
US006415335Bl

(12) United States Patent (10) Patent NO.: US 6,415,335 ~1
Lowery et al. (45) Date of Patent: *Jul. 2,2002

(54) SYSTEM AND METHOD FOR MANAGING
DYNAMIC WEB PAGE GENERATION
REQUESTS

(75) Inventors: Keith Lowery, Richardson; Andrew B.
Levine, Plano; Ronald L. Howell,
Rowlett, all of TX (US)

(73) Assignee: epicRealm Operating Inc., Richardson,
TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

5,752,246 A * 511998 Rogers et al. 707110
5,754,772 A * 511998 Leaf 3951200.33
5,761,673 A * 611998 Bookman et al. 7071104
5,774,660 A 611998 Brendel et al. 3951200.31
5,774,668 A 611998 Choquier et al. 3951200.53

OTHER PUBLICATIONS

Hoffner, 'Inter-operability and distributed application plat-
form design', Web URL:ht tp: l l~ .ansa.co.uW, 1995, pp.
342-356.*
Mourad et al, 'Scalable Web Server Architectures', IEEE,
Jun. 1997, pp. 12-16.*
Dias et al, 'A Scalable and Highly Available Web Server',
IEEE, 1996, pp. 85-92.*
'Single System Image and Load Balancing for Network This patent is subject to a terminal dis- Access to a Loosely Coupled Complex', IBM TDB, vol. 34, claimer. Feb. 1992, pp. 464-467.*

(21) Appl. No.: 091234,048

(22) Filed: Jan. 19, 1999

Dias, ~ a n i e l M., et al.; AScalable and Highly Available Web
Server; IBM Research Division; T.J. Watson Research Cen-
ter; 7 pages.

Related U.S. Application Data (List continued on next page.)

(62) Division of application No. 081636,477, filed on Apr. 23,
1996, now Pat. No. 5,894,554.

.......................... (51) Int. ~ 1 . ~ G06F 13/14; G06F 13120

............................... (52) U.S. C1. 71015; 71017; 7091219;
7091223; 7091238

................................. (58) Field of Search 7091238, 223,
7091219; 71015, 7, 20-21

(56) References Cited

U.S. PATENT DOCUMENTS

Primary Examiner-Jeffrey Gafin
Assistant Examinerqehana Perveen
(74) Attorney, Agent, or F i r m a a k e r Botts L.L.P

(57) ABSTRACT

The present invention teaches a method and apparatus for
creating and managing custom Web sites. Specifically, one
embodiment of the present invention claims a computer-
implemented method for managing a dynamic Web page
generation request to a Web server, the computer-
implemented method comprising the steps of routing the
request from the Web server to a page server, the page server

4,866,706 A 911989 christophersen et al, ,, 370185.7 receiving the request and releasing the Web server to process
5,341,499 A 811994 Doragh 3951700 other requests, processing the request, the processing being
5,392,400 A 211995 Berkowitz et al. 3951200 performed by the page server concurrently with the Web
5,404,522 A 411995 Carmon et al. 3951650 server. as the Web server vrocesses the other reauests. and
5,404,523 A 411995 DellaFera et al. 3951650 dynamically generating Web page in response to the
5,404,527 A * 411995 Irwin et al. 3951700 request, the web page including data dynamically retrieved
5,452,460 A 911995 Distelberg et al. 3951700 from one or more data sources,
5,532,838 A 711996 Barbari 3581400 , ,

5,701,463 A * 1211997 Malcolm 3951610
5,751,956 A 511998 Kirsch 3951200.33 29 Claims, 4 Drawing Sheets

-r
' 4 DEVICE 1 108 - I

BUS

DEVICE ' roo
I

106 I I PROCESSOR bIo2 I

US 6,415,335 B1
Page 2

OTHER PUBLICATIONS

Andresen, Daniel, Et Al.; Scalability Issues for High Per-
formance Digital Libraries on the World Wide Web; Depart-
ment of Computer Science; University of California at Santa
Barbara; 10 pages.
Andresen, Daniel, Et Al.; SWEB: Towards a Scalable World
Wide Web Server on Multicomputers; Department of Com-
puter Science; University of California at Santa Barbara; 7
pages.
Holmedahl, Vegard; Et Al.; Cooperative Caching of
Dynamic Content on a Distributed Web Server; Department
of Computer Science; University of California at Santa
Barbara; 8 pages.

