
(12) United States Patent
Balon et al.

(54) METHOD AND ARTICLE OF
MANUFACTURE FOR ISOLATING DATA
WITHIN A COMPUTER PROGRAM

(75) Inventors: Richard E. Balon, Wheaton, IL (US);
Asif F. Malik, Chicago, IL (US);
Jeffrey M. Wargin, Chicago, IL (US);
Michael A. Jackowski, Crystal Lake,
IL (US); Richard C. Kennedy,
Chicago, IL (US); Eduardo Navickas,
Chicago, IL (US)

(73) Assignee: Accenture LLP, Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/305,816

(22) Filed: May 4, 1999

(51) Int. Cl? .. G06F 17/30
(52) U.S. Cl. 707/103; 707/100; 717/1;

711!144
(58) Field of Search 707/103, 100;

(56)

711!143, 144; 717/1

References Cited

U.S. PATENT DOCUMENTS

5,191,522 A
5,241,664 A
5,592,611 A *
5,655,085 A
5,664,109 A
5,671,360 A
5,724,575 A
5,758,351 A
5,768,506 A
5,826,239 A
5,836,011 A
5,950,169 A
5,956,687 A

3/1993
8/1993
1!1997
8/1997
9/1997
9/1997
3/1998
5/1998
6/1998

10/1998
11/1998
9/1999
9/1999

Bosco et a!. 705/4
Ohba et a!. 395/425
Midgely et a!. 395/182.02
Ryan et a!. 364/401
Johnson et a!. 705/2
Hambrick eta!. 395/209
Hoover et a!. 707/10
Gibson et a!. 707/104
Randell 709/202
Du et a!. 705/8
Hambrick eta!. 395/208
Borghesi et a!. 705/4
Wamsley et a!. 705/1

111111 111
US006574636Bl

(10) Patent No.: US 6,574,636 Bl
Jun.3,2003 (45) Date of Patent:

wo

5,987,247 A
6,023,578 A
6,038,590 A *
6,061,665 A *
6,070,152 A *
6,076,066 A
6,078,890 A
6,131,155 A
6,151,660 A
6,158,044 A
6,163,781 A
6,182,274 B1 *

11/1999
2/2000
3/2000
5!2000
5!2000
6/2000
6/2000

10/2000
11/2000
12/2000
12/2000

1!2001

Lau 717/2
Brisan et a!. 717/2
Gish 709/203
Bahreman 705/40
Carey et a!. 705!35
Dirienzon et a!. 705/4
Mangin eta!. 705/2
Alexander et a!. 712/207
Aoki 711!129
Tibbets 707/1
Wess, Jr 707/103
Lau 717/1

FOREIGN PATENT DOCUMENTS

W0-200067182 A2 11/2000 705/7

OTHER PUBLICATIONS

"Primavera Products and solutions," www.primavera.com/
products/p3.html, downloaded from internet Feb. 2, 2001, 2
pages.
Primavera Extends Lead in High-End Project Management
Softeware, Business Wire, Apr. 4, 1995, 3 pages.
Greg Todd, et al. Microsoft Exchange Server 5.5.

* cited by examiner

Primary Examiner-Greta L. Robinson
(74) Attorney, Agent, or Firm-Brinks Hofer Gilson &
Liane

(57) ABSTRACT

A computer program is provided for developing a compo
nent based software package. The program includes a data
component that stores, retrieves and manipulates data uti
lizing a plurality of functions. Also provided is an adapter
component that transmits and receives data to/from the data
component. A business component is included that serves as
a data cache and includes logic for manipulating the data. A
controller component is also included which is adapted to
handle events generated by a user utilizing the business
component to cache data and the adapter component to
ultimately persist data to a data repository.

