
111111 111

(12) United States Patent
Sherman et al.

(54) METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL
CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

(75) Inventors: Edward G. Sherman, London (GB);
Mark P. Sherman, Seattle, WA (US);
George M. Reed, Saratoga, CA (US);
Larry Saunders, San Diego, CA (US);
Wayne Goldman, Sausalito, CA (US);
Simon Whittie, Gladesville (AU)

(73) Assignee: Softvault Systems, Inc., Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/163,094

(22) Filed: Sep. 29, 1998

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/047,975, filed on
Mar. 25, 1998.

(51) Int. Cl? .. G06F 9/00
(52) U.S. Cl. 713/168; 713/169; 713/200;

713/201; 380/255
(58) Field of Search 380/255; 713/168,

713/169, 200, 201

(56) References Cited

U.S. PATENT DOCUMENTS

6,148,083 * 11/2000 Fieres et a!. 380/255

318

EASS
SERVER

314

OS

US006249868Bl

(10) Patent No.: US 6,249,868 Bl
Jun.19,2001 (45) Date of Patent:

6,148,333 * 11/2000 Guedalia eta!. 709/219
6,157,953 * 12/2000 Chang et a!. 709/225
6,158,010 * 12/2000 Moriconi et a!. 713/201

* cited by examiner

Primary Examiner-Thomas R. Peeso
(74) Attorney, Agent, or Firm-Robert W. Bergstrom

(57) ABSTRACT

A method and system for protecting and controlling personal
computers ("PCs") and components installed in or attached
to PCs. The method and system may be used to protect PCs
from use after being stolen. An exemplary embodiment of
the system includes a server running on a remote computer
and hardware-implemented agents embedded within the
circuitry that controls the various devices within a PC. The
agents intercept all communications to and from the devices
into which they are embedded, passing the communications
when authorized to do so, and blocking communications
when not authorized, effectively disabling the devices.
Embedded agents are continuously authorized from the
remote server computer by handshake operations imple­
mented as communications messages. When the PC is stolen
or otherwise disconnected from the remote server, the
embedded agents within the PC fail to receive further
authorizations, disable the devices into which they are
embedded, and effectively prevent any use of the stolen or
disconnected PC. The method and system may also be used
to control and manage access to software stored within the
PC and to control and manage operation of hardware and
software components within the PC.

73 Claims, 21 Drawing Sheets

CPU 306

316 SCEA CLIENT

REMOTE
SERVER
COMPUTER

NON-VOLATILE STORAGE DEVICE
STORING AUTHORIZATION AND
EMBEDDED AGENT INFORMATION

322

310 302

CIRCUIT BOARD

U.S. Patent

102

Jun.19,2001 Sheet 1 of 21

126

124

PLEASE ENTER YOUR PASSWORD

130

jc:QJOJj

=-1

=-I

Fig. 1

US 6,249,868 Bl

108

104

d
202~

204 •
\Jl •

216

g~g~ I I I I
DRAM

I I n ~
~
~ =

0000
0000
0000
0000
0000
0000
0000
0000
0000 254
oooo
0000
0000
0000

~

= ?
0000
0000

'"""' 0000
0000 ~~
0000

N c c
'"""' '-"'""T

242 BUS
BRIDGE

'JJ.

=-~
~
N
0,

222 .-
226 r--- I N

'"""'

244~[I KEY~
220

CARD CARD
246

I

Fig. 2 e
rJ'l

-..a-..
N
~

212 -..\/:;
00 a-..
00

~
1--"

318

EASS
SERVER

REMOTE
SERVER
COMPUTER

320

NON-VOLATILE STORAGE DEVICE
STORING AUTHORIZATION AND
EMBEDDED AGENT INFORMATION

..1\

r~ -v

3 16

322

314 CPU

..___.. ------312
lA

OS ['r

SCEA CLIENT _l

/

310

Fig. 3

306

304

J

302

CIRCUIT BOARD

d
•
\Jl •
~
~
~ =

~

~
'"""' ~~
N c c
'"""'

'JJ.

=­~
~
~

0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

U.S. Patent Jun.19,2001 Sheet 4 of 21 US 6,249,868 Bl

414

SUCCESSFUL
HANDSHAKE

SUCCESSFUL
HANDSHAKE

AUTHORIZED

INITIAL
POWER-ON

GRACE PERIOD

SUCCESSFUL
HANDSHAKE

SEND
SAVE ME

410

SEND
SAVE ME

INITIAL
POWER UP

SEND
SAVE ME

NOT
AUTHORIZED

Fig. 4

420

408

U.S. Patent Jun.19,2001 Sheet 5 of 21

RECEIVE
SAVE ME

KNOWLEDGE
OF

AGENT

RECEIVE SEND ME
WITH INITIAL PASSWORD

508

\

510

\

SUCCESSFUL
HANDSHAKE

UNSUCCESSFUL
518 HANDSHAKE

\
\
_.r-- 520
\
I

IGNORANT
OF

AGENT
502

Fig. 5

US 6,249,868 Bl

SUCCESSFUL
HANDSHAKE

AGENT
AUTHORIZED

RECEIVE
SAVE ME

516

630
631
632
633

~

~

EASS SERVER

(620
ADDRESS

SGATE301-JERRY@CCD.COM
NET21 0-SUE@ELF.GOV

636
)

(622
CURRENT

FF631AC1
CB861A78

616

(624 AUTH- 626 ~
OLD ORIZED _) /

...,

19FE2212 YES
2217813A YES

>--

638
640
642

628

18

614
rSAVE ME

1

l V
--- ABCDEF01 >- A (610
'""ABCDEFOl j '"

6h

Fig. 6A

I

l

I

EASS EMBEDDED AGENT

634
)

CURRENT PASSWORD
ABCDEF01

PREVIOUS PASSWORD
ABCDEF01

TIME REMAINING
2:00

602

~

~

~~--

604

606

608

d
•
\Jl
•
~
~
~ =

~

~
'"""' ~~
N c c
'"""'

'JJ.

=­~
~
0'1

0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRYOCCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV C8861A78 2217813A YES

632 XAMPLEOX.COM ABCDEF01 ABCDEF01 NO

\ \ \
I I I

644 646 648

616

A

~

l
J ~18

Fig. 6B

SAVE ME
ABCDEF01
ABCDEF01

7
612

EASS EMBEDDED AGENT

CURRENT PASSWORD
I ABCDEF01 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING r-- 1:59 1

602

d
•
\Jl
•
~
~
~ =

~

~
'"""' ~~
N c c
'"""'

'JJ.

=­~
~
-..J
0,
N

'"""'

e
rJ'l
0'1
'N
~
\0

Oo
0'1
00

~
1--"

EASS SERVER

AUTHORIZE
16F3A79

16F3A79--v- 706 I

AUTH-
ADDRESS CURRENT OLD ORIZED

?
708

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM ABCDEF01 ABCDEF01 NO

702

Fig. 7A

EASS EMBEDDED AGENT

712 I I

110 II II
I

CURRENT PASSWORD
I ABCDEF01 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
I 1:59 I

704

d
•
\Jl •
~
~
~ =

~

= ?
'"""' ~~
N c c
'"""'

'JJ.

=-~
~
00

0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

16F3A79

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRYOCCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM ABCDEF01 ABCDEF01 NO

AUTHORIZE
16F3A79

708

Fig. 7B

7
t/

I
I
I

EASS EMBEDDED AGENT

16F3A79 ~ 714

CURRENT PASSWORD
ABCDEF01 I

PREVIOUS PASSWORD
ABCDEF01 I

TIME REMAINING
1:59 I

d •
\Jl •
~
~
~ =

~

= ?

"""" ~~

N c c
""""

'JJ.

=-~
~
~

0,
N

""""

e
rJ'l

-..a-..
N
~

-..\/:;
00 a-..
00

~
1--"

EASS SERVER

16F3A79

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM ABCDEF01 ABCDEF01 NO

702

CONFIRM
AUTHORIZATION 1/1
16F3A79~ t'J~-===:II

ABCDEF01
718

I
716

Fig. 7C

EASS EMBEDDED AGENT

16F3A79

CURRENT PASSWORD
ABCDEF01 +11'120

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
I 1:59 I

704

d •
\Jl •
~
~
~ =

~
"""" ~~

N c c
""""

'JJ.

=­~
~
"""" c
0,
N

""""

e
\Jl

-..a-..
N
~

-..\/:;
00 a-..
00

~
1--"

EASS SERVER

A

"

16F3A79 ~ v-706

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.cm~ FF631AC1 19FE2212 YES
\

NET21 0-SUE@ELF.GOV C8861A78 2217813A YES ;>---

XA~PLE@X.CO~ 16F3A79 ABCDEF01 NO

\ \ 726
I

724 722

Fig. 7JJ

EASS EMBEDDED AGENT

CONFIRM
AUTHORIZATION
16F3A79~
ABCDEF01

718

I I 16F3A79
716

CURRENT PASSWORD
I ABCDEF01

PREVIOUS PASSWORD
I ABCDEF01

TIME REMAINING
I 1:59

- .

I

I

I

d
•
\Jl
•
~
~
~ =

~

= ?
'"""' ~~
N c c
'"""'

'JJ.

=-~
~
'"""' '"""' 0,
N

'"""'

e
\Jl
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

I >

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRYOCCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM 16F3A79 ABCDEF01 NO

---------···-

Fig. 7E

OK
16F3A79
120:00

I
728

EASS EMBEDDED AGENT

16F3A79

CURRENT PASSWORD
I ABCDEF01 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
I 1 :sa I

d
•
\Jl
•
~
~
~ =

~

~
"""" ~~
N c c
""""

'JJ.

=­~
~

"""" N
0,
N

""""

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~

"""""

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.CO~ FF631AC1 19FE2212 YES
NET210-SUE@ELF.GOV C8861A78 2217813A YES
XAMPLE@X.COM 16P3A79 ABCDEF01 YES 1

\
/

20:00

)
h

726

7291730

Fig. 7F

OK
16F3A79
120:00
!

736

EASS EMBEDDED AGENT

"'

CURRENT PASSWORD
16F3A79 720

PREVIOUS PASSWORD
ABCDEF01 732

TIME REMAINING
120:00 734

d
•
\Jl
•
~
~
~ =

~

~
"""" ~~
N c c
""""

'JJ.

=-~
~
"""" ~
0,
N

""""

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

"
v

3AA61F83--v- r--802

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRYOCCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV C8861A78 2217813A YES
XAMPLEOX.COM 16F3A79 ABCDEF01 YES 2:00

801

Fig. BA

EASS EMBEDDED AGENT

AUTHORIZE

I
3AA61F83

I
7

804
CURRENT PASSWORD

I 16F3A79 I
PREVIOUS PASSWORD

I ABCDEF01 I
TIME REMAINING

I t:oo- .. =:1

805

d •
\Jl •
~
~
~ =

~

~
"""" ~~
N c c
""""

'JJ.

=­~
~
"""" ~
0,
N

""""

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

3AA61FB3

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM 16F3A79 ABCDEF01 YES 2 :00

AUTHORIZE
3AA61FB3

I
804

Fig. BB

" --v

I
I
I

EASS EMBEDDED AGENT

3AA61FB3 806

CURRENT PASSWORD
16F3A79 I

PREVIOUS PASSWORD
ABCDEF01 I

TIME REMAINING
2:00 I

d
•
\Jl
•
~
~
~ =

~

= ?
'"""' ~~
N c c
'"""'

'JJ.

=-~
~
'"""' Ul
0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

ADDRESS
SGATE301-JERRY@CCD.COM
NET21 0-SUEOELF .GOV
XAMPLE@X.COM

-- --·-·------

3AA61FB3

AUTH-
CURRENT OLD ORIZED

FF631AC1 19FE2212 YES
CB861A78 2217813A YES

CONFIRM
AUTHORIZATION ~

810-----I-3AA61 FB3 I

16F3A79\
812

!
808

16F3A79 ABCDEF01 YES 1: 59

Fig. BC

EASS EMBEDDED AGENT

3AA61FB3

CURRENT PASSWORD
I 16F3A79 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
I 1:59 I

d
•
\Jl
•
~
~
~ =

~

~
'"""' ~~
N c c
'"""'

'JJ.

=­~
~
'"""' 0'1

0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

CONFIRM

~
I AUTHORIZATION

I 3AA61FB3
16F3A79

7
AUTH- 808

ADDRESS CURRENT OLD ORIZED
SGATE301-JERRYOCCD.COM FF631AC1 19FE2212 YES
NET21 0-SUEOELF.GOV CB861A78 2217813A YES
XAMPLEOX.COM 3AA61FB3 16F3A79 YES 1:59

\ \
8t4 8t6

Fig. BJJ

EASS EMBEDDED AGENT

I

I I 3AA61FB3

CURRENT PASSWORD
I 16F3A79

PREVIOUS PASSWORD
I ABCDEF01

TIME REMAINING
I 1:59

I I

I

I

I

d
•
\Jl
•
~
~
~ =

~

= ?
'"""' ~~
N c c
'"""'

'JJ.

=-~
~
'"""' -..J
0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
lr-"

EASS SERVER

OK
~ 3AA61F83

Cl ===Vl 120:00")

819

7
AUTH- 818

ADDRESS CURRENT OLD ORIZED
SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUEOELF.GOV C8861A78 2217813A YES
XAMPLE@X.COM 3AA61FB3 16F3A79 YES 1: 58

Fig. BE

EASS EMBEDDED AGENT

3AA61F83

CURRENT PASSWORD
I 16F3A79 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
,- - 1:58 -- 1

d
•
\Jl
•
~
~
~ =

~

~
"""" ~~
N c c
""""

'JJ.

=­~
~

"""" 00

0,
N

""""

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~

"""'"

EASS SERVER

OK
3AA61FB3

120:00

AUTH- 8k
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631 AC1 19FE2212 YES
NET21 0-SUEOELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM 3AA61FB3 16F3A79 YES 1. 20:00

)
820

Fig. BF

EASS EMBEDDED AGENT

...r-...
v

CURRENT PASSWORD
I 3AA61FB3

PREVIOUS PASSWORD
I 16F3A79

TIME REMAINING
I 120:00

~---~

~~

I

822

824

d
•
\Jl
•
~
~
~ =

~

~
'"""' ~~
N c c
'"""'

'JJ.

