ager which is followed by a detailed description of these
components. Details concerning the remaining components
are provided only as needed for a complete understanding of
the invention. In the preferred embodiment as set forth
below, the invented system is implemented using the Model,
View, Class (MVC) paradigm of object oriented program-
ming.

Workflow Server

The workflow server is the center of a workflow system.
The workflow system concentrates workflow operations in
the workflow server rather than in the end user applications.
By using this client/server design, applications do not need
to have the intelligence about workflows as part of their
design. Application developers can concentrate on their
particular application development not having to worry
about workflow logic and overhead because such function-
ality is handled at the server.

FIG. 2 shows the major components of the workflow
server in relation to other components of a workflow system.
These components are referred to as processes and modules.

All work done by the server is performed by one of four
processes which are referred to as the transaction manager,
follow-up manager, date/time schedule manager and STF
schedule manager. Processes are software components or
tasks that are architected to run as separate entities from each
other. The workflow server controls the four basic processes
based upon workflow system server administration data in a
configuration database in the following manner. First, it
determines what STF processors need to run and spawns
those processes. Second, it determines when to run the
transaction manager and spawms that process. Third, it
determines when to run the follow-up manager and spacers
that process.

These processes may be separate executables or simply
separate tasks within the body of the workflow system
server.

Workflow server modules are software components that
provide a specific type of functionality. Modules are used by
the above processes and also among themselves.

Organizationally the modules can be thought of as sepa-
rate libraries. These modules are the workflow processor,

6,073,109

9

workflow updater, the workflow instantiator, the workflow
language interpreter, the workflow event handler, the agent
actions manager, and the STF router/enqueuer manager.
Databases

The workflow system utilizes the following databases:

Definitions Database

The definitions database contains records of the defini-
tions of the organizations, business processes, workflows,
roles, and acts. These records contain the instructions of
what needs to be done in a workflow in a given instance.
These records are used by the workflow updater and work-
flow processor to determine new workflow states and avail-
able actions.

Transactions Database

The transaction database contains records of the enact-
ment of workflows. Each time a workflow is initiated or an
action taken within a workflow, a corresponding record is
made in the transactions database. These records include the
workflow instances, the action transactions, the current
incompletions, and the relationships between different work-
flows.

Names/Routings Database

The Names/Routings database contains records of the
roles and identities of the organization where the workflow
system is installed. It records the existing organizational
roles, the current identities and the authorizations to act in
one or more roles.

Schedule Database

The schedule database stores the date and time when a
business process must be initiated. The date/time schedule
manager reads this database.

Administration/Configuration Database

This database stores information needed by the workflow
server to operate.

STF Queue Database

This database stores the records of notifications to be sent
to users that interact with the workflow system through an
STF processor interface.
Workflow APIs

The workflow APIs provide a programming interface to
access the services of the workflow server. Workflow
enabled applications, STF processors (described below) and
the application builder are all developed using these APIs.
APIs of the invented system are as follows: transaction API,
definitions API, reporter API, names and routings API,
schedule API and administration API.
Workflow Server Manager

The workflow server manager is a component of the
workflow system that provides a user interface for specific
services of the workflow server such as:
Server Management
Authorization Maintenance
Business Process Maintenance
Workflow Maintenance
STF Processor Maintenance
Configuration
Transaction Log Maintenance
Business Process Scheduling and Organizational Calendar

The WSM uses the workflow APIs to implement the
functions and services it provides to users. Through the use
of the WSM, a user selects the scheduling function which
provides the user interface to specify the recurrent schedul-
ing of business processes as well as the specification of the
organizational calendar as specified by the schedule man-
ager.
Workflow Application Builder

The workflow application builder is a Graphical User
Interface (GUT) application that allows a business process

10

15

20

25

30

35

40

45

50

55

60

65

10

designer to specify the business process design with its
network of workflows. The application builder, in turn,
creates or edits the workflow definitions databases that
define the business process and that will be used by the
workflow server. The functions performed by the workflow
application builder can alternatively be performed by a
design application that uses the workflow definitions API of
the workflow server.

Workflow Analyst

The workflow analyst is a GUI application that allows a
business process analyst to specify the map of business
processes with its network of workflows. Its output is
readable by the application builder or equivalent which will
update the definitions database of the server. Details con-
cerning the workflow analyst may be found in co-pending
U.S. Ser. No. 08/005,236 filed Jan. 15, 1993, now U.S. Pat.
No. 5,630,069.

Workflow Reporter

The workflow reporter is a GUT application that provides
an interface to the transaction databases through the work-
flow reporter API of the system. It allows the observation of
the status of current transactions as well as the history and
performance of past transactions. Further details concerning
the workflow reporter are not needed for a complete under-
standing of the present invention. Alternatively, such reports
can be provided by an application that uses the workflow
reporter API.

STF Processors

An additional set of mechanisms for developing
workflow-enabled applications are provided in a workflow
system through the definition of a standard transaction
format (STF). This format defines the semantics for access-
ing the workflow services through different types of inter-
faces: messaging, databases and inter-process communica-
tion.

For each one of these types of interfaces there is a
syntactic definition that specifies the specific format for the
representation of the workflow data and the process specific
data in that medium. This syntax definition constitutes an
STF API that a particular application will then use.

The communication and interface between workflow-
enabled applications that do not use the workflow; APIs and
the server is provided by STF processors. These STF pro-
cessors map and translate between a workflow-enabled
application’s data format and the workflow APIs data ele-
ments.

STF processors provide a layer for integration of many
different protocols and technologies. STF processors can be
constructed for any message transport environment protocol,
database technology, and inter-process communication pro-
tocol.

The interface from STF processors to the server is accom-
plished through the work-flow APIs. From the point of view
of workflow services, the STF processors appear to the
server as additional applications.

A standard transaction format (STF) processor is an
application whose job is to interface external systems to the
workflow system. There is one STF processor for each
different type of system that interfaces to the workflow
system.

Workflow-Enabled Applications

A workflow-enabled application interfaces to the server
via the workflow APIs or via direct access to the transactions
database of the workflow server, or via the use of an STF
processor which can use different interfacing mechanisms
such as messaging, database or inter-process communica-
tion.

6,073,109

11

DESIGN AND IMPLEMENTATION DESCRIPTION

A. WORKFLOW SERVER

The workflow server is a set of processes, modules,
databases and APIs as set forth above. The following is a
description for implementing the processes, modules, data-
bases and APIs of the workflow server. Also described is a
workflow server manager which provides a user interface for
specific services of the workflow server.

Processes

Transaction Manager (TM)

The TM starts all the actions that must happen when there
is a change in the transactions database. The TM is the driver
for processing requests made by users through workflow-
enabled applications. The transaction manager determines
what changes in the transaction database have occurred.
Records that have changed in the database are detected by
the TM. The transaction manager manages a transaction
queue and services queued transactions in FIFO order.
Transactions may be entered directly by a user via forms
available in workflow-enabled applications, which use the
workflow transactions APIs to request the services of the
workflow server, or they may be requested via an STF
Processor.

A workflow record that has changed, falls into one of
several different categories. It may be:

A request for initiation of a new business process;

A request for initiation of a new workflow within a
business process; or

A request for an act within a workflow.

Each of the different types is dealt with differently.

When there is a business process or workflow initiation
FIG. 4a shows the control flow of the transaction manager
when it detects the initiation of a new business process or
workflow. In this case the transactions database will contain
the record for the business process or the workflow being
initiated.

In Flow #1 the transaction manager detects the initiation
of a business process or workflow in the transactions data-
base.

In Flow #2 the transaction manager calls the Instantiator
Module, which will instantiate the workflow records based
on the definition of the business process.

In Flow #3 the instantiator reads the definition of the
business process or workflow from the definitions database.

In Flow #4 the Instantiator creates all the new transaction
records for the corresponding workflow or the business
process.

FIG. 4b shows the control flow of the transaction manager
when it detects a change in the transactions database that
indicates that a user (or an agent) has taken an act in a
workflow.

In Flow #1 the transaction manager detects the workflow
act being taken in the transactions database.

In Flow #2 the transaction manager calls the workflow
updater to begin processing this newly undated transaction
record.

In Flow #3 the workflow processor calculates next avail-
able acts, new incompletions, etc.

In Flow #4 the next available actions, incompletions, etc.
are written to the transaction records.

In Flow #5 the workflow updater checks the names
database to see if one of the identities participating in the
workflow being processed needs to be notified via an STF
Processor.

In Flow #6 if an identity has been identified in Flow #5
that needs to be notified via an STF processor, then the
transaction is queued in the STF queue database.

10

15

20

25

30

35

40

45

50

55

65

12

FIG. 4¢ shows the control flow of the transaction manager
when it processes the act and state events, which are also
referred to herein as workflow events, of a workflow. In the
definitions database, each workflow definition includes
workflow language segments (scripts) that are associated
with each act and state of the workflow.

In Flow #1 the transaction manager invokes the workflow
event handler indicating the workflow, act and state that
should be processed.

In Flow #2 the workflow event handler reads the script for
the act from the definitions database.

In Flow #3 the workflow event handler invokes the
workflow language interpreter to process the script.

In Flow #4 If the script indicated that an action needs to
be taken, the workflow language interpreter calls the agent
actions manager to take the workflow act on behalf of the
user.

In Flow #5 the agent actions manager updates the trans-
actions database to reflect that an act has been taken.

The workflow event handler then repeats Flow #2, but in
this case reads the script for the state of the workflow. The
process continues to Flow #3 with respect to the state.

The workflow event handler repeats Flow #2 and Flow #3
for the script that corresponds to the current state of the
primary workflow of the business process.

In the preferred embodiment, the transaction manager is
implemented as follows. The transaction manager identifies
changes that have taken place in the workflow transaction
database and invokes the proper server modules to provide
the services that have been requested or that those changes
represent. The transaction manager queues and services
incoming transactions by instantiating a transaction-type-
specific object.

The date/time the transaction was entered is given along
with its type and id. This date/time field is used to do FIFO
(first in-first out)queue retrievals. The earliest date/time will
always be retrieved first.

ITXID is the id of a transaction in the Transaction
Database. These ids are txtype dependent and can be used to
access transactions directly from the database.

The following is a description in pseudo-code for imple-
menting the transaction manager process. This implemen-
tation is described in terms of a MAIN function or routine
which includes a call to a loop (MainLoop) which executes
continuously.

MAIN

The MAIN function connects to the Virtual Database
(VDB), performs the primary activity of the transaction
manager and disconnects from the Virtual Database.

The primary activity of the transaction manager is check-
ing the workflow transactions database for requests to pro-
cess. It performs this primary activity by a call to the
function MainLoop.

In case of an error, the MAIN function performs a write
to an error log, giving the error code and the message. The
flow of the MAIN function is as follow:

1. Connect to the Virtual Database.
2. If connection is successful write a message to a log

provided by the workflow server manager described
below.

3. If connection is not successful, write a message to the
log and return.

4. Call function MainLoop.

5. Disconnect from the Virtual Database.

6. If disconnection is successful write a message to the
log.

6,073,109

13

7. If disconnection is not successful, write a message to
the log and return.

MainlLoop

This function performs the primary activity of the trans-
action manager. In an unconditional loop, it checks if any
message has been sent from the workflow server manager
(WSM) and processes it. It then performs the main activity
of checking for workflow requests and invokes either the
workflow updater or the agent/action manager.

1. Check for any message for the transaction manager
from the WSM. To retrieve messages, the method
bfnGetMessage of class MESSAGEQ is called. In case
of any error, the error is written into the log file.

2. Depending on the message, the message is processed
differently, according to steps 3 and 4 below.

3. If the message is to terminate the transaction manager,
the function is terminated.

4. If the message is to indicate that the configuration has
changed then do the following:

5. The new configuration is retrieved using method
bfnGetConfiglnfo of class CONFIGINFO. The new
configuration is returned in a structure that contains all
the configuration information. In case of error in
retrieving the configuration information, the error is
written in the log file.

6. The configuration database specifies the polling inter-
val and the log verbosity options. The polling interval
is the time the transaction manager sleeps between
processing cycles. The log verbosity option specifies
the amount of information that gets written into the log
file. The function AWSWriteToLog is used to log
activities into the log file.

7. Invoke workflow updater.
8. Invoke the agent actions manager.
9. Sleep for a time interval of duration Polllnterval.

10. Proceed to step 1.
Follow Up Manager

The follow-up manager runs periodically, scheduled per
workflow server administration tables in the administration/
configuration database. It can run asychronously to the
transaction manager. It determines when notifications, either
follow up or reminders, are to be sent and sends them.

The follow-up manager detects transactions in which a
participant has an overdue commitment and, depending or
the workflow definition stored in the definitions database,
will execute a script, send a mail message, or take other
actions that are defined. The follow-up manager interacts
with a Workflow Incompletion Transaction class which is
part of the transaction database, which furnishes follow up
and reminder times, in order to select workflows requiring
notification.

Follow up is specified in the workflow definition, this
specification is done through the application builder or
equivalent. For each workflow, a follow up specification can
be made for each one of the roles of the workflow as follows:
Specify when the follow-up will be done

First and last valid times

Recurrence interval

Holidays on which not to follow-up (Optional)
Days of week on which to follow-up (Optional)
Time ranges in which to follow-up (Optional)

How many times to follow-up before stopping
Specify incompletions to be followed up on

Customer response due

10

15

20

25

30

35

40

45

50

55

60

14

Performer response due

Performer fulfillment due
Specity the type of check

Will be coming due (reminder) and how soon

Is past due (follow-up) by how much
Specify what to do for the follow-up

In each workflow transaction, the current incompletions
for each role are kept as indexed records. In addition to the
date for the incompletion, the record will contain a field for
the next date and time for follow up as well as the next date
and time for reminder. The records will be indexed on these
two date fields as well. The follow-up manager works off
these incompletion records.

The follow-up manager checks if the first follow-up or
reminder date/time is due “now” and that “now” is not a
restricted date/time according to the organizational calendar,
and if so, retrieves the workflow language script and passes
it to the Workflow Language Interpreter for processing. The
follow-up manager deals appropriately with the case that the
server has been down and processes all entries that are past
due.

The following is a description in pseudo-code for imple-
menting the follow-up manager process. This implementa-
tion is described in terms of a MAIN function or routine
which includes a call to a loop (MainLoop) which executes
continuously.

MAIN

The MAIN function connects to the Virtual Database
(VDB), performs the primary activity of the follow-up
manager and then disconnects from the VDB.

The primary activity of the follow-up manager is check-
ing for overdue commitments and then sending reminders or
follow-up messages. It performs this primary activity by a
call to the function MainLoop.

In case of an error, the MAIN function performs a write
to an error log, giving the error code and the message. The
flow of the MAIN function is as follow:

1. Connect to the Virtual Database.

2. If connection is successful write a message to the log.

3. If connection is not successful, write a message to the log
and return.

. Call function MainLoop.

. Disconnect from the Virtual Database.

. If disconnection is successful write a message to the log.

. If disconnection is not successful, write a message to the
log and return.

MainlLoop

This function performs the primary activity of the follow-
up manager. In an unconditional loop, it checks if any
message has been sent from the workflow server manager
(WSM) using the workflow administration API, and pro-
cesses it. It then checks for commitments due and sends
follow-up and reminder messages if required. The flow of
MainLoop is as follows:

1. Check for any message for the follow up manager from
the (WSM). To retrieve messages, the method bfnGet-
Message of class MESSAGEQ is called. In case of any
error, the error is written into the log file.

2. Depending on the message, the message is processed
differently, according to steps 3 and 4 below.

3. If the message is to terminate the follow-up manager,
the function is terminated.

4. If the message is to indicate that the configuration has
changed, then do the following:

5. The new configuration is retrieved using method
bfnGetConfiglnfo of class CONFIGINFO. The new

~N N

6,073,109

15

configuration is returned in a structure that contains all
configuration information. In case of error in retrieving
the configuration information, the error is written to the
log file.

6. The configuration database specifies the polling inter-
val and the log verbosity options. The polling interval
is the time the follow-up manager sleep between pro-
cessing cycles. The log verbosity option specifies the
amount of information that gets written into the log file.

7. The function FollowUp is called to perform the main
activity of the follow-up manager.

8. Sleep for a time interval of duration Polllnterval.

9. Proceed to step 1.
FollowUp

The FollowUp function scans the Incompletions table of
the transactions database and determines which incomple-
tions are due for reminder or follow-up. The processing is
done in two passes, one for reminders and the other for
follow-ups.

1. Set a flag to indicate if it is a reminder or follow-up
pass.

2. Get the current time. This time will be the basis for
selecting incompletions which are due. If the incomple-
tions are prior to the current date then the incompletion
is processed. In case of error in getting the current time,
log an error and return.

3. Using methods of class TXWFINCOMPLETION from
the transactions database, the incompletions due for
processing are retrieved. Methods bfnGetFirstln-
completion and bfnGetNextlncompletion retrieve the
incompletions that are due.

4. If an incompletion is due (reminder or follow-up),
methods of class TXWFINCOMPLETION are called
to get the Business Process Id (IBPTid), the Workflow
Id (IWFTid) and the Incompletion type(Incld). The
following methods are used:

Value Methods
BPTid 1fnGetBPTid
WEFTid 1fnGetWFTid
Incld fnGetlIncld

5. The workflow associated with the incompletion is
retrieved from the VDB. An instance of the class
TXWFINSTANCE is created. The IBPTid and the
IWFTid are passed as parameters.

6. Depending on the incompletion, the workflow partici-
pant is determined. The logic for determining the
workflow participant is as follows:

Incompletion Workflow
Notification Type Type Role
Reminder Customer His Completion Performer
Follow-up Customer His Response Performer
Follow-up Customer His Completion Performer
Follow-up Performer His Response Customer

7. Check if the Identity needs notification. The Identity
attributes are retrieved from the VDB. These are stored
in table NRDFIDENTITY. If the Notification flag is set
then the follow-up/reminder information is sent to the

10

15

20

25

30

35

40

45

50

55

60

65

16

workflow participant. The notification information is
retrieved using method bfnGetNotify.

8. If notification is required, then retrieve the STF Pro-
cessor Id, by using method 1fnGetSTFProcld of class
NRDFIDENTITY. The notification is placed in the STF
queue of this STF processor.

9. The notification event is determined by the following
table:

Incompletion Type Event Type

Customer His Completion
Customer His Response
Customer His Completion
Performer His Response

Performer Completion coming due
Performer Response past due
Performer Completion past due
Customer Response past due

10. Get the time when the incompletion was due i.e. the
Completion Time (this is not to be confused with he
completion time of the workflow).

11. Get the reminder or follow-up time, i.e. the time this
notification was due. (Note: It is important to distin-
guish between incompletion due time and reminder and
follow-up due time).

12. Dispatch notification. The notification is placed in the
STF Queue. Method bfnPutEvent of class TXSTF-
QUEUE places the notification.

13. Determine when the next notification is to be sent. Get
the workflow notification definition. This contains
recurring information. The next follow-up time is deter-
mined and written to the incompletion table via method
vinPutFollowUpTime.

14. Get the next incompletion to be processed. If present,
proceed to step 4.

15. Return, processing is complete.

Date/Time Schedule Manager

The date/time schedule manager detects events which are
to be executed at a particular time. The scheduled events are
kept in the schedule database. The events are placed in the
database by the workflow server manager user interface via
calls to the schedule API and are processed by the schedule
manager. The scheduled events are kept in the database in
chronologically increasing order.

Aschedule database entry specifies when the event will be
done as well as the first and last valid times for the entry,
indicating the first time it should happen and when it should
stop happening. If the first and last valid times are the same,
the schedule entry is executed once.

A recurrence interval for a schedule entry is “how often”
the schedule entry is executed. Recurrence intervals may be
every X minutes, every hour, every day, every month, the
third Thursday of every month, and so forth.

An organizational calendar is connected to the schedule
manager, so that entries may be tagged to not happen on
specific days (such as weekends or holidays like Labor Day).

The schedule entry may be filtered to happen only on
particular days of the week (such as Monday through
Friday).

The schedule entry may be filtered to happen only during
particular time intervals (such as any time between 8—12 or
1-5)

The first thing that the schedule manager does in a cycle
is to find events that are due now (or which are past due).
This is done by finding those with a time-out time that is less
than “now”.

For each of the found entries, the schedule manager then
brings the time-out forward to “now”, even if it is currently

6,073,109

17

set in the past. This function should deal properly with the
case when the server has been down.

For each of the found entries, the schedule manager then
passes the business process initiation script to the Workflow
Language Interpreter for processing.

After the schedule entry is processed, the schedule man-
ager updates the schedule entry record for the next time out
based on the parameter set for it. If the entry needs not be
executed again, it is then removed from the schedule data-
base.

The following is a description in pseudo-code for imple-
menting the schedule manager process. This implementation
is described in terms of a MAIN function or routine which
includes a call to a loop (MainLoop) which executes con-
tinuously.

MAIN

The MAIN function connects to the Virtual Database
(VDB), performs the primary activity of the Scheduler and
disconnects from the Virtual Database.

The primary activity of the schedule manager is to find
business processes that are scheduled for initiation and start
them.

In case of an error the MAIN function performs a write to
an error log, giving the error code and the message. The flow
of the MAIN function is as follow:

1. Connect to the Virtual Database.

2. If connection is successful write an message to the log.

3. If connection is not successful, write a message to the
log and return.

4. Call function MainLoop.

. Disconnect from the Virtual Database.

6. If disconnection is successful write an message to the
log

7. If disconnection is not successful, write a message to
the log and return.

MAINLOOP

This function performs the primary activity of the sched-
ule manager. In an unconditional loop, it checks if any
message has been sent from the workflow server manager
(WSM) using the workflow administration API, and pro-
cesses it. It then performs the main activity of scheduling
business processes at the scheduled time.

1. Check for any message for the schedule manager from
the WSM. To retrieve messages, the method bfnGet-
Message of class MESSAGE is called. In case of any
error, the error is written into the log file.

2. Depending on the message, the message is processed
differently, according to steps 3 and 4 below.

3. If the message is to terminate the schedule manager, the
function is terminated.

4. If the message is to indicate that the configuration has
changed then do the following:

5. The new configuration is retrieved using method
bfnGetConfiglnfo of class CONFIGINFO. The new
configuration is returned in a structure that contains all
configuration information. In case of error in retrieving
the configuration information, the error is written in the
log file.

6. The configuration constitutes the polling interval and
the log verbosity options. The polling interval is the
time the Scheduler sleeps between processing cycles.
The log verbosity option specifies the amount of infor-
mation that get written into the log file.

7. The function Scheduler is called, this performs the main
activity of the schedule manager.

W

10

15

20

25

30

35

40

45

50

55

60

65

8.
9.

18

Sleep for a time interval of duration Polllnterval.
Proceed to step 1.

Scheduler

The Scheduler function scans the scheduler table of the
5 schedule database and determines which business processes
are ready to be scheduled.

1.

9

Get the current time. This tine will the basis for
selecting business processes which are due to be
started. If the initiate time of the business process is
after the current date then the business process is
initiated.

. Using methods of class SCBPSCHEDULE the business

processes due for initiating are retrieved. Methods
bfnGetFirstIncompletion and bfnGetNextIncompletion
retrieve the business processes that are due.

. Get the Business Process Definition Id (BPDid). Use

method 1fnGetBPDid of class SCBPSCHEDULE.

. Get the Business Process Definition. Create an instance

of class DFBP for definition id BPDid.

. Get the Business Process Name. Use method vinGet-

BPName of class DFBP.

. Initiate the business process. Transactions API call

AWSTINITBP is called. The Business Process Name is
a parameter to this call.

. Determine the next ti-Le the Business Process needs to

be scheduled. The Recurring Offset is retrieved using
methods IfnGetRecTime of class SCBPSCHEDULE.

. If the Recurring Offset is specified, the next initiate

time is computed by adding the recurring offset to the
current initiate time.

. If the Recurring Offset is not specified, the scheduling

entry is deleted from the table.

10. Get next Business Process to be initiated. If present

proceed to step 3.

11. Return, processing is complete.
Modules

Workflow Processor

The workflow processor is the brain of the workflow
system. The workflow processor is analogous to the central
processor unit (CPU) in a computer. Both processors receive
inputs in the form of events, and both carry out logic
computations. The CPU embodies a logic processor, while
the workflow processor embodies the logic of workflows
with phases, cycle times, actions and roles. It contains the
structures and Finite State Machines (FSMs) that specify the
acts and actions that are available. This module is database
independent, and provides an API through which the rest of
the system interfaces with it. It is furnished with in-memory
structures providing complete act/state data of a workflow,
from which it derives updated status information returned
via these structures. The workflow processor embodies the
logic of workflows with phases, actions, roles and dates of
completion and reply.

The basic logic of the workflow server is very similar to
that used by a human manager. It asks:

What actions have happened and not happened?