Overson, Nicole; NeXT Ships WebObjects-On Time-As
Promised; Deja.com: NeXT Ships WebObjects-On
Time-As Promishttp://X28..deja.com/=dnc/ST~m=
ps ... EXT=927585438. 1744765032&hitnum=33.
International Search Report; 7 pages; dated Aug. 21, 1997.
Birman, Kenneth P. and van Renesse, Robbert; Software for
Reliable Networks; Scientific American; May 1996; pp.
64-69.
"Beyond the Web: Excavating the Real World Via Mosaic";
Goldberg et al.; Second International WWW Conference;
Oct. 17, 1994.

* cited by examiner

U S . Patent Jul. 2,2002 Sheet 1 of 4

FIG. 7
pp

MA1 N READ
ONLY STORAGE STORAGE

MEMORY DEVICE MEDIUM

BUS 100

101
7-

106

1 WEB SERVER

WEB I CLIENT

WEB SERVER)+/ WEB 202(1)
PAGE

REQUEST

FIG. 2
(PRIOR ART)

WEB SERVER

20 1 (E)

20 1 (n)

1
20 1

U S . Patent J U ~ . 2,2002 Sheet 2 of 4 US 6,415,335 BI

FIG. 3
(PRIOR ART)

BEGIN

300-1 WEB CLIENT MAKES
URL REQUEST

3 0 4 4 REQUEST TRANSMITTED TO
APPROPRIATE WEB SERVER

4
302

I S AN HTML DOCUMENT OR
HTML] A CGI APPLICATION I

DOCUMENT APPLICATION

URL EXAMINED BY WEB
BROWSER TO DETERMINE

APPROPRIATE WEB SERVER

306\

1

WEB SERVER EXAMINES URL
TO DETERMINE WHETHER IT

308 + 31 4

TRANSACTION FT

31 o1
4 +

DOCUMENT TRANSMITTED
BACK TO REQUESTING WEB
BROWSER FOR FORMATTING

WEB SERVER
LOCATES DOCUMENT

CGI APPLICATION
EXECUTES AND

OUTPUTS HTML OUTPUT

WEB SERVER LOCATES
CGI APPLICATION

'31 8

AND DISPLAY -

\316

HTML OUTPUT TRANSMITTED
BACK TO REQUESTING WEB
BROWSER FOR FORMAllING

AND DISPLAY
1320

FIG.

REQUEST T i)
CLIENT EXECUTABLE INTERCEPTOR DISPATCHER P

I PAGE SERVERS I

406
SOURCE

404(1) 41
\

SOURCE P 408

f

SOURCE 410 -8-

PAGE
SERVER

CONNECTION *-
CACHE =.

PAGE
SERVER

CONNECTION
CACHE

/

/' \
404(2) : 41 2(2)

0

4 PAGE CONNECTION '
4-- SERVER

/ \
404(n) 4 1 2(n)

CACHE

U S Patent Jul. 2,2002 Sheet 4 of 4

BEGIN
PROCESSING

500 y WEB BROWSER SENDS URL REQUEST I
SUZ 7_1 WEB SERVER RECEIVES URL REQUEST I

I I

5 0 4 - j lNi iRcEPToR INTERcEP4 HANDLING OF REQUEST 1
4

5 1 0 4 DISPATCHER DETERMINES WHICH PAGE
SERVER IS PROCESSING FEWEST REQUESTS I

5 0 6

t

DISPATCHER SENDS REQUEST TO
APPROPRIATE PAGE SERVER

INTERCEPTOR CONNECTS TO DISPATCHER AND
SENDS REQUEST TO DISPATCHER

508 x

PAGE SERVER RECEIVES REQUEST AND
PRODUCES HTML DOCUMENT

I

DISPATCHER DETERMINES WHICH PAGE
SERVERS CAN HANDLE REQUEST

I

6 - /

INTERCEPTOR REPLACES REQUESTED URL
WITH NEWLY GENERATED HTML DOCUMENT

PAGE SERVER RESPONDS TO DISPATCHER WITH
NOTIFICATION OF NAME OF CACHED HTML DOCUMENT

8 l

522 -4 WEB SERVER SENDS NEW HTML DOCUMENT TO CLIENT I
i

1
DISPATCHER RESPONDS TO INTERCEPTOR

WITH DOCUMENT NAME

WEB BROWSER RECEIVES AND DISPLAYS HTML
524 4 DOCUMENT CREATED BY PAGE SERVER I

1

\ PROCESSING)

1
SYSTEM AND METHOD FOR MANAGING

DYNAMIC WEB PAGE GENERATION
REQUESTS

This application is a division of Ser. No. 081636,477,
filed Apr. 23, 1996, now U.S. Pat. No. 5,894,554.