=­~
~
'"""' ~
0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.cm~ FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM 3AA61FB3 16F3A79 YES 1

\
916

912

EASS EMBEDDED AGENT

902

Fig. 9A

d
•
\Jl
•
~
~
~ =

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

EASS SERVER

ADDRESS
SGATE301-JERRY@CCD.COM
NET21 0-SUE@ELF.GOV
XAMPLE@X.COM

AUTH-
CURRENT OLD ORIZED

FF631AC1 19FE2212 YES I

CB861A78 2217813A YES
16F3A79 ABCDEF01 YES

\ (
r /

.916 .918

Fig. 9B

SAVE ME
16F3A79
ABCDEF01

!
906

EASS EMBEDDED AGENT

CURRENT PASSWORD
I 16F3A79 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
[0:20 I

902

d
•
\Jl
•
~
~
~ =

~

~
'"""' ~~
N c c
'"""'

'JJ.

=­~
~
N

'"""' 0,
N

'"""'

e
rJ'l
0'1
'N
~
\0
Oo
0'1
00

~
1--"

US 6,249,868 Bl
1

METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL

CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

RELATED APPLICATIONS

This application is a continuation-in-part of co-pending
U.S. application Ser. No. 09/047,975 that was filed on Mar.
25, 1998.

TECHNICAL FIELD

The present invention relates to control of computer
systems and other types of complex systems at the compo­
nent level and, in particular, to a method and system for
securing a complex system by embedding agents within one
or more components of the complex system in order to
control access to components within the complex system.

BACKGROUND OF THE INVENTION

Computer security is a very broad and complex field
within which, during the past several decades, a number of
important sub-fields have developed and matured. These
sub-fields address the many different problem areas in
computer security, employing specialized techniques that
are particular to specific problems as well as general tech­
niques that are applicable in solving a wide range of prob­
lems. The present application concerns a technique that can
be used to prevent the theft and subsequent use of a personal
computer ("PC") or of various PC components included in,

2
system and hence to the various application programs avail­
able on the PC 102. Typically, a graphical password-entry
window 124 is displayed on the screen 126 of the display
monitor 108. In order to use the computer, the user types a

5 password via the keyboard 106 into the password sub­
window 128 of the password-entry window 124. The user
then depresses a keyboard key to indicate to a security
program that password entry is complete. As the user types
the password, each letter of the password appears at the

10 position of a blinking cursor 130. The characters of the
password are either displayed explicitly, or, more
commonly, asterisks or some other punctuation symbol are
displayed to indicate the position within the password in
which a character is entered so that an observer cannot read

15 the password as it is entered by the user. The security
program checks an entered password against a list of autho­
rized passwords and allows further access to the operating
system only when the entered password appears in the list.
In many systems, both a character string identifying the user

20 and a password must be entered by the user in order to gain
access to the operating system.

The common types of security systems displayed in FIG.
1 are relatively inexpensive and are relatively easily imple­
mented and installed. They are not, however, foolproof and,

25 in many cases, may not provide even adequate deterrents to
a determined thief. For example, the key 112 for the hinged
fastening device 110 can be stolen, or the fastening device
can be pried loose with a crowbar or other mechanical tool.
A clever thief can potentially duplicate the key 112 or jimmy

30 the lock 114. The cable 116 can be cut with bolt cutters or

or attached to, a PC. This technique may make use of certain
security-related techniques which have been employed pre­
viously to address other aspects of computer security, and
this technique may itself be employed to address both

35
computer security problems other than theft as well as
various aspects of computer reliability, computer
administration, and computer configuration. In addition, this
technique may be applied to protecting other types of
complex electronic and mechanical systems as well as

40
computer software and other types of information encoded

the cylindrical combination lock 118 can be smashed with a
hammer. Often, the combination for the cylindrical combi­
nation lock 118 is written down and stored in a file or wallet.
If that combination is discovered by a thief or accomplice to
theft, the cylindrical combination lock will be useless. In the
situation illustrated in FIG. 1, if the table is not bolted to the
floor, a thief might only need to pick up the display monitor
108, place it on the floor, slide the cable down the table leg
to the floor, and lift the table sufficiently to slip the cable
free. While this example might, at first glance, seem silly or
contrived, it is quite often the case that physical security

on various types of media.

PCs are ubiquitous in homes, offices, retail stores, and
manufacturing facilities. Once a curiosity possessed only by
a few hobbyists and devotees, the PC is now an essential
appliance for business, science, professional, and home use.
As the volume of PCs purchased and used has increased, and
as PC technology has rapidly improved, the cost of PCs has
steadily decreased. However, a PC is still a relatively
expensive appliance, especially when the cost of the soft­
ware installed on the PC and the various peripheral devices
attached to the PC are considered. PCs, laptop PCs, and even
relatively larger server computers have all, therefore,
become attractive targets for theft.

devices may themselves be more secure than the systems in
which they are installed, taken as a whole. This commonly
arises when security devices are installed to counter certain

45 obvious threats but when less obvious and unexpected
threats are ignored or not considered.

While the serial numbers 120 and 122, if not scraped off
or altered by a thief, may serve to identify a PC or compo­
nents of the PC that are stolen and later found, or may serve

50 as notice to an honest purchaser of second-hand equipment
that the second-hand equipment was obtained by illegal
means, they are not an overpowering deterrent to a thief who
intends to use a purloined PC or PC component at home or
to sell the purloined PC to unsavory third parties.

FIG. 1 illustrates various types of security systems com- 55

manly employed to prevent theft of PCs and PC compo­
nents. A PC 102 is mounted on a table 104 and is connected

Password protection is commonly used to prevent mali-
cious or unauthorized users from gaining access to the
operating system of a PC and thus gaining the ability to
examine confidential materials, to steal or corrupt data, or to
transfer programs or data to a disk or to another computer

to a keyboard-input device 106 and a display monitor 108.
The PC 102 is physically secured to the table 104 with a
hinged fastening device 110, which can be opened and
locked by inserting a key 112 into a lock 114. The display
monitor 108 is physically attached to the table via a cable
116 and cylindrical combination lock 118 system. Serial
numbers 120 or 122 are attached to, or imprinted on, the side

60 from which the programs and data can be misappropriated.

of the PC 102 and the side of the display monitor 108, 65

respectively. Finally, there is a software-implemented lock
and key system for controlling access to the operating

Passwords have a number of well-known deficiencies.
Often, users employ easily remembered passwords, such as
their names, their children's names, or the names of fictional
characters from books. Although not a trivial undertaking, a
determined hacker can often discover such passwords by
repetitive trial and error methods. As with the combination
for the cylindrical combination lock 118, passwords are

US 6,249,868 Bl
3

often written down by users or revealed in conversation.
Even if the operating system of the PC is inaccessible to a
thief who steals the PC, that thief may relatively easily
interrupt the boot process, reformat the hard drive, and
reinstall the operating system in order to use the stolen 5

computer.
More elaborate security systems have been developed or

proposed to protect various types of electrical and mechani-
cal equipment and to protect even living creatures. For
example, one can have installed in a car an electronic device 10

that can be remotely activated by telephone to send out a
homing signal to mobile police receivers. As another
example, late model Ford and Mercury cars are equipped
with a special electronic ignition lock, which is activated by

4
fore disabled. User-level passwords are neither required nor
provided, and the security system cannot be thwarted by
reinstalling the PC's operating system or by replacing pro­
grammable read only memory devices that store low-level
initialization firmware for the PC.

Alternative embodiments of the present invention include
control and management of software and hardware on a
pay-to-purchase or pay-per-use basis, adaptive computer
systems, and control and security of electrical and electro­
mechanical systems other than computers. A computer sys­
tem may be manufactured to include various optional hard-
ware and software components controlled by embedded
agents and initially disabled. When the purchaser of the
computer system later decides to purchase an optional,
preinstalled but disabled component, the manufacturer can
enable the component by authorizing an associated embed-
ded agent upon receipt of payment from the owner of the
system. Similarly, the owner of the computer system may
choose to rent an optional component for a period of time,
and that component can then be authorized for the period of
time by the manufacturer upon receipt of payment. Software
may be manufactured to require authorization from a server
via an embedded agent either located within the disk drive
on which the software is stored or located within the
software itself. Computer systems may automatically adjust
their configuration in response to changes in workload by
enabling and disabling components via embedded agents.
Finally, systems other than computers, including industrial
machine tools, processing equipment, vehicles, and firearms

a tiny transmitter, located within a key. As still another 15

example, small, integrated-circuit identification tags can
now be injected into pets and research animals as a sort of
internal serial number. A unique identification number is
transmitted by these devices to a reading device that can be
passed over the surface of the pet or research animal to 20

detect the unique identification number. A large variety of
different data encryption techniques have been developed
and are commercially available, including the well known
RSA public/private encryption key method. Devices have
been built that automatically generate computer passwords 25

and that are linked with password devices installed within
the computer to prevent hackers from easily discovering
passwords and to keep the passwords changing at a sufficient
rate to prevent extensive access and limit the damage
resulting from discovery of a single password. 30 may be controlled and secured by embedding agents within

one or more components included in the systems. While many of these elaborate security systems are imple­
mented using highly complex circuitry and software based
on complex mathematical operations, they still employ, at
some level, the notion of a key or password that is physically
or mentally possessed by a user and thus susceptible to theft 35

or discovery. A need has therefore been recognized for a
security system for protecting PCs and components of PCs
from theft or misuse that does not depend on physical or
software implemented keys and passwords possessed by
users. Furthermore, a need has been similarly recognized for 40

intelligent security systems to protect the software that runs
on PCs and to protect other types of complex electronic and
mechanical systems, including automobiles, firearms, home
entertainment systems, and creative works encoded in media
for display or broadcast on home entertainment systems.

SUMMARY OF THE INVENTION

45

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various types of security systems com­
monly employed to prevent theft of PCs and PC compo­
nents.

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server.

FIG. 3 is a block diagram of example hardware and
software components and communications pathways that
implement a single embedded agent connected to a client
that is, in turn, connected to a security authorization server.

FIG. 4 is a state diagram for an example embedded agent.
FIG. 5 is an example state diagram for the interaction of

a security authorization server with one embedded agent.
FIG. 6Aillustrates an example initiation of the sending of

a SAVE ME message by an embedded agent.
FIG. 6B illustrates an example receipt of a SAVE ME

50 message by a security authorization server.

One embodiment of the present invention provides a
security system for protecting a PC and components
installed in or attached to the PC from use after being stolen.
Agents are embedded within various devices within the PC.
The agents are either hardware-implemented logic circuits
included in the devices or firmware or software routines
running within the devices that can be directed to enable and
disable the devices in which they are embedded. The agents 55

intercept communications to and from the devices into
which they are embedded, passing the communications
when authorized to do so in order to enable the devices, and
blocking communications when not authorized, effectively
disabling the devices. Embedded agents are continuously
authorized from a remote server computer, which is coupled

FIGS. 7A-F illustrate the handshake operation that imme­
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state.

FIGS. 8A-F illustrate a second example handshake opera­
tion that follows the original handshake operation of FIGS.
7 A-F by some period of time less than the original autho­
rization period.

FIGS. 9A-B illustrate the recovery mechanism that is
60 employed by an example EASS embedded agent in the event

that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent. to embedded agents via a communications medium, by

handshake operations implemented as communications mes­
sages. When the PC is disconnected from the communica­
tions link to the remote server, as happens when the PC is 65

stolen, the devices protected by embedded agents no longer
receive authorizations from the remote server and are there-

DETAILED DESCRIPTION OF THE
INVENTION

One embodiment of the present invention is an embedded
agent security system ("EASS") for protecting a PC, and,

US 6,249,868 Bl
5

m?re particularly, the internal components of a PC, from
misuse or misappropriation. The EASS includes a server
component, one or more embedded agents, and, optionally,

6
is connected to the PC 204 via a connection 206 that
represents a local area network which is possibly itself
connected to a wide area network and which supports one of

a client component The server component is a centralized
repository and control point that provides authorizations to 5

agents embedded within PC components and connected to
the server component via a communications connection. The
server authorizations allow the embedded agents to enable
operation of the components within which the embedded
agents reside for a period of time. The server component 10

runs on a separate server computer, which is connected by

any number of common network protocols or combinations
of protocols to transfer messages back and forth between the
server component 202 and the PC 204. Messages may be
transmitted, for example, via the Internet. The PC 204 is
connected to an external output device, in this case a display
monitor 208, and to two input devices, a mouse 210 and a
keyboard 212. Internal components of the PC include a
central processing unit ("CPU") 214; a random access
memory 216; a system controller 218; a hard disk 220; and
a number of device controllers 222, 224, 226, 228, and 230
connected to the system controller 218 directly through a

a communications medium to the PC. An embedded agent is
embedded as a logic circuit within the circuitry that controls
operation of an internal component of the PC or is embedded
as a firmware or software routine that runs within the 15

internal component of the PC. The client component, when
present, runs as a software process on the PC. The client
component of the EASS primarily facilitates communica­
tions between the server component and the various embed­
ded agents. For example, when multiple embedded agents 20

are included in the PC, the client component may serve as

high speed bus 232, such as a PCI bus, or through a
combination of the high speed bus 232, a bus bridge 234,
and a low speed bus 236 such as an ISA bus. The CPU 214
is connected to the system controller 218 through a special­
ized CPU bus 238 and the RAM memory 216 is connected
to the system controller 218 through a specialized memory
bus 240. FIG. 2 represents one possible simple configuration
for the internal components of a PC. PCs having different
numbers or types of components or employing different
connection mechanisms other than PCI or ISA buses may

a distribution and collection point for communications
between the server component and the multiple embedded
agents.