That data has changed? and

What amount of time has elapsed?

The workflow updater module of the workflow server
asks the workflow processor:

What are the available acts for the customer and per-

former given the current state and the type of the
workflow?

Given an act, what is the new state of the workflow and

what incompletions change?

6,073,109

19

The workflow processor then answers with the state of the
workflow and gives the answer to the workflow updater
which updates databases, and changes the state of the
workflow.

These tasks would be impossibly complex if the number
of states were large and the possible actions infinite. The
present invention addresses this problem by defining a
business model that intelligently defines a few conditions
and actions as building blocks, but from which thousands of
permutations can be constructed.

A complete description of a suitable workflow processor
which may be used in a workflow server may be found in
U.S. Ser. No. 600,144 filed Oct. 17, 1990 and U.S. Ser. No.
07/368,179 filed Jun. 19, 1989, both owned by Action
Technologies, Inc., the assignee of the present application.
Workflow Updater

The workflow updater module processes requests made
by users via API calls, changes to the transaction database or
by agent actions. This module processes workflow transac-
tions that have been modified, updating then with the new
workflow status information returned by the workflow pro-
CesSor.

The workflow updater module updates the bound data in
the business process, based on the data that was provided as
part of the act that is being taken. If other scopes are defined
for a workflow, then the bound data is updated in the scope
of the workflow in which the act was taken.

The workflow updater calls the workflow processor pass-
ing to it the workflow identification, the act being taken, the
workflow role that is taking the act and the current state. The
workflow processor returns to the workflow updater the new
state of the workflow, the incompletion transitions what
incompletions need to be set, and which ones need to be
removed), the set of available acts for each one of the
workflow roles and the times that can/must be specified by
the users when taking each one of these available acts.

The workflow updater maintains and updates the work-
flow transaction database. It uses the workflow; processor to
determine the status of workflows and the set of possible
actions for each one of the roles.

The workflow updater processes an act taken by a work-
flow participant i.e., the Customer or Performer. This act
could have been taken through a call to the proper transac-
tions API function, through a direct modification of the
transactions database or by the agent actions manager upon
request of the workflow language interpreter. When an act is
taken, it is recorded in a act taken database record of the
transactions database. The server sequentially processes all
acts. The following is a description in pseudo-code for
implementing the workflow updater module.

1. Use AWSWrite'TolL.og method of the Translog class of
the Administration database to log the act taking activ-
ity.

2. Check whether there are acts to take by calling method
bpnGetFirstinQueue of class TxWFActs in the VDB.

3. Check if the act is a valid act and the act is present in
the list of available acts for an workflow participant by
invoking method bfnCheckValidAct of class TwxFActs
in the VDB.

4. Find out the current state, WF type, WF role, and the
Act by invoking respectively the methods
fnGetWFState, fnGetWFType, fnGetWFRole, and
fnGetAct of class TxWFActs in the VDB.

5. Check with the workflow processor to determine if the
act taken is consistent with the current state of the
workflow and the role of the act taker (Customer/

10

15

20

25

30

35

40

45

50

55

60

65

20

Performer) by invoking method bfnCheckValidAct of
the class TxwFActs.

6. Determine the new state of the workflow by calling the
workflow processor.

7. Compute the new set of incompletions by by calling the
workflow processor.

8. Compute the new set of acts and the date prompts for
the customer and performer using function
AWSTAvailable Acts of the workflow processor. If any
acts are disabled then those are removed form this new
set of acts using the method bfnlsDisabled of class
DFWFDisabledActs of the VDB.

9. Invoke the workflow event handler to interpret the
scripts associated with the act, state, and the primary
workflow.

10. Send notifications the workflow participants inform-
ing the completion of the act by invoking the STF
Router/Enqueuer.

Classes and the methods invoked by the workflow updater
module:

Methods Class Action
bfnCheckValidActs TxWFActs check if act is in
Available Acts Table
IfnGetCompletionTime TxWFInstance From VDB retrieve the
Completion time
IfnGetIncompletionTime TxWFActs From VDB retrieve the

Incompletion Time
compute available acts
for both customer and
performer.

AWSTAvailableActs

Workflow Instantiator

The workflow instantiator module is called by the trans-
action manager when it detects a request to initiate an
instance of a business process or a workflow. The workflow
instantiator instantiates business process and workflow
records into the transactions database. This module creates
workflow transaction records as specified in business pro-
cess definitions whenever a workflow is initiated.

If the transaction manager detects a change in the trans-
actions database that indicates a request for initiation of a
new business process, the instantiator reads the business
process definition and creates the transaction records for the
business process and for the primary workflow of the
business process according to the definition.

If the transaction manager detects a change in the trans-
actions database that indicates a request for initiation of a
new workflow, the instantiator reads the workflow definition
and creates the transaction record for the workflow accord-
ing to the definition.

The instantiator also performs the role to identity mapping
so that the roles that are specified in the workflow definition
get mapped to the proper identities in the transaction record
of the workflow.

The following is a description of the steps for implement-
ing the workflow instantiator module.

The instantiator creates an instance of a business process.
It makes a copy of the definition.

1. Check the length of the Business Process Name
(szBPName) is within limits. If beyond limits, return
error.

2. Validate the Instantiator Identity. Check if the name
length is within limits.

3. Check if Instantiator Identity is a valid user and
registered. Method InquireAuthorization from class

6,073,109

21

AuthMaint is used to determine if the user is valid and
registered. This function accesses the Names/Routings
database for validation, it calls the constructor of class
NRDFIDENTITY.

4. Check if the Instantiator Identity is authorized to
instantiate business processes. It checks the authorities
table in the names/routings database to check if this
identity is authorized to instantiate business processes.
The authorization method Inguire Authorization from
class AuthMaint is called to determine the authoriza-
tion.

5. If the Customer name is specified, check if the name
length is within limits.

6. It the Customer name is specified, check that this nave
is valid and registered method InguireAuthorization
from class AuthMaint is used to determine if the user is
valid and registered. This function accesses the Names/
Routings database for validation, it calls the constructor
of class NRDFIDENTITY.

7. If the Performer name is specified, check if the name
length is within limits.

8. If the Performer name is specified, check that this name
is valid and registered. Method InguireAuthorization
from class AuthMaint is used to determine if the user is
valid and registered. This function accesses the Names/
Routing databases for validation, it calls the constructor
of class NRDFIDENTITY.

9. If the Completion date is specified, check if the date
string length is within limits.

10. If the Completion date is specified, convert the date
string to long format.

11. If the Reply date is specified, check if the date string
length is within limits.

12. If the Reply date is specified, convert the date string
to long format.

13. If the Initiate date is specified, check if the date string
length is within limits.

14. If the Initiate date is specified, convert the date string
to long format.

15. If Completion and Reply dates are specified, the Reply
date should be before the Completion date.

16. If the Initiate date, if specified, it should be the earliest
of all specified dates.

17. Create an instance of this business process. The
constructor for class TXBPINSTANCE is called for
this purpose.

18. The central workflow instance is created. The con-
structor for class TXWFINSTANCE is called for this
purpose.

19. Check for each organization role to identity any
mapping which is specified at the time of initiation
which overrides the mapping specified in the definition
of the workflow, that the organization role and identity
do exist. To verify that the organization role is present,
the constructor for class NRDFORGROLE is called. To
verify that the identity is present, the constructor for
class NRDFIDENTITY is called.

20. Store the organization role in classes TXBPASSIGN
and TXWFASSIGN from the transaction database
classes to identity overrides. The constructors are
called for these two classes.

21. Return status.

Workflow Language Interpreter

Workflow definitions are stored in the definitions data-

base. Included in these workflow definitions are conditions

10

15

20

25

30

35

40

45

50

55

60

65

22

under which workflows become active and inactive, and the
conditions under which the workflow server should take
specified actions. These conditions and instructions are
expressed in the workflow language.

The workflow language interpreter interprets workflow
language scripts. These scripts or workflow language seg-
ments contain workflow commands, such as the initiation or
taking an act in a workflow. These scripts are part of the
business process definition. These scripts are automatically
generated by the application builder or equivalent design
application.

The following is a description of the steps and syntax for
implementing the workflow language interpreter module.

The workflow language interpreter interprets both user
defined and system generated scripts, and performs the
corresponding function defined in the script. The user can
perform the following functions on a workflow. The work-
flow language interpreter interprets user-defined as well as
system generated scripts, and performs tests, functions, and
assignments as presented in either kind of script. The syntax
and capability of the ActionWorkflow scripting language are
the same for the two kinds of scripts and is described as
follows:

Language Syntax

A statement of the language is either an If Statement, an
Action Statement or an Assignment Statement. An If State-
ment is either:

If <boolean expression> statement 1 . . . statement n
endif
or
If <boolean expression> statement 1 . . . statement s
else statement s+1 . . . statement n endif
where <boolean expression> is:
TRUE
FALSE
<boolean expression> AND <boolean expression>
<boolean expression> OR <boolean expression>
<bound data name> OPERATION <numeric term>
ISINSTATE (workflow name, state name)
ISNOTINSTATE (workflow name, state name)
where OPERATION is
equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to
An Action Statement is either:
INITIATE workflow name,
ACTIVATE workflow name, or
ACT workflow name, act name
An Assignment Statement is either:
<bound data name> = <bound data name>
or
<bound data name> = <numeric term>

2. Capability
The above-described syntax enables a script writer to start
workflows, to act in workflows, to change bound data
associated with a workflow, to test sound data associated
with a workflow and conditional upon the results follow one
or another distinctly different course of action.
The workflow language interpreter can be divided into the
following functional modules:
1. The Lexical Analyzer which defines the Workflow
Language grammar.
2. The Parser which parses the workflow scripts and
invokes the corresponding semantic routines associated
with the commands in the script.

6,073,109

23

The main implementation details are as follows:

1. The workflow event manager calls the workflow language
interpreter and passes to it the Business Process Transac-
tion ID, the Workflow Transaction ID, and the Script Type
to be executed.

2. Using this information the workflow language interpreter
retrieves the appropriate workflow script from the defi-
nitions database using method bfnGetScriptName of the
class DFWFActState.

3. For the command Instantiate, the instantiator is invoked.

4. For the command Activate, the workflow updater is
invoked.

5. For the command TakeAnAct, the workflow updater is
invoked.

6. For external functions, the workflow language interpreter
invokes the external function passing the specified param-
eters.

Workflow Event Handler
The workflow event handler is called by the transaction

manager to process the actions associated to acts and states
in the workflow definition which are specified for a given
workflow when an action is taken or a state reached in the
workflow. It accomplishes this my reading the business
process definition and by reading the workflow status infor-
mation of the workflow transaction.

The workflow event handler also locks in the definitions
database for the workflow language scripts associated with
acts and states of the workflow. The workflow event handler
retrieves the language script corresponding to the act that
was taken and passes the script to the workflow language
interpreter for processing. The workflow event handler
retrieves the language script corresponding to the state of the
workflow and passes the script to the workflow language
interpreter for processing. Then the workflow event handler
retrieves the appropriate scripts associated with the states of
the connecting workflows and passes the to the workflow
language interpreter. Finally the workflow event handler
retrieves the language script for the primary workflow of the
business process for the current state of that workflow and
passes that script to the workflow language interpreter for
processing.

The following is a description of the steps for implement-
ing the workflow event handler module. The workflow event
handler invokes the method AWSScriptToExecute of the
workflow language interpreter to execute the following
scripts associated with a workflow:

1. The system generated act script

2. The user generated act script

3. The system generated state script

4. The user generated state script

5. The system generated state script of all the connected
workflows

6. The user generated state script of all the connected
workflows

7. The system generated state script of the primary workflow

8. The user generated state script of the primary workflow
To implement steps 7 and 8, the method bfnlsCentralWF

of class obTxWFINSTANCE is used to determine the Cur-

rent WF is the primary workflow. Method obWFInstance is
used to obtain the primary workflow.

Agent Actions Manager
The agent actions manager module executes the com-

mands specified in a script. These include Initiate, Act,

Follow-up as well as external functions. In this form the

agent action manager is taking workflow acts by an “agent”

on behalf of some role in the workflow. The commands that
the “agents” execute are specified through the workflow
language.

10

15

20

25

30

35

40

45

50

55

60

65

24

The following is a description of the steps for implement-
ing the agent actions manager module.

The agent actions manager is invoked by the workflow
language interpreter when it finds a workflow action or
external function to be performed in a workflow language
script. If the workflow needs to be instantiated the instan-
tiation is done by the workflow instantiator module. After
instantiation a flag is set to indicate if activation or initiation
is required. The agent action manager scans for all work-
flows which have this flag set and processes them. The
process is described below.

1. Log the activity using the method AWSWriteToLog.
2. Obtain the current date and time.

3. Get the next workflow to act on by using method
TxWINSTANCE of class TXWFINSTANCE, which is
the act to take queue.

4. If the workflow to be processed is the primary work-
flow then change the Business Process status to “IN__
PROGRESS”. The methods to use are bfnlsCentral WF
and bFnSetBPStatus.

5. If the Customer, Performer and Observer(s) are not
specified, then pick up defaults and assign all the
workflow participants. The methods to use are
1fnGetCustld, 1fnGetPerfld, 1fnPutCustld and lfnPut-
Perld.

6. Specify the default Reply and Completion time using
methods 1fnGetReplayDate and 1fnGetCompletion-
Time of class TxWFINSTANCE. If these times not
present, obtain them through the definition defaults by
using methods bfnGetCycleTimes of class DFWFCY-
CLETIMES in the VDB. Assign the default using the
methods bfnPutReplyDate and bfpPutCompletionTime
of class TXWFINSTANCE.

7. Set up environment for first act to be taken. The act is
dependent on the workflow type, request act in a
workflow of type request and offer act in a workflow of
type offer.

8. Make an entry in the Available Acts Table using method
bfnPutAct of the class obAvlActs.

9. Take the first act if the workflow is to be Initiated. The
act to be taken is placed in the act to process queue
using method obTxWFacts of class TXWDACTS. Log
the message using AWSLogMessage.

10. The flag is reset to indicate that the processing is
complete using method bfnResetlnstantiate of class
obTxWFINSTANCE.

Methods and Modules invoked by Agent Actions Manager
Module

Methods Class Action

IfnGetBPTid TxBPINSTANCE get the BP Transaction Id

1fnGetWFTid TxWFINSTANCE get the WF Transaction Id

bfnSetBPStatus TxBPINSTANCE set the status of BP
instance

IfnGetPerfld get the performer Id

IfnGetCustld TxWFNSTANCE get the customer Id

IfnGetCompletionTime TxWFNSTANCE get cycle time of the WF

TxWFActs queue the act to be taken

STF Router/Enqueuer

The STF Router/Enqueuer module is called by the work-
flow updater to determine if the workflow currently being
processed has a participant who must be notified in this
workflow via an STF Processor. The router queues such

6,073,109

25

transactions in the STF queue database for the appropriate
STF processor to process.

The following is a description of the steps for implement-
ing the STF router/enqueuer module.

1. The STF router/enqueuer first retrieves the BP and WF
definition given the current WF transaction instance by
using the methods TXBPINSTANCE and obTxWFIN-
STANCE of classes TXBPINSTANCE and TXWFIN-
STANCE.

2. Using the BP and WF Ids, the follow-up definition is
retrieved from the definitions database using method
DFWFollowUp of class DFWFFOLLUP. If no notifi-
cation required, just return.

3. Get the notification status by using method NRDfIden-
tity of class NRDFIDENTITY. If there is no need to do
notification, just return. This is achieved through the
method bfnGetNotify of class NRDfldentity in the
VDB.

4. Get the STFProcld using method 1fnGetSTFProcld of
class NRDfIdentity.
5. Write the Notification event in the STF queue database
using method bfnPutEvent of class TxSTFQUEUE.
The date and time is computed.
Databases
Virtual Database
The present invention utilizes a Virtual Database for
implementing the databases used by the system. The Virtual
Database (VDB) is designed to be a collection of classes and
methods. “Virtual” because it is DBMS independent. The
VDB contains all the necessary storage structures to support
the operations of the Workflow Server. More importantly, it
defines a collection of methods for the manipulation of these
structures and their instances. The basic domain as well as
the classes for workflow definitions, transactions, schedules,
names and routing, STF queue and server administration and
configuration are described below. These classes define the
attributes and methods for the data manipulation supporting
the Workflow Server.
Basic Domain Classes
The basic domain classes used in the server are listed here
in alphabetic order.
act

act = { request, offer, decline-request, agree, declare-
complete, declare-satisfaction, cancel, revoke, accept-
offer, decline-offer, counter-offer, accept-counter-
offer, decline-counter-offer, counter-with-request,
declare-dissatisfaction, question, answer, inform, open-
speculation, continue-speculation, revise-offer, revise-
request, follow-up, note, comment, initiate, activate,
cancel-new-request, revoke-new-promise, revoke-new-offer,
commit-to-commit, interim-report, delegate, accept-
delegation, decline-delegation, cancel-delegation,
declare-complete-delegation, declare-satisfaction-
delegation, revoke-delegation, start-with-promise,
accept-starting-promise, decline-starting-promise }

bpstatus
bpstatus={inprogress, completed, aborted, suspended}
configuration
configuration={optionl, option2, . . . }
datetime
Time is a built-in domain in the Virtual Database. Its
counter part in the underlying DBMS will provide the
actual implementation.

10

15

20

25

30

35

40

45

50

55

60

65

26

datetimeoffset

Datetimeoffset is a unit of time. Its value can range from
seconds, days, weeks, and months, but is expressed in
seconds.

incompletion

The various incompletions that need to be managed for
the Customer and Performer in terms of Completions
and Responses.

incompletion={CMC, CMR, CHC, CHR, PMC, PMR,
PHC, PHR}

1st letter—C for Customer, P for Performer

2nd letter—M for My, H for His

3rd letter—C for Completion, R for Response
notification

This domain class specifies the events which require
notification.

notification={PerformerResponsecPastDue,
PerformerCompletionPastDue,
PerformerCompletionComingDue,
CustomerReponsePastDue, Act}
objecttype
objecttype={BP, WF, STFProcessor}
privileges
privileges={create, delete, modify, activate, schedule,
assign privileges}
state

state = { request/offer, inactive, initial(after activation)
agreement, completion, satisfaction, counter, decline, cancel
revoke }

string
String is defined to be a character string which varying
length.
txstatus

Status of the a transaction.
txstatus={pending, inprogress, complete}
txtype
List of various types of transactions processed by the
server.

txtype = { initbp, initwf, actinwf, bindappdata, getbounddata,
getbounddatafieldattributes, status, availableacts, querywf,
availablebp, acthistory, notificationstring }

wirole

wirole={customer, performer, observer }
witype

witype={request, offer, note}
Definitions Database

DFBP

This class contains the Business Process (BP) definitions
which includes information such as the BP Name, the BP
Version, The person (ID) who created the BP, The date when
this information was last modified, The Server ID which is
the Home Server of this BP and the natre of the file which
contains the mapping of this BP.

6,073,109

27 28

-continued
Attributes : INT iRepeatFieldFactor
CHAR szCustFormName[FORMNAME__LEN]

IDEN IBPDid 5 CHAR szPerFormName[FORMNAME__LEN]
CHAR szBPName [BPNAME__LEN] CHAR szObsFormName[FORMNAME__LEN]
INT iVersion CHAR szInitFormName[FORMNAME__LEN]
IDEN IBPAdmin CHAR szCOS[COS__LEN]
LONG 1LastModDate
IDEN 1HomeServerld Methods :
CHAR szBPmap [BLOBNAME__ LEN] 10

DFWF Constructor of this class which

Methods : depending on its first parameter it

returns the first record from the

DFBP The Constructor of this Class: table which matches the predicate
Depending on its first or creates a new Workflow
parameter it returns the first 15 Definition in the Table with the
record from the table which given parameters
matches the predicate, or BOOL bfnModify Modifies the Workflow Definition
creates a new Business Process of an existing workflow (in context
in the Table with the given of the Class attributes) in the
parameters, or creates a new Table with the given parameters
version of an existing 20 BOOL bfnModifyForms Modifies the form names of an
Business Process with the existing workflow (in context of
given parameters the Class attributes) in the Table

BOOL bfnDelete Deletes the record whose with the given form names
parameters matches the DFBP BOOL bfnPutCOS Appends/ Creates the conditions of
class attributes satisfactions of an existing

IDEN lfnGetBPDid Returns the BPDid of the BP in workflow (in context of the Class
context to the Class 25 attributes) in the Table with the
attributes given COS

INT ifnGetversion Returns the BP Version of the BOOL bfnGetCOS Retrieves the Conditions of
BP in context to the Class Satisfaction of an existing
attributes workflow (in context of the Class

IDEN lfnGetLastModDate Returns the Date when the BP attributes)

Definition was last modified 30 IDEN 1fnGetWFDid Returns the WFDId of an existing
in context to the Class workflow (in context of the Class
attributes attributes)

BOOL bfnPutBPMap Creates/Appends to the Map WFTYPE fnGetWFType Returns the WF type of an existing
file of the BP, the data in workflow (in context of the Class
memory. attributes)

BOOL bfnGetBPMap Retrieves the specified number 35 IDEN IfnGetCustOrgRole Returns the customer ID of an
of bytes from the Map file. existing workflow (in context of

BOOL bfnNumListBP Returns the Number of BPs for the Class attributes)
which there exists a IDEN IfnGetPerfOrgRole Returns the performer ID of an
Transaction in the Tx Database existing workflow (in context of

BOOL bfnListBP Returns the List of BPs for the Class attributes)
which there exists a 40
Transaction in the Tx Database

BOOL bfnListDFBP Returns the list of all BPs

VOID vinGetBPName

defined in the Definitions
Database.

Returns the BP Name of the BP
in context to the Class
attributes

45

DFWF

This class contains the Workflow definitions which
include information such as the a Name, the WFDid, the 50
BPDid to which this workflow belongs, the type of workflow
(primary or non primary), the default IDs of the customer
and performer for this WE, the Repeat IF adn factor in case
of repetitive WFs, the form names and the Conditions of

satisfaction 55
Attributes :
IDEN IBPDid 60
IDEN IWFDid
BOOL bCentral WEFFlag
CHAR szZWFName[WFNAME__LEN]
WFTYPE WFType
IDEN ICusOrgRole
IDEN 1PerOrgRole 65
INT iRepeatFieldld

DFWFOBS

This class contains the workflow observer definitions
which includes information such as the WFDid, the BPDid
to which this workflow belongs, the Observer ID for the WF.