20 Claims, 12 Drawing Sheets

110
~

116
~

114
~

120 A NETWORK(135)
118 134

CPU ROM RAM 110 COMMUNICATION
ADAPTER ADAPTER

112

122
124

USER
INTERFACE
ADAPTER

~~~ 
132 126 128 

FIG. 1 
(PRIOR ART) 

136 138 

DISPlAY D 
ADAPTER 

d 
• 
\Jl 
• 
~ 
~ ...... 
~ = ...... 

~ 

= ? 
~~ 
N c 
8 

'JJ. 

=~ 
~ ..... 
'"""' 0 ......, 

'"""' N 

e 
rJ'l 
0'1 
'&. 
""-l 
~ 

~ 
0'1 

~ 
1--" 



U.S. Patent 

CLIENT 

200 

SECURITY 
MGR 

ARCHITECTURE 
OBJECT 

SERVER 

200 
/ 

SECURITY 
MGR 

ARCH 
OBJECT 

Jun.3,2003 Sheet 2 of 12 

APPLICATION OBJECT 

208 

CLIENTCOMP 
ADAPTER {CCA) 

1- - - - - - -- - - - - -1 .... - 21 0 
: COMCOMP ~, 
: INTERFACE (CCI) : I I 
I_----- ------ .J 

/ ~------- SERVER 
COMPONENT 

222 

FIG. 2A 

US 6,574,636 Bl 

202 

204 



U.S. Patent Jun. 3, 2003 Sheet 3 of 12 US 6,574,636 Bl 

r--V 
STORE OBJECT DATA ~ 

230 

I 

ENCAPSULATE OBJECT MANIPULATION FUNCTIONS WITH r-v 
~ 

232 

OBJECT DATA 
I 

ACCESS STORED DATA OBJECT UTILIZING OBJECT ~v 
~ 

234 

MANIPULATION FUNCTIONS 
I 

FIG. 28 



U.S. Patent Jun.3,2003 Sheet 4 of 12 US 6,574,636 Bl 

ENTER DATA IN Ul FORM v 236 

I 

238 

Ul CONTROLLER INTERPRETS DATA ENTERED ON FORM ~ 

I 

Ul CONTROLLER PLACES DATA INTO BUSINESS OBJECT / 240 

I 

FIG. 2C 



U.S. Patent Jun.3,2003 Sheet 5 of 12 US 6,574,636 Bl 

REQUEST MADE TO PLACE DATA IN SERVER DATABASE 
;:V 242 

I 

244 

CCI UTILIZED TO TRANSFER DATA TO SERVER COMPONENT 
~ 

I 

t' 

-/ 
SERVER COMPONENT STORES DATA FROM CCI ~ 

246 

I 

FIG. 20 



U.S. Patent Jun.3,2003 Sheet 6 of 12 US 6,574,636 Bl 

206 
300 

~ 
202 204 

'-.._ '-.._ "'-

~ I CALLING ~ I APP OBJECT II l TARGET 1 [FORM ll CONTROLLER CONTROLLER 

1--Create New-{ LEGEND r; PertormBusinessFunciXln 
Create New Class _lnft~fize I -FunclionCal.-

f- Archlnnaass--- - VBEvenl .-

f--lnfiCiass 
<1--Return-

30 

f<J--InfiCiass 
DetermineFormMOOe I 

WINDOW 
INITIALIZES 

r--lni!Form ,_____Create New--
Form _lnilia/~e 

f<l- Create New--
Pop~ateForm I 

DetermineFormStale I 
1<r- lni!Form -

I RegCTLR 
1-- ShowForm - 1--Show--- 3 06 

3 

~MaOCAsD[Iy --f--- Control_ Change I~' 

' 
USER INTERACTS (User Changes Dala) 

WITH WINDOW 1-- DelermineFormStale - Reeeat 
1-Conlrci_Change ~ 

lsFormD- Save---
f<l- cmdOK_Ciick-

~ I (User Clicks 0~ 

I lnterrogateForm 
, 08 

I- Save-
-Unload---

USER CLOSES 
a~eryUnload F01r11_ OueryUrJoad WINDOW - u ---:::1 

I 

UnRegCTLR Form_ Unload 

Un~ad 
t--- Save--:--- cmdOK_Cfd --t> 

WINDOW C£irerminafe 
TERMINATES kl-- Show---

(o I Class_ Tenninale 
PertormBusinessFullCOOn 1<1---- Sllowform-3 

~ h. ~ 
h. ~'"' ~ 

~ 
~ 

h 

FIG. 3 



U.S. Patent Jun.3,2003 Sheet 7 of 12 US 6,574,636 Bl 

400 

" 
404 406 

402 

ENGLISH Ul 

I~ J ENGLISH DLL 

COMMON 
CONTROLLER 
CODE BASE 

FIG. 4 

FRENCH Ul 

I~ J FRENCH DLL 



U.S. Patent Jun.3,2003 Sheet 8 of 12 US 6,574,636 Bl 

514 512 500 

FIG. 5 



U.S. Patent Jun.3,2003 Sheet 9 of 12 US 6,574,636 Bl 

600 

~ 
604 

6~ 
""' 

6~ 
1\ 

Code_ Category 
['\. 

Code Code _Relations 
I'\ 

C Category C_Category C_Catego~1 
C_Cache I C_Code -<X C Code1 
T_Category I N_Sort_Order C_Category2 
D _Last_ Update D_Effective C Code2 

D_Expiration 

"\. '\ 

"' \ 
"\. '\ 

Code_Decode 1\ 
C_Category 

608./ C_Code 
N Lang_ID 
T_Short_Desc 
T_Long_Desc 

"\. '\ 

FIG. 6 



U.S. Patent Jun.3,2003 Sheet 10 of 12 US 6,574,636 Bl 

700 

\ 

IS FRESHNESS INTERVAS>-YES-~ 
EXPIRED? 

710 

NO 

712 

706 

FIG. 7 

NO 

READ CodeDecode 
•LastUpdate" FIELDS FOR 
EACH CATEGORY. 
PASS TO ARCH SERVER 

FROM DATABASE: 

708 

READ NEW CATEGORIES. 
READ UPDATED CATEGORIES. 
RETURN RECORDSETS. 

UPDATE LOCAL DB WITH 
RETURN IF ANY. 



U.S. Patent Jun.3,2003 Sheet 11 of 12 

800 

~ 
202 

APPLICATION OBJECT 1-----~ ARCHITECTURE 

206 Ul CONTROLLER 

CLIENT COMPONENT 
208 ADAPTOR 

210 

222 

(CCA) 

COM COMPONENT 
INTERFACE 

(CCI) 

lsOperAuthorized 

FIG. 8 

US 6,574,636 Bl 

200 

DLL 802 

CLIENT 

SERVER 



U.S. Patent Jun.3,2003 Sheet 12 of 12 US 6,574,636 Bl 

900 

~ 

CLIENT 802 

,J ARCHITECTURE ~ 
200 OBJECT 

_L' 902 

CCLIENTPR~ 

CINITCOMP V904 
CCA 

SERVER .---- -----, 
l IINITCOMP ~/-21 0 
I I _____ T _____ 

CINITCOMP v9o6 

DBMS ,..-
t-- __., vgoa 
ORGANIZATION 

TABLES 

FIG. 9 



US 6,574,636 Bl 
1 

METHOD AND ARTICLE OF 
MANUFACTURE FOR ISOLATING DATA 

WITHIN A COMPUTER PROGRAM 

2 
often just called a class. A class of objects can be viewed as 
a blueprint, from which many objects can be formed. 

OOP allows the programmer to create an object that is a 
part of another object. For example, the object representing 

FIELD OF THE INVENTION 

The present invention relates to isolating data in a com
puter program and more particularly to compartmentalizing 
a computer program for preventing unauthorized access to 
data by isolating the same. 

5 a piston engine is said to have a composition-relationship 
with the object representing a piston. In reality, a piston 
engine comprises a piston, valves and many other compo
nents; the fact that a piston is an element of a piston engine 
can be logically and semantically represented in OOP by two 

10 objects. 

BACKGROUND OF THE INVENTION 
OOP also allows creation of an object that "depends 

from" another object. If there are two objects, one repre
senting a piston engine and the other representing a piston 
engine wherein the piston is made of ceramic, then the 

Computers have become a necessity in life today. They 
appear in nearly every office and household worldwide. A 
representative hardware environment is depicted in prior art 
FIG. 1, which illustrates a typical hardware configuration of 
a workstation having a central processing unit 110, such as 
a microprocessor, and a number of other units intercon
nected via a system bus 112. The workstation shown in FIG. 
1 includes a Random Access Memory (RAM) 114, Read 
Only Memory (ROM) 116, an 1/0 adapter 118 for connect
ing peripheral devices such as disk storage units 120 to the 
bus 112, a user interface adapter 122 for connecting a 
keyboard 124, a mouse 126, a speaker 128, a microphone 
132, and/or other user interface devices such as a touch 
screen (not shown) to the bus 112, communication adapter 
134 for connecting the workstation to a communication 
network (e.g., a data processing network) and a display 
adapter 136 for connecting the bus 112 to a display device 

15 relationship between the two objects is not that of compo
sition. A ceramic piston engine does not make up a piston 
engine. Rather it is merely one kind of piston engine that has 
one more limitation than the piston engine; its piston is made 
of ceramic. In this case, the object representing the ceramic 

20 piston engine is called a derived object, and it inherits all of 
the aspects of the object representing the piston engine and 
adds further limitation or detail to it. The object representing 
the ceramic piston engine "depends from" the object repre
senting the piston engine. The relationship between these 

25 objects is called inheritance. 

30 
138. The workstation typically has resident thereon an 
operating system such as the Microsoft Windows NT or 
Windows/95 Operating System (OS), the IBM OS/2 oper
ating system, the MAC OS, or UNIX operating system. 

Object oriented programming (OOP) has become increas- 35 
ingly used to develop complex applications. As OOP moves 
toward the mainstream of software design and development, 
various software solutions require adaptation to make use of 
the benefits of OOP. A need exists for these principles of 
OOP to be applied to a messaging interface of an electronic 40 
messaging system such that a set of OOP classes and objects 
for the messaging interface can be provided. 

OOP is a process of developing computer software using 
objects, including the steps of analyzing the problem, 
designing the system, and constructing the program. An 45 

object is a software package that contains both data and a 
collection of related structures and procedures. Since it 
contains both data and a collection of structures and 
procedures, it can be visualized as a self-sufficient compo
nent that does not require other additional structures, pro- 50 

cedures or data to perform its specific task. OOP, therefore, 
views a computer program as a collection of largely autono
mous components, called objects, each of which is respon
sible for a specific task. This concept of packaging data, 
structures, and procedures together in one component or 55 

module is called encapsulation. 
In general, OOP components are reusable software mod

ules which present an interface that conforms to an object 
model and which are accessed at run-time through a com
ponent integration architecture. A component integration 60 

architecture is a set of architecture mechanisms which allow 
software modules in different process spaces to utilize each 
others capabilities or functions. This is generally done by 
assuming a common component object model on which to 
build the architecture. It is worthwhile to differentiate 65 

between an object and a class of objects at this point. An 
object is a single instance of the class of objects, which is 

When the object or class representing the ceramic piston 
engine inherits all of the aspects of the objects representing 
the piston engine, it inherits the thermal characteristics of a 
standard piston defined in the piston engine class. However, 
the ceramic piston engine object overrides these ceramic 
specific thermal characteristics, which are typically different 
from those associated with a metal piston. It skips over the 
original and uses new functions related to ceramic pistons. 
Different kinds of piston engines have different 
characteristics, but may have the same underlying functions 
associated with it (e.g., how many pistons in the engine, 
ignition sequences, lubrication, etc.). To access each of these 
functions in any piston engine object, a programmer would 
call the same functions with the same names, but each type 
of piston engine may have different/overriding implemen
tations of functions behind the same name. This ability to 
hide different implementations of a function behind the same 
name is called polymorphism and it greatly simplifies com
munication among objects. 

With the concepts of composition-relationship, 
encapsulation, inheritance and polymorphism, an object can 
represent just about anything in the real world. In fact, the 
logical perception of the reality is the only limit on deter
mining the kinds of things that can become objects in 
object-oriented software. Some typical categories are as 
follows: 

Objects can represent physical objects, such as automo
biles in a traffic-flow simulation, electrical components 
in a circuit-design program, countries in an economics 
model, or aircraft in an air-traffic-control system. 

Objects can represent elements of the computer-user 
environment such as windows, menus or graphics 
objects. 

An object can represent an inventory, such as a personnel 
file or a table of the latitudes and longitudes of cities. 

An object can represent user-defined data types such as 
time, angles, and complex numbers, or points on the 
plane. 

With this enormous capability of an object to represent 
just about any logically separable matters, OOP allows the 
software developer to design and implement a computer 



US 6,574,636 Bl 
3 

program that is a model of some aspects of reality, whether 
that reality is a physical entity, a process, a system, or a 
composition of matter. Since the object can represent 
anything, the software developer can create an object which 
can be used as a component in a larger software project in 5 

the future. 

4 
FIG. 8 is a block diagram of the security framework and 

its components. 
FIG. 9 is an illustration showing the relationships between 

the security element and other elements. 

DISCLOSURE OF THE INVENTION 

Programming languages are beginning to fully support the 
OOP principles, such as encapsulation, inheritance, 
polymorphism, and composition-relationship. With the 

If 90% of a new OOP software program consists of 
proven, existing components made from preexisting reus
able objects, then only the remaining 10% of the new 
software project has to be written and tested from scratch. 
Since 90% already came from an inventory of extensively 
tested reusable objects, the potential domain from which an 
error could originate is 10% of the program. As a result, 
OOP enables software developers to build objects out of 
other, previously built objects. 

10 advent of the C++ language, many commercial software 
developers have embraced OOP. C++ is an OOP language 
that offers a fast, machine-executable code. Furthermore, 
C++ is suitable for both commercial-application and 
systems-programming projects. For now, C++ appears to be 

This process closely resembles complex machinery being 
built out of assemblies and sub-assemblies. OOP 
technology, therefore, makes software engineering more like 
hardware engineering in that software is built from existing 
components, which are available to the developer as objects. 
All this adds up to an improved quality of the software as 
well as an increased speed of its development. 

15 the most popular choice among many OOP programmers, 
but there is a host of other OOP languages, such as 
Smalltalk, Common Lisp Object System (CLOS), and Eiffel. 
Additionally, OOP capabilities are being added to more 
traditional popular computer programming languages such 

20 as Pascal. 

SUMMARY OF THE INVENTION 

A computer program is provided for developing a com- 25 

ponent based software package. The program includes a data 
component that stores, retrieves and manipulates data uti
lizing a plurality of functions. Also provided is an adapter 
component that transmits and receives data to/from the data 
component. A business component is included that serves as 30 

a data cache and includes logic for manipulating the data. A 
controller component is also included which is adapted to 
handle events generated by a user utilizing the business 
component to cache data and the adapter component to 
ultimately persist data to a data repository. 35 

DESCRIPTION OF THE DRAWINGS 

The foregoing and other objects, aspects and advantages 
are better understood from the following detailed description 

40 
of a preferred embodiment of the invention with reference to 
the drawings, in which: 

Prior Art FIG. 1 is a schematic diagram of the present 
invention; and 

FIG. 2A is block diagram of one embodiment of the 45 
present invention. 

FIG. 2B is a flowchart showing how components gener
ally operate in accordance with one embodiment of the 
present invention. 

FIG. 2C is a flowchart showing how the UI Controller 50 

operates in accordance with one embodiment of the present 
invention. 

FIG. 2D is a flowchart showing the interactions between 
the CCA, the CCI, and the Server Component in accordance 
with one embodiment of the present invention. 

FIG. 3 shows the life cycle of a typical User Interface and 
the standard methods that are part of the Window Processing 
Framework. 

55 

FIG. 4 is an illustration showing how different languages 
60 

are repainted and recompiled. 
FIG. 5 is a block diagram of an Architecture Object. 
FIG. 6 is an illustration showing the physical layout of 

CodeDecode tables according to one embodiment of the 
present invention. 

FIG. 7 is a logic diagram according to one embodiment of 
the present invention. 

65 

The benefits of object classes can be summarized, as 
follows: 

Objects and their corresponding classes break down com
plex programming problems into many smaller, sim
pler problems. 

Encapsulation enforces data abstraction through the orga
nization of data into small, independent objects that can 
communicate with each other. Encapsulation protects 
the data in an object from accidental damage, but 
allows other objects to interact with that data by calling 
the object's member functions and structures. 

Subclassing and inheritance make it possible to extend 
and modify objects through deriving new kinds of 
objects from the standard classes available in the sys
tem. Thus, new capabilities are created without having 
to start from scratch. 

Polymorphism and multiple inheritance make it possible 
for different programmers to mix and match character
istics of many different classes and create specialized 
objects that can still work with related objects in 
predictable ways. 

Class hierarchies and containment hierarchies provide a 
flexible mechanism for modeling real-world objects 
and the relationships among them. 

Libraries of reusable classes are useful in many situations, 
but they also have some limitations. For example: 

Complexity. In a complex system, the class hierarchies for 
related classes can become extremely confusing, with 
many dozens or even hundreds of classes. 

Flow of control. A program written with the aid of class 
libraries is still responsible for the flow of control (i.e., 
it must control the interactions among all the objects 
created from a particular library). The programmer has 
to decide which functions to call at what times for 
which kinds of objects. 

Duplication of effort. Although class libraries allow pro
grammers to use and reuse many small pieces of code, 
each programmer puts those pieces together in a dif
ferent way. Two different programmers can use the 
same set of class libraries to write two programs that do 
exactly the same thing but whose internal structure 
(i.e., design) may be quite different, depending on 
hundreds of small decisions each programmer makes 
along the way. Inevitably, similar pieces of code end up 
doing similar things in slightly different ways and do 
not work as well together as they should. 



US 6,574,636 Bl 
5 6 

the creation of more complex systems that work together in 
interesting ways, as opposed to isolated programs, having 
custom code, being created over and over again for similar 
problems. 

Thus, as is explained above, a framework basically is a 
collection of cooperating classes that make up a reusable 
design solution for a given problem domain. It typically 
includes objects that provide default behavior (e.g., for 
menus and windows), and programmers use it by inheriting 

Class libraries are very flexible. As programs grow more 
complex, more programmers are forced to reinvent basic 
solutions to basic problems over and over again. A relatively 
new extension of the class library concept is to have a 
framework of class libraries. This framework is more com- 5 

plex and consists of significant collections of collaborating 
classes that capture both the small scale patterns and major 
mechanisms that implement the common requirements and 
design in a specific application domain. They were first 
developed to free application programmers from the chores 
involved in displaying menus, windows, dialog boxes, and 
other standard user interface elements for personal comput
ers. 

10 some of that default behavior and overriding other behavior 
so that the framework calls application code at the appro-

Frameworks also represent a change in the way program
mers think about the interaction between the code they write 15 

and code written by others. In the early days of procedural 
programming, the programmer called libraries provided by 
the operating system to perform certain tasks, but basically 
the program executed down the page from start to finish, and 
the programmer was solely responsible for the flow of 20 

control. This was appropriate for printing out paychecks, 
calculating a mathematical table, or solving other problems 
with a program that executed in just one way. 

The development of graphical user interfaces began to 
turn this procedural programming arrangement inside out. 25 

These interfaces allow the user, rather than program logic, to 
drive the program and decide when certain actions should be 
performed. Today, most personal computer software accom
plishes this by means of an event loop which monitors the 
mouse, keyboard, and other sources of external events and 30 

calls the appropriate parts of the programmer's code accord
ing to actions that the user performs. The programmer no 
longer determines the order in which events occur. Instead, 
a program is divided into separate pieces that are called at 
unpredictable times and in an unpredictable order. By relin- 35 

quishing control in this way to users, the developer creates 
a program that is much easier to use. Nevertheless, indi
vidual pieces of the program written by the developer still 
call libraries provided by the operating system to accomplish 
certain tasks, and the programmer must still determine the 40 

flow of control within each piece after it's called by the 
event loop. Application code still "sits on top of' the system. 

Even event loop programs require programmers to write 
a lot of code that should not need to be written separately for 
every application. The concept of an application framework 45 

carries the event loop concept further. Instead of dealing 
with all the nuts and bolts of constructing basic menus, 
windows, and dialog boxes and then making these things all 
work together, programmers using application frameworks 
start with working application code and basic user interface 50 

elements in place. Subsequently, they build from there by 
replacing some of the generic capabilities of the framework 
with the specific capabilities of the intended application. 

Application frameworks reduce the total amount of code 
that a programmer has to write from scratch. However, 55 

because the framework is really a generic application that 
displays windows, supports copy and paste, and so on, the 
programmer can also relinquish control to a greater degree 
than event loop programs permit. The framework code takes 
care of almost all event handling and flow of control, and the 60 

programmer's code is called only when the framework 
needs it (e.g., to create or manipulate a proprietary data 
structure). 

A programmer writing a framework program not only 
relinquishes control to the user (as is also true for event loop 65 

programs), but also relinquishes the detailed flow of control 
within the program to the framework. This approach allows 

priate times. 
There are three main differences between frameworks and 

class libraries: 
Behavior versus protocol. Class libraries are essentially 

collections of behaviors that you can call when you 
want those individual behaviors in your program. A 
framework, on the other hand, provides not only behav
ior but also the protocol or set of rules that govern the 
ways in which behaviors can be combined, including 
rules for what a programmer is supposed to provide 
versus what the framework provides. 

Call versus override. With a class library, the code the 
programmer instantiates objects and calls their member 
functions. It's possible to instantiate and call objects in 
the same way with a framework (i.e., to treat the 
framework as a class library), but to take full advantage 
of a framework's reusable design, a programmer typi
cally writes code that overrides and is called by the 
framework. The framework manages the flow of con
trol among its objects. Writing a program involves 
dividing responsibilities among the various pieces of 
software that are called by the framework rather than 
specifying how the different pieces should work 
together. 

Implementation versus design. With class libraries, pro
grammers reuse only implementations, whereas with 
frameworks, they reuse design. A framework embodies 
the way a family of related programs or pieces of 
software work. It represents a generic design solution 
that can be adapted to a variety of specific problems in 
a given domain. For example, a single framework can 
embody the way a user interface works, even though 
two different user interfaces created with the same 
framework might solve quite different interface prob
lems. 

Thus, through the development of frameworks for solu
tions to various problems and programming tasks, signifi
cant reductions in the design and development effort for 
software can be achieved. A preferred embodiment of the 
invention utilizes HyperText Markup Language (HTML) to 
implement documents on the Internet together with a 
general-purpose secure communication protocol for a trans
port medium between the client and the Newco. HTTP or 
other protocols could be readily substituted for HTML 
without undue experimentation. Information on these prod
ucts is available in T. Berners-Lee, D. Connoly, "RFC 1866: 
Hypertext Markup Language-2.0" (November 1995); and R. 
Fielding, H, Frystyk, T. Berners-Lee, J. Gettys and J. C. 
Mogul, "Hypertext Transfer Protocol-HTTP/1.1: HTTP 
Working Group Internet Draft" (May 2,1996). HTML is a 
simple data format used to create hypertext documents that 
are portable from one platform to another. HTML docu
ments are SGML documents with generic semantics that are 
appropriate for representing information from a wide range 
of domains. HTML has been in use by the World-Wide Web 
global information initiative since 1990. HTML is an appli-



US 6,574,636 Bl 
7 

cation of ISO Standard 8879; 1986 Information Processing 
Text and Office Systems; Standard Generalized Markup 
Language (SGML). 

8 
allowing developers to create server applications. One of 
ordinary skill in the art readily recognizes that ActiveX 
could be substituted for JAVA without undue experimenta
tion to practice the invention. 

DETAILED DESCRIPTION 

One embodiment of the present invention is a server 
based framework utilizing component based architecture. 
Referring to FIG. 2A, one embodiment of the present 
invention includes an Architecture Object 200, an Applica-

To date, Web development tools have been limited in their 
ability to create dynamic Web applications which span from 5 

client to server and intemperate with existing computing 
resources. Until recently, HTML has been the dominant 
technology used in development of Web-based solutions. 
However, HTML has proven to be inadequate in the fol
lowing areas: 10 tion Object 202, a User Interface Form 204, a User Interface 

Controller 206, a Client Component Adapter 208, a COM 
Component Interface 210, and a Server Component 222. 

Poor performance; 
Restricted user interface capabilities; 
Can only produce static Web pages; 
Lack of interoperability with existing applications and 

15 
data; and 

In general, the components of the present invention oper
ate as shown in FIG. 2B. In step 230, data is stored in an 
object of the component. In step 232, functions which 
manipulate the object are encapsulated with the object data. 
Later, in step 234, the stored object data can be manipulated 
by other components utilizing the functions of step 232. 

Inability to scale. 
Sun Microsystem's Java language solves many of the 

client-side problems by: 
Improving performance on the client side; 
Enabling the creation of dynamic, real-time Web appli

cations; and 
Providing the ability to create a wide variety of user 

interface components. 

Architecture Object 
20 

With Java, developers can create robust User Interface 25 

(UI) components. Custom "widgets" (e.g., real-time stock 
tickers, animated icons, etc.) can be created, and client-side 
performance is improved. Unlike HTML, Java supports the 
notion of client-side validation, offloading appropriate pro
cessing onto the client for improved performance. Dynamic, 30 

real-time Web pages can be created. Using the above
mentioned custom UI components, dynamic Web pages can 
also be created. 

The Architecture Object 200 provides an easy-to-use 
object model that masks the complexity of the architecture 
on the client. The Architecture Object 200 provides purely 
technical services and does not contain any business logic or 