FIELD OF THE INVENTION

The present invention relates to the field of Internet
technology. Specifically, the present invention relates to the
creation and management of custom World Wide Web sites.

DESCRIPTION OF RELATED ART

The World Wide Web (the Web) represents all of the
computers on the Internet that offer users access to infor-
mation on the Internet via interactive documents or Web
pages. These Web pages contain hypertext links that are used
to connect any combination of graphics, audio, video and
text, in a non-linear, non-sequential manner. Hypertext links
are created using a special software language known as
HyperText Mark-Up Language (HTML).

Once created, Web pages reside on the Web, on Web
servers or Web sites. A Web site can contain numerous Web
pages. Web client machines running Web browsers can
access these Web pages at Web sites via a communications
protocol known as HyperText Transport Protocol (HTTP).
Web browsers are software interfaces that run on World
Wide Web clients to allow access to Web sites via a simple
user interface. AWeb browser allows a Web client to request
a particular Web page from a Web site by specifying a
Uniform Resource Locator (URL). A URL is a Web address
that identifies the Web page and its location on the Web.
When the appropriate Web site receives the URL, the Web
page corresponding to the requested URL is located, and if
required, HTML output is generated. The HTML output is
then sent via HTTP to the client for formatting on the client's
screen.

Although Web pages and Web sites are extremely simple
to create, the proliferation of Web sites on the Internet
highlighted a number of problems. The scope and ability of
a Web page designer to change the content of the Web page
was limited by the static nature of Web pages. Once created,
a Web page remained static until it was manually modified.
This in turn limited the ability of Web site managers to
effectively manage their Web sites.

The Common Gateway Interface (CGI) standard was
developed to resolve the problem of allowing dynamic
content to be included in Web pages. CGI "calls" or proce-
dures enable applications to generate dynamically created
HTML output, thus creating Web pages with dynamic con-
tent. Once created, these CGI applications do not have to be
modified in order to retrieve "new" or dynamic data. Instead,
when the Web page is invoked, CGI "calls" or procedures
are used to dynamically retrieve the necessary data and to
generate a Web page.

CGI applications also enhanced the ability of Web site
administrators to manage Web sites. Administrators no
longer have to constantly update static Web pages. Anumber
of vendors have developed tools for CGI based
development, to address the issue of dynamic Web page
generation. Companies like SpiderTM and BluestoneTM, for
example, have each created development tools for CGI-
based Web page development. Another company, Haht
SoftwareTM, has developed a Web page generation tool that
uses a BASIC-like scripting language, instead of a CGI

Tools that generate CGI applications do not, however,
resolve the problem of managing numerous Web pages and
requests at a Web site. For example, a single company may
maintain hundreds of Web pages at their Web site. Current
Web server architecture also does not allow the Web server
to efficiently manage the Web page and process Web client
requests. Managing these hundreds of Web pages in a
coherent manner and processing all requests for access to the
Web pages is thus a difficult task. Existing development
tools are limited in their capabilities to facilitate dynamic
Web page generation, and do not address the issue of
managing Web requests or Web sites.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a method and apparatus for creating and managing custom
Web sites. Specifically, the present invention claims a
method and apparatus for managing dynamic web page
generation requests.

In one embodiment, the present invention claims a
computer-implemented method for managing a dynamic
Web page generation request to a Web server, the computer-
implemented method comprising the steps of routing the
request from the Web server to a page server, the page server
receiving the request and releasing the Web server to process
other requests, processing the request, the processing being
performed by the page server concurrently with the Web
server, as the Web server processes the other requests, and
dynamically generating a Web page in response to the
request, the Web page including data dynamically retrieved
from one or more data sources. Other embodiments also
include connection caches to the one or more data sources,
page caches for each page server, and custom HTML
extension templates for configuring the Web page.

Other objects, features and advantages of the present
invention will be apparent from the accompanying drawings
and from the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a typical computer system in which the
present invention operates.

FIG. 2 illustrates a typical prior art Web server environ-
ment.

FIG. 3 illustrates a typical prior art Web server environ-
ment in the form of a flow diagram.

FIG. 4 illustrates one embodiment of the presently
claimed invention.