Attributes :

IDEN
IDEN
IDEN

IBPDid
IWFDid
1Observer

Methods :

DFWFOBS

BOOL bfnDelete

BOOL bfnGetWFObsList

The constructor for this
Class, which depending on its
first parameter it: creates a
new Workflow Observer
Definition in the Table with
the given parameters, or
returns the first record from
the table which matches the
predicate

Deletes the record whose
parameters matches the
DFWFOBS class attributes
Returns the List of Observers
defined for the workflow (in
context of the Class

6,073,109

-continued -continued
Attributes) BOOL bFromActOrState
INT nfnGetWFObsCount Returns the Number of IDEN IFromActOrStateld
Observers defined for the 5 IDEN IToWFid
workflow (in context of the BOOL bToActOrState
Class Attributes) STATE ToState
Methods :
DFBPCONTAINER
10 DFLINK The Constructor for this

This class contains the Business Process Container Infor-

. .) Class that creat
mation (the Container ID for a particular BP). o e o

Link record with the
given parameters. Using
WFName WFID is first got

from DFWF
Attributes : 15 BOOL bfnGetWFLinks Returns all the links to
a given WFID
IDEN IBPDid
IDEN IContainerId
DFBPASSIGN
Methods : This class contains all the Identity to Organization role
DFBPCONTAINER Creates a new Container Definition 20 mappings at the Business process level.

for a BP with the given parameters
(in context of the Class
Attributes) It also inserts a

record in another table Attributes :
(DFCONTAINER) with the Container
ID and the number of fields 25 IDEN IBPDid
IDEN lfnGetContainerld Returns the Container ID (in IDEN IIdentityld
context of the Class Attributes) IDEN 10rgRole
Methods :
DFFIELD 30 DFBPASSIGN Th truct f thi
. e constructor of this
. This class contains the Contame.r Field Information which class that depending on
includes the Container ID to which the field belongs, the its first parameters
Field ID, the data type of the field, its maximum length, its creates a new BP
attributes, and its initial Value. assignment in a given
BPDid with the given
35 parameters or returns the
first record from the
table which matches the
Attributes : predicate
IDEN lfnGetIdentity Returns the Identity ID
IDEN IContainerId (in context of the Class
IDEN IFieldld attributes)
INT iDataType 40
INT iMaxLen
ATTRIBUTES Altr DFWFASSIGN
CHAR féi};val[INITfVALf This class contains all the Identity to Organization role
mappings at the Workflow level.
Methods : 45
DFFIELD Creates a new Container field
record with the given Attributes :
parameters. It also inserts a
record in another table IDEN IBPDid
(DFBDFIELDLIST) with the 50 IDEN IWFEDid
BPDid, the Field ID and the IDEN IIdentityld
field name. IDEN 10rgRole
WFROLE WFRole

DFLINK Methods :

This class contains the Workflow Link Information which ss)
includes the BPDid to which this LINK belongs, the ID of DFWFASSIGN :};::E’hr;t?:;z;(;i;h;
the workflow from which the LINK starts, whether the link its first parameter it
starts from an act or from a state, the act/state IDs from creates a new workflow
which the Link starts and at which link ends, and the assigninent in a given
Destination State ID. 60 WEDid and BPDid with the

given parameters or

returns the first record

from the table which

matches the predicate
Attributes : IDEN lfnGetIdentity Returns the Identity ID

(in context of the Class
IDEN IBPDid 65 attributes)

IDEN IFromWFid

6,073,109

DFBPNOTIFICATION DFWEDISABLEDACTS
This class contains all notification string information at This Class contains information of all the Disabled Acts.
BP Level.
5
Attributes :
Attributes :
IDEN IBPDid
IDEN IBPDid IDEN IWFDid
NOTIFICATION NEvent WFROLE WFRole
CHAR szNstring] NSTRING__LEN] 10 ACT Actld
Methods : Methods :
DFBPNOTIFICATION This is the constructor for DFWFDISABLEDACTS This is the constructor

this class that creates a
new BP notification for a
given BPDid

Returns the BP notification
string of an event in a BP

for this class that

15 creates a new record
with the given WFrole
and Actld for a given
WFDid and BPDid

BOOL bfnGetEventString

BOOL bfnlsDisabled Returns whether a
particular Act for a
DFWENOTIFICATION 20 particular WFRole in a
This class contains all notification string information at given workflow is
workflow level disabled or not.
DFWFACTSTATE

Attributes : 25 This contains all the definitions of the workflow acts and
[DEN IBPDid States (their names and IDs) for all business processes and

it .
IDEN IWEDid their workflows.
NOTIFICATION NEvent
CHAR szNstring] NSTRING__LEN]

30

Methods : Attributes :
DFWFNOTIFICATION This is the constructor IDEN 1BPDid

for this class that IDEN IWFEDid

creates a new workflow BOOL bActOrState

notiﬁc.ation for a given 35 INT ActOrState

WEFDid and BPDid CHAR szUserDefName[USERDEF__STRING__LEN]
BOOL bfnGetEventString Ret.urns .the wc.yrkﬂow CHAR szGenScript{ BLOBNAME__LEN]

notification string of an CHAR szUserScript BLOBNAME__LEN]

event at workflow level.

Private Methods :

DFWCYCLETIMES 40 BOOL bfnlsAvail Returns whether an Act/
This class contains all the Cycle times defined for a state iSv;\Vigable for a
given Workflow.
workflow. BOOL bfnGetScriptName Returns the Script Name
given the BP and WF DIds
the Act/State and the
45 type of script (User
Attributes : Defined or System
Generated) required.
IDEN IBPDid
IDEN IWFDid Methods :
LONG ITimel
LONG ITime2 50 DFWFACTSTATE This is the Constructor
LONG ITime3 for this Class that
LONG ITime4 creates a new record with
the given Act/State , and
Methods : user defined name for a
given WFDid and BPDid
DFWFCYCLETIMES This is the constructor 55 BOOL bfnPutScript Inserts the given Script
for this class that into a blob file
creates a new record with DFWFACTSTATE Returns the first record
the given cycle times for from the table which
a given WFDid and BPDid matches the predicate
BOOL bfnGetCycleTimes Returns the cycle times BOOL binGetWFScript Returns the required data
(in context of the Class 60 from the script file (In
Attributes) context of the Class
DFWFCYCLETIMES Returns the first record Attributes) given the
from the table which Script Type
matches the predicate
IDEN 1fnGetWFDid Returns the WFDId (in
context of the Class DFWFECONTAINER

Attributes) 65
This class contains the Workflow Container Information

(the Container ID for a particular workflow in a given BP).

33

6,073,109

Attributes :
IDEN IBPDid 5
IDEN IWFDid
IDEN IContainerId
Methods :
DFWFCONTAINER Creates a new Container 10
Definition for a workflow with
the given parameters (in
context of the Class
Attributes)
IDEN lfnGetContainerId Returns the Container ID (in
context of the Class 15
Attributes)
DFWFACTSTATEBDREF
This Class contains the workflow Act/State Bound Data
reference information. 20
Attributes :
IDEN IBPDid 25
IDEN IWFDid
BOOL bActOrState
INT ActOrStateld
WFROLE WEFRole
IDEN IContainerId
Methods : 30
DFWFACTSTATEBDREF The Constructor for this
Class that inserts a
record with the with the
given parameters
IDEN lfnGetContainerld Returns the Container ID 35
(in context of the Class
Attributes)
BOOL bfnGetFieldAttrList Returns the list of
Field Attributes for the
given conditions
(parameter values) 40
BOOL bfnGetNumFieldAttrList Returns the number of
Field Attributes for the
given conditions
(parameter values)
45
DFWFFOLLOWUP
This class contains all the Follow-up information of a
workflow.
50
Attributes :
IDEN IBPDid
IDEN IWFDid
BOOL bPRFUFlag
BOOL bPRFURecur 55
LONG IPRFUOffset
INT iPRFUCount
BOOL bPCFUFlag
BOOL bPCFURecur
LONG IPCFUOffset
INT iPCFUCount 60
BOOL bCRFUFlag
BOOL bCRFURecur
LONG ICRFUOffset
INT ICRFUCount
BOOL bPCRemFlag
LONG IPCRemOffset 5
BOOL bActNotifyFlag 6

-continued

Methods :

DFWFFOLLOWUP The constructor of this class
that depending on its first
parameter inserts a record in
the FollowUp Table with the
Given parameters or returns
the first record from the
table which matches the
predicate

BOOL binGetPerfResplnfo Returns the Performer
Response Information (in
context of the Class
Attributes)

BOOL bfnGetPerfComplnfo Returns the performer
Completion Information (in
context of the Class
Attributes)

BOOL bfnGetCustResplnfo Returns the Customer Response
Information (in context of
the Class Attributes)

BOOL binGetPerfRemInfo Returns the Performer
Reminder Information (in
context of the Class
Attributes)

BOOL bfnGetActNotifyFlag Returns the Notify flag (in
context of the Class
Attributes)

DFBDFIELDLIST
Attributes :
IDEN IBPDid
char szFieldName[FIELDNAME__LEN]
IDEN IFieldId
Methods
No Methods
Transactions Database
TXBPINSTANCE
This Class contains information of all instances of Busi-
ness Process Transactions. This information consists of the
Transaction ID of the Business Process (BPTid), the Busi-
ness Process definition ID (BPDid), the BP Status and
whether the BP Instance is active or not.
Attributes :
IDEN IBPTid
IDEN IBPDid
BOOL blsActive
BPSTATUS BPStatus
Methods :
TXBPINSTANCE The Constructor for this Class that
returns the first record from the
table which matches the predicate
CreateInstance Creates an instance of the given BP
in the Transactions Database table
(TXBPINSTANCE) bIsActive will still
be FALSE
BOOL bfnActivate Changes the Status (bIsActive) of
the current BP (In context to the
Class Attributes) from FALSE to TRUE
BOOL bfnSetBpStatus Sets the BPStatus to the given

status ID(In context to the Class
Attributes)

35

-continued

6,073,109

IDEN IfnGetBpDid

IDEN IfnGetBpTid

BOOL bfnNumListBP

BOOL bfnListBP

BOOL bfnDelete

BOOL bfnAbort

BOOL bfnSuspend

BOOL bfnNumListQueryQF

BOOL bfnListQueryWF

Returns the BPDid of the Business
Process Instance (In context to the
Class Attributes)
Returns the BPTid of the Business
Process Instance (In context to the
Class Attributes)

Returns the number of BPs that have

been Instantiated

Returns a list of all BPs that have
been Instantiated to memory or to
the file specified

Deletes the BP transaction
(specified by the class attributes)
from the table.

Sets the BPStatus to ABORT (In
context to the Class Attributes)
(Further Actions are yet to be
defined)

Sets the BPStatus to SUSPEND (In
context to the Class Attributes)
(Further Actions are yet to be
defined)

10

15

20

Returns the number of BP Instances

(instantiated between the specified
start date and the end dates)for the
given Identity, having the specified
Organization Role, (If bPending is
TRUE then only those BPs are
included where Acts are pending)
Returns a list of all BP Instances
(instantiated between the specified
start date and the end dates)for the
given Identity, having the specified
Organization Role, (If bPending is
TRUE then only those BPs are
included where Acts are pending)

25

30

TXBPASSIGN

This class contains all the Identity to Organization role 35
mappings at the BP level for BP Transaction. These map-
pings if present override the corresponding DFBPASSIGN
mapping for a given BPD1id for that particular instance of the
BP (BPTid).

40
Attributes :
IDEN IBPTid
IDEN 10rgRole 45
IDEN IIdentityld
Methods :
TXBPASSIGN The constructor of this
class that depending on 50
its first parameter
creates a new BP
assignment in a given
BPTid with the given
parameters or returns the
first record from the 55
table which matches the
predicate
IDEN lfnGetldentity Returns the Identity ID
(in context of the Class
attributes)
60

TXWFINSTANCE

This Class contains information of all instantiated Work-
flows. This information consists of the Transaction ITDs of
the Workflow (WFTid) and the Business Process (BPTid) to
which it belongs, whether it is a Primary workflow or not, 65

the Workflow definition ID (WFDid), the reply, completion
and initiate date, the present State, the Customer and Per-

36

former for this workflow Instance, the conditions of satis-
faction for this workflow and whether this workflow
instance has been instantiated or not

Attributes:

IDEN IBPTid

IDEN IWFTid

BOOL bCentral WEFlag

IDEN IWFDid

DATETIMET IReplyDate

DATETIMET ICompletionTime

DATETIMET IInitiateTime

STATE Stateld

IDEN ICustld

IDEN Perfld

BOOL bCOSFlag

CHAR szCondOfSatisfn| BLOBNAME __LEN]

BOOL bInstantiate

Methods:

TXWFINSTANCE The Constructor for this
Class that returns the first
record from the table which
matches the predicate

BOOL Creates an Instance of the

bfnInstantiateCentral WF Primary workflow of a BP

Instance, given the BPDid and
BPTid with the given
parameters. For the given
BPDid, the workflow with CWF
Flag TRUE is fetched from the
DFWF table to create this CWF
instance. A new WFTid for
this workflow Instance is
returned

Creates an Instance of the

non Primary workflow of a BP
Instance, given the BPDid and
BPTid with the given
parameters. A new WEFTid for
this workflow Instance is
returned

Sets the STATE of the given
workflow Instance to the

state specified.

Returns the Status of the
Instantiate flag for the

given workflow Instance (In
context of the Class
Attributes). This indicates

if the specified workflow
instance has been

instantiated or not.

Modifies the specified
parameters in the WFInstance
(In context of the Class
Attributes) and returns the
WEFTid

Returns the Customer ID for
the given workflow Instance
(In context of the Class
Attributes)

Returns the Performer ID for
the given workflow Instance
(In context of the Class
Attributes)

Returns the User Defined
State Name corresponding to
the current state of the
workflow Instance. (In context
of the Class Attributes).
Returns the form name
(corresponding to the WFRole)
of the workflow Instance. (In
context of the Class
Attributes)

BOOL bfnCreatelnstance

BOOL bfnSetState

BOOL bfnGetInstantiate

BOOL bfnModify

IDEN lfnGetCustld

IDEN [fnGetPerfld

BOOL bfnGetStateName

BOOL bfnGetFormName

37

-continued

6,073,109

38

BOOL bfnlsCentral WF

IDEN IfnGetBPTid

IDEN IfnGetWFTid

BOOL
bfnResetInstantiate
IDEN IfnGetWFDid

STATE ifnGetState

BOOL bfnGetPending

BOOL bfnPutCOS

BOOL bfnGetCOS

BOOL bfnPutCustId

BOOL bfnPutPerfld

LONG lfnGetReplyDate

LONG lfnGetCompletionTime

BOOL bfnPutReplyDate

BOOL bfnPutCompletionTime

BOOL bfnGetCOSFlag

BOOL bfnPutCOSFlag

Returns TRUE if the current
WEF is a primary WF

Returns the BPTid for the
given workflow Instance (In
context of the Class
Attributes)

Returns the WFTid for the
given workflow Instance (In
context of the Class
Attributes)

Sets the Instantiate Flag to
FALSE

Returns the WFDid for the
given workflow Instance (In
context of the Class
Attributes)

Returns the current State of
the given workflow Instance
(In context of the Class
Attributes.

Return whether or not an act
is pending for this Workflow
Instance

Creates/Appends to the Blob
file of the workflow

Instance, the COS data in
memory

If the COSFlag is TRUE it
retrieves the specified
number of bytes from the Blob
file of this workflow

Instance containing the
Conditions of Satisfaction
else the COS is retrieved
from the workflow Definitions
table

Modifies the Customer ID for
this WF Instance to the given
ID(in context of the Class
attributes)

Modifies the Performer ID for
this WF Instance to the given
ID(in context of the Class
attributes)

Returns the Reply date for
this workflow Instance(in
context of the Class
attributes)

Returns the Completion date
for this workflow Instance(in
context of the Class
attributes)

Modifies the Reply date for
this WF Instance to the given
date(in context of the Class
attributes)

Modifies the Completion date
for this WF Instance to the
given date(in context of the
Class attributes)

Returns the COS Flag for this
workflow Instance(in context
of the Class attributes)
Modifies the COS Flag for
this WF Instance to the given
value(in context of the Class
attributes)

10

15

20

25

30

35

40

45

50

55

TXWFOBS

60

This class contains the Workflow Observer Transactions
information which includes information such as the WFTid, s
the BP Instance (BPTid) to which this workflow belongs,
and the Observer ID for the workflow instance.

Attributes :

private:

IDEN IBPTid
IDEN IWFTid
IDEN 1Observer

Methods :

TXWFOBS The constructor of this class
that depending on its first
parameter it creates a new
Workflow Observer Transaction
in the Table with the given
parameters or returns the
first record from the table
which matches the predicate

TXWFASSIGN

This class contains all the Identity to Organization role
mappings at the Workflow level for Workflow Instances.

Attributes :
private:
IDEN IBPTid
IDEN IWFTid
IDEN 10rgRole
IDEN IIdentityld
WFROLE WFRole
Methods :
TXWFASSIGN The constructor of this

WFROLE fnGetWFRole

IDEN IfnGetIdentity

class that depending on its
first parameter returns the
first record from the table
which matches the predicate
or creates a new workflow
assignment in a given WF
Instance (WFTid) for a BP
Instance (BPTid) with the
given parameters

Returns the WFRole (in
context of the Class
attributes)

Returns the Identity ID (in
context of the Class
attributes)

TXWFINCOMPLETION

This class contains the Incompletions information for all

Instantiated workflow

Attributes:

IDEN IBPTid

IDEN IWFTid
INCOMPLETION Incld

LONG ICompletionTime
LONG IFollowUpTime

LONG IReminderTime

LONG 1Count

Methods:

TXWFINCOMPLETION The Constructor for this

class that returns the

first record from the table
which matches the predicate
or inserts a new workflow

6,073,109
39 40

-continued -continued
Incompletion for a given ACT Act
workflow Instance (WFTid) BOOL bReplyFlag
for a BP Instance (BPTid) 5 BOOL bCompletionFlag
with the given parameters
IDEN 1fnGetBPTid Returns the BPTid for the Methods :
workflow Instance (in
context of the Class TXWFAVAILACTS The constructor for this Class
attributes) that returns the first record
IDEN 1fnGetWFTid Returns the WFTid for the 10 from the table which matches
workflow Instance (in the predicate or inserts a new
context of the Class Available Act for a given
attributes) workflow Instance (WFTid) for
INCOMPLETION fnGetIncld Returns the Incompletion ID a BP Instance (BPTid) with the
for the WF Instance (in given parameters
context of the Class 15 BOOL bfnNumAvailActs Returns the number of Acts
attributes) available for a given WFRole
DATETIMET Returns the Completion Time in a WFInstance. The Impure
IfnGetCompletionTime for the WF Instance (in Flag indicates whether an Act
context of the Class is waiting to be processed by
attributes) the Transaction Manager
VOID vinPutCompletionTime Modifies the Completion 20 BOOL bifnList Returns the list of Acts
time for this workflow available for a given WFRole
Instance to the given in a WFInstance. The Impure
time(in context of the Flag indicates whether an Act
Class attributes) is waiting to be processed by
DATETIMET lfnGetFollowUpTime Returns the FollowUp Time the Transaction Manager
for the WF Instance (in BOOL bfnDeleteAllActs Deletes all the Acts for a
context of the Class 25 given workflow instance from
attributes) the Available Acts table
VOID vinPutFollowUpTime Modifies the follow up time BOOL binGetReplyFlag Returns the value of the Reply
for this workflow Instance Flag for the WF Instance (in
to the given time(in context of the Class
context of the Class attributes)
attributes) 30 BOOL bfnGetCompletionFlag ~ Returns the Completion Flag
DATETIMET lfnGetReminderTime Returns the Reminder Time for the workflow Instance (in
for the workflow Instance context of the Class
(in context of the Class attributes)
attributes)
VOID vinPutReminderTime Modifies the Reminder Time
for this workflow Instance 35 TXWFACTS
to the given time(in
context of the Class This class contains information of Acts that are to be taken
attributes) (Queue) in all Workflow instances.(Acts taken by the client
BOOL bfnGetFirstIncompletion Returns TRUE if a record

but not yet processed by the Server).

for the given
reminder/followup prior to

the given time is available 40
and the Incompletion
information is made Attributes:
available in the Class
Attributes. IDEN ITxId
BOOL bfnGetNextIncompletion Returns TRUE if the next BOOL bSTFFlag
record for the given 45 IDEN IBPTid
reminder/followup prior to IDEN IWFTid
the given time is available ACT Actid
and the Incompletion WFROLE WFRole
information is made LONG IReplyTime
available in the Class LONG 1CompletionTime
Attributes. 50 IDEN IWho
LONG lfnGetCount Returns the Count (number DATETIMET IWhenRegistered
of incompletions) for the DATETIMET IWhenTaken
workflow Instance (in BOOL bProcessed
context of the Class LONG IReturnCode
attributes)
VOID vinIneCount Increments the count. 55 Methods:
TXWFACTS The Constructor for this
TXWFAVAILACTS Class that or inserts a new
This class contains information of available acts for a EVF Act int%&geltatzle (Actld)
or a given nstance
Workflow Instance. 60 (WFTid) in a BP Instance
(BPTid) with the given
parameters or inserts a new
WEF Act into the table (Actld)
Attributes : for a given WF Instance
(WFTid) in a BP Instance
IDEN IBPTid (BPTid) with the given
IDEN IWFTid 65 parameters. It also inserts a

WFROLE WFRole record in the table

41

-continued

6,073,109

42

IDEN [fnGetTxId

BOOL bfnGetReturns

VOID vinPutRetValue
BOOL bfnGetFirstInQueue

VOID vinActComplete
BOOL bfnCheckValidAct

IDEN IfnGetBPTid

IDEN IfnGetWFTid

ACT fnGetAct

WFROLE fnGetWFRole

STATE fnGetWFState

WFTYPE fnGetWFType

TXSTFADDINFO or returns the

first record from the table
which matches the predicate
returns the Tx ID for the Act
that has to be taken (in
context of the Class
attributes)

Returns the parameters
STFProcld, ReturnCode from
the current Class attribute
values. It also returns
STFTXID and Userld (from
TXSTFADDINFO)

Modifies the Return Code.
Returns the first Act (to be
processed) from the Queue)
Updates the bProcessed flag
to TRUE

Checks if the given Act is
valid for the WFRole
Returns the BPTid to which
this Act belongs (in context
of the Class attributes)
Returns the WFTid to which
this Act belongs (in context
of the Class attributes)
Returns the Actid of this Act
belongs (in context of the
Class attributes)

Returns the WFRole taking
this Act (in context of the
Class attributes)

Returns the State of this Act
(in context of the Class
attributes)

Returns the WFType (got from
DFWEF) of the workflow to
which this Act belongs(in
context of the Class

10

15

20

25

30

Attributes:

IDEN ISTFProcessor

IDEN IBPTid

IDEN IWFTid

NOTIFICATION NEvent

IDEN 1Userld

DATETIMET ICompletionTime

DATETIMET INotificationTime

DATETIMET IWhenRegistered

DATETIMET IWhenRead

IDEN ITxId

Methods:

TXSTFQUEUE The Constructor for this
class

BOOL bfnGetEvent returns the earliest Message
Record (When Registered has
the earliest date, and
WhenRead is 0) from the STF
Queue for the given STF
Processor

BOOL bfnSetReadTime Sets the WhenRead DateTime
field to the given Value (In
context to the Class
Attributes)

BOOL bfnPutEvent Inserts a record into the
STFQueue with the given
parameters (Sets WhenRead to
0 and WhenRegistered to the
Current Time).

TXBPBD

This class contains BP level Bound Data field IDs and
values related to all BP Instances

attributes) 35
DATETIMET Returns the completion/reply . .
IfnGetIncompletionTime time for the given Atributes:
Incompletion .
DATETIMET Returns the completion time iggi }EP E}i a4
IfnGetCompletionTime (in context of the Class 1
attributes) CHAR szValue [INIT__VAL__LEN]
DATETIMET lfnGetReplyTime Returns the reply time (in 40 Methods:
context of the Class i
attributes) .
BOOL bfnNumListActTaken Returns the Number of acts TXBPBD g;i Zzn:;rgfntoroifiglzrcsltass
present in the Queue for the P h g
given BPTid and WFTid patameter that inserts a
BOOL bfnListActTaken Returns the list of acts 45 Record m the TXBPBD t‘(.lble
resent in the OQuene for the for the given BP Transaction
Piven BPTid and WETL (0 with BPTid and FieldId (which
O v or & arocifiod file is obtained from DFFIELDLIST
¥ P using the Field Name) and the
field value or returns all
50 the Bound Data fields
TXSTFADDINFO (associated with the given BP
Instance, BPTid). to
. specified file/memory or
This class contains additional information for all transac- rstums the number gf Bound
tions which come via the STF Processor Data fields associated with
s the given BP Instance (BPTid)
— TXWFBD
routes: This class contains workflow level Bound Data field IDs
IDEN ITxid and values related to all instantiated WFs in BP Instances
IDEN ISTFProcld
IDEN ISTFTxId 60
IDEN 1UserId
Attributes:
IDEN IBPTid
TXSTFQUEUE IDEN IWFTid
) o)) 65 IDEN IFieldId
This class contains information of all outgoing Transac- CHAR szValue[INIT_VAL_1EN]

tions via the STF Processor.

43

-continued

6,073,109

Methods:

TXWFBD

The constructor of this

class that depending on its
first parameter inserts a
record in the TXWFBD table
for the given WF Instance
(WFTIid) in the specified BP
Transaction with WFTid,
BPTid, Fieldld (which is
obtained from DFFIELDLIST
using the Field Name) and
the field value or returns
the number of Bound Data
fields associated with the
given WF Instance in the
specified BP Transaction
(BPTid) returns all the
Bound Data fields
(associated with the given
WEF Instance in the
specified BP
Transaction(BPTid)). to
specified file/memory

10

15

20

Global Method:

BOOL bfnlsPure

This method returns TRUE if
there are no acts pending

in the TXWFACTS Queue for
the given WF Instance in

the specified BP

Transaction. If there are

acts in the Queue then it
returns FALSE.

30

Names and Routings Database

DESTFPROC

35

This class contains information of all STF Processors
including their IDs, names and network addresses.

40

Attributes:

IDEN
CHAR
CHAR

ISTFProcld
szSTFProcName[STFPROCNAME__LEN]
szNetAddressy] NETADDRESS__LEN]

45

Methods:

DFSTFPROC

BOOL bfnGetSTFProcName

BOOL bfnGetNetAddress

BOOL bfnDelete

BOOL bfnListSTFProcs

The Constructor for this
Class that returns the first
record from the table which
matches the predicate or
inserts a Record in the
DFSTFPROC table for the given
STF Processor Name and
Network Address it generates
the STFProcld and returns it
Returns the STF Processor
Name (in context of the Class
attributes)

Returns the Network Address
of the STF Processor (in
context of the Class
attributes)

Deletes the record from the
DFSTFPROC table whose values
are in context of the class
attributes.

