A system interactively controlled by a TV viewer remote superimposes portions of a scroll program guide over a basic programming signal for display on the viewer's display screen. A tuner has an input for receiving TV signals in a plurality of cable channels and an output for passing a signal of any selected one of said channels. A computer has an input for receiving any of a plurality of control signals from the TV viewer remote and an output for controlling the tuner to pass the signal of the selected one of the channels in response to one of the plurality of control signals from the TV viewer remote. The computer receives and stores a scroll input picture image signal containing local program guide data and generates a scroll output picture image signal consisting of at least a portion of the scroll input picture image signal. A combiner receives and stores a scroll input picture image signal containing local program guide data and generates a scroll output picture image signal consisting of at least a portion of the scroll input picture image signal. A combiner superimposes output picture image signal over the passed signal to provide a display signal for input to the viewer's display screen. The computer is responsive to control signals from the remote to cause the combiner to change the weight of the output picture image signal in relation to the passed signal.
OTHER PUBLICATIONS

Textbook excerpts: “Colour television; Teletext transmission; Cable television; Photo Videotext; Videotext,” (undated).

CableData brochure, “A New Approach To Addressability” (undated).

Fig. 2

USER SELECTION OF VIDEO MIX

KEY PRESSED? YES

USER EXIT? YES

RETURN TO PREVIOUS MENU

NO

NEW MIX SELECTION? YES

CALCULATE HARDWARE PARAMETERS

NO

SET HARDWARE TO NEW LEVEL

KEY PRESSED? NO

USER EXIT?

NO

RETURN TO PREVIOUS MENU
Fig. 3

![Diagram 3](image)

Fig. 4

![Diagram 4](image)
<table>
<thead>
<tr>
<th>Time</th>
<th>Channel</th>
<th>4:00 PM</th>
<th>4:30 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24</td>
<td>2</td>
<td>CURRENT AFFAIR</td>
<td>EMPTY NEST</td>
</tr>
<tr>
<td>2</td>
<td>KJRH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KDI2</td>
<td>UNCLE ZEB (CC)</td>
<td>FEATURES (CC)</td>
</tr>
<tr>
<td>4</td>
<td>DIS</td>
<td>KIDS INCORPORATE</td>
<td>MICKEY MOUSE CLUB</td>
</tr>
<tr>
<td>5</td>
<td>KOKI</td>
<td>ANIMANIACS</td>
<td>BATMAN: THE ANIMATED SER</td>
</tr>
</tbody>
</table>

Fig. 7

<table>
<thead>
<tr>
<th>Time</th>
<th>Channel</th>
<th>4:00 PM</th>
<th>4:30 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 24</td>
<td>2</td>
<td>CURRENT AFFAIR</td>
<td>EMPTY NEST</td>
</tr>
<tr>
<td>2</td>
<td>KJRH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KDI2</td>
<td>UNCLE ZEB (CC)</td>
<td>FEATURES (CC)</td>
</tr>
<tr>
<td>4</td>
<td>DIS</td>
<td>KIDS INCORPORATE</td>
<td>MICKEY MOUSE CLUB</td>
</tr>
<tr>
<td>5</td>
<td>KOKI</td>
<td>ANIMANIACS</td>
<td>BATMAN: THE ANIMATED SER</td>
</tr>
</tbody>
</table>

Fig. 8
Fig. 9
This application is a con of Ser. No. 08/974,944 filed Nov. 20, 1997 now U.S. Pat. No. 6,020,429, which is a con of Ser. No. 08/599,143 filed Feb. 9, 1996, now U.S. Pat. No. 8,828,420, which is a con of Ser. No. 08/234,000 filed Apr. 28, 1994 now U.S. Pat. No. 5,502,504.

BACKGROUND OF THE INVENTION

This invention relates generally to interactive video communications and more particularly concerns viewer controlled channel programming guide displays. Programming guide information is presently displayed to the home TV viewer in a non-interactive scroll on a single channel dedicated to programming guide information. When the home viewer selects the programming guide channel, viewing of the channel previously selected is interrupted. While the viewer executes is best judgment to when to make the change, key portions of the program on the previously selected channel may be missed. This is especially probable in cases of live programming. It is also especially irritating to the viewers not in possession of the controller.

It is, therefore, an object of this invention to provide a process and in-home scrolling hardware by which a home viewer may interactively control a channel programming guide. Another object of this invention is to provide a process and in-home scrolling hardware in which the scroll can be simultaneously superimposed on and displayed with the programming of any channel accessible to the home viewer. Another object of this invention is to provide a process and in-home scrolling hardware by which a home viewer may control the comparative weight of the programming guide or superimposed signal in relation to the basic programming signal over which it is superimposed.

