
(12) United States Patent
Sherman et al.

(54) METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL
CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

(75) Inventors: Edward G. Sherman, London (GB);
Mark P. Sherman, Seattle, WA (US);
George M. Reed, Saratoga, CA (US);
Larry Saunders, San Diego, CA (US);
Wayne Goldman, Sausalito, CA (US);
Simon Whittie, Gladesville (AU);
Richard N. Hunter, Jr., Littleton, CO
(US)

(73) Assignee: Softvault Systems, Inc., Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/847,536

(22) Filed:

(65)

May 1, 2001

Prior Publication Data

US 2002/0073334 A1 Jun. 13, 2002

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/163,094, filed on
Sep. 29, 1998, now Pat. No. 6,249,868.

(51) Int. Cl? .. G06F l/24
(52) U.S. Cl. 713/202; 713/150; 713/153;

713/168; 713/200; 713/201

202

I

111111 111
US006594765B2

(10) Patent No.: US 6,594,765 B2
Jul. 15, 2003 (45) Date of Patent:

(58) Field of Search 713/150, 153,
713/161, 168, 200, 201, 202

(56) References Cited

U.S. PATENT DOCUMENTS

5,276,728 A * 1!1994 Pagliaroli et a!. 180/287
5,912,615 A * 6/1999 Kretzmar eta!. 180/287
6,144,848 A * 11/2000 Walsh eta!. 235/379
6,170,014 B1 * 1!2001 Darago eta!. 709/217

* cited by examiner

Primary Examiner-Thomas R. Peeso
(74) Attorney, Agent, or Firm-Olympic Patent Works,
PLLC

(57) ABSTRACT

A method and system for protecting and controlling personal
computers ("PCs"), components installed in or attached to
PCs, and other electronic, mechanical, and electromechani
cal devices and systems. An exemplary embodiment of the
system includes a server running on a remote computer and
hardware-implemented agents embedded within the cir
cuitry that controls the various devices within a PC. The
agents intercept all communications to and from the devices
into which they are embedded, passing the communications
when authorized to do so, and blocking communications
when not authorized, effectively disabling the devices.
Embedded agents are continuously authorized from the
remote server computer by handshake operations imple
mented as communications messages.

29 Claims, 21 Drawing Sheets

252

220

212

U.S. Patent Jul. 15, 2003 Sheet 1 of 21 US 6,594,765 B2

126
108

124

PLEASE ENTER YOUR PASSWORD

130

===I

=I

104

Fig. 1

202~
*'

000
0000
DODO
0000
0000
coco
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

254~

216

DRAM I
~ IN-MEMORY

PROGRAMS

ETHERNET
CARD

242

222

244

~ 1--"214

-238

BUS
BRIDGE

SYSTEM
CONTROLLER

CARD I I CARD
0 Q

218

~- ~

DISK
CIRCUITRY

204

230

~t250
DISPLAY

CIRCUITRY

252

220

Fig. 2

212

d
•
\Jl •
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=~
~
N
0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

318

EASS
SERVER

REMOTE
SERVER
COMPUTER

320

NON-VOLATILE STORAGE DEVICE
STORING AUTHORIZATION AND
EMBEDDED AGENT INFORMATION

"

3

322

314 CPU 306

~ 'r---J/2

OS lA

SCEA CLIENT I

/

310 302

CIRCUIT BOARD

Fig. 3

304

I

I

I

d
•
\Jl •
~
~
~ =

~

= :-

'"""' ~Ul

N c c
~

'JJ.

=-~
~
~

0,
N

'"""'

e
rJ'l

-..a-..
(It
\0
-..~
""-l a-..
(It

~
N

U.S. Patent Jul. 15, 2003 Sheet 4 of 21 US 6,594,765 B2

SUCCESSFUL
HANDSHAKE

414

SUCCESSFUL
HANDSHAKE

AUTHORIZED

434

INITIAL
POWER-ON

GRACE PERIOD
402

416

406

SUCCESSFUL
HANDSHAKE

POWER-ON
GRACE PERIOD

SEND
SAVE ME

410

SEND
SAVE ME

INITIAL
POWER UP

SEND
SAVE ME

420

NOT
AUTHORIZED 408

Fig. 4

NON-INITIAL
POWER UP

(
424

U.S. Patent Jul. 15, 2003 Sheet 5 of 21

RECEIVE
SAVE ME

KNOWLEDGE
OF

AGENT

RECEIVE SEND ME
WITH INITIAL PASSWORD

\

510

504 SUCCESSFUL

\
\

HANDSHAKE

\
V""--520
\
\

IGNORANT
OF

AGENT

502

RECEIVE
SAVE ME

US 6,594,765 B2

SUCCESSFUL
HANDSHAKE

516

630
631
632
633

EASS SERVER

(620
ADDRESS

SGATE301-JERRY@CCD.COM
NET21 0-SUE@ELF.GOV

636
)