Returns information of all
STF Processors in a set of
Structures.

50

55

60

65

44

NRDFORGROLE
This Class contains the Organization Role ID to Organi-

zation Role Name mapping.
Attributes:
IDEN 10rgRole
CHAR szOrgName| ORGROLE__LEN]
Methods:
NRDFORGROLE The Constructor for this

IDEN IfnGetOrgRole

Class that returns the first

record from the table which
matches the predicate or

inserts a Record in the
NRDFORGROLE table containing
the OrgRole ID and the
corresponding Name

Returns the OrgRole ID (in
context of the Class

attributes)

BOOL bfnDelete Deletes the record from the
NRDFORGROLE table whose
values are in context of the
class attributes.

NRDFIDENTITY

This class cont

ains information related to all the Identities

including their Name, Network Address, Postal Address,
Phone/Fax and other information.

Attributes:

IDEN IIdentityld

CHAR szldentityName[IDENTITY__LEN]

CHAR szNetAddress] NETADDRESS_ LEN]

CHAR szPostalAddress[POSTALADDRESS__LEN]

CHAR szPhone[PHONE__LEN]

CHAR szFax[PHONE__LEN]

CHAR szDepartment[DEPARTMENT _LEN]

CHAR szTitle[TITLE__LEN]

CHAR szLocation[LOCATION__LEN]

CHAR szComment{ COMMENT_LEN]

BOOL bNotify

IDEN ISTFProcld

Methods:

NRDFIDENTITY The Constructor for this
class that returns the
first record from the table
which matches the predicate
or inserts a Record in the
NRDFIDENTITY table
containing the Identityld,
the corresponding Identity
name, and other Identity
information obtained from
the given parameters

BOOL bfnDelete Deletes the record from the
NRDFIDENTITY table whose
values are in context of
the class attributes.

BOOL bfnGetNotify Returns the Notify Status

IDEN lfnGetSTFProcld

(in context of the Class
attributes). Notify Status
will be TRUE if the
Identity wants a
Notification of an event.
Returns the STF Processor
ID (in context of the Class
attributes). If the

Identity is not an STF
Processor then O is
returned.

45

6,073,109

46

NRDFGROUPROLEASSIGN
-continued
IDEN lfnGetIdentityld Returns the Identity ID (in
context of the Class Attributes:
attributes). 5
BOOL bfnGetldenNameList Returns information of all IDEN 1Groupld
Identities in a set of IDEN 10rgRole
Structures.
Methods:
NRDFGROUP 10° NRDFGROUPROLEASSIGN The Constructor for this
. . class that returns the first
Thl.S class contains all the Groupld to Group Name record from the table which
mapping. matches the predicate or
inserts a record in the
NRDFGROUP- ROLEASSIGN table
15 containing the Groupld, and
. . the Organization Role
Aiributes: BOOL bfnDelete Deletes the record from the
IDEN 1Groupld NﬁDFGRlOUP— RQLEASSIGN table
CHAR s2GroupName[GROUPNAME__LEN] whose values are in context
of the class attributes.
Methods: 79 BOOL bfnNumListRole Ret.urns the .number.of Groups
which contain the given
: Organization Role as a member
NRDFGROUP The Constructor for th:
© “onstructor for TS BOOL bfnListRole Returns information of all
class that returns the first) .
. Groups which contain the
record from the table which . .
- given Organization Role as a
matches the predicate or
inserts a Record in the 25 mem.téeré to file or memory as
. specifie
NRDFGROUP table containing BOOL bfnNumListGroup Returns the number of
the Groupld, and the . .
: Organization Roles in the
corresponding Group name ified GrounID
BOOL bfnDelete Deletes the record from the BOOL bfnListG: ;{)etm ¢ froup i £ all
NRDFGROUP table whose values nlastiaroup cturns wmtormation ot a
; Organization Roles which
are in context of the class 30 .
: belong to the specified
attributes. to il
IDEN lfnGetGroupld Returns the Group ID (in group, to e or memory as
specified
context of the Class
attributes).
35
NRDFGROUPASSIGN NRDFIDENROLEASSIGN
This class contains all the Groupld to Identityld mapping.
This class contains all the Identityld Organization Role
mapping.
. 40
Attributes:
IDEN 1Groupld
IDEN IIdentityld Attributes:
Methods: IDEN IIdentityld
45 IDEN 10rgRole
NRDFGROUPASSIGN The Constructor for this class
that returns the first record Methods:
from the table which matches
the predicate or inserts a NRDFIDENROLEASSIGN The Constructor for this class
Record in the NRDFGROUPASSIGN that returns the first record
table containing the Groupld, 50 from the table which matches
and the Identity Id the predicate or inserts a
BOOL bfnDelete Deletes the record from the Record in the NRDFIDEN-
NRDFGROUPASSIGN table whose ROLEASSIGN table containing
values are in context of the the Identityld, and the
class attributes. Organization Role
BOOL bfnNumListGroup Returns the number of Groups 55 BOOL bfnDelete Deletes the record from the
which contain the given NRDFIDEN- ROLEASSIGN table
Identityld as a member whose values are in context of
BOOL bfnListGroup Returns information of all the class attributes.
Groups which contain the given BOOL bfnNumListRole Returns the number of Org.
Identityld as a member, to Roles which contain the given
file or memory as specified 60 Identityld as the Identity Id
BOOL bfnNumUListIden Returns the number of BOOL bfnListRole Returns information of all
Identities in the specified Org. Roles which contain the
GroupID given Identityld as the
BOOL bfnListIden Returns information of all Identity ID, to file or memory

Identities which belong to the
specified group, to file or
memory as specified

65

BOOL bfnNumUListIdentity

as specified

Returns the number of
Identities with the specified
Org. Role

6,073,109

-continued -continued
BOOL bfnListIdentity Returns information of all Methods:
Identities with the specified
Org. Role, to file or memory 5 BOOL Grant Updates the privileges of the
as specified specified Identity to the
given set of Privileges
BOOL Revoke Revokes the specified
privileges from the specified
Schedule Database Tdentity
This class contains all the Business Process schedule 10 BOOL InquireAuth Retu_rélsdﬂiz Privileges of the
information including time when it has to be next initiated specilied Identity
and the Recurring period of that BP
SCBPSCHEDULE CONFIGINFO o .
This Class contains the configuration information of a
15
particular installation including the path and file name of the
Logfile, the interval of the Server polling, the path of the
Atributes: Blob file and the maximum number of BP instances.
IDEN 1BPDid
DATETIMET InitTime 20
DATETIMET IRecPeriod
Attributes:
Methods:
CHAR szLogFilePathl LOGFILEPATH__LEN]
SCBPSCHEDULE The Constructor for this CHAR szLogFileName[LOGFILENAME_LEN]
class that inserts a Record INT iPolllnterval
in the SCBPSCHEDULE table 25 CHAR szBlobFilePath BLOBFILEPATH__LEN]
for the given STF Processor INT iMaxBPInst
Name and Network Address It LOGOPTIONS LogOpts
generates the STFProcld and
returns it or returns the Methods:
first record from the table
which matches the predicate 30 BOOL bfnSetConfigInfo Sets the configuration of an
BOOL bfnDelete Deletes the record from the installation to the specified
SCBPSCHEDULE table whose values
values are in context of the BOOL bfnGetConfiglnfo Returns the Configuration of
class attributes. the Installation.
DATETIMET lfnGetInitTime Returns the Initiation Time
of the BP (in context of the 35
Class attributes) ERRMSG
DATETIMET lfnGetRecTime Returns the. Recurring period Contains the Error code to error Number mapping.
of the BP (in context of the
Class attributes)
IDEN IfnGetBPDid Returns the BP ID (in
context of the Class 40 -
attributes) Attributes:
VOID vinPutInitTime Updates the Initiation Time
for the BP with the INT IErrNo
specified time (in context LONG IErrCode
of the Class attributes)
BOOL bfnGetFirstBPSchedule Returns the first BP Methods:
scheduled to be Initiated 45
(Where the InitTime is less ERRMSG The Constructor for this
than the specified time) Class
(the Class attributes are BOOL bfnPutErrNo Inserts a record with an
updated) ErrNo and the corresponding
BOOL bfnGetNextBPSchedule Returns the next BP ErrCode,
scheduled to be Initiated 50 INT ifnGetErrNo Gets the ErrNo corresponding
(Where the InitTime is less to the specified ErrCode.
than the specified time)
(the Class attributes are
updated) MESSAGEQ
This Class contains the Message Queue which is used by
55

AWSAUTH

This class contains information related to each Identities

database access privileges.

60
Attributes:

IDEN IIdentityld

OBJECT_TYPE Objectld

PRIVILEGES Privilege 65

the components of the Server for internal communication.

Attributes:

PROCESS
PROCESS

Sender

Recipient

Message

[Param1

[Param?2

[Param3

[Param4
szParam[PARAM__LEN]

6,073,109

49 50
-continued -continued
DATETIMET IWhenPosted Administration and Configuration Database
Methods
- 5 Workflow Maintenance
MESSAGEQ The Constructor for this
class ‘WFMaint
BOOL bfnPostMessage Puts the given message into MethoEis
the Message Queue with the ListALIWEF)
specified Sender and STF Processor Maintenance
Recipient fields 10 .
BOOL bfnGetMessage Gets the first message marked STFL;;;E:O s
to the specified recipient .
from the Message Queue Reg1st.erSTFProc
i DeregisterSTFProc
BOOL bfnFlushMessage Deletes all messages from the Backup and Restore
Message Queue. 15 _—
Backup
Attributes
BPId string /* Business Process
name is NULL, implies
backup/restore entire
Administration and Configuration Database 20] DB */
BackupDate time
Server Management BackupTime time
- BackupMedia enum
ServerMgmt Methods
Attributes Backup
I1Serverld identifier Restore
szServerName string[sz_ servername] 25 Database Management
Methods
Start Server DBMgmt
StopServer /* The method Methods
StopServer should find CheckDatabase
all BPs that have the IndexDatabase
server as Home & issue 30 ReorganizeDatabase
warning to the current Configuration
users */ -
Login Config
Logout Attributes
ListLoginActvities MaxUserCount int
User Maintenance 35 MaxOpenBPs int
Version string
UserMaint Methods
Attributes SetConfiguration
Userld ref(Identity) or ref(Group) GetConfiguration
LoginName string
Password string 40
Methods STF Queue Database
AddNewUser STF Additional Information Class
RemoveUser The server as a service stores additional fields required by
ModifyUserlnfo . STF processors. The STF Processor Id, the STF Transaction
Authorization Maintenance
Id and the Userld are stored.
Object 45 TxSTFAddlInfo
Attributes The STF Queue database is implemented through two
Objectld ref(BP) or ref(WF) or classes TXSTFADDINFO and TXSTFQUEUE which are
Obi __1ef (STFProcessor) desribed with other classes of the transaction database.
jectType objecttype
AuthMaint B. WORKFLOW APIs
Attributes 50 Workflow Transactions API
User ref(User) This section describes the functions performed by the
?Eﬁfggi ;f‘(/(i)lte"];d) transactions API. A description of each function is set forth
GrantOption bool followed by the syntax of a call to the function, with
Methods specification of each parameter passed to the function. From
Grant 55 this information, a suitable code segment can be written to
Revoke o implement the function.
InquireAuthorization
Business Process Maintenance AWSTINITBP
Description
BPMaint This function creates a new instance of a previously
Methg%irtBP 60 defined Business Process (BP). The BP Name is passed and
DeleteBP a BP Id is returned. This Id will be required for all subse-
SuspendBP quent calls to this APIL. This call also activates the Primary
ResumeBP workflow. To create this instance of the Business Process the
ﬁrsct}:::ilgps Name specified for the IdentityName must be authorized.
ListActiveBPs 65 Optionally the mapping of Organization Role Names to
DeleteBPDefinition Identity Names may be provided. This overrides the default

mapping (if any).

6,073,109

51

Syntax

VOID FAR PASCAL AWSTINITBP(STRING szBPName,
STRING szInitiatorName, STRING szCustomerName,
STRING szPerformerName, DATETIMESTRING
szCompletionDate, DATETIMESTRING
szResponseDate, DATETIMESTRING szlnitiateDate,
INT iCount, LPORG2ID 1pOIPtr, LPIDEN 1pBPTid,
STRING szCWFName, LPERRCODE IpError)

Parameters

Name Type Description

STRING

szBPName Business Process Name.
This BP must have
previously been defined
and the name known to the
server.

Name of the person or
identity initiating the
business process. The
identity must be
authorized to activate the
business process.
Customer Identity Name.
Performer Identity Name.
The date by which the
Primary workflow must be
completed.

The date by which
negotiation must be
complete.

The Date when this
workflow is to be
initiated by the server.

If this date is not
specified then the
Business Process is
initiated immediately.
The number of Organ-
ization Role to Identity
mapping entities.

Pointer to an array of
structures which contains
the mapping of
Organization Role to
Identities. In the
structure ORG2ID, the
application must set the
GLOBAL or LOCAL flag
to identify whether the
ORG2ID overriding is at
BP level or at WF level.

szInitiatorName STRING

STRING
STRING
DATETIMESTRING

szCustomerName
szPerformerName
szCompletionDate

DATETIMESTRING

szResponseDate

szInitiateDate DATETIMESTRING

iCount INT

IpOIPtr LPORG2ID

IpBPTid
szCWFName

LPIDEN
STRING

LPERRCODE

returns BPTid.
returns the name of
Primary Workflow.
Error Code.

IpError

The function returns the Business Process Instance Id,
BPTid and Primary WF name, szCWFName.
AWSTINITWF
Description

The business process this workflow belongs to must have
been instantiated. The application must supply the Business
Processes’ Business Process Transaction Id. The Identity
Names of the Customer and Performer are optional if
defaults have been specified. The dates for completion and
reply are optional. If these dates are NULL values, the
defaults specified by the workflow’s definition (if any) will
be used. The Initiate date is optionally specified only for the
Primary workflow to initiate it at a later date. Optionally the
mapping of Organization Roles to Identity Names may be
passed. These override the default mapping if any.

Syntax
VOID FAR PASCAL AWSTINITWF(BPTID 1BPTid,
STRING szWFName, STRING szlnitiatorName,

15

20

25

30

35

40

45

50

55

60

65

52
STRING szCustomerName, STRING szPerformerName,
DATETIMESTRING szCompletionDate,
DATETIMESTRING szResponseDate,
DATETIMESTRING szlnitiateDate, INT iCount,
LPORG2ID IpOIPtr, LPERRCODE IpError)

Parameters

Name Type Description

BPTID

1BPTid Business Process
Transaction Id.

The Id of a previously
instantiated BP.

The name of the workflow
to be initiated. The primary
workflow can be initiated
prior to an initiation date
specified in the
AWSINITBP function, or a
previously specified intia-
tion date changed using this
function by specifying the
name of the primary
workflow. If the specified
workflow is not the
primary workflow, then the
Business Process this
workflow belongs to must
have already been initiated.
The Identity Name of the
person initiating the
workflow. The workflow
will be initiated only if

the identity has the
authorization.

The Identity Name of the
person who is the Customer
for this workflow.

The Identity Name of the
person, who is the Per-
former for this workflow.
The date by which this
workflow must be
completed.

The date by which negotia-
tion must be complete.
The Date when this
workflow is to be initiated
by the server. If this date is
not specified then the
workflow is initiated
immediately. This date can
be specified only for the
Primary workflow.

The number of Organ-
ization Role to Identity
mapping entities.

Pointer to an array of
structures which contains

a mapping of Organization
Role to Identity Names.
Error Code.

szWFName STRING

szInitiatorName STRING

szCustomerName STRING

szPerformerName STRING

szCompletionDate ~ DATETIMESTRING

szResponseDate DATETIMESTRING

szInitiateDate DATETIMESTRING

iCount

IpOIPtr LPORG2ID

IpError LPERRCODE

Return Value

None
AWSTACTINWF
Description

This function instructs the workflow server to perform the
act specified in the specified workflow of a specific business
process. The Business Process Transaction ID and Workflow
Name must be specified. The identity performing the act
must be specified. The server records the act to be taken and
updates the workflow. The server may take an unspecified
time to take the act because of the queuing of the acts to be
taken. If the client application issues a query when the act is
pending, the application will receive status values which are

6,073,109

53

not updated and this will be indicated by CLEAR or PEND-

ING flag of the query APIS.

Syntax

VOID FAR PASCAL AWSTACTINWF (STRING
szSTFProcName, STRING szSTFTxName, STRING
szSTFUserName, BPTID 1BPTid, STRING szWFName,
ACT Act, DATETIMESTRING szCompletionDate,
DATETIMESTRING szReplyDate, STRING
szParticipantName, LPIDEN 1pTxId, LPERRCODE
IpError)

Parameters

Name Type Description

STRING

szSTFProcName Only the transaction calls
made via STF Processor
will pass this. Workflow
applications which directly
use this call should set this
field to NULL.

Only the transaction calls
made via STF Processor
will pass this. Workflow
applications which directly
use this call should set this
field to NULL.

Only the transaction calls
made via STF Processor
will pass this. Workflow
applications which directly
use this call should set this
field to NULL.

Business Process
Transaction Id.

The Id of a previously
instantiated BP.

The Transaction Id of the
workflow in which to take
the act.

The act to take, e.g.,
Request, Agree, etc.
Completion date can be
optionally specified when-
ever permitted or
recommended has to be
specified for all Customer/
Performer Counter Acts.
Reply date has to be speci-
fied for the following acts:
Customer/Performer
Counters, Declare
Completion and Declare
dissatisfaction.

Identity of the person
requesting the act.

Unique Transaction Id re-
turned by the APL This Id
is used to inquire about the
status of taking the Act.
Error code returned by the
server.

szSTFTxName STRING

szSTFUserName STRING

IBPTid BPTID

szWFName STRING

Act ACT

szCompletionDate ~ DATETIMESTRING

IReplyDate DATETIMESTRING

szInitiatorName STRING

IpTxid LPIDEN

IpError LPERRCODE

Return Value

The unique transaction Id generated by the server is
returned. The application calling the transaction API,
AWSTACTINWF can use this Id to inquire about the status
of the Act. The API call to be used is AWSTACTSTA-
TUSQUERY.
AWSTACTSTATUSQUERY
Description

This function gets the status of the Act requested by the
AWEA via the transaction API call AWSTACTINWE. The
Status indicates whether the act was taken successfully or an
error occurred. In case of an error, a diagnostic error code
will be returned.

10

15

20

25

30

35

40

45

55

60

54
Syntax
VOID FAR PASCAL AWSTACTSTATUSQUERY (IDEN
1TxId, STRING szSTFProcName, STRING

szSTFTxName, STRING szSTFUserName, LPER-
RCODE IpError)

Parameters

Name Description

Type

ITxid IDEN Unique Transaction Id
returned by the API -
AWSTACTINWE. This Id is to be
used to identify the Act
being inquired about.

Only the transaction calls
made via STF Processor will
get back the corresponding
Id. Workflow applications
which directly use the
Transaction API can ignore
this parameter.

Only the transaction calls
made via STF Processor will
get back the corresponding
Id. Workflow applications
which directly use the
Transaction API can ignore
this parameter.

Only the transaction calls
made via STF Processor will
get back the corresponding
Id. Workflow applications
which directly use the
Transaction API can ignore
this parameter.

Error code returned by the
server. This indicates
whether the Act was taken
successfully or an error
occurred.

szSTFProcName STRING

szSTFTxName

STRING

szSTFUserName

STRING

IpError LPERRCODE

Return Value

In case the call is made by a workflow application via an
STF Processor, then the szSTFProcName, szSTFTxName
and the szUserName are returned along with Error (which
indicates the status of the Act). If the call is made by an
application directly, then the Application needs to check
only the error code.
AWSTBINDAPPDATA
Description

Binds data to a business process or workflow instance.
Application data can be attached or bound to a business
process or workflow. Later this information can be retrieved.
The data field name and data value are supplied. Data type
is specified at definition time. Any number of data items may
be bound. When data is bound to the business process, the
workflow name is specified by NULL.

Syntax
VOID FAR PASCAL AWSTBINDAPPDATA (BPTID
IBPTid, STRING szWFName, STRING

szParticipantName, INT iFields, LPTXBDFIELD-
STRUCT IpTxBDFieldStructPtr, LPERRCODE IpError)

Parameters

Name Description

Type
BPTID

Business Process
Transaction Id. The

IBPTid

6,073,109

55 56
-continued -continued
Parameters Parameters
Name Type Description 5 Name Type Description
Id of a previously WEFRole WFROLE The WEFRole of the
instantiated BP. participant. This need only
szWFName STRING The name of the be specified if the
workflow in which participant has more than
to bind the data. 10 one role in the workflow.
The workflow name szParticipantName STRING The name of the person or
is specified as identity requesting
NULL if data is to Application Data associated
be bound to the with the workflow.
business process. IpiFieldsPtr LPINT The number of bound data
szParticipantName STRING Identity of the 15 field to be retrieved.
person requesting bFileOrMemory BOOL Flag to indicate File or
binding of Memory mode of receipt of
application data. data from the APIL
iFields INT The number of IpBDFieldStructPtr LPBDFIELDSTRUCT A pointer to an array of
fields to bind with structures, where the field
the workflow 20 name, type and the field
IpTxBDFieldStructPtr LPTXBDFIELDSTRUCT A pointer to a values are returned. The
array of structures structure
containing the ADFIELDSTRUCT
field name, type, contains an element of type
size and the field ATTRIBUTES. This
value. The parameter is to be ignored
structure 25 by the Application. The
BDFIELDSTRUCT API returns the list of
contains an element attributes if
of type bFileOrMemory
ATTRIBUTES. is ITS_ MEMORY.
This parameter will Application Data fields
be ignored by the 30 defined as HIDDEN for the
APL particular WFRole,
IpError LPERRCODE Error code returned requesting Participant, and
by the server. current workflow state are
returned as NULL strings.
szFileName STRING File name where the API
Return Value 35 should deposit the results of
Data is bound to the workflow. Lhe. call if the flag
FileOrMemory is
AWSTGETAPPDATA ITS_FILE.
Description IpError LPERRCODE Error code returned by the
A set of data fields and values are returned corresponding server
40

to the data fields bound to a workflow instance. The number

of fields and for each field the field name, type and its value

are returned.

Syntax

VOID FAR PASCAL AWSTGETAPPDATA (BPTID
IBPTid, STRING szWFName, STRING szFormName,
WFROLE WFRole, STRING szParticipantName, LPINT
IpiFieldsPtr, BOOL bFileOrMemory, LPADFIELD-
STRUCT IpADFieldStructPtr, STRING szFileName,
LPERRCODE IpError)

Parameters

Name Type Description

BPTID

IBPTid Business Process
Transaction Id. The Id of a
previously instantiated BP.
The name of the workflow
from which to retrieve
bound data. The workflow
name should be set to
“GLOBALBPDATA” to
retrieve business process
bound data.

The form name is returned.
This was stored along with
the bound data.

szWFName STRING

szFormName STRING

45

50

55

60

65

Return Value

IpiFields contains the number of fields retrieved.
BDFieldStruct contains the field name, field type and field
value for all the fields retrieved.

AWSTGETAPPDATAFIELDATTRIBUTES
Description

This functions returns the list of application data field
names and their attributes for a specified act or state for a
specific workflow of a Business Process. The attributes
returned are Read-Only, Editable and Hidden. These
attributes are Boolean.