functional code. It is used on the client as the single point of 
access to all architecture services. 

On the server side, the Architecture Object 200 is supple
mented by a set of global functions contained in standard VB 
modules 

The Architecture Object 200 is responsible for providing 
all client architecture services (i.e., codes table access, error 
logging, etc.), and a single point of entry for architecture 
services. The Architecture Object 200 is also responsible for 
allowing the architecture to exist as an autonomous unit, 
thus allowing internal changes to be made to the architecture Sun's Java language has emerged as an industry

recognized language for "programming the Internet." Sun 
defines Java as: "a simple, object-oriented, distributed, 
interpreted, robust, secure, architecture-neutral, portable, 
high-performance, multithreaded, dynamic, buzzword
compliant, general-purpose programming language. Java 
supports programming for the Internet in the form of 
platform-independent Java applets." Java applets are small, 
specialized applications that comply with Sun's Java Appli
cation Programming Interface (API) allowing developers to 
add "interactive content" to Web documents (e.g., simple 
animations, page adornments, basic games, etc.). Applets 
execute within a Java-compatible browser (e.g., Netscape 
Navigator) by copying code from the server to client. From 
a language standpoint, Java's core feature set is based on 
C++. Sun's Java literature states that Java is basically, "C++ 
with extensions from Objective C for more dynamic method 
resolution." 

Another technology that provides similar function to 
JAVA is provided by Microsoft and ActiveX Technologies, 
to give developers and Web designers wherewithal to build 
dynamic content for the Internet and personal computers. 
ActiveX includes tools for developing animation, 3-D vir
tual reality, video and other multimedia content. The tools 
use Internet standards, work on multiple platforms, and are 
being supported by over 100 companies. The group's build
ing blocks are called ActiveX Controls, small, fast compo
nents that enable developers to embed parts of software in 
hypertext markup language (HTML) pages. ActiveX Con
trols work with a variety of programming languages includ
ing Microsoft Visual C++, Borland Delphi, Microsoft Visual 
Basic programming system and, in the future, Microsoft's 
development tool for Java, code named "Jakarta." ActiveX 
Technologies also includes ActiveX Server Framework, 

35 with minimal impact to application. 
The Architecture Object 200 provides a code manager, 

client profile, text manager, ID manager, registry manager, 
log manager, error manager, and a security manager. The 
codes manager reads codes from a local database on the 

40 client, marshals the codes into objects, and makes them 
available to the application. The client profile provides 
information about the current logged-in user. The text man
ager provides various text manipulation services such as 
search and replace. The ID manager generates unique IDs 

45 and timestamps. The registry manager encapsulates access 
to the system registry. The log manager writes error or 
informational messages to the message log. The error man
ager provides an easy way to save and re-raise an error. And 
the security manager determines whether or not the current 

50 user is authorized to perform certain actions. 
Application Object 

The Application Object 202 has a method to initiate each 
business operation in the application. It uses late binding to 
instantiate target UI controllers in order to provide 

55 autonomy between windows. This allows different control
lers to use the Application Object 202 without statically 
linking to each and every UI controller in the application. 

When opening a UI controller, the Application Object 202 
calls the architecture initialization, class initialization, and 

60 form initialization member functions. 
The Application Object 202 keeps a list of every active 

window, so that it can shut down the application in the event 
of an error. When a window closes, it tells the Application 
Object 202 , and is removed from the Application Object's 

65 202 list of active windows. 
The Application Object 202 is responsible for instantiat

ing each UI Controller 206, passing data/business context to 



US 6,574,636 Bl 
9 10 

Business Objects 207 contain information about a single 
business entity and maintain the integrity of that inform a
tion. The BO 207 encapsulates business rules that pertain to 
that single business entity and maintains relationships with 

the target UI Controller 206, and invoking standard services 
such as initialize controller, initializing Form and Initialize 
Architecture. The Application Object 202 also keeps track of 
which windows are active so that it can coordinate the 
shutdown process. 
UI Form 

The UI form's 204 primary responsibility is to forward 
important events to its controller 206. It remains mostly 
unintelligent and contains as little logic as possible. Most 
event handlers on the form simply delegate the work by 
calling methods on the form's controller 206. 

5 other business objects (e.g., an insurance claim contains a 
collection of supplements). Finally, the BO 207 provides 
additional properties relating to the status of the information 
it contains (such as whether that information has changed or 
not), provides validation of new data when necessary, and 

The UI form 204 never enables or disables its own 
controls, but ask its controller 206 to do it instead. Logic is 
included on the UI form 204 only when it involves very 
simple field masking or minor visual details. 

10 calculates attributes that are derived from other attributes 
(such as Full Name, which is derived from First Name, 
Middle Initial, and Last Name). 
Client Component Adapters 

Client Component Adapters (CCAs) 208 are responsible 
The UI form 204 presents an easy-to-use, graphical inter

face to the user and informs its controller 206 of important 
user actions. The UI form 204 may also provide basic data 
validation (e.g., data type validation) through input masking. 

15 for retrieving, adding, updating, and deleting business 
objects in the database. CCAs 208 hide the storage format 
and location of data from the UI controller 206. The UI 
controller 206 does not care about where or how objects are 

In addition, the UI form is responsible for intelligently 
resizing itself, launching context-sensitive help, and unload 20 

itself. 
User Interface Controller 

stored, since this is taken care of by the CCA 208. 
The CCA 208 marshals data contained in recordsets 

returned by the server into business objects 207. CCAs 208 
masks all remote requests from UI Controller 206 to a 
specific component, and act as a "hook" for services such as 
data compression, and data encryption. 

Every UI Controller 206 includes a set of standard meth
ods for initialization, enabling and disabling controls on its 
UI form 204, validating data on the form, getting data from 
the UI form 204, and unloading the UI form 204. 

25 COM Component Interface 

UI Controllers 206 contain the majority of logic to 
manipulate Business Objects 207 and manage the appear
ance of its UI form 204. If its form is not read-only, the UI 
Controller 206 also tracks whether or not data on the UI 30 

form 204 has changed, so as to avoid unnecessary database 
writes when the user decides to save. In addition, controllers 
of auxiliary windows (like the File-Save dialog box in 
Microsoft Word), keep track of their calling UI controller 
206 so that they can notify it when they are ready to close. 35 

FIG. 2C is a flowchart showing how the UI Controller 
operates in one embodiment of the present invention. In step 
236, data is entered in a UI form by a user. In step 238, the 
UI controller interprets the data entered into the UI form. In 
step 240, the UI controller places the appropriate data into 40 

a Business Object to be utilized and retrieved later. 
A UI Controller 206 defines a Logical Unit of Work 

(LUW). If an LUW involves more than one UI Controller 
206, the LUW is implemented as a separate object. 

The UI Controller 206 is responsible for handling events 45 

generated by the user interacting with the UI form 204 and 
providing complex field validation and cross field validation 
within a Logical Unit of Work. The UI Controller 206 also 
contains the logic to interact with business objects 207, and 
creates new business objects 207 when necessary. Finally, 50 

the UI Controller 206 interacts with Client Component 
Adapters 208 to add, retrieve, modify, or delete business 
objects 207, and handles all client-side errors. 
Business Objects 

The Business Object's (BO) 207 primary functionality is 55 

to act as a data holder, allowing data to be shared across User 
Interface Controllers 206 using an object-based program
ming model. 

BOs 207 perform validation on their attributes as they are 
being set to maintain the integrity of the information they 60 

contain. BOs 207 also expose methods other than accessors 
to manipulate their data, such as methods to change the life 
cycle state of a BO 207 or to derive the value of a calculated 
attribute. 

In many cases, a BO 207 will have its own table in the 65 

database and its own window for viewing or editing opera
tions. 

A COM Component Interface (CCI) 210 is a "contract" 
for services provided by a component. By "implementing" 
an interface (CCI) 210, a component is promising to provide 
all the services defined by the CCI 20. 

The CCI 210 is not a physical entity (which is why it is 
depicted with a dotted line). It's only reason for existence is 
to define the way a component appears to other objects. It 
includes the signatures or headers of all the public properties 
or methods that a component will provide. 

To implement a CCI 210, a server component exposes a 
set of specially named methods, one for each method defined 
on the interface. These methods should do nothing except 
delegate the request to a private method on the component 
which will do the real work. 

The CCI 210 defines a set of related services provided by 
a component. The CCI allows any component to "hide" 
behind the interface to perform the services defined by the 
interface by "implementing" the interface. 
Server Component 

Server components 222 are course grained and transaction 
oriented. They are designed for maximum efficiency. 

Server Components 222 encapsulate all access to the 
database, and define business transaction boundaries. In 
addition, Server Components 222 are responsible for ensur
ing that business rules are honored during data access 
operations. 

A Server Component 222 performs data access operations 
on behalf of CCAs 208 or other components and participates 
in transactions spanning server components 222 by commu
nicating with other server components 222. The Server 
Component 222 is accessible by multiple front end person
alities (e.g., Active Server Pages), and contains business 
logic designed to maintain the integrity of data in the 
database. 

FIG. 2D is a flowchart showing the interactions between 
the CCA, the CCI, and the Server Component in accordance 
with one embodiment of the present invention. In step 242, 
a request is made to place client created data on the server 
database. In step 244, the data is transferred to the server 
component 222 utilizing a CCI 210. In step 246, the server 
component 222 stores the data in the server database. 



US 6,574,636 Bl 
11 

Business Rule Placement 
Overview 

The distribution of business rules across tiers of the 
application directly affects the robustness and performance 
of the system as a whole. Business rules can be categorized 
into the following sections: Relationships, Calculations, and 
Business Events. 
Relationships between Business Objects 

Business Objects 207 are responsible for knowing other 
business objects 207 with which they are associated. 

Relationships between BOs 207 are built by the CCA208 
during the marshaling process. For example, when a CCA 
208 builds an insurance claim BO 207, it will also build the 
collection of supplements if necessary. 
Calculated Business Data 

Business rules involving calculations based on business 
object 207 attributes are coded in the business objects 207 
themselves. Participant Full Name is a good example of a 
calculated attribute. Rather than force the controllers to 
concatenate the first name, middle initial, and last name 
every time they wanted to display the full name, a calculated 
attribute that performs this logic is exposed on the business 
object. In this way, the code to compose the full name only 
has to be written once and can be used by many controllers 
206. 

12 
authorization from the security component, or making calls 
to the CCA 208. 
Authorization 

All logic for granting authorization is encapsulated inside 
5 the security component. Controllers 206 and components 

222 must ask the security component if the current user is 
authorized to execute certain business operations in the 
system. The security component will answer yes or no 
according to some predefined security logic. 

10 

Type of Business 
15 Rule 

Maintaining 
relationships 
between BOs 
Building 
relationships 

20 between BOs 

Summary 

Example Responsibility 

Claim keeps a collection of supple- Business 
ments Objects 

CCA builds the claim's 
collection of supplements 

CCAs 

Calculated Business Participant calculates its full name Business 
Objects 
Components 

Data 
Responses to 
Business Events 
Requesting 

25 Authorization 

Task Component collaborates 
with other components 

Controllers 
and 

Another example of a calculated attribute is the display 
date of a repeating task. When a task with a repeat rule is 
completed, a new display date must be determined. This 
display date is calculated based on the date the task was 
completed, and the frequency of repetition defined by the 30 

repeat rule. Putting the logic to compute the new display 
date into the Task BO 207 ensures that it is coded only once. 
Responses to Business Events 

Granting 
Authorization 

Task Library controller asks 
the securitycomponent if the 
current user is allowed 
to access Task Library 
Security component determines 
whether or not the current user 
can access Task Library 

Window Processing Framework 

Components 
Security 
Component 

The Default Window Framework provides default win
dow processing for each window contained within the Business rules that relate to system events and involve no 

user interaction are enforced on the server components. 
Completion of a task is a major event in the system. When 

35 system. This default processing aides the developer in 
developing robust, maintainable Uis, standardizes common 
processes (such as form initialization) and facilitates smooth 
integration with architecture services. 

a task is completed, the system first ensures that the per
former completing the task is added to the claim. Then, after 
the task is marked complete in the database, it is checked to 
see if the task has a repeat rule. If so, another task is created 40 

and added to the database. Finally, the event component is 
notified, because the Task Engine may need to react to the 
task completion. 

FIG. 3 shows the life cycle of a typical User Interface and 
the standard methods that are part of the Window Processing 
Framework 300. 

The Window Processing Framework 300 
the following: 

encompasses 

Consider the scenario if the logic to enforce this rule were 
placed on the UI controller 206. 

The controller 206 calls the Performer Component to see 
if the performer completing the task has been added to the 
claim. If the performer has not been added to the claim, then 
the controller 206 calls the performer component again to 
add them. 

Next, the controller 206 calls the Task Component to 
mark the task complete in the database. If the task has a 
repeat rule, the controller 206 computes the date the task is 
to be redisplayed and calls the Task Component again to add 
a new task. Lastly, the controller 206 calls the Event 
Component to notify the Task Engine of the task completion. 

The above implementation requires five network round 
trips in its worst case. In addition, any other controller 206 
or server component 222 that wants to complete a task must 
code this logic all over again. Enforcing this rule in the task 
server component 222 reduces the number of network round 
trips and eliminates the need to code the logic more than 
once. 
Responses to User Events 

All responses to user events are coordinated by the 
controller 206. The controller 206 is responsible for actions 
such as enabling or disabling controls on its form, requesting 

45 

50 

Window Initialization 302; 
Window Save Processing 304; 
Window Control State Management 306; 
Window Data Validation 308; 
Window Shutdown Processing 310. 
Window Initialization Processing 302: After creating a 

controller 206 for the desired window, the App object 202 
calls a set of standard initialization functions on the con
troller 206 before the form 204 is displayed to the user. 
Standardizing these functions makes the Uis more homo-

55 geneous throughout the application, while promoting good 
functional decomposition. 

Window Save Processing 304: Any time a user updates 
any form text or adds an item to a ListBox, the UI Controller 
206 marks the form as "dirty". This allows the UI controller 

60 206 to determine whether data has changed when the form 
closes and prompt the user to commit or lose their changes. 

Window Control State Management 306: Enabling and 
disabling controls and menu options is a very complex part 
of building a UI. The logic that modifies the state of controls 

65 is encapsulated in a single place for maintainability. 
Window Data Validation 308: Whenever data changes on 

a form, validation rules can be broken. The controller is able 



US 6,574,636 Bl 
13 

to detect those changes, validate the data, and prompt the 
user to correct invalid entries. 

Window Shutdown Processing 310: The Window Shut
down framework provides a clear termination path for each 
UI in the event of an error. This reduces the chance of 5 

memory leaks, and General Protection failures. 
Benefits 

Standardized Processing: Standardizing the window pro
cessing increases the homogeneity of the application. This 
ensures that all windows within the application behave in a 10 

consistent manner for the end users, making the application 
easier to use. It also shortens the learning curve for devel
opers and increases maintainability, since all windows are 
coded in a consistent manner. 

Simplified Development: Developers can leverage the 15 

best practices documented in the window processing frame
work to make effective design and coding decisions. In 
addition, a shell provides some "canned" code that gives 
developers a head start during the coding effort. 

Layered Architecture: Because several architecture mod- 20 

ules provide standardized processing to each application 
window, the core logic can be changed for every system 
window by simply making modifications to a single proce
dure. 

Window Initialization 302 

To open a new window, the App Object 202 creates the 
target window's controller 206 and calls a series of methods 

25 

on the controller 206 to initialize it. The calling of these 
methods, ArchinitClass, InitClass, InitForm, and 30 

ShowForm, is illustrated below. 
ArchinitClass 

The main purpose of the ArchinitClass function is to tell 
the target controller 206 who is calling it. The App Object 
202 "does the introductions" by passing the target controller 35 

206 a reference to itself and a reference to the calling 
controller 206. In addition, it serves as a hook into the 
controller 206 for adding architecture functionality in the 
future. 

Public Sub ArchinitClass( objApp As Object, objCallingCfLR As 
Object) 

' remember who called me 

40 

Set m_objApp ~ objApp 45 
Set m_objCallingCfLR ~ objCallingCTLR 

End Sub 

InitClass 
This function provides a way for the App Object 202 to 50 

give the target controller 206 any data it needs to do its 
processing. It is at this point that the target controller 206 can 
determine what "mode" it is in. Typical form modes include, 
add mode, edit mode, and view mode. If the window is in 
add mode, it creates a new BO 207 of the appropriate type 55 

in this method. 

Public Sub InitClass(colPrevSelection As CArchCollection) 
If colPrevSelection Is Nothing Then 

Else 

' no accounts were previously selected 
Set m_colPrevSelection ~ New CArchCollection 
Set m_colNewSelection ~ New CArchCollection 

' some accounts may have already been selected 
Set m_colPrevSelection = colPrevSelection 
Set m_colNewSelection ~ colPrevSelection.Clone() 

60 

65 

14 

-continued 

End If 
Set m_colResults ~ New CArchCollection 
DetermineFormMode ( ) 

End Sub 

InitForm 
The InitForm procedure of each controller 206 coordi

nates any initialization of the form 204 before it is displayed. 
Because initialization is often a multi-step process, InitForm 
creates the window and then delegates the majority of the 
initialization logic to helper methods that each have a single 
purpose, in order to follow the rules of good functional 
decomposition. For example, the logic to determine a form's 
204 state based on user actions and relevant security restric
tions and move to that state is encapsulated in the Deter
mineFormState method. 

Public Sub InitForm( ) 
' create my form 
Set m frmCurrentForm = New frmAccountSearch 
' figure out the state of my form based on arguments I 

received in InitClass and 
' enable/disable the appropriate controls 
DetermineFormState ( ) 
' fill my form with data 
PopulateForm () 

End Sub 

Populate Form 
PopulateForm is a private method responsible for filling 

the form with data during initialization. It is called exactly 
once by the InitForm method. PopulateForm is used to fill 
combo boxes on a form 204, get the details of an object for 
an editing window, or display objects that have already been 
selected by the user, as in the following example. 

Private Sub PopulateForm( ) 
Dim acct As CAccount 
Dim item As GTListltem 
' display any accounts already selected by the user 
' create and add a Listltem for every Account in the 

previous selection collection 
With frmCurrentForm.lvwResults.Listltems 

.Clear 
For Each acct In m colPrevSelection 

Next 

Set item ~ .Add(, acct.Number, acct.Number) 
item.Subltems(1) ~ acct.Name 

End With 
End Sub 

Show Form 
The ShowForm method simply centers and displays the 

newly initialized form 204. 

Public Sub ShowForm() 
' center my form 
frmCurrentForm.Move (Screen.Width- frmCurrentForm.Width) I 

2,_ 
(Screen.Height - frmCurrentForm.Height) 

I 2 
' display my form 
frmCurrentForm. Show vbModal 

End Sub 



US 6,574,636 Bl 
15 

Window Control State Management 306 

It is often necessary to enable or disable controls on a 
form 204 in response to user actions. This section describes 
the patterns employed by the Component Based Architecture 
for MTS (CBAM) to manage this process effectively. 
Form Mode 

5 

16 
DetermineFormState is the only method that modifies the 

state of any of the controls on the form 204. Because control 
state requirements are so complex and vary so widely, this 
is the only restriction made by the architecture framework. 

If necessary, parameters are passed to the Determine
FormState function to act as "hints" or "clues" for deter
mining the new state of the form 204. For complex forms, 
it is helpful to decompose the DetermineFormState function 
into a number of helper functions, each handling a group of 

It is helpful to distinguish between form mode and form 
state. Form mode indicates the reason the form 204 has been 
invoked. Often, forms 204 are used for more than one 
purpose. A common example is the use of the same form to 
view, add, and edit a particular type of object, such as a task 
or a claim. In this case, the form's modes would include 
View, Add, and Update. 

10 related controls on the form or moving the form 204 to a 
different state. 

The modes of a form 204 are also used to comply with 
security restrictions based on the current user's access level. 15 

For example, Task Library is a window that limits access to 
task templates based on the current user's role. It might have 
a Librarian mode and a Non-Librarian mode to reflect the 
fact that a non-librarian user cannot be allowed to edit task 
templates. In this way, modes help to enforce the require- 20 

ment that certain controls on the form 204 remain disabled 
unless the user has a certain access level. 

It is not always necessary for a form 204 to have a mode; 
a form might be so simple that it would have only one mode 
- the default mode. In this case, even though it is not 25 

immediately necessary, it may be beneficial to make the 
form "mode-aware" so that it can be easily extended should 
the need arise. 
Form State 

A form 204 will have a number of different states for each 30 

mode, where a state is a unique combination of enabled/ 
disabled, visible/invisible controls. When a form 204 moves 
to a different state, at least one control is enabled or disabled 
or modified in some way. 

A key difference between form mode and form state is that 35 

mode is determined when the controller 206 is initialized 
and remains constant until the controller 206 terminates. 
State is determined when the window initializes, but is 
constantly being reevaluated in response to user actions. 
Handling UI Events 40 

When the value of a control on the form 204 changes, it 
is necessary to reevaluate the state of the controls on the 
form (whether or not they are enabled/disabled or visible/ 
invisible, etc.). If changing the value of one control could 
cause the state of a second control to change, an event 45 

handler is written for the appropriate event of the first 
control. 

The following table lists common controls and the events 
that are triggered when their value changes. 

Control Event 

TextBox Change 
Combo Box Change 
ListBox Click 
CheckBox Click 
Option Button Click 

50 

55 

The event handler calls the DetermineFormState method 60 

on the controller 206. 
Setting the State of Controls 

It is essential for maintainability that the process of setting 
the state of controls be separate from the process for setting 
the values of those controls. The DetermineFormState 65 

method on the controller 206 forces this separation between 
setting the state of controls and setting their values. 

EXAMPLE 

The Edit/AddNiew Task Window has three modes: Edit, 
Add, and View. In Add mode, everything on the form is 
editable. Some details will stay disabled when in Edit mode, 
since they should be set only once when the task is added. 
In both Add and Edit modes, the repeat rule may be edited. 
Enabling editing of the repeat rule always disables the 
manual editing of the task's due and display dates. In View 
mode, only the Category combo box and Private checkbox 
are enabled. 

' Edit/Add/View Task Form 
Private Sub txtName_Change() 

myController.DetermineFormState 
End Sub 
' Edit/Add/View Task Controller 
Public Sub DetermineFormState( ) 

On Error Goto ErrorHandler 
Select Case m_nFormMode 

' In Edit Mode, enable only "editable" details and 
Repeat Rule editing if necessary 

Case cmFormModeEdit 
EnableAddDetails False 
EnableEditDetails True 
Enable View Details True 
If m_frmCurrentForm.chkRepetetiveTask.Checked Then 

EnableEditRepeatRule True 
EnableEditDisplayDueDates False 

Else 
EnableEditRepeatRule False 
EnableEditDisplayDueDates True 

End If 
If m_nFormDirty Then EnableSave True Else 

EnableSave False 
' In Add Node, enable all details and Repeat Rule 

editing if necessary 