(622
CURRENT

FF631 AC1
CB861A78

616

(624 AUTH- 626
OLD ORIZED _) ~

19FE2212 YES l 2217813A YES
>--

_}

38
640
642

628

18

614
r SAVE ME,l l/
1-- ABCDEF01 y A ! 610
r ABCDEF01) IV

6h

Fig. 6A

I

I

I

EASS EMBEDDED AGENT

634

)

CURRENT PASSWORD
ABCDEF01

PREVIOUS PASSWORD
ABCDEF01

TIME REMAINING
2:00

602

1--

J-

1--

604

606

608

d •
\Jl •
~
~
~ =

~
:-

'"""' ~Ul

N c
8

'JJ.

=~
~
0'1
0,
N

'"""'

e
rJ'l

-..a-..
(It
\0
-..~
-....l a-..
(It

~
N

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZEO

SGATE301-JERRY@CCO.COM ff631AC1 19FE2212 YES
NET21 0-SUEiJELf.GOV CB861A78 2217813A YES

632 XAMPLHKCOM ABCDEf01 ABCDEFOl NO

~ \ \
I

646 648 644

616

/'----
'-.r-

l

;:--..1'--

Fig. 6B

SAVE ME
ABCDEfOl
ABCDEFOl

7
612

EASS EMBEDDED AGENT

CURRENT PASSWORD
I ABCDEFOl I

PREVIOUS PASSWORD
I ABCDEFOl I

TIME REMAINING c--- 1:59 1

602

d •
\Jl •
~
~
~ =

~
:-

'"""' ~Ul

N c
8

'JJ.

=~
~
-..J
0,
N

'"""'

e
rJ'l

-..a-..
(It
\0
-..~
""-l a-..
(It

~
N

EASS SERVER

EASS EMBEDDED AGENT

712
I I I

AUTHOR!~ II
16F3A79 710

16f3A79~ ~ 706 L I I I

AUTH-
ADDRESS CURRENT OLD ORIZED

!
708

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES

CURRENT PASSWORD
I ABCDEfOl

PREVIOUS PASSWORD
XAMPLE@X.COM ABCDEfOl ABCDEF01 NO I ABCDEFOl

TIME REMAINING
I 1:59

704
702

Fig. 7A

I I

II
I I

I

I

J

d
•
\Jl •
~
~
~ =

~

= :-

"""' ~Ul

N c c
~

'JJ.

=-~
~
00
0,
N

"""'

e
rJ'l

-..a-..
(It
\0
-..~
-....l a-..
(It

~
N

EASS SERVER

16f3A79

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES I
NET21 0-SUE @ELF. GOV CB861A78 2217813A YES I

XAMPLE@X.COM ABCDEF01 ABCDEFOl NO I

AUTHORIZE
16F3A79

708

Fig. 7B

7 10
" v

I
I
I

EASS EMBEDDED AGENT

16f3A79 !---' 714

CURRENT PASSWORD
ABCDEF01 I

PREVIOUS PASSWORD
ABCDEf01 I

TIME REMAINING
1:59 I

d
•
\Jl •
~
~
~ =

~

= :-

'"""' ~Ul

N c c
~

'JJ.

=-~
~
'0
0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

16F3A79

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET210-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.CO~ ABCDEF01 ABCDEF01 NO

702

CONFIRM
AUTHORIZATION 1/1
16F3A79~ ~~-======
ABCDEFO 1

718

I
716

Fig. 7C

EASS EMBEDDED AGENT

16F3A79

CURRENT PASSWORD
ABCDEF01 -l-1' 720

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
I -- 1:59 I

704

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~u-.

N c
8

'J)_

=~
~
'"""' c
0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

K

16F3A79 !----'

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES L NET21 0-SUE@ELF.GOV C8861A78 2217813A YES
XAMPLE@ X. COM 16F3A79 ABCDEF01 NO J

\ \
I /

722 724

Fig. 7JJ

CONFIRM
AUTHORIZATION
16F3A79~
ABCDEF01

718

7
716

EASS EMBEDDED AGENT

16F3A79

CURRENT PASSWORD
I ABCDEFOl I

PREVIOUS PASSWORD
I ABCOEF01 I

TIME REMAINING
[-m 1:59 I

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=~
~
'"""' '"""' 0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.COM 16F3A79 ABCDEF01 NO

OK 1 I~F3A79
~20:00

728

Fig. 7E

EASS EMBEDDED AGENT

16F3A79

CURRENT PASSWORD
I ABCDEF01 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
I 1 :sa I

d
•
\Jl
•
~
~
~ =

~

= :-
'""" ~Ul

N c
8

'JJ.

