
(12) United States Patent
Warmus et al.

(54) METHOD OF REPRODUCING VARIABLE
GRAPHICS IN A VARIABLE IMAGING
SYSTEM

(75) Inventors: James L. Warmus, LaGrange; Mark
G. Dreyer, Aurora, both of IL (US);
Daniel W. Beery, Cumming, GA (US)

(73) Assignee: R. R. Donnelley & Sons Company,
Downers Grove, IL (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 08/959,683

(22) Filed: Oct. 29, 1997

(51) Int. Cl? G06F 15/00; G06F 17/00
(52) U.S. Cl. ... 707/500; 707/503
(58) Field of Search 707/500, 505,

707/517, 104, 515, 506, 100, 102, 520,
526, 513, 50; 358/449, 452, 448; 345/470,

116, 118

(56) References Cited

Re. 32,690
3,872,460
3,892,427
3,899,165
3,982,744
4,095,780
4,121,818
4,395,031

U.S. PATENT DOCUMENTS

6/1988 Wong 270/54
3/1975 Fredrickson et a!. 340/324 AD
7/1975 Kraynak eta!. 281!15 R
8/1975 Abram et a!. 270/54
9/1976 Kraynak et a!. 270/12
6/1978 Gaspar et a!. 270/73

10/1978 Riley eta!. 270/54
7/1983 Gruber eta!. 270/54

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 602 547
0 703 524 A1
0 703 524 B1

PCT/US86/
00242

wo 95 07510

6/1994 (EP) ... 15/20
3/1996 (EP) .
1!1997 (EP) .

8/1986 (WO) .
3/1995 (WO) 17/24

111111 111
US006205452Bl

(10) Patent No.: US 6,205,452 Bl
Mar.20,2001 (45) Date of Patent:

OTHER PUBLICATIONS

Keizer, One of six evaluation of presentation software
packages for the IBM PC and Apple Macintosh, Computer
Shoppers, p. 554, Aug. 1992. *
"Agfa's CR-A RIP varies data," Seybold Special Report,
vol. 3, No. 2 (Oct. 10, 1994).
"Agfa poised to enter short-run color market. (Chromapress
electrophotographic digital press system)," Mac Week, p. 18
(Oct. 31, 1994).
"Agfa Holds Expo, US Launch of ChromaPress Digital
Printing," Newsbytes News Network (Nov. 4, 1994).
"The Latest Word," The Seybold Report on Publishing
Systems, vol. 24, No. 6, (Nov. 30, 1994).

(List continued on next page.)

Primary Examiner-Joseph H. Feild
Assistant Examiner-Alford W Kindred
(74) Attorney, Agent, or Firm-Marshall, O'Toole,
Gerstein, Murray & Borun

(57) ABSTRACT

The present invention comprises an apparatus and method
for reproducing master and variable information, including
variable graphics information, on a display device, such as
a computer network or a demand printer. Variable graphics
information is stored in a database. A user is prompted to
specify graph parameters (i.e. graph type, size, labels, etc.)
or default values are used. Template page files containing
fixed information and placeholders for variable information
are generated. Image boxes are used as placeholders for
variable graphics information and an executable graph file is
placed in the image boxes. A text box containing the
specified graph parameters and variable graphics informa­
tion from the database is layered over the image box and
"tagged" to specify that it contains variable graphics infor­
mation. During interpretation of the page file, an interpreter
(RIP) determines if a text box is "tagged" and, if so, executes
the graph file to generate a graph using the specified graph
parameters and variable graphics information from the data­
base.

52 Claims, 46 Drawing Sheets

40

/

US 6,205,452 Bl
Page 2

U.S. PATENT DOCUMENTS 5,517,605
5,546,517
5,553,212
5,557,722
5,594,860
5,594,910 *
5,630,028
5,669,005
5,729,665
5,937,153 *

5/1996 Wolf .

1!1984
1!1985
2/1985
8/1985

11/1985
7/1986

10/1986
6/1987
6/1987
1!1988
2/1988
3/1988
9/1988

12/1988
1!1989
5/1989
2/1990
2/1990
3/1990
5/1990
6/1990
6/1990

11/1990
11/1990
3/1991
6/1991
7/1991
8/1991

11/1991
4/1992
5/1992
5/1992
7/1992
8/1992
8/1992
8/1992
9/1992
1!1993
1!1993
3/1993
9/1993

11/1993
12/1993
12/1993
12/1993
2/1994
3/1994
3/1994
4/1994
4/1994
5/1994
7/1994
9/1994

10/1994
10/1994
10/1994

1!1995
1!1995
1!1995
3/1995
3/1995
5/1995
5/1995
8/1995

4,426,072
4,495,582
4,500,083
4,536,176
4,554,044
4,601,003
4,616,327
4,672,462
4,674,052
4,718,784
4,727,402
4,729,037
4,768,766
4,789,147
4,800,510
4,827,315
4,900,001
4,903,139
4,910,612
4,928,252
4,933,880
4,937,761
4,968,993
4,974,171
5,001,500
5,021,975
5,033,009
5,043,749
5,067,024
5,105,283
5,112,179
5,114,291
5,133,051
5,136,316
5,142,618 *
5,142,667
5,144,562
5,177,877
5,178,063
5,194,899
5,245,701
5,267,155
5,271,065
5,274,567
5,274,757
5,289,569
5,295,236
5,299,310
5,301,036
5,303,334
5,313,564
5,333,246
5,349,648
5,353,222
5,359,423
5,359,432
5,379,373
5,381,523 *
5,384,886
5,396,321
5,398,289
5,412,566
5,414,809
5,442,737
5,459,819
5,459,826
5,461,708
5,465,213
5,493,490
5,502,804

10/1995
10/1995

* 10/1995
11/1995
2/1996
3/1996

Cole et a!. 270/53
Dessert et a!. 364/469
Wong 270/54
Gaspar 493/365
Gaspar et a!. 156/510
Yoneyama et a!. 364/518
Rosewarne et a!. 364/518
Yamada 358/280
Wong et a!. 364/466
Drisko 400/68
Smith 355/14 SH
Doelves.
Berger et a!. 270/58
Berger et a!. 270/1.1
Vinberg et a!. 364/521
Woldberg et a!. 346/160
Lapeyre 270/1.1
Minter 358/296
Yamazaki 358/496
Gabbe eta!. 364/519
Borgendale et a!. 364/523
Hassett 364/518
Wolfberg et a!. 346/160
Yeh et a!. 364/519
Wolfberg et a!. 346/160
Yamanashi 364/519
Dubnoff 364/523
Punater et a!. 346/153.1
Anzai 358/296
Forest et a!. 358/401
Chan eta!. 412/1
Hefty 412/8
Handley.
Punater et a!. 346/153.1
Fujiwara eta!. 707/516
Dimperio et a!. .
Stikkelorum et a!. 364/478
Duchesne et a!. 34/51
Wolfberg et a!. 101!76
Buchanan 355/244
Matsumoto 395/129
Buchanan et a!. .
Rourke eta!..
Kallin et a!. 364/478
Miyoski eta!. 395/146
Taniguchi.
Bjorge eta!. .
Motoyama.
Barrett et a!. 358/448
Snyder eta!. .
Kafri eta!..
Nagasaka.
Handley.
Takise eta!. .
Loce 358/296
Peltzer et a!. 358/452
Hayashi et a!. .
Hayashi 707/513
Rourke.
McFarland et a!. 399/81
Rourke eta!..
Sawa.
Hogan eta!..
Smith.
Watkins et a!. .
Archibald.
Kahn 345/440
Ross 364/468
Johnson .
Butterfield et a!. .

B1 4,968,993

8/1996 Marks eta!. .
9/1996 Etoh et a!. .
9/1996 DeRose eta!. .
1!1997 Gauthier 345/501
1!1997 Filepp et a!. 712/28
5/1997 DeMeo 395/110
9/1997 Curbow eta!. 707/523
3/1998 Gauthier 358/1.58
8/1999 Gauthier 358/1.17
7/1993 Wolfberg eta!. 346/160

OTHER PUBLICATIONS

"Agfa Expo: the medium is the message," The Seybold
Report on Publishing Systems, p. 17 (Nov. 30, 1994).
"The Latest Word: Chromapress varies data," The Seybold
Report on Publishing Systems, p. 28 (Mar. 13, 1995).
"The Latest Word," The Seybold Report on Publishing
Systems, vol. 24, No. 13, pp. 26-28 (Mar. 13, 1995).
"Digital Color Printing in Japan: A Report from Early
Users," The Seybold Report on Publishing Systems, vol. 24,
No. 13, pp. 13-19 (Mar. 13, 1995).
"Indigo Expands Digital Press Line to Packaging; Enhances
E-Print 1000," The Seybold Report on Publishing Systems,
vol. 24, No. 13, pp. 3-12 (Mar. 13, 1995).
"Variable-data and custom printing," Seybold Special
Report, vol. 3, No. 8, pp. 63 and 64 (Apr. 21, 1995).
"Moore announces new digital printing strategy," Seybold
Special Report, vol. 3, No. 8, p. 65 (Apr. 21, 1995).
"Agfa Let RIP with Gemini," M2 Presswire (Apr. 27, 1995).
"Company-by-Company Guide to the Show: Agfa-Gev­
aert," The Seybold Report on Publishing Systems, vol. 24,
No. 17, p. 6 (May 1, 1995).
"Digital printers push customization," The Seybold Report
on Publishing Systems, vol. 24, No. 19, pp. 10 and 11 (Jun.
12, 1995).
"Agfa 'distributes and prints,' adds new RIP," The Seybold
Report on Publishing Systems, vol. 24, No. 20, pp. 8-10
(Jun. 26, 1995).
"Indigo System Developments: Indigo varies data, shows
Mobius, Omnius," The Seybold Report on Publishing Sys­
tems, vol. 24, No. 20, pp. 12-15 (Jun. 26, 1995).
"Barco features PrintStreamer, TonerSaver," Seybold Spe­
cial Report, vol. 24, No. 20, p. 11 (Jun. 26, 1995).
"Short-Run Digital Color Printing," Seybold Special
Report, vol. 4, No. 2, pp. 33 and 34 (Oct. 23, 1995).
"T/R Systems set new price point for digital presses," The
Seybold Report on Publishing Systems, p. 35 (Oct. 23,
1995).
"Color, Here and Now," Printing Impressions, p. 28 (Nov.
11, 1995).
"Digital presses eye the market of one," Graphic Arts
Monthly, p. 42 (Apr. 1, 1996).
"The 'On Demand' Show: Exciting Technology-But Is the
Market Ready?," The Seybold Report on Publishing Sys­
tems, vol. 25, No. 16, pp. 3, 5 and 6 (May 17, 1996).
"Indigo," The Seybold Report on Publishing Systems, vol.
25, No. 16, pp. 5 and 6 (May 17, 1996).
"Personalization for Indigo Engines," The Seybold Report
on Publishing Systems, vol. 25, No. 22, pp. 9-13 (Aug. 26,
1996).
"Variable Data on Digital Presses: Making Progress," The
Seybold Report on Publishing Systems, vol. 25, No. 22, pp.
3-8 (Aug. 26, 1996).
Ultimate Technographics, Inc. Manual, "Poststrip," 1989.

US 6,205,452 Bl
Page 3

Dieckmann, Glenn, "Press Imposition for IBM 4250, Gen­
eral Information," R.R. Donnelley & Sons Company, Craw­
fordsville Manufacturing Division, Department CHT, Feb.
21, 1989.
Alpha Four, New Version 3, "True Relational Database
Power Without Programming, Reference Manual," Alpha
Software Corporation, Lesson 20: Using Sets and Lesson
22: Advanced Sets: One-to-Many Links, 1993.
"Design Your Forms, Power With Room To Grow: Xba­
sic™," advertisement, DBMS Magazine, Sep. 1994.
Xeikon announcement, "Xeikon annnounces new RIP for
the DCP-1 digital color press," Sep. 13, 1994.
"Finding the Right Niches for Electronic Printing," The
Seybold Report on Desktop Publishing, Mar. 7, 1994, pp.
12-18.
Xeikon brochure,"Beta Specifications, Xeikon DCP-1 Digi­
tal Color Press," date unknown.
Barco Graphics brochure, "RIP and Electronic Collation
System for Xeikon DCP-1 Digital Printing Press," Feb. 2,
1994, with Addendum 1.
Seybold Report on Publishing Systems, vol. 25, No. 22,
ISSN: 0736-7260, Aug. 26, 1996.
"Variable Postscript and the Coming of Age of Electronic
Print-for-Profit," Print on Demand Business, May/Jun.
1996, pp. 64, 66-67.
"Variable-Data Printing Comes of Age: Capabilities &
Market Demand Converge," Seybold Report on Publishing
Systems, vol. 27, no. 2, Sep. 15, 1997, pp. 3-24.
"Indigo Variable Data Solution Evaluation," Interoffice
Memorandum from R.R. Donnelley & Sons Company dated
Jul. 26, 1995 (portions redacted).
H. Sharples, "Software Automates Impositions; Prepress
Imaging," vol. 65, No.9, p. 67, Graphic Arts Monthly (Sep.,
1993).
"Linotype-Hell's Herkules: Fast, Versatile Drum Imager to
Head IPEX lineup; Product Announcement," vol. 23, No. 1,
p. 3, The Seybold Report on Publishing Systems (Sep. 1,
1993).
"Aldus to Offer Presswise 2.0 Imposition Software for
Large-Format Presses," PR Newswire (Sep. 7, 1993).
P. Dyson, "Computer to Plate: Now There's a Market;
Direct-to-Plate Production Now Feasible; includes related
article on the Eskofot Escosan 2540 for boards and films,"
vol. 23, No. 4, p. 3, The Seybold Report on Publishing
Systems, (Oct. 11, 1993).
"Imposition Cuts Stripping Time; Electronic Imposing Sys­
tem; Prepress Imaging," vol. 65, No. 11, p. 84, Graphic Arts
Monthly (Nov., 1993).
S. Edwards et al., "IFRA '93 Review: An Industry Riding
the Crest of a Slump; IFRA European Newspaper Equip­
ment Exhibition; includes related article on trade show
rumors," vol. 23, No. 6, p. 3, The Seybold Report on
Publishing Systems, (Nov. 8, 1993).

H. Sharples, "Electronic Imposition: Moving Forward," vol.
66, No. 2, p. 53, Graphic Arts Monthly (Feb., 1994).

"Aldus Prepress Division Ships Presswise 2.0 for the Apple
Macintosh," PR Newswire (Mar. 22, 1994).

"Press Imposition Software; Seybold Special Report: Sey­
bold Seminars Boston '94, Part I; Product Announcement,"
vol. 23, No. 15, p. S74, The Seybold Report on Publishing
Systems, (Apr. 22, 1994).

"High-Resolution Output; includes related articles on how
to obtain a Hyphen print sample and naming a new screening
technology; Seybold Special Report: Seybold Seminars
Boston '94, part I," vol. 23, No. 15, p. S47, The Seybold
Report on Publishing Systems (Apr. 22, 1994).

P. Hilts, "Donnelley's Digital Production Vision; R.R. Don­
nelley and Sons invited book publishers to come to Craw­
fordsville to see the future of printing," vol. 241, No. 34, p.
24, Publishers Weekly (Aug. 22, 1994).

A Karsh, "Scitex's SGAUA Review: Savanna, GTO-DI
Interface, Whisper Upgrade; Scitex Graphic Arts User Asso­
cation, Scitex Savanna Typesetting System, Press Interface
for GTO-DI, Auto fiat Image Processing Software, MacCSS
Connection Peripheral Server," vol. 24, No. 2, p. 11, The
Seybold Report on Publishing Systems, (Sep. 19, 1994).

"Color Shop Goes Electronic; Color Tech Corp.," vol. 66,
No. 10, p. 90, Graphic Arts Monthly (Oct., 1994).

"Xerox and Scenicsoft Bring New Flexibility to Prepress
Work With Postscript Files," vol. 7, No. 10, Worldwide
Videotex (Oct., 1994).

"High-Resolution Output Devices; Seybold Special Report:
Seybold San Francisco '94, Part 1; Product Announcement,"
vol. 24, No. 3, p. S32, The Seybold Report on Publishing
Systems (Oct. 26, 1994).

"Output Servers; Seybold Special Report: Seybold San
Francisco '94, part 2, Product Announcement," vol. 24, No.
3, p. T13, The Seybold Report on Publishing Systems (Oct.
26, 1994).

"CTP Field Gets a New Entry; Linotype-Hell's Computer­
to-Plate System, Gutenborg," vol. 66, No. 11, p. 102,
Graphic Arts Monthly (Nov., 1994).

Alexander, George A., "Custom Book Publishing and Book
Printing on Demand," The Seybold Report on Publishing
Systems, vol. 21, No. 16 (May 11, 1992).

Appelt, Wolfgang, "Existing Systems For Integrating Text
and Graphics," Computer & Graphics, vol. 11, No. 4, pp.
369-375 (1987).

International Search Report dated Apr. 13, 1999.

European Search Report dated Jul. 22, 1999.

* cited by examiner

U.S. Patent Mar. 20, 2001 Sheet 1 of 46 US 6,205,452 Bl

20
PUBLISH! NG ------

~

PRELIMtNARY - 22

It

PRE PRESS -~ 24

PRINT - 26

BOOK -- 28

ASSEMBLY
(CUSTOM·IZATION)

~~

DISTRIBUTE
- 30

FIG. 1
PRIOR ART

U.S. Patent Mar. 20, 2001 Sheet 2 of 46 US 6,205,452 Bl

3 6
PUBLISH lNG

~

38 PREPRESS
40

----- 1----

I It
-1 /

42 I CREATE MASTER
...... -f AND VARIABLE

I PAGE FILE(S) AND

I BOOK_ TICKET FILE

I
I
I COLLATOR

I AND RIP

I
I

OPERATE I DEMAND
I PR I NTER(S)
I
I
I Fl NISHING
I
'----- --- I --

~

30 DISTRIBUTE

FIG. 2

65

I MODEM
TO ~6 INTERNET 70

/

64
I I

/20 GATHERING
~FM1 5\ DEVICE(S)

74 I l 72 - INK JET -.. ~I DP 1 I f--

CONTROL PRINTER(S)
PERSONAL y-62b

UNIT · -: DP 2 I • ~74
COMPUTER LABEL J---

~MEMORYI I y--62c PRINTER(S)
- ..

/ -::.1 DP 3 I --..
53

OTHER
CONTROL 76

CONTROL DEVICE(S)

AND
MAKE READY

I
BAD BOOK

FILES DETECTOR
-78

50

FIG. 3

d •
\Jl •
~
~
~ =

~
~
:-'l
N
~=
N c c
'"""'

'JJ.

=­~
~
~

0,
~
0'1

e
rJ'l

-..a-..
N
Q
(It

'l.
(It
N

~
1--"

U.S. Patent Mar. 20, 2001 Sheet 4 of 46 US 6,205,452 Bl

79
I

80 - PRESS ,-
CONTROLLER

81
COLLATOR

DEMAND
PRINTER ---~

RIP

)---~ 82

FIG. 4

Fl G. 5

120 122
106 I l

POL r v STRIPPED
fTEMPLATE MASTER

'

FILE (S) l PAGE
Fl LE (5)

1 MASTER~----------------------------__.
•

1PAGE I -- I

108\

FILE (S)

126 134
I I \
STRIPPED r ,--

VARIABLE .-,-
~PAGE

Fl LE(S)

(137 I
I

~Ill
TO

VARIABLE
INFORMATION I­
DATABASE

~L ·~\-b rtsr
P-4-b f4-a

>.- - ,.---

PRINT
~(SYSTEM I 79

138
L,

r-

-..

r
.-

I
P4-c--ll ::yr ~ Q

-rf~~
132-' J ~~

136

140~ ~~~~-A_N_D_I -:

d
•
\Jl
•
~
~
~ =

~
~ :-:
N c
~

N c c
'"""'

'JJ.

=-~
~
Ul
0,
~
0'1

e
rJ'l
0'1
'N
Q
(It

~
(It
N

~
1--"

U.S. Patent Mar.20,2001 Sheet 6 of 46 US 6,205,452 Bl

00
102 100a -r

(1 a -1 / \
r

~
I
I

100

I -116

112 --- I
I
I
I
I
I 1--
I -- 110

P4 - f- 1- I P1
I

,/
100 FIG. Sa

100
102 100b-r

100b-1 \ \ / \
I I r

I
100b

I
-;-

I
I
I
I
I
I
I
I
I \

I J I
I l

P2 P3

F I G. 6 b

U.S. Patent Mar.20,2001 Sheet 7 of 46 US 6,205,452 Bl

112
I
\ I

\ I 1
I - J- [----

14

I
I
I

-1
I

13

I
I
I
I 110 -

P8
I -~-~--,

I -r-. P5

FIG. 7a

I

I
I
I
I
I
I
I
I
I
I

1--- I -
P6 --- I I-- P7

FIG. 7b

U.S. Patent Mar. 20, 2001 Sheet 8 of 46 US 6,205,452 Bl

U.S. Patent Mar.20,2001 Sheet 9 of 46 US 6,205,452 Bl

150 Create Master
Elements on

Page(s)

No

l
Save Template

File

Identify database fields to be
1---~ used for variable text, image or

graph information

151

-

Place database field
name at selected

insertion point

155

/
Define Image Box and

FIG. 9

----------153

156

/
Select

Insert Dummy Picture
H

Display
File with Database Format and

Field Name

Create Image
Box at Selected

Location

/
158

160

162

Insert Graph
Parameters & Value
Data Pairs in Text

Box

"Tag" Text Box

Place EPS Graph File
in Image Box

(Designate as Variable)

Position

159

/
Select Attributes
(Graph Type and

Parameters)

Select
Controlling

Database Fields

Create Text Box
Layer over
Image Box

----164
~

I
\
\

161

U.S. Patent Mar.20,2001 Sheet 10 of 46 US 6,205,452 Bl

926

Set Scale
y Transformation

N Determine total# of
graph value data

pairs
Go To

Block 976 932

(Fig. 9A-3)

934

952

954

958

960

v

Calculate
width of bars

Calculate Bar
Height (y-value)

3D

Draw 3D portion
of bar &

color/shade

Draw 2D portion
of bar with

modified width
& color/shade

F

./
938

2D

956

\
922

Label Axes
(if provided)

Get First
data pair

I
930

940

Draw Axes with
specified parameters

B

I
928

G

Draw clipping box
from x-axis to

y-value
1+---C

Draw bar
& color

Retrieve
graphic and
position on

x-axis

948

944

950

s

Calculate
Scale
Ratio

946

\
\ Retrieve and

scale graphic
~------------_,

and position

Go To
Block 962
(Fig. 9A-2)

on x-axis

FIG. 9A-1

U.S. Patent Mar.20,2001 Sheet 11 of 46 US 6,205,452 Bl

971f.

From Blocks 946,
950, 956 & 960

(Fig. 9A-1)

N

No

No

Reset
Global

Variables

END

964

\
Position field name

Yes at specified
location

968
I
I
!

Position numeric
Yes value at selected

Yes

location

Get next
data pair

972

Go To
Block 940
(Fig. 9A-1)

FIG. 9A-2

U.S. Patent Mar.20,2001 Sheet 12 of 46

976

From Block 920
(Fig. 9A-1)

y

N

Process Graph

994

Calculate Radial
Position

996

" '"--,
Position Numeric

Value

FIG. 9A-3

986

y

Set Scale
Transformation

and Starting Angle

y

N

3D

2D 990

Draw 2D Portion of
Segment and
Color/Shade

992

N

y

N

US 6,205,452 Bl

Get First Data Pair
Set TOTAL= 0

~980

Calculate Radial
Offset Position

988 984

Draw Side (3D
Portion) of Segment

& Color/Shade

1000

II
Position Field

Name

Go To
Block 1002
(Fig. 9A-4)

U.S. Patent Mar.20,2001 Sheet 13 of 46 US 6,205,452 Bl

From Blocks
998 & 1000
(Fig. 9A-3)

1002

N
1006

\
Reset Radial

Offset Position

N

1012
I

1016

Reset Global
Variables

END

y

1004

Draw Line from
Segment to
Callout(s)

/1008

Increment
Starting Angle

Get Next
Data Pair

1018

/
Calculate

"Other" Value
(1 00%- TOTAL)

FIG. 9A-4

1010

/
Increment

TOTAL

Go To
Block 982
(Fig. 9A-3)

1020

/
Create "Other"

Data Pair

N--------'

U.S. Patent Mar.20,2001 Sheet 14 of 46 US 6,205,452 Bl

176

178

184

190

170 Open Template File

172 Open Database File FIG. 1 Oa

174
Create Database Field List

Prompt for Section Number, Simplex/Duplex and
Selective Processing Code (if any)

Save Image Box
Location and

Increment MASTER
Image Box Counter

for Page

180

~------177

182

186

Delete
Image Box

188

192

187

Save Image Box
Location and Field

Name and Increment
VARIABLE Image

Box Counter for Page

Select and
~---=~ Parse First

Text Box
Select N
Next

Image

U.S. Patent Mar.20,2001 Sheet 15 of 46 US 6,205,452 Bl

208

206

Select Next
Page

No

Yes

Save as
Stripped Master

File

Generate POL
Master Page File

(and INI Files)

I
212

198\

'r----,

Delete
Text
Box

196

200 No

\r-----~----,
199

Save Text Box
Location and Field

Name and Increment
VARIABLE Text

Box Counter for Page

Yes

202

210

214

Reopen Template
File and Delete

All Master Boxes
(Text & Image)

Save Text Box
Location and

Increment MASTER
Text Box Counter for

Page

Select

204

& Parse
Next
Text
Box

216

Save as
1-----'~ Stripped Variable

File

218 Create *.VARS

FIG. 10b
File

(Page/Field Name)

U.S. Patent Mar.20,2001 Sheet 16 of 46

MAKE WORKING COPY
242 OF STRIPPED ._ __

VARIABLE Fl LE

-SELECT FIRST PAGE ._--244
HAVING VARIABLE IN-
FORMATION AND DELE-

FROM TE OTHER PAGES
BLOCK~======~~------~
298,

FIG. 10e

c

SELECT FIRST r-----246
DATABASE RECORD

READ DATABASE RECORD

INSERT IMAGE
IDENTIFIED BY
DATABASE FIELD

248

262

FIG. 10c

e

US 6,205,452 Bl

254

SELECT NEXT
DATABASE

RECORD

N

FROM
BLOCK
292,

FIG.10e

U.S. Patent

c

f

Mar. 20, 2001 Sheet 17 of 46 US 6,205,452 Bl

264~ 266

SUBNAME

e

268

POSITION IMAGE
IN BOX

270

N

y

SELECT FIRST
TEXT BOX

SELECT FIRST
INSERTION PT.

INSERT TEXT
SPECIFIED BY
DATABASE
FIELD

y

RECOMPOSE
TEXT BOX

SELECT NEXT
IMAGE BOX

N

276

278

280

284

SELECT
NEXT
INSERTION
PT.

286

h

F I G. 10 d

272

U.S. Patent Mar.20,2001 Sheet 18 of 46 US 6,205,452 Bl

f h

254

298

. REffi\cVE' COPY OF
STRIPPED VARIABLE
FILE AND SELECT

~-~NEXT PAGE HAVING

300

304 SELECT Fl RST
RECORD IN DATABASE
AND CORRESPONDING
RECORDIN PRESS
COMMAND Fl LE

VARIABLE INFORMATION
AND DELETE OTHER
PAGES

GO TO
~----~----~ BLOCK

246
FIG.10c

312

FIND SECTION IN
Y PRESS COMMAND

FILE RECORD
(CREATE IF NEEDED)

k

FIG. 10e

U.S. Patent

310

Mar.20,2001 Sheet 19 of 46 US 6,205,452 Bl

SELECT Fl RST
y PAGE IN SECTION

SELECT NEXT
RECORD IN DATABASE
AND CORRESPONDING
RECORD IN PRESS
COMMAND FILE

Fl NISH

316

<SIMPLEX SIMPLEX
OR

DUPLEX
? 328

COPY MASTER
PAGE FILE NAME
AND PG. NUMBER
AND VARIABLE
PAGE FILE NAME
AND PAGE NUMBER
(IF ANY)AS SINGLE
SET PAIRS

COPY MASTER
PAGE FILE NAME
AND PG. NUMBER
AND VARIABLE
PAGE FILE NAME
AND PG. NUMBER
(IF ANY) AS
SINGLE SET
PAIRS

322
SELECT NEXT

~--~PAGE IN ~--~

SECTION

Fl G. 10 f

U.S. Patent Mar.20,2001

Begin RIP (interpretation) process

Redefine "show" Operator

Set default values for all
graph parameters as PS

global variables

Interpret first PS element

Yes

1112

No

Invoke standard
PS "show"

operator

/

Sheet 20 of 46

1100

1101

FIG. 11

-1102

1104

1108

RIP as normal

1114

Invoke Redefined "show"
operator to Parse Graph

Parameters and Value Data
Pairs (from text box) and

save as PS global variables

US 6,205,452 Bl

1120

No

Yes 1110

Done
Processing

PS file

Get Next PS Element ~-------__J

U.S. Patent

100 MAX
(100°/o)
Value

100

75

50

25

~

Mar.20,2001

r l
I I
I I
I I
I I
I I
I w ---

0
w
0::

1996
SALES

,---,
I I
I I
I I
I I
I I
I I
I I
I I
I I

0
w
0::

1996
SALES

Sheet 21 of 46 US 6,205,452 Bl

NAMED I MAG E BOX
f v I
I

I
I

I I
I I
I I
I I
;.. ---

z
w
w
a::
<.9

1997
SALES

: I

I
I I

I I
I I I I I I - ---w

w
:::>
_j

co

1998
PROJ.

Fl G. 11A-1

r---1
I I
I I
I I
I I
I I
I I

z
w
w
a::
(.,9

1997
SALES

w
:::>
_j

CD

1998
PROJ.

FIG.11A-2

U.S. Patent Mar.20,2001 Sheet 22 of 46 US 6,205,452 Bl

PROMPT USER TO SPECIFY INFORMATION 340
TO CREATE PAGINATION FILE: 1./

-MAX. #IF PAGES
-LH/RH FILLER PAGE ID

FOR EACH PAGE, SPECIFY :
-FORCE LEFT, FORCE RIGHT OR NO FORCE

-FILLER PAGE I.D. FOR FORCED PAGE
-MASTER, ALWAYS VARIABLE OR SELECTIVELY VARIABLE

FIG.12

+
OPEN PRESS COMMAND FILE l/342

SELECT DATABASE FILES,
PAGINATION FILE, PLACEHOLDERS V 344

FILE AND BARCODE FILES

__. RETRIEVE RECORD IN V346
PRESS COMMAND FILE

~
DETERMINE WHICH

PAGES SHOULD
PRINT

(SEE FIG. 13)

348

DETERMINE WHETHER /'350
PAGES ARE LEFT OR RIGHT /

(SEE FIG. 14)

"PAD" PAGES INTO
MULTIPLES OF "N"

(SEE FIG. 15)

'---GENERATE POSTSCRIPT® /354
INSTRUCTION SET

PAGINATEJT Project:

Signature Filler Pages

QuarkXPress File T Pg# •
Right

Left
··········i·····················r-;-

(Edit Signature Fill~~;g-~s)
··· ; 1.,-

Pagination Rules ~

Force Filler QXP File Mas li.

1 i i l A i N
·············<.··· ························ ... l··············~·············i·········

~ ~ ~ A ~ N
·············i····························· ···································i·············-~·············•··············

! ! ! A ! N
·············{··--········'············ .. ~ ············· ,

! ~ ! A ! N
·············r··1·············1·····;;.·····r····N·····

:::::::::r:::::::: ::.: ::: ::: :I:::::r:::~:::I:~:
(Edit Pagiation Rules)

: : : A : N

:::::::::::::t::t::::::::::t:::~:::::t::::~::::::
~ 1 1 A 1 N ·············'······································ .. ··· , ~

12

~ ~ ~ A ~ N
·············t···j··············t·····;;..·····j·····N······I "'

(About the Rules Table ...) c-cancef] (--Save) FIG. 12A

d •
\Jl •
~
~
~ =

~
~ :-:
N
~=
N c c
""""

'JJ.