FIG. 5 illustrates the processing of a Web browser request
in the form of a flow diagram, according to one embodiment
of the presently claimed invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention relates to a method and apparatus
for creating and managing custom Web sites. In the follow-
ing detailed description, numerous specific details are set
forth in order to provide a thorough understanding of the
present invention. It will be apparent to one of ordinary skill
in the art, however, that these specific details need not be
used to practice the present invention. In other instances,
well-known structures, interfaces and processes have not
been shown in detail in order not to unnecessarily obscure
the present invention.

FIG. 1 illustrates a typical computer system 100 in which
scripting language. the present invention operates. The preferred embodiment of

the present invention is implemented on an IBMTM Personal
Computer manufactured by IBM Corporation of Armonk,
New York. An alternate embodiment may be implemented
on an RS/6000TM Workstation manufactured by IBM Cor-
poration of Armonk, New York. It will be apparent to those
of ordinary skill in the art that other computer system
architectures may also be employed.

In general, such computer systems as illustrated by FIG.
1 comprise a bus 101 for communicating information, a
processor 102 coupled with the bus 101 for processing
information, main memory 103 coupled with the bus 101 for
storing information and instructions for the processor 102, a
read-only memory 104 coupled with the bus 101 for storing
static information and instructions for the processor 102, a
display device 105 coupled with the bus 101 for displaying
information for a computer user, an input device 106
coupled with the bus 101 for communicating information
and command selections to the processor 102, and a mass
storage device 107, such as a magnetic disk and associated
disk drive, coupled with the bus 101 for storing information
and instructions. A data storage medium 108 containing
digital information is configured to operate with mass stor-
age device 107 to allow processor 102 access to the digital
information on data storage medium 108 via bus 101.

Processor 102 may be any of a wide variety of general
purpose processors or microprocessors such as the Pen-
tiumTM microprocessor manufactured by IntelTM Corpora-
tion or the RS/6000TM processor manufactured by IBM
Corporation. It will be apparent to those of ordinary skill in
the art, however, that other varieties of processors may also
be used in a particular computer system. Display device 105
may be a liquid crystal device, cathode ray tube (CRT), or
other suitable display device. Mass storage device 107 may
be a conventional hard disk drive, floppy disk drive,
CD-ROM drive, or other magnetic or optical data storage
device for reading and writing information stored on a hard
disk, a floppy disk, a CD-ROM a magnetic tape, or other
magnetic or optical data storage medium. Data storage
medium 108 may be a hard disk, a floppy disk, a CD-ROM,
a magnetic tape, or other magnetic or optical data storage
medium.

In general, processor 102 retrieves processing instructions
and data from a data storage medium 108 using mass storage
device 107 and downloads this information into random
access memory 103 for execution. Processor 102, then
executes an instruction stream from random access memory
103 or read-only memory 104. Command selections and
information input at input device 106 are used to direct the
flow of instructions executed by processor 102. Equivalent
input device 106 may also be a pointing device such as a
conventional mouse or trackball device. The results of this
processing execution are then displayed on display device
105.

The preferred embodiment of the present invention is
implemented as a software module, which may be executed
on a computer system such as computer system 100 in a
conventional manner. Using well known techniques, the
application software of the preferred embodiment is stored
on data storage medium 108 and subsequently loaded into
and executed within computer system 100. Once initiated,
the software of the preferred embodiment operates in the
manner described below.

FIG. 2 illustrates a typical prior art Web server environ-
ment. Web client 200 can make URL requests to Web server
201 or Web server 202. Web servers 201 and 202 include
Web server executables, 201(E) and 202(E) respectively,

that perform the processing of Web client requests. Each
Web server may have a number of Web pages 201(l)<n)
and 202(1)-(n). Depending on the URL specified by the Web
client 200, the request may be routed by either Web server

s executable 201(E) to Web page 201 (I), for example, or from
Web server executable 202(E) to Web page 202 (1). Web
client 200 can continue making URL requests to retrieve
other Web pages. Web client 200 can also use hyperlinks
within each Web page to "jump" to other Web pages or to

10 other locations within the same Web page.
FIG. 3 illustrates this prior art Web server environment in

the form of a flow diagram. In processing block 300, the
Web client makes a URL request. This URL request is
examined by the Web browser to determine the appropriate

15 Web server to route the request to in processing block 302.
In processing block 304 the request is then transmitted from
the Web browser to the appropriate Web server, and in
processing block 306 the Web server executable examines
the URL to determine whether it is a HTML document or a

20 CGI application. If the request is for an HTML document
308, then the Web server executable locates the document in
processing block 310. The document is then transmitted
back through the requesting Web browser for formatting and
display in processing block 312.