=~
~

'""" N
0,
N

'"""

e
\Jl
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM ff631AC1 19fE2212 YES
NET21 0-SUE@Elf.GOV CB861A78 2217813A YES
XAMPLE@X.COM 16P3A79 ABCDEf01 YES 1

\
I

10:00 h s 726

l'JQ 730

Fig. 7F

OK
16f3A79
120:00 ;
736

J'-

v

EASS EMBEDDED AGENT

CURRENT PASSWORD
16f3A79

PREVIOUS PASSWORD
ABCDEf01

TIME REMAINING
120:00

720

732

134

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=-~
~
'"""' ~
0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

"
v

3AA61 FB3--- r "'802

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE30 1-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE~RCOM 16F3A79 ABCOEF01 YES 2:00

801

Fig. BA

EASS EMBEDDED AGENT

AUTHORIZE
3AA61FB3

8~
CURRENT PASSWORD

I 16F3A79 I
PREVIOUS PASSWORD

I ABCDEF01 I
TIME REMAINING

[2:oo I

805

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=~
~
'"""' ~
0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

ADDRESS
SGATE301-JERRY@CCD.COM
NET21 0-SUH~ELF.GOV
XAMPLE@X.COM

3AA61FB3

AUTH-

AUTHORIZE
3AA61FB3

I
CURRENT OLD ORIZED

804

ff631AC1 19FE2212 YES
CB861A78 2217813A YES
16F3A79 ABCDEF01 YES 2: 00

Fig. BB

EASS EMBEDDED AGENT

~

3AA61FB3

CURRENT PASSWORD
I 16f3A79

PREVIOUS PASSWORD
I ABCDEF01

TIME REMAINING
I 2:00

- 806

I

I

I

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=~
~
'"""' Ul

0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

ADDRESS
SGATE301-JERRY@CCD.COM
NET21 0-SUE@ELF.GOV
XAMPLE@X.COM

3AA61FB3

AUTH-
CURRENT OLD ORIZED

FF631AC1 19FE2212 YES
CB861A78 2217813A YES

CONfiRM
AUTHORIZATION ~

BtD--+3AA61FB3 I

16F3A79\
812

!
BOB

16F3A79 ABCDEFOl YES 1: 59
----------- ------ -

Fig. BC

EASS EMBEDDED AGENT

3AA61FB3

CURRENT PASSWORD
I 16F3A79 I

PREVIOUS PASSWORD
I ABCDEFOl I

TIME REMAINING
I 1:59 I

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=~
~
'"""' 0'1

0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

Vt.
'J

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRnKCD.COM FF631ACt 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE@X.Cot~ 3AA61FB3 16F3A79 YES 11:59

\ \
I I

814 816

Fig. BIJ

CONFIRM
AUTHORIZATION
3AA61F83
16F3A79

7
808

EASS EMBEDDED AGENT

3AA61FB3

CURRENT PASSWORD
I 16F3A79 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING r- t:s9 1

d
•
\Jl
•
~
~
~ =

~

= :-

"""" ~Ul

N c
8

'JJ.

=~
~

"""" -..J
0,
N

""""

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

OK
3AA61FB3
120:00\

819

ADDRESS
AUTH-

CURRENT OLD ORIZED
818 I I

SGATE30t -JERRY@CCO.COM
NET21 0-SUE@ELF .GOV

FF63 t AC 1 I 19FE2212 I YES
CB861A78 I 2217813A I YES I

XAMPLE@X.COfA 3AA61 FB3 I t 6F3A79 I YES p :58 I
I

Fig. BE

EASS EMBEDDED AGENT

3AA61FB3

CURRENT PASSWORD
16F3A79 I

PREVIOUS PASSWORD
ABCDEFOt I -

TIME REMAINING
1:58 I

d
•
\Jl
•
~
~
~ =

~

= :-
'""" ~Ul

N c c
~

'JJ.

=-~
~

'""" 00

0,
N

'"""

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

OK
3AA61FB3 ...