Because embedded agents enable operation of the internal
components in which they are embedded, and because
embedded agents require frequent authorizations from the
server component in order to enable the internal
components, if the communications connection between the
server component and an embedded agent is broken, the
internal component in which the embedded agent resides
will be disabled when the current period of authorization
expires. The communications connection between the server
and all embedded agents within the PC will be broken when
the PC is powered down or disconnected from the external
communications medium by which the PC is connected to
the server. Thus, any attempt to steal the PC will result in the
theft of a PC that will not be operable once the current period
of authorization expires. In order to subsequently operate the
PC, the thief would need to reconnect the PC to the server
and invoke either client or server utilities to reinitialize the
embedded agents. These utilities are themselves protected
by password mechanisms. The thief cannot circumvent the
embedded agents by reinstalling the operating system or by
replacing programmable read only memories ("PROMs").
The stolen PC is therefore essentially worthless to the thief,
and, perhaps more important, the data stored within the PC
is inaccessible to the thief as well as to any other party.

25 have quite different internal configurations.
The device controllers 222, 224, 226, 228, and 230 are

normally implemented as printed circuit boards, which
include one or more application specific integrated circuits
(";\SICs") 242, 244, 246, 248, and 250. The ASICs, along

30 w1th firmware that is normally contained in various types of
ROM memory on the printed circuit boards, implement both
a communications bus interface and a command interface.
The communications bus interface allows for data and
message communication with operating system routines that

35 run on the CPU 214. The command interface enables the
operating system to control the peripheral device associated
with the device controller. For example, the hard disk 220
comprises a number of physical platters on which data is
stored as tiny magnetized regions of the iron oxide surface

40 of the platters (not shown), a motor for spinning the platters
(not shown), and a printed circuit board 228 which imple­
ments circuitry and firmware routines that provide a high­
level interface to operating system drivers. In modern disks,
there is often a printed circuit board that includes an ASIC

45 that is packaged within the disk as well as a printed circuit
board card that is connected via a bus to other internal
components of the PC, including the system controller 218
and the CPU 214.

Certain implementations of this embodiment may rely on
one or more internal password identification mechanisms. 50

However, unlike the other well-known security systems
discussed above, the user of a PC protected by the EASS
does not need to possess a password and is, in fact, not
allowed to know or possess the passwords used internally
within the EASS. 55

Programs that run on the CPU 214, including the oper­
ating system and the EASS client, are permanently stored on
a hard disk 252 and are transiently stored in RAM 254 for
execution by the CPU 214. Logic circuitry that implements
the embedded agents of the EASS is included within the
ASICs that implement the various device controllers 242
244, 246, 248, and 250. The device controller may control
such devices as optical disk devices, tape drives, modems,
and other data sources and communications devices. EASS
embedded agents can be additionally included within the
circuitry that implements RAM 216, the system controller

In a preferred implementation of this embodiment, the
server and client components are implemented in software
and the embedded agents are implemented as hardware logic
circuits. However, all three of these components may be
implemented either as software routines, firmwave routines,
hardware circuits, or as a combination of software firmware
and hardware. ' '

EASS Hardware and Software Configuration

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server. The remote server 202

60 218, and even the CPU 214. One skilled in the art will
recognize that any circuit in which communications can be
intercepted may reasonably host an embedded agent and that
many other locations may therefore host embedded agents.
Further, a PC 204 may include only a single embedded agent

65 or may include a number of EASS embedded agents.
FIG. 3 is a block diagram of example hardware and

software components and communications pathways that

US 6,249,868 Bl
7

implement a single embedded agent connected to a client
which is, in turn, connected to a security authorization
server. In one embodiment, the EASS embedded agent 302

8
medium based on transmission of optical or radio signals
rather than on electrical signals. Moreover, alternate
embodiments may employ multiple EASS servers that may
be implemented on remote computers or that may be

5 included within the same computer that hosts the EASS
embedded agents.

is a logic circuit embedded within an ASIC 304 which is
included on a printed circuit board 306 that implements a
particular device controller. The device controller is con­
nected through one or more internal communications buses
308 to an EASS client program 310 implemented as a driver
within the operating system 312 running on the CPU 314 of
the personal computer. The CPU 304 is, in turn, connected

10
through one or more internal buses, such as a PCI bus, and
external communication lines, such as a LAN or a LAN
combined with a WAN 316, to the server computer 318. The
components of the server computer that implement the
EASS server include an EASS server program 320 and a
non-volatile storage device 322 in which the EASS server 15

program 320 stores authorization and embedded agent infor­
mation. The EASS server program 320 exchanges informa­
tion with the non-volatile storage device 322 via internal
buses 324 of the server computer 318. There are a variety of
ways in which the embedded agent and authorization infor- 20

mation can be stored by the EASS server 320 on the
non-volatile storage device 322. In one implementation of
the described embodiment, this data is stored within a
commercial database management system, such as a rela­
tional database.

EASS Server and Embedded Agent State
Transitions

FIG. 4 is a state diagram for an example embedded agent.
FIG. 4 shows four different states that an EASS embedded
agent may occupy: (1) an Initial Power-On Grace Period
state 402; (2) a Power-On Grace Period state 404; (3) an
Authorized state 406; and (4) a Not Authorized state 408.
Transitions between these states arise from three types of
events: (1) a successful handshake between the embedded
agent and the EASS server that results in transfer of an
authorization by the EASS server to the embedded agent to
permit operation of the device associated with the EASS
embedded agent for some period of time; (2) a time out that
occurs when the EASS embedded agent has exhausted its
current authorization period prior to receiving a subsequent
re-authorization from the EASS server; and (3) a special
back-door mechanism that allows an entity such as the

25 EASS client to reinitialize an EASS embedded agent so that
the EASS embedded agent can reestablish contact with an
EASS server following interruption of a previous connec­
tion.

Messages and commands that are passed to the device
controller 306 for a particular internal or peripheral device
over the communications bus 308 first pass through the
EASS embedded agent logic 302 before entering the ASIC
circuitry 304 that implements the device controller. The 30
EASS embedded agent 302 is associated with a number of
non-volatile registers 326 that store authorization state infor­
mation. When the embedded agent has been authorized by
an EASS server 320, or during a short grace period follow­
ing power up, the EASS embedded agent passes messages 35
and commands through to the ASIC 304 that implements
normal message handling and the device controller.
However, when the EASS embedded agent 302 is not
authorized by the EASS server 320, or when an initial
power-on grace period has expired, the EASS embedded 40
agent blocks messages and commands to the ASIC 304
thereby disabling the device controlled by the device con­
troller 306. The EASS embedded agent thus serves as a
hardware-implemented control point by which a device is
enabled or disabled. Authorization messages pass from the 45
EASS server 320 through communications pathways 316
and 308 to the EASS embedded agent 302. The EASS
embedded agent 302 can also initiate a message and pass the
message through pathways 308 and 316 to the EASS server
320. For example, the EASS embedded agent 302 may 50
request authorization from the EASS server 320.

In the described embodiment, the EASS client 310 facili­
tates communications between the EASS server 320 and the
EASS embedded agent 302. When a PC includes more than
one EASS embedded agent, the EASS client 310 handles 55

routing of messages from the EASS server 320 to individual
EASS embedded agents 302 and collects any messages
initiated by EASS embedded agents 302 and forwards them
to the EASS server 320. In addition, the EASS client 310
may support a small amount of administrative functionality 60

on the PC that allows the EASS to be reinitialized in the

Following an initial power up 410 of the device hosting an
EASS embedded agent, the EASS embedded agent enters an
Initial Power-On Grace Period 402. The Initial Power-On
Grace Period allows operation of the device controlled by
the EASS embedded agent for some short period of time
following power up of the PC necessary for initialization of
the PC that contains the device and embedded agent and
allows for establishment of contact between the EASS
embedded agent and an EASS server. When in the Initial
Power-On Grace Period 410, the EASS embedded agent
contains one of a certain number of initial passwords that are
recognized by EASS servers as belonging to EASS embed­
ded agents in the Initial Power-On Grace Period. These
initial passwords allow an EASS server to distinguish a valid
request for handshake operation from an attempt to solicit
authorization by an embedded agent that has been previ­
ously authorized by an EASS server. In the latter case, the
embedded agent may well be hosted by a stolen or misused
device. From the Initial Power-On Grace Period state, the
EASS embedded agent may send a solicitation message, for
example, a "SAVE ME" message to an EASS server to
announce that the EASS embedded agent has been powered
up for the first time, as indicated by transition arrow 412, and
to solicit a handshake operation. Sending of the SAVE ME
solicitation message does not, by itself, cause a state tran­
sition. When an EASS server receives a SAVE ME message
from an EASS embedded agent, the EASS server undertakes
sending of an authorization to the EASS embedded agent
through a handshake mechanism, to be described below. The
handshake may either fail or succeed. If a handshake fails,
the EASS embedded agent remains in the state that it
occupied prior to initiation of the handshake.

When an EASS embedded agent is in the Initial Power-On
Grace Period, a successful handshake operation results in the
EASS embedded agent transitioning 414 to an Authorized
state 406. At regular intervals, the EASS server continues to

event of loss of connection or power failure. The EASS
client 310 may not be a required component in alternative
embodiments in which an EASS server 320 communicates
directly with EASS embedded agents 302.

In alternative embodiments, the EASS server may com­
municate with EASS embedded agents by a communications

65 reauthorize the EASS embedded agent through successive
handshake operations 416 which result in the EASS embed­
ded agent remaining in the Authorized state 406. In the

US 6,249,868 Bl
9

Authorized state 406, the EASS embedded agent passes
through commands and data to the device that it controls
allowing that device to operate normally. If, for any number

10
With respect to an EASS embedded agent, the EASS server
may occupy any one of three states at a given instant in time:
(1) the EASS server may be in an Ignorant of Agent state
502; (2) the EASS server may be in a Knowledgeable of of reasons, the EASS embedded agent does not receive

reauthorization prior to the expiration of the current autho­
rization that the embedded agent has received from an EASS
server, a time out occurs causing transition 418 of the EASS
embedded agent to the Not Authorized state 408.

5 Agent state, aware of but not having authorized the agent
504; and (3) the EASS server may be in an Agent Authorized
state 506. Initially, an EASS server is ignorant of the
embedded agent, and thus occupies the Ignorant of Agent

In the Not Authorized state 408, the EASS embedded
agent blocks commands and data from being transmitted to

10
the device controlled by the EASS embedded agent, effec­
tively disabling or shutting down the device. Alternatively,
the EASS embedded agent may actually power down a
device that can be powered down independently from other
internal components of the PC. When in the Not Authorized
state 408, the EASS embedded agent may send a SAVE ME 15

message 420 to an EASS server. Sending of this message
does not, by itself, cause a state transition, as indicated by
arrow 420. However, if an EASS embedded agent receives
the SAVE ME message and initiates a handshake operation
that is successfully concluded, the EASS embedded agent 20

transitions 422 from the Not Authorized state 408 back to the
Authorized state 406.

The EASS embedded agent and the device that the EASS
embedded agent controls can be powered up any number of
times following an initial power up. The EASS embedded 25

agent stores enough information in a number of non-volatile
registers associated with the EASS embedded agent (e.g.,
registers 326 in FIG. 3) to differentiate a normal or non­
initial power up from an initial power up. Following a
non-initial power up 424, the EASS embedded agent tran- 30
sitions 426 to a Power-On Grace Period state 404. When
occupying the Power-On Grace Period state 404, the EASS
embedded agent may send a SAVE ME message to an EASS
server. The sending of the SAVE ME message 428 does not,

state 502. When the EASS server receives a SAVE ME
message from the EASS embedded agent that is in the Initial
Power-On Grace Period state (402 in FIG. 4), the EASS
server transitions 508 from the Ignorant of Agent state 502
to the Knowledgeable of Agent state 504. As part of this
transition, the EASS server typically makes an entry into a
database or enters a record into a file that allows the EASS
server to preserve its awareness of the EASS embedded
agent. The EASS server may receive SAVE ME messages
from the EASS embedded agent when occupying either the
Knowledgeable of Agent state 504 or the Agent Authorized
state 506. As indicated by arrows 510 and 512, receipt of
SAVE ME messages by the EASS server in either of states
504 and 506 does not, by itself, cause a state transition.

The EASS server may initiate and complete a successful
handshake operation with the EASS embedded agent while
the EASS server occupies the Knowledgeable of Agent state
504 with respect to an agent. Completion of a successful
handshake operation causes the EASS server to transition
514 from the Knowledgeable of Agent state 504 to the Agent
Authorized state 506 with respect to the agent. This transi­
tion may be accompanied by the saving of an indication in
a database or a file by the EASS server that indicates that the
embedded agent is authorized for some period of time.
When occupying the Agent Authorized state, the EASS
server may continue to initiate and complete successful

35 handshake operations with the embedded agent and, by
doing so, continue to occupy the Agent Authorized state.
However, if a handshake operation is unsuccessful, the
EASS server transitions 518 from the Agent Authorized state

by itself, cause a state transition, as indicated by arrow 428.
The Power-On Grace Period lasts a short period of time
sufficient for the PC to be booted and all of the internal
components to be initialized and for the EASS embedded
agents controlling those components to establish contact
with an EASS server. If an EASS server, upon receiving the 40
SAVE ME message, successfully completes a handshake
operation, the EASS embedded agent transitions 430 from
the Power-On Grace Period 404 to the Authorized state 406.

506 back to the Knowledgeable of Agent state 504.

If a successful handshake operation is not completed before
the short Power-On Grace Period authorization period
expires 432, the embedded agent transitions 432 from the
Power-On Grace Period 404 to the Not Authorized state 408.