Syntax

VOID FAR PASCAL
AWSTGETAPPDATAFIELDATTRIBUTES(BPTID
IBPTid, STRING szWFName, BOOL bActORState,
ACTSTATE ActOrState, STRING szFormName,
STRING szParticipantName, WFROLE WFRole, LPINT
IpiFields, LPFLDNAMEATTR IpFldNameAttr, BOOL
bFileOrMemory, STRING szFileName, LPERRCODE
IpError)

6,073,109

57 58
Parameters Parameters
Name Type Description 5 Name Type Description
IBPTid BPTID Business Process IBPTid BPTID Business Process Transaction Id.
Transaction Id. The Id The Id of a previously
of a previously instantiated BP.
instantiated BP. szWFName STRING The workflow name whose status
szWFName STRING The Transaction Id of 10 is desired
the workflow from szParticipantName STRING The status of the workflow is
which to retrieve field returned with respect to this
attributes of the bound Identity.
data. WEFRole WFROLE The WFRole of the participant.
bActOrState BOOL Boolean flag to This field is only required if the
indicate the type of the 15 participant is both customer and
ACTSTATE performer.
parameter. IpCurrent LPINT The current status - CLEAR 1i.e.:,
ActOrState ACTSTATE The field attributes no Acts in the queue waiting to be
specified for this act serviced or PENDING i.e.., some
or state are returned. acts are in the queue yet to be
szFormName STRING The form name is serviced.
returned. This was 20 IpStatusPtr LPSTATUS The STATUS structure contains
stored along with the the Status String and various
bound data. Completion and Reply dates. These
szParticipantName STRING The name of the dates depend on the role of the
person or identity Identity.
requesting Field IpError LPERRCODE Error code returned by the server.
Attributes of the 25
Application Data
associated with the Return Value
workflow. Structure Status contains the status of the specified work-
WEFRole WFROLE The workflow role of
the identity. flow.
IpiFieldsPtr LPINT The number of bound 30 Element Status.StatusString contains the string describing
data fields for which the current state of the workflow.
the attributes are The following Completion and Reply dates are returned:
returned.
IpWFMomentBDField LPWFMOMENTBDFIE- A pointer to a array of
LDSTRUCT structures containing
the field name and 35
field attributes. Customer Performer
bFileOrMemory BOOL Flag to indicate File or
Memory mode of Completion requested Completion due
receipt of data from Reply due to Performer Reply due to Customer
the APL. Completion due by Performer Completion requested by Customer
szFileName STRING File name where the 40 Reply due by Performer Reply due by Customer
API should deposit the
results of the call if
the flag Not all dates are returned, depending on the present state
?ggegﬁ’[};mow is of the workflow the relevant dates are returned.
IpError LPERRCODE Error code returned by AWSTAVAILABLEACTS
the server. 45 Description

Return Value

IpiFieldPtr is updated with the number of fields for which
the field attribute is returned.

FieldStruct contains the field attributes for the specified
act.

AWSTSTATUS
Description

This function returns status of the workflow instance for
a specific participant. The state of the workflow, the current
incompletions with the dates, etc. Information is returned in
the STATUS structure.

Syntax

VOID FAR PASCAL AWSTSTATUS(BPTID IBPTid,
STRING szWFName, STRING szParticipantName,
WFROLE WFRole, LPINT Ipcurrent, LPSTATUS
IpStatusPtr, LPERRCODE IpError)

50

55

60

65

Returns a structure that contains the list of available acts
in the specified workflow for the role that the participant has
in the workflow.

Syntax

VOID FAR PASCAL AWSTAVAILABLEACTS(BPTID
IBPTid, STRING szWFName, WFROLE WFRole,
STRING szParticipantName, BOOL cDialog, BOOL
bFileOrMemory, LPINT lpiCountPtr, STRING szFileName,
LPACTINFO ActPtr, LPERRCODE IpError)

Parameters

Name Type Description

IBPTid BPTID Business Process Transaction Id.
The Id of a previously instantiated
BP.

szWFName STRING The name of the workflow whose
status is desired

WEFRole WFROLE The workflow role of the identity.

This field is only required if the

6,073,109

59

60

-continued -continued
Parameters Parameters

Name Type Description 5 Name Type Description

participant is both customer and WEFRole WFROLE The workflow role of the

performer in the workflow. identity. This field is only
szParticipantName STRING The name of the person or identity required if the participant is

for which the list of available acts both customer and

is returned. 10 performer or is an observer
cDialog BOOL If cDialog is TRUE, then a dialog in the workflow.

box is presented to the user to szBPName STRING The workflows are selected

select a specific act. In this case, only for the specified

the list of available actions BPName. If BPName is

returned by this function will be NULL, then relevant

the selected one. If cDialog is 15 workflows are selected

FALSE, then no dialog box is regardless of the business

presented and all available process.

acts are returned. szStartDate, DATETIMESTRING These dates specify a date
bFileOrMemory BOOL Flag to indicate File or Memory szEndDate range of due dates for

mode of receipt of data from the which the list is

APL 20 constructed. If StartDate is
IpiCountPtr LPINT Number of acts returned in the NULL then the list

structure includes all relevant
szFileName STRING File name where the API should workflows.

deposit the results of the call if bPending BOOL If Pending is TRUE then

the flag bFileOrMemory is the list workflows includes

ITS__FILE. only those workflows
IpActPtr LPACTINFO A pointer to an array of structures 25 where action is pending.

which contains the list of acts, The workflows which

i.e., Act Names, user-defined needs to be initiated are

names for the acts. also included. Otherwise it

IpError LPERRCODE Error code returned by the server. includes workflows where

action is not pending.
30 cDialog BOOL If cDialog is TRUE, then

Return Value a dialog box is presented to

the user to select a specific

IpiCountPtr is updated with the number of possible acts workflow. Tn this Casz, the
the Identity can take in the current workflow. The structure list of workflows returned
array passed is filled with the Acts Names and user-defined by this function will be
names 35 the se.lected. orne.

i If cDialog is FALSE, then

AWSTQUERYWF no dialog box is presented

s and all available workflows

Description are returned.

This function returns the list of workflows that the named bFileOrMemory BOOL Flag to indicate File or
person or identity has as a specific Organization Role. The 4 Memory mode of receipt of
list of workflows is selected from the set of instantiated , data from the APL

) . szFileName STRING File name where the API
business processes that have the same business process should deposit the results of
name. The workflow status for each workflow is returned. the call if the flag

Syntax bFileOrMemory is

ITS_FILE.

VOID FAR PASCAL AWSTQUERYWF(S TRING 45 IpiCount LPINT Returns the count of
szParticipantName, STRING szOrgRole, WFROLE workflows selected.
WFRole, STRING szBPName, DATETIMESTRING IpWFSnapShot LPWFSNAPSHOT Pointer to a list of selected

workflows. Each workflow
szStartDate, DATETIMESTRING szEndDate, BOOL includes Business Process
bpending, BOOL cDialog, BOOL bFileOrMemory, name & Id, Workflow

LPINT lpiCount, STRING szFileName, LPWFSNAP- 50 name, CuSt%mef,I on and

erformer, Completion an

SHOT lpWFSnapShot, LPERRCODE IpError) Reply Dates, Status

and Form name
IpError LPERRCODE Error code returned by the
server.
Parameters 55
Name Type Description
szParticipantName ~ STRING The participant for which Return Value
the list of workflows is
returned. 60
szOrgRole STRING The organization role of the IpiCount, the number of workflows in the list.
participant. Only workflows
that have this specific
8;5?21: f;i;:i?;t:; 'aif IpWFList points to a list of WFLIST structures.
NULL then all workflows 65

are selected regardless of
the role.

The structure returns several dates depending on role of

the Identity.

6,073,109

Customer Performer Parameters
Completion requested Completion due 5 Name Type Description
Reply due to Performer Reply due to Customer
Completion due by Performer ~ Completion requested by Customer szParticipantName STRING The participant for which
Reply due by Performer Reply due by Customer the list of Acts taken is
returned.
1BPTid BPTID Business Process id

Not all dates are returned, depending on the present state 10 szWFName STRING The workflow name for

£ th Kfl th 1 t dat t d which the list of acts
(8) € WOIKIIOW 1he relevanl gates are returnc taken is returned. If no
AWSTAVAILABLEBP name is specified, Le.,
L. the string is null, then
Description the act history for the

This function returns a list of BP Names. 15 entire Business Process

is returned.
Syntax IpiCount LPINT Pointer to an integer.
VOID FAR PASCAL AWSTAVAILABLEBP(STRING The function reums
L) . . number of Acts returned.
szPart1c1pe.1ntName, BOOL .chalog, INT iBPStatus, PFileOrMemory BOOL Flag to indicate file or
LPINT IpiCount, BOQL bFileOrMemory, LPBPINFO 0 memoty mode of receipt of
IpBPInfo, STRING szFileName, LPERRCODE IpError) data from the APL
szFileName STRING File name where the API
should deposit the
results of the call if
the flag bFileOrMemory is
LParameters ITS_FILE.
L 25 IpActsList LPACTSTAKENLIST Pointer to
Name Type Description ACTSTAKENLIST
szParticipantName STRING The participant for which the list IpError LPERRCODE Error code returned by
. the server.
of BPs is returned.
cDialog BOOL If cDialog is TRUE, then a dialog
bolx its preser}gd]tac;, tllle :Ls.er to 30 Return Value
select a specitic BE. Tn Lhis case, IpiCount, the number of Acts in the list.
the list of BPs returned by this InActsLi . L £ ACTSTAKEN h
function will be the selected one. p. .cts 1s.t points to a list o ! structures t| .at
If cDialog is FALSE, then no contain Business Process Name & id, Workflow Name & id,
dialog box is presented and all Act Name & id, Act Date and the ParticipantName who took
available BPs are returned. the act.
iBPStatus INT Indicate the iBPStatus required. 35 AWSTGETNSTRING
ACTIVE__BPS select only Description
active BPs. The fiag INACTIVE The notification string for the event is retrieved. If no such
selects all BPs in the definition . . .
database. string is present for the workflow then default string asso-
IpiCount LPINT The number of BPs returned. ciated with the Business Process is retrieved. If no default
bFileOrMemory BOOL Flag to indicate file or memory 40 string is present then a null string is returned.
mode of receipt of data from the Syntax
APL
IpBPInfo LPBPINFO A pointer to an array of BPINFO V?]IB]% TEgR PSA,§ g?ﬁ GAWST\%EFTI‘\INSTRIN%]\SI%TI‘\IIQ
structures that contain the business 3 1 2 SZ . am €, .
process name and Id. NotificationEvent, STRING szNotificationString, LPER-
szFileName STRING File name where the API should 45 RCODE lpEI‘I‘OI‘)
deposit the results of the call if
the flag bFileOrMemory is
ITS_FILE.
IpError LPERRCODE Error code returned by the server. Parameters
50 Name Type Description
Return Value P P
IpiCount, the number of workflows in the list. 1BPTid BPTID Business Process id
)))) szWFName STRING ‘Workflow name.

BPLlstPtr points to a linked list of BPINFO structures that NotificationEvent EVENT This parameter specifies the
contain the Business Process Name & Id. event
AWSTACTHISTORY 55 szNotificationString STRING ;I;}tlzrﬁzgﬁcanon string
DeSCI‘iptiOH IpError LPERRCODE Error code returned by the

This call returns a list of Acts taken in the specified Server
business process for a specific workflow. If workflow name Notification Events
is NULL, then the history of the entire business process, i.c., 60
list of all acts taken of all workflows is returned. Event Notification Type
Syntax Performer Response past due Follow-up
VOID FAR PASCAL AWSTACTHISTORY(STRING Performer Completion past due. Follow-up

szParticipantName, BPTID IBPTid, STRING erformer Completion coming due eminder

. X Customer Response past due Follow-up
szWFName, LPINT IpiCount, BOOL bFileOrMemory, 65 Act taken Act

STRING szFileName, LPACTSTAKENLIST lpActsList,
LPERRCODE IpError)

6,073,109

Return Value
szNotificationString will contain the notification string
AWSTPOLLSTFQUEUE LParameters
Description 5 Name Type Description
This call returns the notification event to the STF Pro- IBPTid BPTID Business Process
cessor. If the notification event is “Act Taken”, then the Transaction Id. The Id of a
. . . previously instantiated BP.
parameter 1pTxId will contain the transaction Id of the Act. <ZWFName STRING The name of the workflow
Svntax 10 whose status is desired
y WFRole WFROLE The workflow role of the
VOID FAR PASCAL AWSTPOLLSTFQUEUE(STRING . STRING endty.

. szParticipantName e participant for whic
szSTFProcessorName, LPIDEN 1pBPTid, STRING the list of available acts
szWFName, LPINT lpEvent, LPIDEN 1pTxId, STRING is returned.
szParticipantName, DATETIMESTRING 15 IpiCountPtr LPINT Number of acts returned in

. . the structure
szC O.m p l.e t 19 nTime, DATETIMESTRING IpError LPERRCODE Error code returned by the
szNotificationTime, LPERRCODE IpError) server.
20 Return Value
Parameters
— IpiCount is updated with the number of possible acts the
Name Type Description Identity can take in the current workflow.
szSTFProcessorName STRING STF Processor Name AWSTGETNUMAPPDATA
IpBPTid LPIDEN BPT1d of the BP instance 25 Description
which has some
notification to be sent Number of data fields are returned corresponding to the
to the application. data fields bound to a workflow instance.
szWFName STRING WEFName of the WF
instance Syntax
IpEvent LPINT The Event Id is returned
here. 30 VOID FAR PASCAL AWSTGETNUMAPPDATA (BPTID
IpTxdd LPIDEN TxId of the Act if Event IBPTid, STRING szWFTName, WFROLE WEFRole,
. is “Act Taken : STRING szParticipantName, LPINT IpiFicldsPtr, LPER-
szParticipantName STRING The participant’s name is RCODE IpE
returned. p rror)
szCompletionTime DATETIMESTRING Completion date & time
is returned. This is the 35
date and time when the
event was due. For Parameters
example, the instance
when Peerrmer Name Type Description
Response is due.
szNotificationTime DATETIMESTRING Notification date & time 40 1BPTid BPTID Business Process Transaction
is returned. This is the Id. The Id of a previously
instant when this instantiated BP.
notification was placed szWFName STRING The name of the workflow from
in the STF queue. which to retrieve bound data.
IpError LPERRCODE Error code returned by The transaction id should be
the server. 45 null to retrieve business
process bound data.
Notification Events WFRole WFROLE The WFRole of the Identity
szParticipantName STRING The name of the person or
Event Notification Type identity requesting
Application Data associated
Performer Response past due Follow-up 50 with the workflow.
Performer Completion past due Follow-up IpiFieldsPtr LPINT The number of bound data
Performer Completion coming due Reminder field retrieved.
Customer Response past due Follow-up IpError LPERRCODE Error code returned by the
Act taken Act server.
55
Return Value Return Value
AWSTNUMAVAILABLEACTS IpiFields contains the number of fields retrieved.
Description AWSTNUMAVAILABLEBP
Returns number of available acts in the specified work- go Description
flow for the role that the identity has in the workflow. This function returns the number of BPs that satisfy a
Syntax query.
VOID FAR PASCAL AWSTNUMAVAILABLEACTS Syntax
(BPTID IBPTid, STRING szWFName, WFROLE ¢ VOID FAR PASCAL AWSTNUMAVAILABLEBP

WFRole, STRING szParticipantName, LPINT
IpiCountPtr, LPERRCODE IpError)

(STRING szParticipantName, INT iBPStatus, LPINT
IpiCount, LPERRCODE IpError)

6,073,109

65 66
Parameters Parameters
Name Type Description 5 Name Type Description
szParticipantName STRING The participant for which the szParticipantName STRING The participant for which
list of BPs is returned. the list of workflows is
iBPStatus INT Indicate the iBPStatus returned.
required. ACTIVE__BPS only can szOrgRole STRING The organization role of the
be selected or all BPs in the 10 participants. Only work-
definition could be selected. flows that have this specific
IpiCount LPINT The number of BPs returned. OrgRole are selected. If
IpError LPERRCODE Error code returned by the OrgRole is specified as
server. NULL then all workflows
are selected regardless of
15 the role
szBPName STRING The workflows are selected
Return Value only for the specified
. . . BPName. If BPName is
IpiCount, the number of workflows in the list. NULL, then relevant
AWSTNUMACTHISTORY workflows are selected
20 regardless of the business
Description process.)
szStartDate DATETIMESTRING StartDate for query list.
This call returns the number of Acts taken in the specified szEndDate DATETIMESTRING End Date for query list.
business process for a specific workflow. If workflow Id is These dfa Eies Sgemfy a date
range of due dates for
NULL, then the history of the entire business process, i.c., which the List is
the number of all acts taken of all workflows is returned. > constructed. If StartDate is
NULL then the list includes
Syntax all relevant workflows.
bPending BOOL If Pending is TRUE then
VOID FAR PASCAL AWSTNUMACTHISTORY(STRING the list workflows includes
szParticipantName, BPTID IBPTid, STRING only those workflows
. 30 where action is pending.
szWFName, LPINT IpiCount, LPERRCODE IpError) The workflows which needs
to be initiated are also
included. Otherwise it
includes workflows where
Parameters action is not pending.
— 35 IpiCount LPINT Returns the count of
Name Type Description . wor kflows se%ected.
ipWFSnapShot LPWFSNAPSHOT Pointer to a list of selected
szParticipantName STRING The participant for which workflows. Each workflow
the list of Acts taken is includes Business Process
returned. name & Id, Workflow
IBPTid BPTID Business Process id 40 name & Id, Customer?d,
szWFName STRING The workflow name for which Performerld, Completion
the list of acts taken is and Reply Dates, Status and
returned. If no name is form name
specified, i.c., the string ipError LPERRCODE Error code returned by the
is null, then the act Server.
history for the entire
Business Process is 4
returned. Return Value
IpiCount LPINT Pointer to an integer. The IpiCount, the number of workflows in the list.
function returns number of
Acts returned.
IpError LPERRCODE Error code returned by the

SEIVET. 0

Return Value
IpiCount, the number of Acts in the list.
AWSTNUMQUERYWF

Description

55

This function returns number of workflows that a partici-

pant is a member of as a specific Organization Role. 60

Syntax

VOID FAR PASCAL AWSTNUMQUERYWE(STRING
szParticipantName, STRING szOrgRole, STRING
szBPName, STRING szStartDate, STRING szEndDate,
BOOL bpending, LPINT IpiCount, LPERRCODE
IpError)

65

Customer Performer

Completion requested

Reply due to Performer
Completion due by Performer
Reply due by Performer

Completion due

Reply due to Customer
Completion requested by Customer
Reply due by Customer

Not all dates are returned, depending on the present state
of the workflow the relevant dates are returned.
AWSTSETCOS
Description

This function specifies the Conditions of Satisfaction
(COS) associated with a workflow of a Business Process
Instance. The COS is inserted as a series of memory blocks.
This function requires the Business Process context and
workflow to be setup before execution.

Syntax
VOID FAR PASCAL AWSTSETCOS (IDEN 1BPTid,
STRING sztJFName, LPMEM I1pCOS, LPINT

6,073,109

67

IpiMemBlockSize, INT iPositionNotify, LPERROR-
CODE IpError)

68

Parameters
Parameters 5 Name Type Description
L. 1BPTid BPTID Business Process Transaction Id.
Name Type Description The Id of a previously
. . . instantiated BP.
IBPTid BPTID Business Process Trz.insacnon szWFName STRING The workflow name for which the
Id. The Id of a previously A .
instantiated BP. 10] transaction 1d. is required
szWFName STRING The name of the workflow. IpWFTid LPIDEN "i[s‘hreeg‘lrrz;r;?cnon 1d of the workflow
IpCOS LPMEM Pointer to a memory chunk :
which stores COS (BLOB). 1pError LPERRCODE Error code returned.
IpiMemBlockSize ~ LPINT Memory allocated for storing
COS in bytes.
iPositionNotify INT This variable identifies the 15 Return Value .
first COS buffer, subsequent Workflow Definitions API
COS buffers and the last one. AWSDBEGINBP
It should be set to 0 to Description
ﬁgentﬁ?’ ﬁr;t bufferaé tt?f This call creates a new Business Process. The Business
identify subsequent bufters. : : :
pError LPERRORCODE Error code returned. 20 Process name is specified ~as a_parameter. The Business
Process name should be unique. If a Business Process with
the same name is present, the current definition is overwrit-
Return Value ten as a new version. This takes place only if there are no
AWSTGETCOS active instances of the current business processes. The
Description version number is maintained internally by the server.

The function gets the COS associated with the specified 25 The AWSDBeginBP should be the first call when defining
workflow of a Business Process. The COS is returned as a a business process and no other AWSDBeginBP call should
series of memory blocks. The memory block pointer and the be in progress. Every AWSDBeginBP has to be closed by a
block size allocated is passed to this function and the number AWSDEdBP call. The AWSDEndBP should be the last call
of bytes actually written in the memory block is returned. and ends the definition of a business process.

For the first call, the contents of the variable pOffset mustbe 30 ~ AWSDBeginBP sets up a context for the business process
set to zero (0). This indicates the start of the memory block and all subsequent calls require this context. The AWS-
transfers. The caller will be notified with a negative value in DEndBP closes this context.

the Offset variable to indicate end of the block transfers. Syntax

Syntax VOID FAR PASCAL AWSDBEGINBP(STRING
VOID FAR PASCAL AWSTGETCOS (IDEN 1BPTid, 35 szBPName, IDEN IBPAdmin, LPERRCODE IpError)

STRING szWFName, LPMEM 1pCOS, LPINT

IpiMemBlockSize, LPLONG lpOffset, LPERRORCODE

IpError)

Parameters
40 Name Type Description
Parameters szBPName STRING The Business Process name.
This name should be unique.
Name Type Description If a business process with
the same name is present, the

IBPTid BPTID Business Process Transaction Id. 45 current definition is over

The Id of a previously written as a new version.

instantiated BP. There should be no active
szWFName STRING The name of the workflow. instances of the current
1pCOS LPMEM Pointer to a memory chunk which definition for this to occur.

stores COS (BLOB). 1BPAdmin IDEN The Identity of the person
IpiMemBlockSize LPINT Memory allocated for storing COS creating this business

in bytes. 50 process. The Identity should
IpOffset LPLONG Initially, the caller must set have the rights to create

this to zero. Each block business processes.

transfer changes the value 1pError LPERRCODE Error code returned.

contained in this variable and

the caller can only check the

value returned here. This will 55 Return Value

be negative if end is reached. Error code is returned.
IpError LPERRCODE Error code returned. AWSDENDBP

Description

Return Value Close the currently open business process. A call to

Number of bytes actually written. 60 AWSDENDBP should be preceded by a call to AWSDBE-
Description GINBP.

This function returns the workflow transaction id of a AWSDENDBP should be the last call peahen defining a
workflow in a business process instance. business process. Every AWSDBEGINBP has to be closed
Syntax by a AWSDENDBP. The AWSDENDBP should be the last
VOID FAR PASCAL AWSTGETWEFTID (IDEN IBPTid, 65 call and ends the definition of a business process. The

STRING szWFName, LPIDEN 1pWFTid, LPERROR-
CODE IpError)

AWSDENDBP closes the context set up by AWSDBE-
GINBP.

6,073,109

69
Note: AWSDENDBP should be called only after a AWS-
DENDWEF call has been made.
Syntax
VOID FAR PASCAL AWSDENDBP(LPERRCODE
IpError)

Parameters

Name Type Description

1pError LPERRCODE Error code returned.

Return Value
Error code is returned.
AWSDDELETEBP
Description
Deletes a Business Process. The delete is successful only
if the Business Process has no active instances in the activity
database. This function is used to remove business processes
no longer in use. This function is called only if the business
process is not in progress.
Syntax
VOID FAR PASCAL AWSDDELETEBP(STRING
szBPName, IDEN 1BPAdmin, LPERRCODE IpError)

Parameters

Name Type Description

szBPName STRING The name of the business
process to delete. There
should be no active instances
for this BPName.

The Identity of the person
deleting this business
process. The Identity should
have the rights to delete

this business processes.
Error code returned.

1BPAdmin IDEN

1pError LPERRCODE

Return Value
Error code is returned.
AWSDSETBPBOUNDDATA
Description
Define the list of bound data fields associated with the
business process. The field name, type, size, attributes and
initial value, if any, are specified.
Syntax
VOID FAR PASCAL AWSDSETBPBOUNDDATA(INT
iFields, LPBDFIELDSTRUCT IpBDFieldStructPtr,
LPERRCODE IpError)

Parameters

Name Type Description

iFields INT The number of fields to
attach with the business
process.

A pointer to an array of
structures containing
field name, type, size,
attributes and initial
value, if any.

Error code returned.

1pBDFieldStructPtr LPBDFIELDSTRUCT

1pError LPERRCODE

10

15

20

25

30

35

40

45

55

60

65

70

Return Value

Error code is returned.
AWSDBEGINWF
Description

Creates a new workflow in a Business Process. The
workflow name is specified as a parameter. The workflow
name should be unique. If a workflow with the same name
is present, then the context for this workflow is set up.

The AWSDBEGINWEF should be the first call when
defining a workflow and no other AWSDBEGINWEF call
should be in progress. Every AWSDBEGINWF has to be
closed by a AWSDENDWF call.

AWSDBEGINWF sets up a context for the workflow and
all subsequent workflow calls require this context. The
AWSDENDWF closes this context.

Syntax

VOID FAR PASCAL AWSDBEGINWEF(STRING
szWFName, LPERRCODE IpError)

Parameters
Name Type Description
szWFName STRING The workflow name. This name
should be unique.
1pError LPERRCODE Error code returned.

Return Value

Error code is returned.
AWSDENDWF
Description

Close the currently open workflow. A call to AWS-
DENDWEF should be preceded by a call to AWSDBE-
GINWE.