120:00 v

AUTH- 8/a
ADDRESS CURRENT OLD ORIZED

SGATE30 1-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET210-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE~RCOM 3AA61FB3 16F3A79 YES 1 20:00

)
820

Fig. BF

EASS EMBEDDED AGENT

CURRENT PASSWORD
I 3AA61FB3 l--

PREVIOUS PASSWORD
I 16F3A79 J-

TIME REMAINING
I 120:00 I

822

824

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=~
~
'"""' '0
0,
N

'"""'

e
rJ'l
0'1
'&.
\0
~

~
0'1
(It

~
N

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE30 1-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE @ELF. GOY CB861A78 2217813A YES
XAMPLE@X.COM 3AA61FB3 16F3A79 YES 1

\
/

rlft:' 916

912

20:001 h4

Fig. 9A

SAVE ME
16F3A79

ABCDEFOt ~ I

!
906

EASS EMBEDDED AGENT

CURRENT PASSWORD
16F3A79

PREVIOUS PASSWORD
ABCDEFOt

TIME REMAINING
0:20

902

908

910

904

d
•
\Jl
•
~
~
~ =

~

= :-

'"""' ~Ul

N c
8

'JJ.

=-~
~
N c
0,
N

'"""'

e
rJ'l

9'-
(It
\0
-..~
""-l
0'1
(It

~
N

EASS SERVER

AUTH-
ADDRESS CURRENT OLD ORIZED

SGATE301-JERRY@CCD.COM FF631AC1 19FE2212 YES
NET21 0-SUE@ELF.GOV CB861A78 2217813A YES
XAMPLE~RCOM 16F3A79 ABCDEF01 YES

{ l
I

916 .918

Fig. 9B

SAVE ME
16F3A79
ABCDEF01

7
906

EASS EMBEDDED AGENT

CURRENT PASSWORD
I 16F3A79 I

PREVIOUS PASSWORD
I ABCDEF01 I

TIME REMAINING
In 0:20 -~

902

d
•
\Jl
•
~
~
~ =

~

~
'""" Ul
~

N c
8

'JJ.

=~
~
N

'"""
0,
N

'"""

e
rJ'l
0'1
11.
\0
~

~
0'1
(It

~
N

US 6,594,765 B2
1

METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL

CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

RELATED APPLICATIONS

This application is a continuation-in-part of U.S. appli
cation Ser. No. 09/163,094 filed Sep. 29, 1998 now U.S. Pat.
No. 6,249,868.

TECHNICAL FIELD

The present invention relates to control of computer
systems and other types of electrical, mechanical, electro
mechanical systems and devices at the component level and,
in particular, to a method and system for securing such
systems and devices by embedding agents within one or
more components of the systems in order to control access
to components within the systems.

BACKGROUND OF THE INVENTION

Computer security is a very broad and complex field
within which, during the past several decades, a number of
important sub-fields have developed and matured. These
sub-fields address the many different problem areas in
computer security, employing specialized techniques that
are particular to specific problems as well as general tech
niques that are applicable in solving a wide range of prob
lems. The present application concerns, in part, a technique
that can be used to prevent the theft and subsequent use of

2
respectively. Finally, there is a software-implemented lock
and key system for controlling access to the operating
system and hence to the various application programs avail
able on the PC 102. Typically, a graphical password-entry

5 window 124 is displayed on the screen 126 of the display
monitor 108. In order to use the computer, the user types a
password via the keyboard 106 into the password sub
window 128 of the password-entry window 124. The user
then depresses a keyboard key to indicate to a security

10 program that password entry is complete. As the user types
the password, each letter of the password appears at the
position of a blinking cursor 130. The characters of the
password are either displayed explicitly, or, more
commonly, asterisks or some other punctuation symbol are

15 displayed to indicate the position within the password in
which a character is entered so that an observer cannot read
the password as it is entered by the user. The security
program checks an entered password against a list of autho
rized passwords and allows further access to the operating

20 system only when the entered password appears in the list.
In many systems, both a character string identifying the user
and a password must be entered by the user in order to gain
access to the operating system.

The common types of security systems displayed in FIG.

25 1 are relatively inexpensive and are relatively easily imple
mented and installed. They are not, however, foolproof and,
in many cases, may not provide even adequate deterrents to
a determined thief. For example, the key 112 for the hinged
fastening device 110 can be stolen, or the fastening device

30 can be pried loose with a crowbar or other mechanical tool.
A clever thief can potentially duplicate the key 112 or jimmy
the lock 114. The cable 116 can be cut with bolt cutters or
the cylindrical combination lock 118 can be smashed with a
hammer. Often, the combination for the cylindrical combi-

35 nation lock 118 is written down and stored in a file or wallet.

a personal computer ("PC") or of various PC components
included in, or attached to, a PC. This technique may make
use of certain security-related techniques which have been
employed previously to address other aspects of computer
security, and this technique may itself be employed to
address both computer security problems other than theft as
well as various aspects of computer reliability, computer
administration, and computer configuration. The present
application also concerns similar techniques that may be

40
applied to protecting other types of electronic, mechanical,
and electromechanical systems as well as computer software
and other types of information encoded on various types of
media.