A special mechanism is provided for reinitialization of an
EASS embedded agent following normal power on. That
mechanism is referred to as the "back door" mechanism. The
back door mechanism may be initiated, at the direction of a
user or administrator, by an EASS client running on the
same PC that includes the embedded agent, or may be
initiated by an EASS server upon discovery by the EASS
server of a failed or interrupted connection. When the EASS 55

embedded agent receives a message that implements the
back door mechanism, the EASS embedded agent transi­
tions 434 from the Power-On Grace Period 404 back to the
Initial Power-On Grace Period 402. In alternative

In some embodiments of the present invention, there may
be an additional transition 520 from the Knowledgeable of
Agent state 504 back to the Ignorant of Agent state 502. This
transition corresponds to a purging or cleaning operation
that allows an EASS server to purge database entries or file

45 records corresponding to a particular EASS embedded agent
if the EASS server is unsuccessful in authorizing that EASS
embedded agent for some period of time. Such a purging
operation allows the EASS server to make room in a
database or file to handle subsequent entries for EASS

50 embedded agents that announce themselves using SAVE ME
messages from an Initial Power-On Grace Period state.

embodiments, the back door mechanism might allow for 60

transitions from either of the other two states 406 and 408

EASS Messages

FIGS. 6A-9B illustrate details of the sending and receiv­
ing of SAVE ME messages and of the EASS server-initiated
handshake operation. In each of these figures, example
contents of the non-volatile registers associated with an
EASS embedded agent, contents of a message, and contents
of a portion of the database associated with an EASS server
are shown. FIG. 6A will be numerically labeled and
described in the discussion below, but the labels will be
repeated in FIGS. 6B-9B only when the labels are relevant
to an aspect of the EASS in the figure referenced in the

back to the Initial Power-On Grace Period state. In more
complex embodiments, the back door mechanism might
allow for transitions to states other than the Initial Power-On
Grace Period. 65 discussion of the figure.

FIG. 5 is an example state diagram for the interaction of
a security authorization server with one embedded agent.

FIG. 6Aillustrates initiation of the sending of a SAVE ME
message by an EASS embedded agent. The EASS embedded

US 6,249,868 Bl
11 12

FIG. 6B illustrates receipt of a SAVE ME message by an
EASS server. In this case, the EASS server 616 was, prior
to receipt of the SAVE ME message, in the Ignorant of Agent
state (502 of FIG. 5) with respect to the EASS embedded
agent 602. Receipt of the SAVE ME message 612 causes the
EASS server 616 to transition to the Knowledgeable of
Agent state (504 of FIG. 5). In making this transition, the
EASS server 616 enters information gleaned from the SAVE
ME message 612 into row 632 of the database 618 associ­
ated with the EASS server 616. The address from which the
message was received can be determined from fields con-
tained within a message header (not shown in FIG. 6B). This
address may be the communications address of an individual
EASS embedded agent, a combination of the communica-
tions address of the client and an internal identification
number of the device hosting the EASS embedded agent, or
some other unique identifier for the EASS embedded agent
that can be mapped to a communications address. The
details of the formats of message headers are specific to the
particular types of communications mechanisms and imple­
mentations. In this example, the addresses are stored as
Internet addresses. The stored Internet address is the address
of the EASS client running on the PC in which the EASS
embedded agent is resident. This address may be enhanced
by the EASS server 616 by the addition of characters to the
address or subfields within either the address or in the
message header to provide sufficient information for the
receiving EASS client to identify the particular EASS
embedded agent to which the message is addressed.

agent 602 is associated with three non-volatile registers that
contain: (1) the current password 604; (2) the previous
password 606; and (3) the time remaining for the current
authorization period 608. Passwords may comprise com­
puter words of 56 bits, 64 bits, or a larger number of bits that 5
provide a sufficiently large number of unique initial pass­
words. The direction of propagation of the SAVE ME
message is indicated by arrow 610. The SAVE ME message
612 being transmitted is displayed along with its informa­
tional content 614. The EASS server 616 contains a repre-

10
sentation of a portion of a database that contains information
about EASS embedded agent authorizations 618. This data­
base contains columns that indicate the communications or
network address of the EASS embedded agent 620, the
EASS embedded agent's current password 622, the EASS
embedded agent's previous password 624, and an indication 15

of whether the EASS embedded agent is currently autho­
rized or not 626. Additional or alternative columns may be
present. For example, the next column 628 is used in
subsequent figures to store the amount of time for which the
EASS embedded agent is authorized. Each row in the 20

database 630--633 represents one particular EASS embed­
ded agent. Rows 630 and 631 contain information for
previously authorized EASS embedded agents (not shown).
EASS embedded agent 602 of FIG. 6A is in the Initial
Power-On Grace Period state (402 of FIG. 4) and the EASS 25
server 616 of FIG. 6Ais, with respect to the embedded agent
602, in the Ignorant of Agent state (502 of FIG. 5). Rect­
angular inclusions 634 and 636 represent the implementa­
tion of, and any volatile storage associated with, the EASS
embedded agent and the EASS server, respectively. 30 Alternatively, a different address might be established for

each EASS embedded agent or an internal address field
might be included in each message sent from the EASS
server to an EASS client that further specifies the particular

In one embodiment, when the EASS embedded agent 602
is in the Initial Power-On Grace Period, it has an initial time
remaining period of two minutes, as indicated by the con­
tents of the time remaining non-volatile register 608. This
initial time remaining period is chosen to be sufficient for the 35

EASS embedded agent 602 to establish a connection with
the EASS server 616, to solicit a handshake operation, and
to complete the solicited handshake operation and may vary
in duration for different types of computers. Both the current
password register 604 and the previous password register 40

606 contain a default initial password that is recognized by
EASS servers as corresponding to an EASS embedded agent
in the Initial Power-On Grace Period state. It should be noted
that there may be a great number of different such default
passwords. In the described embodiment, the circuitry that 45

implements the EASS embedded agent notes that the autho­
rization time remaining is two minutes, and that it is
therefore necessary for the EASS embedded agent 602 to
send a SAVE ME message 612 to an EASS server to request
continuation of authorization. Thus, the EASS embedded 50

agent 602 initiates sending of the SAVE ME message 612.
The SAVE ME message 612 contains an indication or

operation code 638 designating the message as a SAVE ME
message, the contents of the current password register 640,
and the contents of the previous password register 642. In 55

the case of an EASS embedded agent in the Initial Power-On
Grace Period state, both the current password and previous
password registers contain the same initial password in the
present embodiment. Alternative embodiments might use
different initial current and previous passwords. In general, 60

sending both the current password and the previous pass­
word provides sufficient information for the EASS server
that receives the SAVE ME message to correct any errors or
discrepancies that may have arisen during a previous failed
handshake. An example of a recovery from a failed hand- 65

shake operation will be described below with reference to
FIGS. 9A-B.

EASS embedded agent to which the message is addressed.
Thus, receipt of the SAVE ME message has allowed the
EASS server 616 to store the address "example@x.com"
632 to identify the EASS embedded agent 602 from which
the message was received, to store the current and previous
passwords 644 and 646 taken from the received SAVE ME
message 612, and to store an indication that the EASS
embedded agent 602 is not authorized 648.

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state. The handshake
operation is initiated, as shown in FIG. 7A, by the EASS
server 702. The EASS server 702 generates a new, non­
initial password for the EASS embedded agent 704 and
stores the new password in volatile memory 706. The EASS
server then sends an authorization message 708, for example
an "AUTHORIZE" message, to the EASS embedded agent
704 that contains the newly generated password 710 along
with an indication 712 that this is an AUTHORIZE message.

FIG. 7B illustrates receipt of an example AUTHORIZE
message by an example EASS embedded agent. The EASS
embedded agent 704 stores the newly generated password
710 contained in the AUTHORIZE message 708 into a
volatile memory location 714 implemented in the circuitry
of the EASS embedded agent 704.

FIG. 7C illustrates sending, by an example EASS embed­
ded agent, of an authorization confirmation message, for
example a "CONFIRM AUTHORIZATION" message. The
EASS embedded agent 704 sends a CONFIRM AUTHO­
RIZATION message 716 back to the EASS server 702 from
which an AUTHORIZE message was received. The CON­
FIRM AUTHORIZATION message 716 contains the new
password sent in the previous AUTHORIZE message by the

US 6,249,868 Bl
13

EASS server 718 as well as the contents of the current
password register 720. The CONFIRM AUTHORIZATION
message confirms receipt by the EASS embedded agent 704
of the AUTHORIZE message 708.

FIG. 7D illustrates receipt of the CONFIRM AUTHORI­
ZATION message 716 by an example EASS server. The
EASS server 702 updates the current password and previous
password 722 and 724 within the associated database 726 to
reflect the contents of the CONFIRM AUTHORIZATION
message 716 after checking to make sure that the new
password returned in a CONFIRM AUTHORIZATION
message is identical to the in-memory copy 706 of the new
password. If the new password contained in the CONFIRM
AUTHORIZATION message is different from the new pass­
word stored in memory 706, then the handshake operation
has failed and the EASS server 702 undertakes a new
handshake operation with the EASS embedded agent 704.

14
message 804. The EASS embedded agent receives the
AUTHORIZE message 804 and stores the newly generated
password in memory 806. The EASS embedded agent 805
then sends a CONFIRM AUTHORIZATION message 808

5 back to the EASS server 801 containing both the newly
generated password 810 and the contents of the current
password register 812. Upon receipt of the CONFIRM
AUTHORIZATION message 808, the EASS server 801
updates the database entries for the current and previous

10 passwords 814 and 816 and then sends an OK message 818
back to the EASS embedded agent 805 that contains the new
password and the new time period 809 for which the EASS
embedded agent 805 will be authorized. After sending the
OK message 818, the EASS server 801 updates the database

15 to reflect the new time of authorization 820 and, upon receipt
of the OK message by the embedded agent, the non-volatile
registers of the EASS embedded agent are updated to reflect
the new current password and the now previous password,
822 and 824, respectively. FIG. 7E illustrates sending by the EASS server of a

completion message, for example an "OK" message, in
20 response to receipt of the CONFIRM AUTHORIZATION

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent. In this case, the time
remaining continues to decrease and the EASS embedded

message in order to complete the handshake operation. The
EASS server 702 prepares and sends an OK message 728
that contains both the new password and an indication of the
time for which the EASS embedded agent 704 will be
authorized upon receipt of the OK message.

FIG. 7F illustrates receipt of the OK message 728 by an
example EASS embedded agent. Once the EASS server 702
has sent the OK message, the EASS server 702 updates the
database 726 to indicate that the client is authorized 729 as
well as to store an indication of the time 730 for which the
EASS embedded agent has been authorized. At this point,
the EASS server 702 has transitioned from the Knowledge­
able of Agent state (504 in FIG. 5) to the Agent Authorized
state (506 in FIG. 5). Upon receipt of the OK message 728,
the EASS embedded agent 704 updates the current password
register 720 to reflect the new password sent to the EASS
embedded agent in the original AUTHORIZE message 708
after placing the contents of the current password register
720 into the previous password register 732. The EASS
embedded agent 704 also updates the time remaining reg­
ister 734 to reflect the authorization time 736 contained in
the received OK message. At this point, the EASS embedded
agent transitions from the Initial Power-On Grace Period
state (402 in FIG. 4) to the Authorized state (406 in FIG. 4).

If the handshake operation fails after sending of the OK
message by the EASS server to the EASS embedded agent,
but prior to reception of the OK message by the EASS
embedded agent, the connection between the EASS embed­
ded agent and the EASS server can be reestablished and
authorization reacquired by the sending by the EASS
embedded agent of a SAVE ME message to the EASS server.
The SAVE ME message will contain, as the current
password, the value that the BASS server has stored as the
previous password. From this, the EASS server can deter­
mine that the previous handshake operation failed, can
update the database to reflect the state prior to the failed
handshake operation, and can then reinitiate a new hand­
shake operation.

FIGS. 8A-F illustrate a second handshake operation that
follows the original handshake operation by some period of
time less than the original authorization period. By under­
taking additional handshake operations, the EASS server
801 continues to initiate handshake operations to maintain
the EASS embedded agent 805 in the Authorized state (406
in FIG. 4). The EASS server 801 generates a new, non-initial
password 802 and sends this password in an AUTHORIZE

25 agent 902 determines from the time remaining register 904
that sending of a SAVE ME message 906 is necessary to
initiate another handshake operation. Because the final OK
message 818 is not received by the EASS embedded agent
902, the values of the current password register 908 and the

30 previous password register 910 have not been updated and
are the same as the values that were established as a result
of the first authorization, as shown in FIG. 7F. However, the
EASS server 912 has updated its internal database 914 to
indicate the new password generated during the previous

35 handshake operation 916. Thus, the EASS server database
914 does not reflect the actual state of the EASS embedded
agent 902. However, when the EASS server 912 receives the
SAVE ME message 906, the EASS server 912 can imme­
diately determine that the previous handshake operation did

40 not successfully complete and can update the current pass­
word entry and the previous password entry 916 and 918 in
the associated database 914 to reflect the actual current state
of the EASS embedded agent 902. Thus, upon receipt of the
SAVE ME message, the EASS server and the EASS embed-

45 ded agent are again synchronized, and the EASS server can
initiate a new handshake operation to reauthorize the EASS
embedded agent.

The above-illustrated and above-described state diagrams
and message passing details represent one of many possible

50 different embodiments of the present invention. A different
communications protocol with different attendant state dia­
grams and messages can be devised to accomplish the
authorization of EASS embedded agents by EASS servers.
Depending on the communications pathways employed,

55 different types of messages with different types of fields and
different types of header information may be employed.
Moreover, the EASS embedded agent may contain addi­
tional non-volatile registers and may maintain different
values within the associated non-volatile registers. As one

60 example, rather than passing passwords, both the EASS
server and each EASS embedded agent may contain linear
feedback registers that electronically generate passwords
from seed values. The communications protocols between
the EASS server and the EASS embedded agents could

65 ensure that, during transition from the Initial Power-On
Grace Period state, the EASS embedded agent receives an
initial seed for its linear feedback register that is also used

US 6,249,868 Bl
15

by the EASS server for the EASS server's linear feedback
register. Rather than passing passwords, both the EASS
embedded agents and the EASS servers can depend on
deterministic transitions of their respective linear feedback
registers to generate new, synchronized passwords at each s
authorization point.

16
because the EASS embedded agents will power up to the
Power-On Grace Period state, rather than the Initial Power­
On Grace Period state. The passwords sent to the different
EASS server will therefore not be identified as initial
passwords. The different EASS server may then notify a
centralized management or administrative facility of the
fraudulent attempt to connect along with the network
address from which the attempt was made. An attempt to
connect to the same EASS server will also fail, because the

10 address of the EASS embedded agents within the PC will
have changed.