=­~
~
N
~

0,
~
0'1

e
\Jl

-..a-..
N
Q
(It

'l.
(It
N

~
1--"

U.S. Patent Mar.20,2001

364

CALCULATE AND
SAVE OFFSETS OF
ALL PAGES IN FILE

YES

Sheet 24 of 46 US 6,205,452 Bl

348
RETRIEVE PAGE FROM k

RECORD IN PRESS
COMMAND FILE

IS PAGE FROM
A NEW FILE TO

BE IMPOSED-ON­
THE-FLY WITH

OFF_SETS?

NO

IS PAGE A
MASTER PAGE?
(NO VARIABLE

PLACEHOLDERS?)

360

MARK PAGE
~-----a.~ AS "SHOULD

YES PRINT'

368

YES

FIG. 13

U.S. Patent Mar.20,2001 Sheet 25 of 46 US 6,205,452 Bl

INITIALIZE UR
.------.!COUNTER TO "RIGHT"

(DEFAULT VALUE)

RETRIEVE PAGE

380

382

350
,!'

THAT IS MARKED 14-----------,
"SHOULD PRINT'

384

HAS USER SPECIFIED
WHETHER PAGE SHOULD

BE FORCED LEFT OR
RIGHT?

MARK APPROPRIATE FILLER
PAGE AS "SHOULD PRINT'

NO

390

386

FLIP-FLOP
UR

COUNTER

YES

FIG. 14

U.S. Patent Mar.20,2001 Sheet 26 of 46 US 6,205,452 Bl

COUNT NUMBER OF PAGES ARE
MARKED "SHOULD PRINT'
(INCLUDING FILLER PAGES)

394

392

352
¥

RETURN TO BLOCK
'">----~ 354 OF FIG. 12 TO

396

ADD FILLER PAGES TO
MAKE IT A MULTIPLE OF 4

FIG. 15

GENERATE
INSTRUCTION SET

Enter the page height and width of the imposed or "flat".
These will be as the setpagedevice parameters to the RIP.

Page Width
(Inches):

111 I Page Height (Inches): 111 I
Imposition Style: I Get Tiff Style 'f I
Finishing Style: jln~Uile Finishing 'f I Four Pagers: [stitch--~

Report Field: I NO SELECTION ~

Bar Code: I Bottom of Sheet 'f I Page Numbers: I Page N~lllbers Off "I
Select:

C PostScript File... -J Bar Code PS File

(Contents File...) Bar Code Content File

(Variable File (.vars) ...) VDF MAC:Desktop Folder: VDF Jobs:Longs Drugs:aloha.mm.vars

(Pagination File (.pag) ...) Pag PS File

(Book Ticket Directory ...) BT Directory:

Device Name:

Master and Variable Storage Directory: I Docuprint I Queue Name: I HBA ~

1/va~/~XRXnps/netq~~q---~-- I
(Cancel) (OKU~ FIG. 16

d
•
\Jl
•
~
~
~ =

~
~ :-:
N
~=
N c c
"'""'

'JJ.

=­~
~
N
-..J
0,
~
0'1

e
rJ'l
0'1
'N
Q
(It

~
(It
N

~
1--"

U.S. Patent Mar.20,2001

400

Open Press
Command File

Prompt User to Specify RIP Option:
Master Only, Variable Only,

Master & Variable

Select First Line In PCF Having
File Name(s)

Sheet 28 of 46 US 6,205,452 Bl

FIG. 17

-~398

399

Select First File Name !?-----------------,

401

402

403

Add to
File List

Add to
RIP List

407

No

405

RIP Files in
RIP List

to Tiff Format

06

File Name

Select Next
PCF Line

\
409

U.S. Patent Mar.20,2001 Sheet 29 of 46

"GET TIFF"
IMPOSITION

RETRIEVE PAGE
PAIR FROM

INSTRUCTION SET

RETRIEVE

~10

REFERENCE TO 12
LEFT HAND PAGE IN

TIFF FORMAT

MOVE OFFSET TO ~14
RIGHT SIDE

RETRIEVE
REFERENCE TO ~16

RIGHT HAND PAGE
IN TIFF FORMAT

ADD PAGE
NUMBERS AND/OR ~18

,__ BAR TRACKING
CODE

US 6,205,452 Bl

FIG. 18

~22
PDL

MASTER
PAGE t­

FILES

450
!

MERGED

PRESS
CONTROLLER l--80

COLLATOR
l--81

~POSTSCRIPT I I .-j
Fl LES

452
L

t--.~· RASTER
MEMORY PDL

VARIABLEt­
PAGE
FILES

\137.138

PRESS COMMAND

RIP

I I ., 11MPOSITION- I

ON-THE -FLY U-454
PROCEDURES

82

84
/

DEMAND
~PRINTER

FILE I I

!INSTRUCTION SETI
PRINT SYSTEM

"""140 ~79 _._

456-

F I G. 1 9 ~ -\

----.._454

d •
\Jl •
~
~
~ =

~
~ :-:
N
~=
N c c
'"""'

'JJ.

=­~
~
~ c
0,
~
0'1

e
rJ'l

-..a-..
N
Q
(It

'l.
(It
N

~
1--"

U.S. Patent Mar.20,2001

Standard Level 2
SHOWPAGE

Operator

Reason Code = 0

Call EndPage
Procedure

500
/

502

/

Sheet 31 of 46 US 6,205,452 Bl

506

YES-~

Transmit Contents of
Raster Memory to

Output Device
(For Rendering)

NO
510

.------.ll---/
INITGRAPHICS

(Reset Default Matrix
and Clipping Path)

Increment
PageCount

Call BeginPage
Procedure

ERASEPAGE
(Clear Raster Memory)

508

FIG. 20

U.S. Patent Mar.20,2001 Sheet 32 of 46

Redefined
INITCLIP

520

NQI--~

YES 524

Set P1 =Current Path Description
(Call MakePath Procedure)

526

Save Current [CTM]

528

Set Virtual [CTM]

Create Clipping Path Between
Corners of Virtual Page

Restore Saved [CTM]
and

Current Path (P1)

/

530

532
/

US 6,205,452 Bl

522

/
Set P1 =

Empty Path

FIG. 21

U.S. Patent Mar.20,2001

Redefined
TRANSFORM

Sheet 33 of 46 US 6,205,452 Bl

536

Yes Call Standard TRANSFORM

Save Current [CTM]
on Stack

Calculate [Operations Matrix] =
[Current CTM] [Virtual CTM]-1

Set new [CTM] =

540

[Operations Matrix] [System Default Matrix]

Call Standard TRANSFORM Operator
(Systemdict_ Transform)

Reset Current [CTM]
(Saved by block 538)

546

542

544

Operator
(Systemdict_ Transform)

FIG. 22

U.S. Patent Mar.20,2001 Sheet 34 of 46 US 6,205,452 Bl

ENABLEVIRTUALDEVICE

Yes

FIG. 23

550 554

No Rename Standard
"'>---------~~>~ Level 1 SHOWPAGE

(Level 1) Operator

556

552
558

Redefine Level 1
Showpage Operator to

Emulate Level 2
Showpage Operator

(See Fig. 20)

Load Redefined EndPage
and BeginPage Procedures
Into Current Graphics State

(call setpagedevice)

Execute BeginPage Procedure
for First Page

560

r---------1...-------,/
Invoke DisablePageDevice Procedure

(See Fig. 24)

Set VirtuaiDeviceEnabled
=True

U.S. Patent Mar.20,2001 Sheet 35 of 46 US 6,205,452 Bl

572

PageSize
Included as
Operand to

setpagedevice?

YES

Determine Orientation
(Portrait or Landscape)
of PageSize Operand

576

574

FIG. 24

NO (level1)

NO

NO

580

578

Invoke SetPortrait
Procedure (Fig. 25)

Call Redefined lnitgraph1cs
~----------------~----------~ and ErasePage Operators

Redefine Compatibility Operators
to Corrent Page Orientation

582

U.S. Patent Mar.20,2001 Sheet 36 of 46 US 6,205,452 Bl

FIG. 25

'---No----;:.~

(Landscape

Convert Corner
Coordinates to

Portrait Orientation

to Portrait)

(Portrait to Yes
Landscape)

Convert Corner
Coordinates to

Landscape Orientation

Translate Origin
in Positive-x

Direction

Rotate 90 degrees
CounterClockwise

Set Virtual [CTM] for
Landscape Orientation

600

602

Translate Origin
in Positive-Y

Direction

Rotate 90 degrees
Clockwise

604 Set Virtual [CTM] for
Portrait Orientation

606

Exchange Values of
Page Width (PageX)

and Page Height (PageY)

Reverse Value of Portrait

622

/

614

/

616

/

618

/

620

U.S. Patent Mar.20,2001 Sheet 37 of 46 US 6,205,452 Bl

;592
~~----------------~

X
-

I ----------., X
~96

>­
w
<D
<(
0...

(llxJiy)

y

<lJ
Ol
0

0...

x ~
w 2

>-<.9
w~
<9
~~

w
z -

X
QJ
Ol
0

0... .___ ______ >,

Op lEx__ I ~-~-------~~~

j~ooo~ .. ~------ PAGE X--~0
(NEW PAGE Y)

PAGE X-----,."1

PORTRAIT --> LANDSCAPE

FIG. 26A

608
f

toE----=- PAGE X
~ y (NEW PAGE Y) r ~10 (urx ury) ~ ~.-------------, -u

>- >-0 ~ s
~ w~ <-2 ~
(f_ ~~ ~ ~

lyt-----~ a_l* X ~ h (llxlly) L
OL X I

IE----PAGE X----->

LANDSCAPE --> PORTRAIT

FIG. 268

~,

U.S. Patent Mar.20,2001 Sheet 38 of 46 US 6,205,452 Bl

SETVIRTUALDEVICE

632

NO
Invoke

>------___.:~ EnableVirtuaiDevice

634

,----~------.~1
Define Virtual Page Size

[PageX PageY]

Define Corners of Virtual Page
[Ciipllx, Cliplly, Clipurx, Clipury]

Set [CTM] to System Default Matrix
for Current Output Device

(systemdict_initmatrix)

Execute Scale, Translate and
Rotate Procedures

Save Resultant Matrix as the
Virtual [CTM]

(Stored in DefaultMatrix)

644

646

Set Portrait = True
(Portrait Orientation)

NO

636

642

Procedure

633

,------------- ------------1
: Invoke Redefined Save 1

I

Operator :
(See Figs. 33 & 35) i

(Optional Procs. Only) :
~------------------------J

FIG. 27

48

Set Portrait= False
(Landscape Orientation)

Invoke Redefined INITCLIP
Operator to Set

Clipping Path Around the
Border of the Virtual Page

U.S. Patent Mar.20,2001 Sheet 39 of 46

IMPOSEJOB

Invoke
EnableVirtuaiDevice
Procedure (Fig. 23)

652

653

,·---------------- ----------------1 /
: Execute Redefined Save V

,---;> Operator and Store Saved State :
I I I

: : (Optional Procs. Only) :
I ~---------------- -----------------

654

Retrieve File/List Pair
:- from Instruction Set
I
I

56-

Invoke IMPOSEFILE
,__ Procedure

(See Fig. 29)

657

1 i ~p~~=~~t~o~~:~~~=i~i:~~:~~V
------J I

by Block 654 :
(Optional Procs. Only) :

I I
~---------------- ________________ !

Set lmageDone
=True

658

Execute 662

systemdict_ showpage

US 6,205,452 Bl

FIG. 28

664

END

U.S. Patent Mar.20,2001

IMPOSEFILE

PageOffset = CurrentPage
+ PageOffset + 1

Sheet 40 of 46 US 6,205,452 Bl

FIG. 29
670

672 673

Retrieve Entry from Entry List
[{user proc} page# {operands}

{user proc}]

CurrentPage =
Page # from Entry

678

Invoke SetVirtuaiDevice
Procedure (See Fig. 27)

Find Last Page
on Flat

Interpret Page Descriptions
(containing SHOWPAGE Operator)
in PostScript File Through Last Page

688

675

~ Execute
User

Procedure 676

Procedure

Invoke MakeNull Procedure 682

/

(see Fig. 30)
For Scaled-Down Virtual Device

(INITCLIP)

/'86

690

r----------- -----------

: Get Next File/List Pair Flush File and
Close File

-----------------:;>J, from IMPOSEJOB
Procedure

U.S. Patent Mar.20,2001 Sheet 41 of 46 US 6,205,452 Bl

MAKE NULL FIG. 30

\II

Calculate and Save MidPoint
69

/ of

8

Virtual Clipping Path
in Device Space

\I 70 0

Get Virtual [CTM]
(Stored in DefaultMatrix)

/

'II 702

Calculate Sx and Sy /
Scale Factors

\V 704

Scale Virtual [CTM] /

'II 706

Store Scaled Virtual [CTM] v
as the New Virtual [CTM]

in Defau ltMatrix

'~
Set MidPoint of Scaled Clipping Path

Equal to Original v

708

/
MidPoint Coordinates
(Saved by Block 698)

U.S. Patent Mar.20,2001 Sheet 42 of 46 US 6,205,452 Bl

714

718

720

722

724

726

No

No

Increment Currentlndex to Get
Next Entry from Entry List

No

Reset Graphics State to Default
(systemdict_initgraphics)

Retrieve Entry from Entry List
(Operands to setvirtualdev1ce)

Invoke setvirtualdevice Procedure

CurrentPage = Page Number from
Retrieved Entry (Next Page on Flat)

Invoke MakeNull Procedure (Fig. 30)
~-~

(assume next page not on flat)

FIG. 31

Execute Second
User Procedure

(Offsets)

730

Get Value of lmageDone
("True" means flat is complete)

Reset lmageDone to False

Pop User
Procedure

728

732

U.S. Patent Mar.20,2001

Redefined

Set Virtual [CTM]
(redefined INITMATRIX)

NO

YES 744

J, /
Get Entry from
Entry/List Pair

' 745

Execute User v
Procedure

746

Invoke SetVirtuaiDevice v
Procedure (See Fig 27)

\I
;48

Pop Page Number from
Retrieved Entry

Sheet 43 of 46

FIG. 32

752

NO

YES

~ 754
STOP /

"Done with
Current File"

;a

US 6,205,452 Bl

756

Invoke
Redefined
INITCLIP
Operator

(See Fig. 21}

Blank Out Virtual Page
.,., (Erase Any Stray Marks -

from Non-Selected Pages)

U.S. Patent Mar.20,2001

Save Current [CTM]

Set [CTM] =
Identity Matrix

YES

Set P1 = Current Path
(Invoke MakePath

Procedure)

806

FirstOp = Lineto
(Add Segment to

Current Path)

I

Sheet 44 of 46 US 6,205,452 Bl

00

801

NO

FIG. 33

Set P1 = No-op
(Empty) Path

808

810
804

FirstOp = Moveto
(Set CurrentPoint)

Create Unlimited
Bounding Box
(SetBigBBox)

812

Invoke FirstOp to Append Page
Size (PageX and PageY)

Components to Current Path

Append Virtual [CTM]
Components to

Current Path

Replace Identity [CTM] with
Previously Saved [CTM]

814

818

820

U.S. Patent Mar.20,2001 Sheet 45 of 46 US 6,205,452 Bl

830

Save Current [CTM] FIG. 34
832

Set [CTM] = Identity Matrix

34

Retrieve Current Path Operands (includes page
size & virtual [CTM] components at time of save)

Set ResDefaultMatrix and ResPageSize to [CTM]
and Page Size from Current Path (at time of save)

Yes 856

Remove Page Size and Virtual
[CTM] Components from

Current Path

Restore Current Path

Restore [CTM] to Value
Saved by Block 830

No

858

860

852

854

40

Set [CTM] to Value Saved
by Block 830

42

Set P1 =Path at Time of Save
(without PageSize and [CTM])

850

844

846

I
Change Page

Orientation
(Invoke

SetPortrait
Procedure)

Calculate New [CTM]

Execute Correct Clipping Path (C1)
in Virtual [CTM] Coordinate System

Restore Current Path (P1)
in Virtual [CTM] Coordinate System

U.S. Patent Mar.20,2001 Sheet 46 of 46 US 6,205,452 Bl

Redefined
SAVE/GSAVE

Invoke VSAVE
Procedure (Fig. 33)

I

Invoke Renamed
Standard Save/GSave

Operator

Set [CTM] =
Identity Matrix

Restore Current Path
(Saved in P1)

\~

Restore [CTM] Saved by
Block 500 of VSAVE
Procedure (Fig. 33)

FIG. 35

FIG. 37

872

874

v

v76

8 78

v
8 80 v

902

904

892
Put Values of
Variables on

Operand Stack

Invoke Renamed
Standard Restore

Operator

94

Set Variables Equal
to Their Pre-Restore
Values (saved on
Operand Stack)

896

Invoke VRESTORE
Procedure

(See Fig. 34)

FIG. 36

Redefined
GRESTORE/

GRESTOREALL

898

Invoke Renamed Standard
Grestore/Grestoreall Operator

Invoke VRESTORE Procedure
(See Fig 34)

US 6,205,452 Bl
1

METHOD OF REPRODUCING VARIABLE
GRAPHICS IN A VARIABLE IMAGING

SYSTEM

RELATED APPLICATIONS

This application is related to the subject matter described
in co-pending U.S. application Ser. No. 08/802,337 entitled
"Imposition Process and Apparatus for Variable Imaging
System," filed Feb. 2, 1997, which is a continuation-in-part
of U.S. application Ser. No. 08/478,397, filed Jun. 7, 1995
and a continuation-in-part of U.S. application Ser. No.
08/627,724, filed Apr. 2, 1996.

TECHNICAL FIELD

The present invention relates generally to reproduction
methods and systems, and more particularly to a method of
and system for selectively reproducing variable graphics
information.

BACKGROUND ART

Most printing systems in use today utilize printing plates
or cylinders which are engraved or photochemically pro­
cessed to create an image thereon. Ink is then deposited on
the plate or cylinder and the ink is thereafter transferred to
a substrate, such as paper. In a conventional printing press,
a number of pages are printed on a sheet of paper to form a
signature which is then folded and assembled with other
signatures. The assembled signatures are then bound,
trimmed and finished by finishing apparatus to produce
finished books, such as magazines, catalogs or any other
printed and bound matter.

Often, there is a need to produce different versions of
books and/or customized books within a single press run.
For example, it may be desirable to produce a number of
standard books together with a number of books having
additional and/or different signatures or pages therein. Also,
it may be necessary or desirable to provide customized
information in the form of an address label, personalized
information or the like on the inside or outside of finished
books. In either case, conventional printing systems are not
easily adaptable to produce books of these types.

A printing system which has the ability to produce dif­
fering book versions and/or books with customized infor­
mation is disclosed in Riley U.S. Pat. No. 4,121,818,
assigned to the assignee of the instant application. The
printing system includes a number of packer boxes disposed
adjacent a binding chain wherein each packer box stores a
plurality of signatures. A control is included for controlling
the packer boxes to selectively feed signatures onto chain
spaces of the binding chain so that books of varying content
can be produced. Customized information can be printed on
the signatures by means of an ink jet printer which is
selectively operated by the control. Other types of customi­
zation can be effectuated, such as by inserting or onserting
cards or the like.

Other systems for producing customized books are dis­
closed in Abrams et al. U.S. Pat. No. 3,899,165, Wong et al.
U.S. Pat. Nos. 4,500,083 and 4,674,052, Wong U.S. Pat. No.
Re 32,690 and Berger et al. U.S. Pat. Nos. 4,768,766 and
4,789,147.

Image manipulating systems have been developed which
permit gathering of images in an office or home environ­
ment. For example, conventional word processing programs,
such as Microsoft® Word®, WordPerfect® and the like,
permit a user to import images into a page and also allow a

2
user to command which pages of a document to print. In
addition, macros (i.e., a sequence of commands) can be
assembled and executed within these programs which can
allow printing of particular document pages in a certain

5 order. Still further, most word processing programs have
merge capability wherein a customized image is merged
with other standardized information and printed or dis­
played. As one example, customized information in the form
of addressee and address information may be merged with
standardized return address information and printed on a

10
series of envelopes.

A different image gathering capability provided by CAD
(computer aided design) software, sometimes referred to as
"layering," involves the creation and storage of a base page
and one or more layer pages. A user can issue commands to

15 display or print the base page and one or more of the layer
pages simultaneously atop one another to achieve an effect
similar to the overlay of transparencies so that a composite
page appearance results.

While the foregoing image manipulating systems allow
20 some image gathering capability, none is effective to assist

in the rapid production of different book versions. Of course,
CAD systems are primarily designed for line art and not text
or graphic images, and hence are of only limited use.
Further, if one were to use word processing software to

25 produce book versions, it would be necessary to issue
commands to separately print the pages of each book version
just before such version is to be produced. That is, a user
would have to create and store pages to be included in a first
book version and then command the software to print as

30 many copies of the first version as are needed. Thereafter,
the user would have to recall the pages of the first version
from memory, edit and store the pages to create pages to be
included in a second book version and then command the
system to print the required number of books of the second

35 version. Similar steps would have to be undertaken for each
other book version to be produced. Alternatively, the pages
of the different book versions could be created and stored
and thereafter printed together. In either event, where many
book versions are to be produced, such a process would be

40 quite time-consuming. In addition, image importation and
merge routines provided as a part of word processing
software are adapted for use on a sub-page basis only and
hence are of only limited usefulness in the book production
environment. Still further, data manipulated by word pro-

45 cessing software are largely (if not entirely) in symbolic
format. As a result, data to be displayed or printed must be
first rasterized by a raster image processor (RIP), which
utilizes complex and time-consuming computational rou­
tines which further increase production time to an economi-

50 cally impractical level.
Recently, new printing systems have been developed,

called "demand printers," which are capable of high speed
printing of images from electronic representations thereof.
The demand printer produces high quality color (or black

55 and white) images using a set of fusible toners in an
electrophotographic process. More particularly, a web of
paper is passed adjacent a series of drums, each of which has
been electrostatically charged according to an image pattern
for a particular color to be applied to the web. The charge is

60 transferred to the paper and an oppositely charged toner of
the proper color is brought into contact with the paper. The
oppositely charged web and toner attract so that the toner is
held on the paper as other colors are applied thereto. The
toners and paper are thereafter heated to fuse the toners to

65 the paper to produce the final image. The web is then cut into
sheets (or "forms") and the forms are further processed as
needed to produce a final product.

US 6,205,452 Bl
3

Unlike conventional presses which utilize engraved or
photochemically prepared plates or cylinders, demand print-

4

ers are capable of rapidly printing high quality images of
differing content owing to the fact that the images are
produced by an electrophotographic process. That is, instead 5

of the need to replate and re-engrave a gravure cylinder
when a different image is to be printed therewith, it is only
necessary to change the charge applied to the drums of the
printer in order to make such change. Thus, different images
can be printed by the same printer without significant delays. 10

This advantage makes the demand printer desirable for use

(a) creating a database having a number of entries, each of
which represents variable information and wherein
selected entries represent variable graphics information;

(b) developing template page files, each page file having
master data representing fixed information and area data
representing an area of a page for variable information;

(c) selecting areas of the page for the variable graphics
information; (d) specifying graph parameters; and (e)
causing the display device to display the pages with the
fixed information, selected variable information from the
database, and selected variable graph information from

in certain production environments. the database, wherein the selected variable graphics infor­
mation is displayed according to the specified graph
parameters.
According to a preferred embodiment of the invention,

the step of selecting the areas of the page for variable
graphics information further comprises: (i) creating an
image box at a selected area of the page; (ii) selecting the
entries in the database corresponding to the variable graph-

Warmus, et al., U.S. patent application Ser. No. 08/802,
337, entitled "Imposition Process and Apparatus for Variable
Imaging System," discloses an apparatus and method for 15

controlling a display device so that fixed and variable
information may be reproduced in a simple and effective
manner. More particularly, first and second sets of template
data representing associated first and second template pages,
respectively, are developed. Each set of template data
includes master data representing fixed information and area
data representing an area of a page for variable information.

20 ics information; (iii) layering a text box over the image box;
(iv) inserting the specified graph parameters and the selected
database entries into the text box; and (v) tagging the text
box as containing variable graphics information. The text
box may be tagged by assigning the text box an unusual

A database is also developed having a number of entries
each of which represents variable information. The Warmus
et al. apparatus and method generates page definition lan­
guage representations of each master and variable page in
accordance with the sets of template data and the entries in
the database and automatically imposes or positions the
pages to be reproduced on a display device, such as a printer
or computer monitor.

Some users of variable demand printing systems may
wish to produce books containing variable graphics
information, such as pie charts or bar graphs, which are
customized for each book. For example, a financial institu­
tion may want to produce individual booklets relating to
investment information and illustrate, using a bar graph or
pie chart, the amount or percentage of money invested in a
variety of funds. In prior systems, such as the Warmus et al.
system described above, customized graphics information
had to be preprocessed by generating each graph off-line and
then incorporating the customized graphs into the appropri­
ate pages and books. Vinberg, et al., U.S. Pat. No. 4,800,510,
is an example of a prior art system for preprocessing
user-input parameters into graphic format.

These prior methods, which required preprocessing of
graphics information, were time-consuming and expensive.
Thus, there remains a need for a system for generating
variable graphics information "on-the-fly," i.e., generating
graphics as booklets are being imposed and/or printed,
without the need for preprocessing the information.

SUMMARY OF THE INVENTION

The present invention is an enhancement of the Warmus
et al. system (described in co-pending patent application Ser.
No. 08/802,337) which allows variable graphics information
to be generated "on-the-fly" along with other master and
variable image and text information. In general, a database
of the information to be represented in graphic format, along
with other variable information, is created and a user is
prompted to select various graph parameters (size, type,
colors, etc.). Instructions are downloaded to the interpreter
(or RIP) such that the page description language files for
each page retrieve information from the database and gen­
erate a graph according to the user-specified parameters.

25 attribute (i.e. color or font) or by inserting a text delimiter in
the text box. The graph parameters (i.e. graph type, size,
labels, scaling, etc.) may be specified by prompting a user to
select parameters, by setting the parameters to a default

30

value or by a combination of both.
Also according to a preferred embodiment, the step of

causing the display device to display the pages comprises
determining if a page file contains an area selected for
variable graphics information and, if a page file contains an
area selected for variable graphics information, saving the

35 specified graph parameters and selected entries from the
database representing variable graphics information, and
executing a graph file to generate a graph using the specified
graph parameters and selected database entries.

According to an alternative embodiment of the invention,
40 the display device displays the variable graphics information

as a bar chart by: (i) generating a bar chart at the selected
area on the page, wherein the chart includes a bar for each
database entry representing variable graphics information
and each bar corresponds to a maximum value of the

45 database entries representing variable graphics information;
and (ii) analyzing each database entry representing variable
graphics information and covering a portion of the bar
corresponding to that entry based on a comparison of the
value of that entry with the maximum value. The portions of

50 the bars are covered using named image boxes, wherein each
named image box corresponds to a name of a database entry.

According to another alternative embodiment, the vari­
able graphics information is displayed as a bar chart and the
display device displays the pages with selected variable

55 graphics information by: (i) generating a bar chart at the
selected area on the page, wherein the chart includes an
image box for each database entry representing variable
graphics information and each image box corresponds to a
maximum value of the database entries representing variable

60 graphics information; (ii) retrieving the value of each data­
base entry representing variable graphics information; and
(iii) anamorphically scaling each image box to correspond to
the value of the database entry. This embodiment is particu-
larly suited for graphs using graphic objects.

According to one aspect of the present invention, a 65

method of controlling a display device to display variable
graphics information, comprises the steps of:

According to yet another alternative embodiment, the
display device displays the pages with selected variable
graphics information by: (i) retrieving the values of the

US 6,205,452 Bl
5

database entries representing variable graphics information;
(ii) transferring the database values to a spreadsheet program
(such as Excel®); (iii) generating a graph using the spread­
sheet program based on the transferred database values and
the specified graph parameters; and (iv) linking the graph 5

back to the selected area on the pages.
According to another aspect of the present invention, a

method of reproducing pages including variable data,
wherein the variable data is stored in a database, the method
comprises the steps of (a) creating template page files, each 10

page file having fixed information and a placeholder at the
location on the page where the variable data will be repro­
duced; (b) specifying graph parameters; (c) selecting entries
from the database that contain variable graph data; (d)
tagging the placeholders that correspond to variable graph 15

data; (e) layering the specified graph parameters and the
selected variable graph data entries from the database over
the placeholder corresponding to the variable graph data; (f)
interpreting the page files, including executing a graph file
to generate a graph using the specified graph parameters and 20

variable graph data entries; and (g) transmitting the pages to
a display device.

Other features and advantages are inherent in the appa­
ratus claimed and disclosed or will become apparent to those
skilled in the art from the following detailed description in 25

conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a prior art method
of producing books;

FIG. 2 is a block diagram of a method of producing books
implementing the present invention;

30

6
FIG. 13 is a flowchart illustrating in detail the program­

ming implemented by the block 348 of FIG. 12 which
determines which pages should be printed for a particular
record in the press command file;

FIG. 14 is a flowchart illustrating in detail the program­
ming implemented by the block 350 of FIG. 12 to determine
whether the pages should be forced to the left or right-hand
side of the book;

FIG. 15 is a flowchart illustrating in detail the program­
ming implemented by the block 352 of FIG. 12 to pad the
pages included in the book into a multiple of the number of
pages to be printed on a sheet;

FIG. 16 is a sample window to prompt a user to provide
various information to select imposition and printing styles;

FIG.17 is a flowchart illustrating the programming imple­
mented to RIP page files to Tiff format for use in "Get Tiff"
imposition;

FIG. 18 is flowchart illustrating the programming imple­
mented to impose pages using "Get Tiff" imposition;

FIG. 19 is a more detailed block diagram of the print
system 79 (shown in FIG. 4) incorporating the imposition­
on-the- fly procedures;

FIG. 20 is a flowchart illustrating the standard operation
of the Level 2 Postscript® showpage operator;

FIG. 21 is a flowchart illustrating the program steps
implemented by the redefined PostScript® initclip operator
according to the imposition-on-the-fly procedures;

FIG. 22 is a flowchart illustrating the program steps
implemented by the redefined PostScript® transform opera­
tors according to the imposition-on-the-fly procedures;

FIG. 3 is a block diagram illustrating an exemplary
system for implementing the method of the present inven­
tion illustrated in FIG. 2;

FIG. 23 is a flowchart illustrating the program steps
implemented by the Enable VirtualDevice procedure accord-

35 ing to the imposition-on-the-fly procedures;
FIG. 4 is a block diagram illustrating one of the demand

printing systems of FIG. 3 in greater detail;
FIG. 5 is a generalized diagram of the steps implemented

by the method of the present invention;
FIGS. 6a and 6b are elevational views of portions of a

sample book that may be produced by the present invention;
FIGS. 7a, 7b and Sa, Sb are elevational views of portions

of other sample books that may be produced by the present
invention;

FIG. 9 is a flowchart illustrating programming that may be
executed by a user on a personal computer to create the
template files 106 of FIG. 5;

FIG. 24 is a flowchart illustrating the program steps
implemented by the DisablePageDevice procedure accord­
ing to the imposition-on-the-fly procedures;

FIG. 25 is a flowchart illustrating the program steps
40 implemented by the SetPortrait procedure according to the

imposition-on-the-fly procedures;

FIG. 26A is a diagram illustrating the conversion of a
portrait-oriented page to a landscape-oriented page accord-

45 ing to the SetPortrait procedure of FIG. 24;

FIGS. 9A-1 through 9A-4 are flowcharts illustrating pro­
gramming of the EPS graph file to generate the variable

50
graphs of the present invention;

FIG. 26B is a diagram illustrating the conversion of a
landscape-oriented page to a portrait-oriented page accord­
ing to the SetPortrait procedure of FIG. 24;

FIG. 27 is a flowchart illustrating the program steps
implemented by the setvirtualdevice procedure according to
the imposition-on-the-fly procedures;

FIGS. 10a-10f, when joined along similarly-lettered
lines, together represent programming executed by the con­
trol unit 52 of FIG. 3 to create the PDL master and variable
files;

FIG. 11 is a flowchart illustrating programming imple­
mented by the RIP 82 of FIG. 4 to generate the variable
graphics information of the present invention;

FIGS. llA-1 & llA-2 illustrate an alternative ("named
image box") method for generating variable graphs;

FIG. 12 is a flowchart illustrating the programming imple­
mented by the control unit 52 to generate a page description
language instruction set specifying which pages should be
printed and how the pages should be positioned (or imposed)
for printing;

FIG. 12A is a sample window to prompt a user for the
information needed to create a pagination file;

55

FIG. 28 is a flowchart illustrating the program steps
implemented by the Imposejob procedure according to the
imposition-on-the-fly procedures;

FIG. 29 is a flowchart illustrating the program steps
implemented by the ImposeFile procedure according to the
imposition-on-the-fly procedures;

FIG. 30 is a flowchart illustrating the program steps

60
implemented by the MakeNull procedure according to the
imposition-on-the-fly procedures;

65

FIG. 31 is a flowchart illustrating the program steps
implemented by the redefined EndPage procedure according
to the imposition-on-the-fly procedures;

FIG. 32 is a flowchart illustrating the program steps
implemented by the redefined BeginPage procedure accord­
ing to the imposition-on-the-fly procedures;

US 6,205,452 Bl
7

FIG. 33 is a flowchart illustrating the program steps
implemented by the Vsave procedure according to the
imposition -on-the-fly procedures;

FIG. 34 is a flowchart illustrating the program steps
implemented by the Vrestore procedure according to the
imposition -on-the-fly procedures;

FIG. 35 is a flowchart illustrating the program steps
implemented by the redefined Postscript® save operators
according to the imposition-on-the-fly procedures;

FIG. 36 is a flowchart illustrating the program steps
implemented by the redefined PostScript® restore operator
according to the imposition-on-the-fly procedures; and

8
press command file (also referred to as a "book ticket" file)
is developed which specifies the manner in which data
contained within the master and variable page files are to be
merged to produce printed pages. The format of the press

5 command file may be, for example, of the form specified by
Barco Graphics of Gent, Belgium, which is particularly
suited for control of a DCP-1 digital color press manufac­
tured by Xeikon of Mortsel, Belgium. Alternatively, the
format of the press command file may be of the form

10
specified for control of a DocuPrint printer, manufactured by
Xerox Corporation. Other demand printers include the IBM
3900 or Siemens 2090 Twin or 2140 Twin. It should be noted
that the apparatus and method of the present invention are
not limited to use with a particular type of demand printer or FIG. 37 is a flowchart illustrating the program steps

implemented by the redefined PostScript® restore and gre-
15

storeall operators according to the imposition-on-the-fly
procedures.

a particular system for controlling such a printer, inasmuch
as the invention can be adapted for use with any type of
printer or control whether located locally or remotely.