Case cmFormModeAdd 

EnableAddDetails True 
EnableEditDetails True 
Enable View Details True 
If m_frmCurrentForm.chkRepetetiveTask.Checked Then 

EnableEditRepeatRule True 
EnableEditDisplayDueDates False 

Else 
EnableEditRepeatRule False 
EnableEditDisplayDueDates True 

End If 
If m_nFormDirty Then EnableSave True Else 

EnableSave False 

details 
' In View Mode, disable everything except a few 

Case cmFormModeView 
EnableAddDetails False 
EnableEditDetails False 
Enable View Details True 
EnableEditRepeatRule False 
EnableEditDisplayDueDates False 
EnableSave False 

Case Else 
End Select 
Exit Sub 



US 6,574,636 Bl 
17 

-continued 

Error Handler: 

18 
date). If the business object 207 contains validation rules, 
the controller 206 may call a method on the business object 
207 to make sure those rules are not violated. 

If invalid data is detected by the controller 206, it will ' error handling 
End Sub 
' Edit/Add/View Task Controller 
Private Sub EnableAddDetails(b YesNo As Boolean) 

On Error Goto ErrorHandler 
' Enable or disable controls that should be available only 

when the task is being added. 

5 notify the user with a message box and, if possible, the 
indicate which field or fields are in error. Under no circum
stances will the window perform validation when the user is 
trying to cancel. 

With frmCurrentForm 
.Name.Enabled ~ bYesNo 
.Description.Enabled ~ bYesNo 
.Type.Enabled ~ bYesNo 
.Level. Enabled ~ b YesNo 
.Source.Enabled ~ bYesNo 

End With 
Exit Sub 

Error Handler: 
' error handling logic 

End Sub 

Window Data Validation 308 

10 

15 

20 

Window data validation is the process by which data on 
the window is examined for errors, inconsistencies, and 
proper formatting. It is important, for the sake of 
consistency, to implement this process similarly or identi- 25 

cally in all windows of the application. 
Types of Validation 
Input Masking 

Input masking is the first line of defense. It involves 
screening the data (usually character by character) as it is 30 

entered, to prevent the user from even entering invalid data. 
Input masking may be done programmatically or via a 
special masked text box, however the logic is always located 
on the form, and is invoked whenever a masked field 
changes. 
Single-Field Range Checking 

35 

Single-field range checking determines the validity of the 
value of one field on the form by comparing it with a set of 
valid values. Single-field range checking may be done via a 
combo box, spin button, or programmatically on the form, 40 

and is invoked whenever the range-checked field changes. 
Cross-Field Validation 

Example 

' Generic Edit Form 
Private Sub cmdOK_Click() 

On Error Goto ErrorHandler 
' shut down if my data is valid. 
' saving/canceling will occur in my controller's 

QueryUnload function 
If IsFormData Valid Then Unload Me 
Exit Sub 

Error Handler: 
Err.Raise Err.Number 

End Sub 
Public Function IsFormDatavalid() As Boolean 

On Error Goto ErrorHandler 
' assume success 
IsFormData Valid ~ True 
' evaluate all validation rules 
With frmCurrentForm 

make sure start date is earlier than end date 
If .txtStartDate.Text > .txtEndDate.Text Then 

IsFormData Valid ~ False 
MsgBox cmMsginvalidEndDate 
.txtEndDate.SetFocus 

Elseif ... 
' more validation rules 

End If 
End With 
Exit Function 

Error Handler: 
' error handling logic 

End Function 

Window Save Processing 304 

Window "Save Processing" involves tracking changes to 
data on a form 204 and responding to save and cancel events 
initiated by the user. 
Tracking Changes to Form Data 

Each window within the CBAM application contains a 
Cross-field validation compares the values of two or more 

fields to determine if a validation rule is met or broken, and 
occurs just before saving (or searching). Cross-field valida
tion may be done on the Controller 206 or the Business 
Object 207, however it is preferable to place the logic on the 
Business Object 207 when the validation logic can be shared 
by multiple Controllers 206. 

45 field within its corresponding control object known as the 
dirty flag. The dirty flag is set to True whenever an end user 
modifies data within the window. This field is interrogated 
by the UI Controller 206 to determine when a user should be 
prompted on Cancel or if a remote procedure should be 

Invalid data is caught and rejected as early as possible 
during the input process. Input masking and range checking 
provide the first line of defense, followed by cross-field 
validation when the window saves (or searches). 

50 invoked upon window close. 
The application shell provides standard processing for 

each window containing an OK or Save button. 
Saving 

Single-Field Validation 
All single-field validation is accomplished via some sort 

The default Save processing is implemented within the UI 
55 Controller 206 as follows: 

of input masking. Masks that are attached to textboxes are 
used to validate the type or format of data being entered. 
Combo boxes and spin buttons may also be used to limit the 
user to valid choices. If neither of these are sufficient, a small 
amount of logic may be placed on the form's event handler 60 

to perform the masking functionality, such as keeping a 
value below a certain threshold or keeping apostrophes out 
of a textbox. 

The UI Controller is Notified that the OK button has been 
clicked. Then the controller 206 checks its Dirty Flag. If flag 
is dirty, the controller 206 calls the InterrogateForm method 
to retrieve data from the form 204 and calls a server 
component 222 to store the business object 207 in the 
database. If the Dirty Flag is not set, then no save is 
necessary. The window is then closed. 
Canceling 

Cross-Field Validation 
When the user clicks OK or Save, the form calls the 

IsFormData Valid on the controller to perform cross-field 
validation (e.g., verifying that a start date is less than an end 

When the user cancels a window, the UI Controller 206 
65 immediately examines the Dirty Flag. If the flag is set to 

true, the user is prompted that their changes will be lost if 
they decide to close the window. 



US 6,574,636 Bl 
19 

Once prompted, the user can elect to continue to close the 
window and lose their changes or decide not to close and 
continue working. 

Window Shutdown Processing 310 

In the event of an error, it is sometimes necessary to 
shutdown a window or to terminate the entire application. It 

5 

is critical that all windows follow the shutdown process in 
order to avoid the GPFs commonly associated with termi- 10 

nating incorrectly. Following is how the window/application 
is shutdown. 

Shutdown Scope 

The scope of the shutdown is as small as possible. If an 15 

error occurs in a controller 206 that does not affect the rest 
of the application, only that window is shut down. If an error 
occurs that threatens the entire application, there is a way to 
quickly close every open window in the application. The 
window shutdown strategy is able to accommodate both 20 

types of shutdowns. 

Shutdown 

20 

-continued 

Case cmErrorQuiesce 
Quiesce 

Case Else 
objApp.Shutdown 

End Select 
End Select 

End Sub 

In order to prevent recursive calls the GeneralErrorHan
dler keeps a collection of controllers that are in the process 
of shutting down. If it is called twice in a row by the same 
controller 206, it is able to detect and short-circuit the loop. 
When the controller 206 finally does terminate, it calls the 
UnRegisterError function to let the GeneralErrorHandler 
know that it has shut down and removed from the collection 
of controllers. 
Shutdown Process 

After being told what to do by the GeneralErrorHandler, 
the controller 206 in error may try to execute the statement 
that caused the error, proceed as if nothing happened, exit 
the current function, call its Quiesce function to shut itself 
down, or call the Shutdown method on the App Object 202 In order to know what windows must be shut down, the 

architecture tracks which windows are open. Whenever the 
App Object 202 creates a controller 206, it calls its 
RegCTLR function to add the controller 206 to a collection 

25 to shut the entire application down. 

of open controllers. Likewise, whenever a window closes, it 
tells the App Object 202 that it is closing by calling the App 
Object's 202 UnRegCTLR function, and the App Object 202 
removes the closing controller 206 from its collection. In the 30 

case of an error, the App Object 202 loops through its 
collection of open controllers, telling each controller to 
"quiesce" or shutdown immediately. 

Additional Standard Methods 
Searching 

Controllers 206 that manage search windows have a 
public method named Find<Noun>s where <Noun> is the 
type of object being searched for. This method is called in 
the event handler for the Find Now button. 
Saving 

Any controller 206 that manages an edit window has a 
GeneralErrorHandler 

35 public method called Save that saves changes the user makes 
to the data on the form 204. This method is called by the 
event handlers for both the Save and OK buttons (when/if 
the OK button needs to save changes before closing). 

The GeneralErrorHandler is a method in MArch.bas that 
acts as the point of entry into the architecture's error 
handling mechanism. A component or a controller will call 
the GeneralErrorHandler when they encounter any type of 
unexpected or unknown error. The general error handler will 40 
return a value indicating what the component or controller 
should do: (1) resume on the line that triggered the error (2) 
resume on the statement after the line that triggered the error 
(3) exit the function ( 4) quiesce (5) shutdown the entire 
application. 

Error Handler: 
Select Case CStr(Err.Number) 

handle a search with no result error 
Case cmErrN oClaimTreeData 

MsgBox cmMsgNoResultsQuery, vblnformation 
frmCurrentForm.StatusBar.Panels(1) ~ 

cmNoResultsQuery 
'Sets mouse pointer back to default 
frmCurrentForm.MousePointer ~ vbDefault 

Case Else 
Dim nResumeCode As Integer 
nResumeCode = 

GeneralErrorHandler( objApp.objArch.AsMsgStruct, cmController, 

cmMethodName) 
Select Case CStr(nResumeCode) 

Case cmErrorResume 
Resume 

Case cmErrorResumeNext 
Resume Next 

Case cmErrorExit 
Exit Sub 

cmClassName, 

Closing 
A VB window is closed by the user in several ways: via 

the control-box in upper left corner, the X button in upper 
right corner, or the Close button. When the form closes, the 
only method that will always be called, regardless of the way 
in which the close was initiated, is the form's 204 Que-

45 ryUnload event handler. 

50 

Because of this, there cannot be a standard Close method. 
Any processing that must occur when a window closes is to 
be done in the QueryUnload method on the controller 206 
(which is called by the form's QueryUnload event handler). 

The VB statement, Unload Me, appears in the Close 
button's event handler to manually initiate the unloading 
process. In this way, the Close button mimics the function
ality of the control box and the X button, so that the closing 
process is handled the same way every time, regardless of 

55 how the user triggered the close. The OK button's event 
handler also executes the Unload Me statement, but calls the 
Save method on the controller first to save any pending 

60 

changes. 

Business Objects 

Business Objects 207 are responsible for containing data, 
maintaining the integrity of that data, and exposing func
tions that make the data easy to manipulate. Whenever logic 
pertains to a single BO 207 it is a candidate to be placed on 

65 that BO. This ensures that it will not be coded once for each 
controller 206 that needs it. Following are some standard 
examples of business object logic. 



US 6,574,636 Bl 
21 

Business Logic: Managing Life Cycle State 

Overview 

The "state" of a business object 207 is the set of all its 
attributes. Life cycle state refers only to a single attribute (or 

5 
a small group of attributes) that determine where the BO 207 
is in its life cycle. For example, the life cycle states of a Task 
are Open, Completed, Cleared, or Error. Business objectives 
usually involve moving a BO toward its final state (i.e., 
Completed for a Task, Closed for a Supplement, etc.). 

Often, there are restrictions on a EO's movement through 
its life cycle. For example, a Task may only move to the 
Error state after first being Completed or Cleared. BOs 
provide a mechanism to ensure that they do not violate life 

10 

cycle restrictions when they move from state to state. 15 

Approach 

A BO 207 has a method to move to each one of its 
different life cycle states. Rather than simply exposing a 
public variable containing the life cycle state of the task, the 
BO exposes methods, such as Task.Clear( ), Task. 20 

Complete( ), and Task.MarkinError( ), that move the task a 
new state. This approach prevents the task from containing 
an invalid value for life cycle state, and makes it obvious 
what the life cycle states of a task are. 

Example 

' CTask Business Object 
Public Sub Mark:InError() 

On Error Goto ErrorHandler 
Select Case m_nLifeCycleState 

' move to error only if I've already been completed or 
cleared 

25 

30 

22 

-continued 

Public Function HasOpenTasks() As Boolean 
' assume that I have open tasks 
HasOpenTasks ~ True 

open 
' loop through all my tasks and exit if I find one that is 

Dim task As CTask 
For Each task In m_colTasks 

If task.IsOpen( ) Then Exit Function 
Next task 
' I must not have any open tasks 
HasOpenTasks ~ False 

End Function 
Public Function HasOpenSupplements() As Boolean 

' assume that I have open supplements 
HasOpenSupplements ~ True 
' loop through all my supplements and exit if I find one 

that is open 
Dim supp As CSupplement 
For Each supp In m_colSupplements 

If supp.lsOpen() Then Exit Function 
Next supp 
HasOpenSupplements ~ False 

End Function 
Public Function GetOpenTasks() As Collection 

Dim task As CTask 
Dim colOpenTasks As Collection 
For Each task In m_colTasks 

If task.IsOpen() Then colOpenTasks.Add task, task.Id 
Next task 
Set GetOpenTasks ~ colOpenTasks 

End Function 

Business Object Structures 
Overview 

When a BO 207 is added or updated, it sends all of its 
attributes down to a server component 222 to write to the Case cmTaskCompleted, cmTaskCleared 

m_nLifeCycleState ~ cmTaskinError 
' otherwise, raise an error 
Case Else 

Err.Raise cmErrinvalidLifeCycleState 
End Select 
Exit Sub 

Error Handler: 

35 database. Instead of explicitly referring to each attribute in 
the parameter list of the functions on the CCA 208 and 
server component 222, all the attributes are sent in a single 
variant array. This array is also known as a structure. 
Approach 

Err.Raise Err.Number 
End Sub 

Business Logic: Operating on Groups of Business 
Objects 

Overview 

40 Each editable BO 207 has a method named AsStruct that 
takes the object's member variables and puts them in a 
variant array. The CCA 208 calls this method on a BO 207 
before it sends the BO 207 down to the server component 
222 to be added or updated. The reason that this is necessary 

45 is that, although object references can be passed by value 
over the network, the objects themselves cannot. Only basic 
data types like Integer and String can be sent by value to a 
server component 222. A VB enumeration is used to name 
the slots of the structure, so that the server component 222 

Sometimes, a BO 207 acts as a container for a group of 
other BOs. This happens when performing operations 
involving multiple BOs. For example, to close, a claim 
ensures that it has no open supplements or tasks. There 
might be a method on the claim BO-CanClose( )-that 
evaluates the business rules restricting the closing of a claim 
and return true or false. Another situation might involve 
retrieving the open tasks for a claim. The claim can loop 55 

through its collection of tasks, asking each task if it is open 
and, if so, adding it to a temporary collection which is 
returned to the caller. 

50 can use a symbolic name to access elements in the array 
instead of an index. Note that this is generally used only 
when performing adds or full updates on a business object 
207. 

In a few cases, there is a reason to re-instantiate the BO 
207 on the server side. The FromStruct method does exactly 
the opposite of the AsStruct method and initializes the BO 
207 from a variant array. The size of the structure passed as 
a parameter to FromStruct is checked to increase the cer
tainty that it is a valid structure. Example 

' Claim Business Object 
' Error handling omitted for clarity 
Public Function CanClose() As Boolean 

CanClose ~ HasOpenTasks() And HasOpenSupplements() 
End Function 

60 When aBO 207 contains a reference to another BO 207, 
the AsStruct method stores the primary key of the referenced 
BO 207. For example, the Task structure contains a 
Performerid, not the performer BO 207 that is referenced by 
the task. When the FromStruct method encounters the Per-

65 formerid in the task structure, it instantiates a new performer 
BO and fills in the ID, leaving the rest of the performer BO 
empty. 



US 6,574,636 Bl 
23 

Example 

' CTask Business Object 
' enumeration of all task attributes 
Public Enum TaskAttributes 

cmTaskld 
cmTaskName 

cmTaskDescription 
End Enum 
' all task attributes declarations here 
' all setter and getter functions here 
Public Function AsStruct() As CTask 

On Error Goto ErrorHandler 
' create and fill structure 
Dim vStruct(cmTaskNumOfAttributes- 1) As Variant 
vStruct(cmTaskld) ~ m_vld 
vStruct(cmTaskName) ~ m_sName 
vStruct(cmTaskPerformerld) ~ m_vPerformerld 

vStruct(cmTaskDescription) ~ m_sDescription 
AsStruct ~ vStruct 
Exit Function 

Error Handler: 
Err.Raise Err.Number 

End Function 
Public Sub FromStruct(vStruct As Variant) 

On Error Goto ErrorHandler 
' check size of vStruct 
If Ubound(vStruct) <> (cmTaskNumOfAttributes - 1) Then 

Err. Raise cmErrlnvalidParameters 
' update my values from the structure 
m_vld ~ vStruct(cmTaskld) 
m_sName ~ vStruct(cmTaskName) 
m_vPerformer.Id ~ vStruct(cmTaskPerformerld) 
m_sDescription ~ vStruct(cmTaskDescription) 
Exit Sub 

Error Handler: 
Err.Raise Err.Number 

End Sub 

Cloning Business Objects 
Overview 

Often a copy of a business object 207 is made. Cloning is 

5 

10 

15 

20 

25 

30 

24 

-continued 

Dim tskClone As CTask 
Set tskClone ~ New CTask 
' fill clone with my data 
With tskClone 

.Id ~ m_vld 

.Name = m_sName 

.Performerld ~ m_vPerformerld 
Set .Performer = m_prfPerformer 

.Description = m_sDescription 
End With 
Set Clone ~ tskClone 
Exit Function 

Error Handler: 
Err.Raise Err.Number 

End Function 
Public Sub UpdateFromClone(tskClone As CTask) 

On Error Goto ErrorHandler 
' set my values egual to the clone's values 
With tskClone 

m_vld ~ .ID 
m_sName = .Name 
m_vPerformerld ~ .Performerld 
Set m_prfFerformer = .Performer 

m_sDescription = .Description 
End With 
Exit Sub 

Error Handler: 
Err. Raise Err Number 

End Sub 

Half-Baked Business Objects 
Overview 

BOs 207 occasionally are filled only half-full for perfor
mance reasons. This is done for queries involving multiple 

35 tables that return large data sets. Using half-baked BOs 207 
can be an error prone process, so it is essential that the 
half-baking of BOs are carefully managed and contained. 

In most applications, there are two kinds of windows
search windows and edit/detail windows. Search windows 

40 are the only windows that half-bake BOs 207. Generally, 
half-baking only is a problem when a detail window expect
ing a fully-baked BO receives a half-baked BO from a 
search window. 

a way to implement this kind of functionality by encapsu
lating the copying process in the BO 207 itself. Controllers 
206 that need to make tentative changes to a business object 
207 simply ask the original BO 207 for a clone and make 
changes to the clone. If the user decides to save the changes, 
the controller 206 ask the original BO to update itself from 45 
the changes made to the clone. 

Approach 
Detail windows refresh the BOs 207 they are passed by 

the search windows, regardless of whether or not they were 
already fully-baked. This addresses the problems associated 
with passing half-baked BOs and also helps ensure that the 
BO 207 is up-to-date. 

Approach 
Each BO 207 has a Clone method to return a shallow copy 

of itself. A shallow copy is a copy that doesn't include copies 
of the other objects that the BO 207 refers to, but only a copy 50 

of a reference to those objects. For example, to clone a task, 
This approach requires another type of method (besides 

Get, Add, Update, and Delete) on the CCA 208: a Refresh 
method. This method is very similar to a Get method (in fact, 
it calls the same method on the server component) but is 
unique because it refreshes the data in objects that are 

it does not give the clone a brand new claim object; it gives 
the clone a new reference to the existing claim object. 
Collections are the only exception to this rule-they are 
always copied completely since they contain references to 
other BOs. 

Each BO 207 also has an UpdateFromClone method to 
allow it "merge" a clone back in to itself by changing its 
attributes to match the changes made to the clone. 
Example 

' CTask Business Object 
Public Function Clone() As CTask 

On Error Goto ErrorHandler 
' create clone object 

55 already created. The detail window's controller 206 calls the 
appropriate CCA 208 passing the BO 207 to be refreshed, 
and may assume that, when control returns from the CCA 
208, the BO 207 will be up-to-date and fully-baked. 

This is may not be necessary if two windows are very 

60 closely related. If the first window is the only window that 
ever opens the second, it is necessary for the second window 
to refresh the BO 207 passed by the first window if it knows 
that the BO 207 is baked fully enough to be used. 

65 
CCAs 

CCAs 208 are responsible for transforming data from row 
and columns in a recordset to business objects 207, and for 



US 6,574,636 Bl 
25 

executing calls to server components 222 on behalf of 
controllers 206. 

Retrieving Business Objects 

Overview 

After asking a component to retrieve data, the CCA 208 
marshals the data returned by the component into business 
objects 207 that are used by the UI Controller 206. 

Approach 

The marshaling process is as follows: 

CCAs 208 call GetRows on the recordset to get a copy of 
its data in a variant array in order to release the recordset as 
soon as possible. A method exist to coordinate the marshal
ing of each recordset returned by the component. 

Only one recordset is coordinated in the marshaling 
process of a single method. A method exist to build a BO 
from a single row of a recordset. This method is called once 

5 

10 

26 

-continued 

End With 
Set BuildTaskFromRow ~ task 
Exit Function 

Error Handler: 
Err.Raise Err.Number 

End Function 

Refreshing Business Objects 
Overview 

The logic to refresh BOs 207 is very similar to the logic 
to create them in the first place. A "refresh" method is very 
similar to a "get" method, but must use BOs 207 that already 

15 exist when carrying out the marshalling process. 
Example 

for each row in the recordset by the marshaling coordination 20 

method. 

'Task CCA 
Public Sub Refresh Task( task As CTask) 

On Error Goto ErrorHandler 
Example 

'Task CCA 
Public Function GetAllTasks() As Collection 

On Error Goto ErrorHandler 
' call a helper method to retrieve tasks 
Dim vRows As Variant 
vRows ~ RetrieveAllTasks 
Dim i As Integer 
Dim task As CTask 
Dim colTasks As Collection 
Set colTasks ~ New Collection 
'vRows is dimmed as column, row. Loop til I run out of 

rows. 
For i ~ 0 To Ubound(vRows, 2) 

' build BO using helper method 
Set task ~ BulidTaskFromRow(vRows, i) 
' add to collection with ID as the key 
colTasks.Add task, task.Id 

Next i 
Set MarshalTasks ~ col Tasks 
Exit Function 

Error Handler: 
Err.Raise Err.Number 

End Function 
Private Function RetrieveAllTasks( ) As Variant 

On Error Goto ErrorHandler 
' call my component and get a recordset full of all tasks 
Dim rs As ADOR.Recordset 
Set rs ~ tskComp.GetAllTasks() 
' get data in variant array from the recordset 
GetAllTasks ~ rs.GetRows 
' release the recordset ASAP 
rs.Close 
Set rs ~ Nothing 
Exit Function 

Error Handler: 
Err. Raise Err.Number 

End Function 
Private Function BuildTaskFromRow(vRows As Variant, 
nCurrentRow As Integer, _ 

Optional task As CTask) As 
CTask 

On Error Goto ErrorHandler 
' create task if it wasn't passed 
If task Is Nothing Then Set task ~ New CTask 
' fill task with data 
With task 

.Id ~ vRows(O, nCurrentRow) 

.Name~ vRows(1, nCurrentRow) 

.Performerld ~ vRows(2, nCurrentRow) 

.Description~ vRows(32, nCurrentRow) 

25 

30 

35 

40 

' call a helper method to retrieve tasks 
Dim vRow As Variant 
v Row ~ RetrieveTaskWithld(task. !d) 
BuildTaskFromRow vRow, i, task 
Exit Sub 

Error Handler: 
Err.Raise Err.Number 

End Sub 
Private Function RetrieveTaskWithld(v!d As Variant) As Variant 

On Error Goto ErrorHandler 
' call my component and get a recordset full of all tasks 
Dim rs As ADOR.Recordset 
Set rs ~ tskComp.GetTaskWithld(v!d) 
' get data in variant array from the recordset 
RetrieveTaskWithld ~ rs.GetRows 
' release the recordset ASAP 
rs.Close 
Set rs ~ Nothing 
Exit Function 

Error Handler: 
Err.Raise Err.Number 

End Function 

Adding Business Objects 
Overview 

Controllers 206 are responsible for creating and populat-
45 ing new BOs 207. To add a BO 207 to the database, the 

controller 206 must call the CCA 208, passing the business 
object 207 to be added. The CCA 208 calls the AsStruct 
method on the BO 207, and pass the BO structure down to 
the component to be saved. It then updates the BO 207 with 

50 the ID and timestamp generated by the server. Note the 
method on the CCA 208 just updates the BO 207. 
Example 

55 

60 

65 

'Task CCA 
Public Sub AddTask(task As CTask) 

On Error Goto ErrorHandler 
' call component to add task passing a task structure 
Dim vldAndTimestamp As Variant 
vldAndTimestamp ~ tskComp.AddTask(task.AsStruct ( )) 
' update ID and Timestamp on task 
task.Id ~ vldAndTimestamp(O) 
task. TimeStamp~ vldAndTimestamp(1) 
Exit Sub 

Error Handler: 
Err.Raise Err.Number 

End Sub 



US 6,574,636 Bl 
27 28 

Updating Business Objects Example 

Overview 

The update process is very similar to the add process. The 
only difference is that the server component only returns a 5 
timestamp, since the BO already has an ID. 

Private Function MarkTasklnError( vMsg As Variant, _ 
vTaskld As Variant, _ 
!Timestamp As Variant, _ 
sReason As String) As Long 

Example 

'Task CCA 
Public Sub UpdateTask(task As CTask) 

On Error Goto ErrorHandler 
' call component to update task passing a task structure 
Dim !TimeStamp As Long 
!TimeStamp ~ tskcomp.AddTask (task.AsStruct ( )) 
' update Timestamp on task 
task.TimeStamp ~!TimeStamp 
Exit Sub 

Error Handler: 
Err.Raise Err.Number 

End Sub 

Deleting Business Objects 

Deleting Overview 

Like the add and the update methods, delete methods take 
a business object 207 as a parameter and do not have a return 
value. The delete method does not modify the object 207 it 
is deleting since that object will soon be discarded. 

10 

15 

20 

25 

with 

On Error GoTo ErrorHandler 
Canst cmMethodName ~ "MarkTasklnError" 
' set the SQL statement 
Dim sSQL As String 
sSQL ~ cmSQLMarkTasklnError 
' get a new timestamp 
Dim lNewTimeStamp As Long 
lNewTimeStamp ~ GetTimeStamp() 
' create and fill a collection of arguments to be merged 

the SQL by the ExecuteQuery method 
Dim colArgs As CCollection 
Set colArgs ~ New CCollection 
With colArgs 

.Add lNeWTimestamp 

.Add cmDBBooleanTrue 

.Add sReason 

.Add vTaskld 

.Add !Timestamp 
End With 
' run the SQL and set my return value 