A clever thief who has stolen a PC, who has managed to
discern the need to establish connections between EASS
embedded agents and an EASS server, and who possesses
the necessary passwords to gain entry to client and server
utilities that enable a connection between an EASS client
and an EASS server to be initialized, will still fail to
overcome the EASS and may, in fact, broadcast the location
and use of the stolen PC to the EASS. A different EASS
server to which a connection is attempted will immediately 15

detect the attempt by the thief to connect the stolen PC to the
EASS server by detecting non-initial passwords in the SAVE
ME message sent by the EASS embedded agent in order to
solicit a handshake operation. The reconnection attempt will
be readily discernible to a security administrator using 20

utilities provided to display database contents on the EASS
server. Connection to a different EASS server will fail

Pseudo-Code Implementation

A pseudo-code example implementation of an example
EASS server and EASS embedded agent is given below.
Although the EASS embedded agent will normally be
implemented as a logic circuit, that logic circuit will imple­
ment in hardware the algorithm expressed below as pseudo­
code. Software and firmware implementations of the EASS
embedded agent may, in addition, represent alternate
embodiments of the present invention.

enum MSG_TYPE {AUTHORIZE, CONFIRM_AUTHORIZE, OK, SAVE_ME, DEVICE};
2
3 enum ERRORS {QUEUED_AND_SAVE_ME, MULTIPLE_OKS_LOST ALARM,
4 CONFIRM_AUTHORIZE_SYNC, NO_ENTRY, QUEUE_ERROR};
5

type PASSWORD;
7 type ADDRESS;
8 type TIME;
9
10 canst TIME initGrace ~ 2:00;
11 canst TIME save Me ~ 0 :20;
12
13 class Error
14
15 Error (int err, ADDRESS add);
16
17
18 class DeviceMessage
19 {
20 Device Message ();
21
22
23 class Device
24
25 Device () ;
26 Void enable ();
27 Void disable ();
28 Void send (Device Message & dvmsg);
29 Boo! receive (Device Message & dvmsg);
30
31
32 class Timer
33
34 timer (TIMEt);
35 void set (TIME t);
36
37
38 class Timerinterrupt
39 {
40 Timer Interrupt ();
41
42
43 class TimeServer
44
45 TimeServer ();
46 TIME nextAuthorizationPeriod (Address add);
47
48
49 class Messages
50 {

51
52
53
54
55
56
57
58
59
60
61
62
63
64

US 6,249,868 Bl
17

-continued

Messages();
Boo! getNext ();
MSG_TYPE getType ();
PASSWORD getNewPassword ();
PASSWORD getCurrentPassword ();
PASSWORD getPreviousPassword ();
TIME getTime ();
ADDRESS getAddress ();
Boo! sendAuthorize (PASSWORD npwd, ADDRESS add);
Boo! sendConfirmAuthorize (PASSWORD npwd, PASSWORD cpwd, ADDRESS add);
Boo! sendOK (Time t, PASSWORD npwd, ADDRESS add);
Boo! sendSaveMe (PASSWORD cpwd, PASSWORD ppwd, ADDRESS add);

65 class AgentMessages:Messages
66 {
67 DeviceMessage & getDeviceMsg ();
68 Boo! sendDeviceMsg (DeviceMessage & msg);
69
70
71 class Passwords
72
73
74
75
76
77
78
79

Passwords ();
Boo! initialPassword (PASSWORD pwd);
PASSWORD generateNewPassword ();
void queue(ADDRESS add, PASSWORD npwd, PASSWORD ppwd);
Boo! dequeue (ADDRESS add, PASSWORD & npwd, PASSWORD & ppwd);

80 class Database
81

Database();
Boo! newAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Bod authorized,Time t);

18

82
83
84
85
86
87
88
89

Boo! updateAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Boo! authorized, Time t);
Boo! retrieveAgent (ADDRESS add, PASSWORD & cur, PASSWORD & prev, Boo! & Authorized,

TIME & t);
Boo! deleteAgent (ADDRESS add);

90 agent (PASSWORD current, PASSWORD previous)
91 {
92 PASSWORD tpwd;
93 Timer time (init, Grace);
94 AgentMessages msg ();
95 Device dv ();
96 DeviceMessage dvmsg ();
97 Boo! authorized ~ FALSE;
98 Boo! enabled ~ TRUE;
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

do
{

try
{

while (msg.getNext ())
{

switch (msg.getType ())
{

case AUTHORIZE:
tpwd ~ msg.getNewPassword ();
msg.sendConfirmAuthorize (tpwd, current, msg.getAddress ());
break;

caseOK:
if (tpwd ~~ msg.getNewPassword ())
{

time.set (msg.getTime () - saveMe);
authorized ~ TRUE;
previous = current;
current = tpwd;
if (!enabled)
{

dv.enable ();
enabled ~ TRUE;

break;
caseDEVICE:

if (enabled) dv.send (msg.getDeviceMsg ());
break;

default;

130
131
132

}

US 6,249,868 Bl
19

-continued

break;

while (dv.receive (dvmsg))
{

if (enabled) msg.sendDeviceMsg (dvmsg);

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

catch (Timerlnterrupt)
{

else

148 enabled ~FALSE;

if (authorized)
{

authorized ~ FALSE;
msg.sendSaveMe (current, previous, msg.getAddress ());
time.set (saveMe);

149 msg.sendSaveMe(current, previous, msg.getAddress ());
150 time.set(SaveMe);
151 dv.disable ();
152 }
153
154
155
156
157 server()
158 {
159 Messages msg();
160 PASSWORD current, previous, dcur, dprev, newp;
161 PASSWORD queuedNew, queuedCurrent, newpass;
162 Passwords pwds ();
163 TIME t;
164 Database db ();
165 ADDRESS add;
166 TimeServer ts ();
167 Boo! auth;
168
169 while (msg.getNext ())
170 {
171 switch (msg.getType ())
172 {
173 caseSAVE_ME:
174 current ~ msg.getCurrentPassword ();
175 previous ~ msg.getPreviousPassword ();
176 if (pswds.dequeue(msg.getAddress (), queuedNew, queuedCurrent))
177 {
178 if (queuedCurrent ~~ current)
1~ {
180 newp ~ pswds.generateNewPassword ();
181 pswds.queue(msg.getAddress (), newp, current);
182 msg.sendAuthorize(newp, msg.getAddress ());
1~ }
184 else throw (Error (QUEUED_AND_SAVE_ME, msg.getAddress ());
185
186 else
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

else

if (pswds.initialPassword(current) && pswds.initialPassword
(previous))

db.deleteAgent (msg.getAddress ());
newp ~ pswds.generateNewPassword ();
pswds.queue (msg.getAddress(), newp, current);
msg.sendAuthorize(newp, msg.getAddress ());

if (db.retrieveAgent (msg.getAddress (), dcur, dprev, auth,tm)
{
if (dcur ~~ current && tm >~ getSystemTime ())
{

newp~pswds.generateNewPassword ();
pswds.queue(msg.getAddress (), newp, current)
msg.sendAuthorize(newp, msg.getAddress ());

else if (dprev ~~ current && tm >~ getSystemTime ())
{

msg.sendOK (ts.nextAuthorizationPeriod(msg.getAddress (),

20

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

US 6,249,868 Bl
21

-continued

dcur, msg.getAddress ());
}
else if (dprev ~~ current && tm < getSystemTime ())
{

throw (Error (MULTIPLE_OKS_LOST, msg.getAddress ());
}
else throw (Error (ALARM, msg.getAddress ());

}
else throw (Error (ALARM, msg.getAddress ());

case CONFIRM_AUTHORIZE:
newpass ~ msg.getNewPassword (),
current ~ msg.getCurrentPassword ();
if(paswds.dequeue (msg.getAddress (), queuedNew, queuedCurrent))
{

if(newpass ~~ queuedNew && current ~~ queuedCurrent)
{

if (db,retrieveAgent(msg.getAddress (), dcur,dprev,auth,tm))
{

}

if (dcur ~~ current)
{
tm ~ ts.nextAuthonzationPeriod(msg.getAddress ());

db.updateAgent(msg.getAddress (),newpass,current,
tm + getSystemTime ());

else

else

msg.SendOK (tm, newpass, msg.getAddress ());

throw (Error (CONFIRM_AUTHORIZE_SYNC,
msg.getAddress ());

if(pswds.initialPassword (current))
{

}

tm- ts.nextAuthorizationPeriod (msg.getAddress ());
db.newAgent(msg.getAddress (),newpass,current,

tm + getsystemTime ());
msg.sendOK(tm, newpass, msg.getAddress ());

else throw(Error(NO_ENTRY, msg.getAddress ()));
}

}
else throw (Error (QUEUE_ERROR, msg.getAddress()));

else throw (Error (ALARM, msg.getAddress ());
break;

default;
break;

22

Lines 1-11 of the above program include definitions of
constants and types used in the remaining lines of the
program. Line 1 defines the enumeration MSG_TYPE that
includes five enumerated constants to describe the five
different types of messages used to implement the EASS.
These types of messages include the AUTHORIZE, CON­
FIRM AUTHORIZE, OK, and SAVE ME messages
described in FIGS. 6A-B and 7A-F, as well as DEVICE
messages which are exchanged between the CPU (214 in
FIG. 2) and the device controllers (242, 244, 246, 248, and
250 in FIG. 2) via the system controller (218 in FIG. 2) and
via any EASS embedded agents residing in the device
controllers. On lines 3 and 4, an enumeration is declared for
various types of errors and potentially insecure conditions
that may arise during operation of both the EASS server and
EASS embedded agents. These errors and conditions will be
described below in the contexts within which they arise. On 65

lines 6-8, three basic types used throughout the implemen­
tation are declared. These types may be implemented either

using predefined types, such as integers and floating point
50 numbers, or may be more elaborately defined in terms of

classes. These types include: (1) PASSWORD, a consecu­
tive number of bits large enough to express internal pass­
words used within the EASS, commonly 56, 64, or 128 bits;
(2) ADDRESS, a number of consecutive bits large enough to

55 hold communications addresses for EASS servers and EASS
embedded agents; and (3) TIME, a time value expressed in
hours, minutes and seconds, possibly also including a date
and year. On lines 10 and 11, the constants "interface" and
"saveMe" are defined to be two minutes and 20 seconds,

60 respectively. The constant "interface" is the initial grace
period following power up during which an EASS embed­
ded agent passes device messages to and from the device
controller into which it is embedded without authorization.
The constant "saveMe" is the interval at which an EASS
embedded agent sends SAVE ME messages to an EASS
server in order to reestablish authorization. In an alternative
embodiment, both the initial grace period and the SAVE ME

US 6,249,868 Bl
23

interval may be configurable by a user, by the EASS server,
by an administrator, or by some combination of users, EASS
servers, and administrators.

24
getNext makes that next message the current message from
which information can be obtained by calling the methods
declared on lines 53-58. These methods allow for obtaining

On lines 13-88, a number of classes are declared that are
used in the routines "agent" and "server" that follow. Pro- 5

totypes for these classes are given, but the implementations

the type of the message, the address of the sender of the
message, and the contents of the message, depending on the
type of the message, including new passwords, current
passwords, previous passwords, and authorization times.
The methods "sendauthorize" and "sendOK" declared on
lines 59 and 61 are used in the server routine to send
AUTHORIZE and OK messages to EASS embedded agents,
respectively. The methods "sendConfirmAuthorize" and
"sendSaveMe" declared on lines 60 and 62 are used in the
agent routine to send CONFIRM AUTHORIZE and SAVE
ME messages to an EASS server, respectively. The class
"AgentMessages," declared on lines 65-69, derived from
the class "Messages," allows an EASS embedded agent to
communicate both with an EASS server as well as with the
CPU. In other words, the two methods "getDeviceMsg" and
"sendDeviceMsg," declared on lines 67-68, allow an EASS

of the methods are not shown. These implementations are
quite dependent on the specific computer hardware
platforms, operating systems, and communications proto­
cols employed to implement the EASS. Much of the imple- 10
mentations of certain of these classes may be directly
provided through operating system calls. The class Error,
declared on lines 13-16, is a simple error reporting class
used in the server routine for exception handling. Only the
constructor for this class is shown on line 15. An instance of 15
this class is initialized through the arguments passed to the
constructor. These include an integer value representing the
particular error that has been identified and an address value
that indicates the network or communications address of the
EASS embedded agent that the error relates to. 20 embedded agent to intercept device messages sent by the

CPU to the device controller in which the EASS embedded The class DeviceMessage, declared on lines 18-21,
encapsulates methods and data that implement the various
kinds of device messages exchanged between the CPU and
the device controllers of a PC. The methods and data for this
class depend on the types of communications buses
employed within the PC and are, therefore, not further
specified in this example program. The class Device,
declared on lines 23-30, represents the functionality of the
device controller within which an EASS embedded agent is
embedded. In general, the methods shown for this class
would be implemented as hardware logic circuits. The
methods include optional methods for enabling and dis­
abling the device declared on lines 26 and 27, a method for
sending device messages to the device, declared on line 28,
and a method for receiving device messages from the device,
declared on line 29.

The class Timer, declared on lines 32-36, is an asynchro­
nous timer used in the agent routine. An asynchronous timer
can be initialed for some time period either through the
constructor, declared on line 34, or through the method
"set," declared on line 35. If the time period is not reini­
tialized before the timer expires, the asynchronous timer
throws an exception or, when implemented in hardware,
raises a signal or causes an interrupt that may then be
handled either by the agent routine or the logic circuit that
implements the agent routine. The class Timerlnterrupt,
declared on lines 38-41, is essentially a place holder class
used in the exception handling mechanism to indicate expi­
ration of a timer. The class TimeServer, declared on lines
43-47, is a class used by the server routine for determining
the next authorization period for a particular EASS embed­
ded agent. The method "nextAuthorizationPeriod," declared
on line 46, takes the network or communications address of

agent is embedded and to pass device messages from the
device controller back to the CPU.