The master and variable page files and the press command
file are converted by a collator and raster image processor
(RIP) into bitmaps which may be stored in a memory. The

DETAILED DESCRIPTION OF 1HE
PREFERRED EMBODIMENTS

FIG. 1 illustrates a prior art method of producing books,
for example, as shown in the above-identified Riley et al.
'818 patent. During a publishing step 20, the contents of one
or more book versions are determined. Each version may
comprise, for example, a set of standard or common pages.

20 stored bitmaps are used to control one or more demand
printers and/or any other type of display device, such as a
laser printer, a CRT, an LCD display or the like so that the
device displays pages having fixed and variable information
thereon. Alternatively, the master and variable page files

25 may be premerged to create a plurality of combined files
each representing a page to be reproduced with master and
variable information. The combined files can be then sent to
any type of printer or other display device, whether local or

In addition, some of the versions may include one or more
additional pages or other customized information.
Thereafter, during a preliminary step 22, color correction of
color images is undertaken together with undercolor
removal and screening for halftone images. During a pre- 30
press step 24, page imposition is effected and printing
cylinders or plates are prepared. The plates or cylinders are
then used during a printing step 26 to prepare signatures
which are loaded into packer boxes (not shown). As noted in
the Riley et al. '818 patent identified above, the signatures 35
are then selectively collected on a gathering chain (not
shown) during a book assembly step 28 and the gathered
signatures are bound and trimmed to create the books. The
books are thereafter distributed during a step 30 to users via
one or more distribution systems, for example, the U.S. 40
Postal Service.

remote. Also, the combined files can be converted to a
suitable format (e.g., Acrobat® PDF format) and transmitted
to a remote location using a facsimile machine, e-mail, the
Internet/World Wide Web or other transmission medium, if
desired. Advantageously, the combined files may be trans­
mitted over the Internet or any other networked or linked
computers, such as a company intranet. In this case, an
electronic page containing customized data can be sent over
the Internet/intranet to a user based upon user demographic
(s), a user search and/or any other identifiable user interest
(s). For example, a customized Internet page could be sent
with links to other web pages of interest to a user or a
customized page may be sent in response to a user search for

As should be evident from the foregoing, customization
occurs during the book assembly step 28, inasmuch as the
choice of particular signatures to be included in a book is
made at that time. In addition, customized information can
be printed onto selected signatures using an ink jet printer
disposed adjacent the gathering chain. Thus, for example,
addressee information can be printed by the ink jet printer on
assembled books so that preprinted addressee labels need
not be used. Other types of customization can be effected at
this time, for example, by inserting or onserting cards into or
onto a stack of collected signatures, affixing a specialized or
customized cover on a gathered stack of signatures, or the
like. Customization at this point in the production process is
simpler and less expensive than, for example, separately
printing each book version with customized information.

FIG. 2 illustrates a block diagram of a method 40 accord­
ing to the present invention which may be used in place of
the method of FIG. 1 to produce books. The method 40
includes a step 42 which utilizes the output of publishing and
preliminary steps 36, 38 and produces books for distribution
according to the step 30 of FIG. 1. The step 42 creates one
or more master and variable page files in, for example, a
page description language (PDL) such as Postscript®
(PostScript® is a trademark of Adobe Systems, Inc. for its
page description language) representing pages to be pro­
duced. In addition, as noted in greater detail hereinafter, a

information on a particular subject. Alternatively, or in
addition, ads could be generated and sent as a web page to
one or more users based upon user demographics. As a

45 further example, personnel information concerning a par­
ticular employee may be sent to the employee in response to
a request for information.

If the pages are to be displayed by rendering the pages on
the demand printer, the assembled books may be bound and

50 trimmed and, if desired, further customized, during a fin­
ishing step.

FIG. 3 illustrates a system 50 which implements the steps
36, 38 and 42 in the method 40 of FIG. 2. A control unit 52,
which may be implemented by a personal computer or

55 another type of computer, includes a memory 53 and stores
therein data representing images to be printed. As noted in
greater detail hereinafter, the data may be specified by a
publisher using a personal computer 54 or any other type of
computer and may comprise one or more template files

60 specifying pages to be produced with master or fixed printed
information (i.e., printed information which does not vary
from book to book of the same version) and variable printed
information (which typically varies from book to book). The
variable information may be stored in a database created by

65 the publisher and the template file(s) specify the locations on
particular pages for variable information stored in the
database, as noted in greater detail hereinafter.

US 6,205,452 Bl
9

If desired, image data may be obtained from any other
type of device or devices, such as a scanner which scans
input copy, data supplied over a network or any other source.
The control unit 52 is further responsive to control and
makeready files and causes one or more demand printing
systems 62 to print desired pages. While three demand
printing systems 62a-62c are illustrated in FIG. 3, it should
be understood that the control unit 52 may operate a different
number of demand printing systems, as desired. Also, the
control unit 52 may operate a fax machine 64 and/or may
communicate with other remote devices to send properly
converted combined files, as desired and as noted above. In
the case of other remote devices, a modem 65 may be
operated by the control unit 52 to transmit data representing
one or more pages to be displaced by a display device at a
remote location over phone lines (land lines and/or cellular)
or a combination of phone lines and the Internet. Alterna­
tively or in addition, the data may be sent to a local or remote
location at least in part over an intranet or another computer
network through a direct connection therewith. The com­
bined files may be printed or may alternatively be repro­
ducible in a different medium and/or may comprise a non­
static image or other information, e.g., movies or audio.

The pages printed by the demand printing system 62 may
be supplied to a finishing apparatus 66 which includes
various auxiliary production devices and device interfaces
for assembling the pages to produce finished books which
are ready for distribution. The finishing apparatus 66 may
include one or more gathering devices 70 for gathering
printed pages into books, one or more ink jet printers 72 for
printing additional customized information, such as
addressee information, on each book, one or more label
printers 74 for printing address labels and/or other control
devices 76. In addition, one or more detectors 78 may be
provided to sense when a defective book is produced. The
control unit 52 may be responsive to the output of the
detector 78 to reorder a defective book at an appropriate
point in the production sequence thereof so that advantage
can be taken of postal discounts, if possible.

One or more components of the finishing apparatus 66
may be physically located on the demand printer (i.e.
"online finishing"). Alternatively, the finishing apparatus 66
may be physically separate from the demand printer (i.e.
"offline finishing").

FIG. 4 illustrates the demand print system 62a of FIG. 3

10
by Xerox Corporation and the RIP 82 may be a Xerox
DocuPrint RIP. It should be noted that a different print
system and/or demand printer may alternatively be used,
such as the Indigo printer manufactured by Indigo Nev., of

5 Maastricht, Netherlands, if desired.
FIG. 5 illustrates in diagrammatic generalized form the

method of the present invention. For the purpose of explain­
ing the present invention, as an example, it will be assumed
that the demand print system 62a will be operated to produce

10 a number of multiple-page books in the form of a brochure
in duplex (or "saddle-stich") format. FIGS. 6a and 6b
illustrate four pages P1-P4 printed on a single sheet of paper
100 and to be included in a brochure. The sheet of paper 100
includes a first side 100a with printed pages P1, P4 thereon

15 and a second side 100b with pages P2, P3 printed thereon.
(As will become evident hereinafter, the use of designations
P1-P4 is not meant to imply that such pages will necessarily
become pages 1, 2, 3 and 4 of the finished book.) In addition,
pages P1-P4 are imposed such that the page P1 is placed on

20 a right-hand portion 100a-r of the side 100a while the page
P4 is placed on a left-hand portion 100a-l of the side 100a.
Further, the page P2 is placed on a left-hand portion 100b--l
of the side 100b while the page P3 is placed on a right-hand
portion 100b--r of the side 100b. In this fashion, when the

25 sheet of paper 100 is folded along a fold line 102 with the
pages P1 and P4 on the outside, the pages P1-P4 appear in
sequence. (The format shown in FIGS. 6A and 6B is often
referred to as "saddle stitch" imposition and is commonly
used in magazines.) Because each book to be produced in

30 this example includes multiple sheets of paper (or "forms"),
each folded once along a fold line, the imposition process
takes into account shingling effects but not bottling effects.
It should be noted both of that such effects will generally
have to be taken into account when more than two pages are

35 to be printed on a single side of a sheet of paper and
thereafter folded multiple times and assembled with other
multiple-folded printed sheets of paper to create a book.

In addition to the foregoing, in the first example, assume
that the pages P1 and P4 will become the outside front and

40 back covers, respectively, of a finished book and include
variable and fixed information thereon. Further, assume that
the pages P2 and P3 will become the inside front and back
covers, respectively, (as must be the case if P1 and P4 are the
outside front covers) and include fixed information only

45 thereon. For example, the page P1 may include variable
information in the form of a personalized message, a vari­
able image, or the like in an area 110 whereas the page P4
may include other variable information in an area 112, for
example, postal information for mailing the brochure to an

in greater detail, it being understood that the systems 62b
and 62c are functionally similar. The system 62a includes a
print system 79 having a press controller 80, a collator 81
and a raster image processor (RIP) 82 which are operable in
response to press commands generated by the control unit
52. A collator is an electronic device for storing raster image
processor files (i.e., bitmap files) and delivering selected
files to a digital press in real time, such that the digital press
can run at full speed while processing and printing unique
page data for each book produced on the press. The RIP 82 55

converts the page files to bitmap format or any other format,
such as a symbolic printer control language. The collator 81
includes memory in the form of mass storage drives and
physical memory and collates the bitmap page files. If
desired, the collator 81 and/or RIP 82 may comprise a part

50 addressee. Corresponding front and back pages of the
remaining books may include different variable information.
The remaining printed information on pages P1-P4 may be
identical to the printed information on corresponding pages
of remaining books.

The books to be produced may include the same or
differing number of forms and may have the same or
differing numbers of pages. For example, the pages P1-P4
may be assembled with a number of other printed forms
comprising twelve additional pages to produce a first book

60 having sixteen pages. Another book to be produced in the
same run may include some or all of pages P1-P4 and a
second number of forms printed with twenty other pages,
some of which may or may not be identical to the twelve
additional pages of the first book. Filler pages may be placed

of the press controller 80. The controller 80 instructs the
collator 81 to send page files to a demand printer 84. The
print system 79 may comprise the PrintStreamer system,
manufactured and marketed by Barco Graphics of Belgium,
while the demand printer 84 may comprise the Xeikon
DCP-1 digital color press noted above. Alternatively, the
demand printer 84 may be a DocuPrint printer manufactured

65 in some or all books to cause such book(s) to have a certain
number of pages. This may be necessary or desirable to
result in a book length which is evenly divisible by four (in

US 6,205,452 Bl
11

the event pages are imposed as two-page spreads) and/or to
insure that particular page(s) appear on the left-hand or
right-hand side in the finished book.

12
such as QuarkXPress®. Preferably, however, the PDL mas­
ter page files 122 are provided to the print system 79 and
imposed according to either the "GetTiff" or the
"imposition-on-the-fly" imposition processes, as explained In fact, the books to be produced in the same press run

may be different in terms of page content and/or appearance,
book length, book size (by changing page imposition
parameters), book version, etc Specifically, for example,
the pages of FIGS. 7a, 7b and Sa, Sb may be produced and
assembled in different book versions together with the book
version incorporating the pages of FIGS. 6a and 6b in the
same production run or job. Pages P5-PS of FIGS. 7a and

5 in detail below.
A further set of working files is stripped of all fixed

information to create stripped variable page files 126 defin­
ing template pages having fixed information removed there­
from and further having the area data defining the areas 110,

7b are identical to the pages P1-P4, respectively, of FIGS.
6a and 6b except that an additional area 113 is provided on
the page P5 for placement of variable information, in
addition to the areas 110 and 112. Because of the addition of
the area 113, the remaining master information appearing in
an area 114 differs from master information appearing in an
area 116 of the page P1 of FIG. 6a.

10 112. The data representing template pages having variable
information thereon are expanded into a set of intermediate
page files. In the example of FIGS. 6a and 6b and under the
assumption that three books are to be printed, two interme­
diate page files 130, 132 are thus produced. The file 130
includes a file portion P1-a defining the position of variable

15
information to be produced on the page P1 for the first book.

The book version incorporating eight pages P9-P16 of
FIGS. Sa and Sb differs from the book versions incorporat­
ing the pages of FIGS. 6a, 6b and 7a, 7b not only in terms
of content of master and variable information, but also
number of pages and page size. Specifically, the pages P9,
P12, P13 and P16 are to be printed on a first side 117a of a

Two other file portions P1-b and P1-c define the position of
variable information to be produced on the front outside
covers of the remaining two books. In like fashion, file
portions P4-a, P4-b and P4-c represent the position of

20
variable information to be reproduced on the back outside
covers of the three books. At this point, data is also con­
tained in each of the files 130, 132 identifying the entries in
the database 10S to be placed in the areas 110, 112 during

25 sheet of paper 11S and the remaining pages P10, P11, P14
and P15 are to be printed on a second side 117b of the sheet
11S. In addition, the pages P11-P14 are printed upside down
relative to the remaining pages so that, when the sheet 11S
is folded first along a fold line 119a and then along a fold

30 line 119b, the resulting pages P9-P16 appear in order.
Thereafter, the folded sheet 11S is trimmed to separate the
pages P9-P16. As should be evident, the pages P9-P16 are
one-half the size of the pages P1-PS, and further include
different master and variable information thereon. The

35 demand printer may also have multi paper trays to select
different paper sizes, stocks, colors etc. or preprinted sheets
to be included in the finished book.

printing.
The files 130, 132 are then converted into variable page

files 134, 136. The files 134, 136 are identical to the files
130, 132, respectively, except that the data in each file
identifying entries in the database are replaced by the actual
data stored at such entries. The files 134, 136 are then
converted into files 137, 13S in a PDL format, for example,
PostScript®.

Like the master PDL files 122, the variable PDL files 137,
13S may be converted into two-page spreads by a page
make-up program such as QuarkXPress®. Preferably,
however, the variable PDL files 137, 13S are provided to the
print system 79 and imposed according to the imposition
procedures of the present invention, as explained in detail
below.

The print system 79 operates in response to the press
commands in a press command file 140 and merges the PDL
master page files 122 with the PDL variable files 137, 13S
to create the finished books or book versions. Alternatively,
the master page files 122 may be premerged with the PDL
variable files 137, 13S before the files are provided to the
print system 79.

The database 10S is assembled by creating an ASCII file
having a plurality of records wherein each record includes
one or more fields entered into the database in tab-delimited

Referring again to FIG. 5, one or more template files 106
are developed by a publisher specifying the content

40
(including appearance) of fixed information and the posi­
tioning of all information (i.e., fixed and variable) on the
different books or book versions. A database 10S is also
developed by the publisher using the personal computer 54
specifying the content of variable information to be placed

45
in variable information areas, for example, the areas 110,
112 on the pages P1, P4, respectively, of FIGS. 6a and 6b.
The database 10S includes variable text and graphic infor­
mation and further includes control information, as noted in
greater detail hereinafter.

The template files 106 include data specifying the position
and content of fixed information on the pages to be printed.
Specifically, the template files 106 define template pages
wherein each template page includes data representing any
fixed information to be reproduced on corresponding pages 55

of the books or book versions and area data representing any
area(s) on the corresponding pages where variable informa­
tion is to be reproduced. The template files are duplicated to
create working files. One set of working files is stripped of

50 format (i.e, the fields are separated from one another in each
record by tab keystrokes and the records are separated from
one another by line returns) and wherein the fields are
arranged under field names of a header. Each field may
include text to be reproduced on a page or a name of an
image file stored in the memory 53 and defining an image to
be reproduced on a page.

In addition to the foregoing data, the database 10S may
include an optional field designating the number of copies of
each book to be produced, an optional townsort image field,
a version identification field indicating book version number
if multiple book versions are to be produced, an optional
distribution list field, control data and the like. A sample
database is set out below having a header consisting of
fourteen fields (i.e., "version," "address1," "address2," etc.)

all area data relating to placement of variable information to 60
create stripped master page files 120 defining template pages
having only fixed information thereon. The stripped master
page files are then converted into PDL master page files 122
expressed in a page description language, such as Post­
Script®. 65 and a number of records, nine of which are shown. The

variable graph information is contained in the fields called
"1996 Sales," "1997 Sales," and "1998 Proj."

Optionally, the PDL master page files 122 may be con­
verted into two-page spreads by a page make-up program

US 6,205,452 Bl
13 14

1996 1997 1998 Town
Version Address1 Address2 Address3 Address4 Address5 Pricel Image1 Price2 Barcode Sales Sales Proj sort

01 William 123 Elm Chicago Illinois 606248923 $22.95 Shoes $21.95 ! 606248923! 50 75
Doe

03 Hugh 56 Maple Chicago Illinois 606248923 $21.95 Shirt $20.95 ! 606248923! 35 95 100
Jorgensen

02 Jay P. 1313 Park Chicago Illinois 606248924 $24.95 Pants $22.95 ! 606248924! 45 45 50 • Morgan
02 Joe Louis 819 Elm LaGrange Illinois 605251093 $19.95 Pants $18.95 ! 605251093! 75 100 100
03 John Smith 926 LaGrange Illinois 605251093 $19.95 Shoes $15.25 ! 605251093! 25 35 45

Cossit
01 Len 882 LaGrange Illinois 605251093 $19.95 Shoes $17.25 ! 605251093! 65 75 100

Johnson Monroe
02 Janet 916 LaGrange Illinois 605251094 $24.95 Pants $21.95 ! 605251094! 95 75 85 • Cizmar Monroe
03 Jay 88 w. Brookfield Illinois 605241391 $21.95 Shirt $19.95 !605241391! 15 25 35

Schroeder 77th
03 Danielle 129 Brookfield Illinois 605241391 $22.95 Shirt $19.95 !605241391! 35 65 75 • Johnston Madison

In the example of FIGS. 6a and 6b, the field names
ADDRESS! throughADDRESS5, BARCODE and TOWN­
SORT may appear in the area 112 and one or more of the
field names PRICEl, IMAGElAND PRICE2 may appear in 25

the area 110. The database may also contain a "COPIES"
field (not shown) which may be used as a control code to
select the number of book copies to be produced.

FIG. 9 illustrates a flow chart of programming executed
by the personal computer 54 for creating the template file(s) 30
106 of FIG. 5. The programming may be written as an
extension of QuarkXPress®, a page make-up program dis­
tributed by Quark, Inc. of Denver, Colo. The QuarkXPress®
program may be adapted for operation on the Apple®
Macintosh® operating system or any other operating 35
system, such as the Microsoft Windows® operating system.
Alternatively, a different page make-up program may be
used, if desired.

During the make-up process for a document consisting of
one or more pages, a template file is created for each book 40
version to be produced, or, where a book is to include two
or more parts (referred to as "sections" hereinafter) a tem­
plate file may be created for each section. At a block 150, a
user creates pages containing all the static or master ele­
ments to be included. A block 151 then prompts a user to 45
identify the database fields in the variable database 108
which will be used for variable text, image and graph
information.

50

dummy picture file will display an indication of which
database field will be used for insertion on the respective
pages.

Following the block 155, a block 156 prompts the user to
enter an indication of whether the image object is to be
displayed in one of several display formats. If the image is
to be displayed in other than the original size thereof, a
subname is defined for the image to "fit," indicating that the
image is to be scaled to fit the box. If the image is to be
displayed in the original size thereof, the user is prompted to
select a position for the image at a particular location in the
box defined therefor, such as the upper left-hand corner, the
lower right-hand corner, or the like. If the user does not
select a position, the image is placed in the upper left corner
of the image box.

Following the block 156 or, alternatively, if the block 154
determines that no variable image element is to be added, a
block 157 then determines whether any variable graph
elements are to be included. If yes, a block 158 creates an
image box at the position on the page where the graph will
be inserted. A block 159 then prompts a user to select any
attributes, such as the graph type and parameters (i.e. bar
graph or pie chart, size, labels, colors, etc.), as described in
greater detail below.

Next, a block 160 identifies the controlling database field
names (in the database 108) for the variable information to
be included on the graph. The database fields may contain
both variable graph values as well as variable graph param­
eters. Thus, a first version may include a small bar graph
while a second version may include a larger pie chart. A

A block 152 then determines whether the user wishes to
include a variable text element in a page. If yes, a block 153
places the name or an indication of the appropriate field in
the database 108 into the template file at the insertion point
defined by the current cursor position. Thus, the variable text
contained in the database field will be inserted on the page
at the designated insertion point.

After the block 153 inserts the database field name for the
variable text element or, alternatively, if the block 152
determined that no variable text element was to be added, a
block 154 then determines whether a variable image element
should be added to the page. If yes, a block 155 prompts a
user to define a box to contain an image at a desired location

55
block 161 then creates a text box one layer above the image
box generated by block 158 and a block 162 saves the graph
parameters (which were input by the user at the block 159
or obtained from the database 108) as data pairs in the text
box. The layering of the text box above the image box

60
assures that the graph parameters will be read before the EPS
graph file. The block 162 also saves the graph values as data
pairs in the text box. The graph values are obtained from the
database fields specified by the block 160.

on a selected page. The block 155 then inserts a dummy
picture file and an indication of the proper database field
name in the template file for the page at the location
indicated by the current cursor position. The user will 65

thereafter see the dummy picture file at the insertion point on
the display of the computer 54 when the page is viewed. The

As described in detail below, the graph parameter and
value data pairs in the text box will be converted into
PostScript® variables and used to generate the desired graph
during interpretation of the page files.

US 6,205,452 Bl
15

A block 163 then "marks" or "tags" the text box so that
the interpreter will recognize that the text box will be used
to generate a graph. The text box may be tagged in a number

16
size provided to the EPS graph file will be converted to
inches. The user may also select "autosize," wherein the
axes sizes will be determined by the EPS graph file based on
the total size of the graph.

4) Bar Width-May be fixed or variable. The user may
specify the bar width or it may be automatically determined
by the EPS graph file.

a ways, such as assigning the text box an unusual attribute,
such as an unusual color or font. The text box could also be 5

tagged by placing text delimiters in the text box. For
example, a unique text string (such as
"%#?!BeginVariableGraphData") could be placed at the
beginning of the text box and another unique string (such as
"%#?!EndVariableGraphData") could be placed at the end

5) Number of Bars Per Group per x-value-The number
of bars at each point on the x-axis. The default value is 1 but

10 a user may select to have 2 or more bars adjacent to each
other (for example, as a comparison between two years).

6) Color-The user may choose color or black and white
(grayscale). If color, the user may choose one unique color
per category from a list of any number (for example, 10)

of the text box. A sample text box tagged using text
delimiters and including graph parameters data pairs to
create a pie chart with labels is set forth below:

%#?!Begin VariableGraphData
sChartType Pie
bShowLabels True
bShowPercents True
nXExtent 400
n YExtent 200
aXD1 xRBipc XRunspc XOutspc xLeftpc
aXLbls RBis Runs Scored Out Hits Without Score
%#? !EndVariableGraphData
Next, a block 164 places an Encapsulated PostScript®

(EPS) graph file into the image box created by the block 158.
As described in detail below, the EPS graph file will be
executed by the interpreter to generate the graph. The block
164 also designates the EPS graph file as variable data.
Although the EPS graph file is actually static (it does not
change), it must be designated as variable because it will be
used with the variable graph parameters and values.

Control then passes to a block 165 which determines
whether any additional variable elements should be added to
the template file. If yes, control returns to the block 152 and
the loop of blocks 152-165 is repeated until all variable
elements (text, image and graphs) have been added. Control
then passes to a block 166 which saves the template file 106
(FIG. 5). The programming of FIG. 9 is repeated until all
template files have been created.

15 default colors (such as red, blue, green, yellow, orange,
black, etc.). Preferably, the colors are converted to CMYK
equivalents but other color schemes may be implemented.
Alternatively, the user may specify any number of custom­
ized colors (also converted to CMYK equivalents). If the

20 user chooses black and white for the bar graph, the user may
also select one unique grayscale for each category from a list
of any number of default alternating grayscales or the user
may custom specify grayscales.

7) Vignette Shading-The default setting is for no
25 vignette shading such that the bars will be printed in a solid

color. The user may specify vignette shading by choosing a
starting and ending color and the EPS graph file will
automatically shade the bar accordingly.

8) Y-Axis Bar Scaling-The y-axis may to scaled to
30 automatically fit the maximum data point (both positive and

negative) specified in the database or by the user. The user
may also specify that they-axis be scaled with a broken axis
(such as when there is a wide numerical range of data) and
may further specify where the axis should be broken and/or

35 how far up on the axis the break should occur.
9) Y-Axis Divisions-The user may specify the number of

divisions on the y-axis or may choose for automatic divi­
sions (with intelligent rounding applied) based on the size
and scaling of the y-axis.

The resulting page template files(s) are stored on a storage 40

medium, such as an optical disc or other storage device,
and/or the files(s) are downloaded together with the database

10) X-Axis Bar Scaling-As a default, the space between
bars in separate groups is equal to the width of the bars and
the space between bars in the same group is none (i.e. the
bars are adjacent). The user may also specify the spacing
between bars, preferably as a percentage of bar width. The

to the control unit 52.
At any point during the page make-up process, other

functional aspects of the QuarkXPress® program may be
invoked to both master and variable aspects as necessary to
produce finished pages.
The Graph Parameters

As set forth above, the block 159 prompts a user to select
the graph type and parameters and the block 162 inserts this
information into the text box (in the template file) as data
pairs, along with the graph value data pairs. First, the user
must select the type of graph, such as a bar chart, pie chart,
line graph, scatter diagram, or any other type of graph. If a
user does not specify an option for any parameter, a default
option will be used. Also, the graph type and parameters may
be included as fields in the variable database 108 such that
the graph parameters, as well as graph values, may vary.

If the user selects a bar chart, for example, the block 159
will then prompt a user to select the parameters listed below.

1) Two-dimensional or Three-dimensional-If the user
chooses a 3D bar chart, the user may also specify the amount
of increase or decrease of shading applied to the side of the
bar as compared to the face of the bar.

2) Orientation-Horizontal or vertical.
3) Size-The size (i.e length) of the x- and y-axes. Size

may be specified in either inches or points, but preferably the

45 user may also select a leading space (before the first bar)
and/or a trailing space (after the last bar).

11) Line Color-The user may specify the color for the
axes and other lines, such as division markers. Generally, the
default is black but the user may select any CMYK equiva-

50 lent color or specify no color.
12) Numeric Callouts-Numeric callouts are labels that

may be placed at the top or inside of each bar which specify
the value that the bar represents. The default setting is for no
numeric callouts but, if desired, the user may specify where

55 they should be placed and the format (i.e., numeric or
percent of maximum value).

13) Field Name Callouts-Field name callouts are labels
that are placed along the x-axis at the base of each bar. The
default setting is for no field name callouts but the user may

60 specify that field names be placed inline (parallel) with the
base of each bar or perpendicular to the base of each bar.

14) X-Axis andY-Axis Labels-The user may specify
text labels for the x- and y-axes, as well as the font, size,
color, position and orientation of such text.

65 15) Legend-The user may also specify that a legend be
placed at the lower right corner of the chart (or other
location) with a key to the color-coding on the chart. For

US 6,205,452 Bl
17

example, the legend may print a small blue bar followed by
"1996" and a small red bar followed by "1997" to indicate
that different colored bars represent different years.

16) Graphics Object-In the default setting, the bars on
the graph will be drawn as standard rectangles. The user,
however, may wish to use graphics in place of the rectan­
gular bar. For example, a transportation company may wish
to use bars in the shape of trucks or a soft drink manufacturer
may wish to use bars in the shape of bottles. If so, the user
must specify the desired graphics object (for each category,
if more than one) and the name of the file (such as an EPS
file) containing the graphics object at 100% of its size. The
user may then select either a scale mode, wherein the
graphics object will be scaled (i.e. stretched or shrunk)
according to the numeric value it represents or a clip mode,
wherein the graphics object will be cut-off or clipped in
accordance with a numeric value.

If the user selects a graph type different than a bar chart,
similar parameters must be selected, depending on the graph
type. For example, if the user selects a pie chart, the
following parameters will be selected:

1) Two-dimensional or Three-dimensional-With desired
shading modification if 3D, as described above.

2) Color-Select CMYK or grayscale color for each
category (i.e. pie segment), as described above.

3) Line Color-May select default (black), CMYK color
or no color for lines surrounding pie chart and separating pie
segments. The user may also select the line width (default=1
point).

18
graphs (line graphs, scatter diagrams, etc.) that may be
generated in accordance with the present invention may
include slightly different parameters (i.e. dot size, line width,
etc.). Also, the present invention provides unlimited fiex-

5 ibility to use other parameters to specify any type of graph.
The block 162 (FIG. 9) saves the graph parameters

specified by the user (or in the database) as data pairs in the
text box, with the parameter data preceding the parameter
name. These data pairs will be converted into Postscript®

10
variables and used by the EPS graph file which generates the
desired graphs.
The EPS Graph File

Referring back to FIG. 9, the block 164 places the
Encapsulated Postscript® (EPS) Graph file into the image
box created in the template file. The EPS graph file contains

15 Postscript® code that is executed as the pages are interpreted
to generate the graph. (Alternatively, the graph file could be
written in a different page description language than
PostScript®).