If that combination is discovered by a thief or accomplice to
theft, the cylindrical combination lock will be useless. In the
situation illustrated in FIG. 1, if the table is not bolted to the
floor, a thief might only need to pick up the display monitor
108, place it on the floor, slide the cable down the table leg
to the floor, and lift the table sufficiently to slip the cable
free. While this example might, at first glance, seem silly or
contrived, it is quite often the case that physical security
devices may themselves be more secure than the systems in

PCs are ubiquitous in homes, offices, retail stores, and
manufacturing facilities. Once a curiosity possessed only by
a few hobbyists and devotees, the PC is now an essential
appliance for business, science, professional, and home use.
As the volume of PCs purchased and used has increased, and
as PC technology has rapidly improved, the cost of PCs has
steadily decreased. However, a PC is still a relatively
expensive appliance, especially when the cost of the soft
ware installed on the PC and the various peripheral devices
attached to the PC are considered. PCs, laptop PCs, and even
relatively larger server computers have all, therefore,
become attractive targets for theft.

FIG. 1 illustrates various types of security systems com
monly employed to prevent theft of PCs and PC compo
nents. A PC 102 is mounted on a table 104 and is connected

45 which they are installed, taken as a whole. This commonly
arises when security devices are installed to counter certain
obvious threats but when less obvious and unexpected
threats are ignored or not considered.

While the serial numbers 120 and 122, if not scraped off
50 or altered by a thief, may serve to identify a PC or compo

nents of the PC that are stolen and later found, or may serve
as notice to an honest purchaser of second-hand equipment
that the second-hand equipment was obtained by illegal
means, they are not an overpowering deterrent to a thief who

55 intends to use a purloined PC or PC component at home or
to sell the purloined PC to unsavory third parties.

Password protection is commonly used to prevent mali
cious or unauthorized users from gaining access to the
operating system of a PC and thus gaining the ability to

60 examine confidential materials, to steal or corrupt data, or to
transfer programs or data to a disk or to another computer
from which the programs and data can be misappropriated.
Passwords have a number of well-known deficiencies.

to a keyboard-input device 106 and a display monitor 108.
The PC 102 is physically secured to the table 104 with a
hinged fastening device 110, which can be opened and
locked by inserting a key 112 into a lock 114. The display
monitor 108 is physically attached to the table via a cable
116 and cylindrical, combination-lock 118 system. Serial 65

numbers 120 or 122 are attached to, or imprinted on, the side

Often, users employ easily remembered passwords, such as
their names, their children's names, or the names of fictional
characters from books. Although not a trivial undertaking, a

of the PC 102 and the side of the display monitor 108, determined hacker can often discover such passwords by

US 6,594,765 B2
3

repetitive trial and error methods. As with the combination
for the cylindrical combination lock 118, passwords are
often written down by users or revealed in conversation.
Even if the operating system of the PC is inaccessible to a
thief who steals the PC, that thief may relatively easily 5

interrupt the boot process, reformat the hard drive, and
reinstall the operating system in order to use the stolen
computer.

More elaborate security systems have been developed or
proposed to protect various types of electrical and mechani- 10

cal equipment and to protect even living creatures. For
example, one can have installed in a car an electronic device
that can be remotely activated by telephone to send out a
homing signal to mobile police receivers. As another
example, late model Ford and Mercury cars are equipped 15

with a special electronic ignition lock, which is activated by
a tiny transmitter, located within a key. As still another
example, small, integrated-circuit identification tags can
now be injected into pets and research animals as a sort of
internal serial number. A unique identification number is 20

transmitted by these devices to a reading device that can be
passed over the surface of the pet or research animal to
detect the unique identification number. A large variety of
different data encryption techniques have been developed
and are commercially available, including the well-known 25

RSA public/private encryption key method. Devices have
been built that automatically generate computer passwords
and that are linked with password devices installed within
the computer to prevent hackers from easily discovering
passwords and to keep the passwords changing at a sufficient 30

rate to prevent extensive access and limit the damage
resulting from discovery of a single password.

While many of these elaborate security systems are imple
mented using highly complex circuitry and software based
on complex mathematical operations, they still employ, at 35

some level, the notion of a key or password that is physically
or mentally possessed by a user and thus susceptible to theft
or discovery. A need has therefore been recognized for a
security system for protecting PCs and components of PCs
from theft or misuse that does not depend on physical or 40

software implemented keys and passwords possessed by
users. Furthermore, a need has been similarly recognized for
intelligent security systems to protect the software that runs
on PCs and to protect other types of electronic, mechanical,
and electromechanical systems and devices, including 45

automobiles, firearms, home entertainment systems, and
creative works encoded in media for display or broadcast on
home entertainment systems.