The class Passwords, declared on lines 71-78, is used
25 within the server routine for queuing certain password

information as well as for generating passwords and deter­
mining whether a password is an initial password. The
method "initialPassword," declared on line 74, takes a
password as an argument and returns a Boolean value

30 indicating whether the password is an initial password or
not. The method "generateNewPassword," declared on lines
75, generates a new, non-initial password to pass to an EASS
embedded agent as part of an AUTHORIZE message. A
more sophisticated implementation of generateNewPass-

35 word might use an input argument that identifies a particular
EASS embedded agent for generating new passwords spe­
cific to particular EASS embedded agents. The methods
"queue" and "dequeue," declared on lines 76-77, are used in
the server routine for temporarily storing address/new

40 password/previous password triples. The class Database,
declared on lines 80--88, represents the database (618 in
FIG. 6A) used by the server to track EASS embedded agents
that are authorized by the server. The methods declared on
lines 83-87 allow for adding new agents into the database,

45 updating a database entry corresponding to an agent, retriev­
ing the contents of an entry corresponding to an agent, and
deleting the entry for an agent. The address of an EASS
embedded agent is used as the unique identifier to identify
that agent's entry in a database. In other implementations, a

50 unique identifier may be generated and stored in the data­
base for each EASS embedded agent authorized by the
server routine rather than using the address of the EASS
embedded agent.

The routine "agent," declared on lines 90-155, is an
55 example implementation of an EASS embedded agent. The

agent routine takes two passwords, "current" and
"previous," as arguments. These two input arguments rep­
resent the non-volatile current and previous password reg-

an EASS embedded agent as an argument and returns a time
period for which the EASS embedded agent will be next
authorized. This authorization period may, in some
implementations, be a constant or, in other implementations,
the authorization period may be calculated from various
considerations, including the identity of the particular EASS
embedded agent or the previous authorization history for the 60

EASS embedded agent.

isters 604 and 606 shown in FIG. 6A. Various local variables
are declared on lines 92-98. These include a temporary
password "tpwd," an asynchronous timer "time," an instance

The class Messages, declared on lines 49-63, is a gener­
alized communications class that allows an EASS server to
exchange messages with EASS embedded agents. The
method "getNext," declared on line 52, instructs an instance
of the Messages class to return a Boolean value indicating
whether there are more messages queued for reception. If so,

of the AgentMessages class "msg," an instance of the device
class "dv" that represents the device controller into which
the EASS embedded agent is embedded, a device message

65 "dvmsg," and two Boolean variables "authorize" and
"enabled." The agent routine is implemented within a single
"do" loop starting at line 100 and ending at line 154. Within

US 6,249,868 Bl
25

this "do" loop, the agent routine continuously receives and
responds to messages from a remote EASS server as well as
passes messages exchanged between the CPU and the device
controller in which the EASS embedded agent is embedded.

26
message is sent by the agent routine to the EASS server on
line 143, and the asynchronous timer "time" is reinitialized
on line 144. However, if the local variable "authorized" has
the value FALSE, then the asynchronous timer has already

A large portion of the message handling logic is enclosed
within a try block that begins on line 102 and ends on line
137. Exceptions generated during execution of the code
within the try block are handled in the catch block beginning
on line 138 and extending to line 153. In the case of the
agent routine, exceptions are generated by the asynchronous
timer "time." Within the "while" loop that begins on line 104
and extends through line 132, the agent routine handles any
messages received from a remote EASS server and responds

5 once expired after the agent routine failed to acquire autho­
rization from the remote EASS server. In that case, the agent
routine sets the local variable "enable" to FALSE on line
148, sends another SAVE ME message to the EASS remote
server on line 149, reinitializes the asynchronous timer on

10
line 150, and finally disables the device on line 151 by
calling the member "disable" of the Device instance "dv."

The routine "server" on lines 157-264 implements the
EASS server. Local variables are declared on lines 159-167,
including an instance of the Messages class "msg," an to those messages as necessary. The "while" statement on

line 104 iteratively calls the getnext method of the Agent­
Messages instance "msg" to retrieve each successive mes­
sage that has been received and queued internally by msg.
When the member "getNext" returns a TRUE value, msg has

15 instance of the Passwords class "pwds," an instance of the
Database class "db," and an instance of the TimeServer class
"ts." A number oflocal PASSWORD variables are declared,
including the local variables "current," "previous," "dcur,"
"dprev," "newp," "queuedNew," "queuedCurrent," and
"newpass." In addition, a local TIME variable "tm," a local
ADDRESS variable "add," and a local Boolean variable
"auth" are declared.

The server routine continuously receives messages from
EASS embedded agents and, as necessary, responds to those

set an internal pointer to make the next queued message the
current message. When the member "getNext" returns a 20
FALSE value, there are no further messages that have been
received and queued. Thus, any members of msg called
within the "while" loop on lines 106-130 that retrieve values
from messages retrieve those values from the current mes­
sage.

If the current message is an AU1HORIZE message, as
detected on line 108, the agent routine saves the new
password contained in the AUTHORIZE message in the
local password variable "tpwd," on line 109, and returns a
CONFIRM AUTHORIZE message to the EASS server on 30
line 110. If the message received from the EASS server is an
OK message, as detected on line 112, the routine agent first
checks, on line 113, if the new password contained within
the OK message is the same as the new password stored in
the local password variable "tpwd." If so, the routine agent 35
reinitializes the asynchronous timer on line 115, sets the
local variable "authorized" to the value TRUE on line 116,
transfers the contents of the password variable "current" into
the password variable "previous" on line 117, transfers the
new password from the local password variable "tpwd" into 40
the local password variable "current," and, if the local
variable "enabled" contains the value FALSE, enables the
device by calling the member "enable" on line 121 and sets
the local variable "enable" to TRUE on line 122. If, on the
other hand, the new password contained in the OK message 45
is not equal to the new password contained in the local
password variable "tpwd," then the agent routine simply
ignores the received OK message. If the message received is

25 messages in the "while" loop beginning on line 169 and
ending on line 262. The server routine receives only two
types of messages: SAVE ME messages as detected on line
173, and CONFIRM AUTHORIZE messages, as detected on
line 220.

a device message, as detected on line 126, and if the local
variable "enabled" has the value TRUE, then the agent 50
routine passes that received device message on to the device
by calling the device member "send" on line 127. If the
received message is not of the type AUTHORIZE, OK, or
DEVICE, the agent routine simply ignores the message.

Once all the received and queued messages have been 55

handled in the "while" block starting on line 104 and
continuing to line 132, the agent routine passes any mes­
sages sent by the device to the CPU if the local variable
"enable" has the value TRUE. Messages are received from
the device by calling the receive member of the Device 60

instance "dv" and are transmitted by the agent routine to the
CPU by calling the member "sendDeviceMsg" of the Agent­
Messages instance "msg."

If the asynchronous timer "time" expires and generates an
interrupt, that interrupt is handled on lines 140--152. If the 65

local variable "authorized" has the value TRUE, then autho­
rized is set to the value FALSE on line 142, a SAVE ME

If the next received message is a SAVE ME message, the
server routine first extracts the current and previous pass­
words from the SAVE ME message and places them into the
local PASSWORD variables "current" and "previous,"
respectively. The server routine then attempts to dequeue an
address/new password/current password triple from the
"pswds" instance of the Passwords class. The address of the
EASS embedded agent that sent the SAVE ME message is
used as a unique identifier to locate the queued triple. If a
triple is found, as detected on line 176, and if the current
password extracted from the SAVE ME message is equal to
the current password saved within the triple, as detected on
line 178, then the server routine must have previously sent
an AUTHORIZE message to the EASS embedded agent, but
the handshake mechanism must have failed after the
AUTHORIZE message was sent. In this case, the server
routine simply generates a new password on line 180,
queues the address/new password/current password triple on
line 181, and sends a new AU1HORIZE message to the
EASS embedded agent on line 182. If, on the other hand, the
current password extracted from the SAVE ME message is
not equal to the current password dequeued from pswds, a
more serious error has occurred and the routine server
throws a QUEUED_AND_SAVE_ME exception on line
184. The exception handlers are not shown in this example
program because they are quite dependent on implementa­
tion details and detailed error handling strategies that may
vary depending on the use to which the EASS has been
applied.

If there is no queued entry for the EASS embedded agent,
then, on line 188, the server routine calls the initialPassword
member of pswds in order to determine whether both the
current and previous passwords that were included in the
SAVE ME message are special initial passwords. If these
passwords are initial passwords, then, beginning on line 191,
the server routine deletes any database entries for the EASS
embedded agent, generates a new password, queues a new
address-new password-current password triplet, and sends

US 6,249,868 Bl
27

an AUTHORIZE message to the EASS embedded agent on
line 194. This is done because the SAVE ME message was
sent from an EASS embedded agent in the Initial Power-On
Grace Period state (410 in FIG. 4), or, in other words, from
an EASS embedded agent that is attempting to connect to the
server either for the first time or for the first time following
a reinitialization. If, on the other hand, the current and
previous passwords in the SAVE ME message are not initial
passwords, then the server routine attempts, on line 198, to
retrieve from the database an entry corresponding to the
EASS embedded agent identified by the address of the agent.
If an entry exists in the database, then the server routine
attempts to identify, on lines 200--217, a scenario by which
the SAVE ME message was sent by the EASS embedded
agent. If no entry is present in the database for the EASS
embedded agent, then the server routine throws an alarm
exception on line 217. This alarm exception indicates a
potential attempt by a stolen or otherwise misused PC to
establish a connection and authorization with the EASS
server represented by the server routine.

On line 200, the server routine compares the current
password stored within the retrieved database entry to the
current password retrieved from the SAVE ME message and
compares the expiration time stored in the database to the
current time as retrieved by the operating system routine
"getSystemTime." If the current password in the database
entry is the same as the current password in the SAVE ME
message and authorization has not yet expired for the EASS
embedded agent, then a likely explanation for the SAVE ME
message is that a previous CONFIRM AUTHORIZE mes­
sage sent from the EASS embedded agent to the server
routine was lost. Therefore, the server routine, on lines
202-204, generates a new, non-initial password, queues a
new address-new password-current password triple, and
sends a new AUTHORIZE message to the EASS embedded
agent. If, on the other hand, the previous password from the
database entry equals the current password in the SAVE ME
message and authorization has not expired, then an OK
message from the server routine to the EASS embedded
agent was probably lost, and the server routine resends the
OK message on lines 208-209. If the previous password
from the database entry equals the current password in the
SAVE ME message and authorization has expired, probably
multiple OK messages have been lost indicating some error
in communications, and the server routine throws a
MULTIPLE_OKS_LOST exception on line 213. Finally, if
the contents of the database entry do not reflect one of the
above three scenarios handled on lines 200-214, the
received SAVE ME message most likely indicates an
attempt to establish a connection and acquire authorization
by a stolen or misused EASS embedded agent and the server
routine therefore throws an alarm exception on line 215.

When the server routine receives a CONFIRM AUTHO-

28
current password retrieved from the CONFIRM AUTHO­
RIZE message correspond to the new password and current
password that were queued in the dequeued triple. If so, then
the server routine attempts, on line 227, to retrieve a

5 database entry for the EASS embedded agent. If a database
entry is retrieved, then the server routine tests, on line 229,
whether the current password in the database entry is equal
to the current password in the CONFIRM AUTHORIZE
message. If so, the CONFIRM AUTHORIZE message is a

10 valid response to a previous AUTHORIZE message sent by
the server routine to the EASS embedded agent, and, on
lines 231-234, the server routine updates the database entry
for the EASS embedded agent and sends an OK message to
the agent. If, on the other hand, the current password

15 retrieved from the database entry is not equal to the current
password that was retrieved from the queue, the server
routine throws a CONFIRM_AUTHORIZE_SYNC excep­
tion on line 238. If there was no database entry correspond­
ing to the EASS embedded agent, but if the current password

20 included in the CONFIRM AUTHORIZE message was an
initial password, then this CONFIRM AUTHORIZE mes­
sage came from a EASS embedded agent in the Initial
Power-On Grace Period (410 in FIG. 4) and the server
routine creates a new database entry for the EASS embedded

25 agent and sends an OK message to the EASS embedded
agent. However, if the password included in the CONFIRM
AUTHORIZE message is not an initial password, then the
server routine throws a NO_ENTRY exception indicating a
serious problem in the handshake. If no triple was found in

30 the queue corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message, the server
routine, on line 256, throws a QUEUE_ERROR exception
indicating a potential problem with the queuing mechanism.

One skilled in the art will recognize that the above-
35 described implementation of an example EASS server and

EASS embedded agent describes one potential embodiment
of the present invention and that other implementations may
be realized. For example, the EASS server can be imple­
mented in any number of programming languages for any

40 number of different operating systems and hardware plat­
forms. The EASS embedded agent is preferably imple­
mented as a hardware logic circuit within the device con­
troller for the device into which the EASS embedded agent
is embedded. A hardware logic circuit cannot be removed

45 without destroying the device controller. A firmware or
software routine can, by contrast, be removed or re-installed.
The handshake mechanism can be implemented with any
number of different communication message protocols, with
any number of different types of databases, and with any

50 number of different strategies for handling potential error
and alarm exception. Furthermore, additional error and
alarm conditions might be detected by a more elaborate
implementation. The database may itself be encrypted or

RIZE message, it first extracts the new password and current
password from the CONFIRM AUTHORIZE message on 55

lines 221 and 222. The server routine then attempts to
dequeue an address-new password-current password triple

protected by additional security mechanisms.
In the above-described embodiment, an EASS embedded

agent can only receive authorization by first sending a SAVE
ME message to an EASS server. In alternative embodiments,
the EASS server or a user of the system hosting the EASS
embedded agents may be provided with the capability to

on line 223 corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message. If a queued
triple is found, then the code contained in lines 225-255 may
be executed in order to properly respond to the CONFIRM
AUTHORIZE message. If there is no queued triple, then, on
line 256, the server routine throws an alarm exception to
indicate a potential attempt to connect to the server and to
acquire authorization from the server by a stolen or misused
EASS embedded agent. After dequeuing a triple, the server
routine checks, on line 227, whether the new password and

60 initiate authorization of an EASS embedded agent.
Moreover, the EASS embedded agents may be manufac­
tured to contain an initial unlock password and to initially
have an unlimited period of authorization. Once the system
hosting the EASS embedded agent is powered up and

65 running, the EASS embedded agent can then be identified by
an EASS server and controlled by the EASS server by
sending the EASS embedded agent an authorization for a

US 6,249,868 Bl
29

period of time which overrides the unlock password and
initial unlimited period of authorization and which requires
the EASS embedded agent to be e-authorized prior to
expiration of the period of time of authorization.