FIGS. 9A-1, 9A-2, 9A-3 and 9A-4 are flowcharts illus-
20 trating the programming of the EPS graph file which is

executed by the interpreter. Referring first to FIG. 9A-1, the
program begins at a block 920 which determines whether the
graph type is a bar chart. (The graph parameters were either
specified by the user at block 159 of FIG. 9 or contained in

25 the database 108). If no, control passes to a block 976 (FIG.
9A-3) which determines whether the graph type is a pie
chart. Alternatively, if the block 920 determines that the
graph is a bar chart, a block 922 sets a scale transformation
based on the size of the x- and y-axes.

4) Radius-Size of pie chart (specified in inches or points 30

but preferably provided to EPS graph file in inches).
Next, a block 924 determines whether the user specified

that the x-axis or y-axis should incorporate a broken scale.
5) Numeric Callouts-Labels placed inside or next to a

pie segment indicating its numeric value. The default setting
is for no numeric callouts but the user may specify that
numeric callouts be centered (at radius/2) within the pie
segment or next to the pie segment with a line (from radius/2
to 3*radius/2) between the number and the pie segment.
Alternatively, numeric callouts may be placed within the pie
segment if the segment is large (i.e. >30°) or next to the
segment if the segment is small (i.e. <30°).

6) Field Name Callouts-Labels that may be placed
inside or next to pie segments indicating what the segment
represents. The default setting is for no field name callouts
but the user may specify that they be positioned like the
numeric callouts above.

7) Text-The user may specify the font, size, color, etc. of
any text used in the pie chart.

8) Exploding Option-As a default, all pie segments will

If yes, and the user did not specify where the axis should be
broken, a block 926 then analyzes the data for "bunching"
to determine where to break the axis. For example, if the

35 graph values are all between 100 and 105, the block 926 will
take the maximum and minimun values (105 and 100) and
spread them over 80% of the axis. The remaining 20% of the
axis will include a broken line to indicate the values between
0 and 100.

40 If the block 924 determines that there is no broken axis,
the programming skips block 926 and control passes to a
block 928 which draws the x- and y-axes according to the
specified parameters, such as color, width, orientation and (if
specified) breaks. Next, a block 930 places the appropriate

45 labels on the axes in accordance with the specified text style.
(If no axes labels were specified, the block 930 is skipped).

A block 932 then determines the number of graph value

be enclosed within a circle. The user may specify, however,
that selected segments be "exploded" or set off radially from 50

the rest of the circle.

data pairs that were saved in the text box by the block 162
(FIG. 9) from the specified fields in the variable database
108. These data pairs from the text box will later be
converted to Postscript® global variables. (See block 1114,

9) Legend-The user may specify a legend (such as a
color code index) positioned, for example, in the lower right
corner of the chart or other location.

FIG. 11).
Next, a block 934 determines whether the width of the

bars are fixed or variable. If variable, a block 936 calculates
10) "Other" Category Creation-When using pie charts,

sometimes the data for the chart does not add up to exactly
100%. If this is the case, the user may specify an "other"
category to be automatically included for the remaining
percentage of the pie chart. For the default setting, an
"other" category would not be automatically created.

55 the width of the bars based on the amount of space that the
user specified should be between the bars. If no space was
specified, the block 936 calculates the width of the bars
based on the default that the space between the bars should

60

The above-described parameters for bar charts or pie
charts exemplify the type of parameters that the user may be
prompted to enter by the block 159 (FIG. 9) or that may be
included as fields in the variable database 108. All param­
eters should have default settings such that graphs can be 65

generated without the user specifying each parameter. As
will be evident to those skilled in the art, other types of

be equal to the width of the bars.
After the block 936 calculates the bar width or,

alternatively, if the block 934 determines that the bar width
is fixed, a block 938 retrieves the first graph value data pair.
A block 940 then determines whether the bars will be drawn
as standard rectangles or whether a graphic object (i.e. truck,
bottle, etc.) has been specified.

If a graphic object has been specified, a block 942
determines whether the graphic object should be scaled or

US 6,205,452 Bl
19

clipped. If the graphic object should be scaled (i.e. stretched
20

If the block 920 (FIG. 9A-1) determines that the graph is
not a bar graph, control skips to a block 976 (FIG. 9A-3)
which determines whether the graph type is a pie chart. If
yes, a block 978 sets a scale transformation and starting

or shrunk to correspond to the numeric value), a block 944
calculates the correct scale ratio. The block 944 assumes that
the graphic object supplied by the user is at 100% size
corresponding to the middle value on the y-axis. Thus, if the
y-axis is scaled from 0 to 10 (middle value=S) and the data
pair has a y-value of 8, the block 944 calculates the scale
ratio as 8/5 or 1600%. A block 946 then retrieves the graphic
object (from the file specified by the user), scales the graphic
object by the calculated scale ratio and positions the scaled

10
graphic object at the appropriate position on the x-axis.

5 angle (based on user specified size or defaults) to begin
drawing the pie chart. A block 980 then retrieves the first
graph value data pair and sets a variable (called, for
example, "TOTAL") equal to zero. The TOTAL variable will

Alternatively, if the block 942 determines that the graphic
object should be clipped, a block 948 draws a clipping box
corresponding to the y-value from the data pair. The block
948 assumes that the user supplied graphic object is at 100%
size corresponding to the maximum value on the y-axis. 15

Thus, if the y-axis is scaled from 0 to 10 and the data pair
has a y-value of 8, the block 948 draws a clipping box that
extends from 0 to 8. A block 950 then retrieves the graphic
object and positions it on the x-axis inside of the clipping
box. Any portion of the graphic object outside of the 20

clipping box will be deleted. Thus, the portion of the graphic
object that would fall between 8 and 10 on they-axis will be
cut-off or clipped.

If the user has specified that the y-axis is broken, the
program determines where the break on the axis occurs and 25

assumes that the minimum value on the graph corresponds
to zero in order to determine how the bar (or image) should
be scaled or clipped.

If the block 940 determines that the chart will include only
standard rectangular bars, a block 952 calculates the bar 30

height based on the y-value from the data pair. A block 954
then determines whether the user specified two-dimensional
(2D) or three-dimensional (3D) bars. If 2D, a block 956
draws the bar according to the previously determined height
and width. The block 956 may also fill the bar with the 35

specified or default color (including vignette shading, if
specified). If 3D, a block 958 draws the "shadow" of 3D
portion of the bar, including coloring or shading, if specified.
A block 960 then draws the 2D (or front) portion of bar, with
a modified (narrowed) bar width in order to accomodate for 40

the 3D. The block 960 also colors and shades the portion as
necessary.

be used to keep track of the total combined values of the pie
segments.

A block 982 then determines whether the pie segment will
be an "exploding" segment, which is set off from the circle.
If yes, a block 984 calculates a radial offset position to
determine where to place the segment. Alternatively, if the
block 982 determines that the segment is not "exploding,"
control skips to a block 986 which determines whether the
pie segment is two-dimensional (2D) or three-dimensional
(3D).

If the block 986 determines the segment if 3D, a block 988
draws/strokes the side (or 3D portion) of the pie segment and
also colors/shades it appropriately. If the segment is 2D, or
after the block 988 draws the 3D portion of the segment, a
block 990 draws/strokes the 2D portion of the pie segment
corresponding to the value retrieved by the block 980. The
block 990 also fills the pie segment with the specified color,
pattern and/or shading. The program then skips to a block a
block 992 which determines whether numeric callouts are
specified.

Numeric callouts are the numeric labels placed inside or
next to the pie segments which indicate their value. If the
block 992 determines that numeric callouts were specified,
a block 994 calculates the radial position of the numeric
callout and a block 996 places the numeric value in the
appropriate font, color, etc. at the radial position calculated
by block 994.

Alternatively, if the block 992 determines that no numeric
callouts were specified, control skips to a block 998, which
determines whether any field name callouts were specified.
Field name callouts are labels placed inside or next to the pie
segments that indicate what the segment represents. If field
name callouts are specified, a block 1000 places the field
name above the numeric callout, if a numeric callout was
generated by the block 996. If no numeric callout was
generated, the block 1000 calculates a radial position for the

After the appropriate graphics object or bar has been
drawn by the blocks 946, 950, 956 or 960, control passes to
a block 962 (FIG. 9A-2) which determines whether any field
name callouts have been specified. The field name callouts
are the labels which may be placed at the base of the bars
along the x-axis. If yes, a block 964 positions the field name

45 field name and places that field name in the appropriate font,
color, etc. at the calculated position.

at the specified location (inline or perpendicular with the
bar). Otherwise, control skips to a block 966 which deter­
mines whether any numeric callouts have been specified.
Numeric callouts are numeric values placed inside or on top

Control then passes to a block 1002 which determines
whether a radial line should be placed between the numeric/
field name callout(s) and the pie segment. If yes, a block

50 1004 draws a line from inside the segment (radius/2) to the
numeric/field name callout radial position.

of the bars to indicate their value. If yes, a block 968
positions the numeric callout at the specified location.

After the block 968 or, alternatively, if the block 966 55

determines that no numeric callouts were specified, a block
970 determines whether any additional elements should be
included on the graph. The block 970 may determine this by
subtracting the number of data pairs processed from the total
number of graph value data pairs (determined by block 932). 60

If more data pairs should be included, a block 972 gets the
next data pair and control returns to the block 940 (FIG.
9A-1). The loop of blocks 940-972 is repeated until all data
pairs have been incorporated in the graph.

After the block 970 determines that all data pairs have 65

been processed, a block 974 then resets all of the Postscripts
global variables in preparation for the next graph.

If the block 1002 determines that no radial line should be
drawn, control skips to a block 1006 which resets that radial
offset position (which was set by the block 984 in accor­
dance with the graph value from the first data pair) and a
block 1008 increments the starting angle.

A block 1010 then adds the data value (from the data pair)
to the variable "TOTAL," which keeps track of the cumu­
lative value of the segments and a block 1012 determines
whether any additional elements (i.e. graph values from data
pairs) should be included in the pie chart. If yes, a block
1014 gets the next data pair and control returns to the block
982.

The loop of blocks 982-1014 is repeated until all data
pairs have been processed. After the block 1012 determines
that all data pairs have been processed, a block 1016
determines whether an "other" category should be included

US 6,205,452 Bl
21

in the pie chart. (The "other" category is the remainder if the
pie segments do not add up to 100%). If yes, a block 1018
calculates the value of the "other" category by subtracting
the value of the variable TOTAL from 100%. A block 1019
then determines whether the value of TOTAL is equal to 5

100%. If no, a block 1020 creates an additional data pair
with the value of the "other" category and control returns to
the block 982 to draw the "other" segment.

22
images have been processed and control then passes to a
block 192. Control also passes to the block 192 from the
block 178 should the latter determine that there are no
images in the template file.

The block 192 determines whether any text boxes are
present in the open template file. If at least one text box is
present, a block 194 selects and parses a first text box and
a block 196 (FIG. lOb) checks to determine whether the text
box includes at least one of the field names of the database Alternatively, if TOTAL is equal to 100% (indicating the

"other" data pair has already been created) or if no "other"
category is needed in the pie chart, a block 1022 resets all
of the Postscript® variables (which specified the graph
parameters and values) in preparation for generating the next
graph.

10 108. If so, then it has been determined that the text box
includes variable information and a block 198 deletes the

If the block 976 determines that the graph is not a pie 15

chart, the program may skip to a block 1024 (FIG. 9A-3),
which determines that the graph is of another type (such as
a line graph, scatter diagram etc.) and the program may
continue with processing to generate that graph, as indicated
by block 1026. Based on the programming illustrated for 20

generating bar graphs and pie charts set forth above, one
skilled in the art would be able to generate programming to
implement another type of graph. Once the template file(s)
106 and the database 108 are assembled, the programming
of FIGS. lOa-lOf may be executed by the control unit 52 to 25

create the master page file 122, the final variable page files
137 and 138, and the press command file 140. Referring first
to FIG. lOa, a block 170 prompts a user to select a template
file 106 and a block 172 opens the database 108. A block 174
then reads and stores in a list the database field names for 30

later reference and a block 176 prompts a user to enter
information indicating a section number and whether pages
are to be printed in simplex (i.e., single-sided) or duplex
(i.e., double-sided) format. The section number identifies the
order in which multiple sections are to be processed for a 35

particular book. The user may also be prompted to enter a
selective processing code identifying a particular book ver­
sion to process if multiple versions are to be produced during
a single press run.

Following the block 176, a block 177 begins the process 40

of stripping variable information from the template file
opened by the block 170 to obtain the stripped master file
120 of FIG. 5. The block 177 selects a first page for
processing and a block 178 checks to determine whether
there are any images in the template file and, if images are 45

located, a block 180 selects a first image.

text box. A block 199 then stores the text box location, the
insertion points in the text box at which variable information
is to be printed and the characteristics of the text box and the
field names of the database 108 identified in such text box
in the memory 53. In addition, a variable text box counter is
incremented representing the number of variable text boxes
appearing on each page.

Otherwise, if the block 196 determines that the text box
does not include any field names from the database, then the
text box contains only master information. A block 200
stores the text box location in the memory 53. In addition,
a master text box counter is incremented representing the
number of master text boxes appearing on each page.

Control then passes to a block 202, which checks to
determine whether all text boxes in the template file have
been processed. If not, a block 204 selects and parses the
next text box in the template file and control returns to the
blocks 196-202. Control remains with such blocks until all
text boxes have been processed, whereupon a block 206
determines whether all pages have been processed. If not, a
block 208 selects a next page and control returns to the block
178 (FIG. lOa). Otherwise, a block 210 saves the resulting
file as the stripped master file.

Alternatively, if a page contains a lot of formatting
information (i.e. tabs, fonts, etc.), a rich text file (which
includes such formatting information) may be created offline
from the database. The text box may then open the rich text
file and read the information from the file. The use of the rich
text file speeds up the processing time.

Also, once a placeholder on a page has been "filled in"
with information from the database field, the program may
mark the corresponding text or image box as "touched."
Thus, if the text or image box is "untouched," the program
can skip processing of that text or image box, also speeding
up the total processing time.

Control also bypasses the blocks 194-202 and proceeds
directly from the block 192 to the block 206 if the block 192
determines that there are no text boxes in the open template

50 file.

A block 182 identifies the file name for the image and a
block 184 checks the field list to determine whether the file
name is included therein. If the file name for the image is
included in the field list, then the image comprises variable
information and a block 186 deletes the image box. A block
187 then identifies and saves the image box location on the
page, the characteristics of the image box, such as the size,
skew, background color and subname and the like and
further saves the field name of the image from the database 55

108. Also, a counter in the memory 53 which tracks the
number of variable image boxes on the page is incremented.

Otherwise, if the block 184 determines that the file name
is not in the field list, then the image contains only master
information. A block 188 then also saves the image box 60

location on the page and the characteristics of the image box.
Also, a counter in the memory 53 which tracks the number
of master image boxes on the page is incremented.

A block 189 then checks to determine whether all images
have been processed. If not, a block 190 selects a next image 65

and control returns to the blocks 182-189. Control remains
with such blocks until the block 189 determines that all

Following the block 210, a block 212 converts the
stripped master file into the PDL master page file 122 of
FIG. 5. At the same time, an initialization (or INI) file may
be created. The format and existence of the INI file depends
on the type of demand printer utilized. For example, the
DocuPrint demand printer does not require the use of an INI
file. However, the Barco RIP requires the use of an INI file.

The INI file (in ASCII code) for the Barco RIP is created
according to the following format:

name: [file path\name]
psx: [dimension]
psy: [dimension]
ssx: [dimension]
ssy: [dimension]
posx: [dimension]
posy: [dimension]

US 6,205,452 Bl

duplex: [zero or one]
orientation: [zero or one]
output: [filename]
copies: [number]

23

Where "psx" and "psy" refer to finished page sizes in x and
y directions, "ssx" and "ssy" refer to cut sheet size in x and
y directions, "posx" and "posy" refer to offsets in x and y
directions specifying placement of each page on a cut sheet,
"duplex" refers to single or two-sided printing, "orientation"
refers to portrait or landscape printing, "output" refers to the
name of the output file and "copies" refers to the number of
copies to be printed. A sample INI file which specifies
parameters for printing of a file called MYJOB.PS is as
follows:

Name: C: \jobs\myjob.ps
psx: 8000
psy: 11000
ssx: 11500
ssy: 9000
posx: 150
posy: 150
duplex: 1
orientation: 1
output: myjob.ps
copies: 1

In the foregoing example, one copy of the file MYJOB.PS
is to be printed in duplex and portrait formats at an offset of
0.15x0.15 inches from a corner of a finished sheet of paper
8x11 inches cut from a sheet originally having dimensions
of 9x11.5 inches.

24
Control then passes to block 242 (FIG. 10c) which creates

a working copy of the stripped variable file 126. A first page
having variable data thereon is selected and data represent­
ing the remaining pages in the file are deleted by a block

5 244. In the example of FIGS. 6a and 6b, the block 244
creates a file defining the front cover of a book with all fixed
information deleted therefrom and an area reserved for
variable information.

Following the block 244, a block 246 selects a first record
10 in the database 108 and a block 248 reads the record. An

optional block 250 checks to determine whether a selective
processing code has been entered by the user indicating that
the page is to undergo selective page processing. As noted
above, the apparatus and method of the present invention

15 may be utilized to produce not only books of a single version
(i.e., where corresponding pages differ only in terms of the
variable information stored in the database) but also books
of different versions. In the latter case, the books of different
versions have different fixed and variable information. The

20 fixed and/or variable information may vary in terms of
content or appearance (i.e., style, location, rotation, position,
etc.) or both in different versions.

If the block 250 determines that selective page processing
is to be undertaken, then a block 252 checks to determine

25 whether the database record read by the block 248 is to be
utilized on the page currently under consideration. The block
252 accomplishes this by checking the version identification
field in the database to determine if that version is being
used. If this is not the case, a block 253 checks to determine

30 whether the record currently under consideration is the last
in the database. If so, control passes to a block 294 of FIG.
10e. Otherwise, a block 254 selects a next record in the
database 108 and control returns to the block 248 where the
next database record is read.

For the DocuPrint (or any other demand printer which
does not use an INI file), a queue is created which contains
the same parameters (and potentially additional parameters 35

which may invoke the functionality of an in-line finisher, or
other apparatus) as the INI file.

If the block 250 determines that selective page processing
is not to be undertaken, or if the block 252 determines that
the record read by the block 248 is to be used in the page
currently under consideration, a block 256 duplicates the
data representing the page remaining after execution by the
block 244 to initiate development of one of the files 130 or
132. In the first pass through the program of FIG. 10c, and

Following the block 212, a block 214 then reopens the
same template file originally opened by the block 170 and
deletes all the master image and text boxes. A block 216 than 40

saves the resulting file as the stripped variable file 126 of
FIG. 5. in connection with the example of FIGS. 6a and 6b, the

block 256 creates the file 130 and develops page data
representing a first version of the page P1-a and adds further

A block 218 then creates a temporary file containing a
table of the current page number and a number representing
the name of the database field placed by the block 154 at the
insertion point. The file is called, for example, * .VARS
(where* is a user-selected file name). The *.VARS file thus
contains pairs of page numbers and database column num­
bers that indicate where in the database variable information

45 variable information to such page data during immediately
succeeding passes through the program. Thereafter, data
representing the remaining pages P1-b, P1-c and P4-a
through P4-c are created and variable information is added
to such pages serially during subsequent passes.

for the page comes from. For example, the * .VARS file may 50

contain the following information:
A block 258 checks to determine whether there are any

image boxes on the page and, if so, a block 260 selects a first
image box. A block 262 then inserts the image identified by
the database field into the image box. A block 264, FIG. 10d,
checks the subname to determine whether the block 156 of

1 7
8 43
9 44
10 45
11 46
11 47
13 50
14 52
15 50
15 51

55 FIG. 9 has indicated that the image should be sized to fit the
image box. If this is true, a block 266 performs the scaling.
Otherwise, a block 268 positions the image in the image box
at the position specified by the user and a block 270 checks
to determine whether all image boxes have been processed.

60 Control also passes from the block 266 directly to the block
270, thereby skipping the block 268. If not all image boxes
have been processed, a block 272 selects a next image box
on the page and control returns to the blocks 262-270 so that In the example above, page 1 contains variable data from

column 7 of the database, page 8 contains variable data from
column 43 and page 11 contains variable data from column 65

46 and 47. Further, the * .VARS file may contain separate
pairings for images and text.

remaining image boxes are serially processed.
Once the block 270 determines that all image boxes have

been processed, or immediately following the block 258 of
FIG. 10c if no image boxes are found on the page, a block

US 6,205,452 Bl
25 26

;RECORD2

;:HUGH JORGENSEN:606248923

;END RECORD
;RECORD3

;:JAY P. MORGAN:606248924

;END RECORD
Following the block 300 (if the press command file

already exists) or the block 302 a block 304 selects the first

274 checks to determine whether there are any text boxes on
the page and, if so, a pair of blocks 276,278 select a first text
box and a first insertion point in such box. Blocks 280, 282
and 284 serially insert text data stored in the database 108 at
the appropriate insertion points in the text box. Once all of 5

the variable text data have been inserted into the text box, a
block 286 recomposes all text in the text box so that the text
obtains a neat finished appearance. The recomposition pro­
cess is automatically undertaken by the QuarkXPress pro­
gram once the variable information is inserted into each text
box. The recomposition process is responsive to the user
commands as applied to the template file text box or object,
such as left, right, center, or full justification, hyphenation
and the like. Following the block286, a block 288, FIG. lOe,
checks to determine whether there are remaining text boxes

10 database record and a corresponding first record in the press
command tile. A block 306 then checks to determine
whether the template file currently being processed includes
the selected database record. If not, a block 308 determines
whether all pages have been processed, and if this is not the

to be processed on the page and, if so, a block 290 selects
the next text box on the page and control returns to the
blocks 278-288 to insert text information into such text
boxes.

15 case the next record in the database 108 and a correspond­
ing ;ecord in the press command file are selected. Control
then returns to the block 306. If the block 306 ascertains that
the template file includes the selected record, a block 312
inserts an indication of the section number in the press

Once the block 288 determines that all text boxes for the
page have been processed, the programming required to
produce one of the pages of the file 134 of FIG. 5 having
variable information only thereon is complete. A block 292
then determines whether all records in the database have
been considered for inclusion in additional variable pages of
the file 134 to be produced. If not all records have been
considered, control returns to the block254, FIG.lOc, where
the next database record is identified and read. On the other
hand, if all pages of the file 134 have been produced by
considering all records in the database 108, a block 294 30
converts the file data into PostScript® or another PDL
format to create the variable page file 137 of FIG. 5. Also,

20 command file at an appropriate point if the section number
is not already present. If the section number is present
already, the press command identified by the section number
entered by the user at the block 176 is identified to be
overwritten at a later point. The press command file now

25 appears as follows for the example of FIGS. 6a and 6b:

;RECORDl

;:WILLIAM DOE:606248923

;SECTION 1

;ENDSECTION

;END RECORD

;RECORD2
an INI file is created as before, except that the "duplex" or
"twinplex" parameter is set to command simplex printing
only. If necessary or desirable, should the press run length 35
exceed a certain limit, the programming may be modified to
create more than one variable page file for each variable
page of the template file.

;:HUGH JORGENSEN:6062488923

;SECTION 1

;ENDSECTION

;END RECORD
;RECORD3

;:JAY P. MORGAN:606248924

;SECTION 1

;END SECTION

;END RECORD
Following the block 312, a block 314, FIG. lOf, selects a

Following the block 294, a block 296 checks to determine
whether there are other variable pages in the stripped vari- 40
able page file to be processed. If this is true, a block 298
retrieves a copy of the stripped variable file, selects the next
variable page therein and deletes remaining pages there­
from. Control then returns to the block 246 of FIG. lOc. In
the example of FIGS. 6a and 6b, the back cover P4 and the
corresponding pages of the remaining books are now
selected for processing. In the fashion noted above, a file
representing the variable portions of such pages is produced

45 first page of the section and a block 316 checks the state of
a flag stored in the memory 53 to determine whether a
simplex or duplex job has been requested. If a simplex job
has been requested, the file name and page number of the
master page file and, if variable information is to appear on by developing the file representing the pages P4-a through

P4-c and inserting the database information into such file to
obtain the variable page file 136 and the PDL version 138.

Following generation of the variable page files 134, 136,
and 137, 138 control passes to a block 300 which checks to
determine whether a press command file has already been
created. If not, a file is created by a block 302 having
placeholder comments indicating where in the press com­
mand file individual press commands are to be placed for
each book to be produced. The press command file may also
include data from one or more fields of the database 108
identifying an intended recipient of each book to be pro­
duced to assist in reproducing books found to be defective
or to produce sample books. At this point, the press com­
mand file for the example of FIGS. 6a and 6b may be as
follows (using data from the sample database set out above):

;RECORDl
;:WILLIAM DOE:606248923
;END RECORD

50 the page, the file name and page number of the variable page
file for the selected page are stored as a single set pair in the
memory 53 by a block 318. The determination of whether
variable information is to appear on the selected page is
accomplished by summing the contents of the variable

55 image box counter and the variable text box counter as
incremented by the blocks 220 and 234 of FIG. lOb.

A block 320 checks to determine whether all pages have
been processed and, if not, the next page is selected by a
block 322 and control returns to the block 316 for processing

60 of such page. If all pages have been processed, control
passes to a block 324 which determines whether all database
and press command records have been processed. Control
also passes to the block 324 if the block 308 determines that
all pages have been processed. If not all records have been

65 processed at this point, control returns to the block 310
where the next records in the database and press command
file are selected.

US 6,205,452 Bl
27

If the block 324 determines that all records for the current
section have been processed, a block 326 determines
whether another section is to be processed and, if so, control
returns to the block 170 of FIG. lOa. If there is not another
section to be processed, the press command file has been
fully assembled, and hence the process terminates.

If the block 316 determines that a duplex job is to be
effected, control passes to a block 328 which stores in the
memory 53 a command identifying the file names and page
numbers of the master page file (as well as corresponding
information relative to variable page files, if variable infor­
mation is to appear) as two-set pairs. Control from the block
328 then passes to the block 320 described above.

The result of the programming of FIGS. lOa-lOf is a press
command file having a sequence of press commands which
cause printing of pages in a desired order. In order to print
the sample pages of FIGS. 6a and 6b, the press command file
would read as follows:

BOOK A

;RECORDl
;:WILLIAM DOE:606248923
;SECTION 1
"file.m"1@"file.v1"1l"file.m"2
"file.m"3l"file.m"4@"file.v4"1
;ENDSECTION
;END RECORD
;RECORD2
;:HUGH JORGENSEN:606248923
;SECTION 1
"file.m"1@"file.v1"2l"file.m"2
"file.m"31l"file.m"4@"file.v4"2

;ENDSECTION
;END RECORD
;RECORD3
;:JAY P. MORGAN:606248924
;SECTION 1
"file.m"1@"file.v1"3l"file.m"2
"file.m"3l"file.m"4@"file.v4"3

;ENDSECTION
;END RECORD
END BOOK
PRINTRUN R
BOOK A
ENDPRINTRUN

28
example, assume you are creating 6 page books wherein the
first two pages are master pages and the second two pages
are always variable. The last two pages of each book are
selected from a group of 100 different static pages. If these

5 pages are treated as variable, they would be RIPped each
time they were included in a book. In order to avoid RIPping
these same 100 pages repeatedly, the 100 pages are RIPped
(one time) as master pages and stored in an EPS
(encapsulated PostScript®) file. The press command file

10
then retrieves the desired pages (from the group of 100 pages
stored in EPS files) based on the entry in the database. This
technique greatly reduces processes time.

FIG. 11 is a flowchart illustrating the programming imple­
mented by the RIP 82 (FIG. 4) to process the variable
graphics information. As described above in connection with

15 FIG. 9, the EPS graph file (FIGS. 9A-1 through 9A-4) was
placed in an image box and a text box including the graph
parameters and values was layered over the image box. The
text box was then "tagged" to indicate that it contained
variable graph information. Referring again to FIG. 11, a

20 block 1100 begins the RIP (or interpretation) process of the
PDL master page files 122 and PDL variable page files 137,
138 (FIG. 5). Preferably the PDL files are PostScript® and
the RIP 82 is a PostScript® RIP. However, the invention

25

30

may be implemented with other page description languages.
A block 1101 then redefines the PostScript® "show"

operator or command. The standard PostScript® show
operator "paints" characters identified in a string onto the
current page. The Postscript® page files will include a
"show" command after each text box on the page.

A block 1102 sets all the graph parameters (size, colors,
labels, etc.) to their default values and saves the parameters
as Postscript® (PS) global variables. This step allows graphs
to be generated even if the user did not specify any graph
parameters. A block 1104 then interprets the first Postscript®

35 element on the page. As described in detail below, the
redefined show operator will be used to process the EPS
graph file.

A block 1106 then determines whether the PostScript®
element is the "show" operator. If the PS element is not a

40 show command, a block 1108 RIPs the element as normal
and a block 1110 retrieve the next PS element and control
returns to the block 1106.

If the block 1106 determines that the PS element is a show
command, a block 1112 then determines whether the text

45 box immediately preceding the show command was
"tagged" as containing graphics information. As described
above, the graphics information text box was "tagged," for
example, by using text delimiters or by specifying an
unusual color or font (FIG. 9, block 163). Thus, the block In the foregoing example, "file.m" is a file name identi­

fying the master page file 122 and "file.v1" and "file.v4" are
file names identifying the variable page files 137 and 138,
respectively. The number following each file name desig­
nates a particular page of the file identified by the file name.
Thus, for example, "file.m"1 designates the first page of the
master file "file.m" and "file.v1"2 designates the second 55

page of the variable page file "file.v1." The @ sign means to
associate the pages of the files linked by such sign (i.e.
overlay the variable pages on the master pages). The vertical
line in the commands indicates that the page(s) on the left
side of the vertical line are to be printed on the front side of 60

a piece of paper whereas the page(s) on the right side of the
vertical line are to be printed on the reverse side of the piece

50 1112 checks for the text delimiter or the unusual color or
font.

If the block 1112 determines that the text box is "tagged"
(contains variable graphics information), a block 1114
invokes the redefined "show" operator (defined by block
1101). The redefined "show" operator does not "paint" the
text box as usual. Instead, the redefined "show" operator
parses the graph parameters and graph value data pairs in the
text box and saves them as PostScript® global variables. If
the user specified graph parameters, these would override
the default values saved by the block 1102. The PostScript®
global variables will be used by the EPS graph file (FIGS.
9A-1 through 9A-4) to generate the graph.

of paper. In an example of simplex printing, no file name
would appear to the right of the vertical line in each
command.

Some book runs may also include pages which contain
static information but are only included in certain books. For

Alternatively, if the block 1112 determines that the text
box was not "tagged," a block 1116 invokes the standard

65 Postscript® "show" operator to paint the text box as normal.
After the blocks 1114 and 1116, a block 1118 determines

if there are more PostScript® elements to process. If yes, a

US 6,205,452 Bl
29

block 1110 retrieves the next element and control returns to
the block 1106.

After the block 1114 invokes the redefined "show" opera­
tor to save the graph parameters and values as global
variables, one of the next elements retrieved by the block
1110 will be the EPS graph file, which will be executed by
the block 1108 to generate a graph.

The loop of blocks 1106-1118 is repeated until all Post­
Script® elements have been processed. After all elements
have been processed, the programming ends at a block 1120
which determines that the processing of the Postscript® file
is complete.

The programming ofFIG.11, including the redefinition of
the PostScript® "show" operator, may be implemented by
the following exemplary code. The exemplary code assumes
that text delimiters were used to "tag" the text boxes with
variable graph information and, as is conventional with
QuarkXPress®, the "show" operator is represented by "d".
Also, in the exemplary code, the section beginning with the
line "dup doss ss ... " is the QuarkXPress® for the standard
"show" operator.