4
tions link to the remote server, as happens when the PC is
stolen, the devices protected by embedded agents no longer
receive authorizations from the remote server and are there-
fore disabled. User-level passwords are neither required nor
provided, and the security system cannot be thwarted by
reinstalling the PC's operating system or by replacing pro-
grammable read only memory devices that store low-level
initialization firmware for the PC.

Alternative embodiments of the present invention include
control and management of software and hardware on a
pay-to-purchase or pay-per-use basis, adaptive computer
systems, and control and security of mechanical, electronic,
and electro-mechanical systems and devices other than
computers. A computer system may be manufactured to
include various optional hardware and software components
controlled by embedded agents and initially disabled. When
the purchaser of the computer system later decides to
purchase an optional, preinstalled but disabled component,
the manufacturer can enable the component by authorizing
an associated embedded agent upon receipt of payment from
the owner of the system. Similarly, the owner of the com-
puter system may choose to rent an optional component for
a period of time, and that component can then be authorized
for the period of time by the manufacturer, upon receipt of
payment. Software may be manufactured to require autho
rization from a server via an embedded agent either located
within the disk drive on which the software is stored or
located within the software itself. Computer systems may
automatically adjust their configuration in response to
changes in workload by enabling and disabling components
via embedded agents.

Alternative embodiments may include embedded agents
that receive authorization messages based on proximity to,
or location within, a defined physical space. For example,
such embedded agents may receive authorization messages
through a communications medium ineffective outside
defined ranges and distances from an authorizing server or
message dissemination point, such as an antenna.
Alternatively, the embedded agent may include distance or
proximity sensing circuitry in order to actively compute a
distance from, or relative location with respect to, a server
or message dissemination point. Thus, a device containing
such an embedded agent may become inoperable when
removed from within a defined region or further away from
a server or dissemination point than a threshold distance.

Finally, systems other than computers, including indus
trial machine tools, processing equipment, vehicles, and
firearms may be controlled and secured by embedding
agents within one or more components included in the

SUMMARY OF THE INVENTION

One embodiment of the present invention provides a
security system for protecting a PC and components
installed in or attached to the PC from use after being stolen.
Agents are embedded within various devices within the PC.
The agents are either hardware-implemented logic circuits
included in the devices or firmware or software routines
running within the devices that can be directed to enable and
disable the devices in which they are embedded. The agents
intercept communications to and from the devices into
which they are embedded, passing the communications
when authorized to do so in order to enable the devices, and
blocking communications when not authorized, effectively
disabling the devices. Embedded agents are continuously
authorized from a remote server computer, which is coupled

50 systems. Examples include automobiles, airplanes, water
craft, ships, submarines, space vehicles, automatic teller
machines, building and building environmental systems,
weapons systems, power generation systems, fuel storage
and dispensing systems, information and entertainment

55 broadcast and reception systems and devices, industrial
process systems and devices, robots, medical devices and
instrumentation, all kinds of computer peripheral devices,
personal digital assistants, electronic cards and documents,
security systems and devices, and telecommunications sys-

60 terns and devices.

to embedded agents via a communications medium, by 65

handshake operations implemented as communications mes
sages. When the PC is disconnected from the communica-

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various types of security systems com
monly employed to prevent theft of PCs and PC compo
nents.

FIG. 2 is a block diagram of example internal components
of a PC connected to a remote server.

US 6,594,765 B2
5

FIG. 3 is a block diagram of example hardware and
software components and communications pathways that
implement a single embedded agent connected to a client
that is, in turn, connected to a security authorization server.

FIG. 4 is a state diagram for an example embedded agent.

FIG. 5 is an example state diagram for the interaction of
a security authorization server with one embedded agent.

FIG. 6A illustrates an example initiation of the sending of
a SAVE ME message by an embedded agent.

FIG. 6B illustrates an example receipt of a SAVE ME
message by a security authorization server.

6
theft of a PC that will not be operable once the current period
of authorization expires. In order to subsequently operate the
PC, the thief would need to reconnect the PC to the server
and invoke either client or server utilities to reinitialize the

5 embedded agents. These utilities are themselves protected
by password mechanisms. The thief cannot circumvent the
embedded agents by reinstalling the operating system or by
replacing programmable read only memories ("PROMs").
The stolen PC is therefore essentially worthless to the thief,

10 and, perhaps more important, the data stored within the PC
is inaccessible to the thief as well as to any other party.