ExecuteQuery vMsg, cmUpdate, sSQL, colArguments:~colArgs 
MarkTasklnError ~ lNewTimeStamp 
' tell MTS I'm done 
GetObjectContext.Setcomplete 
Exit Function 

Error Handler: 

Example 30 

' do error handling here 
End Function 

'Task CCA 
Public Sub DeleteTask(task As CTask) 

On Error Goto ErrorHandler 
' call component to update task passing a the ID and 

Timestamp 
tskComp DeleteTask task.Id, task TimeStamp 
Exit Sub 

Error Handler: 
Err.Raise Err.Number 

End Sub 

Server Component 

Server components 222 have two purposes: enforcing 
business rules and carrying out data access operations. They 
are designed to avoid duplicating logic between functions. 

Designing for Reuse 

Enforcing Encapsulation 

Each server component 222 encapsulates a single data
base table or a set of closely related database tables. As much 
as possible, server components 222 select or modify data 
from a single table. A component occasionally selects from 
a table that is "owned" or encapsulated by another compo
nent in order to use a join (for efficiency reasons). A server 
component 222 often collaborates with other server compo
nents to complete a business transaction. 

Partioning Logic Between Multiple Classes 

35 

Error Handling 

General Information 

With the exception of "Class_Initialize", "Class 
Terminate", and methods called within an error handler, 
every function or subroutine has a user defined 'On Error 
GoTo' statement. The first line in each procedure is: On 

40 Error Go To Error Handler. A line near the end of the proce
dure is given a label "ErrorHandler". (Note that because line 
labels in VB 5.0 have procedure scope, each procedure can 
have a line labeled "Error Handler"). The ErrorHandler label 
is preceded by a Exit Sub or Exit Function statement to 

45 avoid executing the error handling code when there is no 
error. 

50 

Errors are handled differently based on the module's level 
within the application (i.e., user interface modules are 
responsible for displaying error messages to the user). 

All modules take advantage of technical architecture to 
log messages. Client modules that already have a reference 
to the architecture call the Log Manager object directly. 
Because server modules do not usually have a reference to 
the architecture, they use the LogMessage() global function 

55 complied into each server component. 

Any errors that are raised within a server component 222 
are handled by the calling UI controller 206. This ensures 
that the user is appropriately notified of the error and that 

60 
business errors are not translated to unhandled fatal errors. 

If the component becomes very large, it is split into more 
than one class. When this occurs, it is divided into two 
classes---{)ne for business rules and one for data access. The 65 

business rules class implements the component's interface 
and utilizes the data access class to modify data as needed. 

All unexpected errors are handled by a general error 
handler function at the global Architecture module in order 
to always gracefully shut-down the application. 

Server Component Errors 

The error handler for each service module contains a Case 
statement to check for all anticipated errors. If the error is 



US 6,574,636 Bl 
29 

not a recoverable error, the logic to handle it is first tell MTS 
about the error by calling GetObjectContext.SetAbort( ). 
Next, the global LogMessage() function is called to log the 
short description intended for level one support personnel. 
Then the LogMessage( ) function is called a second time to 5 

log the detailed description of the error for upper level 
support personnel. Finally, the error is re-raised, so that the 
calling function will know the operation failed. 

A default Case condition is coded to handle any unex- 10 

pected errors. This logs the VB generated error then raises 
it. A code sample is provided below: 

Following is an example of how error handling in the task 
component is implemented when an attempt is made to 
reassign a task to a performer that doesn't exist. Executing 15 

SQL to reassign a task to a non-existent performer generates 
a referential integrity violation error, which is trapped in this 
error handler: 

30 
CCAs, CCis, Business Objects, and Forms 

All CCI's, CCA's, Business Objects, and Forms raise any 
error that is generated. A code sample is provided below: 

Sub SubName() 
On Error GoTo ErrorHandler 
<the procedure's code here> 

Exit Sub 
Error Handler: 

Err.Raise Err.Number 
End Sub 

User Interface Controller Errors 

The user interface controllers 206 handle any errors 

'Class Declarations 
Private Canst cmClassName ~ "CTaskComp" 
Public Sub ReassignTask( ... ) 

20 generated and passed up from the lower levels of the 
application. UI modules are responsible for handling what
ever errors might be raised by server components 222 by 
displaying a message box to the user. 

On Error GoTo ErrorHandler 
Private Canst cmMethodName ~ "ReassignTask" 
Private Const cmErrReassignTask = "Could not reassign 

task." 

' logic to reassign a task 

GetObjectContext.SetComplete 
Exit Sub 

Error Handler: 
Dim sShortDescr As String 
sShortDescr = cmErrReassignTask 
' log short description as warning 
LogMessage vMsg, Err.Number, cmSeverityWarning, 

cmClassName, cmMethodName, sShortDescr 
Dim sLongDescr As String 
Select Case Err.Number 

tried" 

Case cmErrReflntegrityViolation 
GetObjectContext.SetAbort 
sLongDescr = "Referential integrity violation -

& "to reassign task to a non-existant 
performer. " _ 

& "Association ID: " & sAssnid 
& "Association Type: " & sAssnType _ 
& "old Performer Id: " & sOldPerformerid 
& "New Performer Id: " & sNewPerformerid 

' log long description as severe 
LogMessage vMsg, Err.Number, cmSeveritySevere, 

cmClassName, cmMethodName, _ 
sLongDescr 

Err.Raise Err.Number 

' more error handling 
Case Else 

let architecture handle unanticipated error 
Dim nResumeCode As Integer 
nResumeCode = GeneralErrorHandler(vMsg, cmServer, 

cmClassName, cmMethodName) 
Select Case nResumeCode 

Case cmErrorResume 
Resume 

case cmErrorResumeNext 
Resume Next 

Case cmError Exit 
Exit Sub 

Case Else 
GetObjectContext.Abort 
Err.Raise Err.Number 

End Select 
End Select 

End Sub 

Any error generated in the UI's is also displayed to the 
25 user in a dialog box. Any error initiated on the client is 

logged using the LogMessage( ) procedure. Errors initiated 
on the server will already have been logged and therefore do 
not need to be logged again. 

30 All unexpected errors are trapped by a general error 
method at the global architecture module. Depending on the 
value returned from this function, the controller may resume 
on the statement that triggered the error, resume on the next 
statement, call its Quiesce function to shut itself down, or 

35 call a Shutdown method on the application object to shut
down the entire application. 

40 

45 

50 

55 

60 

65 

No errors are raised from this level of the application, 
since controllers handle all errors. A code sample of a 
controller error handler is provided below: 

' Class Constants 
Private Const cmClassName As String= "<ComponentName>" 
Sub SubName() 

On Error GoTo ErrorHandler 
Canst cMethodName As String~ "<MethodName>" 

<the procedure's code here> 

Exit Sub 
Error Handler: 

Select Case CStr(Err.Number) 
Case ... 

' display the error to the user 
' perform any necessary logic 
Exit Sub (or Resume, or Resume Next) 

Case Else 
Dim nResumeCode As Integer 
nResumeCode ~ GeneralErrorHandler (v Msg, 

cmController, cmClassName, cMethodName) 
Select Case CStr(nResumeCode) 
Case cmErrorResume 

Resume 
Case cmErrorResumeNext 

Resume Next 
Case cmError Exit 

Exit Sub 



US 6,574,636 Bl 
31 

-continued 

Case cmErrorQuiesce 
Quiesce 

Case Else 
objApp.SHUTDOWN 

End Select 
End Select 

End Sub 

Localization 

5 

32 
Flexible Interface 400 

Flexible user interface 400 and code makes customization 
easy. The FIG. 4 illustrates how different languages are 
repainted and recompiled. For example, both a English UI 
404, and a French UI 406 are easily accommodated. This 
entails minimal effort because both Uis share the same core 
code base 402. Updates to the Uis are merely be a superficial 

10 change. 

The CBAM application is constructed so that it can be 
localized for different languages and countries with a mini-

15 
mum effort or conversion. 

Generic graphics are used and overcrowding is avoided to 
create a user interface which is easy to localize. 

Data Localization 

Requirements and Scope 

The CBAM architecture provides support for certain 
localization features: 

Localizable Resource Repository; 

Flexible User Interface Design; 

Date Format Localization; and 

Language localization settings affect the way dates are 
displayed on Uls (user interfaces). The default system 

20 display format is different for different Language/Countries. 
For Example: 

English (United States) displays "mm/dd/yy" (e.g,., "May 
16, 1998") 

Exposure of Windows Operation System Localization 25 

Features. 
English (United Kingdom) displays "dd/mm/yy" (e.g,., 

"May 16, 1998"). 

Localization Approach Checklist 

Localization 
Feature 

Language Code 
(Locale Identifier) 
Time Zones 
Date(fime 
Name 
Telephone Numbers 
Functions to Avoid 
Weights and Measures 
Money 
Addresses/Address 
Hierarchies 
Menus, Icons, 
Labels/Identifiers 
on Windows 

Supported 
via 

Architecture 
Service 

,/ 

Messages/Dialogs ,/ 
String Functions, Sort Order ,/ 
and String Comparison 
Code Tables ,/ 
Drop-Down Lists ,/ 
Form & Correspondence 
Templates 
Online and Printed 
Documentation 
Database (DB2) 
3'ct Party Controls 
Miscellaneous 

Supported 
via 

Architecture 
API"s 

,/ 

Localizable Literals Repository 

Best 
Practices 

and Assump-
tions* 

,/ 

,/ 
,/ 
,/ 
,/ 
,/ 
,/ 

,/ 

,/ 

,/ 

,/ 
,/ 
,/ 

The present inventions UI's employ a number of third
party date controls including Sheridan Calendar Widgets 

30 (from Sheridan Software) which allow developers to set 
predefined input masks for dates (via the controls' Property 
Pages; the property in this case is "Mask"). 

35 

40 

45 

50 

55 

Although the Mask property can be manipulated, the 
default setting is preferably accepted (the default setting for 
Mask is "0-System Default"; it is set at design time). 
Accepting the default system settings eliminates the need to 
code for multiple locales (with some possible exceptions), 
does not interfere with intrinsic Visual Basic functions such 
as DateAdd, and allows dates to be formatted as strings for 
use in SQL. 

The test program illustrated below shows how a date 
using the English (United Kingdom) default system date 
format is reformatted to a user-defined format (in this case, 
a string constant for use with DB2 SQL statements): 

Canst cmDB2DateAndTime ~ "mm-dd-yyyy-h.mm.ss" 
Private Sub cmdConvToDB2_Click0 

Dim sDB2Date As String 
sDB2Date ~ Format$(SSDateCombo1.Date, 
cmDB2DateAndTime) 
txtDB2String.Text ~ sDB2Date 

end sub 

Leverage Windows Operation System 

60 
The CBAM application has an infrastructure to support 

The CBAM architecture exposes interface methods on the 
RegistryService object to access locale specific values which 
are set from the control panel. multiple languages. The architecture acts as a centralized 

literals repository via its Codes Table Approach. 

The Codes Tables have localization in mind. Each row in 
the codes table contains an associated language identifier. 
Via the language identifier, any given code can support 
values of any language. 

The architecture exposes an API from the RegistryService 
65 object which allows access to all of the information avail

able in the control panel. Shown below is the signature of the 
API: 



US 6,574,636 Bl 
33 34 

GetRegionallnfo(Info As Regionallnfo) As String 
Where Regionallnfo can be any of the values in the table below: 

Regionallnfo Values 

CmLanguageld 

CmLanguageLocalized 

CmLanguageEnglish 

CmLanguageAbbr 

CmLanguageNative 

CmCountryld 

CmCountry Localized 

CmCountryEnglish 

CmCountry Abbr 

CmDTDateSeparator 

CmDTTimeSeparator 

CmDTShortDateFormat 

CmLDTongDateFormat 

CmDTTimeFormat 

CmDTDateFormatOrdering 

CmDTLongDateOrdering 

CmDTTimeFormatSpecifier 

CmDTCenturyFormatSpecifier 

CmCountryNative CmDTTimeWithLeadingZeros 

CmLanguageDefaultld CmDTDayWithLeadingZeros 

CmCountryDefaultld CmDTMonth WithLeadingZeros 

CmDTDesignatorAM 

CmDTDesignatorPM 

cmDayLongNameMonday 

cmDay LongNameTuesday 

cmDayLongNameWednesday 

cmDayLongNameThursday 

cmDayLongNameFriday 

cmDay LongNameSaturday 

cmDayLongNameSunday 

cmDayAbbrNameMonday 

cmDayAbbrNameTuesday 

cmDayAbbrNameWednesday 

cmDayAbbrNameThursday 

cmDayAbbrNameFriday 

cmDayAbbrNameSaturday 

cmDayAbbrNameSunday 

cmMonthLongNameJan 

cmMonthLongN ameFeb 

cmMonthLongN ameMar 

cmMonthLongN ameApr 

cmMonthLongNameMay 

cmMonthLongN ameJun 

cmMonthLongN ameJul 

cmMonthLongN ameAug 

cmMonthLongN ameSep 

cmMonthLongN ameOct 

cmMonthLongNameNov 

cmMonthLongN ameDec 

cmMonthAbbrNameJ an 

cmMonthAbbrNameFeb 

cmMonthAbbrNameMar 

cmMonthAbbrNameApr 

cmMonthAbbrNameMay 

cmMonthAbbrNameJun 

cmMonthAbbrNameJul 

cmMonthAbbrNameAug 

cmMonthAbbrNameSep 

cmMonthAbbrNameOct 

cmMonthAbbrNameNov 

cmMonthAbbrNameDec 

Get Regionallnfo Example Approach 

Controllers 206 may have different levels of LUW 

35 "awareness": 
Private Sub Commndl_Click() 

MsgBox "This is the language id for English: " & _ 
GetRegionallnfo ( cmLanguageld) 

End Sub 

Logical Unit of Work 

The Logical Unit of Work (LUW) pattern enables sepa
ration of concern between UI Controllers 206 and business 
logic. 
Overview 

40 

45 

Requires New: always creates a new LUW; 

Requires: requires an LUW, and creates a new LUW only 
if one is not passed by the calling controller; 

Requires Existing: requires an LUW, but does not create 
a new LUW if one is not passed by the calling con
troller. Raises an error if no LUW is passed; and 

Not Supported: is not capable of using an LUW. 
Controllers 206 that always require a new LUW create 

that LUW in their ArchinitClass function during initializa
tion. They may choose whether or not to involve other 
windows in their LUW. If it is desirable for another window 
to be involved in an existing LUW, the controller 206 that 

Normally, when a user opens a window, makes changes, 
and clicks OK or Save, a server component 222 is called to 
execute a transaction that will save the user's changes to the 
database. Because of this, it can be said that the window 
defines the boundary of the transaction, since the transaction 
is committed when the window closes. 

The LUW pattern is useful when database transactions 
span windows. For example, a user begins editing data on 
one window and then, without saving, opens another win
dow and begins editing data on that window, the save 
process involves multiple windows. Neither window con
troller 206 can manage the saving process, since data from 
both windows must be saved as an part of an indivisible unit 

50 owns the LUW passes a reference to that LUW when it calls 
the App Object 202 to open the second window. Controllers 
206 that require an LUW or require an existing LUW accept 
the LUW as a parameter in the ArchinitClass function. 

55 
LUW s contain all the necessary logic to persist their 

"contents"-the modified BOs 207. They handle calling 
methods on the CCA 208 and updating the BOs 207 with 
new IDs and/or timestamps. 

of work. Instead, a LUW object is introduced to manage the 60 

saving process. 
The LUW acts as a sort of "shopping bag". When a 

controller 206 modifies a business object 207, it puts it in the 
bag to be paid for (saved) later. It might give the bag to 
another controller 206 to finish the shopping (modify more 65 

objects), and then to a third controller who pays (asks the 
LUW to initiate the save). 

Architecture API Hierarchy 

Following is an overview of the architecture object 
model, including a description of each method and the 
parameters it accepts. Additional sections address the con
cepts behind specific areas (code caching, message logging, 
and data access) in more detail. 



US 6,574,636 Bl 
35 

Arch Object 

FIG. 5 depicts the current properties on the Arch Object 
200. 

36 

-continued 

Parameters: 

The following are APis located on the Arch Object 200 
which return either a retrieved or created instance of an 

5 

object which implements the following interfaces: 

ctlControl: A reference to a passed in listbox or combo box. 
nCategory: The integer based constant which classified these 
CodeDecodes from others. Several of the valid constants include: 

cmCatTaskType ~ 1 CodesMan( ) 500; 
TextMan( ) 502; 
IdMan( ) 504; 
RegMan( ) 506; 
LogMan( ) 508; 
ErrMan( ) 510; 
UserMan( ) 512; and 
SecurityMan() 514. 

AsMsgStruct( ) 
This method on the Arch Object returns a variant structure 

to pass along a remote message. 

Syntax: 
Public Function AsMsgStruct() As Variant 
End Function 

Example: 
Dim vMsg As Variant 
vMsg ~ objArch.AsMsgStruct 

CodesMan 

cmCatSource 
cmCatTaskStatus 

10 nFillType: The attribute of the CodeDecode which you want to fill. 
Several of the valid values include: 

em Code 
cmShortDecode 
cmLongDecode 

nCodeStatus: Optional value which filters the Code Decodes according to 
15 their Effective and Expiration dates. Several of the valid constants include: 

cmAllCodes Pending + Valid + Expired Codes 
cmPendingCodes Codes whose effective date is greater than the 

current date 
em Valid Codes Not Pending or Expired Codes 

colAssignedCodes: Used when filling a control which should fill and 

20 
include assigned values. 
Example: 

'Declare an instance variable for States collection on object 
Private colStates As CCollection 
'Call Fill Control! API, and set local collection inst var to collection of 
codes which were used to fill the control!. This collection will be used for 

25 subsequent lookups. 
Set colStates ~ 
objArch.CodesMan.FillControl(frmCurrentForm.cboStates, 
cmCatStates, cmLongDecode) 

The following are APis located on the interface of the 3° FilterCodes( ) 
Arch Object 200 named CodesMan 500: 

CheckCacheFreshness( ); 
FillControl(ctlControl, nCategory, nFillType, 

[ nCodeStatus ], [ colAssignedCodes ]); 
FilterCodes( colAllCodes, nCodeStatus ); 
GetCategoryCodes(nCategory); 
GetCodeObject(nCategory, sCode ); 
GetResourceString(lStringld); 
GetServerDate( ); 
RefreshCache( ); 
Remove ValidDates(sCode, colPassedlnAssignedCodes); 

and 
SetServerDate( dtServerDate ). 

CheckCacheFreshness( ) 
Checks whether the cache has expired, if so refresh. 

Syntax: 
Private Sub CheckCacheFreshness( ) 
End Sub 

Example: 
CheckCacheFreshness 

FillControl( ) 
This API is used to fill listboxes or comboboxes with 

values from a list of CodeDecodes. Returns a collection for 
subsequent lookups to Code objects used to fill controls. 

Public Function FillControl(ctlControl As Object, nCategory As 
CodeDecodeCats, nFillType As CodeDecodeLengths, Optional 
nCodeStatus As CodeDecodeFilters ~ em Valid Codes, Optional 
colAssignedCodes As CCollection) As CCollection End Function 

35 

Returns a collection of code/decodes that are filtered 
using their effective and expiration dates based on which 
nCodeStatus is passed from the fillcontrol method. 

Private Function FilterCodes(colAllCodes As CCollection, nCodeStatus 
40 As CodeDecodeFilters) As CCollection 

End Function 
Parameters: 

colAllCodes: 
nCodeStatus: 

45 Example: 

Set colFilteredCodes ~ FilterCodes(colCodes, nCodeStatus) 

GetCategoryCodes( ) 
50 

55 

Returns a collection of CCode objects given a valid 
category 

Public Function GetCategoryCodes(nCategory As CodeDecodeCats) As 
CCollection End Function 
Parameters: 

60 
nCategory: The integer based constant which classified these 
CodeDecodes from others. 
Example: 

Dim colMyStates As CCollection 
Set colMyStates ~ objArch.CodesMan.GetCategoryCodes(cmCatStates) 

65 'Below shows an example of looking up the Code value for the currently 
selected state. 



US 6,574,636 Bl 
37 

-continued 

With frmCurrentForm.cboStates 
If .Listlndex > -1 Then 
Dim objCode As CCode 

Set objCode ~ colStates(.ItemData(.Listlndex)) 
sStateCode ~ objCode.Code 

End If 
End With 

GetCodeObject( ) 
Returns a valid CCode object given a specific category 

and code. 

Public Function GetCodeObject(nCategory As CodeDecodeCats, sCode 
As String) As CCode 
End Function 
Parameters: 

nCategory: The integer based constant which classified these 
CodeDecodes from others. 
sCode: A string indicating the Code attribute of the CodeDecode object. 
Example: 

frmCurrentForm.lblState ~ 
o bjArch. CodesMan. GetCodeObj ect( cmCatStates, "IL''). LongDecode 

GetResourceString( ) 

5 

10 

15 

20 

25 

Returns a string from the resource file given a specific 30 

string ID. 

Private Function GetResourceString(1Stringid As Long) As String 
End Function 
Parameters: 

1Stringid: The id associated with the string in the resource file. 
Example: 

sMsg ~ arch.CodesMan.GetResourceString(CLng(vMessage)) 

GetServerDate( ) 
Returns the date from the server. 

Private Function GetServerDate( ) As Date 
End Function 
Example: 

SetServerDate CCA.GetServerDate 

RefreshCache( ) 
Refreshes all of the code obhjects in the cache. 

Private Sub RefreshCache( ) 
End Sub 
Example: 

m Cache.RefreshCache 

35 

40 

45 

50 

55 

60 

65 

38 
Remove ValidCodes( ) 

Removes all valid codes from the passed in assigned 
codes collection, which is used to see which codes are 
assigned and not valid. 

Private Sub Remove ValidCodes(sCode As String, 
colPassedinAssignedCodes As CCollection) 
End Sub 
Parameters: 

sCode: Name of code 
colPassedinAssignedCodes: Codes already in use. 
Example: 

Remove Valid Codes codCode.Code, colPassedinAssignedCodes 

SetServerDate( ) 
Sets the server date. 

Private Sub SetServerDate(dtServerDate As Date) 
End Sub 
Parameters: 

dtServerDate: Date of Server. 
Example: 

SetServerDate CCA.GetServerDate 

TextMan 

The following are APis located on the interface of the 
Arch Object 200 named TextMan 502. 

PairUpAposts( ); 
PairUpAmps( ); and 
MergeParms ( ). 

PairUpAposts( ) 
Pairs up apostrophes in the passed string. 

Public Function PairUpAposts(sOriginalString As String) As String 
End Function 
Parameters: 

sOriginalString: string passed in by the caller 
Example: 

Dim sString As String 
sString ~ objArch.TextMan.PairUpAposts("This is Monika's string") 
'expected return: sString ~ "This is Monika's string" 

PairUpAmps( ) 
Pairs up ampersands in the passed string. 

Public Function PairUpAmps(sOriginalString As String) As String 
End Function 
Parameters: 

sOriginalString: string passed in by the caller 



US 6,574,636 Bl 
39 

-continued 

Dim sString As String 
sString ~ objArch.TextMan.PairUpAmps("Forms&Corr") 
'expected return: sString ~ "Forms&&Corr" 

MergeParms() 

Merges string with the passed parameters collection. 

Public Function MergeParms(sString As String, colParms As CCollection) 
As String 
End Function 
Parameters: 

sOriginalString: string passed in by the caller 
colParms As Ccollection: collection of the parameters passed in by 
the caller 
Example: 

Dim sString As String 
sString ~ objArch.TextMan.MergeParms(sString, colParms) 

IdMan 

The following are APis located on the interface of the 
Arch Object 200 named IdMan 504: 

GetGUID( ); 

GetSequenceiD( ); 

GetTimeStamp( ); 

GetTrackingNbr( ); and 

GetUniqueld( ). 

GetGUID () 

Public Function GetGUID( ) 
End Function 
Example: 

Dim vNewGuid As Variant 
vNewGuid ~ objArch.IdMan.GetGUID 

GetSequenceld ( ) 

Public Function GetSequenceld(sTemplateType As Counter Name) As 
String End Function 
Parameters: 

sTemplateType: The string specifying the template requesting a sequence 
id (i.e. cmCountFC ~ Forms & Carr) 
Example: 

frmCurrentForm.txtTemplateNumber ~ 
o bjArch. IdMan. GetSequenceld( em CountFC) 

5 

10 

15 

20 

40 
GetTimeStamp ( ) 

Public Function GetTimeStamp( ) 
End Function 
Example: 

Dim nNewTimeStamp As Long 
nNewTimeStamp ~ objArch.IdMan.GetTimeStamp 

GetTrackingNbr ( ) 

Public Function GetTrackingNbr( ) 
End Function 
Example: 

Set objTechArch ~New CTechArch 
sUniqueTrackNum ~ objTechArch.IdMan.GetTrackingNbr 

25 GetUniqueld ( ) 

30 

35 

40 

45 

50 

55 

60 

65 

Public Function GetUniqueld( ) 
End Function 
Example: 

Dim vUid As Variant 
vNewUid ~ objArch.IdMan.GetUniqueld 

RegMan 

The following are APis located on the interface of the 
Arch Object 200 named RegMan 506: 

GetCacheLife( ); 

GetClientDSN( ); 

GetComputerName( ); 

GetDefaultAndValidate( ); 

GetFCArchiveDirectory( ); 

GetFCDistributionDirectory( ); 

GetFCMasterDirectory( ); 

GetFCUserDirectory( ); 

GetFCWorkingDirectory( ); 

GetHelpPath( ); 

GetLocallnfo( ); 

GetLogLevel( ); 

GetRegionallnfo( ); 

GetRegValue( ); 

GetServerDSN( ); 

GetSetting( ); 

GetTimerLogLevel( ); 

GetTimerLogPath( ); and 

GetUseLocalCodes( ). 



US 6,574,636 Bl 
41 

GetCacheLife( ) 

Public Function GetCacheLife( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetCacheLife 

GetClientDSN( ) 

Public Function GetClientDSN( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetClientDSN 

GetComputerName() 

Public Function GetComputerName( ) As String 
End Function 
Example: 

Dims As String 
s ~ objArch.RegMan.GetComputerName 

GetDefaultAndValidate( ) 

5 

10 

15 

20 

25 

42 
GetFCDistributionDirectory( ) 

Syntax: 

Public Function GetFCDistributionDirectory( ) As String 

End Function 

Example: 

Dim s As String 

s ~ objArch.RegMan.GetFCDistributionDirectory 

GetFCMasterDirectory( ) 

Public Function GetFCMasterDirectory( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetFCMasterDirectory 

GetFCUserDirectory( ) 
30 

35 

40 

Public Function GetFCUserDirectory( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetFCUserDirectory 

GetFCWorkingDirectory( ) 

Private Function GetDefaultAndValidate(sKey As String) As String 45 
End Function 
Parameters: 

sKey: The key within the registry of which the user is requesting (i.e.: 
Help Path) 
Exa~le: 50 

Dim sDefault As String 
sDefault ~ objArch.RegMan.GetDefaultAndValidate(sKey) 

GetFCArchiveDirectory( ) 

Public Function GetFCArchiveDirectory( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetFCArchiveDirectory 

55 

60 

65 

Public Function GetFCWorkingDirectory( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetFCWorkingDirectory 

GetHelpPath( ) 

Public Function GetHelpPath( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetHelpPath 



US 6,574,636 Bl 
43 

GetLocallnfo( ) 

Public Function GetLocallnfo( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetLocallnfo 

GetLogLevel( ) 

Public Function GetLogLevel( ) As String 
End Function 
Example: 

Dim s As String 
s ~ objArch.RegMan.GetLogLevel 

GetRegionallnfo( ) 

Allows access to all locale specific values which are set 
from control panel. 

Public Function GetRegionallnfo(Info As Regionalnfo) As String 
End Function 
Parameters: 

Info: string containing the regional information. Several of the valid 
constants include: 
cmLanguageld ~ &H1 
cmLanguageLocalized ~ &H2 
cmLanguageEnglish ~ &H1001 
cmLanguageAbbr ~ &H3 
cmLanguageNative ~ &H4 
Example: 

Dim s As String 

language id 
localized name of language 
English name of language 
abbreviated language name 
native name of language 

s ~ objArch.RegMan.GetRegionallnfo 

GetRegValue( ) 

Syntax: 
Public Function GetReg Value ( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetRegValue 

GetServerDSN( ) 

Syntax: 
Public Function GetServerDSN ( ) As String 
End Function 

Example: 
Dim s As String 
s ~ ObjArch.RegMan.GetServerDSN 

5 

10 

44 
GetSetting( ) 

Get setting from the registry. 

Syntax: 
Public Function GetSetting (sKey As String) As String 
End Function 

Parameters: 
sKey: The key within the registry of which the user is requesting 