%Variable Graphing Enabled
/zOnPage 0 def
/zBegin Var 0 def
/initializepage {
/zOnPage zOnPage 1 add def
QuarkXpress_3.32 begin
/Param 1 def
/d % redefine show operator
{ dup (%#?!EndVariableGraphData) eq

{/zBegin Var 0 def pop pop pop pop}
{ dup (%#?!BeginVariableGraphData) eq

{/zBegin Var 1 def pop pop pop pop}
{zBeginVar 1 eq

{
zOnPage 1 gt{
Param 9 gt{/Strl (Param)def}

{/Strl (Param)def}ifelse
/Str2 Param dup 9 gt

{ () }{ () }if else cvs def
/Strl 5 Str2 putinterval

Strl cvn exch def
Param 1 add /Param exch def
} if

pop pop pop pop
}
{

%Quark code for standard show operator
dup doss ss and { sym fmtx makefont/xpfs X
0 0 3 -1 roll{s1 0 3 -1 roll put
s1 chkch {g xpfs setfont w G}
{w}ifelse 3 -1 roll add 3 1 roll add exch}

forall}
{w}ifelse pop 3 -1 roll sub 3 -1 roll div
3 -1 roll exch sub 0 32 3 -1 roll 0 5-1 roll
doss ss and{xpash P3}{Q}ifelse
}ifelse

}if else
}if else
}def
end/pm save store mT concat }bd

Alternative Methods for Generating Variable Graphs

30
allows the user to interactively create graphs, using real or
dummy data points. Thus, the user can experiment and
preview what the graphs will look like after they are printed.
For example, the Graphics Designer program allows the user

5 to change any attributes, such as graph type, size, colors, line
widths, etc. Once the user is satisfied with the preview of the
graph, those graph attributes are saved. Thus, the Graphics
Designer program allows the user to select graph attributes
through creating preview graphs, rather than by just speci-

10 fying attributes, as set forth above.
The Graph Designer program also prompts the user to

specify the fields in the database that will be used to generate
the variable graphs. The specified database fields may con­
tain graph data points and/or graph attributes.

The output of the Graph Designer program is an EPS file
15 ("the graph design EPS file") that specifies the graph size

and attributes selected by the user and also references the
fields in the database that will be used to generate the graph.
The graph design EPS file also references an external EPS
file, that will be used to draw the graph. The external EPS

20 file may be, for example, the EPS Graph file described above
in connection with FIGS. 9A-1 through 9A-4, or any other
type of graph engine file for generating graphs. Also, the
external graph engine file could be a series of separate files,
where each file generates a different graph type (e.g. one

25 graph file for bar charts, another graph file for pie charts,
etc.)

30

A sample graph design EPS file is as follows:

%!PS-Adobe
%GraphName Identifier
%BoundingBox 0 0 221 410
%Data: aD1 aD2 aD3 aD4
%XAxisName
% ...

%graph size
% database fields

35 %end Data
/cD1[0 0 0 1]def % attributes to
/cD2[0 1 0 O]def % override default
/sYAxisName (Widgets required) def

EngineLoaded not { % call external graph file
40 (BarGraphEngine.ps) run

/EngineLoaded true def}if

Referring to the sample graph design EPS file above, the
comment lines (beginning with "%") indicate a graph name

45 selected by the user and the graph size, which is specified by
defining the four corner points of a bounding box. The
remaining comment lines are the database fields that will be
used to generate the graph. For example, D1, D2, D3 and D4
are field names that contain the data points for the graph.

50 "XAxisName" is the name of a database field that controls
a variable graph attribute (the x-axis label). It is understood
that the graph design EPS file can contain any number of
comment lines specifying database fields.

Following the comment lines, the graph design EPS file
55 contains graph attributes that were specified by the user and

will be used to override the default values. For example, the
y-axis label is specified as "Widgets Required." Again, the
graph design EPS file may contain any number of lines to

Several alternative methods may be used to create graphs
containing variable information. The first alternative method 60

is preferable because, as explained in detail below, it results

specify the selected graph attributes.
The graph design EPS file ends with a call to the external

EPS graph file that will be used to draw the graph. In our
example, the file is called "BarGraphEngine." The external
EPS graph file is preferably stored in a file system associated
with the RIP. The graph design EPS file first loads the

in faster processing time by reducing the size of the EPS file.
Alternative #1-Graph Design EPS File

The first alternative method provides an additional soft­
ware package (called, for example, "Graphics Designer") to
the user/customer who creates the database containing the
variable information. The Graphics Designer program

65 external EPS graph file into memory. Once the external EPS
graph file is loaded, it can be repeatedly executed, resulting
in faster processing time.

US 6,205,452 Bl
31

When implementing the first alternative embodiment with
the EPS graph design file, the process of creating the
template files is simplified. Referring back to FIG. 9, the
blocks 159-163 are eliminated. Thus, after the block 157
determines that a variable graph element should be added, 5
the block 158 creates an image box at the selected location
and then the block 164 places the EPS graph design file
(rather than the FIG. 9A-1-4 EPS graph file) into the image
box. The blocks 159-163 are eliminated because the graph
attributes and database fields are specified in the EPS graph

10
design file. The EPS graph design file is also much shorter
and simpler than the EPS graph file, resulting in faster
processing time.

Also, because use of the graph design EPS file eliminates
the need to "tag" text boxes and the graph parameters are
specified in the graph design EPS file, the processing of FIG. 15

11 is also eliminated. The graph design EPS file method does
not need to redefine the "show" operator. As set forth above,
the graph design EPS file is placed in an image box. During
the normal RIP (interpretation) process, as the image box is
processed, the graph design EPS file is executed, which also 20

runs the graph file to generate the graph.
The other alternative methods (alternative #s 2-4) provide

less flexibility, particularly in creating complex graphs.
However, the alternative method #s 2-4 eliminate the need
for the EPS graph file (FIGS. 9A-1 through 9A-4) and the 25
need to redefine the Postscript® "show" operator to process
the EPS graph, which reduces complexity, cost and process­
ing time in the system.
Alternative #2-Named Image Boxes

The second alternative method is useful when printing 30
simple bar graphs. Generally, the method creates a bar chart
with each bar at 100% of the value. Image boxes filled with
the background attributes are sized according to the values
in the database, and placed over the 100% bars such that
only the correct data value shows. The "Named Image Box" 35
method is illustrated in FIGS. llA-1 through llA-2.

For example, assume a document is to contain a bar graph
illustrating the 1996 sales, 1997 sales and 1998 projected
sales for the entries in the sample database set forth above.
The maximum value in the database is 100 and the first entry 40
contains the following values:

1996 Sales: 25
1997 Sales: 50
1998 Proj.: 75
Referring to FIG. llA-1, the first step is place a bar chart 45

at the desired place in the document which contains three
bars (representing 1996 sales, 1997 sales and 1998 project­
ing sales). Each bar may be a different color (red, green and
blue) drawn on a background and each bar is drawn extend­
ing up to the maximum or 100% value (100). 50

The next step is to place a named image box over the bars
to cover a certain percentage of the bars (i.e. cover 50% of
the bars). Each named image box should have the attributes
of the graph background (e.g. colored white) and should be
borderless (except if the bars are to be outlined in black, the 55

bottom border of the named image box should also be
black). The name on the image boxes should correspond to
the field names in the database corresponding to the data
value for that bar. Thus, in our example, the image boxes
will be named "1996Sales," "1997Sales," and "1998Proj." 60

and are represented by dashed lines on FIG. llA-1.

32
to correctly size the bars. This step would occur during
processing of the image boxes on the template files to create
the PDL master and variable files (FIG. 10c, blocks
262-268). The program first retrieves the data value for the
first entry in the database corresponding to the name of the
image box. The program then adjusts the bottom of the box
to the correct value. In our example, the correct value for the
first bar is 25-therefore, 75% of the bar should be covered
by the image box. This is calculated by the following
equation:

max value- data value 100 - 25
__ m_a_x_v-al-ue-- X 100 % = -1-00- X 100 %

=75%

The named image box was originally positioned to cover
only 50% of the bar-therefore, the bottom of the named
image box must be extended to cover an additional 25% of
the bar.

The second data value in our example is 50-thus 50% of
the bar should be covered. Because the image box was
originally positioned to cover 50% of the bar, no adjustment
is need. The third data value is 75---{)nly 25% of the bar
should be covered. The image box must therefore be
reduced. The adjusted named image boxes are represented
by dashed lines in FIG. llA-2.

The same method may be used to place named image
boxes to cover the correct percentage of graphic objects
(such as bottles or trucks) which are used in place of
standard rectangular bars.
Alternative #3-Anamorphic Scaling

This method is similar to the previous image box method
and is particularly suited to create bar charts using graphic
objects which can be anamorphically scaled to the correct
data value.

Like in the previous Named Image Box method, a graph
is placed at the desired position on, for example, a QuarkX­
Press® document in the template file. A named image box
containing a maximum (100% scaled) graphic object (such
as a bottle or truck) is placed at each bar position such that
the top of the graphic object/image box corresponds to the
maximum data value. As before, the image boxes are named
to correspond to fields in the database containing the data
values.

Next, during the processing of the image boxes during
creation of the master and variable files, the data value is
retrieved from the database field and the box is scaled (i.e.
shrunk) corresponding to the data value. The graphic object
is thus anamorphically scaled to fit inside the image box.

The same method could also be used with standard
rectangular bars.
Alternative #4-Spreadsheet Graphs

The fourth alternative method takes advantage of the
graphing capabilities of a standard spreadsheet program
(such as Microsoft® Excel®). Thus, it may be used to draw
any type of graph that is supported by the spreadsheet
program. Excel® graphing capabilities are described in the
Microsoft® Excels User's Guide (Version 5.0), published by
Microsoft® Corporation (1993-1994), particularly Part 3
(Chapters 15-19, "Creating Charts from Worksheet Data")
and Part 9 (Chapters 41-42, "Exchanging Data with Other
Applications"), which is incorporated by reference herein. The first two steps of creating the 100% graph and placing

the named image boxes replaces the blocks 158-164 (FIG.
9) when creating the template files in, for example, QuarkX­
Press®.

The first step of the method is to place an image box
corresponding to the size and position of the graph on, for

65 example, the QuarkXPress® document in the template file.
The final step is to use the data contained in the specified

database fields to adjust the size of the named image boxes
Next, graph data from the database 108 is retrieved and

supplied into cells in an Excel® worksheet. The data can be

US 6,205,452 Bl
33

supplied to Excel® using AppleScript (for Macintosh) or
Object Linking and Embedding (OLE)(for Windows/PC). A
counter is used to keep track of the graph data from the
database that is supplied to the Excel® worksheet.

34
2) An Always Variable Page-may contain variable infor­

mation and is included in every book; or
3) A Selectively Variable Page--contains variable infor­

mation but is selectively included only in certain books.
Excel® is then instructed to create a graph from the data 5

in the worksheet, according to the user specified graph
parameters. The Excel® graph may be saved to an external
file, which is then placed in the image box or can be linked
back to the QuarkXPress® image box using conventional
OLE techniques. 10

In so specifying the foregoing, the user creates a pagina­
tion file (called, for example, * .PAG, where * indicates a file
name selected by the user). A sample window generated by
the block 340 to prompt a user for the information needed to
create the pagination file is shown in FIG. 12A.

Referring again to FIG. 12, following the block 340, a
Referring to FIG. 9, the above-described steps replace the

blocks 160--164. The Spreadsheet Graphing method is illus­
trated by the following pseudo-code:
Place image box on Quark document

Begin Loop
Start counter = 1
For each piece of data to be graphed

Get data from database
Put data into cell A[counter] of

Excel ® worksheet (via OLE or
Applescript)

Set counter = counter + 1
End Loop

Instruct Excel ® to graph data in cells A[1] through
A[counter] - 1 with user specified attributes

Imposition Processes
The RIP/interpretation process of FIG. 11 may be imple­

mented in context of either the "GetTiff" or "Imposition­
on-the-fly" imposition processes described below. Before
the pages are imposed and RIPped, however, the control unit
must determine how the pages should be imposed.

FIG. 12 illustrates the programming implemented by the
control unit 52 to generate a page description language
instruction set specifying which pages should be printed and
how the pages should be positioned (or imposed) for print­
ing. The page description language instruction set may be
incorporated into the press command file 140 or may be
provided as a separate file to the print system 79. For
purposes of illustration, the page description language
instruction set is written in PostScript® in the format dic­
tated by the Xerox DocuPrint printer. Further, the instruction
set is directed to books printed in "saddle stitch" imposition
format (i.e. 2 pages on each side of sheet) as explained in
connection with FIGS. 6--8. It is understood, however, that
the invention could easily be modified for use with a
different demand printer (i.e. the Xeikon Barco printer)
and/or imposition format (i.e. 4 pages on each side of sheet).

Referring to FIG. 12, the programming begins at a block
340 which prompts a user to specify certain information to
be used to paginate the book. A variable ("MAXPGS")
representing the maximum number of supplied pages that
may or may not be assembled into a single book during the
job is specified together with the identification of filler
page(s) that may or may not be printed and assembled at the
end of a book either on a left-hand or a right-hand portion
thereof. Also, the user is prompted to specify for each page
whether such page will be forced to be on the left side of a
book, the right side of a book or will not be forced to a
particular book side. In the event a page is to be forced to a
side, the user is prompted to specify the page file name and
page number for a filler page to precede the forced page. Still
further, the user is prompted to specify for each page
whether such page is:

l)AnAlways Master Page--contains the same (i.e. static)
information and is included in every book;

block 342 opens the press command file 140 and a block 344
selects the appropriate database files, including the variable
information file (* .VARS), the pagination file (* .PAG), and
(optionally) a barcode file. As set forth above, the * .VARS

15 file is a temporary file of pairs of page numbers and database
column numbers that indicate where in the database variable
information for the page comes from.

The barcode file is a page description language file (for
example, a Postscript® file) which contains instructions for

20 printing the sequential page numbers and/or a tracking bar
code on the pages of the completed book. The barcode file
will be explained in detail below.

The programming then proceeds to the loop containing
blocks 346, 348, 350, 352 and 354. The block 346 takes each

25 record (or book) in the press command file 140 in sequential
order. For each record, the block 348 determines which
pages should be printed to generate that particular book.
Next, the block 350 determines whether the pages to be
printed should be forced to the right hand or left hand side

30 of the book and the block 352 "pads" the pages to be printed
to be a multiples of the number of pages to be printed on a
sheet (in our example, 4) by adding appropriate filler pages.
Next, the block354 generates the PostScript® instruction set
and the programming returns to the block 346 to retrieve the

35 next record in the press command file 140. The loop repeats
for each record in the press command file 140.

FIG. 13 illustrates in detail the programming steps imple­
mented by the block 348 of FIG. 12, which determines
which pages should be printed for a particular record in the

40 press command file 140. A block 360 first retrieves the first
page in the record. A decision-making block 362 then
determines whether the page is from a new file that is to be
"imposed-on-the-fly with offsets." (Imposition-on-the-fly
with offsets is one of the imposition formats of the present

45 invention, which will be explained in detail below). If yes,
a block 364 calculates and saves the offsets for all the pages
in the file. After the block 364 calculates and saves the
offsets or if the block 362 is false, a decision-making block
366 then determines whether the page is a master page (i.e.

50 does not include any variable information placeholders). If
the page is a master page, the page should always be printed
and a block 368 "marks" the page to be printed. The block
368 may "mark" the page by adding it to a page print array.
The page print array contains the page number and a marker

55 to indicate the disposition of the page. For example, pages
that should not be printed are designated with a "0"; master
pages (always printed) are designated with a "1"; and
variable pages to be printed are designated with a "2".

If the block 366 determines that the page is not a master
60 page (i.e. it's a variable page), a decision-making block 370

determines whether the variable page should be printed at all
times. (This was designated by the user at the block 340 in
FIG. 1 during creation of the pagination file). If yes, the
block 368 marks the page to be printed. If no, a decision-

65 making block 372 determines whether the page has any
variable placeholders with valid data. In other words, the
block 372 determines whether there is any variable infor-

US 6,205,452 Bl
35

mation from the database to be printed on the page. If yes,
the block 368 marks the page for printing. The program then
returns to the block 360 to retrieve the next page from the
record until all the appropriate pages have been marked for
printing. 5

FIG. 14 illustrates in detail the programming steps imple­
mented by the block350 ofFIG.12 to determine whether the
pages should be forced to the left or right hand side of the
book. A block 380 first initializes a left/right (LIR) counter
variable to its default value of right because it is assumed 10

that the first page of the book will be one the right side. Next,
a block 382 retrieves the first page from the record that is
marked "should print" and a block 384 determines whether
the user has specified whether the page should be forced to
the left or right side. (This was designated by the user during 15

creation of the pagination file at block 340 of FIG. 12). If the
user h~s not specified that the page should be forced, a block
~8.6 fl1p-flops the L/R counter such that if it was set to right
1~ 1s changed to left and if it was set to left, it is changed to
nght and the program returns to the block 382 to retrieve the 20

next "should print" page in the record.
Alternatively, if the block 384 determines that the user has

specified that the page should be forced left or right, a block
388 determines whether the user specification matches the
orientation of the page (i.e. is it the same as the L!R counter). 25

If yes, the block 386 flip-flops the L/R counter and returns
to the block 382 to retrieve the next "should print" page in
the record. Otherwise, a block 390 marks an appropriate
filler page (which was identified by the user during creation
of the pagination file) to be printed and the program returns 30

to the block 382 to retrieve the next "should print" page in
the record.

FIG. 15 illustrates in detail the programming steps imple­
mented by the block 352 of FIG. 12 to "pad" the pages into
a multiple of the number of pages to be printed on a sheet. 35

In our example, using "saddle stitch" imposition, four pages
are printed on a sheet (2 pages per side). Therefore, filler
pages may need to be added to ensure that the total number
of pages in the book is a multiple of 4. A block 392 first
counts the number of pages in the record that have been 40

marked to print. This includes all the master and variable
pages that were marked by the block 368 of FIG. 13 as well
as any filler pages that were marked by the block 390 of FIG.
14. Next, a block 394 determines whether the total number
of pages is a multiple of 4. If not, a block 396 adds the 45

appropriate number of filler pages to make the total number
of pages a multiple of 4. For example, if the block 392
determines that 18 pages are marked to print, the block 396
will add 2 filler pages to make the total number of pages in
the book equal to 20 (a multiple of four). The program then 50

returns to the block 354 of FIG. 12 which generates the
Postscripts instruction set.

The PostScript® instruction set specifies how the pages
m~rk.ed to print should be positioned (or imposed) for
pnntmg. In our example, for a "saddle-stitch" imposition 55

format, and assuming a 12 page book, the block 354
generates an instruction specifying that the pages should be
positioned as shown in the following table:

60

Sheet No. Side No. Left Side Right Side

Page 12 Page 1
2 Page 2 Page 11

2 Page 10 Page 3 65

2 2 Page 4 Page 9

Sheet No.

3
3

36

-continued

Side No.

2

Left Side

Page 8
Page 6

Right Side

Page 5
Page 7

It is understood that a different instruction set could be
generated ~by a~ imposition program) to impose and print
the pages m a different format (i.e. four pages per side) or
alternatively, a different number of total pages.

After the block 354 generates the imposition instruction
~et, t~e. pages are imposed and printed according to an
1mpos1tlon procedure of the present invention. The first
imposition procedure of the present invention utilizes an
artificial PostScript® operator called "GetTIFF", which is
recognized by the Xerox DocuPrint RIP, wherein page files
are preprocessed to TIFF ("tagged image file format")
format before being provided to the RIP. The second impo­
sition procedure of the present invention (referred to as
"imposition-on-the-fly") involves downloading imposition
programs to the RIP which redefine various PostScript®
operators to automatically position pages while each page is
being interpreted.

A user is prompted to specify various information needed
for imposition and printing, including the sheet size (i.e.
llx17), imposition style (imposition-on-the-fly or
GetTIFF), finishing style (online or offline), the output
device (i.e. Xerox DocuPrint or Barco Xeikon) and the name
of the directory where the master and variable page files are
stored. A sample window to prompt a user to provide this
information is shown in FIG. 16.
GetTIFF Imposition

A TIFF (tagged image file format) file is a bitmap repre­
sentation of a page in the same screen format as the print
engine. Several commercially available RIPs (such as Image
Alchemy PS or TranverterPro) process pages represented in
a page description language format to TIFF format. The
Xerox DocuPrint RIP recognizes an artificial PostScript®
operator called "GetTIFF" which retrieves a specified TIFF
file and quickly processes the file for rendering by the
DocuPrint demand printer. (Other demand printer RIPs,
including the Barco Xeikon, may also be modified to rec­
ognize a GetTIFF-type operator).

In a preferred embodiment of the present invention, the
master page PDL files 122 and the variable page PDL files
137, 138 are preprocessed to TIFF format. Because the
Xerox DocuPrint system allows for only one input data
stream (as opposed to the Barco Xeikon system which
allows two data streams-master and variable), the master
page PDL files 122 and the variable page PDL files 137, 138
may be premerged. This may be accomplished by forcing all
of the master data onto the variable template files. After the
master and variable pages are merged, the instruction set and
GetTIFF operator are used to quickly impose and process
the pages for printing.

Alternatively, the master and variable data streams may be
overlayed by first processing the master pages and then
overlaying the variable pages onto the master pages.

FIG. 17 illustrates programming which may be executed
to facilitate conversion of the page files into TIFF format.
The programming begins at a block 397 which opens the
press command file stored in the memory 53. A block 398
then prompts a user to specify options which are available.
The options include the ability to convert only master page
files, only variable page files or both master and variable
page files into bitmap format. A block 399 then selects the

US 6,205,452 Bl
37

first line in the press command file having at least one file
name therein. Thereafter, a block 400 selects a first file name
and a block 401 checks a file list stored in the memory 53
to see if the file name has been previously placed in the list.
If this is not the case, then this is the first time the file name 5

has been encountered in the programming of FIG. 17. Thus,
a block 402 adds the file name to the file list and a block 403
checks the user-specified options set by the block 398 to
determine whether the file should be converted into TIFF 10
format. If so, a RIP list stored in the memory 53 is updated

38

<<
/PageSize [1224 792] % set sheet size
» setpagedevice % (11 x 17)
(VERON12.V01_dir/ % get left page

VERON12. V01.00000002.tiff) GetTIFF
612 0 translate % move to right
(VERON01.V01_dir/ % get right page

VERON01. V01.00000002.tiff) GetTIFF
showpage
(VERON02.M_dir/ % get left page

VERON02.M.00000002.tiff) GetTIFF
612 0 translate move to right

by adding the file name thereto (block 404) and control
passes to a block 405. Control also passes to the block 405
from the block 403 (bypassing the block 404) if the file is not
to be converted into TIFF format, and from the block 401 if
the file name currently under consideration is already in the
file list.

(VERON11.V01_dir/ % get right page
VERON11.V01.00000002.tiff) GetTIFF

15 showpage

The block 405 checks to determine whether the end of the
current line in the press command file has been reached. If
not, a block 406 selects the next file name in the line and 20

control returns to the block 401.

If the block 405 determines that the end of the current line
in the press command file has been reached, a block 407
checks to determine whether the end of the press command 25

file has been reached. If not, a block 408 selects the next line
in the press command file having at least one file name and
control returns to the block 400. On the other hand, if the end
of the file has been reached, a block 409 causes the RIP 82
(or another RIP) to convert the files identified in the RIP list 30

into TIFF format.

The programming of FIG. 17 thus facilitates conversion
of files to TIFF format as required by the print system 79.

(VERON06.M_dir/ % get left page
VERON06.M.00000004.tiff) GetTiff

612 0 translate % move to right
(VERON07.V03_dir/ % get right page

VERON07. V03.00000003.tiff) GetTiff
showpage % reset to left

In the instruction set, the "VERON*.* _dir/VERON*. *"
indicates the directory and filename where the page descrip­
tions are located. The suffix ".M" indicates a master page
and the suffix ".V_" indicates a variable page (with the
version number of the variable page to be printed). The
suffix "_*tiff" is the file name created by the RIP which
converted the page files to TIFF files and indicates that the
files are in TIFF format. The artificial Postscript® "Get-
TIFF" operator interprets the TIFF files. The "612 0 trans­
late" command moves the offset to the right hand side of the
sheet (block 414) and the Postscript® showpage operator

35 transmits the page to the demand printer 84 for rendering,
prepares for interpreting the next page description and resets
the offset to the left hand side.

Referring to FIG. 18, if the user specified GetTIFF
imposition and after the page files have been RIPped to TIFF
format by the programming of FIG. 17, a block 410 retrieves
the first page pairing from the instruction set (in our
example, page 12 as the left hand page and page 1 as the
right hand page). A block 412 then retrieves a reference to 40

the page description of the left hand page in TIFF format
from the page file and provides it to the RIP 82. Assuming
the default offset is positioned at the left side of the sheet, the
left hand page is positioned on the left side of the sheet.

Optionally, the block 418 may print page numbers and/or
a bar tracking code onto the sheets printed by the demand
printer 84. This may be accomplished by adding the follow­
ing additional PostScript® code before the showpage opera-
tor in the instruction set shown above:

45
/C39P24Dm 24 selectfont % add bar code info A block 414 then moves the offset to position the next

page onto the right side of the sheet. A block 416 retrieves
the reference to the page description in TIFF format of the
right hand page from the page file and provides it to the RIP
82. Next, a block 418 may add page numbers and/or a bar

50
tracking code to the sheet, as explained below. The program
then returns to the block 410 to retrieve the next page pair
from the instruction set and the program repeats until all
pages and all books have been processed.

30 4.5 sub 18 translate 90 rotate % position on
0 0 moveto % side of sheet
(1.12) show % indicates sheet 1 of 12

%
/Helvetica 12 selectfont
320 780 moveto
(12) show
-320 780 move to
(1) show

% add page numbers
% center in middle of left page
% print page "12"
% center in middle of right page
% print page "1"

After all pages have been processed, they are RIPped and 55

printed by the demand printer 84 in accordance with the
initialization (INI) file, which was created by the block 212
(FIG. lOb).

The first section of code provides the command for printing
a bar code (indicating for example, the page number and the
total number of pages in the book). The second section of the
code prints page numbers centered at the bottom of each
page. A similar technique could be used to do any "post If, for example, the demand printer is a DocuPrint (i.e., no

INI file was created), the pages are submitted to the queue
(which contains the same parameters as the INI file) for
RIPping and printing.

A partial Postscript® instruction set for printing the
12-twelve page brochure in accordance with the table above
implementing the GetTIFF imposition according to FIG. 18
is set forth below:

60 page" modifications, such as watermarking samples or QC
books, adding variable printers marks or the like.
Imposition-on-the-Fly

The user may also specify that the pages be imposed and
printed using the imposition-on-the-fly technique of the

65 present invention. This technique positions the pages while
the pages are being interpreted by the RIP. FIG. 19 is a more
detailed block diagram of the print system 79 shown in FIG.

US 6,205,452 Bl
39

4. The PDL master page files 122 and the PDL variable page
files 137, 138 may be combined into merged PDL files (such

40
space") that is independent of the particular demand printer
84. The coordinate system (called "device space") used by
the demand printer 84 varies depending on the particular
demand printer 84 (the "current device") which is specified

as merged PostScript file(s) 450), which are then provided to
the print system 79, comprised of RIP 82, collator 81, press
controller 80 and demand printer 84. The press command
file 140, which includes the instruction set for specifying
how pages should be imposed, is also provided to the print
system 79.

5 for rendering the current page. In order to render the pages
described in the merged PostScript® file 450, the page
descriptions (specified in user space) may be transformed to
the current device space by a Current Transformation Matrix
([CTM]). Alternatively, as described above, the master page files

122 and the variable page files 137, 138 may be provided
separately to the print system 79 and overlayed.

10
The PostScript® language uses the Current Transforma-

tion Matrix ([CTM]) to describe scaling, rotation, and trans­
lation of the page from user space to device space. For
mapping the point (x, y) in user space to the point (x', y') in
device space:

The print system 79 may also include a raster memory 452
associated with the RIP 82 and the demand printer 84. The
RIP 82 generates a raster description of the "current page"
being interpreted, which may be stored in the raster memory

15
452 or provided to the demand printer 84 for rendering. The
demand printer 84 physically renders pages 454 from the
merged PostScript® file 450 onto a "fiat" (or other medium)
456.

For purposes of illustration, it is assumed that the RIP 82
20

interprets the widely used PostScript® PDL language.
(PostScript® is a registered trademark of Adobe Systems,
Inc.) The PostScript® language is fully described in the
PostScript® Language Reference Manual, Second Edition
(1990), from Adobe Systems, Inc., which is incorporated

25
herein by reference. Certain imposition-on-the-fly proce­
dures 454 according to the present invention are downloaded
to the RIP 82. (The procedures 454 include, for example,
ImposeJob, ImposeFile and various redefined PostScript®
operators which are described in detail below). The

30
imposition-on-the-fly procedures 454 will be used by the
RIP 82 to process the instruction set and the page descrip­
tions contained in the merged Postscript® files 450 to
efficiently transmit pages for rendering by the demand
printer 84. (For ease in illustration, it is assumed the master

35
and variable page files were premerged into merged file 450.
It is understood, however, that the master and variable page
files could also be overlayed.)
Postscript® Background

In order to facilitate the explanation of imposition-on-the-
40

fly procedures of the present invention, some background
regarding the PostScript® language is provided. Further
background details may be found in the PostScript® Lan­
guage Reference Manual, Second Edition (1990), from
Adobe Systems, Inc., which was previously incorporated by

45
reference.

The RIP 82 manages four different stacks, which are
"last-in-first-out" (LIFO) data structures. These stacks
include:

(1) an Operands Stack which holds (i) the input operands 50
to various PostScript® operators, and (ii) the results of
the operations;

[CTM] = [a b c d tx ty], where

x' = ax+ cy + tx

y'=bx+dy+ty

where a, b, c, and d determine the extent of scaling and
rotation and where tx and tY determine the extent of trans­
lation.

The RIP 82 also maintains a data structure, called the
"graphics state," that holds various graphics control
parameters, including the [CTM]. The graphics state also
includes (i) a clipping path, which defines the rendering area
in the raster memory 452 for the current page; (ii) font and
line definitions; (iii) a color space (such as DeviceGray,
RGB, CMYK or CIE); and (iv) other graphics control
parameters.

The PostScript® language includes several operators for
setting up the current demand printer 84 to fulfill the
processing requirements of the page descriptions contained
in the merged PostScript® file 450. The current device setup
includes establishing the Current Transformation Matrix
([CTM]) for the current demand printer 84. The default
transformation from user space to device space for the
current device is specified by a "system default matrix." The
system default matrix may be generated by the PostScript®
language, for example, by a defaultmatrix operator. The
[CTM] may be considered an alteration of the system default
matrix.

Once the current demand printer 84 has been set up, the
RIP 82 can begin to interpret the page descriptions in the
merged PostScript® file 450. For each page in turn, every­
thing that is to appear on that page (including text, graphics,
and images) is "painted" into the raster memory 452 and
stored and/or rendered by the demand printer 84.

In the merged Postscript® file 450, each description of a
page to be rendered includes a PostScript® showpage opera­
tor. The showpage operator, which is generally included at
the end of each page description, is used to transmit the
raster description of the current page (saved in the raster

(2) an Execution Stack which is controlled by the RIP 82
and which holds executable objects (i.e. procedures and
files) that are in stages of execution; 55 memory 452) to the demand printer 84 for physical render­

ing of the current page. In general, the showpage operator
transmits the contents of the raster memory 452 to the
demand printer 84, then erases the current page from the

(3) a Dictionary Stack which includes (i) a read only
dictionary ("systemdict") which defines the implemen­
tation of the various PostScript® operators, (ii) a write­
able dictionary ("userdict") which stores all other
definitions, and (iii) specialized dictionaries created by 60

the user (e.g., an imposition dictionary); and
(4) a Graphics State Stack which is used to store graphics

information, such as the parameters of the demand
printer 84.

The PostScript® language is device independent such that 65

the page descriptions contained in the merged PostScript®
file 450 are specified in a coordinate system (called "user

raster memory 452 and partially resets the graphics state in
preparation for interpreting the next page description in the
merged PostScript® file 450.