FIGS. 7A-F illustrate the handshake operation that imme
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent 15

in the Initial Power-On Grace Period state.

Certain implementations of this embodiment may rely on
one or more internal password identification mechanisms.
However, unlike the other well-known security systems
discussed above, the user of a PC protected by the EASS
does not need to possess a password and is, in fact, not
allowed to know or possess the passwords used internally
within the EASS.

FIGS. 8A-F illustrate a second example handshake opera
tion that follows the original handshake operation of FIGS.
7 A-F by some period of time less than the original autho
rization period.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent.

DETAILED DESCRIPTION OF 1HE
INVENTION

One embodiment of the present invention is an embedded
agent security system ("EASS") for protecting a PC, and,
more particularly, the internal components of a PC, from
misuse or misappropriation. The EASS includes a server
component, one or more embedded agents, and, optionally,

In a preferred implementation of this embodiment, the
20 server and client components are implemented in software

and the embedded agents are implemented as hardware logic
circuits. However, all three of these components may be
implemented either as software routines, firmwave routines,
hardware circuits, or as a combination of software, firmware,

25 and hardware.

EASS Hardware and Software Configuration

FIG. 2 is a block diagram of example internal components
30 of a PC connected to a remote server. The remote server 202

is connected to the PC 204 via a connection 206 that

a client component. The server component is a centralized
repository and control point that provides authorizations to 35

agents embedded within PC components and connected to
the server component via a communications connection. The
server authorizations allow the embedded agents to enable
operation of the components within which the embedded
agents reside for a period of time. The server component 40

runs on one or more server computers, one or more of which
are connected by a communications medium to the PC. An
embedded agent is embedded as a logic circuit within the
circuitry that controls operation of an internal component of
the PC or is embedded as a firmware or software routine that 45

represents a local area network which is possibly itself
connected to a wide area network and which supports one of
any number of common network protocols or combinations
of protocols to transfer messages back and forth between the
server component 202 and the PC 204. Messages may be
transmitted, for example, via the Internet. The PC 204 is
connected to an external output device, in this case a display
monitor 208, and to two input devices, a mouse 210 and a
keyboard 212. Internal components of the PC include a
central processing unit ("CPU") 214; a random access
memory 216; a system controller 218; a hard disk 220; and
a number of device controllers 222, 224, 226, 228, and 230
connected to the system controller 218 directly through a
high speed bus 232, such as a PCI bus, or through a
combination of the high speed bus 232, a bus bridge 234, runs within the internal component of the PC. The client

component, when present, runs as a software process on the
PC. The client component of the EASS primarily facilitates
communications between the server component and the
various embedded agents. For example, when multiple
embedded agents are included in the PC, the client compo
nent may serve as a distribution and collection point for
communications between the server component and the
multiple embedded agents.

Because embedded agents enable operation of the internal
components in which they are embedded, and because
embedded agents require frequent authorizations from the
server component in order to enable the internal
components, if the communications connection between the
server component and an embedded agent is broken, the
internal component in which the embedded agent resides
will be disabled when the current period of authorization
expires. The communications connection between the server
and all embedded agents within the PC will be broken when
the PC is powered down or disconnected from the external
communications medium by which the PC is connected to
the server. Thus, any attempt to steal the PC will result in the

and a low speed bus 236 such as an ISA bus. The CPU 214
is connected to the system controller 218 through a special
ized CPU bus 238 and the RAM memory 216 is connected

50 to the system controller 218 through a specialized memory
bus 240. FIG. 2 represents one possible simple configuration
for the internal components of a PC. PCs having different
numbers or types of components or employing different
connection mechanisms other than PCI or ISA buses may

55 have quite different internal configurations.
The device controllers 222, 224, 226, 228, and 230 are

normally implemented as printed circuit boards, which
include one or more application specific integrated circuits
("ASICs") 242, 244, 246, 248, and 250. The ASICs, along

60 with firmware that is normally contained in various types of
ROM memory on the printed circuit boards, implement both
a communications bus interface and a command interface.
The communications bus interface allows for data and
message communication with operating system routines that

65 run on the CPU 214. The command interface enables the
operating system to control the peripheral device associated
with the device controller. For example, the hard disk 220

US 6,594,765 B2
7

comprises a number of physical platters on which data is
stored as tiny magnetized regions of the iron oxide surface
of the platters (not shown), a motor for spinning the platters
(not shown), and a printed circuit board 228 which imple
ments circuitry and firmware routines that provide a high- 5
level interface to operating system drivers. In modern disks,
there is often a printed circuit board that includes an ASIC
that is packaged within the disk as well as a printed circuit
board card that is connected via a bus to other internal
components of the PC, including the system controller 218 10
and the CPU 214.