SUMMARY OF THE INVENTION

In accordance with the invention, a system interactively controlled by a TV viewer remote control transmitter displays a scroll program guide superimposed on the normal programming displayed on any of the channels accessible to the viewer's display screen. A tuner receives TV radio frequencies or optical transmission signals in a plurality of cable channels and passes a viewer usable signal of any selected channel to a signal combiner. A computer receives any of a plurality of control signals from the TV viewer remote control transmitter. It also controls the tuner to pass the viewer usable signal of any selected channel in response to one of the control signals from the TV viewer remote control transmitter. It also receives and stores a scroll input picture image signal containing local program guide data and generates a scroll output picture image signal consisting of at least a portion of the scroll input picture image signal. The signal combiner combines the viewer usable signal of any selected channel from the tuner with the output picture image signal from the computer to provide a display signal with the program guide display superimposed over the channel programming display for input to the viewer's display screen. The computer is responsive to a control signal from the remote to change the weight of the superimposed signal in relation to the base or normal programming signal.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:

FIG. 1 is a block diagram illustrating a preferred embodiment of the hardware of the interactive scrolling program guide;
FIG. 2 is a flow chart illustrating the basic process and options of the video mix capability of the interactive scrolling program guide;
FIG. 3 is a representation of an interactive scrolling program guide menu display;
FIG. 4 is a representation of an interactive scrolling program guide display in a video mix mode;
FIG. 5 is a representation of the interactive scrolling program guide display in a solid or one hundred percent programming guide condition relative to the base signal;
FIG. 6 is a representation of the interactive scrolling program guide display in a ninety percent programming guide condition relative to the base signal;
FIG. 7 is a representation of the interactive scrolling program guide display in a seventy percent programming guide condition relative to the base signal;
FIG. 8 is a representation of the interactive scrolling program guide display in an eighty percent programming guide condition relative to the base signal; and
FIG. 9 is a representation of the interactive scrolling program guide display in a sixty percent programming guide condition relative to the base signal.

While the invention will be described in connection with a preferred embodiment and process, it will be understood that it is not intended to limit the invention to that embodiment or process. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

Turning first to FIG. 1, the components of the interactive scroll program guide are illustrated. A computer 11 having a command information receiver, preferably an infrared or radio frequency receiver 13, provides a control signal 15 to a tuner 17 and a picture image signal 19 to a digital video board 21. The tuner 17 converts or demodulates radio frequencies or optical transmissions to a signal usable by the viewer to output a signal 23 selected from a plurality of signals 25 input to the tuner 17 from the cable source (not shown), typically frequency division multiplexed video, audio and data signals transmitted via a coaxial cable, over-the-air radio frequencies or fiber optics. The digital video board 21 converts digital data into a video signal. The tuner output or base programming signal 23 has superimposed thereon a scroll information picture image signal 27 from the digital video board 21 in a genlock signal combiner or overlayer 29. The combined scroll and TV picture signal 31 is then displayed on a video signal display device such as the display screen 33 of the viewer's television. The combiner 29 permits the viewer to select the weight of the scroll information picture signal 27 in relation to the base programming signal 23. The viewer sends commands to the receiver 13 to control the operation of the computer 11 by the use of a remote control transmitter, preferably an infrared or radio frequency transmitter 35. The computer 11 is based on a microprocessor and may utilize random access (RAM) and/or read only (ROM) memory. The software necessary to operate the microprocessor may be embedded in the device or downloaded via the cable system to the device.

The above described interactive scroll program guide components operate in response to the control of the com-
puter 11. As shown in FIG. 2, while the home viewer is watching programming presented on his display 33 in response to the tuner 17 feeding any basic program signal 23 from the input selections 25 to the genlock combiner 29, the viewer may opt to simultaneously view the programming guide scroll available to the combiner 29 from the computer 11 through the digital video board 21. The viewer simply presses a predetermined key on the remote 35 to select the program guide display as is illustrated in FIG. 3. As shown in FIG. 3, the program guide nomenclature (Pgm Guide) will appear on the screen between arrows indicating upward or downward menu access to the possible choices in the program guide routine. By use of the up and down arrows on the controller 35, the program guide menu can be manipulated to the “video mix” condition, illustrated as step 51 in the routine of FIG. 2. The visual appearance of the viewer’s display 33 in the “video mix” condition is illustrated in FIG. 4.

Upon “user selection of video mix” 51, the computer 11 routine inquires as to whether or not there has been a key pressed 53 requesting that the weight of the program guide signal 27 be changed in relation to the basic programming signal 23. If the answer to this inquiry is “NO”, routing proceeds through a path 55 to continue the “key pressed” inquiry 53. If the response to the “key pressed” inquiry 53 is “YES”, the routine continues to a “user exit” inquiry 57. If the viewer has opted to exit the video mix routine, a “YES” response to the “user exit” inquiry 57 will result in a “return to the previous menu” 59. If, however, the response to the “user exit inquiry” 57 is “NO”, the routine continues to a new mix selection inquiry 61. If the response to the “new mix selection” inquiry 61 is “NO”, the routine returns via the route 55 to the original “key pressed” inquiry 53. If the answer to the “new mix selection” inquiry 61 is “YES”, the routine proceeds through the calculate hardware parameters step” 63 and the “set hardware to new level” step 65, at which point the genlock combiner 29 automatically performs these functions to establish the weight of the program guide signal 27 superimposed by the genlock combiner 29 over the basic programming signal 23. When the hardware is set to its new level 65, the routine continues through the path 55 to the “key pressed” inquiry 53 to determine whether the viewer has again selected a different percentage of signal mix.