30
hardware components or software programs or can later
purchase the hardware components or software programs. In
the former case, the device or program can be enabled, or
authorized, for some time period. In the latter case, the

Additional EASS Components and Additional
Applications for the EASS

The EASS server may include a package of system
administration utilities that allow a system administrator to
configure and monitor the EASS server's authorization
activities. These utilities can be used to graphically display
the contents of the database associated with the EASS server
and to allow the system administrator to manipulate those
contents. Also, the EASS client and EASS server may
contain additional utilities that allow a privileged user to
reinitialize EASS embedded agents in the event of discon­
nections or corruptions so that the EASS embedded agents
can reconnect to EASS servers to reestablish authorization.

5 device or software program can be enabled on a permanent
basis. Embodiments of the present invention, including a
server, client, and a number of embedded agents, could be
used as a basis to provide for selectively enabling and
disabling both hardware components and software pro-

10 grams. In the case of software programs, for example, the
embedded agent within the disk controller could selectively
make available data stored on the disk, including a non­
volatile copy of the software program to be enabled.

In a slightly different application of the present invention,

The embodiments of the present invention described
above are directed towards providing component-level secu­
rity for a PC. The EASS does not require users to know or
remember passwords. All password information is internally
generated and internally manipulated by the EASS. The
EASS cannot be easily thwarted by reconfiguring the soft­
ware on a PC or even by replacing a firmware component
such as a PROM. This is because the EASS embedded
agents are contained within the ASICs that implement the
various device controllers. If those EASS embedded agents

15 the EASS may be employed to protect software manufac­
turers from software pirates. Software programs, including
operating system software, can be manufactured to require
authorization by EASS embedded agents, or software­
implemented EASS embedded agents may be incorporated

20 into the software programs themselves. Thus, for example,
a running database management system or operating system
may incorporate software-implemented EASS embedded
agents that require periodic authorization from an EASS
server. Alternatively, an EASS embedded agent within the

25 disk controller on which the programs are stored may be
controlled by an EASS server to selectively enable and
disable particular programs.

do not quickly establish a connection to an EASS server and 30
do not quickly transition from an Initial Power-On Grace
Period state or a Power-On Grace Period state to an Autho­
rized state, the devices controlled by the EASS embedded
agents will fail to operate.

In the special case of an EASS embedded agent that is 35
embedded within the circuitry of a hard disk controller, the
EASS embedded agent may additionally encrypt data that is
received over a communications bus for storage on the
physical platters of the disk and may decrypt data read from
those physical platters before sending the data back through 40
the communications bus. In this fashion, even if a thief were
to steal the hard disk and remove the disk controller
circuitry, the data contained on the disk would not be
available for use. The data can be encrypted by any of many
well-known techniques, including RSA-based encryption 45
and password-based encryption.

In addition, embodiments of the present invention have
applications in other areas related to security and in many
areas not related to security. One area in which the present
invention can be applied is that of enabling hardware or 50

software components of a PC from a remote site on a
pay-per-use or pay-for-purchase basis. It is increasingly
common that the actual incremental costs of installing a
specialized hardware device or specialized software pro­
gram during the manufacturing process is quite small for a 55

given PC. For example, the cost of installing a software
program on a hard disk during the manufacturing process
may have an incremental cost of well under a dollar.
Likewise, the actual physical circuitry that implements
many specialized devices can be mass produced at a very 60

low cost per unit. However, the cost of installing the
specialized hardware components or software once the PC
has been manufactured and sold may be much higher. For
this reason, it is desirable for PC manufacturers to include
popular specialized hardware devices and software pro- 65

grams at the time of manufacture in a disabled state. The
purchaser of the PC can then pay a fee either for using the

Another application for embodiments of the present
invention is in the field of adaptive systems. Such systems
automatically reconfigure themselves to adapt to changing
demands placed on their components. The protocol for
communications between a server and embedded agents can
be expanded to allow for general information exchange
relating to the load experienced by a particular device and
the throughput achieved by the device. The server can
collect such information and direct the embedded agents to
enable additional components where needed or to fine tune
and adjust the operation of components to better handle the
demands placed on the components. For example, additional
CPUs or disk drives can be enabled and configured into the
system when processing bottlenecks and non-volatile stor­
age space becomes scarce. System components can be
enabled and disabled in order to effect load balancing.

The present invention may be applied to security systems
for devices other than PCs, including more complex com­
puter systems or even to electromechanical systems such as
airplanes, automobiles, diesel locomotives, and machine
tools. The present invention could also be applied in indus-
trial control processes to start and stop production compo­
nents and machine tools.

Embodiments of the present invention also may be
applied to protecting firearms. Electromechanical devices
that include EASS embedded agents may be incorporated
into electromechanical trigger locks or firing mechanisms.
Authorization of the EASS embedded agents might be
controlled from a centralized EASS server to insure that
only licensed firearms within predetermined geographical
locations can be fired. In such cases, the communications
medium that allow exchange of messages between an EASS
server and an EASS embedded agent may be a microwave
or satellite link.

Diagnosing and correcting defects in complex systems is
yet another problem area in which the present invention may
find application. In the embodiment discussed above, the
EASS server can easily determine when a particular EASS
embedded agent is no longer functioning, indicating that the

US 6,249,868 Bl
31

EASS embedded agent and the device controller into which
it is embedded have been powered down or damaged. A
system administrator or a diagnostician can use a graphical
display of contents of the database associated with the EASS
server to identify powered-down or defective devices. In this
case, the database could be expanded to include more
specific information about the geographical location of each
EASS embedded agent, as well as the identity and type of
device that the EASS embedded agent is controlling. The
data included in the database can be presented in many
different fashions with a variety of different graphical user
interfaces allowing, for example, information about all the
EASS embedded agents within a particular computer to be
displayed within a diagram of that computer. As another
example, EASS embedded agents may be incorporated into
control points within utility energy grids to provide diag­
nostic and maintenance capabilities.

EASS embedded agents may be embedded into home
entertainment systems to protect the home entertainment
systems from theft and misuse. EASS embedded agents may
also serve to obtain identification information from media
containing recorded audio and/or video data inserted into a
home entertainment system, or similar broadcast or display
device, and provide the identification information to a
remote server in order to receive authorization from the
remote server for broadcast or display of the recorded audio
and/or video data. Similarly, EASS embedded agents may
serve to obtain identification information from an electronic
card or key in order to obtain authorization from a remote
server for the operation of a motorized vehicle or firearm.
EASS embedded agents may even be embedded in paper
currency or cash machines to monitor cash transactions and
prevent acceptance of counterfeit currency. The fact that, in

32
ded agents. Certain embodiments may allow a particular
EASS embedded agent to communicate with several EASS
servers in order to provide additional reliability or geo­
graphical flexibility. An EASS server may be owned and

5 operated by an entity protecting its own, on-site computers
or machines, or an EASS server service may be provided by
specialized security providers over the Internet or other
communications media. Any number of different types of
devices can be controlled by EASS embedded agents imple-

10 mented either as hardware circuitry within the devices, as
specialized programs within other programs that control the
device, or implemented as hardware/software hybrids. The
present invention can be applied not only to the problem of
securing PCs and components within PCs, but also to

15
problems of fault tolerance, adaptive systems, reconfigura­
tion of systems, monitoring of components within systems,
and other similar systems or environments.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough under-

20 standing of the invention. However, it will be apparent to
one skilled in the art that the specific details are not required
in order to practice the invention. The foregoing descriptions
of specific embodiments of the present invention are pre­
sented for purpose of illustration and description. They are

25 not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Obviously many modifications and
variations are possible in view of the above teachings. The
embodiments are shown and described in order to best
explain the principles of the invention and its practical

30 applications, to thereby enable others skilled in the art to
best utilize the invention and various embodiments with

all of these applications, an EASS embedded agent is
involved in obtaining identification information from media, 35

electronic cards, or keys, provides for remote monitoring of
the use of protected systems and flexible remote control of
the authorization for use of the protected systems. For
example, although a thief may steal both a car and the key

various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalents:

What is claimed is:
1. A system for preventing theft or misuse of a computer

system, the system comprising:
a computer system having a device;
an agent embedded in the device that, when authorized,

enables operation of the device and that, when not
authorized, disables operation of the device; and

to the car, the owner can still contact the administrator of the 40

remote server to discontinue authorization of the use of the
car.

Although the present invention has been described in
terms of preferred embodiments, it is not intended that the
invention be limited to these embodiments. Modifications 45

a server coupled to the embedded agent that, by exchang­
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

within the spirit of the invention will be apparent to those
skilled in the art, and in alternate scenarios as described
above. For example, while EASS embedded agents are
preferably implemented as hardware circuitry, software
implementations could be devised to provide an EASS that
can be implemented on existing computers without special­
ized circuitry built into device controller ASICs. As pointed
out above, the EASS client could possibly be omitted in
certain embodiments where it is possible to directly establish
communications between EASS embedded agents and
EASS servers. The method in which the EASS server stores
and manipulates stored authorization and embedded agent
information may differ widely in different embodiments. A
relational database, a fiat file, record-based database, or an
object-oriented database could be used to store the
information, and any number of hybrid systems can be
devised using combinations of these types of databases. The
handshake mechanism, the mechanism for announcing the
presence of embedded agents, and the mechanism for reini­
tializing embedded agents can differ markedly in different
embodiments, as can the formats and contents of the mes­
sages exchanged between EASS servers and EASS embed-

2. The system of claim 1 wherein the device contains a
logic circuit and the embedded agent is implemented as a
logic circuit within the logic circuit of the device.

3. The system of claim 1 wherein the device transmits and
50 receives data and control signals via a bus and wherein the

embedded agent intercepts the data and control signals
transmitted to the device prior to reception by the device and
intercepts the data and control signals transmitted from the
device prior to transmission of the data and control signals

55 to the bus.
4. The system of claim 3 wherein the embedded agent

enables the device by passing the data and control signals
intercepted by the embedded agent to and from the device
and wherein the embedded agent disables the device by not

60 passing the data and control signals intercepted by the
embedded agent to and from the device.

5. The system of claim 4 wherein the embedded agent is
embedded in a disk drive and wherein, when authorized by
the remote server, the embedded agent encrypts all inter-

65 cepted data before passing the data to the disk for storage
and decrypts all data intercepted from the disk drive before
passing the data to the bus.

US 6,249,868 Bl
33

6. The system of claim 5 wherein the server continuously
authorizes the embedded agent by undertaking handshake
operations and wherein, when the coupling between the
server and the embedded agent is interrupted or broken so
that the embedded agent cannot receive additional messages 5
from the server, the embedded agent disables the device by
preventing access to the disk drive via the disk drive and by
not providing decryption of the encrypted data stored on the
disk drive, thereby disabling the computer system and
preventing use of the computer system. 10

7. The system of claim 1 wherein the handshake operation
comprises:

an authorization message sent from the server to the
embedded agent;

34
password with the new password; and wherein, upon recep­
tion of the completion message, the embedded agent
replaces the previous password with current password and
replaces the current password with the new password.

13. The system of claim 12 wherein the embedded agent
is constructed to maintain a special initial password as both
the current password and the previous password so that the
server can detect when the embedded agent sends a solici­
tation message to the remote server for the first time.

14. The system of claim 13 wherein, when a handshake
operation fails, the server can synchronize the current agent
password and previous agent password maintained by the
server with the current and previous passwords maintained
by the embedded agent by receiving from the embedded

following reception of the authorization message by the
embedded agent, a confirm authorization message sent
from the embedded agent to the server; and

following reception of the confirm authorization message
by the server, completion message sent from the server
to the embedded agent.

15 agent a solicitation message that contains the current and
previous passwords maintained by the embedded agent.

15. The system of claim 14 wherein the server continu­
ously authorizes the embedded agent by undertaking hand­
shake operations and wherein, when the coupling between

8. The system of claim 7 wherein the server authorizes the
embedded agent to enable operation of the device for a
certain period of time by including in the completion mes­
sage the period of time for which the server authorizes
operation of the device.

20 the remote server and the embedded agent is interrupted or
broken so that the embedded agent cannot receive additional
messages from the server, the embedded agent disables the
device thereby disabling the computer system and prevent-

25

9. The system of claim 8 wherein the embedded agent
includes a timer that is set to expire prior to expiration of the
period of time of authorization received by the embedded
agent in a completion message and wherein, when the timer
expires, the embedded agent sends a solicitation message to 30

the server requesting that the server undertake a handshake
operation in order that the embedded agent receives an
additional authorization period from the remote server to
enable continuous operation of the device.

ing use of the computer system.
16. The system of claim 15, further including a client

component that receives messages from the server and
forwards those messages to the embedded agent and that
receives messages from the embedded agent and forwards
those messages to the server.

17. The system of claim 16 wherein embedded agents are
embedded within several device within the computer system
and wherein the client component receives messages from
the embedded agents and forwards those messages to the
server and wherein the client component receives messages

10. The system of claim 9 wherein the server repeatedly
undertakes a handshake operation prior to expiration of the
current period of time for which the embedded agent is
authorized to enable operation of the device so that opera­
tion of the device is not disabled during the time that the
computer system is powered on and the embedded agent is
coupled to the server.

35 from the server and distributes those messages to the embed­
ded agents.

18. The system of claim 1 wherein embedded agents are
embedded in additional components of the computer system
including a CPU and memory devices, and wherein embed-

11. The system of claim 10 wherein, when the device is
powered on, the timer is set to a period of time sufficient for
the embedded device to request a handshake operation by
sending a solicitation message to the remote server and
sufficient for completion of the handshake operation and
wherein the embedded agent is authorized to enable opera­
tion of the device until expiration of the timer, after which
the embedded agent disables the device.

40 ded agents are implemented as one of hardware logic
circuits, firmware routines, and software routines that run
within the device or component within which the embedded
agents are embedded.