The AWSDENDWEF should be the last call when defining
a workflow. Every AWSDBEGINWF has to be closed by a
AWSDENDWF call. The AWSDENDWEF should be the last
call and ends the definition of a workflow. The AWS-
DENDWEF closes the context set up by AWSDBEGINWE.
Syntax

VOID FAR PASCAL AWSDENDWEF(LPERRCODE
IpError)

Parameters

Name Type Description

LPERRCODE

1pError Error Code returned.

Return Value
Error code is returned.
AWSDSETWFINFO
Description
Specify workflow information. The workflow type, the
organization role for the customer and performer, the time
offsets for completion and reply are specified. This call must
be made only after AWSDBEGINWF is called.
Syntax
VOID FAR PASCAL AWSDSETWFINFO(WFTYPE
WFType, BOOL bCentralWF, IDEN 1Customer, IDEN
Performer, LPERRCODE IpError)

6,073,109

Return Value
Error code is returned.
- AWSDDISABLEWFACT
Lammeters Description
Name Type Description 5 Disable a set of workflow acts for a specific workflow
p— F—— - — - role. By default all acts are enabled for a workflow. This call
ype is specifies the type o facilitates disabling specific acts. This call must be made
workflow, i.e., Request or
Offer or Note. only after a call to AWSDBEGINWE.
bCentral WF BOOL Flag to indicate if this Syntax
Woﬂﬁgow 1sftt}}116 C};ntf_al 10 vOID FAR PASCAL AWSDDISABLEWFACT(WFROLE
workflow of the Business .
brocess, This fing s TRUE if WFRole, INT iCount, LPACTINFO ActPir, LPER-
it is the central workflow, RCODE lpEI‘I‘Or)
FALSE otherwise.
1Customer ORGROLEID The Organization Role of the
Customer. 15
1Performer ORGROLEID The Organization Role of the P "
Performer. ~aramelers
1pError LPERRCODE Error code returned. Name Type Description
R Val WFRole WFROLE The Workflow Role for which
eturn Value . 20 the acts are to be disabled.
Error code is returned. iCount INT The number of acts to
AWSDSETWFCYCLETIME disable.
D s ActPtr LPACTINFO A pointer to an array of
escription . .
. . . . structures which contains the
Set the various cycle times associated with the workflow. list of acts to disable. The
Depending on the workflow type—Request or Offer, the ,g number of acts is specified
response time for each act of the workflow may be specified. . LPERRCODE téy Para“éeter tnco‘ént
The table below enumerates the various times that can be prror rror code remmee.
stored.
Read table below as: Return Value
30 Error code is returned.
AWSDSETACTUSERDEFINEDNAME
OrgRolel Actionl i OrgRole2> <Action2>]within ti Description
<OrgRolel> must <Action1> [a i;;e:g ole2> <Action2> Jwithin time Set the user-defined description for the workflow Acts.
The list of acts and the equivalent user-defined names are
S1. OrgRolel Actionl OrgRole2 Action2 35 provided. This call must be made only after a call to
AWSDBEGINWE.
For Request type workflow:
Syntax
1 Customer Request VOID FAR PASCAL
é gergormer geSpolnti gstomer ﬁequest AWSDSETACTUSERDEFINEDNAME(INT iCount,
3 Cer ormer ompee sromer eqies . 40 LPACTINFO ActPtr, LPERRCODE IpError)
ustomer Respond Performer Declares completion
For Offer type workflow:
1 Performer Offer
2 Customer Respond Performer Offer Parameters
3 Performer Complete Customer Agreement
4 Customer Respond Performer Declares completion 45 Name Type Description
Note: The call must be made only after function AWSDSETWFINFO is iCount INT The number of acts for which
called. the user-defined name has
been provided.
Syntax ActPtr LPACTINFO A pointer to an array of
VOID FAR PASCAL AWSDSETCYCLETIME 50 structures which contains the
- list of acts, i.e., Act Names
(LPCYCLETIME IpCycleTime, LPERRCODE IpError) e e ames for
the acts.
1pError LPERRCODE Error code returned.
Parameters 55
Return Value
Name Type Description Error code is returned.
1pCycleTime LPCYCLETIME Pointer to an array of time AWSDSETSTATEUSERDEFINEDNAME
offsets. Depending on the Description
workflow type the array 60 Set the User-defined description for the workflow states.
elements refer to different . .
times are listed in the The hst of states and the equivalent user-defined names are
tables above. Since the provided. This call must be made only after a call to
number of cycle times for AWSDBEGINWE.
each workflow type is known,
the count is not required. Syntax
1pError LPERRCODE Error Code returned. 65 VOID FAR PASCAL

AWSDSETSTATEUSERDEFINEDNAME(INT iCount,
LPSTATEINFO StatePtr, LPERRCODE IpError)

6,073,109

73 74
Parameters Parameters
Name Type Description 5 Name Type Description
iCount INT The number of states for State STATE The type of state, e.g.,
which the user-defined name Initiate, Negotiation,
has been provided. Completing, Satisfied, etc.
StatePtr LPSTATEINFO A pointer to an array of IpStateScript LPMEM The workflow script associated
structures which contains the 10 with the state. The script is
list of states, i.e., State executed when the workflow
Names and user-defined names transits to the specified
for the states. state.
IpError LPERRCODE Error code returned. bScriptType BOOL Script Type is a Boolean flag
which indicates whether the
15 script is System generated or
Return Value user generated.
. IpiMemBlockSize LPINT Size of the memory block in
Error code is returned. bytes.
AWSDSETACTSCRIPT iPositionNotify INT This variable identifies the
s first script buffer,
Description . . 20 subsequent buffers and the
Set the workflow script for an Act. The act and the script last one. It should be set to
text are the parameters to this function. This call must be 0 to identify first map
made only after a call to AWSDBEGINWE. buffer, 1 to identify
subsequent map buffers and to
Syntax 2 to indicate last buffer.
VOID FAR PASCAL AWSDSETACTSCRIPT(ACT Act, 25 IpError LPERRCODE Error code returned.
LPMEM IpActScript, BOOL bScriptType, LPINT
IpiMemBlockSize, INT iPositionNotify, ERRORCODE Return Value
&Error) Error code is returned.
State script added to the workflow.
30 AWSDSETWFBOUNDDATAFIELDS
Description
LParameters Define the list of bound data fields associated with the
- workflow. The field name, type, size, default attributes and
Name Type Description s . :
initial value, if any, are specified.
Act ACT The type of act, e.g., Syntax
. Request, Agree, etc. 35 VOID FAR PASCAL
IpActSeript LPMEM The workflow script AWSDSETWFBOUNDDATAFIELDS(INT iFields,
associated with the act. The LPBDFIELDSTRUCT IpBDFicldStructPtr, LPER-
script is executed when the RCODE InE
corresponding act in the p rror)
workflow is executed.
bScriptType BOOL Script Type is a Boolean flag 40
which indicates whether the
script is System generated or Parameters
user generated. -
IpiMemBlockSize LPINT :;ztzsof the memory block in Name Type Description
iPositionNotify INT This variable identifies the 45 iFields INT The number of fields to
first script buffer, attach with the
subsequent buffers and the workflow.
last one. It should be set to IpBDFieldStructPtr LPBDFIELDSTRUCT A pointer to an array
0 to identify first map of structures
buffer, 1 to identify containing field name,
subsequent map buffers and to 50 type, size, default
2 to indicate last buffer. attributes and initial
IpError LPERRCODE Error code returned. value, if any.
IpError LPERRCODE Error code returned.
Return Value
Error code is returned 55 Return Value
.) The bound data fields are attached to the workflow.
Act script added to the workflow. Error code is returned.
AWSDSETSTATESCRIPT AWSDSETWFBDFIELDATTRIBUTE
Description Description
Set the workflow script for a State. The state and the script 60 ,glet%ne thekﬁﬂeld %Etﬁlbgtiz otftb?)u?d d}gta geldf aSEsg?egfd
text are the parameters to this function. This call must be }){V%dd © Wng 0\:%.11 ¢ hie ba o u.gs:i fea 'OILYA | ! ad/e,
made only after a call to AWSDBEGINWE. taden and VWsttL, may be speeied for cach Act and/or
State for a specific workflow role.
Syntax A call to AWSDSETWFBDFIELDATTRIBUTE must be
VOID FAR PASCAL AWSDSETACTSCRIPT(STATE made only after calling AWSDSetWFBoundDataFields.
State, LPMEM IpStateScript, BOOL bScriptType, LPINT 65 Syntax
IpiMemBlockSize, INT iPositionNotify, LPERROR- VOID FAR PASCAL

CODE IpError)

AWSDSETWFBDFIELDATTRIBUTE(INT iFields,

75
LPWFMOMENTBDFIELDSTRUCT

IpWFMomentBDFieldStruct, LPERRCODE IpError)

6,073,109
76

A reminder may be sent before Completion or Reply is
due. The reminder is sent at a time interval specified before

Parameters

Name Type

Description

iFields INT

IpWFMomentBDFieldStruct LPWFMOMENTBDFIELDSTRUCT

IpError LPERRCODE

The number of fields
to attach with the
workflow.

A pointer to an array
of structures
containing field name,
Act or State, Workflow
Role and attributes.
The attributes are:
Read-only, Editable,
Hidden and MustFill.
Error code returned.

20
Return Value the event is due. Reminders may be disabled. A reminder is
Error code is returned. sent only once.
The attributes of the bound data fields are attached to the Syntax
workflow.
AWSDSETEORMINEO 25 VOID FAR PASCAL AWSDSETFOLLOWUP(BOOL
Description bPCFUFlag, TIMEOFFSET PCFUOffset, BOOL
. bPCFURecur, INT iPCFUCount, BOOL bPRFUFla
Specify workflow form names for Customer, Performer 4 > S
andebs grv or TIMEOFFSET PRFUOffset, BOOL bPRFURecur, INT
Syntax ’ iPRFUCount, BOOL bCRFUFlag, TIMEOFFSET
VOID FAR PASCAL AWSDSETFORMINFO(STRING 30 CRFUOffset, BOOL bCRFURecur, INT iCRFUCount,
szCusForm, STRING szPerForm, STRING szObsForm, TIMEOFFSET.PCRemOffset, BOOL bPCRemFlag,
STRING szlnitForm, LPERRCODE IpError) BOOL bActNotifyFlag, LPERRCODE IpError)
35
Parameters ZParameters
Name Type Description Name Type Description
bPCFUFlag BOOL Performer completion follow-up flag.
szCuskorm STRING ‘ljvc;)rrrlr(lﬂréiine for Customer of 40 PCFUOffset TIMEOFFSET A follow-up message is sent
szPerForm STRING Form name for Performer of at an interval, specified by
workflow PCF[{Ot.ffset., aftert ;()ierformer
completion 18 past due.
sz0bsForm STRING ‘ljvc;)rrrlr(lﬂréiine for Observer of bPCFURecur BOOL If enabled, recurring
szInitForm STRING Init form name of the notifications are ser.lt at
workflow 45 every PCIIi([:Jl?g(s:et 1nttet:.rval as
many as ount times.
IpError [PERRCODE Error code returned. iPCFUCount INT Number of times the follow-up
notifications should be sent
Return Value after performer completion is
. past due.
Error code is returned. If this parameter is not
Form names attached to the workflow 50 specified, and PCFUFlag is
AWSDSETFOLLOWUP set, then notifications are
Description sent till performer
. . . . completes.
Set up follow-up 1pf0rmat10n associated Wlth the work- bPRFUFlag BOOL Perfgrmer response follow-up
flow. The follow-up time offsets for Completion, Reply and flag
Reminder are speciﬁed. 55 PRFUOffset TIMEOFFSET A follow-up message is sent
A follow-up is sent after the Completion is past due. It is fﬁlzr;;?ﬁzzr Sg;lﬁed by
sent at the specified time interval after it is past due. If the Performer reply is past due.
recurring flag for Completion is set, then till Completion, bPRFURecur BOOL If enabled, recurring
follow-up messages are sent at every time interval specified. notifications a;’ sent at |
The maximum number of times a follow-up notification is 60 fr:’g :fgggUé?uit?feSaif
sent could be set using this call. PRFUFlag is set TRUE and
A follow-up is sent after the Reply is past due. It is sent PRFUCount is not specified,
at the specified time interval after it is past due. If the then fOll_?W-ufP messagef_ are
recurring flag for Reply is set, then till Reply has been sent, PREUComt INT ;e;lrtnlgrel?O?iﬁ?;?f;;;&i;_up
follow-up messages are sent at every time interval specified. 65 notifications should be sent

The maximum number of times a follow-up notification is

sent could be set using this call.

after performer Completion is

6,073,109

-continued -continued
Parameters Parameters
Name Type Description 5 Name Type Description
past due. FActState ACTSTATEID The act or state from where
If this parameter is not the link starts.
specified, and PRFUFlag is szZTWFName STRING The destination or “to”
set, then notifications are workflow name. The name of
sent till performer 10 the workflow to which the
completes. link is targeted.
bCRFUFlag BOOL Customer response follow-up bTActOrState BOOL Flag to indicate if it is an
flag Act or State link at
CRFUOffset TIMEOFFSET A follow-up message is sent destination.
at an interval, specified by TActState ACTSTATE The act or state where the
this parameter after customer 15 link ends.
reply is past due. IpError LPERRCODE Error code returned.
bCRFURecur BOOL If enabled, recurring
notifications are sent at
every CRFUOffset interval as Return Value
many as CRFUCount times. Link inf . hed h KA
iCRFUCount INT Number of times the follow-up 20 10K 1nformation attached to the workilow
notifications should be sent Error code is returned.
after Customer Completion is AWSDPUTMAP
past due. o
If this parameter is not Description
zzfcigzjniﬁiiizgfif ls Associates a map file with the specified Business Process.
sent till customer replies. 25 The map file is inserted as a series of memory blocks. This
PCRemOffset TIMEOFFSET A reminder is sent at an function requires the business process context to be setup
interval I.’CRemOffset.before before execution.
Completion or Reply is due.
bPCRemFlag BOOL If this flag is enabled, Syntax
reminders are sen. I VOID FAR PASCAL AWSDPUTMAP (LPMEM
disabled, no reminders are * IpMapMemPtr, LPINT lpiMemBlockSize, INT
bActNotifyFlag ~ BOOL Indicates notification 1P051t10nN0t1fY> LPERRCODE lpEI‘I‘OI‘)
status. If set to TRUE,
notification is enabled else
if set to FALSE, it is
disabled. 35 Parameters
IpError LPERRCODE Error code returned. —
Name Type Description
Return Value IpMapMemPtr LPMEM Pointer to a memory block
Error code is returned. containing map.
Follow-up information attached to the workflow 40 IpiMemBlockSize LPINT Size of the memory block in

AWSDSETLINK
Description

Specity a in coming link to a workflow. For each link, the
source workflow name, triggering and triggered information
is provided. Triggering information constitutes whether the
link is anchored at an act or state and the act/state name.
Triggered information constitutes whether the link termi-
nates at an act or state and the act/state name.

Note: AWSDSETLINK must be called only after all
workflows have been created using AWSDBEGINBP.
Syntax
VOID FAR PASCAL AWSDSETLINK(STRING

szFWFName, BOOL bFActOrState, ACTSTATEID

FActState, STRING szZTWFName, BOOL bTActOrState,

ACTSTATEID TActState, LPERRCODE IpError)

Parameters
Name Type Description
szFWFName STRING The source or “from” workflow
name. The name of the
workflow where a link is
anchored.
bFActOrState BOOL Flag to indicate if it is an

Act or State link at source.

45

50

55

60

bytes.

This variable identifies the

first map buffer, subsequent map
buffers and the last one. It
should be set to 0 to identify
first map buffer, 1 to identify
subsequent map buffers.

Error code returned.

iPositionNotify INT

IpError LPERRCODE

Return Value

Error code is returned.
AWSDGETMAP
Description

Get the map file associated with the specified Business
Process. The map file is returned as a series of memory
blocks. The memory block pointer and the block size
allocated is passed to this function and the number of bytes
actually written in the memory block is returned. Initially,
the caller must pass a zero in the Offset variable to indicate
start of the block transfers. The caller will be notified with
a negative value in the Offset variable to indicate end of the
block transfers.
Syntax

VOID FAR PASCAL AWSDGETMAP (STRING
szBPName, LPMEM IpMapMemPtr, LPINT
IpiMemBlockSize, LPLONG IpOffset, LPERRCODE
IpError)

6,073,109

Syntax
VOID FAR PASCAL AWSDGETBPVERSION (IDEN
lIdentity, STRING szBPName, LPINT lpiVersion, LPER-
Parameters RCODE IpError)
Name Type Description 5
szBPName STRING Business Process Name with which
to associate the map. Parameters
IpMapMemPtr LPMEM Pointer to a memory block where
map can be returned. Name Type Description
IpiMemBlockSize LPINT Size of the memory block in 10
bytes. IIdentity IDEN Identity Id to be mapped with
IpOffset LPLONG Initially, the caller must set OrgRole.
this to zero. Each block szBPName STRING The name of the BP for which the
transfer changes the value version number is requested
contained in this variable and IpiVersion LPINT Pointer to an integer which holds
the caller can only check the 15 the version number of BP
value returned here. This will IpError LPERRCODE Error code returned.
be negative if end is reached.
IpError LPERRCODE Error code returned.
Return Value
AWSDGETLASTMODIFIEDDATE
Return Value o Description
Number of bytes actually written. This function returns the last modified date of the Busi-
Error code is returned. ness Process specified.
AWSDBPADDROLEASSIGNMENT Syntax
Description VOID FAR PASCAL AWSDGETLASTMODIFIEDDATE
Sets the Organization Role to Identity mapping at the . (STRING szBPName, LPDATETIME pdtl astModified,
Business Process level. LPERRCODE IpError)
Syntax
void FAR PASCAL AWSDBPADDROLEASSIGNMENT
(IDEN l1lIdentity, IDEN 10rgRoleld, LPERRCODE
Parameters
IpError) 30 -
Name Type Description
szBPName STRING The name of the BP for which
the last modified date is
Parameters
—_— requested
L IpdtLastModified LPDATETIME The pointer to the DATETIME
Name Type Description 35 type which holds the last
IIdentity IDEN Organization Role id. modified date of the Business
10rgRoleld IDEN Identity Id to be mapped Process.
with OrgRole IpError LPERRCODE Error code returned.
IpError LPERRCODE Error code returned.
40 Return Value
Return Value AWSDSETBPNOTIFICATION
AWSDWFADDROLEASSIGNMENT Description : :
Descrioti The notification string for the event is set with respect to
eseription the current BP context
Sets the Organization Role to Identity mapping at the 45 Syntax '
workflow level. .
Syntax void FAR PASCAL AWSDSETBPNOTIFICATION
. EVENT NotificationEvent STRING
void FAR PASCAL AWSDWFADDROLEASSIGNMENT gZNotiﬁcationString [LPERRCODE lpE;ror)
(IDEN IIdentity, IDEN 10rgRoleld, WFROLE WFRole, ?
LPERRCODE IpError) .
Parameters
Parameters Name Type Description
Name Type Description 55 NotificationEvent EVENT This parameter notifies the
event
IIdentity IDEN Identity Id to be mapped szNotificationString STRING The notification string.
with OrgRole. IpError LPERRCODE Error code returned.
10rgRoleld IDEN Organization Role id.
WFRole WFROLE Workflow role of the Notification Events
identity. 60
IpError LPERRCODE Error code returned. Event Notification Type
Performer Response past due Follow-up
Return Value Performer Completion past due Follow-up
AWSDGETBPVERSION Performer Completion coming due Reminder
c Customer Response past due Follow-up
Description 65 Act taken Act

Get the current BP Version for the specified BP name. The
function returns the Business Process Version.

6,073,109

81

Return Value
AWSDSETWENOTIFICATION
Description

The notification string for the event is set with respect to
the current WF context.
Syntax
void FAR PASCAL AWSDSETWFNOTIFICATION

(EVENT NotificationEvent, STRING
szNotificationString, LPERRCODE IpError)
Parameters
Name Type Description
NotificationEvent EVENT This parameter notifies the

event

szNotificationString STRING The notification string.

IpError LPERRCODE Error code returned.
Notification Events

Event Notification Type
Performer Response past due Follow-up
Performer Completion past due Follow-up
Performer Completion coming due Reminder
Customer Response past due Follow-up
Act taken Act

Return Value
AWSDSETCOS
Description
This function specifies COS associated with a workflow
of a Business Process. The COS is inserted as a series of
memory blocks. This function requires the Business Process
context and workflow to be setup before execution.
Syntax
VOID FAR PASCAL AWSDSETCOS (LPMEM IpCOS,
LPINT lpiMemBlockSize, INT iPositionNotify, LPER-
RORCODE IpError)

Parameters
Name Type Description
IpCOS LPMEM Pointer to a memory chunk

which stores COS (BLOB).
Memory allocated for
storing COS in bytes.

This variable identifies

the first COS buffer,
subsequent COS buffers and
the last one. It should be
set to O to identify first
buffer, 1 to identify
subsequent buffers and to 2
to indicate last buffer;
Error code returned.

IpiMemBlockSize LPINT

iPositionNotify INT

IpError LPERRORCODE

Return Value
AWSDGETCOS
Description

The function gets the COS associated with the specified
workflow of a Business Process. The COS is returned as a
series of memory blocks. The memory block pointer and the
block size allocated is passed to this function and the number
of bytes actually written in the memory block is returned.
For the first call, the contents of the variable pOffset must be
set to zero (0). This indicates the start of the memory block
transfers. The caller will be notified with a negative value in
the Offset variable to indicate end of the block transfers.

10

15

20

25

30

35

40

45

50

55

60

65

82
Syntax
VOID FAR PASCAL AWSDGETCOS (STRING
szBPName, STRING szWFName, LPMEM IpCOS,
LPINT IpiMemBlockSize, LPLONG 1pOffset, LPER-
RORCODE IpError)

Parameters
Name Type Description
szBPName STRING Business Process Name
szWFName STRING Workflow Name
IpCOS LPMEM Pointer to a memory chunk which
stores COS (BLOB).
IpiMemBlock LPINT Memory allocated for storing COS
Size in bytes.
IpOffset LPLONG Initially, the caller must set
this to zero. Each block transfer
changes the value contained in
this variable and the caller can
only check the value returned
here. This will be negative if
end is reached.
IpError LPERRCODE Error code returned.

Return Value
Number of bytes actually written.
AWSDWFADDOBSROLE
Description
Sets the Observer Organization Role(s) at the workflow
level.
Syntax
VOID FAR PASCAL AWSDWFADDOBSROLE (IDEN
10rgRoleld, LPERRCODE IpError)

Parameters
Name Type Description
10rgRoleld IDEN Organization Role id.
IpError LPERRCODE Error code returned.
Return Value
AWSDWEFDELETEOBSROLE

Description
Deletes the Observer Organization Role(s) at the work-
flow level.
Syntax
VOID FAR PASCAL AWSDWFDELETEOBSROLE
(IDEN 10rgRoleld, LPERRCODE IpError)

Parameters
Name Type Description
10rgRoleld IDEN Organization Role id.
IpError LPERRCODE Error code returned.

Return Value
Names and Routings API
AWSNADDORGROLE
Description
Add a new Organization Role name to the server. This
name should be unique. The Organization Role Id is
returned.
Syntax
VOID FAR PASCAL AWSNADDORGROLE(STRING
szOrgRoleName, LPIDEN 1pOrgRoleld, IDEN

6,073,109

83
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Type Description

szOrgRoleName STRING The Organization Role name to
add to the server. The name
should be unique.

IpOrgRoleld LPIDEN The OrgRoleld is returned on

successful addition of
Organization role name to the
server.

Identity of the person adding
the name to the server. The
Identity must be authorized
to add names.

This is set to a non-zero
value on error

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

The Organization Role Id, OrgRoleld is returned by the
function.

AWSNINQUIREORGROLE
Description

Inquire if a specified Organization Role is present in the
server database. If present, the Organization Role Id is
returned.

Syntax

VOID FAR PASCAL AWSNINQUIREORGROLE
(STRING szOrgRoleName, LPIDEN IpOrgRoleld, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Description

Type
STRING

szOrgRoleName The Organization Role name
that needs to be searched.
If present, the Id
associated with the name is
returned.

The OrgRoleld is returned.
Identity of the person
inquiring the presence of
the name in the server
database. The Identity must
be authorized to Inquire.
This is set to a non-zero
value on error

IpOrgRoleld LPIDEN
lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

The Organization Role Id, OrgRoleld, is returned by the
function.

AWSNDELETEORGROLE
Description

Delete an Organization Role name from the server.
Syntax

VOID FAR PASCAL AWSNDELETEORGROLE(IDEN
10rgRoleld, IDEN 1Authorizeldentity, LPERRCODE
IpError)

10

15

20

25

30

40

45

50

55

60

84

Parameters

Name Description

Type

10rgRoleld ORGROLEID The Organization Role Id
that needs to be deleted
from the Sever database.
Identity of the person
removing the name from the
server database. The
Identity must be authorized
to delete names.