FIGS. 5 through 9 illustrate the solid or one hundred percent video mix, ninety percent video mix, eighty percent video mix, seventy percent video mix and sixty percent video mix, respectively, the percentage indicating the weight the programming guide signal 27 superimposed on the basic programming signal 23.

If the video mix routine is exited and later reselected, the weight of the programming guide signal 27 will automatically be the weight last opted by the viewer.

Thus, each individual viewer will be provided with a scroll program guide in which the home viewer can interactively determine whether the program guide scroll should be displayed and, if so, its weight relative to the basic program data.

Thus, it is apparent that there has been provided, in accordance with the invention, a video mix program guide that fully satisfies the objects, aims and advantages set forth above. While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art and in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall within the spirit of the appended claims.

What is claimed is:

1. A system interactively controlled by a user remote control for displaying a program guide on a display screen, comprising:
 - circuitry for receiving television signals corresponding to a plurality of television channels and for selecting a corresponding one of the plurality of television channels to display on said display screen;
 - circuitry for receiving program guide data for the program guide; and
 - circuitry for displaying the program guide with a perceived transparency on the selected television channel.

2. A method for presenting information simultaneously with a television program, the method comprising:
 - receiving data corresponding to the information to be displayed;
 - generating a display of the information using the data received; and
 - simultaneously displaying the display of the information with the television program such that the display of the information has a perceived partial transparency.

3. The method of claim 2, wherein the information comprises television schedule information.

4. The method of claim 3, wherein the display comprises a grid of the television schedule information.

5. The method of claim 4, wherein one dimension of the grid corresponds to television channels.

6. The method of claim 4, wherein one dimension of the grid corresponds to broadcast times.

7. The method of claim 2, further comprising simultaneously displaying the display of the information with the television program such that the display of the information is opaque with respect to at least a portion of the television program.

8. The method of claim 2, wherein the display of the information has a weight of transparency with respect to the television program and the weight of transparency is variable.

9. The method of claim 8, further comprising receiving a user selection of the weight of transparency.

10. The method of claim 9, further comprising indicating the user selection of the weight of transparency in the display.

11. The method of claim 9, further comprising automatically setting the weight of transparency to the user selection of the weight of transparency upon reselecting to display the information after exiting a previous display of the information.

12. The method of claim 1, further comprising receiving a transmission of software that is executed in order to generate the display of the information.

13. The method of claim 1, further comprising receiving the television program using a tuner.

14. The method of claim 1, further comprising:
 - receiving user input; and
 - altering the display of the information in response to the user input.

15. A method for presenting a computer-generated image with a television program, comprising:
 - receiving digital data;
 - generating an image using the digital data;
receiving the television program; and
presenting the image and the television program simultaneously so that the image has a perceived partial transparency.

17. The method of claim 16, wherein the image comprises a grid of the television schedule information.

18. The method of claim 17, wherein one dimension of the grid corresponds to television channels.

19. The method of claim 17, wherein one dimension of the grid corresponds to broadcast times.

20. The method of claim 15, wherein the presenting comprises presenting the image with the television program such that the image is opaque with respect to at least a portion of the television program.

21. The method of claim 15, wherein the image has a weight of transparency with respect to the television program and the weight of transparency is variable.

22. The method of claim 21, further comprising receiving a user selection of the weight of transparency.

23. The method of claim 22, further comprising indicating the user selection of the weight of transparency in the image.

24. The method of claim 22, further comprising automatically setting the weight of transparency to the user selection of the weight of transparency upon reselecting to display the image after exiting a previous display of the image.

25. The method of claim 15, further comprising receiving a transmission of software that is executed in order to generate the image.

26. The method of claim 15, further comprising receiving the television program using a tuner.

27. The method of claim 15, further comprising: receiving user input; and altering the image in response to the user input.

* * * * *
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,305,016 B1
DATED : October 16, 2001
INVENTOR(S) : Connie T. Marshall et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page,

Column 1,
Line 7, change “6,020,429” to -- 6,020,929 --;

Column 3,
Line 35, change “step” 63” to -- step 63 --.

Signed and Sealed this
Thirteenth Day of August, 2002

Atest:

JAMES E. ROGAN
Attesting Officer
Director of the United States Patent and Trademark Office