25 If the URL request is for a CGI application 314, however,
the Web server executable locates the CGI application in
processing block 316. The CGI application then executes
and outputs HTML output in processing block 318 and
finally, the HTML output is transmitted back to requesting

30 Web browser for formatting and display in processing block
320.

This prior art Web server environment does not, however,
provide any mechanism for managing the Web requests or

35 the Web sites. As Web sites grow, and as the number of Web
clients and requests increase, Web site management
becomes a crucial need.

For example, a large Web site may receive thousands of
requests or "hits" in a single day. Current Web servers

40 process each of these requests on a single machine, namely
the Web server machine. Although these machines may be
running "multi-threaded" operating systems that allow
transactions to be processed by independent "threads," all
the threads are nevertheless on a single machine, sharing a

45 processor. As such, the Web executable thread may hand off
a request to a processing thread, but both threads will still
have to be handled by the processor on the Web server
machine. When numerous requests are being simultaneously
processed by multiple threads on a single machine, the Web

so server can slow down significantly and become highly
inefficient. The claimed invention addresses this need by
utilizing a partitioned architecture to facilitate the creation
and management of custom Web sites and servers.

FIG. 4 illustrates one embodiment of the presently
55 claimed invention. Web client 200 issues a URL request that

is processed to determined proper routing. In this
embodiment, the request is routed to Web server 201.
Instead of Web server executable 201(E) processing the
URL request, however, Interceptor 400 intercepts the

60 request and routes it to Dispatcher 402. In one embodiment,
Interceptor 400 resides on the Web server machine as an
extension to Web server 201. This embodiment is appropri-
ate for Web servers such as NetsiteTM from Netscape, that
support such extensions. A number of public domain Web

65 servers, such as NCSATM from the National Center for
Supercomputing Applications at the University of Illinois,
Urbana-Champaign, however, do not provide support for

US 6,415,335 B1
5 6

this type of extension. Thus, in an alternate embodiment, has the ability to determine whether a particular Page server
Interceptor 400 is an independent module, connected via an already has the necessary data cached in the Page server's
"intermediate program" to Web server 201. This intermedi- page cache (described in more detail below, under the
ate program can be a simple CGI application program that heading "Performance"). Dispatcher 402 may thus deter-
connects Interceptor 400 to Web server 201. Alternate inter- s mine that Page server 404(1) and 404(2) are both logged into
mediate programs the perform the same functionality can Data source 408, but that Page server 404(2) has the
also be implemented. financial information already cached in Page server 404(2)'s

one embodiment of the invention, ~ i ~ ~ ~ t ~ h ~ ~ 402 page cache. In this case, Dispatcher 402 will route the URL
resides on a different machine than Web server 201. This request to Page server 404(2) to more efficiently Process the
embodiment overcomes the limitation described above, in 10 request.
prior art Web servers, wherein all processing is performed by Finally, Dispatcher 402 may determine that a number or
the processor on a single machine. By routing the request to all Page servers 404(l)<n) are logged into Data source 408.
Dispatcher 402 residing on a different machine than the Web In this scenario, Dispatcher 402 can examine the number of
server executable 201(E), the request can then be processed requests that each Page server is servicing and route the
by a different processor than the Web server executable 15 request to the least busy page server. This "load balancing"
201(E). Web server executable 201(E) is thus free to con- capability can significantly increase performance at a busy
tinue servicing client requests on Web server 201 while the Web site and is discussed in more detail below, under the
request is processed "off-line," at the machine on which heading "Scalability".
Dispatcher 402 resides. If, for example, Page server 404(2), receives the request,

Dispatcher 402 can, however, also reside on the same 20 Page server 404(2) will process the request. While Page
machine as the Web server. The Web site administrator has server 404(2) is processing the request, Web server execut-
the option of configuring Dispatcher 402 on the same able 201(E) can concurrently process other Web client
machine as Web server 201, taking into account a variety of requests. This partitioned architecture thus allows both Page
factors pertinent to a particular Web site, such as the size of server 404(2) and Web server executable 201(E) to. simul-
the Web site, the number of Web pages and the number of 2s taneously process different requests, thus increasing the
hits at the Web site. Although this embodiment will not efficiency of the Web site. Page server 404(2) dynamically
enjoy the advantage described above, namely off-loading the generates a Web page in response to the Web client request,
processing of Web requests from the Web server machine, and the dynamic Web page is then either transmitted back to
the embodiment does allow flexibility for a small Web site requesting Web client 200 or stored on a machine that is
to grow. For example, a small Web site administrator can use 30 accessible to Web server 201, for later retrieval.
a single machine for both Dispatcher 402 and Web server one embodiment of the claimed invention also provides
201 initially, then off-load Dispatcher 402 onto a separate ,web page designer with H T M L ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , or udynan tags,
machine as the Web site grows. The Web site can thus take ~h~~~ dyna tags provide customized HTML functionality to
advantage of other features of the present invention regard- a web page designer, to allow the designer to build custom-
less of whether the site has separate machines configured as 3s ized HTML templates that specify the source and placement
Web servers and dispatchers. of retrieved data. For example, in one embodiment, a