This is set to a non-zero

value on error

lAuthorizeldentity ~ IDEN

IpError LPERRCODE

Return Value
Organization Role deleted from the server database.
AWSNADDIDENTITY
Description
Add a new Identity to the server. The Identity name
should be unique. The Identity Id is returned. Along with the
name, Net Address, Postal Address, Phone, Fax,
Department, Title, Location and comments may be speci-
fied.
Syntax
VOID FAR PASCAL AWSNADDIDENTITY(STRING
szldentityName, STRING szNetAddress, STRING
szPostalAddress, STRING szphone, STRING szFax,
STRING szDent, STRING szTitle, STRING szLocation,
STRING szComment, BOOL bNotify, IDEN 1ISTFProcld,
LPIDEN Ipldentity, IDEN 1Authorizeldentity, LPER-
RCODE IpError)

Parameters

Name Type Description

szIdentityName STRING The name of the person to add
to the server database. The
name should be unique.

szNetAddress STRING The complete network address
of the Identity being added.

szPostalAddress STRING The Mailing address of the
Identity being added

szPhone STRING The Phone number of the
Identity being added.

szFax STRING The Fax number of the
Identity being added.

szDept STRING The Department name of the
Identity being added.

szTitle STRING The Official title
(designation) of the Identity
being added.

szLocation STRING The Location of the Identity.

szComment STRING Miscellaneous information
associated with the Identity.

bNotify BOOL Notify via STF Processor

ISTFProcessor IDEN The STF Processor to use

IpIdentity LPIDEN Identity Id is returned.

lAuthorizeldentity ~ IDEN Identity of the person adding
the name to the server. The
Identity must be authorized
to add names.

IpError LPERRCODE This is set to a non-zero

value on error

Return Value

The Identity Id of the person added is returned.
AWSNINQUIREIDENTITY
Description

Inquire if the specified Identity is present in the server
database. If present, the Identity Id is returned by the
function.

6,073,109

85
Syntax
VOID FAR PASCAL AWSNINQUIREIDENTITY
(STRING szldentityName, LPIDEN Ipldentity, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Type Description

STRING

szIdentityName The IdentityName that needs
to be searched. If present,
the Id associated with the
name is returned.

Identity Id is returned.
Identity of the person
inquiring the presence of the
name in the server database.
The Identity must be
authorized to inquire.

This is set to a non-zero
value on error

LPIDEN
IDEN

IpIdentity
1Authorizeldentity

IpError LPERRCODE

Return Value
The Identity Id, is returned by the function.
AWSNDELETEIDENTITY
Description
Delete an Identity name from the server database.
Syntax
VOID FAR PASCAL AWSNDELETEIDENTITY(IDEN
lldentityld, IDEN 1Authorizeldentity, LPERRCODE
IpError)

Parameters

Name Type Description

IDEN

IIdentityld The Identity Id that needs to
be deleted from the Sever
database.

Identity of the person
removing the name from the
server database. The Identity
must be authorized to delete
names.

This is set to a non-zero
value on error

lAuthorizeldentity ~ IDEN

IpError LPERRCODE

Return Value
lIdentity deleted from the server database.
AWSNADDGROUP
Description
Add a new Group to the server. The Group name should
be unique. The Group id is returned.
Syntax
VOID FAR PASCAL AWSNADDGROUP(STRING
szGroupName, LPIDEN 1pGroupld, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters
Name Type Description
szGroupName STRING The name of the Group to add
to the server database. The
name should be unique.
IpGroupld LPIDEN The group Id is returned.

10

15

20

25

30

35

40

45

50

55

60

65

86

-continued

Parameters

Name Description

Type
IDEN

1AuthorizeIdentity IIdentity of the person
adding the groups to the
server. The Identity must be
authorized to add groups.
This is set to a non-zero

value on error

IpError LPERRCODE

Return Value

The Group Id added is returned.
AWSNINQUIREGROUP
Description

Inquire if the specified Group is present in the server
database. If present, the Group Id is returned by the function.
Syntax
VOID FAR PASCAL AWSNINQUIREGROUP(STRING

szGroupName, LPIDEN 1pGroupld, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Description

Type
STRING

szGroupName The GroupName to search. If
present, the Id associated
with the name is returned.
The group Id is returned.
Identity of the person
inquiring the presence of the
Group name in the server
database. The Identity must
be authorized to inquire.
This is set to a non-zero
value on error

LPIDEN
IDEN

IpGroupld
1AuthorizeIdentity

IpError LPERRCODE

Return Value

The Group Id, is returned by the function.
AWSNDELETEGROUP
Description

Delete a Group from the server database.
Syntax

VOID FAR PASCAL AWSNDELETEGROUP(IDEN
1Groupld, IDEN IlAuthorizeldentity, LPERRCODE
IpError)

Parameters

Name Description

Type

1Groupld IDEN The Group Id that needs to be
deleted from the Sever
database

Identity of the person
removing the name from the
server database. The Identity
must be authorized to delete
names.

This is set to a non-zero

value on error

lAuthorizeldentity ~ IDEN

IpError LPERRCODE

6,073,109

87

Return Value
Group deleted from the server database.
AWSNADDGROUPASSIGNMENT
Description
Add an Identity to a Group. An Identity may be a member
of several groups. To each group the Identity has to be
assigned separately. The Identity inherits the rights a Group
has.
Syntax
VOID FAR PASCAL AWSNADDGROUPASSIGNMENT
(IDEN 1Groupld, IDEN 1GroupMemberld, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Type Description

IDEN

1Groupld The Group Id of the group,
the GroupMember wishes to be
a member of.

The Identity of the person
being assigned to the Group,
identified by Groupld.

The Identity of the person
assigning GroupMember to
Group. The person must have
the authority to make this
assignment.

This is set to a non-zero
value on error

1GroupMemberId IDEN

lAuthorizeldentity ~ IDEN

IpError LPERRCODE

Return Value
GroupMember added to Group.
AWSNINQUIREGROUPASSIGNMENT

Description
Verity if an identity is a member of a group.

Syntax

BOOL FAR PASCAL
AWSNINQUIREGROUPASSIGNMENT(IDEN
1Groupld, IDEN 1GroupMember, IDEN

1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Type Description

1Groupld IDEN The Groupld of the group to
verify if GroupMember a
member of.

The Identity of the person
being verified if member of
the group, identified by
Groupld.

The Identity of the person
inquiring. The person must
have the authority to
inquire.

This is set to a non-zero
value on error

1GroupMember IDEN

IDEN

1Authorizeldentity

IpError LPERRCODE

Return Value
The function returns TRUE if the Identity is a member of
the group.
AWSNDELETEGROUPASSIGNMENT
Description
Remove an identity from the membership of a group. The
identity ceases to be a member of the specified group.
Syntax
VOID FAR PASCAL
AWSNDELETEGROUPASSIGNMENT(IDEN

10

15

20

25

30

35

40

45

55

60

65

88

1Groupld, IDEN 1GroupMemberld,
1Authorizeldentity, LPERRCODE IpError)

IDEN

Parameters
Name Type Description
1Groupld IDEN The Groupld of the group from
which to remove GroupMember.
1GroupMemberId IDEN The Identity of the person
being removed from the Group,
identified by Groupld.
lAuthorizeldentity ~ IDEN The Identity of the person
deleting. The person must
have the authority to delete.
IpError LPERRCODE This is set to a non-zero

value on error

Return Value
The Identity is removed from the group.

AWSNGETGROUPLIST

Description
Determine the list of groups an Identity is a member of.

This function returns a list and a count.

Syntax

VOID FAR PASCAL AWSNGETGROUPLIST(IDEN
1GroupMemberld, LPINT 1piCount, BOOL
bFileOrMemory, LPGENERALINFO IpGroupInfoArray,
STRING szFileName, IDEN 1Authorizeldentity, LPER-
RCODE IpError)

Parameters

Name Description

Type

IGroupMemberld IDEN The Identity of the person
being assigned to the Group,

identified by Groupld.

IpiCount LPINT Pointer to a counter. The
number of groups GroupMember
is a member of. This value is
returned.

bFileOrMemory ~ BOOL Flag to indicate File or

Memory mode of receipt of
data from the APL

The list of groups
GroupMember is a member of.
For each group, the Group Id
and Group Name are returned.
A pointer to an array of

Group Ids and Group Names is
returned

File name where the API
should deposit the results of
the call if the flag
bFileorMemory is ITS__FILE.
The Identity of the person
Inquiring. The person must
have the authority to

Inquire.

This is set to a non-zero

value on error

IpGroupInfoArray LPGENERALINFO

STRING

szFileName

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

The count of groups and a list of Groupld and Group-
Name returned.
AWSNGETGROUPMEMBERS
Description

Get the list of all members in a group. The Identity of each
member in a group is returned. The IdentityName is also
returned.

6,073,109

89
Syntax
void FAR PASCAL AWSNGETGROUPMEMBERS(IDEN
1Groupld, LPINT 1piCount, BOOL bFileOrMemory,
LPGENERALINFO IpMemberlnfoArray, STRING
szFileName, IDEN 1Authorizeldentity, LPERRCODE
IpError)

Parameters

Name Type Description

IDEN

1Groupld The Groupld of the group
from which to retrieve
list of members.

Pointer to nCount, the
number of members in the
Group.

Flag to indicate File or
Memory mode of receipt
of data from the APIL.

A list of members in the
group is returned. The
list contains the
Identityld and
IdentityName of each
member.
IpGeneralInfoArray is a
pointer to an array.

File name where the API
should deposit the
results of the call if

the flag bFileOrMemory
is ITS_FILE.

The Identity of the
person inquiring. The
person must have the
authority to inquire.

This is set to a non-
zero value on error

IpiCount LPINT

bFileOrMemory BOOL

IpGenerallnfoArray LPGENERALINFO

szFileName STRING

1Authorizeldentity IDEN

IpError LPERRCODE

Return Value
List of members returned.
AWSNADDROLEASSIGNMENT
Description
Assign an Identity or a Group to an Organization Role.
The Identity or all members of the group are assigned the
specific Organization Role. Follow-up flags to enable/
disable Reminders and Follow-up messages may be speci-
fied here. If an assignment is already present then the new
Follow-up flags are assigned.
Syntax
VOID FAR PASCAL AWSNADDROLEASSIGNMENT
(BOOL bGroupOrldentity, IDEN 1Assigneeld, IDEN
10rgRoleld, IDEN 1Authorizeldentity, LPERRCODE
IpError)

Parameters

Name Type Description

bGroupOrldentity BOOL Flag to indicate if Assignee

is an identity or a Group. If
GroupOrldentity is TRUE, then
Assignee contains a Groupld,
otherwise it is an Identity.
The id of the Identity or
Group being assigned the
Organization Role. If a Group
is being assigned, then all
members of the group inherit
the Role

1Assignee IDEN/IDEN

10

15

20

25

30

35

40

45

50

55

60

90

-continued
Parameters
Name Type Description
10rgRoleld ORGROLEID The Organization Role the

Identity or Group will be
assigned.

The Identity of the person
assigning role. The person
must have the authority to
make this assignment.
This is set to a non-zero
value on error

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

Identity/Group assigned Organization Role.
AWSNINQUIREROLEASSIGNMENT
Description

Verify if a specific Identity is associated with an Organi-
zation Role. The function returns a flag. The Identity is first
checked if it is associated with the Organization Role. If no
association is found, then a check is made if an association
exists with any of the groups Identity is a member of.
Syntax
BOOL FAR PASCAL

AWSNINQUIREROLEASSIGNMENTEXTENDED

(BOOL bGroupO rldentity, IDEN 1Assignee, IDEN

10rgRoleld, IDEN 1Authorizeldentity, LPERRCODE

IpError)

Parameters

Name Description

Type

bGroupOrldentity BOOL Flag to indicate if Assignee

is an identity or a Group. If
GroupOrldentity is TRUE, then
Assignee contains a Groupld,

otherwise it is an Identity.

1Assignee IDEN The id of the Identity being
inquired.
10rgRoleld IDEN The Organization Role being

verified for the Assignee.
The Identity of the person
inquiring the association.
The person must have the
authority to inquire.

This is set to a non-zero
value on error

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

The function returns a TRUE if the association is present,
FALSE otherwise. If the association exists then the Follow-
up flags are also returned.

AWSNDELETEROLEASSIGNMENT
Description

Disassociate an Identity or Group from a specific Orga-
nization Role. The Identity or all members of the group
cease to be associated with the Organization Role.

Syntax
VOID FAR PASCAL

AWSNDELETEROLEASSIGNMENT(BOOL

bGroupOrldentity, IDEN 1Assignee, IDEN

1Authorizeldentity, LPERRCODE IpError)

6,073,109

91

Parameters

Name Type Description

bGroupOrldentity BOOL Flag to indicate if Assignee
is an Identity or a Group. If
GroupOrldentity is TRUE, then
Assignee contains a Groupld,
otherwise it is an Identity.
The id of the Identity or
Group being disassociated.
The Identity of the person
deleting the association. The
person must have the
authority to delete.

1Assignee IDEN

lAuthorizeldentity IDEN

IpError LPERRCODE This is set to a non-zero
value on error

Return Value

AWSNGETROLELIST

Description
Determine the list of Roles that are assigned to a specific

Identity or Group. This function returns a list of Organiza-

tion Roles and a count.

Syntax

VOID FAR PASCAL AWSNGETROLELIST(BOOL
bGroupOrldentity, IDEN I1Assignee, LPINT IpiCount,
BOOL bFileOrMemory, LPGENERALINFO
IpOrgRolelnfoArray, STRING szFileName, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Type Description

BOOL

bGroupOrldentity Flag to indicate if
Assignee is a Identity or

a Group. If
GroupOrldentity is TRUE,
then Assignee contains a
Groupld, otherwise it is
The id of the Identity or
Group being inquired.
Pointer to a counter. The
number of Organization
Roles an Identity/Group is
assigned.

Flag to indicate File or
Memory mode of receipt of
data from the APL

The list of Organization
Roles Assignee is assigned
to. For each Role, the
OrgRole, Follow-up flags
and the description are
returned. A pointer to a
list of OrgRoles and
description is returned.
File name where the API
should deposit the results
of the call if the flag
bFileOrMemory is
ITS_FILE.

The Identity of the person
Inquiring. The person must
have the authority to
Inquire.

This is set to a non-zero
value on error

1Assignee IDEN

IpiCount LPINT

bFileOrMemory BOOL

IpOrgRolelnfoArray LPGENERALINFO

szFileName STRING

lAuthorizeldentity ~ IDEN

IpError LPERRCODE

Return Value
List and Count returned.
AWSNGETIDENASSIGNEELIST

10

15

20

25

30

35

40

45

50

55

65

92

Description
Determine the list of Identities that are assigned to a

specific Organization Role. This function returns a list of

Identities and their names.

Syntax

VOID FAR PASCAL AWSNGETIDENASSIGNEELIST
(IDEN 10rgRoleld, LPINT IpiCount, BOOL
bFileOrMemory, LPASSIGNEE IpldenlnfoArray,
STRING szFileName, IDEN 1Authorizeldentity, LPER-
RCODE IpError)

Parameters

Name Description

Type
IDEN

10rgRoleld The Organization Role for
which list of Assignees is
being returned.

Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the
Organization Role OrgRole
Flag to indicate File or
Memory mode of receipt of
data from the APL

List of identities who are
associated with a specific
organization role. The
bNotify flag associated with
the Identity is also

returned. A pointer to a list
is returned.

File name where the API
should deposit the results of
the call if the flag
bFileOrMemory is ITS_FILE.
The Identity of the person
requesting the list. The
person must have the
authority to inquire.

This is set to a non-zero
value on error

IpiCountPtr LPINT

bFileOrMemory ~ BOOL

IpIdenInfoArray ~ LPASSIGNEE

szFileName STRING

IDEN

1AuthorizeIdentity

IpError LPERRCODE

Return Value

List and Count returned.
AWSNGETGROUPASSIGNEELIST
Description

Determine the list of Identities and Groups that are
assigned to a specific Organization Role. This function
returns a list of Identities and Group and their names.
Syntax
VOID FAR PASCAL AWSNGETGROUPASSIGNEELIST

(IDEN 10rgRoleld, LPINT IpiCount, BOOL
bFileOrMemory, LPGENERALINFO IpGroupInfoArray,
STRING szFileName, IDEN 1Authorizeldentity, LPER-
RCODE IpError)
Parameters
Name Type Description
10rgRoleld ORGROLEID The Organization Role for
which list of Assignees
is being returned.
IpiCountPtr LPINT Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the

Organization Role OrgRole

6,073,109

-continued
Parameters Parameters
Name Type Description 5 Name Type Description
bFileOrMemory = BOOL Flag to indicate File or ISTFProcld IDEN The STF Processor Id.
Memory mode of receipt of szSTFProcName STRING The name of the STF Processor
data from the APL is returned.
IpGroupInfoArray LPGENERALINFO List of groups who are szNetAddress STRING The network address of the
associated with a 10 location of the STF Processor

specific organization
role. A pointer to a list
is returned.

File name where the API
should deposit the
results of the call if

the flag bFileOrMemory is
ITS_FILE.

The Identity of the
person requesting the
list. The person must
have the authority to
inquire.

This is set to a non-zero
value on error

STRING

szFileName

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value
List and Count returned.

AWSNCREATESTFDEFN

Description
Create an entry in the STF Processor table. The processor

name and the network address is maintained. The STF

Processor 1d is returned.

Syntax

VOID FAR PASCAL AWSNCREATESTFDEFN(STRING
szSTFProcName, STRING szNetAddress, LPIDEN
IpSTFProcld, IDEN 1Authorizeldentity, LPERRCODE
IpError)

Parameters

Name Type Description

szSTFProcName STRING The name of the STF
Processor.

The network address of the
location of the STF
Processor. The processor must
exist for this call to return
successfully.

The STFProc Id is returned.
The Identity of the person
Creating the STF definition.
The identity must be
authorized to create STF
definition.

This is set to a non-zero
value on error

szNetAddress STRING

IpSTFProcld LPIDEN
lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value
STFProcessorld returned.

AWSNGETSTFDEFN

Description
Get the STF definition from the STF Processor table for

a specific STF Processor Id. The processor name and the

network address are returned.

Syntax

VOID FAR PASCAL AWSNGETSTFDEFN(IDEN
ISTFProcld, STRING szSTFProcName, STRING
szNetAddress, IDEN 1Authorizeldentity, LPERRCODE
IpError)

15

20

25

30

35

40

45

50

55

60

65

is returned.

The Identity of the person
inquiring the STF definition.
The identity must be
authorized to inquire.

This is set to a non-zero
value on error

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value
STFProcessor name and net address returned.
AWSNDELETESTFDEFN
Description
Delete the STF definition from the STF Processor table
for a specific STF Processor Id.
Syntax
VOID FAR PASCAL AWSNDELETESTFDEFN(IDEN
STFProcld, IDEN 1Authorizeldentity, LPERRCODE
IpError)

Parameters

Name Description

Type

The STF Processor Id.

The Identity of the person
deleting the STF definition.
The identity must be
authorized to delete.

This is set to a non-zero
value on error

STFProcld IDEN
lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value
STFProcessor name and net address returned.
AWSNGETNUMGROUPLIST
Description
Determine the number of groups an Identity is a member
of. This function returns a count.
Syntax
VOID FAR PASCAL AWSNGETNUMGROUPLIST(IDEN
1GroupMemberld, LPINT 1piCount, BOOL
bFileOrMemory, LPGENERALINFO IpGroupInfoArray,
IDEN lAuthorizeldentity, LPERRCODE IpError)

Parameters

Name Description

Type

IGroupMemberld IDEN The Identity of the person
being assigned to the
Group, identified by
Groupld.

Pointer to a counter. The
number of groups
GroupMember is a member
of. This value is

returned.

Flag to indicate File or
Memory mode of receipt of

IpiCount LPINT

bFileOrMemory ~ BOOL

6,073,109

-continued -continued
Parameters Parameters

Name Type Description 5 Name Type Description

data from the APIL GroupOrldentity is TRUE, then
IpGroupInfoArray LPGENERALINFO The list of groups Assignee contains a Groupld,

GroupMember is a member otherwise it is

of. For each group, the 1Assignee IDEN The id of the Identity or

Group Id and Group Name 10 Group being inquired.

are returned. A pointer to IpiCount LPINT Pointer to a counter. The

STRING

szFileName

lAuthorizeldentity IDEN

IpError LPERRCODE

an array of Group Ids and
Group Names is returned

File name where the API

should deposit the results

of the call if the flag

15

bFileOrMemory is ITS_FILE.

The Identity of the person
Inquiring. The person must
have the authority to
Inquire.

This is set to a non-zero
value on error

20

Return Value

The count of groups is returned.
AWSNGETNUMGROUPMEMBERS

25
Description
Get the number of all members in a group.
Syntax
void FAR PASCAL AWSNGETNUMGROUPMEMBERS
(IDEN 1Groupld, LPINT 1piCount, IDEN 30
1Authorizeldentity, LPERRCODE IpError)
Parameters 35
Name Type Description
1Groupld IDEN The Groupld of the group
from which to retrieve
list of members.
IpiCount LPINT Pointer to nCount, the 40

lAuthorizeldentity IDEN

number of members in the
Group.
The Identity of the person

inquiring. The person must
have the authority to
inquire.

This is set to a non-zero
value on error

IpError LPERRCODE

Return Value
Number of members returned.
AWSNGETNUMROLELIST
Description
Determine the number of Roles that are assigned to a
specific Identity or Group.
Syntax
VOID FAR PASCAL AWSNGETNUMROLELIST(BOOL
bGroupOrldentity, IDEN I1Assignee, LPINT IpiCount,
IDEN 1Authorizeldentity, LPERRCODE IpError)

45

50

55

number of Organization Roles
an Identity/Group is

assigned.

The Identity of the person
Inquiring. The person must
have the authority to

Inquire.

This is set to a non-zero
value on error

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

AWSNGETNUMIDENASSIGNEELIST

Description
Determine the number of Identities that are assigned to a

specific Organization Role.

Syntax

VOID FAR PASCAL AWSNGETIDENASSIGNEELIST
(IDEN 10rgRoleld, LPINT IpiCount, IDEN
1Authorizeldentity, LPERRCODE IpError)

Parameters

Name Description

Type

10rgRoleld IDEN The Organization Role for
which list of Assignees is
being returned.

Pointer to a counter. The
number of Assignees
(Identities or Groups)
associated with the
Organization Role OrgRole
The Identity of the person
requesting the list. The
person must have the
authority to inquire.

This is set to a non-zero
value on error

IpiCountPtr LPINT

lAuthorizeldentity IDEN

IpError LPERRCODE

Return Value

AWSNGETNUMGROUPASSIGNEELIST

Description
Determine the list of Identities and Groups that are

assigned to a specific Organization Role. This function

returns a list of Identities and Group and their names.