(i.e.: Help Path) 

Parameters: 
GetHelpPath ~ Getsetting (cmRegHelpPathKey) 

15 GetTimerLogLevel( ) 

20 

Syntax: 
Public Function GetTimerLogLevel ( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetTimerLogLevel 

25 
GetTimerLogPath( ) 

30 

35 

Syntax: 
Public Function GetTimerLogpath ( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetTimerLogPath 

GetUseLocalCodes( ) 

40 Syntax: 

45 

Public Function GetUseLocalCodes ( ) As string 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetUseLocalCodes 

LPSTRTo VBString( ) 

Extracts a VB string from a buffer containing a null 

50 
terminated string. 

55 

60 

65 

Syntax: 
Private Function LPSTRToVBString$ (ByVal s$) 
End Function 

LogMan 

The following are APis located on the interface of the 
Arch Object 200 named LogMan 508: 

LogMessage ( ); 

WriteToDatabase( ); and 

WriteToLocalLog( ). 



US 6,574,636 Bl 
45 

LogMessage( ) 
Used to log the message. This function will determine 

where the message should be logged, if at all, based on its 
severity and the vMsg's log level. 

Syntax: 
Public Sub LogMessage (vMsg As Variant,_ 

!Severity As Long, _ 
sClassName As String, _ 
sMethodName As String, _ 
s Version As String, _ 
lErrorNum As Long, _ 
Optional sText As String ~ vbNullString) 

End Sub 
Parameters: 

vMsg: the standard architecture message 
!Severity: the severity of the message 
sClassName: the name of the class logging the message 
sMethodName: the name of the method logging the message 
sVersion: the version of the binary file (EXE or DLL) that contains 
the method logging message 
lErrorNum: the number of the current error 
sText: an optional parameter containing the text of the message. 
If omitted, the text will be looked up in a string file or the 
generic VB error description will be used 

Example: 
If Err.Number < > 0 Then 

' log message 
Arch.LogMan.LogMessage (vMsg, cmSeverityFatal, 
"COrganizationCTLR'', 

"InitForm", 
Get Version ( ), Err.Number, Err.Description) 

' re-raise the error 
Err.Raise Err.Number 

End If 

WriteToDatabase ( ) 

5 

46 
Err Man 

The following are APis located on the interface of the 
Arch Object 200 named ErrMan 510: 

HandleError( ); 
RaiseOriginal( ); 
ResetError( ); and 
Update(). 

HandleError( ) 
This method is passed through to the general error handler 

10 in MArch.bas. 

15 

20 

25 

30 

Syntax: 
Public Function HandleError (v Msg As Variant, 
nCompType As CompType, sClassName 
As String, sMethodName As String) As ErrResumeCodes 
End Sub 

Parameters: 
v Msg: General Architecture Information 
nCompType: Contains tier information (Client or Server) 
sClassName: Class which raised the error. 
sMethodName: Method which raised the error. 

RaiseOriginal( ) 
This method is used to Reset the error object and raise. 

ResetError( ) 

Syntax: 
Public Sub RaiseOriginal ( ) 
End Sub 

Example: 
objArch.ErrMan.RaiseOriginal 

Used to log the message to the database on the server 35 
using the CLoggingComp. 

This method is used to reset attributes. 

This function returns the Trackingld that is generated by 
the CLoggingObject. 

Syntax: 
Private Sub WriteToDatabase (vMsg As Variant, msgToLog 
As CMessage) 
End Sub 

Parameters: 
vMsg: the standard architecture message 
msgToLog: a parameter containing the text of the message. 

Example: 
If msgToLog.IsLoggableAtLevel (m_lLocalLogLevel) Then 

WriteToDatabase vMsg, msgToLog 
End If 

WriteToLocalLog ( ) 

Used to log the message to either a fiat file, in the case of 
Windows 95, or the NT Event Log, in the case of Windows 
NT. 

Syntax: 
Private Sub WriteToLocalLog (msgToLog As CMessage) 
End Sub 

Parameters: 
msgToLog: a parameter containing the text of the message. 

Example: 
Error Handler: 

WriteToLocalLog msgToLog 
End Sub 

40 

Update() 

Syntax: 
Public Sub ResetError ( ) 
End Sub 

Example: 
objArch.ErrMan.ResetError 

45 
This method is used to update attributes to the values of 

VBs global Error object. 

50 

55 

60 

65 

Syntax: 
Public Sub Update ( ) 
End Sub 

Example: 
objArch.ErrMan. Update 

User Man 

The following are APis located on the interface of the 
Arch Object 200 named UserMan 512. 

Use rid; 
Employeeld; 
EmployeeN arne; 
EmployeeFirstN arne; 
EmployeeLastN arne; 
EmployeeMiddlelnitial; 
GetAuthorizedEmployees; 
IsSuperOf ( ); 
IsRelativeOf( ); and 
IslnRole( ) . 



US 6,574,636 Bl 

Userid() 
47 

Syntax: 
Public Property Get Userld ( ) As String 
End Property 

Example: 
Dim sNewUserld As String 
sNewUserld ~ objArch.UserMan.Userld 

Employeeid( ) 

Syntax: 
Public Property Get Employeeld ( ) As String 
End Property 

Example: 
Dim sNewEmployeeld As String 
sNewEmployeeld ~ objArch.UserMan.Employeeld 

EmployeeName() 

Syntax: 
Public Property Get EmployeeName ( ) As String 
End Property 

Example: 
Dim sName As String 
sName ~ objArch.UserMan.EmployeeName 

EmployeeFirstName() 

Syntax: 
Public Property Get EmployeeFirstName ( ) As String 
End Property 

Example: 
Dim sFName As String 
sFName ~ objArch. UserMan.EmployeeFirstName 

5 

48 
GetAuthorizedEmployees( ) 

Creates a collection of user's supervisees from the dic
tionary and returns GetAuthorizedEmployees-collection 
of authorized employees 

Syntax: 
Public Function GetAuthorizedEmployees ( ) As CCollection 
End Function 

10 
Example: 

Dim colAuth As Collection 

15 

20 

25 

30 

colAuth ~ objArch.UserMan.GetAuthorizedEmployees 

IsSuperOf ( ) 
Checks if the current user is supervisor of the passed in 

user. 

Syntax: 
Public Function IsSuperOf (sEmpld As String) As Boolean 
End Function 

Parameters: 
sEmpid: string containing Employee ID number 

Example: 
Dim blsSuperOfMonika As Boolean 
blsSuperOfMonika ~ objArch.UserMan.IsSuperOf ("TS012345"") 

IsRelativeOf ( ) 
Checks if the passed in user is relative of the current user. 

Syntax: 
Public Function IsRelativeOf (sEmpld As string) As Boolean 
End Function 

Parameters: 
sEmpld: string containing Employee ID number 

35 Example: 
Dim blsRelativeOfMonika As Boolean 
blsRelativeOfMonika ~ objArch.UserMan.IsRelativeOf 
("TS012345"") 

40 Is In Role ( ) 
Checks to see if the current 

Syntax: 
45 Public Function IslnRole (sRole As string) As Boolean 

End Function 
EmployeeLastName() Parameters: 

Syntax: 
Public Property Get EmployeeLastName ( ) As String 
End Property 

Example: 
Dim sLName As String 
sLName ~ objArch.UserMan.EmployeeLastName 

EmployeeMiddleinitial( ) 

Syntax: 
Public Property Get EmployeeMiddlelnitial ( ) As String 
End Property 

Example: 
Dim sMI As String 
sMI ~ objArch.UserMan.EmployeeMiddlelnitial 

50 

sRole: string containing role 
Example: 

Dim blslnRoleTaskLibrarian As Boolean 
blslnRoleTaskLibrarian ~ objArch. UserMan.IslnRole ("TA"") 

Security Man 

The following APis are located on the interface 
55 Arch Object 200 named SecurityMan 514. 

60 

65 

EvalClaimRules; 
EvalFileNoteRules; 
EvalFormsCorrRules; 
EvalOrgRules; 
EvalRunApplicationRules; 
EvalRunEventProcRules; 
EvalTaskTemplateRules; 
EvalUserProfilesRules; 
IsOperAuthorized; 
GetUserld; and 
Override User. 

of the 



US 6,574,636 Bl 
49 

EvalClaimRules ( ) 
This API references business rules for Claim security 

checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalClaimRules (lBasicOp As cmBasicOperations, 
vContextData As Variant) As Boolean 
End Function 

Parameters: 
lBasicOp: a basic operation the current user is wishing to 
perform (i.e. Delete) 
vContextData: a variant array holding relevant business objects 
or other information. 

Example: 
Select Case !Operation 
Case cmWorkOnClaim 

IsOperAuthorized ~ EvalClaimRules (cmView, vContextData) 
And_ EvalClaimRules (cmEdit, vContextData) 

5 

50 

-continued 

Example: 
Select Case !Operation 
Case cmMaintainOrg 

IsOperAuthorized ~ EvalOrgRules (cmAdd) And_ 
EvalOrgRules (cmEdit) And_ 
EvalOrgRules (cmDelete) 

10 EvalRunApplicationRules ( ) 
This API references business rules for running the appli

cation and returns a boolean if rules are met. 

15 Syntax: 
Private Function EvalRunApplicationRules (lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 

EvalFileNoteRules ( ) 
This API references business rules for FileNote security 20 

checking and returns a boolean if rules are met. 

lBasicOp: a basic operation the current user is wishing to 
perform (i.e. Delete) 

Example: 
Select Case !Operation 

Syntax: 
Private Function EvalFileNoteRules (lBasicOp As 
cmBasicOperations, vContextData As Variant) As Boolean 
End Function 

Parameters: 
lBasicOp: a basic operation the current user is wishing to 
perform (i.e. Delete) 
vContextData: a variant array holding relevant business objects 
or other information. 

Example: 
Select Case !Operation 
Case cmDeleteFileNote 

IsOperAuthorized ~ EvalFileNoteRules (cmDelete, 
vContextData) 

EvalFormsCorrRules ( ) 
This API references business rules for Forms and Carr 

security checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalFormsCorrRules (lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
lBasicOp: a basic operation the current user is wishing to 
perform (i.e. Delete) 

Example: 
Select Case !Operation 
Case cmMaintainFormsCorr 

IsOperAuthorized ~ EvalFormsCorrRules (cmEdit) And_ 
EvalFormsCorrRules ( cmDelete) And _ 
EvalFormsCorrRules ( cmAdd) 

EvalOrgRules ( ) 
This API references business rules for Event Processor 

security checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalOrgRules (lBasicOp As cmBasicOperations) 
As Boolean 
End Function 

Parameters: 
lBasicOp: a basic operation the current user is wishing to 
perform (i.e. Delete) 

25 

30 

35 

40 

45 

Case cmRunApplication 
IsOperAuthorized ~ EvalRunApplicationRules (cmExecute) 

EvalRunEventProcRules ( ) 
This API references business rules for Event Processor 

security checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalRunEventProcRules (lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
lBasicOp: a basic operation the current user is wishing to 
perform (i.e. Delete) 

Example: 
Select Case lOperaton 
Case cmRunEventProcessor 

IsOperAuthorized ~ EvalRunEventProcRules ( cmExecute) 

EvalTaskTemplateRules ( ) 
This API references business rules for Task Template 

security checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalTaskTemplateRules(lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

50 
Parameters: 

lBasicOp: a basic operation the current user is wishing to perform (i.e. 
Delete) 

55 

Example: 
Select Case !Operation 
Case cmMaintainTaskLibrary 

IsOperAuthorized ~ EvalTaskTemplateRules(cmAdd) And_ 
EvalTaskTemplateRules(cmEdit) And_ 
EvalTaskTemplateRules( cmDelete) 

EvalUserProfileRules ( ) 
This API references business rules for Task Template 

60 security checking and returns a boolean if rules are met. 

65 

Syntax: 
Private Function EvalUserProfileRules(lBasicOp As 
cmBasicOperations, vContextData As Variant) As Boolean 
End Function 



US 6,574,636 Bl 
51 

-continued 

Parameters: 
lBasicOp: a basic operation the current user is wishing to perform (i.e. 
Delete) 
vContextData: a variant array holding relevant business objects or other 
information. 

Example: 
Select Case !Operation 
Case cmlsRelativeOf 

IsOperAuthorized ~ EvalUserProfileRules( em View, vContextData) 
And 

Eva! UserProfileRules( cmAdd, vContextData) 
And 

Eva! UserProfileRules( cmEdit, vContextData) 
And 

EvalUserProfileRules(cmDelete, 
vContextData) 

GetUserid ( ) 

Returns the login name/user id of the current user. 

Syntax: 
Public Function GetUserld() As String 
End Function 

Example: 
Dim sUserld as String 
sUserld ~ GetUserld 

IsOperAuthorized ( ) 

This API references business rules and returns a boolean 
determining whether the user has security privileges to 
perform a certain operation. 

Syntax: 
Public Function IsOperAuthorized(vMsg, as variant, nOperation 
as em Operations, vContext As Variant) As Boolean 
End Function 

Parameters: 
v Msg: the standard architecture message 
nOperation: an enumeration containing name of operation to be 
checked. 
vContext: a variant array holding relevant business objects or other 
information. 

Example: 
Dim bCan!DoThis As Boolean 
bCan!DoThis ~ objArch.SecurityMan.IsOperAuthorized(vMsg, 
aOperationName, vContext) 
TlbEditlcon.Enabled ~ bCan!DoThis 

OverrideUser () 

Re-initializes for a different user. 

Syntax: 
Public Sub OverrideUser(Optional sUserld As String, Optional 
dictRoles As CDictionary, Optional dictSubs As CDictionary) 
End Function 

Parameters: 
sUserld: 
dictRoles: 
dictSubs: 

Example: 
Dim x As New CTechArch 

x.SecurityMan.OverrideUser "Everyone", New CDictionary, 
New CDictionary 

52 
Codes Framework 

General Requirements 

Separate tables (CodesDecodes) are Created for storing 
5 the static values. 

Only the references to codes/decodes are stored in busi
ness tables (e.g., Task) which utilize these values. This 
minimizes the size of the business tables, since storing a 
Code value takes much less storage space than its corre-

10 sponding Decode value (erg., For State, "AL" is stored in 
each table row instead of the string "Alabama"). 

CodeDecodes are stored locally on the client workstation 
in a local DBMS. On Application startup, a procedure to 
ensure the local tables are in sync with the central DBMS is 

15 performed. 

Infrastructure Approach 

The present invention's Code Decode Infrastructure 600 
Approach outlines the method of physically modeling codes 

20 tables. The model allows codes to be extended with no 
impact to the physical data model and/or application and 
architecture. FIG. 6 shows the physical layout of CodeDe
code tables according to one embodiment of the present 
invention. 

25 Infrastructure 

30 

35 

The physical model of the Code Decode infrastructure 600 
does the following: 

Supports relational functionality between CodeDecode 
objects; 

Supports extensibility without modification to the DBMS 
or Application Architecture; 

Provides a consistent approach for accessing all CodeDe
code elements; and 

Is easily maintainable. 
These generic tables are able to handle new categories, 

and modification of relationships without a need to change 
the DBMS or CodeDecode Application Architecture. 

Benefits of this model are extensibility and maintainabil
ity. This model allows for the modifications of code catego-

40 ries without any impact to the DBMS or the Application 
Architecture code. This model also requires fewer tables to 
maintain. In addition, only one method is necessary to 
access CodeDecodes. 

45 

50 

55 

Table Relationships and Field Descriptions 
(pk) indicates a Primary Key 

Code_Category 602 
C_Category (pk): The category number for a group of 

codes 
C_Cache (currently not utilized): Can indicate whether 

the category should be cached in memory on the client 
machine 

T_Category: A text description of the category (e.g., 
Application Task Types, Claim Status, Days of Week) 

D_Last_Update: The date any data within the given 
category was last updated; this field is used in deter
mining whether to update a category or categories on 
the local data base 

Relationships 

60 A one-to-many relationship with the table Code (i.e., one 

65 

category can have multiple codes) 
Code 604 

C_Category (pk): The category number for a group of 
codes 

C_Code (pk): A brief code identifier (up to ten characters; 
the current maximum length being used is five 
characters) 



US 6,574,636 Bl 
53 54 

Add Mode D_Effective: A date field indicating the code's effective 
date 

D_Expiration: A date field indicating the code's expira
tion date (the default is Jan. 1, 2999) 

Relationships 

In Add Mode, typically only valid codes are displayed to 
the user as selection options. Note that the constant, 
cmValidCodes, is the default and will still work the same 

5 even when this optional parameter is omitted. 

A many-to-one relationship with Code_Category 602 
(described above) 

A one-to-many relationship with Code_Relations 606 (a 
given category-and-code combination can be related to 

10 
multiple other category-and-code combinations) 

Code_Relations 606 

C_Categoryl (pk): The first category 

C_Codel (pk): The first code 

C_Category2 (pk): The related category 

C_Code2 (pk): The related code 
Relationships 

15 

Set colS tates=o bjArch. CodesMan .Fill Control 
(frmCurrentForm.cboStates, cmCatStates, 
cmLongDecode, em Valid Codes) 

View Mode 
In View Mode, the user is typically viewing results of 

historical data without direct ability to edit. Editing selected 
historical data launches another UI. Given this the controls 
are filled with valid and expired codes, or in other words, 
non-pending codes. 

Set colS tates=o bjArch. CodesMan .Fill Control 
(frmCurrentForm.cboStates, cmCatStates, 
cmLongDecode, cmNonPendingCodes) 

Edit Mode A many-to-one relationship with the Code table (each 
category and code in the Code table can have multiple 
related category-code combinations) 

In Edit Mode, changes are allowed to valid codes but also 
20 expired codes are displayed if already assigned to the entity. 

Code_Decode 608 

C_Category (pk): The category number for a group of 
codes 

C_Code (pk): A brief code identifier (up to ten characters; 25 

the current maximum length being used is five 
characters) 

N_Lang_ID (pk): A value indicating the local language 
setting (as defined in a given machine's Regional 
Settings). For example, the value for English (United 30 

States) is stored as 0409. Use of this setting allows for 
the storage and selection of text code descriptions 
based on the language chosen 

T_Short_Desc: An abbreviated textual description of 
C Code 35 

Dim colAssignedCodes As New cCollection 

colAssignedCodes.Add HistoricalAddress.State 

Set colS tates=o bjArch. CodesMan .Fill Control 
(frmCurrentForm.cboStates, cmCatStates, 
cmLongDecode, em Valid Codes, colAssignedCodes) 

Updating Local CodeDecodes 

The Local CodeDecode tables are kept in sync with 
central storage of CodeDecodes. The architecture is respon
sible for making a check to see if there are any new or 
updated code decodes from the server on a regular basis. The 
architecture also, upon detection of new or modified Cod
eDecode categories, returns the associated data, and per-
forms an update to the local database. FIG. 7 is a logic 
diagram for this process 700. T_Long_Desc: A full-length textual description of 

C_Code-what the user will actually see (e.g., Close 
Supplement-Recovery, File Note, Workers 
Compensation) 

Localization Support Approach 
Enabling Localization 

After an API call, a check is made to determine if the Arch 
is initialized 702. If it is a check is made to determine if the 
Freshness Interval has expired 704. If the Freshness Interval 

40 has not expired, the API call is complete 706. However, if 
either the Arch is not initialized or the Freshness Interval has 
expired, then the "LastUpdate" fields for each category are 
read from the CodeDecode and passed to the server 708. 
Then new and updated catagories are read from the database 
710. Finally the Local database is updated 712. 

Code Access APis 

The following are APis located on the interface of the 

Codes have support for multiple languages. The key to 
this feature is storing a language identifier along with each 
CodeDecode value. This Language field makes up a part of 45 

the compound key of the Code_Decode table. Each Code 
API lookup includes a system level call to retrieve the 
Language system variable. This value is used as part of the 
call to retrieve the values given the correct language. 
Maintaining Language Localization Setting 50 Arch Object 200 named CodesMan 500. 

A link to the Language system environment variable to 
the language keys is stored on each CodeDecode. This value 
is modified at any time by the user simply by editing the 
regional settings User Interface available in the Microsoft 
Windows Control Panel folder. 55 

Codes Expiration Approach 

GetCodeObject(nCategory, sCode ); 
GetCategoryCodes(nCategory); 
FillControl(ctlControl, nCategory, nFillType, 

[ nCodeStatus ], [ colAssignedCodes ]). 
GetCodeObject: Returns a valid CCode object given a 

specific category and code. 

Syntax: 
GetCodeObject(nCategory, sCode) 

Parameters: 
nCategory: The integer based constant which classified these 
CodeDecodes from others. 
sCode: A string indicating the Code attribute of the CodeDecode object. 

Example: 

Handling Time Sensitive Codes becomes an issue when 
filling controls with a list of values. One objective is to only 60 
allow the user to view and select appropriate entries. The 
challenge lies in being able to expire Codes without 
adversely affecting the application. To achieve this, consid
eration is given to how each UI will decide which values are 
appropriate to show to the user given its current mode. 

frmCurrentForm.lblState ~ objArch.CodesMan.GetCodeObject 
65 (cmCatStates, "IL").LongDecode 

The three most common UI modes that affect time sen
sitive codes are Add Mode, View Mode, and Edit Mode. 



US 6,574,636 Bl 
55 

GetCategoryCodes: Returns a collection of CCode 
objects given a valid category 

Syntax: 
GetCategoryCodes(nCategory) 

Parameters: 
nCategory: The integer based constant which classified these 
CodeDecodes from others. 

Example: 
Dim ColMyStates As CCollection 
Set colMyStates ~ objArch.CodesMan.GetCategory(cmCatStates) 

Fill Control: This API is used to filllistboxes or combob
oxes with values from a list of CodeDecodes. Returns a 
collection for subsequent lookups to Code objects used to fill 
controls. 

Syntax: 
FillControl(ctlControl, nCategory, nFillType, [ nCodeStatus ], 
[ colAssignedCodes]) 

Parameters: 
ctlControl: A reference to a passed in listbox or combo box. 
nCategory: The integer based constant which classified these 
CodeDecodes from others. 
nFillType: The attribute of the CodeDecode which you want to fill. 
Valid values include: 

em Code 
cmShortDecode 
cmLongDecode 

nCodeStatus: Optional value which filters the Code Decodes according 
to their Effective and Expiration dates. Valid constants include the 
following: 

cmAllCodes 
cmPendingCodes 
the current date 
em Valid Codes 
cmExpiredCodes 
current date 

Pending + Valid + Expired Codes 
Codes whose effective date is greater than 

Not Pending or Expired Codes 
Codes whose expired date is greater than the 

cmNonPendingCodes Valid + Expired Codes 
cmNon Valid Codes Pending + Expired Codes 
cmNonExpiredCodes Pending + Valid Codes 

colAssignedCodes: Used when filling a control which should fill and 
include assigned values. 

Example: 
'Declare an instance variable for States collection on object 
Private colStates As CCollection 
'Call FillControl API, and set local collection inst var to collection of 
codes which were used to fill the control. This collection will be 
used for subsequent lookups. 
Set colStates ~ 
objArch.CodesMan.FillControl(frmCurrentForm.cboStates, 
cmCatStates, cmLongDecode) 
'Below shows an example of looking up the Code value for the 
currently selected state. 
With frmCurrentForm.cboStates 

If .Listlndex > -1 Then 
Dim objCode As CCode 
Set objCode ~ colStates(.ItemData(.Listlndex)) 
sStateCode ~ objCode.Code 

End If 
End With 

Relational Codes Access APis 

Code objects returned via the "GetCodeObject" or "Get
CategoryCodes" APis can have relations to other code 
objects. This allows for functionality in which codes are 
associated to other individual code objects. 

The APis used to retrieve these values are similar to those 
on the CodesMan interface. The difference, however is that 

5 

10 

56 
the methods are called on the Codes object rather that the 
CodesManager interface: Listed below again are the APis. 

GetCodeObject(nCategory, sCode ); 
GetCategoryCodes(nCategory); 
FillControl(ctlControl, nCategory, nFillType, 

[ nCodeStatus ], [ colAssignedCodes ]). 
Given below is some sample code to illustrate how these 

APis are also called on Code objects. 

GetCodeObject Example: 
Dim objBondCode As CCode 
Set objBondCode ~ objArch.CodesMan.GetCodeObject(cmCatLOB, 

"B") 
15 Dim objSuretyCode As CCode 

Set ObjSuretyCode ~ objBondCode.GetCodeObject(cmCatSupplement, 
"B01") 
GetCategory Example: 

Dim objBondCode As CCode 
Set objBondCode ~ objArch.CodesMan.GetCodeObject(cmCatLOB, 

20 "B") 
Dim colSupplements As CCollection 
Set colSupplements ~ objBondCode.GetCategory(cmCatSupplement) 

FillControl Example: 
Dim objBondCode As CCode 
Set objBondCode ~ objArch.CodesMan.GetCodeObject(cmCatLOB, 

25 "B") 

30 

Dim colSupplements As CCollection 
Set colSupplements ~ 

objBondCode.FillControl(frmForm.cboSupplements, cmCatSupplements, 
cmLongDecode) 

Message Logging 

The message logging architecture allows message logging 
in a safe and consistent manner. The interface to the message 
logging component is simple and consistent, allowing mes-

35 sage logging on any processing tier. Both error and infor
mational messages are logged to a centralized repository. 

40 

Abstracting the message logging approach allows the 
implementation to change without breaking existing code. 

Best Practices 

Messages are always logged by the architecture when an 
unrecoverable error occurs (i.e., the network goes down) and 
it is not explicitly handled. Message logging may be used on 
an as-needed basis to facilitate the diagnosis and fixing of 

45 SIRs. This sort of logging is especially useful at points of 
integration between classes and components. Messages 
logged for the purpose of debugging have a severity of 
Informational, so as not to be confused with legitimate error 

50 
messages. 

55 

60 

65 

Usage 

A message is logged by calling the LogMessage( ) func
tion on the architecture. 
Description of Parameters 

vMsg: the standard architecture message 
!Severity: the severity of the message 
sClassName: the name of the class logging the message 
sMethodName: the name of the method logging the 

message 
s Version: the version of the binary file (EXE or DLL) that 

contains the method logging the message 
lErrorNum: the number of the current error 
sText: an optional parameter containing the text of the 

message. If omitted, the text will be looked up in a 
string file or the generic VB error description will be 
used. 



US 6,574,636 Bl 
57 

sText: an optional parameter containing the text of the 
message. If omitted, the text will be looked up in a 
string file or the generic VB error description will be 
used. 

ILoggingOptions: an optional parameter containing a 
constant specifying where to log the message (i.e., 
passing cmLogToDBAndEventViewer to LogMessage 
will log the error to the database and the event viewer.) 

Logging Levels 

58 
server remotely and view its Event Log. Only one MTS 
package contains the Event Log Component, so that errors 
will all be written to the same application server Event Log. 

Events logged via Visual Basic always have "VBRunt-
5 ime" as the source. The Computer field is automatically 

populated with the name of the computer that is logging the 
event (i.e., the MTS application server) rather than the 
computer that generated the event (typically a client 
computer). 

Before a message is logged, its severity is compared to the 10 

log level of the current machine. If the severity of the 
message is less than or equal to the log level, then the 
message is logged. 

The same event details that are written to the database are 
formatted into a readable string and written to the log. The 
text "The VB Application identified by ... Logged:" is 
automatically added by VB; the text that follows contains 
the details of the message. Valid values for the log level are defined as an enumera

tion in VB. They include: 

Value Name Description 

0 CmFatal A critical condition that closes 
or threatens the entire system 

CmSevere A condition that closes or 
threatens a major ccmponent of 
the entire system 

2 CmWarning A warning that something in the 
system is wrong but it does not 