Dispatcher 402 receives the intercepted request and then "dynatext" HTML extension tag specifies a data source and
dispatches the request to one of a number of Page servers a column name to allow the HTML template to identify the
404 (1)-(n). For example, if Page server 404 (1) receives the 40 data source to log into and the column name from which to
dispatched request, it processes the request and retrieves the retrieve data. Alternatively, "dyna-anchor" tags allow the
data from an appropriate data source, such as data source designer to build hyperlink queries while "dynablock tags
406, data source 408, or data source 410. Data sources, as provide the designer with the ability to iterate through
used in the present application, include databases, blocks of data. Page servers use these HTML templates to
spreadsheets, files and any other type of data repository. 4s create dynamic Web pages. Then, as described above, these
Page server 404 (1) can retrieve data from more than one dynamic Web pages are either transmitted back to requesting
data source and incorporate the data from these multiple data Web client 200 or stored on a machine that is accessible to
sources in a single Web page. Web server 201, for later retrieval.

In one embodiment, each Page server 404(l)<n) resides The presently claimed invention provides numerous
on a separate machine on the network to distribute the so advantages over prior art Web servers, including advantages
processing of the request. Dispatcher 402 maintains a vari- in the areas of performance, security, extensibility and
ety of information regarding each Page server on the scalability
network, and dispatches requests based on this information.
For example, Dispatcher 402 retains dynamic information Performance

regarding the data sources that any given Page server can 5s One embodiment of the claimed invention utilizes con-
access. Dispatcher 402 thus examines a particular request nection caching and page caching to improve performance.
and determines which Page servers can service the URL Each Page server can be configured to maintain a cache of
request. Dispatcher 402 then hands off the request to the connections to numerous data sources. For example, as
appropriate Page server. illustrated in FIG. 4, Page server 404(1) can retrieve data

For example, if the URL request requires financial data 60 from data source 406, data source 408 or data source 410.
from data source 408, dispatcher 402 will first examine an Page server 404(1) can maintain connection cache 412(1),
information list. Dispatcher 402 may determine that Page containing connections to each of data source 406, data
server 404(3), for example, has access to the requisite data source 408 and data source 410, thus eliminating connect
in data source 408. Dispatcher 402 will thus route the URL times from the Page servers to those data sources.
request to Page server 404(3). This "connection caching" 65 Additionally, another embodiment of the present inven-
functionality is described in more detail below, under the tion supports the caching of finished Web pages, to optimize
heading "Performance." Alternately, Dispatcher 402 also the performance of the data source being utilized. This "page

US 6,415,335 B1
7 8

caching" feature, illustrated in FIG. 4 as Page cache 414, as Visual Basic for client-server environments, or CICS
allows the Web site administrator to optimize the perfor- programs on mainframes. If these applications are OLE 2.0
mance of data sources by caching Web pages that are compliant, the Page server "dynaobject" HTML extension
repeatedly accessed. Once the Web page is cached, subse- tag can be used to encapsulated the application in an OLE
quent requests or "hits" will utilize the cached Web page s 2.0 automation interface. The Page server is thus extensible,
rather than re-accessing the data source. This can radically and can incorporate the existing application with the new
improve the performance of the data source. Page server functionality.