Syntax

VOID FAR PASCAL
AWSNGETNUMGROUPASSIGNEELIST(IDEN
10rgRoleld, LPINT IpiCount, IDEN 1Authorizeldentity,
LPERRCODE IpError)

60
Parameters Parameters
Name Type Description Name Type Description
bGroupOrldentity BOOL Flag to indicate if Assignee 65 10rgRoleld ORGROLEID The Organization Role for

is a Identity or a Group. It

which list of Assignees is

6,073,109

-continued
Parameters Parameters
Name Type Description 5 Name Type Description
being returned. szBPName STRING Business Process Name. The
IpiCountPtr LPINT Pointer to a counter. The business process for which
number of Assignees schedule information is
(Identities or Groups) returned.
associated with the 10 lAuthorizeldentity IDEN Identity of the person
Organization Role OrgRole requesting scheduler
lAuthorizeldentity IDEN The Identity of the person information.
requesting the list. The IpError LPERRCODE This is set to a non-zero
person must have the value on error
authority to inquire.
IpError LPERRCODE This is set to a non-zero 15
value on error Return Value
Schedule information, initiation time and recurring period
returned.
Return Value
AWSSDELETEBPSCHEDULE
Schedule API Description
The following is a description of the functions performed 20
. . The schedule information associated with a business
by the components of the Schedule API for implementation . o
process is removed. However, currently active instances of
of the Schedule API. . .
the business process remain unaffected.
AWSSPUTBPSCHEDULE Syntax
Description]]]]] 25 VOID FAR PASCAL AWSSDELETEBPSCHEDULE
The s.cheduk: .mformatlon assoc1.ated with a bu51.ness (STRING szBPName, IDEN lAuthorizeldentity, LPER-
process is stored in the server. The time when the business RCODE IpError)
process needs to be initiated and recurrence information are
stored.
Syntax 30
VOID FAR PASCAL AWSSPUTBPSCHEDULE(STRING Parameters
szBPNamp, DATETIMET unitTin}e, DATETIMET Name Type Deseription
IRecurPeriod, IDEN 1Authorizeldentity, LPERRCODE
lpEI‘I‘OI‘) szBPName STRING Business Process Name.
The business process for
35 which schedule
information has to be
deleted.
Parameters lAuthorizeldentity IDEN Identity of the person
deleting scheduler
Name Type Description information
40 lpError LPERRCODE This is set to a non-zero
szBPName STRING Business Process name. The value on error
business process for which
schedule information needs to
o be attached. Return Value
InitTime DATETIMET ghe. first time wh.en the Schedule information deleted.
usiness process is 45 . N
initiated. If this is not Server Administration API
specified, then the business The following details the methods of workflow server
fﬁocsesfl 1; Ilm initiated by manager (WSM) classes, which are also the internal APIs
€ >cheauler. . . .
IRecurPeriod DATETIMET If specified, the business that are used to achieve the functionality of the workflow
process is initiated at every 5 SErver manager.
RecPeriod interval. 0 AWS StartServer
lAuthorizeldentity IDENTITY SZ:EIZ Socfhgéilf; jrf;’;uest This call starts the workflow server reading the configu-
IpError LPERRCODE This is set to a non-zero ration information from a parameter file. The server can be
value on error shutdown by issuing AWSStopServer call. The API estab-
<5 lishes a session of the workflow server with the underlying
database server and starts the workflow server operations.
Return Value
Schedule information stored in th Syntax
chedule information stored in the server. void FAR PASCAL AWSStartServer
AWSSGETBPSCHEDULE Parameters
Description o None.
The schedule information associated with a business Return Value
process is returned. The initiation time and recurrence Success—AWSError=0
information are returned. Failure— AWSError<>0
Syntax AWSStopServer
VOID FAR PASCAL AWSSGETBPSCHEDULE(STRING 65 This call stops the workflow server operations. The trans-

szBPName, IDEN lAuthorizeldentity, LPERRCODE
IpError)

action manager No requests from client applications are
processed after this call is made.

6,073,109

99

Syntax

void FAR PASCAL AWSStopServer

Parameters
None.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSGrant

This call grants the specified privileges to the user by
creating an authorization record for the user, object and the
action in the privileges table. The granted privileges can be
revoked by calling AWSRevoke function.

Syntax

void FAR PASCAL AWSGrant(IDENUserld, eObject,
eAction)

Parameters
Name Type Description
IDENUserld IDENTITY Id of the user who is being
granted with the privilege.
eObject OBJECT Object on which privilege is
being granted.
eAction ACTION Action for which the

privileges are being granted.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSRevoke

This call revokes the privileges granted to the user with a
previous call to AWSGrant by deleting the record for user,
object, and action form authorization table.

Syntax

void FAR PASCAL AWSRevokePrivilege(IDENUserName,
eObject, eAction)

Parameters
Name Type Description
IDENUserName IDENTITY Id of the user whose
privilege is being revoked.
eObject OBJECT Object on which privilege is
being revoked.
eAction ACTION Action for which the

privileges are being revoked.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSAbortBP

This call marks specified business process instance in
transaction database as aborted by changing the status of BP
Transaction instance class (TxBPInstance).

Syntax
void FAR PASCAL AWSAbortBP(1pszBPTId)

10

15

20

25

30

35

40

45

50

55

60

65

Parameters
Name Type Description
IpszBPTId STRING Instance of the Business

Process that has to be
aborted.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSDelete BP

This call deletes specified business process instance from
transaction database.

Syntax
void FAR PASCAL AWSDeleteBP(1pszBPTId)

Parameters
Name Type Description
IpszBPTId STRING Instance of the Business

Process that has to be
deleted from Transaction
database.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSSuspendBP

This call suspends the execution of specified business
process instance by changing the status of BP transaction
instance class (TxBPInstance). No transactions can take
place on the business process till it is restarted again by a call
to AWSRestartBP.

Syntax
void FAR PASCAL AWSSuspendBP(lpszBPTId)

Parameters
Name Type Description
IpszBPTId STRING Instance of the Business

Process that has to be
suspended.

Return Value
Success—AWSError=0

Failure—AWSError<>0

AWSResumeBP

This call restarts specified business process instance in
transaction database, suspended previously by a call to
AWSSuspendBP.

Syntax
void FAR PASCAL AWSResumeBP(1pszBPTId)

6,073,109

Parameters
Name Type Description
IpszBPTId STRING Instance of the Business

Process that has to be
restarted.

Return Value
Success—AWSError=0
Failure—AWSError<>0
AWSArchive BP
This call archives a business process or all completed
business processes on the specified media. The archived
business processes are deleted from the database. This
function will in turn use AWSBackup function for backing
up the data on a different media.
Syntax
void FAR PASCAL AWSArchiveBP(lpszBPName,
eArchiveMedia, ArchiveTime, ArchiveDate)
Parameters
None.

Name Type Description

STRING

The Business Process name.
This name should be unique.
If a business process with
the same name is present, the
current definition is over
written as a new version.
There should be no active
instances of the current
definition for this to occur.
The media to which the
business process is to be
archived.

The date on which archiving
is done.

The time on which archiving
is done.

IpszBPName

eArchiveMedia ENUM

ArchiveDate TIME

AcrhiveTime TIME

Return Value

Success—AWSError=0

Failure—AWSError<>0
AWSListAvailBPs

This call lists all the business processes by running
through the definitions database to find out all instances of
BP definition class (DfBP).
Syntax
void FAR PASCAL AWSListAvailBPs
Parameters

None.
Return Value

Success AWSError=0

Failure—AWSError<>0
AWSListActiveBPs

This call lists all the active business processes by running
through the transactions database and finding out all
instances of TxBPInstances that have status as ‘Active’.
Syntax
void FAR PASCAL AWSListActive BPs
Parameters

None.
Return Value

Success—AWSError=0

Failure—AWSError<>0

10

15

20

25

30

35

40

45

50

55

60

65

102
AWSDelete BPDefinition

This call deletes the definition of specified business
process from the definitions database by using VDB method
Delete BP of class DfBP.

Syntax

void FAR PASCAL AWSDeleteBPDefinition(lpszBPDId)

Parameters
Name Type Description
IpszBPDId STRING Id of the Business Process

that has to be deleted from
definitions database.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSListActiveWF

This call lists all active workflows in the specified busi-
ness process by using VDB method ListBP of class TxB-
Plnstance.

Syntax

void FAR PASCAL AWSListActiveWF(lpszBPName)

Parameters
Name Type Description
IpszBPName STRING Name of the Business Process

whose active workflows are to
be listed.

Return Value
Success—AWSError=0
Failure—AWSError<>0

AWSRegister

This call registers the new STF Processor name in the
Names and Routing database by using VDB method Creat-
eSTFDefn.

Syntax

void FAR PASCAL AWSRegister(lpszSTFProcessorName)

Parameters
Name Type Description
IpszSTFProcessorName STRING The STF Processor name.

Return Value
Success—AWSError=0
Failure—AWSError<>0
AWSDeregister
This call deregisters an STF Processor name from the
server Names and Routing database, previously registered
by AWSRegister call.
Syntax
void FAR PASCAL
(IpszSTFProcessorName)

AWSDeregister

6,073,109

103 104

Failure—AWSError<>0
AWSGetConfiguration
This call reads the configuration information from the

LParameters parameter file, earlier written by calling AWSSetConfiglnfo.
Name Type Description 5 Syptax . .
void FAR PASCAL AWSGetConfiguration(iMaxBPCount,
IpszSTFProcessorName STRING The STF Processor name. lpszVersion, lpszLogFileName, lpszLogFilePath)
Return Value
Success—AWSError=0 10
Failure—AWSError<>0 ZParameters
AWSCheck . Name Type Description
This call checks a particular workflow server database for
consistency and integrity. The API will in turn use appro- iMaxBPCount INT Maximum number of active
priate database APIs to provide the functionality. 15 business processes on the
Syntax IpszVersion STRING i:r\;?cr;n number.
void FAR PASCAL AWSCheck IpszLogFileName STRING Transaction log file name.
Parameters IpszLogFilePath STRING Path where transaction log
None. file will be written.
Return Value 20
Success—AWSError=0 Return Value
Failure—AWSError<>0 Success—AWSError=0
AWSIndex Failure—AWSError<>0
This call reindexes a particular workflow server database. AWSWriteToLog
The API will in turn use appropriate database APIs to 25 This call causes transaction information to be written to
achieve the functionality. the workflow server log file.
Syntax Syntax
void FAR PASCAL AWSIndex void FAR PASCAL AWSWriteToLog(IpszTransInfo)
Parameters
None. 30
Return Value
Success—AWSError=0 Larameters
Failure—AWSError<>0 Name Type Description
AWSReorganize
This call reorganizes a particular workflow server 35 IpszTransinfo STRING ~ Transaction information to be
database, to permanently remove the records marked for written (o log.
deletion. The API will in turn use appropriate database APIs
to achieve the functionality. Return Value
Syntax Success—AWSError=0
void FAR PASCAL AWSReorganize 40 Failure—AWSError<>0
Parameters Reporter API
None. Get all the BP Names
Return Value Input Parameters:
Success—AWSError=0 None
Failure—AWSError<>0 45 Output Parameters:
AWSSetConfiguration Array of BP Names and their versions existing in the
This call updates the configuration information in the database
parameter file. The information can later be retrieved by Get BP information using BP name
making a call to AWSGetConfiguration. Input Parameters:
Syntax 50 BP Name
void FAR PASCAL AWSSetConfiglnfo(iMaxBPCount, BP Version
pszVersion, IpszLogFileName, IpszLogFilePath) Output Parameters:
BP Owner
BP Administrator
55 Primary Workflow Name
LParameters Projected cycle time

Get BP Instance ids of a BP

Input Parameters:

iMaxBPCount INT Maximum number of active BP name
business processes on the
server.

Name Type Description

60 Output Parameters:

IpszVersion STRING Version number. Array of BP instance ids.
IpszLogFileName STRING Transaction log file name. Get Workflow Names of a BP
IpszLogFilePath STRING Path where transaction log Input Parameters:
file will be written.
BP name
65 Output Parameters:
Return Value List of workflow names

Success—AWSError=0 Get BP Instance data

6,073,109

105

Input Parameters:
BP instance id
Output Parameters:
BP instance status
BP name
Primary workflow instance id
List of workflow instance ids.
Get Workflow Instance Ids of a Workflow
Input Parameters:
Workflow name
Output Parameters:
List of workflow instance ids along with its BP instance
ids.
Get Workflow Definitional Data
Input Parameters:
BP name
Workflow name
Output Parameters:
Workflow computed cycle time
Workflow type
Customer’s organization role
Performer’s organization role
Observers’ organization roles
Customer’s default identity
Performer’s default identity
Observers’ default identities
timel (Customer request cycle time)
time2 (Performer response cycle time)
time3 (Performer completion cycle time)
time4 (Customer declare satisfaction cycle time)
Conditions of satisfaction
Get Workflow Instance Data
Input Parameters:
BP instance id.
Workflow instance id.
Output Parameters:
The current workflow state
Workflow name
Customer identity
Performer identity
Observer identities
Workflow starting time
User specified completion time
Workflow actual completion time
User specified cycle time of phasel
User specified cycle time of phase2
User specified cycle time of phase3
User specified cycle time of phase4
Actual cycle time of phasel
Actual cycle time of phase2
Actual cycle time of phase3
Actual cycle time of phase4
Get Workflow Summary Historical Data
Input Parameters:
BP name
Workflow name
Output Parameters:
Average completion time of a workflow
Best completion time of a workflow
Worst completion time of a workflow
Average cycle time for the customer request of a work-
flow
Best cycle time for the customer request of a workflow
Worst cycle time for the customer request of a workflow
Average cycle time for the performer response of a
workflow
Best cycle time for the performer response of a workflow

10

15

20

25

30

35

40

45

50

55

60

65

106

Worst cycle time for the performer response of a work-
flow

Average cycle time for the performer completion of a
workflow

Best cycle time for the performer completion of a work-
flow

Worst cycle time for the performer completion of a
workflow

Average cycle time for the customer declare-satisfaction
of a workflow

Best cycle time for the customer declare-satisfaction of a
workflow

Worst cycle time for the customer declare-satisfaction of
the workflow

Total number of instances of a workflow

Number of workflow instances which were delayed

Average delay of delayed workflow instances

Maximum delay of the workflow

Number of workflow instances which were canceled

Number of workflow instances which were revoked

Number of workflow instances which were declined

Number of workflow instances with customer request
phase delayed

Average delay in customer request phase

Maximum delay in customer request phase

Number of workflow instances with performer response

phase delayed

Average delay in performer response phase
Maximum delay in performer response phase
Number of workflow instances with performer comple-
tion phase delayed
Average delay in performer completion phase
Maximum delay in performer completion phase
Number of workflow instances with customer declare-
satisfaction phase delayed
Average delay in customer declare-satisfaction phase
Maximum delay in customer declare-satisfaction phase
Get Acts Taken in a Workflow instance
Input Parameters:
BP instance id
Workflow instance id
Output Parameters:
The following details of acts taken:
Act Taken
Identity who took the act
When the act was registered
Complete by time of the act
Respond by time of the act
When the act was performed

Get BP Names of a BP Collection
Input Parameters:

Selection criteria based on (refer BP Collection query
dialog box in section 6.3.1):

BP Name
Customer, performer and observer organizational roles
Customer, performer and observer default identities
Check primary/all workflow(s) flag
Include all/latest version(s) flag
Output Parameters:
The following details of selected BPs:
BP Name
BP Version
BP Owner
BP Administrator

6,073,109

107

Primary Workflow Name

Get BP Instance ids of a BP
Input Parameters:

BP name

Selection criteria based on (refer BP Instance Selection
dialog box in section 6.3.5):

From and To Dates

Customer, performer, observer identities

Check primary/all workflow(s) flag

Include exceptions(Delay/Cancel/Revoke/Decline/

Normal) flag
Output Parameters:

Array of BP instance ids.

C. WORKFLOW SERVER MANAGER (WSM)

The following is a description of the workflow server
manager (WSM) component of the workflow system. The
WSM uses the workflow APIs to implement the functions
and services it provides to users. The WSM is a component
of the workflow system that provides a user interface for
specific services of the workflow server such as:

Server Management

Authorization Maintenance

Business Process Maintenance

Workflow Maintenance

STF Processor Maintenance

Configuration

Transaction Log Maintenance

Business Process Scheduling and Organizational Calen-

dar

Through the use of the WSM, a user selects the scheduling
function which provides the user interface to specify the
recurrent scheduling of business processes as well as the
specification of the organizational calendar as specified by
the schedule manager.

Workflow Server Manager classes

The following is a description of the WSM classes with
their attributes and methods.
Server Management
Server

This class handles server management activities, such as
server startup, shutdown, etc. Startup establishes a workflow
server session with the underlying database server and starts
up transaction manager activities.

Attributes

IpszServerID string

Methods

AWSStartServer The method starts the
server operations by
opening a session with
the underlying database
server and starts
Transaction Manager
operations.

AWSStopServer The method notifies all

active users about the
shutdown, disconnects
from database server,
and shuts down the
Transaction Manager
operations.

10

20

25

30

35

40

50

55

60

65

Authorization Maintenance
Object
This class provides methods to create objects.
Attributes
Objectld ref(BP) or ref(WF)
eObjectType objecttype
Enumerations of Objects are
Business Processes
Workflows
Authorization
This class provides methods to grant/revoke authorities to

users to act on objects.

Attributes
IDENUser ref (NRDFIdentity)
Objectld ref(Object)
eAction actions
Enumerations for Actions
are
Create
Delete
Modify
Instantiate
View
bGrantOption bool
Methods
AWSGrant The method grants

authority to a user to
make the specified act on
the specified object.
AWSRevoke The method revokes a
previously granted
authority form the user.
AWSInquire The method is used to
inquire whether user has
authority to make
specified act on the
specified object.

Business Process Maintenance
BPMaint

This class provides methods to maintain business pro-
cesses in definitions and transactions databases. It provides
methods for archiving all completed business processes.

Methods
AWSAbortBP The method aborts a BP
instance.
AWSDeleteBP The method deletes the

specified BP instance
from the transaction
database.

AWSSuspendBP The method suspends the
operations of a BP
instance temporarily.

AWSResumeBP The method resumes a BP
instance previously
suspended.

AWSArchiveBP The method archives a BP
instance or all completed
BPs.

AWSListAvailBPs The method lists all BPs
available in definitions
database.

6,073,109

109 110
-continued -continued
Methods IpszLogFileName string
IpszLogFilePath string
AWSListActiveBPs The method lists all BPs 5 Methods
active in transactions
database. AWSSetConfiguration The method set the
AWSDeleteBPDefinition The method deletes a BP configuration parameters
definition from to specified value.
definitions database. AWSGetConfiguration The method retrieves
10 configuration parameters

from the file.
Workflow Maintenance

WFMaint
This class handles housekeeping of workflows in a busi-
0ess process.

Transaction Log Maintenance
TransLog

15 This class provides methods to maintain transaction log.
The workflow processor uses this method to write all
changes in the workflow status to the log.

Methods
AWSListActiveWF The method lists all 20
active workflows for a Methods
BP instance.
AWSWriteToLog The method writes the
specified string to the
STF Processor Maintenance transaction log.
STFProcessor 25
This class handles registration and deregistration of STF We claim:
Processors in Names and Routing database. 1. A computer system for managing a plurality of business

processes, each business process having a business process
definition with a plurality of linked workflows, each work-
30 flow having a corresponding workflow definition, said work-

Methods flow definition representing commitments that a user having
AWSRegister The method registers an a predetermined role makes anq .completes to satisfy a
STF Processor in Names customer of the workflow comprising:

_ and Routing database. a) workflow server means for providing services to work-
AWSDeregister The method deregisters 35 flow enabled applications that allow users to act taking
an STF Processor from £ lurali £ ilabl defined i £ said

Names and Routing one of a plurality of available acts defined in one of sai
database. business processes, said workflow server means includ-

ing a transaction manager providing for each of said
business processes:

Database Management . .
40 transaction services for

DBMgmt o .
. . 1. receiving instructions to initiate and initiating work-
This class handles various database management . . .
. : . flows of said business processes;
functions, such as checking a particular workflow server L .
. . . . 2. taking actions in said workflow initiated business
database for integrity, reindexing the database, and reorga- processes:
nizing the database. 45 3. updating and maintaining workflow status after each

act is taken in each of said initiated workflows of said
business process and keeping track of pending work-

Methods flow activities, wherein said taken act is one of an act
of a user and an act automatically taken by the
AWSCheck The method checks the 50 transaction manager based on said business process

database for consistency . - o
and coherency. definition and said workflow definition of a prede-
AWSIndex The method reindexes the termined one of said workflows of said business
database. process, wherein said workflow status represents all
AWSReorganize The method reorganizes acts that are pending for said user having a prede-

the database. . . T .
55 termined role in said initiated workflow;

4. making available to said workflow enabled applica-
Configuration tions available business processes that a predeter-
Config mined one of said workflow enabled applications can
This class provides methods to set and inquire various initiate and specifying available acts that a user of
configurable parameters. 60 said predetermined workflow enabled application

can take in each of the initiated workflows of each of
the available business processes;
b) database means for storing records of business process

Attributes

transactions.
iMaxOpenBps int 65 2. The system Qeﬁned by claim 1 wherein se}id database
Ipsz Version string means is for storing records of the date and time when a

business process must be initiated.

6,073,109

111

3. The system defined by claim 1 wherein said database
means is for storing configuration information used by the
workflow server means.

4. The system defined by claim 1 wherein said database
means is for storing notifications to be sent to users that
interact with the workflow system through a standard trans-
action format processor interface.

5. The system defined by claim 1 further comprising
application program interface means for providing an inter-
face to the server means to enable workflow enabled appli-
cations to obtain access to the services provided by the
server means.

6. The system defined by claim 1 wherein said workflow
server means provides transaction services for binding appli-
cation specific data to a workflow transaction.

7. The system defined by claim 1 wherein said business
process includes a plurality of workflows with workflow
links coupling predetermined ones of said plurality of work-
flows and said workflow server means provides definitions
services for defining elements of a business process, its
workflows and workflow links.

8. The system defined by claim 1 wherein said workflow
server means provides definitions services for defining struc-
tures for the workflows of a business process.

9. The system defined by claim 1 wherein said workflow
server means provides names and routing services for defin-
ing roles, defining assignments, defining identities and
defining the assignment of identities to roles.

10. The system defined by claim 1 wherein said workflow
server means provides configuration services for defining a
network configuration of the workflow system, the version
of the server means, registering standard transaction format
processors, defining users and roles, specifying a log data-
base and a level of logging required.

11. The system defined by claim 1 wherein said workflow
server means provides scheduling services for allowing an
authorized user to create, modify and delete records of
scheduled business processes.

12. The system defined by claim 1 further comprising
means for updating the workflow server databases as an
interface to the server means to enable workflow enabled
applications to obtain access to services provided by the
server means.

13. The system defined by claim 1 wherein a predeter-
mined workflow script is executed when at least one of i) an
act is taken by an individual; ii) an act is taken by the system;
and iii) a workflow entering a predetermined state occurs,

said predetermined workflow script being part of said

business process definition.

14. A computer system for managing business processes,
each business process including a plurality of linked
workflows, by providing services that allow designers to
analyze and design business processes and applications
comprising:

a) workflow server means for providing:

i) definitions services for:

1. defining elements of a business process, its work-
flows and workflow links;

2. defining structures for the workflows of the business
process;

i) names and routing services for:

1. defining at least two roles associated with each of the
workflows;
2. defining identities associated with said defined roles;

b) database means for storing records of:

i) definitions of an organization, business processes of the

organization, workflows of the business processes, said
roles and acts associated with the workflows;

5

15

20

25

30

35

40

45

55

60

65

112

ii) the defined roles and defined identities within an
organization utilizing the workflow system.

15. A computer system for managing business processes,
each business process including a plurality of linked
workflows, comprising:

a) workflow server means for providing services to work-
flow enabled applications that allow users to act and
participate in said business processes, said workflow
server means including a transaction manager, said
transaction manager providing:

transaction services for
1. receiving requests for new workflows and initiating

the requested new workflows;

2. taking actions in workflows initiated by said trans-
action services of said workflow server means;

3. updating and maintaining workflow status after each
act of a user is taken in a predetermined one of said
initiated workflows and keeping track of pending
workflow activities;

4. making available to said workflow enabled applica-
tions available business processes that a predeter-
mined one of said workflow enabled applications can
initiate;

b) database means for storing records of:

1) definitions of an organization, business processes of the
organization, workflows of the business processes,
roles and acts associated with the workflows, said
workflow definitions representing commitments that
users having predetermined roles make and complete to
satisfy customers of the workflows;

ii) workflow transactions;

iii) the defined roles and defined identities of customers,
performers and observers utilizing the workflow sys-
tem.

16. The system defined by claim 15 wherein said database

means is further for storing records of incompletions.

17. A computer implemented method for managing a
plurality of business processes, each business process hav-
ing a business process definition with a plurality of linked
workflows, each workflow having a corresponding work-
flow definition, said workflow definition representing com-
mitments that a user having a predetermined role makes and
completes to satisfy a customer of the workflow, said
method comprising the steps of:

a) providing services to workflow enabled applications
that allow users to act taking one of a plurality of
available acts defined in one of said business processes,
said workflow server means including a transaction
manager providing for each of said business processes
transaction services for
1. receiving instructions to initiate and initiating work-

flows of said business processes;

2. taking actions in said workflow initiated business
processes;

3. updating and maintaining workflow status after each
act is taken in each of said initiated workflows of said
business process and keeping track of pending work-
flow activities, wherein said taken act is one of an act
of a user and an act automatically taken by the
transaction manager based on said business process
definition and said workflow definition of a prede-
termined one of said workflows of said business
process, wherein said workflow status represents all
acts that are pending for said user having a prede-
termined role in said initiated workflow;

4. making available to said workflow enabled applica-
tions available business processes that a predeter-

6,073,109

113 114
mined one of said workflow enabled applications can 2. sending instructions to said transaction manager to
initiate and specifying available acts that a user of initiate said determined business processes.

said predetermined workflow enabled application
can take in each of the initiated workflows of each of
the available business processes;

19. The system defined by claim 1 further comprising a
follow-up manager providing follow-up services for:

b) storing records of business process transactions. 1. determining when follow-up or reminder notifications

18. The system defined by claim 1 further comprising a are {0 be sent to a user;
schedule manager providing schedule services for 2. sending said notifications.
1. determining which business processes are due to be
initiated; ® ok % % %