In level 2 PostScript® implementations, the function of
the showpage operator is controlled by an EndPage proce­
dure and a BeginPage procedure that are defined according
to the current demand printer 84. In general, the EndPage
procedure specifies the disposition of the current page in the
raster memory 452 and the BeginPage procedure sets up and

US 6,205,452 Bl
41

marks the beginning of the next page description to be
interpreted. These procedures may be defined, for example,
by a level 2 setpagedevice operator which sets up the
graphics state for the current demand printer 84 (the "current
graphics state"). 5

During normal operation, the level 2 showpage operator
provides two operands to the EndPage procedure: a reason
code and Pagecount. The reason code operand specifies
whether the EndPage procedure is being called by the
showpage operator, by a copypage operator, or during a 10

device deactivation. When the EndPage procedure is called
by the showpage operator, the reason operand is set to 0. The
Pagecount operand is the number of executions of the
showpage operator that have occurred since the current
device was activated, not including the present execution. 15

Thus, Pagecount is equal to the number of pages that have
been rendered prior to the current page. After the EndPage
procedure is executed, Pagecount is incremented by one and
is provided as an operand to the BeginPage procedure.

The operation of the level 2 showpage operator is illus- 20

trated in the flowchart of FIG. 20. A block 500 first sets the

42

-continued

pagecount reason EndPage

{ transmit contents of
raster memory to
demand printer
erasepage } if

initgraphics

/pagecount pagecount 1 add def

pagecount BeginPage

} def

% call EndPage
%procedure
% I do these lines
%I only
% I if EndPage
% I returns true
% set default graphics
%state
%increment
% pagecount
% call BeginPage
%procedure

The Imposition-on-the-Fly Procedures
The imposition-on-the-fly procedures of the present

invention create a layer on top of the demand printer, called
a "virtual device." The desired position (scale, orientation
and size) of a page to be printed by the demand printer is
specified by a procedure (called "setvirtualdevice") which
establishes the virtual device for that page. Thus, from the
standpoint of the PostScript® program, the [CTM] is the
same as the system default matrix and every page begins
with a [CTM] mapping user space coordinates to the lower

reason code operand equal to zero to specify that the
EndPage procedure is being called by the showpage opera­
tor. A block 502 then calls the EndPage procedure, which
consumes the reason code and PageCount operands and
returns a boolean result that specifies the disposition of the
current page in the raster memory 452. During normal
operation, the EndPage procedure returns true during execu­
tion of the showpage or copypage operators (causing a
physical page to be produced) and returns false during
device deactivation. A decision-making block 504 deter­
mines whether the result returned from the EndPage proce­
dure is true or false.

25 left corner of the output device. The [CTM] can be explicitly
manipulated as if each PostScript® page were imaged on a
distinct, but identical, physical page.

If the EndPage procedure returns "true", a block 506
transmits the contents of the raster memory 452 to the
demand printer 84 for rendering. A block 508 then clears the
raster memory 452 by executing a procedure similar to a
Postscript® erasepage operator. Under normal operation, the
EndPage procedure returns true if it is called by the show­
page or copypage operator. Thus, the showpage and copy­
page operators cause the contents of the raster memory 452
to be transmitted to the demand printer 84 for rendering.

If the EndPage procedure returns a "false", the showpage
operator does not perform either of the functions of the
blocks 506 and 508 (i.e., no page is rendered), but skips to
a block 510. The block 510 executes a procedure similar to

Thus, when imposing and rendering a selected page from
the merged Postscript® file 450, the current output device

30 (i.e. the demand printer 84) is defined as the virtual device.
In general, the virtual device for a selected page is the same
size as the page and is positioned at the place on the fiat 456
where the page is to be rendered.

The virtual device is established by setting the current

35
transformation matrix ([CTM]) to properly position the
page. A clipping path, which defines the rendering area in the
raster memory 452, is then created around the border of the
page. Thus, the RIP 82 "sees" the position where the page is
to be rendered as the current output device.

For pages in the merged PostScript® file 450 that will not
40 be rendered on the current fiat 456 (i.e. are not included in

the current book), the current output device (the demand
printer 84) is defined as a scaled -down virtual device for the
next page to be imposed and rendered on the fiat. The
scaled-down virtual device allows any intervening pages not

45 to be imposed on the fiat to be quickly interpreted by the RIP
82.

a PostScript® initgraphics operator which resets the [CTM],
the clipping path, and other graphics parameters to the
default values for the current demand printer 84, thus setting

50
up the graphics state for composing the next page. The
clipping path defines the rendering area for the current page
stored in the raster memory 452.

The imposition-on-the fly procedures include the setvir-
tualdevice procedure, which establishes the virtual device
for the next page to rendered on the fiat 456 and an
Enable VirtualDevice procedure which sets up the showpage
operator to support virtual devices. The EndPage and
BeginPage procedures that are invoked by the showpage
operator are also redefined. These procedures will be
described in detail below. A block 512 then increments the Pagecount operand by

one and a block 514 calls the BeginPage procedure with 55
Pagecount as an operand. The BeginPage procedure marks
the beginning of the next page in the merged PostScript®
file 450 to be interpreted by the RIP 82.

The Imposition-on-the-Fly Instruction Set
Preferably, the instruction set for implementing

imposition-on-the-fly by creating the virtual device for
pages to be rendered on the fiat are input to the RIP 82 in the
below-described format. However, the present invention The standard operation of the level 2 showpage operator

illustrated in FIG. 20 may be represented by the following
Postscript® pseudo code:

/showpage {
/reason 0 def % reason = 0 for

% showpage

60 may be modified to properly impose different instruction set
formats.

The imposition-on-the-fly instruction set contains the
name(s) of the merged PostScript® file(s) 450 that will be
interpreted by the RIP 82 and rendered by the demand

65 printer 84. These file names are associated with entry lists
(stored in arrays) containing one or more entries, wherein
each entry contains the following information:

US 6,205,452 Bl
43 44

1) A first user procedure-The user procedure may con­
tain various instructions, including comments, printer's
marks (such as barcodes or watermarks) or other informa­
tion. (The user procedure may also be null and is not
essential to the imposition-on-the-fly procedures of the 5

present invention).

[(FileName)
[{ user procedure 1 }

l

page# { operands to setvirtualdevice }
{ FileObject offset setfileposition }

2) A page number-The page number is the sequential
number of the page description in the merged PostScript®
file 450 of the page to be rendered on the fiat 456. The

10
merged PostScript® file 450 is assumed to contain page
descriptions in sequential order, wherein the first page
description is page "0."

[{ user procedure 1}
page# { operands to setvirtualdevice }
{ user procedure 2-barcodes, watermarks, etc. }

A sample imposition-on-the-fly with offsets instruction
set is attached as Appendix I. The Appendix I instruction set
also includes code in certain second user procedures to print
a barcode.
Explanation of Variables

3) Operands to the setvirtualdevice procedure-As
explained in detail below, the setvirtualdevice procedure 15

establishes the appropriate virtual device as the current
output device for a particular page. The setvirtualdevice
procedure requires the following three operands, which are The variables used by the imposition-on-the-fly proce­

dures may be conveniently defined and stored in a user
20 dictionary (called, for example, "impositiondict"). These

variables include:

included in each entry in the entry list:

i) the scaling, translation and rotation factors which will
be used to generate a "virtual [CTM]" which will
properly position the selected page on the fiat 456.
These factors are listed as follows: [scale_x scale_y
translate_x translate_y rotate];

1) Page Offset-the cumulative number of pages from any
previous Postscript® files that have been interpreted in
accordance with the imposition-on-the-fly procedures of the

25 present invention. Initially, PageOffset is set to -1 (no
previous files (or pages) have been interpreted). ii) the user space coordinates of the lower-left and upper­

right corners of the actual rendering area of the next
page to be rendered on the fiat 456. These corner
coordinates will be used to generate a clipping path
around the border of the page in the raster memory 452. 30
The corner coordinates are listed as follows: [ClipllX
ClipllY ClipurX ClipurY]; and

2) CurrentPage-the number of the next page in the
current merged PostScript® file 450 that is to be rendered on
the current fiat 456. CurrentPage is initially set to 0.

3) LastPage-the number of the last page in the current
merged PostScript® file 450 that is to be rendered on the
current fiat, which is equal to the page number in the last
entry of the entry list. LastPage is initially set to 1 and is
used to determine how many page descriptions in the

iii) the size (width and length) of the page to be rendered
on the fiat. The page size is listed as follows: [PageX
Page Y]. (The page size is not necessarily equivalent to
the clipping path defining the rendering area of the
page, as many demand printers are unable to place
marks at the extreme edges of the page).

4) A second user procedure ("offsets"): Like the first user
procedure, the second user procedure may contain
comments, printer's marks (barcodes, watermarks, etc.) or
other information or may be null. In a preferred
embodiment, however, for the first page on the fiat, the
second user procedure is used to "offset" the program to the
next page to be rendered on the fiat.

For example, the merged Postscript® file generally con­
tains many, many pages because it includes separate page
descriptions for each variable page. Assume a simple four
page book with three master pages and only one variable
page. The book may be sent to 1,000 different people, with
different variable information for each person. Thus, the
merged Postscript® file contains 1,003 page descriptions-3
master pages and 1,000 variable pages. Imposition-on-the-
fly with offsets allows for quick printing of the books
because it "skips over" (i.e. does not RIP) the 999 variable
pages that will not be included in each book.

For imposition-on-the-fly with offsets, the second user
procedure for the first entry in the instruction set contains a
file object, an offset position and the PostScript® setfilepo­
sition operator. The offset position points to the next page
description in the file that is to be included on the fiat. (The
offset positions were calculated and saved by the block 364
of FIG. 13.) The setfileposition operator repositions the
current merged Postscript® file 450 to that offset position.

35 merged PostScript® file must be interpreted in order to
properly render all of the selected pages on the current fiat.

4) PageCount-the number of times that the showpage
operator has been executed (initially 0). In level 2 Post­
Script® implementations, PageCount is stored and incre-

40 mented internally by the RIP 82 through the showpage
operator. However, in level 1 PostScript® implementations,
the PageCount variable must be explicitly defined and
incremented to emulate the operation of the level 2 show-
page operator.

45 5) PageList-the list of entries (page numbers and impo-
sition procedures) contained in the entry list.

6) Currentlndex-an index into the PageList.
7) Lastlndex-the number of entries in the entry list.
8) DefaultMatrix-used to store the value of the [CTM]

50 describing the virtual device (the "virtual [CTM]"). The
scaling, translation and rotation components of the virtual
[CTM] are supplied as operands to the setvirtualdevice
procedure.

9) Page X and Page Y -the width and height respectively
55 of the page to be rendered on the fiat 456. The values of

Page X and Page Y are provided in each entry of the entry list
as operands to the setvirtualdevice procedure.

10) DefaultPageX and DefaultPageY-the default values
of the page width and height, respectively. Their values are

60 initially set to 8'12" (612) and 11" (792), respectively.
11) ClipllX, ClipllY, ClipurX and ClipurY-the user

space coordinates of the lower-left and upper-right corners,
respectively, of the clipping path defining the border of the
virtual device. The values of these variables are also

Thus, the PostScript® instruction set format for 65

imposition-on-the-fly imposition of the present invention is
included as operands to the setvirtualdevice procedure.

12) Portrait-a boolean variable used to describe the page
orientation of the current page. If Portrait is true, the current as follows:

US 6,205,452 Bl
45

page has a portrait orientation (page width<page height). If
Portrait is false, the current page has a landscape orientation
(page width>page height).

13) DefaultPortrait-the default value for the page
orientation, which is initially set to true (portrait 5

orientation).

14) VirtualDeviceEnabled-a boolean variable used to
determine whether a procedure called, for example,
"Enable VirtualDevice," has been executed. As explained in 10
detail below, the Enable VirtualDevice procedure sets up the
standard PostScript® showpage operator to support virtual
devices.

15) Image Done-a boolean variable used to specify when
the current fiat 456 has been completed. ImageDone is 15

initially and normally set to false, indicating that the current
fiat 456 has not been completed.

initmatrix
initclip
setmatrix
currentmatrix
erasepage
initgraphics

46

transform
itransform
dtransform
idtransform
null device
copypage

The standard operation of these, and all other PostScript®
operators, is fully described in the PostScript® Language
Reference Manual, Second Edition (1990), from Adobe
Systems, Inc., which was previously incorporated by refer­
ence.

The first step in redefining the above-listed PostScript®
operators is to rename the standard operator, for example,
"systemdict_operator," because its definition is stored in the
systemdict dictionary. This may be implemented by the
following code:

A further description of the variables used is included in
the following PostScript® code, which creates the imposi­
tiondict dictionary and initializes the variables:

/impositiondict 200 diet det % create dictionary

20 \systemdict_initmatrix systemdict \initmatrix get def
\systemdict_initclip systemdict \initclip get def
\systemdict_setmatrix systemdict \setmatrix get def
\systemdict_erasepage systemdict \erasepage get def
\systemdict_initgraphics systemdict \initgraphics get def

/Identity matrix def
/Matrix matrix def
/Matrix2 matrix def
/Matrix3 matrix def
/Matrix4 matrix def
/DefaultPageX 612 def
/DefaultPage Y 792 def

/DefaultPortrait true def

/PageOffset -1 def

/CurrentPage 0 def

/Currentlndex 0 def

/LastPage 2147483647 def

/PageCount 0 def
/DefaultMatrix matrix
currentmatrix def
/VirtualDeviceEnabled false def

/lmageDone false def

/Portrait DefaultPortrait def

/PageX DefaultPageX def
/Page Y DefaultPage Y def
/ClipllX 0 def
/ClipllY 0 def
/ClipurX DefaultPageX def
/ClipurY DefaultPage Y def

% impositiondict begin
% used as input to setmatrix
% dummy matrix for temp storage
% dummy matrix for temp storage
% dummy matrix for temp storage
% dummy matrix for temp storage
% default page width (X) and
% page length (Y) (8 1/2" x
% 11"{
% assume page orient =

%portrait
% first file-no previous
%pages
% initial value of page to
%impose
% initial value of page to
%impose
% initial value is highest
%number
% used in level 1 only
% the "default" matrix for the
% current virtual device
% allow normal
%operation
% not done with current media
% Set initial job defaults
% default to portrait
%mode
% initial page size
%
% initial lower left
% and upper right
%corners of
% clipping path

The Redefined PostScript® Operators

25 \systemdict_currentmatrix systemdict \currentmatrix get
def

\systemdict_transform systemdict \transform get def
\systemdict_itransform systemdict \itransform get def
\systemdict_dtransform systemdict \dtransform get def

30 \systemdict_idtransform systemdict \idtransform get def
As explained below, the standard nulldevice and copypage
operators are not renamed because their standard operation
will never be used in connection with the present invention.
The new definitions of the operators, described below, are

35 then loaded into the userdict dictionary.
The Redefined Initmatrix Operator

The standard PostScript® initmatrix operator sets the
[CTM] to the system default matrix for the current device.
The initmatrix operator is redefined to set the [CTM] equal

40 to the virtual [CTM] which defines the virtual device.

45

50

The Virtual [CTM] May be Stored in the Variable Default­
Matrix

The PostScript® initmatrix operator may be redefined by
the following code:

/initmatrix {
impositiondict begin
DefaultMatrix
systemdict_setmatrix
end

} bind def

The Redefined Initclip Operator
The default clipping path corresponds to the boundary of

the maximum imageable area for the current output device
(the demand printer 84). The standard PostScript® initclip
operator replaces the current clipping path in the graphics
state with the default clipping path for the current demand

Also, before executing the imposition-on-the-fly proce- 55

dures of the present invention, several PostScript® operators
must be redefined for compatibility with the EnableVirtu­
alDevice and setvirtualdevice procedures, which will be
described in detail below. The virtual device, in effect,
"shields" the PostScript® program and RIP from where the
pages are being painted into the raster memory 452 through
the [CTM]. Thus, in general, the PostScript® operators that
affect the [CTM] must be redefined to also "shield" the
PostScript® program and RIP from the final mapping of the
page description from user space to device space coordi­
nates. The PostScript® operators which must be redefined
include:

60 printer. The initclip operator is redefined to replace the
current clipping path in the graphics state with a clipping
path defining the border of the virtual device page.

The flowchart of FIG. 21 illustrates the program steps
implemented by the redefined initclip operator. A decision-

65 making block 520 determines whether a current path exists
by checking for the existence of a currentpoint. If no
currentpoint is defined, a block 522 stores an empty path in

US 6,205,452 Bl
47 48

a variable called, for example, "pl." Alternatively, if a
currentpoint is defined, a block 524 invokes a previously
defined utility routine called, for example, "MakePath," that
creates a path description from the current path. The block
524 then saves the current path description in the variable 5

pl. The MakePath procedure, which may be stored in the
impositiondict dictionary, is similar to the level 2 upath
operator and may be implemented as follows:

/setmatrix {
impositiondict begin
Matrix defaultmatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
DefaultMatrix
Matrix4 concatmatrix
systemdict_setmatrix
end

/MakePath {
[{/moveto cvx} {/line to cvx} {/curve to cvx}

{/closepath cvx} pathforall] cvx
} bind def

Next, a block 526 saves the current [CTM] and a block
528 sets the [CTM] to the virtual [CTM]. A block 530 then
creates a clipping path between the corners of the virtual
device, which were specified by the values of the ClipllX,
ClipllY, ClipurX and ClipurY variables provided as oper­
ands to the setvirtualdevice procedure. A block 532 then
restores the [CTM] which was saved by the block 526 and
the current path saved in the variable pl. The initclip
operator may be redefined as follows:

/initclip
impositiondict begin
{ currentpoint } stopped

/pl { } def } % p1 ~ empty path
pop pop /p1 MakePath def} % p1 ~ current path

if else
matrix systemdict_currentmatrix
initmatrix
systemdict_initclip
newpath
ClipllX ClipllY moveto
ClipurX ClipllY lineto
ClipurX ClipurY lineto
ClipllX ClipurY lineto
closepath
clip
newpath
systemdict_setmatrix
p1

end
} bind def

% create clippath

% restore current
%path

The Redefined Setmatrix Operator

10
} bind def

The Redefined Currentmatrix Operator
The standard currentmatrix operator replaces the matrix

15 supplied on the Operands stack with the current [CTM] in
the graphics state.

The current [CTM] can be considered the result of con­
catenating the virtual [CTM] (saved in DefaultMatrix) with
an operations matrix. The redefined currentmatrix operator

20 calculates the operations matrix by concatenating the current
[CTM] with the inverse of the virtual [CTM] as set forth
below:

[current CfM]~[operations matrix] [virtual CfM],

25
and

[operations matrix]~[current CfM] [virtual crMr1

The [operations matrix] is then concatenated with the system
30 default matrix and the resultant matrix is stored in the matrix

on the Operands stack.

35

40

The Postscript® currentmatrix operator may be redefined
by the following code:

/currentmatrix {
impositiondict begin
Matrix systemdict_currentmatrix
DefaultMatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
Matrix4 defaultmatrix
3 -1 roll
concatmatrix
end

} bind def

45 ---

The standard Postscript® setmatrix operator replaces the
current [CTM] in the graphics state with a matrix that is
supplied on the Operands stack. The matrix supplied on the
Operands stack ("the operand matrix") can be considered the 50

result of the concatenation of the system default matrix with

The Redefined Erasepage Operator
The standard erasepage operator erases the entire current

page stored in raster memory by painting the page white.
The erasepage operator is redefined to erase only the virtual
device page, which is the area defined by the next page to be
rendered on the current fiat. an operations matrix.

The setmatrix operator is redefined to calculate the opera­
tions matrix by concatenating the operand matrix with the
inverse of the system default matrix. Thus, 55

The erasepage operator is redefined by calling the rede­
fined initclip operator, described above, which establishes a
clipping path around the border of the virtual device page.
The area inside the clipping path is then painted white. The

[operand matrix]~[operations matrix] [system default matrix],

and

[operations matrix]~[operand matrix] [system default matrix]-1

Once the operations matrix is calculated, it is concatenated
with the virtual [CTM] (stored in DefaultMatrix) and saved
as the new [CTM]. Thus,

new [CfM]~[operations matrix] [virtual CfM].

The Postscript® setmatrix operator may be redefined by
the following code:

standard PostScript® gsave operator (described in detail in
connection with the optional imposition-on-the-fly proce­
dures of the invention) is called immediately before the

60 redefined initclip operator to save the current graphics state,
including the current clipping path, gray level, etc. Also,
after the virtual device page has been painted white, the
standard PostScript® restore operator (also described in
detail in connection with the optional procedures) is called

65 to restore the current graphics state.
The Postscript® erasepage operator may be redefined by

the following code:

US 6,205,452 Bl
49 50

specifies a distance transformation from device space to user
space according to the inverse of the [CTM] or a supplied
matrix operand.

FIG. 22 illustrates the program steps implemented by the /erasepage {
impositiondict begin
gsave % systemdict_gsave for optional procs
initclip
clippath 1 setgray fill
grestore % systemdict_grestore for optional

% procs
end

5 redefined transform operator. The other transform operators
are redefined in the same way. A decision-making block 534
first determines whether a matrix operand was supplied to
the transform operator. If a matrix operand was supplied, a
block 536 simply calls the standard transform operator (now

} bind def

(In the optional imposition-on-the-fly procedures, the stan­
dard PostScript® gsave and restore operators are redefined.
Thus, in the optional procedures, the erasepage operator is
redefined by calling the systemdict_gsave and systemdict_
restore operators, as specified above.)

10
renamed "systemdict_transform") to perform the transfor­
mation according to the supplied matrix. (For the other
transform operators, the block 536 calls systemdict_
dtransform, systemdict_itransform or systemdict_
idtransform).

15
Alternatively, if the block 534 determines that a matrix

operand was not supplied, a block 538 first saves a copy of
the current [CTM] in the graphics state on the Operands
Stack. The Redefined Initgraphics Operator

The standard PostScript® initgraphics operator resets
several values in the graphics state, including the [CTM], the
current path and the clipping path, to their default values. 20

The standard initgraphics operator is equivalent to the
following PostScript® language sequence:

initmatrix newpath initclip

As explained previously, the current [CTM] can be con­
sidered the result of the concatenating the virtual [CTM]
(saved in DefaultMatrix) with an operations matrix. A block
540 thus calculates the operations matrix by concatenating
the current [CTM] with the inverse of the virtual [CTM].

Next, a block 542 sets a new [CTM] equal to the opera-
1 setlinewidth 0 setlinecap 0 setlinejoin
[] 0 setdash 0 setgray 10 setmiterlimit

25 tions matrix concatenated with the system default matrix.
The new [CTM] is now equal to what the [CTM] would have
been if the setvirtualdevice and imposition procedures were
not implemented.

A block 544 then calls the standard transform operator to

The initgraphics operator is redefined to perform the
above listed sequence. However, the redefined initgraphics
calls the redefined initmatrix and initclip operators, which
were described above. Thus, the redefined initgraphics
operator resets the [CTM] and the clipping path to their
default values for the virtual device. The Postscript® init­
graphics operator may be redefined by the following code:

30
perform the transformation from user to device space
according to the new [CTM]. (Again, for the other transform
operators, the block 544 calls the standard dtransform,
itransform, or idtransform operator).

Lastly, a block 546 resets the [CTM] equal to the current

35
[CTM] saved on the Operands Stack by the block 538.

The PostScript® transform operators may be redefined by
the following code: /initgraphics {

initmatrix newpath initclip
1 setlinewidth 0 setlinecap 0 setlinejoin
[] 0 setdash 0 setgray 10 setmiterlimit

} bind def
40 /transform {

impositiondict begin

The Redefined "Transform" Operators
The standard PostScript® transform operator transforms a

supplied user space coordinate (x,y) to the corresponding
device space coordinate (x',y') as specified by the [CTM]. 45

Since the [CTM] is altered during the imposition process,
the transform operator is redefined to perform the transfor­
mation as if the [CTM] had not been altered.

If a matrix operand is supplied to the standard transform
operator, the transformation from user to device space is 50

performed according to the supplied matrix. Thus, if a
matrix operand is supplied, the transform operator is also
redefined to perform the transformation according to the
supplied matrix.

The PostScript® language includes three other "trans- 55

form" operators (dtransform, itransform and idtransform)
which are redefined in the same manner as the transform
operator.

The standard PostScript® dtransform operator specifies a
"distance" transformation of a coordinate from user to 60

device space according to the [CTM] or a supplied matrix
operand. In a distance transformation, the translation com­
ponents (tx and ty) of the [CTM] are not used.

The standard PostScript® itransform operator specifies a
transformation of a coordinate in device space (x',y') to user 65

space (x,y) according to the inverse of the [CTM] or a
supplied matrix operand. The standard idtransform operator

dup type /arraytype eq {
systemdict_transform % or systemdict_dtransform

%or

end

% systemdict_itransform
% or systemdict idtransform

}{
Matrix systemdict_currentmatrix
dup 4 1 roll
DefaultMatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
Matrix2 defaultmatrix
Matrix4 concatmatrix
systemdict_setmatrix
systemdict_transform %or

% systemdict_dtransform
% or systemdict_itransform
% or systemdict idtransform

3 -1 roll systemdict_setmatrix
} ifelse

} bind def

The Redefined Nulldevice Operator
The standard Postscript® nulldevice operator installs a

"null device" as the current output device. The standard
PostScript® nulldevice operator produces no physical out­
put and has no associated raster memory. However, any
graphics or font operations executed will be saved in the
current graphics state. The PostScript® nulldevice operator

US 6,205,452 Bl
51

also sets the [CTM] to an identity matrix ([1 0 0 1 0 0]) and
establishes the clipping path as a single point at the origin.

The standard PostScript® nulldevice operator, however,
is not suitable for use with this invention because is not a
page device operator and, therefore, has no EndPage and 5

BeginPage procedures associated with it. Thus, the nullde­
vice operator is redefined to set the [CTM] to the identity
matrix and establish a one point clipping path without
altering the current page device. The nulldevice operator
may be redefined as follows:

/nulldevice {
impositiondict /Identity get
systemdict_setmatrix
newpath
clip

} bind def

10

15

The Redefined Copypage Operator
20

Under normal operation, the standard PostScript® copy­
page operator transmits one copy of the current page to the
demand printer without erasing the current page or changing
the graphics state. Like the showpage operator, the operation
of the copypage operator depends on the EndPage and
BeginPage procedures, which are redefined by the present 25

invention. In the present invention, the EndPage and
BeginPage procedures are redefined so that the copypage
operator has no affect. The EndPage and BeginPage proce­
dures could be redefined to check for the copypage operator
(by comparing the reason code to one). Alternatively, the 30

operation of the copypage operator can simply be nulled by
the following code:

\copypage { } def

52
fines the showpage operator to emulate the operation of the
level 2 showpage operator as illustrated in FIG. 20. Next, a
block 558 executes the BeginPage procedure for the first
page (page "0") in the merged PostScript® file 450. (This
was done automatically in the level 2 implementation by the
block 552 by calling the setpagedevice operator).

The blocks 554-558 may be implemented by the follow­
ing code:

impositiondict /systemdict showpage
systemdict /showpage get put
/showpage {
impositiondict begin

Pagecount 0 EndPage
systemdict_showpage
} if
systemdict_initgraphics
/Pagecount PageCount 1 add def
PageCount /BeginPage load end exec
} def

0 impositiondict /BeginPage get exec
} ifelse

%rename
% showpage
%emulate
%level 2

Next, a block 560 invokes a procedure (called, for
example, "DisablePageDevice") which was previously
stored in the impositiondict dictionary. The DisablePageDe­
vice procedure redefines the PostScript® setpagedevice
operator and all other compatibility operators that call the
setpagedevice operator. Disabling these operators ensures
that the raster memory 452 (which may contain the raster
descriptions of previously processed pages to be rendered on
the fiat 456) is not erased by the setpagedevice operator. The
DisablePageDevice procedure is described in detail below in
connection with FIG. 24.

The Enable VirtualDevice Procedure
The Enable VirtualDevice procedure, which is called by

the ImposeJob procedure at the end of the instruction set,
sets up the showpage operator to support virtual devices.
FIG. 23 is a flowchart illustrating the program steps imple­
mented by the Enable VirtualDevice procedure. A block 550
first determines whether the RIP 82 implements level 1 or
level 2 PostScript® by determining whether the PostScript®
setpagedevice operator is defined in the systemdict dictio­
nary. If the RIP 82 implements the level 2 Postscript®
language, a block 552 loads the redefined EndPage and
BeginPage procedures into the current graphics state for the 45

demand printer 84 by calling the setpagedevice operator. As
described in detail below, the EndPage and BeginPage
procedures are redefined to define the current output device

35
After the block 560 invokes the DisablePageDevice pro-

cedure described above, a block 562 sets the boolean vari­
able called "VirtualDeviceEnabled" to true to indicate that
the procedure has been completed and the showpage opera­
tor is set up to support virtual devices.

as a virtual device for pages to be rendered or as a scaled­
down virtual device for non-rendered pages.

The blocks 550 and 552 of the Enable VirtualDevice
procedure may be implemented by the following code:

/Enable VirtualDevice {
/setpagedevice where { % level 2

pop
2 diet begin
/EndPage impositiondict /EndPage get def
/BeginPage impositiondict /BeginPage get
def
currentdict end
setpagedevice
}

Alternatively, if the block 550 determines that the RIP 82
implements level 1 PostScript®, a block 554 renames the
standard level 1 showpage operator and a block 556 rede-

40
The blocks 560 and 562 of the Enable VirtualDevice

procedure may be implemented by the following code:

impositiondict \DisablePageDevice get exec impositiondict \Virtu­
alDeviceEnabled true put } bind def

The DisablePageDevice Procedure
FIG. 24 is a flowchart illustrating the program steps

implemented by the DisablePageDevice procedure, which is
invoked by the block 560 of the Enable VirtualDevice pro­
cedure. Because setpagedevice is a level 2 operator, a block
570 determines whether the RIP 82 implements the level 1

50 or the level 2 PostScript® language by determining whether
the setpagedevice operator is defined in the systemdict
dictionary. If the RIP 82 implements the level 2 PostScript®
language, blocks 572-580 redefine the setpagedevice opera­
tor to correct the page orientation of the output device, if

55 necessary.
During normal level 2 operation, a dictionary operand

containing input media selection entries is provided to the
Postscript® setpagedevice operator and the setpagedevice
operator establishes the current output device according to

60 the information contained in the current graphics state and
the dictionary operand. The dictionary operand may contain,
for example, an entry for PageSize, which is an array of two
numbers indicating the width and height of the current page.
Thus, a call to the setpagedevice operator may alter the page

65 size, which is critical in setting up the virtual device.
The block 572 of the redefined setpagedevice operator

first determines whether an entry for PageSize was included

US 6,205,452 Bl
53

in the dictionary operand to the setpagedevice operator. If
so, the block 574 then determines whether the PageSize
specified in the entry is portrait or landscape orientation by
comparing the page width to the page height supplied in the
PageSize entry. (As explained above, for purposes of the 5

invention, if the page width is less than the page height, the
orientation is referred to as portrait and the variable Portrait
is set to true. If the page width is greater than the page
height, the orientation is referred to as landscape and the 10
variable Portrait is set to false).

A block 576 then compares the page orientation of the
PageSize entry (determined by block 574) to the page
orientation of the virtual device (stored in the variable

15
Portrait). If they are not the same, a block 578 invokes a

/SetPageSize {
lt Portrait ne {

SetPortrait
} if

initgraphics
erasepage
} bind def

54

% correct orientation of virtual
% device, if necessary

% initialize virtual device
% (emulate setpagedevice)

For compatibility operators that do not affect the page
orientation, the block 582 simply disables or nulls the
operators. The block 582 of the DisablePageDevice
procedure, which redefines or disables the compatibility
operators, may be implemented by the following code:

statusdict begin % operators in statusdict
/a3tray {impositiondict begin 842 792 SetPageSize end}

20 def

procedure called, for example, "SetPortrait," which changes
the orientation of the virtual device from portrait to
landscape, or vice versa. (The SetPortrait Procedure is
described in detail below). Next, for consistency with the
normal operation of the setpagedevice operator, a block 580
calls the redefined initgraphics and erasepage operators.
Alternatively, if the block 576 determines that the page
orientation of the PageSize entry is the same as the virtual
device, or if the block 572 determines that PageSize was not 25

included in the dictionary operand to the setpagedevice
operator, the program skips directly to the block 580, which
completes the redefinition of the setpagedevice operator.