Security Scalability
One embodiment of the claimed invention allows "plug

The present invention allows the Web site administrator to and scalability, As described above, referring to FIG,
utilize multiple levels of security to manage the Web site. In 4, Dispatcher 402 maintains information about all the Page
one embodiment, the Page server can utilize all standard servers configured to be serviced by Dispatcher 402, Any
encryption and site security features provided by the Web number of Page servers can thus be ''plugged" into the
server' In another the Page server can be configuration illustrated in FIG. 4, and the Page servers will
configured to connection caches 412(1)-(n), be instantly activated as the information is dynamically
described above, for a particular data source and to require updated in Dispatcher 402. The Web site administrator can
entry of a user-supplied identification and password for the thus manage the overhead of each Page server and modify
particular data source the user is trying to access. each Page server's load, as necessary, to improve perfor-

the presently mance. In this manner, each Page server will cooperate with
claimed invention requires no real-time access of data 20 other page servers within a multi-server environment, ~ i ~ -
sources. The Web Page caching ability, described above, patcher 402 can examine the load on each Page server and
enables additional security for those sites that want to new requests according to each page server's available
publish non-interactive content from internal information resources, hi^ yoad-balancing" across multiple page
systems, but do not want real-time Internet accessibility to 2s ers can significantly increase a web site's performance,
those internal information systems. In this instance, the Page FIG, illustrates the processing of a Web browser request
server can act as a "replication and staging agent" and create in the form of a flow diagram, according to one embodiment
Web pages in batches, rather than in These the presently claimed invention, A Web browser sends a
licated" Web pages are then "staged" for access at a later URL request to a Web server in processing block 500, In
time, and access to the Web pages in this scenario is possible 30 processing block 502, the Web server receives the URL
even if the Page server and are not present later. request, and an interceptor then intercepts the handling of

In Yet another embodiment, the Page server can make a the request in processing block 504. The interceptor con-
single Pass through a Web library, and compile a Web site nects to a dispatcher and sends the URL request to the
that exists in the traditional form of separately available dispatcher in processing block 506. In processing block 508,
files. AWeb library is a collection of related Web books and 35 the dispatcher determines which Page servers can handle the
Web Pages. More s~ecif ical l~, the Web library is a hiem- request. The dispatcher also determines which Page server is
c h i d organization of Web document templates, together processing the fewest requests in processing block 510, and
with all the associated data source information. Information in processing block 512, the dispatcher sends the URL
about an entire Web site is thus contained in a single physical request to an appropriate Page server, The Page server
file, thus simplifying the problem of deploying Web sites 40 receives the request and produces an HTML document in
across multiple Page servers. The Process of deploying the processing block 514. The Page server then responds to the
Web site in this embodiment is essentially a simple copy of dispatcher with notification of the name of the cached
a single file. HTML document in processing block 516. In processing

block 518, the dispatcher responds to the interceptor with the
Extensibility

45 document name, and the interceptor then replaces the
One embodiment of the present invention provides the requested URL with the newly generated HTML document

Web site administrator with Object Linking and Embedding in processing block 520. The Web server then sends the new
(OLE) 2.0 extensions to extend the page creation process. HTMLdocument to the requesting client in processing block
These OLE 2.0 extensions also allow information submitted 522. Finally, the Web browser receives and displays the
over the Web to be processed with user-supplied function- so HTML document created by the Page server at processing
ality. Utilizing development tools such as Visual Basic, block 524.
Visual C++ or PowerBuilder that support the creation of Thus, a method and apparatus for creating and managing
OLE 2.0 automation, the Web site administrator can add custom Web sites is disclosed. These specific arrangements
features and modify the behavior of the Page servers and methods described herein are merely illustrative of the
described above. This extensibility allows one embodiment 5s principles of the present invention. Numerous modifications
of the claimed invention to be incorporated with existing in form and detail may be made by those of ordinary skill in
technology to develop an infinite number of custom web the art without departing from the scope of the present
servers. invention. Although this invention has been shown in rela-

For example, OLE 2.0 extensions allow a Web site tion to a particular preferred embodiment, it should not be
administrator to encapsulate existing business rules in an 60 considered so limited. Rather, the present invention is lim-
OLE 2.0 automation interface, to be accessed over the Web. ited only by the scope of the appended claims.
One example of a business rule is the steps involved in the We claim:
payoff on an installment or mortgage loan. The payoff may 1. A computer-implemented method for managing a
involve, for example, taking into account the current dynamic Web page generation request to a Web server, said
balance, the date and the interest accrued since the last 6s computer-implemented method comprising the steps of:
payment. Most organizations already have this type of routing a request from a Web server to a page server, said
business rule implemented using various applications, such page server receiving said request and releasing said

Web server to process other requests wherein said
routing step further includes the steps of:
intercepting said request at said Web server and routing

said request to said page server;
processing said request, said processing being per-

formed by said page server while said Web server
concurrently processes said other requests; and

dynamically generating a Web page in response to said
request, said Web page including data dynamically
retrieved from one or more data sources.