19. A method for enabling and disabling operation of a
45 component of a system, the method comprising:

12. The system of claim 11 wherein the embedded agent 50

maintains a current password and a previous password,
wherein the server maintains a current agent password and
a previous agent password that correspond to the current
password and previous password maintained by the embed­
ded agent following detection of the embedded agent by 55

receiving a solicitation from the embedded agent that
includes the embedded agent's current and previous pass­
words; wherein the server generates a new password for the
embedded agent when the server undertakes a handshake
operation and includes the new password in the authoriza- 60

tion message; wherein the embedded agent includes the new
password received from the server in the authorization
message as well as the current password maintained by the
embedded agent in the confirm authorization message;
wherein the server, upon reception of the confirm authori- 65

zation message, replaces the previous agent password with
the current agent password and replaces the current agent

embedding an agent within the component;

establishing a communications link between the embed­
ded agent and a server; and

when the component is to be enabled, exchanging a
number of messages between the server and the embed­
ded agent that together compose a handshake operation
that results in authorization of the embedded agent to
enable operation of the component for a period of time.

20. The method of claim 19, further including:
when the last period of time for which the embedded

agent has been authorized to enable operation of the
component will expire within a period of time sufficient
for sending a second solicitation message and for
completing a handshake operation, sending a solicita­
tion message from the embedded agent to the server in
order request a handshake operation.

21. The method of claim 19, further including:
including a timer in the embedded agent;
when the component is powered-up or initialized for

operation, setting the timer for a period of time suffi­
cient for the embedded agent to establish the commu-

US 6,249,868 Bl
35

nications link with the server, to send a solicitation
message to the server requesting a handshake
operation, and to complete the handshake operation;

after establishing a communications link between the
embedded agent and the server, sending a solicitation 5

message from the embedded agent to the server
requesting a handshake operation;

when the handshake operation is completed, resetting the
timer to expire prior to expiration of the period of time
for which the embedded agent is authorized to enable 10

operation of the component to allow the embedded
agent sufficient time to send a second solicitation
message to the server requesting a second handshake
operation and to complete a second handshake opera­
tion prior to expiration of the period of time for which 15

the embedded agent is authorized to enable operation of
the component;

when the timer expires prior to expiration of the period of
time for which the embedded agent is authorized to

20
enable operation of the component, sending the second
solicitation message from the embedded agent to the
server in order to request the second handshake opera­
tion and resetting the timer to expire after a period of
time sufficient to send a third solicitation message to the

25
server requesting a third handshake operation and to
complete the third handshake operation; and

when the timer expires following expiration of the period
of time for which the embedded agent is authorized to
enable operation of the component, disabling the com- 30
ponent.

22. The method of claim 19, further including:
after establishing a communications link between the

embedded agent and the server, sending a solicitation
message from the embedded agent to the server 35
requesting a handshake operation;

when the server receives the solicitation message from the
embedded agent, undertaking, by the server, a hand­
shake operation in order to authorize the embedded
agent. 40

23. The method of claim 22 wherein the handshake
operation further includes:

sending an authorization message from the server to the
embedded agent;

receiving the authorization message by the embedded 45

agent and returning by the embedded agent a confirm
authorization message to the server; and

receiving the confirm authorization message by the server
and returning by the server an completion message to
the embedded agent. 50

24. The method of claim 23, further including:
maintaining a current password and a previous password

within the embedded agent; and
maintaining a current agent password and a previous 55

agent password within the sever.

36
upon receiving the confirm authorization message by the

server,
comparing the new password and the current password

contained in the confirm authorization message with
the new password stored within the server and the
current agent password maintained within the server;
and

when the new password contained in the confirm
authorization message is identical to the new pass­
word stored within the server and the current pass­
word contained in the confirm authorization message
is identical to the current agent password maintained
within the server,
setting the previous agent password maintained

within the server to the current agent password
maintained within the server; and

setting the current agent password maintained within
the server to the new password stored within the
server; and

upon receiving the completion message by the embedded
agent,
setting the previous password maintained within the

embedded agent to the current password maintained
within the embedded agent, and

setting the current password maintained within the
embedded agent to the new password stored within
the embedded agent.

26. The method of claim 25, further including:
constructing the embedded agent to maintain initial pass­

words as the current and previous passwords.
27. The method of claim 24, further including:
maintaining a linear feedback mechanism within the

server that is initialized with a seed value and that
successively and deterministically generates new pass­
words; and

maintaining a linear feedback mechanism within the
embedded agent that is initialized with the seed value
and that successively and deterministically generates
the same new passwords that are generated by the
linear feedback mechanism within the server.

28. The method of claim 27, further including:
prior to sending the authorization message from the

server, generating by the server a new password and
including a value related to the new password in the
authorization message; and

upon receiving the authorization message by the embed­
ded agent,
generating a new password within the embedded agent,
comparing a value related to the newly generated

password within the embedded agent with the value
related to the new password contained in the autho­
rization message, and

when the value related to the newly generated password
within the embedded agent is identical with the value
related to the new password contained in the autho­
rization message, sending the confirm authorization

25. The method of claim 24, further including:
prior to sending the authorization message by the server,

generating a new password, storing the new password
within the server, and including the new password in
the authorization message;

message from the embedded agent to the server.
29. The method of claim 27, further including exchanging

the seed value between the server and the embedded agent
60 when the embedded agent first establishes the communica­

tions link with the server.
upon receiving the authorization message by the embed­

ded agent, storing the new password within the embed­
ded agent and including both the new password and the
maintained current password in the confirm authoriza­
tion message that the embedded agent returns to the
server;

30. The method of claim 19 wherein the component of the
system is a component of a computer system and wherein
the embedded agent is embedded in the component of the

65 computer system, and further including:
running a software program that implements the server on

a remote computer to provide a remote server; and

US 6,249,868 Bl
37

enabling operation of the computer system that contains
the component by the remote server authorizing the
embedded agent to enable operation of the component.

31. The method of claim 30, further including disabling
the computer system causing the embedded agent to disable 5

the component.
32. The method of claim 30 wherein the embedded agent

38
40. The method of claim 19 wherein the component of the

system is an executing software program, wherein the sys­
tem is a computer system, and wherein the embedded agent
is implemented as a software subcomponent of the software
program, the method further including:

running a software program that implements the server on
a remote computer to provide a remote server; and

enabling execution of the software program by authoriz­
ing the embedded agent subcomponent of the software
program.

41. The method of claim 19, further including controlling
use of a firearm by embedding an agent into a component of
the firearm required to discharge the firearm.

is a software program within a controller software program
that controls the component, the embedded agent commu­
nicating with the remote server via internal buses within the 10

computer system and via external communication media
between the computer system and the remote server, includ­
ing at least one of local area networks, wide area networks,
and combinations of local area networks and wide area
networks.

42. The method of claim 19, further including controlling
15 use of a firearm by embedding an agent into a component of

the firearm required to load the firearm. 33. The method of claim 30 wherein the embedded agent
is a logic circuit within an application specific integrated
circuit that implements the controller of a disk drive; and
further including:

intercepting by the embedded agent all data transfers to
the disk drive and, when authorized, encrypting the
data prior to passing the data to the disk drive; and

43. The method of claim 19, further including diagnosing
a powered-down or disabled component by detecting when
the embedded agent within the component does not respond

20 to authorization messages sent from the server.

intercepting by the embedded agent all data transfers from
the disk drive and, when authorized, decrypting the
previously encrypted data prior to passing the data from 25

the disk drive.
34. The method of claim 33, further including disabling

and enabling specific data stored on the disk drive by
including an identification of the data to be enabled and
disabled in an authorization message that is sent from the 30

server to the embedded agent.
35. The method of claim 30 wherein the component

exchanges data and messages with the computer system, and
further including:

35
intercepting by the embedded agent all messages and data

exchanged between the component and the computer
system;

44. A control system for controlling operation of compo­
nents within a multi-component system, the control system
comprising:

an agent embedded in a component of the multi­
component system that, when authorized, enables
operation of the component and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang­
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the compo­
nent.

45. The control system of claim 44 wherein the multi­
component system is a computer system, wherein the
embedded agent is embedded within a disk drive of the
computer system, wherein the embedded agent selectively
enables and disables reading and transmission of software
programs stored on the disk drive to other components of the when the embedded agent is authorized, enabling the

component by passing messages and data from the
computer system to the component and by passing
messages and data from the component to the computer
system; and

40 computer system, and wherein the control system imple­
ments a pay per use control system that enables software
programs pre-installed in the computer system when pay­
ment is received for use of the software programs.

when the embedded agent is not authorized, disabling the
component by not passing messages and data from the
computer system to the component and by not passing
messages and data from the component to the computer
system.

36. The method of claim 30, further including protecting
the computer system from theft or misuse by requiring the
remote server to repeatedly authorize the embedded agent.

37. The method of claim 30, further including selectively
enabling and disabling multiple components of the computer
system by embedding a plurality of agents within the
multiple components and selectively authorizing the mul­
tiple components from the remote server.

46. The control system of claim 44 wherein the multi-
45 component system is a firearm, wherein the embedded agent

is embedded within the firing mechanism of the firearm, and
wherein the control system implements a gun control system
that selectively enables use of the firearm.

47. The control system of claim 44 wherein the server

50 monitors successful handshake operations in order to detect
interruption or loss of operation of the component within
which the embedded agent is embedded, thereby diagnosing
interruption or loss of operation of the component.

48. The control system of claim 44 wherein the server

55 exchanges additional informational messages with the
embedded agent that enables the server to instruct the
embedded agent to adjust and modify operational charac­
teristics of the device in which the embedded agent is
embedded.

38. The method of claim 37, further including exchanging
additional information between the plurality of embedded
agents and the remote server, including information con­
cerning workloads placed on the components in which the 60

embedded agents are embedded, in order to allow the
computer system to enable and disable components to adjust
operation of the components to operate more efficiently
based upon the workload information.

49. A method for enabling the operation of a system upon
receiving, by the system, a valid identifier, the method
comprising:

embedding an agent within a component of the system
that can receive an identifier and that can enable

39. The method of claim 37, further including enabling 65

components of the computer system in response to receiving
payments for operation of the components.

operation of the system;
establishing a communications link between the embed­

ded agent and a server;

US 6,249,868 Bl
39

exchanging a number of messages between the embedded
agent and the server that results in authorization of the
embedded agent to subsequently enable operation of
the system upon receiving a valid identifier; and

40
sents the video information by converting the video infor­
mation into a visual display signal and broadcasting visual
display signal through one or more visual display devices.

59. The method of claim 58 wherein the medium is DVD

when an identifier is received by the component of the 5 disc.
system,
obtaining the received identifier from the component of

the system by the embedded agent;
exchanging a number of messages between the embed­

ded agent and the server that transfer the received 10

identifier from the embedded agent to the server and
that results in the embedded agent receiving autho­
rization from the server to enable operation of the
system when the server determines that the identifier
is valid and that results in the embedded agent not 15

receiving authorization from the server to enable
operation of the system when the server determines
that the identifier is invalid; and

enabling operation of the system by the embedded
agent upon receiving authorization from the server to 20

enable operation of the system.
50. The method of claim 49 wherein the embedded agent

is linked to the server via the Internet.
51. The method of claim 49 wherein the system is a

computer system, wherein the identifier is included within a 25

software computer program, and wherein the embedded
agent is authorized by the server to enable the computer
system to run the software computer program when the
server determines that the identifier is valid.

52. The method of claim 49 wherein the system is an 30

entertainment system that reads entertainment information
from a medium and presents the entertainment information,
wherein the identifier is included in the medium, and
wherein the embedded agent is authorized by the server to
enable the entertainment system to read the entertainment 35

information from the medium and present the read enter­
tainment information when the server determines that the
identifier is valid.

53. The method of claim 52 wherein the entertainment
system reads audio information from the medium and pre- 40

sents the audio information by converting the audio infor­
mation into an audio signal, amplifying the audio signal, and
broadcasting the audio signal through one or more loud­
speakers.

54. The method of claim 53 wherein the medium is DVD 45

disc.
55. The method of claim 53 wherein the medium 1s a

compact disk.

60. The method of claim 58 wherein the medium is a
magnetic tape.

61. The method of claim 58 wherein the medium is a
broadcast electronic signal.

62. The method of claim 49 wherein the system may be
occupied by a human and is entered by a door, wherein the
identifier is included in an electronic key, and wherein the
embedded agent is authorized by the server to enable a door
lock to open when the server determines that the identifier is
valid.

63. The method of claim 62 wherein the system is a
residence.

64. The method of claim 62 wherein the system 1s an
automobile or truck.

65. The method of claim 62 wherein the system 1s an
airplane.

66. The method of claim 62 wherein the system is a boat.
67. The method of claim 62 wherein the system 1s a

tractor.
68. The method of claim 49 further including:
periodically reacquiring the identifier by the embedded

agent, exchanging a number of messages between the
embedded agent and the server, and, when the server
determines that the reacquired identifier is valid,
re-enabling operation of the system by the embedded
agent upon receiving authorization from the server to
enable operation of the system; and

when the server determines that the system has been
misappropriated or is being misused, not sending to the
embedded agent and further authorizations from the
server to enable operation of the system so that the
system becomes disabled.

69. The method of claim 68 wherein the system 1s an
automobile or truck.

70. The method of claim 68 wherein the system 1s an
airplane.

71. The method of claim 68 wherein the system is a boat.
72. The method of claim 68 wherein the system 1s a

tractor.
73. The method of claim 49 wherein the system is a

transaction system that accepts currency, wherein the iden­
tifier is embedded within the currency, and wherein the
embedded agent is authorized by the server to accept the
currency during a transaction when the server determines 56. The method of claim 53 wherein the medium 1s a

magnetic tape.
57. The method of claim 53 wherein the medium 1s a

broadcast electronic signal.

so that the identifier is valid, and wherein the server monitors
invalid identifiers in order to detect and signal fraudulent
transactions and counterfeited currency.

58. The method of claim 52 wherein the entertainment
system reads video information from the medium and pre- * * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,249,868 B1 Page 1 of 1
APPLICATION NO. : 09/163094
DATED : June 19, 2001
INVENTOR(S) : Edward G. Sherman et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In column 38, claim 44, line 27, delete the word "device" and insert the word
--component--.

Signed and Sealed this

Eighteenth Day of July, 2006

JONW.DUDAS
Director of the United States Patent and Trademark Office