/a4tray {impositiondict begin 595 842 SetPageSize end}
def
/ledgertray { impositiondict begin 1224 792 SetPageSize
end} def
/setpage {pop pop pop} def
/setpagestackorder {pop} def
/setturnble {pop} def
/11 x 17tray { impositiondict begin 792 1224 SetPageSize
end} def
/b5tray {impositiondict begin 516 729 SetPageSize end}
def

The blocks 570-580 of the DisablePageDevice procedure
30

may be implemented by the following code:

/legaltray {impositiondict begin 612 1008 SetPageSize
end} def
/setdefaulttimeouts {pop} def
/setduplexmode {pop} def
/setmargins {pop pop} def
/setpagemargin {pop} def

/Disable/PageDevice {
/setpagedevice where {

pop
userdict
/setpagedevice {

}if

dup /PageSize known {
/PageSize get
impositiondict begin
aload pop
lt Portrait ne {

SetPortrait
} if

end
}{
pop
} ifelse
initgraphics
erasepage

} put

/lettertray {impositiondict begin 612 792 SetPageSize
35 end} def

/setmirrorprint {pop} def
/setpageparams {pop pop pop pop} def
/setresolution {pop} def
end

% operators in userdict

40 /a3 {impositiondict begin 842 1191 SetPageSize end} def
/b5 {impositiondict begin 516 729 SetPageSize end} def
/letter {impositiondict begin 612 792 SetPageSize end}
def
/lettersmall {impositiondict begin 612 792 SetPageSize
end} def
/legal {impositiondict begin 612 1008 SetPageSize end}

45 def
/ledger {impositiondict begin 1224 792 SetPageSize end}
def
/11 x 17 {impositiondict begin 792 1224 SetPageSize end}
def
/a4 {impositiondict begin 595 842 SetPageSize end} def

50 /a4small {impositiondict begin 595 842 SetPageSize end}
def

After the block 580 calls the redefined initgraphics and
erasepage operators, or if the block 570 determines that the
RIP 82 implements level 1 PostScript®, a block 582 rede­
fines the compatibility operators, which are defined in either 55

the statusdict dictionary or the userdict dictionary, which call
the setpagedevice operator or perform similar levell opera-

/note { } def

The SetPortrait Procedure
The SetPortrait procedure, which is invoked by the block

578 of the DisablePageDevice procedure, changes the ori­
entation of the virtual device from portrait to landscape or
vice versa. FIG. 25 illustrates the program steps imple­
mented by the SetPortrait procedure. A block 590 first

tions.

For compatibility operators that change the page
orientation, the block 582 redefines the operator to set the
orientation of the virtual device equal to the orientation of
the page specified by the operator and to initialize the virtual
device. These operators may be redefined by a utility routine
called, for example, "SetPageSize," which is similar to the
blocks 576-580 described above. The SetPageSize routine
may be implemented by the following code:

60 determines whether the variable Portrait is true (indicating
the page is portrait) or false (indicating the page is
landscape).

If Portrait is true, the orientation of the device must be
converted from portrait to landscape. As illustrated in FIG.

65 26A, a portrait-orientated page 592 is represented in a
Cartesian coordinate system with an origin at point Op. The
portrait-orientated page 592 has a width PageX and a height

US 6,205,452 Bl
55

Page Y. The rendering area on the page 592 is bordered by a
clipping path 594, which may be defined by the coordinates
of its lower-left corner (llx, lly) and the coordinates of its
upper-right corner (urx, ury).

The portrait-oriented page 592 is converted to a 5

landscape-oriented page 596 by translating the origin OP of
the page 592 in the positive x-direction and then rotating the
coordinate system 90 degrees counterclockwise, resulting in
the landscape-orientated coordinate system of the page 596

10
with an origin OL. Although the device space coordinates of
the clipping path 594 are unchanged, the clipping path 594
must be redefined with respect to the new landscape coor­
dinate system.

Referring again to FIG. 25, after the block 590 determines 15

that the orientation of the device must be converted from
portrait to landscape, a block 600 redefines the corner
coordinate variables as follows:

Portrait Coordinate

ClipllX
ClipllY
ClipurX
ClipurY

Landscape Coordinate

ClipllY
PageX - ClipurX

ClipurY
PageX - ClipllY

20

25

56

Landscape Coordinate Portrait Coordinate

ClipllY
ClipllX
ClipurY
ClipurX

ClipllX
PageY- ClipurY

ClipurX
PageY- ClipllY

Next, blocks 616 and 618 create matrices to translate the
origin OL in the positive y-direction and then rotate the
origin OL 90 degrees clockwise. A block 620 then concat­
enates the matrices with the current virtual [CTM] to gen­
erate the new virtual [CTM], which specifies the device in
a portrait coordinate system.

The blocks 614-620 of the SetPortrait procedure, which
convert from landscape to portrait orientation, may be
implemented by the following code:

/tmp ClipllY def
/ClipllY ClipllX def
/ClipllX PageY ClipurY sub def
/ClipurY ClipurX def
/ClipurX Page Y tmp sub def
-90 Matrix rotate
0 Page Y Matrix2 translate
DefaultMatrix
Matrix3 concatmatrix
DefaultMatrix concatmatrix
pop
} ifelse

After the clipping path corners are redefined and the new
virtual [CTM] is generated, a block 622 exchanges the
values of Page X and Page Y. Thus, for example, when

Next, blocks 602 and 604 create matrices which will
translate the origin Op by the page width (PageX) in the

30
positive x-direction and then rotate the portrait coordinate
system 90 degrees counterclockwise about the origin Op. A
block 606 then concatenates the matrices with the current
virtual [CTM] to create the new virtual [CTM], which
specifies the device in landscape orientation. 35 converting from portrait to landscape, the portrait page

width becomes the landscape page height and the portrait
page height becomes the landscape page width. Lastly, a
block 624 changes the value of the variable Portrait. Thus,
if Portrait was initially true (indicating portrait orientation),

The blocks 590 and 600--606 of the SetPortrait procedure
may be implemented by the following code:

/SetPortrait {
Portrait {

/tmp ClipllX def
/ClipllY PageX ClipurX sub def
/ClipurX ClipurY def
/ClipurY PageX tmp sub def
90 Matrix rotate
PageX 0 Matrix2 translate
DefaultMatrix
Matrix3 concatmatrix
DefaultMatrix concatmatrix
pop
}

If the block 590 determines that the variable Portrait is
false, the orientation of the device must be converted from
landscape to portrait. Referring also to FIG. 26B, a
landscape-oriented page 608 is specified in a Cartesian
coordinate system with an origin OL. The rendered area on
the page 608 is bordered by a clipping path 610 defined by
the coordinates of its lower-left and upper-right corners. The
landscape-oriented page 608 is converted to a portrait­
oriented page 612 by translating the origin OL in the positive
y-direction and then rotating the coordinate system 90
degrees clockwise about the origin OL. This generates a
portrait-oriented coordinate system with an origin Op.

40 it is set to false to indicate that the device is now in landscape
orientation. Conversely, if Portrait was initially false
(indicating landscape orientation), it is set to true to indicate
that the device is now in portrait orientation.

The blocks 622-624 may be implemented by the follow-
45 ing code:

50

/tmp PageX def
/PageX Page Y def
/Page Y tmp def
/Portrait Portrait not def

} bind def

The SetPortrait procedure described above comprises an

55 optional part of the present invention and is not necessary for
use with Postscript® applications which do not alter the
page orientation.
The Setvirtualdevice Procedure

The setvirtualdevice procedure establishes the current
transformation matrix ([CTM]), the clipping path, and the

60 page size such that the current output device is specified as
a virtual device. The virtual device is defined to be the size
of the next page to be rendered, with the origin and page
boundary at the position on the fiat 456 where the page is to
be rendered.

Similar to the above-described portrait to landscape 65

procedure, a block 614 first redefines the corner coordinates
The setvirtualdevice procedure requires the following

three "operands," which are provided in the instruction set
list: of the clipping path as follows:

US 6,205,452 Bl
57

1) the imposition procedure, which includes the scaling,
translation and rotation factors-{ scale_x scale_y
translate_x translate_y rotate];

58

-continued

2) the user space coordinates of the lower-left and upper­
right corners of the rendering area of the page to be 5

imposed, which will be used to generate a clipping path
around the border of the virtual page in the raster
memory 22--{clip_ll_x clip_ll_y clip_ur_x clip_

/Portrait PageX Page Y lt def
initclip
end

} bind def

%[CfM]

% set clipping path

ur_y]; and
10

3) the page width and page length-[page_size_x page_

The ImposeJob Procedure

size_y].

The ImposeJob procedure is invoked after references to
the merged PostScript® files 450 and the instruction set have
been placed on the Operands stack. Further, the above­
described procedures and variables have been loaded into
the impositiondict dictionary.

FIG. 27 illustrates the program steps implemented by the
setvirtualdevice procedure. A block 630 first determines
whether the variable VirtualDeviceEnabled is set to true,

15
indicating that the Enable VirtualDevice procedure has been
executed and the showpage operator is set up to support
virtual devices. If the block 630 determines that VirtualDe­
viceEnabled is false, a block 633 invokes the Enable Virtu­
alDevice procedure. (A block 6333, which is implemented
only in connection with the optional imposition-on-the-fly­
procedures, will be described below.)

FIG. 28 is a flowchart illustrating the program steps
implemented by the ImposeJob procedure according to the
imposition-on-the-fly procedures of the present invention. A
block 652 invokes the Enable VirtualDevice procedure,
described above in connection with FIG. 23, to set up the

20 showpage operator to support virtual devices.
A block 654 then retrieves the first file/list pair

(containing the name of the merged PostScript® file and the
corresponding entry list with the user procedures, page

Next, a block 634 defines the variables PageX and Page Y
as the width and height of the virtual device, respectively.
Similarly, a block 636 defines the variables ClipllX and
ClipllY as the x andy coordinates of the lower-left corner of
the virtual device and the variables ClipurX and ClipurY as
the x and y coordinates of the upper-right corner of the
virtual device.

A block 638 then calls the standard PostScript® initmatrix
operator (renamed "systemdict_initmatrix"), which sets the
[C1M] to the system default matrix for the current output
device. A block 640 then executes the scale, translate and
rotate operators with the operands to the setvirtualdevice
procedure. These scale, translate and rotate operations alter
the system default matrix to specify the virtual [CTM]. A
block 642 saves the resultant virtual [C1M] in the variable
DefaultMatrix. The virtual [C1M] specifies that the origin of
the virtual device is at the position on the fiat where the next
page is to be rendered on the fiat 456.

A decision-making block 644 then compares the page
width (PageX) to the page height (Page Y). If PageX is less
than Page Y, a block 646 sets the variable Portrait to true
(indicating portrait orientation). Alternatively, if PageX is
greater than Page Y, a block 648 sets the variable Portrait to
false (indicating landscape orientation).

Next, a block 650 calls the redefined initclip operator to
set the clipping path around the border of the virtual page.
(See FIG. 21). The setvirtualdevice procedure may be imple­
mented by the following code:

/setvirtualdevice {
impositiondict begin
VirtualDeviceEnabled not { Enable VirtualDevice } if
aload pop
/Page Y exch def
/PageX exch def
aload pop pop
/ClipurY exch def
/ClipurX exch def
/ClipllY exch def
/ClipllX exch def
systemdict_initmatrix
aload pop
5 -2 roll scale
3 -2 roll translate
rotate

% set page size

% set clipping path corners

% execute scale, translate
%and rotate

DefaultMatrix systemdict_currentmatrix pop % set

25
numbers and operands for the setvirtualdevice procedures
for the current fiat 456) from the instruction set. The file/list
pair is stored in an array that was placed on the Operands
Stack prior to calling the ImposeJob procedure.

For each file/list pair, a block 656 invokes the ImposeFile

30
procedure, described below, which retrieves each entry from
the entry list and determines which pages described in the
merged PostScript® file 450 should be rendered on the fiat
456. Assuming more than one file/list pair is contained in the
array, the blocks 654 and 656 are implemented in a loop

35
which individually retrieves each file/list pair from the array
and invokes the ImposeFile procedure to process each
file/list pair.

After every file/list pair from the instruction set has been
processed by the ImposeFile procedure, a block 658 sets the

40 boolean variable ImageDone to true. ImageDone will be
used to instruct the RIP 82 that the imposition job is
complete and the fiat 456 can be ejected. The value of
ImageDone at this point could be determined by a global
variable. ImageDone could also be set to true in the user

45 procedure in the last entry of the last instruction set list.
Next, a block 660 determines whether the showpage

operator was redefined to emulate level 2. If so, a block 662
executes the standard level 1 showpage operator (renamed
"systemdict_showpage") in order to transmit the contents of

50 the raster memory 452 to the demand printer 84 for physical
rendering of the fiat 456. In the level 2 implementation, the
fiat 456 is automatically rendered by the showpage operator
when the redefined EndPage procedure returns a "true." (See
FIG. 20). If the showpage operator was not redefined, a

55 block 664 ends the program. The blocks 652-662 of the
ImposeJob procedure may be implemented by the following
code:

60
/lmposeJob % Impose pages from each input file
{

65

impositiondict /Enable VirtualDevice get exec
{ % Call ImposeFile for

aload pop pop % each file in instruction
%set

impositiondict /lmposeFile get
exec

US 6,205,452 Bl
59

-continued

} forall
impositiondict /lmageDone true put
impositiondict /systemdict_showpage
known { % Did we redefine showpage

impositiondict /systemdict_showpage
get exec % If yes, execute it.
} if

} def

(Blocks 653 and 657 of the Imposejob procedure, which are
implemented only in connection with the optional
imposition-on-the-fly of the invention, will be described
below.)

The ImposeFile Procedure

5

10

15

FIG. 29 illustrates the program steps implemented by the
ImposeFile procedure of the imposition-on-the-fly proce­
dures of the invention. When the ImposeFile procedure is 20

invoked, the Imposejob procedure has placed a file/list pair
from the instruction set on the Operands stack. The file/list
pair contains a list of entries (the "PageList"), wherein each

/lmposeFile {
impositiondict begin

60

/PageOffset CurrentPage PageOffset add 1 add def
/PageList exch def
/Currentlndex 0 def
PageList Currentlndex get
aload pop pop
5 -2 roll dup
/CurrentPage exch def

0 eq {
exec
}{
pop

} ifelse
setvirtualdevice

%get entry

% get page number for 1st
%page
% if 1st page is on flat
% execute user procedure

% if 1st page is not on
%flat
% pop user procedure

% call setvirtualdevice

entry specifies:

1) a first user procedure;

2) the number of the page to rendered on the fiat 456;

3) the operands to the setvirtualdevice procedure (which
generates the virtual [CTM] for properly positioning
the page on the fiat 456); and

Next, a decision-making block 680 determines whether
the first page in the current Postscript® file (page number 0)
should be rendered on the fiat by comparing CurrentPage to
0. If CurrentPage is not equal to zero (i.e. the first page
should not be rendered on the fiat), a block 682 invokes a
procedure called, for example, "MakeNull." The MakeNull
procedure, which is described in detail below in connection

25 with FIG. 30, creates a scaled-down version of the virtual
device for the next page to be rendered on the fiat. The
MakeNull procedure will be used to quickly interpret pages
included in the merged PostScript® file 450 that will not be
rendered on the current fiat 456. The block 682 also calls the

30 redefined initclip operator (see FIG. 21).

4) a second user procedure (specifying offsets).
After the block 682 executes the MakeNull procedure, or,

alternatively, if the block 680 determines that CurrentPage is
equal to zero (i.e. the first page should be rendered on the
fiat), a block 684 sets the variable LastPage equal to the page

A block 670 sets the variable PageOffset=CurrentPage+
PageOffset+l. CurrentPage (representing the number of the
next page in the current merged Postscript® file 450 that is 35 number of the last page in the PostScript® file to be rendered

on the fiat. The last page is determined by defining Lastlndex
as the number of entries in the instruction set minus one. The
entries are indexed starting with zero (i.e., 0, 1, 2, 3,) such

to be rendered on the fiat 456) is initially 0 and PageOffset
(representing the cumulative number of pages from previous
files processed) is initially -1. Therefore, on the first pass of
the ImposeFile procedure, PageOffset is equal to 0 40
(indicating that no previous files have been processed). A
block 672 then uses the pointer Currentlndex to retrieve the
first entry from the entry list received from the ImposeJob
procedure. A block 673 then retrieves the page number from
the entry and sets CurrentPage equal to its value. Thus, 45

CurrentPage now specifies the number of the first page in the
current merged PostScript® file that should be rendered on
the fiat.

Next, a decision-making block 674 determines whether
the first page in the current PostScript® file (page number 0) 50

should be rendered on the fiat by comparing CurrentPage to
0. If CurrentPage is equal to 0, the first page in the merged
PostScript® file 450 should be imposed and rendered on the
fiat, and a block 675 executes the first user procedure
contained in the current entry retrieved by the block 672. 55

Alternatively, if the block 674 determines that the first page
is not on the fiat, a block 676 pops the first user procedure
from the retrieved entry from the stack.

After the block 675 has executed the user procedure or
60

after the block 676 pops the user procedure, a block 678
executes the setvirtualdevice procedure, which was
described in detail above in connection with FIG. 25. The
setvirtualdevice procedure sets the virtual [CTM] and the
clipping path according to the operands included in the 65

retrieved entry. The blocks 670-678 of the ImposeFile
procedure may be implemented as follows:

that the last of four entries will be entry number 3. Lastlndex
is then used to retrieve the page number from the last entry
in the entry list, which is stored in the variable LastPage. The
block 684 thus determines the number of page descriptions
in the current merged Postscript® file 450 that need to be
interpreted in order to properly render all of the selected
pages on the fiat 456.

The blocks 680-684 of the Impose File procedure may be
implemented by the following code:

/CurrentPage 0 ne {
Make Null

initclip
} if

% if page is not on flat
% execute MakeNull
%procedure

/Lastlndex PageList length 1 sub def
/LastPage PageList Lastlndex get 1 get def

A block 686 then opens the current merged Postscript®
file 450, if necessary, and defines a file object (i.e.
"TheFile") to access the current merged PostScript® file
450. The block 686 then interprets the current merged
PostScript® file 450, which contains various page
descriptions, including the selected pages to be rendered on
the current fiat 456. Each page description includes the
showpage operator, which will invoke the redefined
EndPage and BeginPage procedures of the present inven­
tion.

US 6,205,452 Bl
61

Preferably, the block 686 executes the merged Post­
Script® file 450 in stopped mode, which dictates that the
execution will stop once the last page that needs to be
processed for the fiat 456 is executed (determined by the
value of LastPage). Once execution is complete, a block 688 5

flushes and closes the current PostScript® file and a block
690 returns to the block 654 of the ImposeJob procedure
(FIG. 26) to retrieve the next file/list pair from the instruc­
tion set.

The blocks 686-690 of the Impose File procedure may be 10

implemented by the following code:

dup type 1 string type eq { (r) file } if
dup (fheFile exch def
cvx
end
stopped { count 0 eq dup not

{ pop dup (done with current file) ne } if
{ stop } { pop } ifelse

impositiondict (fheFile get dup flushfile
closefile

} bind def

The MakeNull Procedure

15

20

The MakeNull Procedure is invoked by the block 682 of 25

the ImposeFile procedure before processing pages that will
not be rendered on the current fiat 456. The MakeNull
Procedure creates a low resolution (scaled-down) replica of
the virtual device for the next page to be rendered on the fiat.
This low resolution virtual device allows for fast processing 30

of the non-rendered pages. The non-rendered pages are
processed using a low resolution replica of the virtual device

62
a high resolution device. Also, the Postscript® nulldevice
operator installs a [CTM] with a 1 to 1 ratio of user to device
coordinates. Therefore, although the scale factors could be
tuned for optimal performance on a given Postscript® RIP
82, it is assumed that a 1 to 1 ratio between user and device
space coordinates will run with reasonable efficiency on any
Postscript® RIP 82. Thus, the scale factors s, and sy used by
the Make Null procedure are preferably calculated to achieve
a 1 to 1 ratio between user and device space as follows.

To achieve a 1 to 1 ratio between user and device space
coordinates with only the scale factors, the unit vector in
user space from coordinate points (0,0) to (1,0) and from
(0,0) to (0,1) must have unit length in device space.
Therefore,

l(x'(1,0), y'(1,0))-(x'(O,O), y'(O,O))I~1

and

l(x'(0,1), y'(0,1))-(x'(O,O), y'(O,O))I~1.

From equations (1) and (3),

Thus, sx=1/(a2 +b2
)

112
.

Similarly, sy=1/(c2 +d2
)

112
.

(3)

(4)

FIG. 30 illustrates the program steps implemented by the
MakeNull procedure. A block 698 first determines and saves
the device space coordinates of the midpoint of the virtual for the next page to be rendered on the fiat to ensure that any

marks generated by the processing do not overwrite a
portion of the fiat 456 that is already imaged.

The MakeNull procedure creates a low resolution replica

35 clipping path. The midpoint (mpx, mpy) is determined by
first retrieving the corner coordinates of the virtual clipping
path, which are stored in the variables ClipllX, ClipurX,
ClipllY, and ClipurY. The x-axis midpoint (mpx) is calcu­
lated by adding the lower left and upper right x-axis corner

of the virtual device by scaling the components of the virtual
[CTM]. Further, the MakeNull procedure positions the
scaled-down virtual device in the middle of the original
virtual device. This ensures that the scaled-down virtual 40

device will be completely contained within the clipping path
defining the original virtual device.

As explained earlier, by definition, the virtual [CTM]
contains the components [a b c d tx ty] and specifies a
transformation of the coordinates (x, y) in user space to the 45

coordinates (x', y') in device space as follows:

coordinates (ClipllX and ClipurX) and dividing by two.
Similarly, the y-axis midpoint (mpy) is calculated by adding
the y-axis corner coordinates (ClipllY and ClipurY) and
dividing by two. After the midpoint is calculated, the stan­
dard PostScript® transform operator (renamed
"systemdict_transform") is executed to convert the user
space coordinates to device space coordinates.

Next, a block 700 gets the virtual [CTM] which is stored
in the variable DefaultMatrix. A block 702 then calculates x'=ax+cy+tx

The Postscript® language includes a scale operator which
creates a temporary matrix from supplied x and y scale
factors and concatenates the temporary matrix with the
current [CTM]. The scale operator then replaces the current
[CTM] with the resultant matrix.

Invoking the PostScript® scale operator with x and y
scale factors (sx and sy) as operands, the scaled [CTM]=[sxa
sxb syc syd tx tY]. Thus, the new transformation from user to
device space specified by the scaled [CTM] is given by:

(1)

(2)

The exact scale factors sx and sy may vary according to
the type of Postscript® RIP 82 used. However, a 1 to 1 ratio
between user and device space coordinates leads to signifi­
cantly faster processing of pages over normal processing on

the scale factors, s, and sy, as specified above and a block

50 704 applies the scale factors to the virtual [CTM]. A block
706 then saves the scaled virtual [CTM] as the new virtual
[CTM] in the variable DefaultMatrix.

A block 708 then sets the midpoint of the scaled clipping
path (specified by the new virtual [CTM]) to correspond

55 with the coordinates of the midpoint of the original clipping
path (saved by the block 698). The block 708 determines the
difference between the saved midpoint coordinates and the
new midpoint coordinates and then translates the new coor­
dinates by that difference.

60 The MakeNull procedure may be implemented by the
following code:

/MakeNull {
65 impositiondict begin

ClipllX ClipurX add 2 div ClillY ClipurY add 2 div

US 6,205,452 Bl
63

-continued

64
A block 724 then sets CurrentPage equal to the number of

the page from the retrieved entry. CurrentPage is now
updated to contain the number of the next page from the
merged Postscripts file 450 that should be imposed and systemdict_transform

/mpy exch def
/mpx exch def
DefaultMatrix

%calculate
%midpoint 5 rendered on the fiat 456.

dup
dup dup

Next, a block 726 invokes the MakeNull procedure to set
up the low resolution virtual device for processing of
non-rendered pages. The MakeNull procedure is called
because it is assumed that the next page in the merged dup 0 get dup mul

exch 1 get dup mul
add 1 exch div sqrt dup 1.0 gt

{pop 1.0 } if exch
dup 2 get dup mul
exch 3 get dup mul
add 1 exch div sqrt dup 1.0 gt

{pop 1.0 } if

%compute a2

%compute b2

%compute sx

%compute c2

%compute d2

%compute sy

10
PostScript® file 450 will not be rendered on the fiat 456. (If
the next page should be rendered on the fiat, the redefined
BeginPage procedure, described in detail below, will estab­
lish the virtual device for that page). A block 728 then
removes the user procedure (which is contained in the

Matrix scale % scale matrix 15
retrieved entry) from the Operands Stack.

If any of the blocks 710, 712 or 716 are false, or after the
block 728 pops the user procedure, a block 730 places the
value of the variable Image Done on the stack. If Image Done
has the value of true, indicating that the fiat is completed, the

exch Matrix2 concatmatrix
systemdict_setmatrix

% save as the new
% virtual default
%matrix

ClipllX ClipurX add 2 div ClipllY ClipurY add 2 div
systemdict_transform

/mpy exch mpy sub neg def % translate
/mpx exch mpx sub neg def % midpoint
mpx mpy systemdict_idtransform translate
systemdict_currentmatrix pop
end

} bind def

20
calling of the EndPage procedure (i.e., by the showpage
operator or for new device activation) will automatically
transfer the contents of the raster memory 452 to the demand
printer 84 to physically render the selected pages on the fiat
456. (See FIG. 19).

25
A block 732 then resets ImageDone to false to specify that

the fiat is not completed and the contents of the raster
memory 452 will not yet be transferred to the demand printer
84 for physical rendering.

The Redefined EndPage Procedure
The page descriptions contained in the merged Post­

Script® file 450 all include the showpage operator, which
will invoke the redefined EndPage and BeginPage proce­
dures.

The redefined EndPage procedure may be implemented

30
by the following code:

The redefined EndPage procedure updates the Cur­
rentPage variable, which represents the number of the next
page in the merged PostScript® file 450 that should be
imposed and rendered on the fiat. The redefined EndPage
procedure also calls the setvirtualdevice and MakeNull

35 procedures for the pages to be interpreted.
FIG. 31 is a flowchart illustrating the program steps

implemented by the redefined EndPage procedure. A block
710 determines whether the EndPage procedure was called
by the showpage operator by determining whether the
reason code is 0. A block 712 compares CurrentPage plus 40

PageOffset to PageCount to determine whether the current
page in the PostScript® file should be imposed and rendered
on the fiat 456.

Assuming both of the blocks 710 and 712 are true, a block
713 set ups the default environment by calling the standard 45

initgraphics operator (now renamed "systemdict_
initgraphics"). The block 713 then retrieves and executes the
second user procedure (containing, for example, the offset
instructions) from the current entry. If the second user
procedure contains offset instructions, the Postscripts file 50
will be repositioned to the start of the next page to be
included in the book, thereby skipping processing of any
irrelevant pages. If the second user procedure contains other
instructions (such as barcodes, watermarks, etc.), they will
also be executed.

Next, a block 714 increments the pointer Currentlndex, 55

which will be used to retrieve the next entry from the entry
list (PageList). The decision-making block 716 then deter­
mines whether there is another entry in the instruction set by
comparing Currentlndex to Lastlndex.

If Currentlndex is less than or equal to Lastlndex, a block 60

718 resets the graphics state to its system default value by
calling the standard PostScript® initgraphics operator (now
renamed "systemdict_initgraphics"). A block 720 then uses
Currentlndex to retrieve the next entry in the entry list to
place the operands for the setvirtualdevice procedure on the 65

Operands stack and a block 722 invokes the setvirtualdevice
procedure.

/EndPage {
impositiondict begin
0 eq
exch
CurrentPage PageOffset add eq
and {

systemdict_initgraphics
PageList Currentlndex get
5 get exec
/Currentlndex Currentlndex 1 add def
Currentlndex Lastlndex le {

} if

systemdict_initgraphics
PageList Currentlndex get
aload pop
setvirtualdevice
/CurrentPage exch def
Make Null
pop
} if

ImageDone
/lmageDone false def
end

} bind def

The Redefined BeginPage Procedure
FIG. 32 is a flowchart illustrating the program steps

implemented by the redefined BeginPage procedure. A block
740 first calls the redefined initmatrix operator to set the
virtual [CTM].

Referring also to FIG. 20, the BeginPage procedure
receives PageCount as an operand from the showpage
operator. A decision-making block 742 compares Cur­
rentPage (which was updated by the block 724 of the
redefined EndPage procedure of FIG. 31) to PageCount.
CurrentPage contains the number of the next page in the
PostScript® file to be rendered on the fiat 456. Thus, if
CurrentPage and PageCount are equal, the current page in
the merged PostScript® file 450 should be imposed and

US 6,205,452 Bl
65

rendered on the fiat 456 and a block 744 retrieves the next
entry (containing the user procedures, page number and
setvirtualdevice operands) from the entry list.

A block 745 then executes the user procedure from the
retrieved entry and a block 746 invokes the setvirtualdevice
procedure to set up the virtual [CTM] and clipping path for
the virtual device (see FIG. 27). A block 748 then pops the
page number from the retrieved entry.

Next, a block 750 "blanks out" the virtual page by
coloring the area inside of the clipping path white. This is
necessary to erase any stray marks that may have been
placed on the page when the non-rendered pages were
processed using the MakeNull procedure.

66
dered by the demand printer 84. ImageDone is initially and
normally set to false, indicating that the current fiat 456 has
not yet been completed. However, referring to FIG. 26, after
all the file/list pairs from the instruction set have been

5 processed by the Imposejob procedure, the block 658 sets
ImageDone to true to indicate that the fiat is completed.
Also, the user procedure contained in the last entry in a
file/list pair in the instruction set could include an instruction
to set ImageDone to true to specify that the current fiat is

10
completed.

The ImageDone variable is used by the redefined
EndPage procedure. Referring to FIGS. 20 and 31, the block
730 of the redefined EndPage procedure returns the value of
ImageDone to the block 502 of the showpage operator. If

15
ImageDone is true, the block 504 transmits the contents of
the raster memory to the demand printer to render the current
fiat.

Alternatively, if the block 742 determines that the next
page in the merged PostScript® file 450 should not be
rendered on the fiat (i.e. CurrentPage is not equal to
PageCount), a decision-making block 752 compares Page­
Count to LastPage plus PageOffset. If PageCount is greater
than LastPage plus PageOffset, subsequent pages in the
PostScript® file do not need to be interpreted because they
are beyond the last page that should be rendered on the fiat 20

456. Thus, a block 754 stops the execution of the merged
PostScript® file 450. As explained earlier, the ImposeFile
procedure executes the merged PostScript® file 450 in
stopped context. In order to distinguish between the
expected stop in the block 754 and an unexpected stop 25

caused, for example, by a PostScript® error, the string "done
with current file" is generated by the block 754 of the
redefined BeginPage procedure. Referring also to FIG. 27,
the block 386 of the ImposeFile procedure checks for the
"done with current file" string to determine when to proceed 30

to the block 688 to flush and close the merged Postscript®
file 450.