2. The computer-implemented method in claim 1 wherein
said step of routing said request includes the steps of:

routing said request from said Web server to a dispatcher;
and

dispatching said request to said page server.
3. The computer-implemented method in claim 1 wherein

said step of processing said request includes the step of
identifying said one or more data sources from which to
retrieve said data.

4. The computer-implemented method in claim 1 wherein
said step of dynamically generating said Web page includes
the step of dynamically retrieving said data from said one or
more data sources.

5. The computer-implemented method in claim 1 wherein
said step of processing said request includes the step of said
page server maintaining a connection cache to said one or
more data sources.

6. The computer-implemented method in claim 1 wherein
said step of processing said request includes the step of
logging into said one or more data sources.

7. The computer-implemented method in claim 1 wherein
said step of dynamically generating said Web page includes
the step of maintaining a page cache containing said Web

8. The computer-implemented method in claim 1 wherein
said page server includes tag-based text templates for con-
figuring said Web page.

9. The computer-implemented method in claim 8 wherein
said step of processing said request further includes the step
of inserting said-dynamically retrieved data from said one or
more data sources into said tag-based text templates.

10. The computer-implemented method in claim 8
wherein at least one of said tag-based text templates drives
a format of the data dynamically retrieved from said one or
more data sources in response to said request.

11. The computer-implemented method in claim 8
wherein said tag-based text templates include HTML tem-
plates.

12. The computer-implemented method in claim 1
wherein said step of processing said request further includes
the step of dynamically updating data at said one or more
data sources.

13. The computer-implemented method in claim 1
wherein said step of processing said request further includes
the step of processing an object handling extension.

14. The computer-implemented method in claim 13
wherein said object handling extension is an OLE extension.

15. A computer-implemented method comprising the
steps of:

transferring a request from an HTTP-compliant device to
a page server, said page server receiving said request
and releasing said HTTP-compliant device to process
other requests wherein said transferring step further

10
intercepting said request at said HTTP-compliant

device and transferring said request to said page
server;

processing said request, said processing being per-
s formed by said page server while said HTTP-

compliant device concurrently processes said other
requests; and

dynamically generating a page in response to said
request, said page including data dynamically

10 retrieved from one or more data sources.
16. The computer-implemented method in claim 15

wherein said step of transferring said request includes the
steps of:

transferring said request from said HTTP-compliant
. - device to a dispatcher; and
13 dispatching said request to said page server.

17. The computer-implemented method in claim 15
wherein said step of processing said request includes the
step of identifying said one or more data sources from which
to retrieve said data.

20 18. The computer-implemented method in claim 15
wherein said step of dynamically generating said page
includes the step of dynamically retrieving said data from
said one or more data sources.

19. The computer-implemented method in claim 15
2s wherein said step of processing said request includes the

step of said page server maintaining a connection cache to
said one or more data sources.

20. The computer-implemented method in claim 15
wherein said step of processing said request includes the

30 step of logging into said one or more data sources.
21. The computer-implemented method in claim 15

wherein said step of dynamically generating said page
includes the step of maintaining a page cache containing
said page.

35 22. The computer-implemented method in claim 15
wherein said page server includes tag-based text templates
for configuring said page.

23. The comauter-imalemented method in claim 22
wherein said step of processing said request further includes

40 the step of inserting said dynamically retrieved data from
said one or more data sources into said tag-based text
templates.

24. The comauter-imalemented method in claim 22
wherein at least one of said tag-based text templates drives

45 a format of the data dynamically retrieved from said one or
more data sources in response to said request.

25. The computer-implemented method in claim 22
wherein said tag-based text templates include HTML tem-
plates.

26. The computer-implemented method in claim 15
wherein said step of processing said request further includes
the step of dynamically updating data at said one or more
data sources.

27. The computer-implemented method in claim 15
55 wherein said step of processing said request further includes

the step of processing an object handling extension.
28. The computer-implemented method in claim 27

wherein said object handling extension is an OLE extension.
29. A computer-implemented method comprising the

60 steps of:
transferring a request from an HTTP-compliant device to

a dispatcher;
maintaining dynamic information regarding data sources

a given page server may access;
65 dispatching said request to an appropriate page server

based on said request and based on said dynamic
includes the steps of: information, said page server receiving said request and

US 6,415,335 B1
11 12

releasing said HTTP-compliant device to process other dynamically generating a page in response to said request,
requests; said page including data dynamically retrieved from

processing said request, said processing being performed one or more data sources.
by said page server while said HTTP-compliant device
concurrently processes said other requests; and * * * * *