close or threaten to close the 
system 

3 Cmlnformation Notification of a particular 
al occurrencefor logging and 
audit purposes information 

Example 

If Err.Number <> 0 Then 
' log message 

Example 

Application 
Server crash 
Network failure 

Optimistic 
locking 
error 

Developer 
debugging 

Arch.LogMan.LogMessage(vMsg, cmSeverityFatal, 
"COrganizationCfLR", "InitForm", 

GetVersionQ, Err.Number, Err.Description) 
' re-raise the error 
Err.Raise Err.Number 

End If 

Database Log 

The database log table is composed of the following 
fields: 

Field Name 

N_MSG_ID 
D MSG 
C_ERR_SEV 
N_USER_ID 
N_MACH_ID 
M CLASS 
M METHOD 

Description 

Unique ID of the message 
Date the message occurred 
Severity of the error 
Name of user wben error occurred 
Name of the machine that the error occurred on 
Name of the class that the error occurred in 
Name of the method that the error occurred in 

N_CMPNT_ VER Version of the binary file that the error occurred in 
C_ERR Number of the error 
T_MSG Text of the message 

Local Log 

15 

20 

25 

30 

Data Access 

All but a few exceptional cases use the "ExecuteQuery" 
API. This API covers singular database Operations in which 
there exists a single input and a single output. Essentially 
should only exclude certain batch type operations. 

The Data Access Framework serves the purposes of 
performance, consistency, and maintainability. 
Performance 

The "ExecuteQuery" method incorporates usage patterns 
for using ADO in an efficient manner. Examples of these 
patterns include utilization of disconnected recordsets, and 
explicitly declaring, optional parameters which result in the 
best performance. 
Consistency 

This method provides a common interface for develOp
ment of data access. Given a simple and stable data access 
interface, best practices can be developed and disseminated. 
Maintainability 

Since the method is located in a single location, it is very 

35 modularized and can be maintained with little impact to its 
callers. 

Application servers often use the ActiveX Data Objects 
(ADO) data access interface. This allows for a simplified 
programming model as well as enabling the embodiments to 

40 utilize a variety of data sources. 

The "ExecuteQuery" Method 
Overview 

The "ExecuteQuery" method should be used for most 
application SQL calls. This method encapsulates function-

45 ality for using ADO in a effective and efficient manner. This 
API applies to situations in which a single Operation needs 
to be executed which returns a single recordset object. 

50 

55 

60 

Syntax 
Set obj ~ ExecuteQuery(vMsg, nTranType, sSQL, [nMaxRows], 
[ adoTransConn ], [ args]) 

Parameters 
vMsg 

This parameter is the TechArch struct. This is used as 
a token for information capture such as performance 
metrics, error information, and security. 

nTranType 

Messages are always logged to the application server's 
Event Log; however this is not necessarily true for the 
database as noted by the optional parameter passed to 65 

LogMessage, lLoggingOptions. An administrator with the 
appropriate access rights can connect to the MTS application 

An application defined constant which indicates which 
type of Operation is being performed. Values for this 
parameter can be one of the following constants: 
cmSelect 
cmSelectLocal 
cmUpdate 
cminsert 
cmDelete 



US 6,574,636 Bl 
59 

sSQL 
String containing the SQL code to be performed against 

the DBMS. 
nMaxRows (Optional) 

60 

-continued 

adLockBatchOptimistic, adCmdText 

Integer value which represent the maximum number of 5 

records that the recordset of the current query will 
return. 

Set adoRS.ActiveConnection ~ Nothing 
Set ExecuteQuery ~ adoRS 

Case cmlnsert 
Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 

adoTransConn (Optional) adCmdText) 

An ADO Connection object. This is created and passed 
into execute query for Operations which require 10 

ADO transactional control (see "Using Transac-

If nRecordsAffected <~ 0 Then Err. Raise cmErrQueryinsert 
Set adoRs ~ Nothing 
ExecuteQuery ~ nRecordsAffected 

Case cmUpdate, cmDelete 
Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, tions" section) 

args (Optional) 
A list of parameters to be respectfully inserted into the 

SQL statement. 
Implementation 

15 

adCmdText) 
If nRecordsAffected <~ 0 Then Err. Raise cmErrOptimisticLock 
Set adoRS ~ Nothing 
ExecuteQuery ~ nRecordsAffected 

Case cmSpFileNote 

In one embodiment of the present invention the "Execute
Query" method resides within the MservArch.bas file. This 
file should be incorporated into all ServerComponent type 
projects. This will allow each server component access to 20 

this method. 

Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 
adCmdText) 

Set adoRS ~ Nothing 
Case Else 

Err.Raise cmErrlnvalidParameters 
End Select 
StopTimeLogger vMsg, cmTimeridDBTotal, cmClassName, 

cmMethodName Note: Since this method is a public method in a "bas" 
module, it is globally available from anywhere in the 
project. 

Public Function ExecuteQuery(v Msg As Variant, _ 
nTranType As TranTypes, _ 
sSQLAs String,_ 
Optional nMaxRows As Integer ~ 0, _ 
Optional adoTransConn As ADODB.Connection, _ 
Optional colArguments As CCollection) As Variant 

On Error GoTo ErrorHandler 
Canst cmMethodName As String ~ "ExecuteQuery" 
StartTimeLogger vMsg, cmTimeridDBTotal, cmClassName, 

cmMethodName 
'find out if this call is an isolate operation or 
'part of an ADO (not MTS) transaction 
Dim isAtomicTrans As Boolean 
isAtomicTrans = adoTransConn Is Nothing 
Dim nRecordsAffected As Integer 
Dim adoRS As New ADODB.Recordset 
Dim adoConn As ADODB.Connection 
Dim lAuxErrNumber As Long 
'open a new connection or keep using the passed in connection 
Set adoConn ~ Ilf(isAtomicTrans, New ADODB.Connection, 

adoTransConn) 
If isAtomicTrans Then 

adoConn.Open cmODBC_Connect 
'ADO will wait indefinitely until the execution is complete during 

performance 
testing 
#If IsPerfTest Then 

adoConn.CommandTimeout = 0 
#End If 

End If 
'Make sure date args are formatted for DB2 if appropriate 
If Not colArguments Is Nothing Then _ 

Set colArguments ~ FormatArgsForDB2(colArguments) 
'merge the passed in arguments with the SQL string 
sSQL ~ MergeSQL(sSQL, colArguments) 
Debug.Print Time & ":" & sSQL 
'execute the SQL statement depending on the transaction type 
Select Case CStr(nTranType) 

Case cmSelect 
adoRS.MaxRecords ~ nMaxRows 
adoRS.CursorLocation ~ adUseClient 
adoRS.Open sSQL, adoConn, adOpenForwardOnly, 

adLockReadOnly, adCmdText 
Set adoRS.ActiveConnection ~ Nothing 
Set ExecuteQuery ~ adoRS 

Case cmSelectLocal 
adoRS.MaxRecords ~ nMaxRows 
adoRS.CursorLocation ~ adUseClient 
adoRS.Open sSQL, adoConn, adOpenStatic, 

25 

30 

Exit Function 
ErrorHandler: 

Dim objArch As Object 
Set objArch ~ CreateObject("cmArch.CTechArch") 
Select Case CStr(Err) 

Case cmErrQueryinsert, cmErrOptimisticLock, 
cmErrlnvalidParameters 

'Raise error 
Err.Raise Err 

Case cmErrDSNNotFound 
Dim sMsgText As String 
sMsgText ~ "Data Source Name not found." & vbCrLf & 

"( " & - CStr(objAich.RegMan.GetServerDSN) & " )" 

'Create a new message log and log the message 
objArch.LogMan.LogMessage vMsg, cmSeverityFatal, 

35 cmClassName, cmMethodName, 

40 

GetVersionQ, cmErrDSNNotFound, sMsgText, 
cmLogToEventViewerOnly 

lAuxErrNumber ~ adoConn.Errors(O).NativeError 'The error 
code is stored since when closing the correction it will be lost 

If adoConn.State <> adStateClosed Then adoConn.Close 
Err.Raise cmErrDSNNotFound, , sMsgText 

Case Else 
' Create a new message log and log the message 
objArch.LogMan.LogMessage vMsg, cmSeverityFatal, 

cmClassName, cmMethodName, 
GetVersionQ, Err.Number, Err.Description, 

cmLogToEventViewerOnly 
45 lAuxErrNumber ~ adoConn.Errors(O).NativeError 'The error 

50 

55 

code is stored since when closing the correction it will be lost 
If adoConn.State <> adStateClosed Then adoConn.Close 
Err.Raise lAuxErrNumber 

End Select 
End Function 

Selecting Records 

ExecuteQuery utilizes disconnected recordsets for 
"Select" type statements. This requires that the clients, 
particularly the CCA's contain a reference to ADOR, 

60 Active X Data Object Recordset. This DLL is a subset of the 
ADODB DLL. ADOR contains only the recordset object. 

Using disconnected recordsets allows marshalling of 
65 recordset objects from sever to client. This performs much 

more efficiently than the variant array which is associated 
with using the "GetRows" API on the server. This perfor-



US 6,574,636 Bl 
61 

mance gain is especially apparent when the application 
server is under load of a large number of concurrent users. 

Sample from Client Component Adapter (CCA) 
Dim vAns as Variant 
Dim adoRS As ADOR.Recordset 
Set adoRS ~ objServer.PerformSelect(vMsg, nid) 
If objRS.EOF Then 

Set objRS ~ Nothing 
Exit Function 

End If 
vAns~ adoRS.GetRows 
Set adoRS ~ Nothing 
'Marshall vAns into objects 

Sample from Server Component 
Private Canst cmCustSQL ~ "Select * from Customer where id ~ ?" 
Public Function PerformSelect(vMsg, nid) as Variant 

Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add nid 
Set PerformSelect ~ ExecuteQuery(vMsg, cmSelect, 

sCustSQL, , ,colArgs) 
End Function 

Code Clip from ExecuteQuery (Select Section) 
Case cmSelect 

adoRS.MaxRecords ~ nMaxRows 
adoRS.CursorLocation ~ adUseClient 
adoRS.Open sSQL, adoConn, adOpenForwardOnly, 

adLockReadOnly, adCmdText 
Set ExecuteQuery ~ adoRS 

Inserting Records 

Inserting records requires certain information pertaining 

5 

10 

15 

20 

25 

30 

62 
read timestamp is used to validate, during the update, that 
the record has not been modified since last time read. 

Sample from Client Component Adapter (CCA) 
Dim vNewTS as Variant 
vNewTS ~ objServer.PerformUpdate(vMsg, 1, 'Rick', 8907654) 
'Set object's TimeStamp to vNewTS 

Sample Code Clip from Server Component 
Private Canst cmCustUpdateSQL ~ _ 
"Update Customer Set Name~'?', LastUpdated ~?" & _ 
"Where Id ~ ? " & 
"And LastUpdated ~ ? " 
Public Function PerformUpdate(vMsg, nid, sName, lLastTS) As 
Variant 

Dim lCurrTS as Long 
lCurrTS ~ GetTimeStamp 
Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add sName 
colArgs.Add lCurrTS 
colArgs.Add nid 
colArgs.Add lLastTS 
PerformUpdate ~ ExecuteQuery(vMsg, cmUpdate, 
sCustUpdateSQL, , , colArgs) 
PerformUpdate ~ lCurrTS 

End Function 
Code Clip from ExecuteQuery (Update Section) 

Case cmUpdate 
Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 
adCmdText) 
If nRecordsAffected < 0 Then Err. Raise cmErrOptimisticLock 
ExecuteQuery ~ nRecordsAffected 

Deleting Records 

to optimistic locking. On the server a unique value is 
35 requested to indicate the last time modified. This unique 

value is returned back to the requestor such that it can be 
used to later database operations. 

In deleting records the last read timestamp is used to 
validate, during the delete, that the record has not been 
modified since last time read. 

Sample from Client Component Adapter (CCA) 
Dim vAns as Variant 

Sample from Client Component Adapter (CCA) 
Dim vNewTS as Variant 
vNewTS ~ objServer.Performinsert(vMsg, nid, sName) 
'Set object's TimeStamp to vNewTS 

Sample from Server Component 
Private Canst cmCustlnsertSQL ~ "Insert Customer (nid, Name, 
LastUpdated) Values(?,'?',?)" 
Public Function Performinsert(vMsg, nid, sName) As Variant 
Dim lCurrTS as Long 
lCurrTS ~ GetTimeStamp 
Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add nid 
colArgs.Add sName 
colArgs.Add lCurrTS 
ExecuteQuery(vMsg, cminsert, sCustlnsertSQL,, , colArgs) 
Performinsert ~ lCurrTS 

Code Clip from ExecuteQuery (Insert Section) 
Case cmlnsert 

Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 
adCmdText) 
If nRecordsAffected <~ 0 Then Err.Raise cmErrQueryinsert 
Set adoRS ~ Nothing 
ExecuteQuery ~ nRecordsAffected 

Updating Records 

Updating records requires certain information pertaining 
to optimistic locking. On the server a unique value is 
requested to indicate the last time modified. Also the last 

vAns ~ objServer.PerformDelete(vMsg, nid ,lLastTS) 
40 Sample from Server Component 

45 

Private Canst cmCustDeleteSQL ~ _ 
"Delete From Customer " & 
"Where Id ~ ? " & 
"And LastUpdated ~ ? " 
Public Function PerformDelete(v Msg, nid lLastTS) As Variant 

Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add nid 
colArgs.Add lLastTS 
PerformDelete ~ ExecuteQuery(vMsg, cmDelete, cmCustDeleteSQL) 

Exit Function 
Code Clip from ExecuteQuery (Delete Section) 

5° Case cmDelete 

55 

Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 
adCmdText) 
If nRecordsAffected < 0 Then Err.Raise cmErrOptimisticLock 
ExecuteQuery ~ nRecordsAffected 

DATABASE LOCKING FRAMEWORK 

Database Locking ensures the integrity of the database in 
a multi-user environment. Locking prevents the common 

60 
problem of lost updates from multiple users updating the 
same record. 

Solution Options 
Pessimistic Locking 

This policy of locking allows the first user to have full 
65 access to the record while following users are denied access 

or have read only access until the record is unlocked. There 
are drawbacks to this method of locking. It is a method that 



US 6,574,636 Bl 
63 

is prone to deadlocks on the database as well poor perfor
mance when conflicts are encountered. 
Optimistic Locking 

64 
such data will be slow to paint and searches will be slow. The 
formation of the database queries is made such that a 
workable amount of data is retrieved. There are a few 
options for addressing the problems that occur from large 

5 result sets. The options are given below in order of prefer-
The optimistic approach to record locking is based on the 

assumption that it is not normal processing for multiple 
users to both read and update records concurrently. This 
situation is treated as exceptional processing rather than 
normal processing. Locks are not actually placed on the 
database at read time. A timestamp mechanism is used at 
time of update or delete to ensure that another user has not 10 

modified or deleted the record since you last read the record. 
A preferred embodiment of the present invention uses an 

optimistic locking approach to concurrency control. This 
ensures database integrity as well as the low overhead 
associated with this form of locking. Other benefits to this 15 

method are increased availability of records to multiple 
users, and a minimization of database deadlocks. 

Table candidates for concurrency control are identified 
during the "Data Modeling Exercise". The only table which 
is updated concurrently is the Optimistic Locking mecha- 20 

nism. Once these are identified, the following is added to the 
application. 

Add "N_Last_Updt" field to table in database; 

ence. 

Redesign the interface/controller to return smaller result 
sets. By designing the controllers that present the database 
queries intelligently, the queries that are presented to the 
database server do not return a result set that is large enough 
to affect user perceived performance. In essence, the poten
tial to retrieve too many records indicates that the Uls and 
the controllers have been designed differently. An example 
of a well designed Search UI is one where the user is 
required to enter in a minimum search criteria to prevent an 
excessively large result set. 

Have Scrollable Result Sets. The scrolling retrieval of a 
large result set is the incremental retrieval of a result subset 
repeated as many times as the user requests or until the entire 
result set is obtained. Results are retrieved by the Bounded 
Query Approach where the first record is determined by a 
where clause with calculated values. 

Error Handling routines on those operations which Scrollable Result Set Client requirements 
modify or delete from this table; and 25 Preferred UI 

Display/Notification to user that the error has occurred. The preferred displays are as follows: 
Returned results are displayed in a GreenTree List Box; 
An action button with the label More ... is provided for Usage 

the user to obtain the remaining results; 
The chart below describes the roles of the two basic types 30 

of components to enable optimistic locking. 
The More button is enabled when the user has performed 

an initial search and there are still results to be retrieved; 
The More button is disabled when there are no more 

results to retrieve; 
Assumption: The optimistic locking field is of type Date 

and is named "N_Last_Updt" 

Read 
Access 

Inserts 

Updates 

Deletes 

Client Ccmponents 

Store N_Last_Updt value in the 
business object for use in possible 
updates or deletes. 
WHERE id ~ 10; 
Normal 

Pass previously read timestamp to 
identify whether row was modified. 
This is in addition to a unique identitier 
and whatever data needs to be updated. 
Handle exception if record has been 
previously modified. 
Notify user of conflict. 
Rollback any changes. 

Pass previously read timestamp to 
identify whether row was modified. 
This is in addition to a unique identifier 
Handle exception if record has been 
previously modified. 
Notify user of conflict 
Rollback any changes. 

Server Ccmponents 

Retrieve data (Always including N_Last_Updt field). 
SELECT Id, FirstName, N_Last_Updt 
FROM Customer 

Dim lCurrTS As Double 
lCurrTS ~ GetTimeStamp 
INSERT INTO Custcmer (Id, FirstName, N_Last_Updt) 
VALUES (1, "Rick'', lCurrTS); 
Return new timestamp (lCurrTS) as well as new Id 
Dim lCurrTS As Double 
lCurrTS ~ GetTimeStamp 
UPDATE Customer 
SET firstName ~ "Richard", 
N_Last_Updt ~ lCurrTS 
WHERE id ~ 1 
AND LastUpdate ~ lastReadTimestamp; 
If no rows are affected, handle and propagate error back 
out to the client. 
Return new timestamp (lCurrTS) 
DELETE Customer 
WHERE id ~ 1 
AND N_Last_Updt ~ lastReadTimestamp; 
If no rows are affected, handle and propagate error back 
out to the client. 

LARGE RESULT SET 

When retrieving records from a database, if the search 
criteria is too broad, the amount of data required to be 65 

retrieved from the database and passed across the network 
will affect user perceived performance. Windows requesting 

The List Box and the Action button is contained within a 
group box to provide a visual association between the button 
and the List Box. 

Bounded Query 
Queries that are implemented with the limited result sets 

are sent to the server. The server implements the execute-



US 6,574,636 Bl 
65 

Query method to retrieve the recordset as usual. Limited 
result queries have an order by clause that includes the 
business required sort order along with a sufficient number 
of columns to ensure that all rows can be uniquely identified. 
The recordset is limited by the nMaxRows variable passed 5 

from the client incremented to obtain the first row of the next 
result set. The return from the component is a recordset just 
the same as with a query that is not limited. The CCA 208 
creates the objects and passes these back to the controller 
206. The Controller 206 adds this returned collection of 10 

object to its collection of objects (an accumulation of 
previous results) and while doing so will performs the 
comparison of the last object to the first object of the next 
row. The values necessary to discriminate the two rows are 
added to the variant array that is necessary to pass to the 15 

component for the subsequent query. 
The Controller 206 on the client retains the values for 

nMaxRows, the initial SQLstatement, and array of values to 
discern between the last row of the previous query and the 
first row of the next query. The mechanism by which the 20 

controller 206 is aware that there are more records to retrieve 
is by checking the number of results is one greater than the 
max number of rows. To prevent the retrieval of records past 
the end of file, the controller 206 disables these functions on 
the UI. For example, a command button More on the UI, 25 

used to requested the data, is disabled when the number of 
objects returned is less than nMaxRows+ 1 

Application responsibility 

66 

-continued 

cmSelectLocal, sQuery, nMaxRows, , colArgs) 
'Tell MTS we're done 
GetObjectContext.SetComplete 
Exit Function 

ErrorHandler: 
Select Case Err.Number 

Case Else 
Dim iResumeCode As Integer 
iResumeCode = GeneralErrorHandler(vMsg, cmServer, 

cmClassName, cmMethodName) 
Select Case iResumeCode 

Case cmErrorResume 
Resume 

Case cmErrorResumeNext 
Resume Next 

Case cmError Exit 
Exit Function 

Case Else 
GetObjectContext.SetAbort 
Err.Raise Err.Number 

End Select 
End Select 

End Function 

To determine the additional where clause necessary to 
determine the starting point of the query, the following 
method is added: 

Server 
The Server component is responsible for creating a col

lection of arguments and appending the SQL statement to 
add a where clause that will be able to discriminate between 
the last row of the previous query and the first row of the 
next. 

30 Private Function ArgumentsForBusinessObject(vKeys As Variant, 
sSql As string ) 

CCA 
The CCA 208 processes the recordset into objects as in 

non limited queries. The CCA208 forwards the variant array 
passed from the Controller 206 to identify the limited 
results. 
Controller 

The controller 206 has the responsibility of disabling the 
More control when the end of file has been reached. The 
controller 206 populates the variant array (vKeys) with the 
values necessary to determine start of next query. 

Example 
A CCA 208 is coded for a user defined search which has 

the potential to return a sizable result set. The code example 
below implements the Bounded Query approach. 

35 

40 

45 

As CCollection 
Dim colArgs As Ccollection 
Canst cmGreaterThan WhereString As String ~ " ? > ? " 
Canst cmGreaterThanOrEqualWhereString As String ~ " ? >~ ? AND " 
' initialize local variables 
Set colArgs ~ New Ccollection 
sSql ~ sSql + "WHERE" 
With colArgs 

If vKeys(O) <> Empty Then 
.Add ("N_TASK_TEMPL_ID") 
.Add (vKeys(O)) 

End If 
'If vKeys(1) <> Nothing Then 

'.Add value2 fieldName 
'.add vKeys(1) 
sSql ~ sSql + cmGreaterThanOrEqualWhereString 

'End If 
'If vKeys(2) <> Nothing Then 

'.Add value3 fieldName 
'.add vKeys(2) 
sSql ~ sSql + cmGreaterThanOrEqualWhereString 

'End If 
End With 

On the Server the developer codes the query as follows: 
50 'finalize SQL statement 

Public Function RetrieveBusinessObjects(vMsg As Variant, By Val sSq1 
As String, By Val nMaxRows As Integer, Optional By Val vKeys As 
Variant) As Recordset 

On Error GoTo ErrorHandler 
'Declare local constants 
Canst cmMethodName As String ~ "RetrieveBusinessObjects" 
'Declare local variables 
Dim cmClassName As String 
Dim colArgs As New CCollection 
'initialize instance variables 
cmClassName ~ "CSRSTestComp" 
'fill argument collection 
Set colArgs ~ ArgumentsForBusinessObject(vKeys , sSQL) 
'increment nMaxRows to obtain row for comparison 
nMaxRows = nMaxRows + 1 
'ExecuteQuery 

Set RetrieveBusinessObjects ~ ExecuteQuery(vMsg, 

sSql ~ sSql + cmGreaterThanWhereString 
Set ArgumentsForBusinessObject ~ colArgs 

End Function 

55 On the CCA208, allowance must be made for the passing 

60 

of the vKeys 

Public Function RetrieveBusinessObjects(vMsg As 
Variant, sSql As String, nMaxRows As Integer, Optional 
ByVal vKeys As Variant) As CCollection 

Set percmpComponent ~ New CSRSTestComp 
Dim i As Integer 
Set adoRS ~ percmpComponent.RetrieveBusinessObjects(vMsg, sSql, 

65 nMaxRows, vKeys) 
'convert recordset to business objects 



US 6,574,636 Bl 
67 

-continued 

adoRS.MoveFirst 
Do Until adoRS.EOF 

Call ConvertToBusinessObject 
adoRS.MoveNext 

Loop 
'return the collection of business objects 
Set RetrieveBusinessObjects ~ dictBusinessObject 
Set dictBusinessObject ~ New CCollection 

End Function 

5 

10 

68 
In order to retain the values to discriminate between the 

last row of the result set and the first row of the next the 
following method on the controller is used: 

Private Function ProcessObjectCollection( ) As Integer 
' merge results with the instance variable for the collection 

Dim ctr As Integer 
ctr ~ 0 

For Each element In interimResults 
ctr=ctr+1 
'retain Keys for subsequent Queries 
With element 
Select Case ctr 

Case nMaxRows 

The controller initiates the query and updates the variant 
array of keys and form 204 properties based on the return. 
In addition to the code shown for the example below, the 
More Control is enabled if the search is cleared. 15 

'store all values that may be used for row 
comparison vKeys(O) ~ .Nodeid 

'declare instance variables 
Private nMaxRows As Integer 
Dim interimResults As CCollection 
Dim vResults As CCollection 
Dim vKeys(3) As Variant 
'declare Constants 
Private Canst nDefaultAmount As Long ~ 50 
Private Canst cmRetrieveBusinessObjectSQL ~ "SELECT * 
FROM NODE RULE ORDER BY_ N_TASK_TEMPL_ID"" 

During class initialization perform the following: 

Public Sub Class_init() 
'obtain settings from registry 
nMaxRows ~ Cint(GetSetting(cmRegApp, cmRegArchSection, 

cmLimitedResultAmountKey, lDefaultAmount)) 
Call resetSearch 
Set objCCA ~ New { CCA class name} 

End Sub 

Search reset functionality is kept outside of initialization 
so this may be called from other parts of the application. 

Public Sub resetSearch() 
Dim I as Integer 

Set vResults ~ New Ccollection 
For I~ 0 To 3 

Set vKeys(I) ~ Empty 
Next 

Set vKeys(O) ~ Empty 
frmCurrentForm.cmdMore.Enabled ~ True 

End Sub 
Public Sub RetrieveBusinessObjects() 

Canst cmMethodName As String ~ "retrieveBusinessObjects" 
Call RetainMouse 
' get arch message 
Dim vMsg As Variant 
vMsg ~ objApp.objArch.AsMsgStruct() 
' call the component 
Dim pair As CArchPair 
Declare local variables 
Dim sSql As String 
Dim colArgs As CCollection 
Dim cmClassName As String 

Set interimResults ~ objCCA.RetrieveBusinessObjects(vMsg, 
cmRetrieveBusinessObjectSQL, nMaxRows, v Keys) 

ctr ~ ProcessObjectCollection 
'stop if size of return is less than the maximum 

If ctr < nMaxRows + 1 Then frmCurrentForm.cmdMore.Enabled ~ 
False 

' restore pointer 
Screen.MousePointer = lPrevPtr 

End Sub 

'add last object to collection 
vResults.Add element 

Case nMaxRows + 1 
'last object only used for comparison 
'If the proceeding value can be used to uniquely 

20 'identify row then delete value from array 
' THERE SHOULD BE N - 1 nested If statements 

where N ~ size of v Keys 
'If .value2 <> vKeys(1) Then 

'vKeys(2) ~ Empty 
If .Nodeid <> vKeys(O) Then vKeys(1) ~Empty 

25 'End If 

Next 

Case Else 
vResults.Add element 

End Select 
End With 

30 ProcessObjectCollection ~ ctr 
End Function 

35 
Operation of example with data 

Person 
First Name Last Name Status Unique ID 

40 
Joy Andersen Closed 22 
Jay Anderson Open 12 
John Barleycorn Closed 512 
John Barleycorn Open 32 
Esther Davidson Open 88 
David Dyson Closed 98 
Bobby Halford Open 234 

45 Steven Jackowski Closed 4 
Kyle Johnsen Open 65 
Jeff Johansen Open 13 
Mary Johnson Closed 24 
Larry Olsen Open 21 
William O'Neil Closed 29 

50 Jane Pick Open 3285 

For this example let nMaxRows=3. The business case 
calls for the result set to be ordered by the last name, and 
developer knows that any row can be uniquely identified by 

55 the FirstName, LastName, and Unique ID fields so the initial 
SQL added as a constant in the controller should be; 

SELECT * FROM Person ORDER BY LastName, 
FirstName, Unique_ID 

Initial Query 
60 The first query is sent with an empty vKeys Array. When 

the server receives this query, the method ArgumentsFor
BusinessObject identifies the elements as being empty and 
does not populate the colArgs. The query is executed with 
the intial SQL unchanged. The recordset of size 

65 nMaxRows+ 1 is returned to the CCA 208 and processed the 
same as non-limited results. The CCA 208 returns the 
collection of objects to the controller 206. The controller 206 



US 6,574,636 Bl 
69 

proceeds to populate the vResults collection with the 