The ImageDone variable may be utilized to allow for
multiple fiats to be rendered by a single file/list pair in the
instruction set (see Appendix I sample instruction set).
The Showdevice Procedure

The imposition-on-the-fly procedures may include an
additional procedure, called, for example, "showdevice,"
which uses the Image Done variable to allow a user to render
the fiat at any time. The showdevice procedure sets Image­
Done to true and then calls the showpage operator, which
will invoke the redefined EndPage procedure and render the
current fiat, as described above. The showdevice procedure
may be implemented by the following code:

/showdevice {

Alternatively, if the block 752 determines that Page Count
is less than or equal to LastPage plus PageOffset (i.e. the
current page is before the last page to be rendered on the 35

fiat), a block 756 calls the redefined initclip operator to reset
the virtual clipping path. (See FIG. 20).

impositiondict /lmageDone true put
showpage

} def

The showdevice procedure will normally be used when a
user implements the setvirtualdevice (and related) proce­
dures in a non-imposition application in which the Impose-

The redefined BeginPage procedure may be implemented
by the following code:

/BeginPage {
initmatrix
impositiondict begin
dup
CurrentPage PageOffset add eq {

pop
PageList Currentlndex get
aload pop
5 -1 roll
exec
setvirtualdevice
pop
clippath 1 setgray fill

0 setgray newpath
} bind {

LastPage PageOffset add gt {

%page on flat
% PageCount
%get entry

% execute user procedure

% pop the page number
% blank out virtual
%page

%page not on
%flat

end (done with current file) stop } if
initclip
} ifelse

end
} bind def

The ImageDone Variable
As explained earlier, the variable ImageDone is a boolean

variable used to indicate when all the pages for the current
fiat 456 have been interpreted and painted into the raster
memory 452 such that the fiat 456 can be physically ren-

40 Job and ImposeFile procedures are eliminated. For example,
the showdevice procedure could be implemented to render
any selected page(s) contained in the merged Postscript®
file 450.
Optional Imposition-on-the-Fly Procedures

45 Optionally, additional procedures may be included in the
imposition-on-the-fly procedures which will allow the
proper imposition of page descriptions using the Post­
Script® save and restore operators.

The PostScript® save operator takes a '"snapshot" of the
50 state of virtual memory, which stores all values of composite

objects, such as strings and arrays. Many of the variables
used by the imposition-on-the-fly procedures of the present
invention are stored in virtual memory. The save operator
also saves the current graphics state by pushing a copy of the

55 current graphics state onto the Graphics State Stack. The
PostScript® restore operator restores the virtual memory
and the current graphics state to the state at the time the
corresponding save operator was executed.

The Postscript® gsave operator pushes a copy of the
60 current graphics state onto the Graphics State Stack and the

PostScript® restore operator pops the saved graphics state
from the Graphics State Stack and restores it as the current
graphics state. The PostScript® grestoreall operator restores
either the bottom-most graphics state stored on the Graphics

65 State Stack or the first graphics state that was stored by the
save operator (as opposed to the gsave operator). The
elements of the current graphics state affected by these

US 6,205,452 Bl
67

operators include the current [CTM], clipping path and
current path. However, they do not affect the contents of the
raster memory 452.

The PostScript® save and restore operators may
adversely affect the imposition-on-the-fly procedures of the 5

present invention, as well as on other imposition methods.
The problem arises if a page description in the merged
PostScript® file 450 invokes a save operator, which will
save the [CTM] that specifies the desired position for that
page on the device. If a subsequent page description invokes 10

a restore operator, the [CTM] for the prior page will replace
the [CTM] for the subsequent page. Thus, the subsequent
page will be incorrectly positioned on the fiat 456.

To overcome this problem, two new procedures (Vsave
and Vrestore) are used in connection with the above- 15

described procedures. The Vsave and Vrestore procedures
will be used to redefine the PostScript® save and restore
operators such that they do not interfere with the other
imposition-on-the-fly procedures of the present invention.

68
"points" defined by those components. Thus, a previously
defined procedure called, for example, "SetBigBBox," may
be invoked to set the bounding box to be the largest possible.
The SetBigBBox procedure may be implemented by the
following code:

/SetBigBBox /setbbox where {
pop {

}{
{

-2147483648 -2147483648 2147483648 2147483648
setbbox
} bind def

} def
} ifelse

After the large bounding box is set, a block 814 invokes
the firstop operator (defined by the block 806 or the block
810) to append the page size components (PageX and

The Vsave Procedure 20 Page Y) to the current path. Next, a block 818 appends the
virtual [CTM] components (stored in the variable
DefaultMatrix) to the current path. A block 820 then replaces
the identity [CTM] with the [CTM] that was saved by the
block 800.

Generally, the Vsave procedure appends the page size
components (Page X and Page Y) and the virtual [CTM]
components (which define the virtual device) to the current
path, which will be saved by the PostScript® save operator.
Later, the Vrestore procedure will retrieve these 25

components, remove them from the current path, and use
them to generate the correct clipping path, page orientation
and [CTM] for the restored page.

FIG. 33 is a flowchart illustrating the program steps
implemented by the optional Vsave procedure. A block 800 30

saves a copy of the current [CTM] and then a block 801 sets
the [CTM] equal to an identity matrix ([1 0 0 1 0 0]).

The identity matrix is used because all points used to
describe the current path are specified in user space coor­
dinates. However, at the time a Postscript® program enters 35

a point into the current path, each coordinate is transformed
into device space according to the [CTM]. Thus, the identity
matrix will be used when adding the components to the
current path to avoid any round off errors that may occur in
this conversion from user space to device space. 40

A decision-making block 802 then determines whether a
currentpoint is defined. If a currentpoint is defined, a block
804 sets the variable pi equal to the current path. This may
be accomplished by invoking the previously defined Make­
Path procedure, which creates a description of the current 45

path in the current coordinate system. (The MakePath pro­
cedure was described above in connection with the block
524 of the redefined initclip operator of FIG. 20).

The Vsave procedure may be implemented by the fol­
lowing code:

/Vsave {
Matrix systemdict_currentmatrix
dup
Identity systemdict_setmatrix

{ currentpoint} stopped {

/p1 { } def

/firstop { moveto } def
}{
pop pop

/p1 MakePath def
/firstop { lineto } def
} ifelse

SetBigBBox
PageX Page Y firs top

DefaultMatrix
aload pop
line to
line to
line to

% [CfM]~
%identity
%no current
%point
% define empty
%path

% current point
% create real
%path

% append page
%size

%append [CTM]

A block 806 then defines a variable called, for example,
"firs top" to be the PostScript® line to operator. By definition,
the PostScript® lineto operator adds a straight line segment
to the current path by connecting the previous current point

systemdict_setmatrix

50
} bind def

to the new one.
Alternatively, if the block 802 determines that no current­

point exists, a block 808 sets p1 equal to an empty path. A 55

block 810 then defines firstop to be the Postscript® moveto
operator, which establishes a new currentpoint.

After firs top is defined by either the block 806 or the block
810, a block 812 creates an "unlimited" bounding box for
the current path. A bounding box, which is normally estab- 60

lished by the PostScript® setbbox operator, defines the area
in which the current path coordinates must fall. The oper­
ands to the setbbox operator are the user space coordinates
of the lower-left and upper-right corners of the bounding
box. Since the page size and [CTM] components will be 65

added to the current path during the Vsave procedure, the
bounding box must be set large enough to encompass the

The Vrestore Procedure
The Vrestore procedure retrieves the page size and virtual

[CTM] components (which defined the virtual device)
appended to the current path by the Vsave procedure and
uses them to generate the correct clipping path, page orien­
tation and virtual [CTM] for the restored page.

FIG. 34 is a flowchart illustrating the program steps
implemented by the Vrestore procedure. A block 830 saves
the current [CTM] and a block 832 then sets the [CTM] to
an identity matrix. As in the Vsave procedure, the use of the
identity [CTM] will avoid any round off errors when trans­
forming coordinates from user space to device space in the
current path.

A block 834 then retrieves the elements of the current path
by calling the Postscript® pathforall operator, which pushes
the user space coordinates of each path element onto the

US 6,205,452 Bl
69 70

-continued

pop pop pop
] cvx def

Next, a decision-making block 844 determines the orien­
tation of the restored page by comparing ResPageX to
ResPage Y. If ResPagex is greater than ResPagey, a variable

Operands stack. The retrieved elements will include the page
size and virtual [CTM] components that were appended to
the path by the Vsave procedure. A block 836 then performs
various stack manipulation operations to place the page size
and virtual [CTM] components on top of the stack. The 5

block 836 then stores the components in variables called, for
example, "ResDefaultMatrix," "ResPageX" and
"ResPage Y," which represent the page size and virtual
[CTM] at the time that the Postscript® save operator was
called. 10 called ResPortrait is set to false to indicate a landscape

orientation. Alternatively, if ResPagex is less than
ResPage Y, the variable ResPortrait is set to true to indicate
a portrait orientation. The block 844 then compares ResPor­
trait (the restored page orientation) to Portrait (the saved

Next, a decision-making block 838 compares the ResDe­
faultMatrix (at time of save) to the current virtual [CTM] (at
time of restore), which is saved in the variable DefaultMa­
trix. The equivalency of the matrices may be easily deter­
mined by using a previously defined utility routine, called,
for example, "EqualMatrix," which performs a component­
by-component comparison of the two matrices, allowing for
a slight floating point round-off error. If the two matrices are
equivalent, the EqualMatrix routine returns a true on the
stack; if they are not equivalent, the EqualMatrix routine
returns a false. The EqualMatrix routine may be imple­
mented by the following code:

/EqualMatrix {
true
impositiondict begin
/Count 0 def
6 { 1 index Count get 3 index Count get

eq
sub abs .0001 lt and
/Count Count 1 add def } repeat

3 1 roll pop pop
end

} bind def

If the block 838 determines that the restored [CTM] and
current [CTM] are not equivalent, it is assumed that the save
operator was called during interpretation of one page and the
restore operator was called during interpretation of another
page. A block 840 then sets the [CTM] back to the value
saved by the block 830. Next, a block 842 calls pl, which
contains the current path at the time the save operator was
called. The block 842 then removes the page size and [CTM]
components that were added to the current path and sets pl
equal to the remaining path elements.

The blocks 830-842 of the Vrestore procedure may be
implemented by the following code:

/Vrestore {
Matrix systemdict_currentmatrix
Identity systemdict_setmatrix
mark
{} {} {} {} pathforall
6 2 roll
4 2 roll
mark 7 1 roll
] /ResDefaultMatrix exch def
/ResPage Y exch def
/ResPageX exch def
cleartomark
DefaultMatrix ResDefaultMatrix EqualMatrix not
{

systemdict_setmatrix
/p1 mark
MakePath aload pop
pop pop pop
pop pop pop
pop pop pop

15 page orientation). If the page orientation has changed
(ResPortrait and Portrait are not equal), a block 846 calls the
SetPortrait procedure to change the orientation of the device.
(See FIGS. 25 and 26A&B).

The blocks 844 and 846 of the Vrestore procedure may be

20 implemented by the following code:

25

30

ResPageX ResPage Y gt {
/ResPortrait false def
}{
/ResPortrait true def
} ifelse

ResPortrait Portrait ne {
SetPortrait
} if

If the block 844 determines that the orientation is the
same, or after the block 846 corrects the orientation, a block
848 saves the procedures for generating the current clipping
path in a variable called, for example, "cl," by calling the

35 MakePath procedure.
A block 850 then calculates the new [CTM] by determin­

ing the accumulation of operations applied on the restored
virtual [CTM] and applying those operations on the current
virtual [CTM]. The block 850 calculates the new [CTM] by

40 first getting the current [CTM], which may be considered the
result of the restored virtual [CTM] (i.e., the virtual [CTM]
restored from the save operator) concatenated with an opera­
tions matrix. The block 850 then calculates the operations
matrix by concatenating the current [CTM] with the inverse

45 of the restored virtual [CTM]. The operations matrix is then
concatenated with the current virtual [CTM] to generate the
new [CTM]. Thus, the block 850 assumes that:

[current CfM]~[operations] [restored virtual CTM].
50

Further, the block 850 performs the following operations:

[operations]~[current CTM] [restored virtual CTM]-';

55
and

60

65

[new CfM]~[operations] [current virtual CTM].

The blocks 848 and 850 of the Vrestore procedure may be
implemented by the following code:

clippath % generate clip path procedures
/c1 MakePath def
Matrix systemdict_currentmatrix
ResDefaultMatrix
Matrix2 invertmatrix

% calculate new
%[CfM]

US 6,205,452 Bl
71

-continued

Matrix3 concatmatrix
DefaultMatrix Matrix4 concatmatrix

systemdict_setmatrix

72
Next, a block 876 sets the [C1M] to an identity matrix. As

before, this will eliminate any round off errors in the current
path. A block 878 then restores the current path to the path
stored in pl (the path without the added page size and virtual

5 [CTM] components) and a block 880 restores the [C1M]
back to the virtual [CTM].

A block 852 then regenerates the clipping path (saved in
cl) and a block 854 regenerates the current path (saved in
pl) in the new coordinate system specified by the new
[C1M]. The blocks 852 and 854 may be implemented by the 10

following code:

The blocks 870-880 for redefining the Postscript® save
operator may be implemented by the following code:

/save {

systemdict_initclip
newpath
c1
clip newpath
p1 }

15

impositiondict begin
Vsave
systemdict_save
Identity systemdict_setmatrix
newpath
p1
exch systemdict_setmatrix
end

} bind def

Alternatively, if the block 838 determines that the restored
20

virtual [CTM] is equivalent to the current virtual [CTM]
(i.e., the save and restore operators were called on the same
page), a block 856 simply removes the page size and virtual

Similarly, the PostScript® gsave operator may be rede­
fined by implementing the following code:

[C1M] components from the current path. A block 858 then
restores the current path and a block 860 sets the [CTM] 25

back to the value saved by the block 830. /gsave {
impositiondict begin
Vsave
systemdict_gsave

The blocks 856-860 may be implemented by the follow­
ing code:

/pl mark
MakePath aload pop
pop pop pop
pop pop pop
pop pop pop
pop pop pop
] cvx def
newpath
p1
systemdict_setmatrix
} ifelse

} bind def

The Redefined PostScript® Save Operators
The postscripts save operators (which include save and

gsave) are redefined to invoke the Vsave procedure. Before
the operators are redefined, however, they are renamed
("systemdict_operator," for example) because their normal
operation is defined in the systemdict dictionary. The save
operators may be renamed by the following code:

\systemdict_save systemdict \save get def
\systemdict_gsave systemdict \gsave get def
The Postscript® save and gsave operators are then rede­

fined. FIG. 35 is a flowchart illustrating the program steps
implemented to redefine the PostScript® save operators. A
block 872 first invokes the Vsave procedure, which was
described above in connection with FIG. 33. The Vsave
procedure saves the current path in pl and then appends the
page size and virtual [CTM] components to the current path.

A block 874 then invokes the standard Postscript® save
(or gsave) operator (now renamed "systemdict_save" or
"systemdict_gsave"). The save operator performs its stan­
dard function of saving the current state of virtual memory
and the current graphics state, including the current path
(which now includes the page size and virtual [CTM]
components). The gsave operator performs its standard
function of saving the current graphics state.

30

35

40

Identity systemdict_setmatrix
newpath
p1
systemdict_setmatrix
end

} bind def

The Redefined PostScript® Restore Operators
The PostScript® restore operator must also be renamed

and redefined to invoke the Vrestore procedure. Like the
save operators, the restore operator is renamed, for example,
"systemdict_restore," by the following code:

\systemdict_restore systemdict \restore get def
Because the PostScript® save and restore operators affect

the contents of virtual memory and the graphics state, the
values of many variables used during the imposition and

45
setvirtualdevice procedures may be inadvertently altered by
the use of these operators. However, simple values stored on
the Operands Stack are not affected. Therefore, the Post­
Script® restore operator is redefined to protect the values of
the variables stored in virtual memory by saving them on the

50
Operands Stack before calling the standard PostScript®
restore operator.

FIG. 36 is a flowchart illustrating the program steps
implemented by the redefined restore operator. A block 892
places the values of all the imposition variables stored in

55
virtual memory on the Operands stack so their values are not
overwritten by the restore operator. Then, a block 894 calls
the standard restore operator (now renamed "systemdict_
restore"). A block 896 then puts the values of the variables
on the Operands stack back to their pre-restore values.

60
Lastly, a block 898 invokes the Vrestore procedure.

The blocks 892-898 of the redefined restore operator may
be implemented by the following code:

65 /restore {
impositiondict begin

US 6,205,452 Bl

Image Done
Currentlndex
CurrentPage
PageCount
Portrait
PageX
PageY
ClipllX
ClipllY
ClipurX
ClipurY
mark DefaultMatrix
aload pop

73

-continued

% put variables on stack

%put [CTM] components on
%stack

19 -1 roll
systemdict_restore % call standard restore operator

l
/DefaultMatrix exch def
/ClipurY exch def
/ClipurX exch def
/ClipllY exch def
/ClipllX exch def
/Page Y exch def
/PageX exch def
/Portrait exch def
/PageCount exch def
/CurrentPage exch def
/Currentlndex exch def
/ImageDone exch def
Vrestore
end

} bind def

% replace variables with
%pre-restore values

% invoke Vrestore procedure

The Redefined PostScript® restore Operators

The standard PostScript® restore or grestoreall operators,
are renamed, for example, "systemdict_operator." This may
be implemented by the following code:

/systemdict_grestore systemdict /grestore get def
/systemdict_grestoreall systemdict /grestoreall get def

Because the PostScript® restore and grestoreall operators
affect only the graphics state, it is not necessary to protect
the values of any variable stored in virtual memory. Thus,
the restore or grestoreall operators are more simply rede­
fined.

5

74

/grestoreall {
impositiondict begin
systemdict_grestoreall
Vrestore
end

} bind def

10 The PostScript® Level 2 Gstate Operators
Level 2 PostScript® implementations support the follow­

ing three additional operators that affect the current graphics
state (and therefore the [CTM]) and that may interfere with
the imposition procedures of the present invention: gstate,

15 currentgstate and setgstate. The PostScript® gstate operator
creates a new graphics state object (whose initial value is the
current graphic state) and pushes it on the Operand stack.
The PostScript® currentgstate operator replaces the value of
the gstate object with the current graphics state. The Post-

20 Script® setgstate operator replaces the current graphics state
with the value of the gstate object.

Similarly to the gsave and restore operators described
above, the gstate operators are renamed and redefined to
invoke the Vsave the Vrestore procedures. The gstate opera-

25 tors may be renamed by the following code:

30

35

I gstate where { % is this level 2?

} if

pop
/systemdict_gstate systemdict /gstate get def
/systemdict_setgstate systemdict /setgstate get

def
/systemdict_currentgstate systemdict

/currentgstate get def

Similar to the redefined gsave operator described above in
connection with FIG. 35, the gstate and currentgstate opera­
tors are redefined to first invoke the Vsave procedure and

40 then to call the renamed standard gstate or currentgstate
operator. The redefined operators then restore the current
path without the page size and [CTM] components and reset
the virtual [CTM].

Also, like the redefined restore operator described above

45 in connection with FIG. 37, the setgstate operator is rede­
fined to first call the renamed setgstate operator and then to
invoke the Vrestore procedure. FIG. 37 is a flowchart illustrating the program steps

implemented by the redefined PostScript® restore and gre­
storeall operators. A block 902 invokes the renamed stan­
dard restore or grestoreall operator and then a block 904 50

invokes the Vrestore procedure, which will calculate the
correct [CTM] and correct the page orientation and clipping
path.

The PostScript® level2 gstate operators may be redefined
by the following code:

/gstate where {
pop

% is this level 2?

The blocks 902-904 for redefining the PostScript®
55

restore operator may be implemented by the following code:

/grestore {
impositiondict begin
systemdict_grestore
Vrestore
end

} bind def

Similarly, the grestoreall operator may be redefined by
implementing the following code:

60

65

/gstate { % redefine gstate operator
impositiondict begin % (like gsave operator)
Vsave
s ys temdict_gs tate
Identity systemdict_setmatrix
newpath
p1
exch systemdict_setmatrix
end
} bind def

/currentgstate { % redefine currengstate operator
impositiondict begin % (like gsave

%operator)
Vsave
systemdict_currentgstate
Identity systemdict_setmatrix

US 6,205,452 Bl
75

-continued

76
that state. The block 657 thus initializes the virtual memory
before the block 654 retrieves the next file/list pair from the
instruction set.

end

newpath
p1
exch systemdict_setmatrix

The blocks 650-662 of the ImposeJob procedure incor-
5 porating the blocks 653 and 657 may be implemented by the

following code:
} bind def

/setgstate {
impositiondict begin

systemdict_setgstate
Vrestore

% redefine setgstate operator
% (like grestore
%operator)

10
/lmposejob % impose pages from each input

%file

end
} bind def

} if

These optional procedures are used when it is anticipated
15

that the page descriptions in the merged PostScript® file 450
may include a save operator in one page description and a
restore operator in a subsequent page description. If the
optional procedures are used, a slight modification should be
made to the setvirtualdevice procedure, described above in 20

connection with FIG. 27. Referring to FIG. 27, an additional
block 633 invokes the redefined save operator and then pops
the save object from the Operands Stack after the block 632
invokes the Enable VirtualDevice procedure. This is neces­
sary because the restore and grestoreall operators can be 25

called without a corresponding save or gsave operator. If
restore is called without a gsave operator, it restores the
graphics state from the top of the graphics state stack. If
grestoreall is called without a gsave or save operator, it
restores either the graphics state from the bottom of the 30

graphics state stack or the graphics state saved by the last
save operator. If the topmost save object was created prior

impositiondict /Enable VirtualDevice get exec
{

aload pop pop
impositiondict /SavedState

save put % save state
impositiondict /lmposeFile

get % call ImposeFile for each
exec % file in instruction set

% cleardictstack
clear
impositiondict /SavedState get

restore % restore saved state
} forall
impositiondict /lmageDone true put
impositiondict /systemdict_showpage
known { % Did we redefine showpage

impositiondict /systemdict_showpage
get exec % If yes, execute it.
} if

} def

Further, as explained earlier, for compatibility with the
optional procedures, the PostScript® erasepage operator is
redefined by calling the systemdict_gsave and restore
operators. All of the remaining imposition-on-the-fly proce­
dures are compatible with the optional procedures.

Numerous modifications and alternative embodiments of
the invention will be apparent to those skilled in the art in
view of the foregoing description. Accordingly, this descrip­
tion is to be construed as illustrative only and is for the
purpose of teaching those skilled in the art the best mode of

to the redefinition of the save operator, the saved current
path will not include the additions of the page size and
[C1M] components and, therefore, will not operate properly 35

with the redefined restore and grestorall operators. Thus,
invoking the redefined save operator at the block 633 of the
setvirtualdevice procedure ensures that the restore and gre­
storeall operators will always restore a saved graphics state
compatible with the present invention. 40

carrying out the invention. The details may be varied sub­
stantially without departing from the spirit of the invention,
and the exclusive use of all modifications which are within
the scope of the appended claims is reserved.

The blocks 630--633 of the setvirtualdevice procedure
may be implemented by the following code: VirtualDevice­
Enabled not {Enable VirtualDevice save pop }if

Also, in some Postscript® applications, interpreting dif­
ferent PostScript® files consecutively may interfere with the 45

operation of the invention. For example, two different Post­
script® files may use the same name for variables with
different definitions. If the second PostScript® file inter­
preted does not explicitly initialize the variable, the defini­
tion of the variable from the first PostScript® file will be 50

used, interfering with proper interpretation of the second
PostScript® file. To overcome this problem, the Imposejob
procedure (FIG. 28) may be altered.

Referring to FIG. 28, blocks 653 and 657 are added to the
ImposeJob procedure to save the state of virtual memory 55

(which includes many variable definitions) before retrieving
a file/list pair from the instruction set and restoring that
saved state before retrieving the next file/list pair.
Specifically, the block 653 executes the redefined save
operator and stores the saved state in a variable called, for 60

example, "SavedState." The blocks 654 and 656 then
retrieve a file/list pair from the instruction set and invoke the
ImposeFile procedure to process the file/list pair, as
described above. However, after the ImposeFile procedure
finishes processing each entry in the file/list pair, the block 65

657 retrieves the saved state stored in the variable Saved­
State and executes the redefined restore operator to restore

What is claimed is:
1. A method of controlling a display device to display

variable graphics information in graph format, wherein the
variable graphics information is provided in a database
having a number of fields, each of which represents variable
information or variable graphics information, the method
comprising the steps of:

(a) developing template page files, each page file having
master data representing fixed information and place­
holders representing an area of a page for variable
information;

(b) selecting areas of the page for the variable graphics
information;

(c) specifying graph parameters; and
(d) causing the display device to display the pages with

the fixed information, selected variable information
from the database, and selected variable graphics infor­
mation from the database, wherein the selected variable
graphics information is displayed according to the
specified graph parameters.

2. The method of claim 1, wherein the step of causing the
display device to display the pages with the selected variable
graphics information from the database further comprises
executing a graph file to generate a graph.

US 6,205,452 Bl
77

3. The method of claim 1, wherein the step of selecting the
areas of the page for variable graphics information further
comprises the steps of:

(i) creating an image box at a selected area of the page;
(ii) selecting the fields in the database corresponding to 5

the variable graphics information;
(iii) layering a text box over the image box;
(iv) inserting the specified graph parameters and infor­

mation from the selected database fields into the text
box; and

(v) tagging the text box as containing variable graphics
information.

4. The method of claim 3, further comprising the step of

10

inserting an executable graph file into the image box.
15

5. The method of claim 3, wherein the step of tagging the
text box comprises assigning the text box an unusual
attribute.

6. The method of claim 3, wherein the step of tagging the
text box comprises inserting a text delimiter in the text box.

20
7. The method of claim 1, wherein the template page files

are creating using QuarkXPress®.
8. The method of claim 1, wherein the step of specifying

the graph parameters comprises prompting a user to specify
the graph type, scaling, labels and other graph parameters.

25
9. The method of claim 8, further comprising the step of

assigning a default value for each graph parameter that the
user does not select.

10. The method of claim 1, wherein the step of causing the
display device to display the pages further comprises the

30
steps of:

determining if a page file contains an area selected for
variable graphics information; and

if a page file contains an area selected for variable
graphics information, saving the specified graph 35
parameters and selected fields from the database rep­
resenting variable graphics information, and executing
a graph file to generate a graph using the specified
graph parameters and selected database fields.

11. The method of claim 1, wherein the display device 40
displays the pages to a remote location over a computer
network.

12. The method of claim 1, wherein the display device is
a demand printer which prints the pages.

13. The method of claim 1, wherein the database further 45
contains fields specifying variable graph parameters.

14. The method of claim 1, wherein the variable graphics
information is displayed as a bar chart and the step of
causing the display device to display the pages with selected
variable graphics information further comprises the steps of: 50

(i) generating a bar chart at the selected area on the page,
wherein the chart includes a bar for each database field
representing variable graphics information and each
bar corresponds to a maximum value of the database
entries representing variable graphics information; and 55

(ii) analyzing each database field representing variable
graphics information and covering a portion of the bar
corresponding to that field based on a comparison of
the value of that field with the maximum value.

15. The method of claim 14, wherein the portions of the 60

bars are covered using named image boxes, and wherein
each named image box corresponds to a name of a database
entry.

16. The method of claim 14, wherein the bars on the bar
chart are graphic objects. 65

17. The method of claim 1, wherein the variable graphics
information is displayed as a bar chart and the step of

78
causing the display device to display the pages with selected
variable graphics information further comprises the steps of:

(i) generating a bar chart at the selected area on the page,
wherein the chart includes an image box for each
database entry representing variable graphics inform a­
tion and each image box corresponds to a maximum
value of the database fields representing variable graph­
ics information;

(ii) retrieving the value of each database field representing
variable graphics information; and

(iii) anamorphically scaling each image box to correspond
to the value of the database field.

18. The method of claim 17, wherein the image box
contains graphic objects.

19. The method of claim 1, the step of causing the display
device to display the pages with selected variable graphics
information further comprises the steps of:

(i) retrieving the values of the database fields representing
variable graphics information;

(ii) transferring the database values to a spreadsheet
program;

(iii) generating a graph using the spreadsheet program
based on the transferred database values and the speci­
fied graph parameters; and

(iv) linking the graph back to the selected area on the
pages.

20. The method of claim 19, wherein the graph parameters
are specified in the spreadsheet program.

21. The method of claim 19, wherein the spreadsheet
program is Excel®.

22. The method of claim 1, wherein the step of selecting
areas of the page for the variable graphics information
comprises creating an image box at a selected area of the
page and inserting a graph design file into the image box.

23. The method of claim 22, wherein the graph design file
specifies the graph size.

24. The method of claim 22, wherein the graph design file
specifies fields from database that will be used to generate a
graph.

25. The method of claim 24, wherein the specified data­
base fields comprise graph data values and graph attributes.

26. The method of claim 22, wherein the graph design file
references an executable external graph engine file and the
external graph engine file includes instructions for drawing
a graph according to the specified graph parameters.

27. The method of claim 1, wherein step of specifying the
graph parameters comprises generating a graph design file.

28. A method of reproducing pages including variable
data, wherein the variable data is stored in a database, the
method comprising the steps of:

(a) creating template page files, each page file having
fixed information and a placeholder at the location on
the page where the variable data will be reproduced;

(b) specifying graph parameters;
(c) selecting fields from the database that contain variable

graph data;
(d) tagging the placeholders that correspond to variable

graph data;
(e) layering the specified graph parameters and the

selected variable graph data fields from the database
over the placeholder corresponding to the variable
graph data;

(f) interpreting the page files, including executing a graph
file to generate a graph using the specified graph
parameters and variable graph data fields; and

(g) transmitting the pages to a display device.

US 6,205,452 Bl
79

29. The method of claim 28, further comprising the step
of reproducing the pages over a computer network.

30. The method of claim 28, wherein the display device
is a demand printer.

31. The method of claim 28, wherein the page files are
generated using QuarkXPress®.

32. The method of claim 28, wherein the placeholder for
variable text data is a database field name and the place­
holder for variable image data is an image box including a
dummy picture file and a database field name.

33. The method of claim 28, wherein the placeholder for
variable graphics data is an image box.

80
42. The method of claim 41, wherein if a page file does

not contain a tagged placeholder, invoking the standard
PostScript® operator.

43. The method of claim 28, further comprising the step
5 of generating an instruction set for imposing selected page

files and imposing the pages according to the instruction set
while the page files are being interpreted.

44. The method of claim 43, further comprising the step
of converting the page files to TIFF format before interpret-

10 ing the page files.

34. The method of claim 28, wherein the graph parameters
are specified by prompting a user to select various graph 15

45. A method of reproducing pages including variable
information and variable graphics information, wherein the
variable information and variable graphics information is
stored in a database, the method comprising the steps of:

(a) creating template page files, each page file having
fixed information and a placeholder at the location on
the page where the variable information will be repro­
duced;

parameters.
35. The method of claim 28, wherein the graph parameters

are specified by setting the parameters to a default value.
36. The method of claim 28, wherein the placeholder for

the variable graphics data is an image box and the specified 20

graph parameters and the selected variable graph data entries
from the database are placed in a text box which is layered
over the image box.

37. The method of claim 36, wherein the graph file is
stored in the image box.

38. The method of claim 28, wherein the variable graph
data placeholders are tagged by assigned a unusual attribute
to the placeholder.

25

(b) specifying which placeholders correspond to variable
graphics information;

(c) inserting a graph design file at the specified place­
holders corresponding to variable graphics informa­
tion;

(d) interpreting the page files, including mapping the
variable information from the database to the location
on the page of the corresponding placeholder and
generating a graph according to the graph design file.

46. The method of claim 45, wherein the graph design file
specifies the size of the graph.

39. The method of claim 28, wherein the variable graph
data placeholders are tagged using a text delimiter.

40. The method of claim 28, wherein the step of inter­
preting the page files is performed by a page description
language (PDL) interpreter and further comprises the steps

47. The method of claim 45, wherein the graph design file
30 specifies fields from database that will be used to generate a

graph.

of:
determining if a page file contains a tagged placeholder 35

for variable graphics data; and

48. The method of claim 47, wherein the specified data­
base fields comprise graph data values.

49. The method of claim 47, wherein the specified data­
base fields comprise graph data values and graph attributes.

50. The method of claim 45, wherein the graph design file
references an executable external graph engine file that
includes instructions for drawing a graph according to the
specified graph parameters.

if a page file contains a tagged placeholder, invoking a
redefined PDL operator to save the graph parameters
and fields from the database representing variable
graphics data as PDL variables and executing the graph
file to generate a graph using the PDL variables.

51. The method of claim 45, wherein the graph design file
40 is generated by interactively creating a sample graph.

41. The method of claim 40, wherein the page description
language is Postscript® and the redefined operator is the
PostScript® show operator.

52. The method of claim 45, wherein the graph design file
is in Encapsulated Postscript® (EPS) format.

* * * * *