returned objects. vResults is the comprehensive collection of 
objects returned. When the last object of the first request is 
reached (at nMaxRows), the values are stored in vKeys as 
such; 

vKeys(O)=LastName (Barleycorn) 

vKeys(l)=FirstName (John) 

vKeys(2)=Unique_ID (512) 

5 

When the First Object of the next request is reached (at 
10 

nMaxRows+l), comparison of the object variables against 
the vKeys values is performed. Because the last names 
match, vKeys(2) will not be deleted and no further checks 
are performed. 
Subsequent Query 

15 
The subsequent query will pass vKeys along with it. The 

server creates the collection of arguments from vKeys and 
append the sSql string in accordance. The sSql statement 
that is passed to execute query is 

SELECT * FROM Person ORDER BY LastName, 20 
FirstName, Unique_ID WHERE ? >=? AND ? >=? 
AND?>? 

This sSql and collection is included in the call to Execute
Query which merges the arguments with the string relying 
on the architecture method MergeSQL to complete the SQL 25 
statement. 

The starting point of the recordset is defined by the 
WHERE clause and the limit is set by the nMaxRows value. 
Query Less Restrictive WHERE Criteria 

After the second query the last row of the query is David 30 
Dyson and the next is Bobby Halford. Because the last name 
is different, vKeys will be empty except for vKeys(O)= 
Dyson. 

The ProcessObjectCollection will populate vKeys as fol-
lows when processing nMaxRows object: 

vKeys(O)=LastName (Dyson) 

vKeys(l)=FirstName (David) 

vKeys(2)=Unique_ID (98) 

35 

After identifying the differences between vKeys values 
and the nMaxRows+l object the vKeys array is updated as 40 

follows: 

70 
structure, an operation ID and an optional parameter describ
ing the operation's context. 
Client 
User Authentication 

User authentication is handled via a method located in the 
Security object 802 called IsOperAuthorized. As the Appli
cation object loads, it calls the IsOperAuthorized method, 
with the operation being "Login", before executing further 
processing. This method subsequently calls a authentication 
DLL, which is responsible for identifying the user as an 
authorized user within the Corporate Security. 
UI Controllers 

The UI Controllers limit access to their functions by 
restricting access to specific widgets through enabling and 
disabling them. The logic for the enabling and disabling of 
widgets remains on the UI Controller 206, but the logic to 
determine whether a user has access to a specific function
ality is located in the Security object 802 in the form of 
business rules. The UI Controller 206 calls the IsOperAu
thorized method in order to set the state of its widgets. 
Server 

Server security is implemented by restricting access to the 
data in three different ways: 
Server Security Method 

Server Components 222 call the IsOperAuthorized API in 
the Architecture before executing every operation. In all 
cases the Security object 802 returns a boolean, according to 
the user's access rights and the business rules 
SQL Filtering 

Includes security attributes, like claim sensitiveness or 
public/private file note, into the SQL statements when 
selecting or updating rows. This efficiently restricts the 
resulting data set, and avoids the return of restricted data to 
the client. 

Description 

Any GUI related security is implemented at the Client 
using the Security object 802. The information is available 
both at the Client Profile and Business Objects 207 which 
enables the security rules to be properly evaluated. 

IsOperAuthorized is called to set widgets upon the load
ing of a UI or if there is a change of state within the UI. vKeys(O)=LastName (Dyson) 

vKeys(l)=Empty 

vKeys(2)=Empty 
The query that is returned from ArgumentsForBusines

sObject is 

User authentication always is used by the Application 
45 Objects 202 in order to validate user privilege to launch the 

application. 

SELECT * FROM Person ORDER BY LastName, 
FirstName, Unique_ID WHERE ? >? 

and the colArgs possessing the fieldname FirstName and the 50 

value ("David"). ExecuteQuery merges the arguments with 
the sql statement as before and returns the value. 
Ending 

After the fifth iteration the result set will only possess 2 
records. When the controller 206 processes the returned 55 

collection the counter returned from ProcessObjectCollec
tion is less than nMaxRows+ 1 which indicates that all 
records have been retrieved. 

SQL Filtering is used in the cases where sensitive data 
must not even be available at the Client, or where there is a 
great advantage on reducing the size of the data set returned 
to the Client. 

SQL Filtering is only used in very rare cases where 
performance is a serious concern. It is used carefully in order 
to avoid increased complexity and performance impacts 
because some queries can be cumbersome and embedding 
security on them could increase complexity even more. 

Security Framework 
Overview 

SECURITY FRAMEWORK 
Implementation 

60 The Security object 802 serves the purpose of holding 

FIG. 8 shows a representation of the Security Framework 
800 and its main components. 

It can be seen from FIG. 8 that the Security object 802 is 
present at the Client and a Security API is provided at the 
server. The Security object 802 provides one method respon
sible for authorizing any operation, being given the vMsg 

hard coded business rules to grant or deny user access for 
various application functions. This information is returned 
to the UI controllers 206 which make the necessary modi
fications on the UI state. The ClientProfile object serves the 

65 purpose of caching user specific (and static) security infor
mation directly on the client. This information is necessary 
to evaluate the business rules at the Security object 802. 



US 6,574,636 Bl 
71 

Relationships 

FIG. 9 shows the relationships between the security 
element and other elements. 
Architecture Object 

5 
The TechArch object is responsible for providing access 

and maintaining the state of the ClientProfile 902 and 
Security objects 802. The ClientProfile object 902 is instan
tiated and destroyed in the TechArch's initialization and 
terminate methods, respectively. This object is maintained 

10 
through an instance variable on the TechArch object. 
CinitCompCCA 

The CinitCompCCA object 904 provides two services to 
the architecture object 200, it serves as an access point to the 
CinitComp Server 906, and it Marshalls the query result set 

15 
into a ClientProfile object 902. 
CinitComp 

The CinitComp server object 906 provides data access to 
the data that resides in the organization tables 908. This data 
is useful on the client to determine level of access to data 
based on hard coded business rules. 
Organization Tables 

20 

The Organization tables 908contain user, employee and 
unit information necessary to build the hierarchy of infor
mation necessary to determine level of access to sensitive 

25 
information. 
Client Profile 

The ClientProfile object 902 serves the purpose of cach
ing static, user specific security information directly on the 
client. This information is necessary to determine data 

30 
access level of information to the user, which is accom
plished by passing the necessary values to the Security 
object 802. 
Security Object 

The Security Object 802 contains business rules used to 
35 

determine a user's access privileges in relation to specific 
functions. The object accepts certain parameters passed in 
by the various UI Controllers 206 and passes them to 
through the business rule logic which, in turn, interrogates 
the Client Profile object 902 for specific user information. 

40 

Client Profile 
Attributes 

72 
sEmployeeName, sEmployeeFirst, sEmployeeMI and 

sEmployeeLast: 
All these attributes correspond to the current user's 

name. 
dictClientPrivileges: 

This attribute contains a collection of identifiers that 
indicate what role/authority an individual plays/ 
possesses. This value is used to identify the static 
role of the logged in user. 

These values are used for security business logic which 
grants or denies access based on whether the user is internal 
or external, or whether the user is in a given administrative 
role. Existing values are the following: 

SC-Indicates sensitive Claim authority 

CC-Indicates Change Claim status authority 

MT -Indicates maintain F &C Templates authority 

MO-Indicates maintain Organization authority 
MR-Indicates maintain Roles authority 
The following are the proposed additions: 
TA-Indicates authority to execute Task Assistant 

FN-Indicates authority to execute FileNotes 

CH-Indicates authority to execute Claim History 
TL-Indicates authority to maintain Task Templates 
dictProxyList: 

This attribute contains an employees' reporting hierar
chy. It is used to determine whether the current 
user/employee has permission to perform some 
action based on his/her relationship to other users/ 
employees within their hierarchy. A business 
example of this is the case of a supervisor, who has 
rights to view information that his/her subordinates 
have access to. The relationship API's make use of 
dictProxyList to determine if the user assigned to the 
information is super or subordinate of the current 
user. 

boollnternal: 
This attribute indicates whether the logged in user is 

external or internal. It is also marshalled from the 
sProfile attribute, passed in by the legacy application. 

Public Methods 
The following are internal attributes for the Client Profile 

object 902. These attributes are not exposed to the applica
tion and should only be used by the Security object 802: 

sProfile: 

The following are the APis exposed by the Client Profile 
object. These APis are used for security checking by the 

45 Security object and should not be used by the developers in 
any portion of the application. 

This attribute is passed by the legacy application at 
start-up and contains the user's TSids, External 
Indicator, Count of Group Elements and Group Ele-

50 
ments. It is marshalled into these attributes by 
request of the application objects. 

colSpecialUsers: 
This attribute caches information from a table contain-

ing special users which do not fit into one of the 55 
described roles, such as Organization Librarian. 
(e.g., Vice President or CEO of the corporation.) 

sTSid: 
This is the current users' TSid, and it corresponds to 

his/her Windows NT I d. It is used to get information 60 
about the current logged on user from the Organi
zational Tables 908. 

sEmployeeid: 
This corresponds to the user's employee Id, as stored in 

the Organizational tables 908. It is used against the 65 

passed in employee Id, in order to check relationship 
between performers and the current user. 

GetAuthorizedEmployees As Collection 
This function returns a collection of employee Ids from 

the employees supervised by the current user. 
IsSuperOf(sUserid) As Boolean 

This API returns true if the logged in user is a super of 
the passed in user Id. It looks up the sUserld value 
inside the dictProxyList attribute. 

IsRelativeOf(sUserld) As Boolean 
This API returns true if the passed in user Id corre

sponds to either the logged in user or someone from 
the dictProxyList. 

Isinternal As Boolean 
This API is used to grant or restrict the user to infor

mation based on whether the data is private to the 
organization whether the user is internal or external. 

IsinRole(sRole) As Boolean 
This API looks up the appropriate sRole value con

tained within the dictClientRoles attribute to deter
mine whether the current user is authorized to per
form that role. 



US 6,574,636 Bl 
73 

The following accessors are used to get data from the 
Client Profile's object: 

Userld: returns sTSid 

Employeeid: return sEmployeeid 

EmployeeName: returns sEmployeeName 

EmployeeFirstName: returns sEmployeeFirst 

EmployeeLastName: returns sEmployeeLast 

EmployeeMiddleinitial: returns sEmployeeMI 

ExpandTree: returns boolExpandTreePreference 

TemplatePathPreference: returns sTemplatePathPrefer-
ence 

5 

10 

74 
or the performer's supervisor. The following code would be 
at the Controller: 

Private Sub TaskTree_NodeChanged( .... ) 
myController.SetCurrentTask 
myController.SetState 

End Sub 
Private Sub SetStateO 

Dim objSecurity as Object 
Dim vContext(1) as Object 
Set objSecurity ~ taaApp.taoArch.objSecurity 
vContext(O) ~ CurrentClaim 
vContext(1) ~ CurrentTask 
tlbEditlcon.Enabled ~ 

Security Object 
objSecurity.lsOperAuthorized(vMsg, cmWorkOnSensitiveClaim, 

15 vContext) 

Public Methods 
The following API is exposed by the Security Object and 

is used by the application for security checking: 

IsOperAuthorized(vMsg As Variant, nOperations As 
cmOperations, vContext As Variant) as Boolean 20 

This API will return true or false depending on what is 
returned from the business rule functions to deter
mine user access levels. This API is called on two 
situations: 
1. When setting the initial state before loading the 25 

form. If a security requirement exists, IsOperAu
thorized is called for the appropriate operation. 

2. After any relevant change on the UI state. For 
example, when a sensitive claim is highlighted on 
the Task Assistant window. A relevant change is 30 

one which brings the need for a security check. 

End Sub 

Let's consider the case of the Maintain Correspondence 
Search window where only a user who is a Forms and 
Correspondence Librarian should be allowed to delete a 
template. The following code would be at the Controller: 

Private Sub SetWindowModeQ 
Dim objSecurity as Object 
Set objSecurity ~ taaApp.taoArch.objSecurity 

tlbEditlcon.Enabled ~ objSecurity.lsOperAuthorized(vMsg, 
cmMaintainFormsCorr) 
End Sub 

Server 
SQL Filtering: The valid values for the enumeration and the correspon

dent context data are: 

cmnMaintainFormsCorr (none) 

cmRunEventProcessor (none) 
cmWorkOnSensitiveClaim (a Claim object) 

cmMaintainPersonalProfile (none) 

cmMaintainWorkplan (none) 

cmDeleteFileNote (a File Note object) 

cmMaintainTaskLibrary (none) 

cmMaintainOrg (none) 

Let's consider the example of the Draft File Note window, 
where a user can only look at the draft file notes on which 

35 he/she is the author. At the controller, one would have: 

Server Security APis 

IsSVCOperAuthorized(vMsg As Variant, sOperations As 
String, vContext As Variant) as Boolean 

40 

45 

This API is called by every method on the server that 
persists data or can potentially access sensitive data 50 

(reactive approach). 

IsOperAuthorized(vMsg As Variant, nOperations As 
cmOperations, vContext As Variant) as Boolean 
This API is available for those cases where a proactive 

security check is needed on the server. 

Implementation Examples 

55 

Public Sub GetDraftFNotesO 
Dim objCP as Object 
Set objCP ~ taoArch.objClientProfile 
Dim fntCCA as Object 
Set fntCCA ~ taaApp.taoArch.GetCCA(cmCCAFileNote) 
Call fntCCA.GetADraftFNote(vMsg, objCP.sOrgUserld, colFNotes) 

End Sub 

And at the Component, the SQL statement would be: 

Select nFNoteld, 
sFNoteAuthor, 
dFNoteFinal, 

From File Note 
Where sFileNoteSts ~ 'D' 
And sFNoteAuthor ~ sAuthor 

Task Engine Application 

This application runs on the server as a background 
The following examples show some ways to implement 

the options described above: 

Client 

Business Logic 
IsOperAuthorized 

60 process or service with no direct interaction with Client 
applications, so it doesn't need any GUI related security. 
Basically, its main actions are limited to the generation of 
new tasks in response to externally generated events or, 
more specifically, it: 

Let's consider the case of the Task Assistant window, 65 

where the user should not be allowed to view any informa
tion on a sensitive claim if he/she is not the claim performer 

Reads static information from the Task Template tables; 
Reads events from the Event tables; 
Inserts tasks on the Task table. 



US 6,574,636 Bl 
75 

In this sense, its security is totally dependent on external 
entities as described below: 

76 
component code segments adapted for interacting with one 
or more adapter components to add, retrieve, modify, or 
delete one or more business objects. The Task Library application is the entrance point for any 

changes on the Task Template database tables. It will 
make use of the options described above in order to 
fulfill its security requirements. 

11. The computer program as recited in claim 2, wherein 
5 the computer program includes logic for providing dirty flag 

processing to notify users of change processing. 

Events are generated from legacy applications, so the 
Task Engine relies completely on the security imple
mented for these applications in order to control the 
generation of events. 10 

Another level of security for event generation relies on the 
Database authorization and authentication functions. 
Only authorized components have access to the data
base tables (this is valid for all the other applications as 
well). 15 

While various embodiments have been described above, 
it should be understood that they have been presented by 
way of example only, and not limitation. Thus, the breadth 
and scope of a preferred embodiment should not be limited 
by any of the above described exemplary embodiments, but 20 

should be defined only in accordance with the following 
claims and their equivalents. 

What is claimed is: 
1. A computer program embodied on a computer readable 

medium for developing component based software, com- 25 

prising: 
a data component that stores, retrieves and manipulates 

data utilizing a plurality of functions; 
an adapter component that transmits and receives data 30 

to/from the data component; 
a business component that serves as a data cache and 

includes logic for manipulating the data; and 

12. A computer program embodied on a computer read
able medium for creating a component based architecture, 
comprising: 

a user interface form code segment adapted for collecting 
data from a user input; 

a business object code segment adapted for caching data; 
an adapter code segment adapted for transmitting data to 

a server; and 
a controller component code segment adapted for han

dling events generated by the user interacting with the 
user 

interface code segment, providing validation within a 
logic unit of work, containing logic to interact with a 
business component, creating one or more business 
objects, interacting with an adapter component to add, 
retrieve, modify, or 

delete business objects, and providing dirty flag process
ing to notify a user of change processing. 

13. The computer program as recited in claim 12, further 
comprising an architecture component adapted to provide 
architecture services selected from the group of services 
comprising accessing codes from one or more code tables; 
logging messages; handling errors; providing security ser
vices; providing performance statistics; providing data 
manipulation functions; managing date formats and provid-
ing a single point of entry for architecture services. 

14. The computer program as recited in claim 12, further 
comprising an application component adapted for instanti-a controller component adapted to handle events gener

ated by a user utilizing the business component to 
cache data and the adapter component to ultimately 
persist data to a data repository. 

2. The computer program as recited in claim 1, wherein 
the computer program includes a plurality of components. 

35 ating the controller component; passing data to the controller 
component; invoking services selected from the group of 
services comprising initializing the controller component, 
initializing the user interface code segment, and initializing 
the architecture component; and managing open windows 

3. The computer program as recited in claim 2, wherein 
the computer program includes one or more user interface 
code segments adapted for collecting data and events from 

40 for the purpose of coordinating a shutdown process. 

a user. 
4. The computer program as recited in claim 2, wherein 

the computer program includes one or more server campo- 45 

nents that persist data to a data repository. 

15. The computer program as recited in claim 12, wherein 
the user interface code segment is adapted for presenting a 
graphical interface to a user, informing the controller com
ponent of user actions, and providing data validation. 

16. The computer program as recited in claim 12, wherein 
the business component contains information about a busi
ness entity to maintain the integrity of the business entity, 
encapsulates business rules that pertain to the business 
entity, maintains relationships with one or more business 

5. The computer program as recited in claim 1, wherein 
the computer program includes an adapter component that 
utilizes an address lookup table for determining an address 
to transmit data to a server. 

6. The computer program as recited in claim 2, wherein 
the computer program includes one or more application 
management components to provide one or more dialogs for 
handling events. 

50 objects, provides validation of data, and provides calculated 
or derived data. 

7. The computer program as recited in claim 2, wherein 55 

the computer program includes one or more controller 
component code segments adapted for providing validation 
within a logical unit of work. 

8. The computer program as recited in claim 4, wherein 
the computer program includes one or more controller 60 

component code segment containing logic to interact with 
one or more business components. 

9. The computer program as recited in claim 2, wherein 
the computer program includes logic for dynamically instan
tiating additional business components. 

10. The computer program as recited in claim 2, wherein 
the computer program includes one or more controller 

65 

17. The computer program as recited in claim 12, wherein 
the adapter component marshals data contained in recordsets 
returned by the server into business objects and masks 
remote requests from one or more controller components. 

18. A computer program embodied on a computer read
able medium for creating a component based architecture for 
allowing communication between a plurality of clients and 
a server, comprising: 

one or more client components included with each client, 
each client component of each client adapted for com
municating and manipulating data with a first data type; 

one or more server components adapted for communicat
ing and manipulating data with a second data type; and 

one or more adapter components included with each client 
for translating data from the one or more client com
ponents to the second data type when communicating 



US 6,574,636 Bl 
77 

data from the client to the server and further translating 
data from the one or more server components to the first 
data type when communicating data from the server to 
the client: 
wherein the adapter component marshals data con- s 

tained in recordsets 
returned by the server into business objects and masks 

remote requests 
from one or more controller components. 

78 
19. The computer program as recited in claim 18, wherein 

the server component is independent of any client compo
nent and the adapter component manages the interface 
between the server component and other components. 

20. The computer program as recited in claim 18, wherein 
the server component performs the data persistence func
tions. 

* * * * * 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 6,574,636 Bl 
DATED : June 3, 2003 
INVENTOR(S) : Richard E. Balon et al. 

Page 1 of 3 

It is certified that error appears in the above-identified patent and that said Letters Patent is 
hereby corrected as shown below: 

Column 6, 
Line 59, delete "H," and substitute -- H. -- in its place. 

Column 8, 
Line 28, immediately after "modules" insert-- . -- (period). 

Column 16, 
Line 45, delete "Node" and substitute -- Mode -- in its place. 

Column 18, 
Line 26, immediately before "handle" insert-- ' -- (apostrophe). 

Column 19, 
Line 50, immediately before "make" insert-- ' --(apostrophe). 

Column 22, 
Line 52, delete "adds or full updates" and substitute -- adds or full updates -- in its place. 

Column 23, 
After line 30, insert a new line as follows:--:-- (colon). 

Column 24, 
Line 18, delete "egual" and substitute -- equal -- in its place. 

Column 27, 
Line 38, delete "task TimeStamp" and substitute-- task. TimeStamp-- in its place. 

Column 28, 
Line 18, delete "lNeWTimestamp" and substitute-- lNewTimeStamp --in its place. 
Line 27, delete "Setcomplete" and substitute-- SetComplete --in its place. 

Column 29, 
After line 51, insert a new line as follows: -- : --. 
Line 53, insert-- ' --(apostrophe) before "let". 

Column 30, 
Line 10, delete" ... " and substitute-- ......... --in its place. 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 6,574,636 B1 
DATED : June 3, 2003 
INVENTOR(S) : Richard E. Balon et al. 

Page 2 of 3 

It is certified that error appears in the above-identified patent and that said Letters Patent is 
hereby corrected as shown below: 

Column 32, 
Line 19, delete "Uis" and substitute-- UI's --in its place. 
Lines 23 and 24, delete "(e.g .. , "May 16, 1998")" and substitute-- (e.g., "05/16/98") -
in its place. 
Lines 25 and 26, delete "eg.,., "May 16, 1998")" and substitute-- (e.g., "16/05/98") -
in its place. 
Line 29, delete "Sheridan Calendar Widgets" and substitute-- Sheridan Calendar 
Widgets -- in its place. 

Column 34, 
Line 36, delete "Requires New:" and substitute-- Requires New: --in its place. 
Line 37, "Requires Existing:" and substitute -- Requires Existing: -- in its place. 
Line 40, "Requires Existing:" and substitute-- Requires Existing: --in its place. 
Line 44, delete "Not Supported:" and substitute -- Not Supported: -- in its place. 

Column 43, 
Line 37, insert-- ' --(apostrophe) before "language". 
Line 38, insert-- ' --(apostrophe) before "localized". 
Line 39, insert-- ' --(apostrophe) before "English". 
Line 40, insert-- ' --(apostrophe) before "abbreviated". 
Line 41, insert-- ' --(apostrophe) before "native". 

Column 48, 
Line 41, after "current" insert -- user is in a certain role --. 

Column 52, 
Line 10, delete "(erg.," and substitute-- (e.g.,-- in its place. 

Column 57, 
Lines 27-29, first table, fourth entry for "Value 3", under column "Name", delete "audit 
purposes"; under column "Description", delete "occurrencefor logging and information" 
and substitute -- occurrence for logging and audit purposes -- in its place; under column 
"Example" after "Developer debugging" insert -- information --. 

Column 58, 
Line 27, immediately after "declaring" delete"," (comma). 
Lines 30-31, delete "develOpment" and substitute-- development-- in its place. 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 6,574,636 Bl 
DATED : June 3, 2003 
INVENTOR(S) : Richard E. Balon et al. 

Page 3 of 3 

It is certified that error appears in the above-identified patent and that said Letters Patent is 
hereby corrected as shown below: 

Column 63, 
In the title of the table, delete "Ccmponents" and substitute -- Components -- in its place 
in both occurrences. 
In the table, column 3, second entry, under column "Server Components" delete 
"INSERT INTO Custcmer" and substitute-- INSERT INTO Customer-- in its place. 

Column 70, 
Line 4, immediately after "Authentication" insert-- :--(colon). 
Line 12, immediately after "UI Controllers" insert-- :--(colon). 

Column 71, 
Line 23, delete "908contain" and substitute -- 908 contain -- in its place. 

Column 73, 
Line 34, delete "cmnMaintainFormsCorr" and substitute-- cmMaintainFormsCorr -
in its place. 

Signed and Sealed this 

Tenth Day of August, 2004 

JONW.DUDAS 
Acting Director of the United States Patent and Trademark Office 