Programs that run on the CPU 214, including the oper
ating system and the EASS client, are permanently stored on

8
and commands through to the ASIC 304 that implements
normal message handling and the device controller.
However, when the EASS embedded agent 302 is not
authorized by the EASS server 320, or when an initial
power-on grace period has expired, the EASS embedded
agent blocks messages and commands to the ASIC 304
thereby disabling the device controlled by the device con
troller 306. The EASS embedded agent thus serves as a
hardware-implemented control point by which a device is
enabled or disabled. Authorization messages pass from the
EASS server 320 through communications pathways 316
and 308 to the EASS embedded agent 302. The EASS
embedded agent 302 can also initiate a message and pass the
message through pathways 308 and 316 to the EASS server a hard disk 252 and are transiently stored in RAM 254 for

execution by the CPU 214. Logic circuitry that implements
the embedded agents of the EASS is included within the
ASICs that implement the various device controllers 242,
244, 246, 248, and 250. The device controller may control
such devices as optical disk devices, tape drives, modems,
and other data sources and communications devices. EASS
embedded agents can be additionally included within the
circuitry that implements RAM 216, the system controller
218, and even the CPU 214. One skilled in the art will
recognize that any circuit in which communications can be
intercepted may reasonably host an embedded agent and that
many other components may therefore host embedded
agents. Further, a PC 204 may include only a single embed
ded agent or may include a number of EASS embedded
agents.

15 320. For example, the EASS embedded agent 302 may
request authorization from the EASS server 320.

In the described embodiment, the EASS client 310 facili
tates communications between the EASS server 320 and the
EASS embedded agent 302. When a PC includes more than

20 one EASS embedded agent, the EASS client 310 handles
routing of messages from the EASS server 320 to individual
EASS embedded agents 302 and collects any messages
initiated by EASS embedded agents 302 and forwards them
to the EASS server 320. In addition, the EASS client 310

25 may support a small amount of administrative functionality
on the PC that allows the EASS to be reinitialized in the

FIG. 3 is a block diagram of example hardware and 30

software components and communications pathways that
implement a single embedded agent connected to a client
which is, in turn, connected to a security authorization
server. In one embodiment, the EASS embedded agent 302
is a logic circuit embedded within an ASIC 304 which is 35

included on a printed circuit board 306 that implements a
particular device controller. The device controller is con
nected through one or more internal communications buses
308 to an EASS client program 310 implemented as a driver
within the operating system 312 running on the CPU 314 of 40

the personal computer. The CPU 304 is, in turn, connected
through one or more internal buses, such as a PCI bus, and
external communication lines, such as a LAN or a LAN
combined with a WAN 316, to the server computer 318. The
components of the server computer that implement the 45

EASS server include an EASS server program 320 and a
non-volatile storage device 322 in which the EASS server
program 320 stores authorization and embedded agent infor
mation. The EASS server program 320 exchanges informa
tion with the non-volatile storage device 322 via internal 50

buses 324 of the server computer 318. There are a variety of
ways in which the embedded agent and authorization infor
mation can be stored by the EASS server 320 on the
non-volatile storage device 322. In one implementation of
the described embodiment, this data is stored within a 55

commercial database management system, such as a rela
tional database.

event of loss of connection or power failure. The EASS
client 310 may not be a required component in alternative
embodiments in which an EASS server 320 communicates
directly with EASS embedded agents 302.

In alternative embodiments, the EASS server may com
municate with EASS embedded agents by a communications
medium based on transmission of optical or radio signals
rather than on electrical signals. Moreover, alternate
embodiments may employ multiple EASS servers that may
be implemented on remote computers or that may be
included within the same computer that hosts the EASS
embedded agents.

EASS Server and Embedded Agent State
Transitions

FIG. 4 is a state diagram for an example embedded agent.
FIG. 4 shows four different states that an EASS embedded
agent may occupy: (1) an Initial Power-On Grace Period
state 402; (2) a Power-On Grace Period state 404; (3) an
Authorized state 406; and (4) a Not Authorized state 408.
Transitions between these states arise from three types of
events: (1) a successful handshake between the embedded
agent and the EASS server that results in transfer of an
authorization by the EASS server to the embedded agent to
permit operation of the device associated with the EASS
embedded agent for some period of time; (2) a time out that
occurs when the EASS embedded agent has exhausted its
current authorization period prior to receiving a subsequent
re-authorization from the EASS server; and (3) a special
back-door mechanism that allows an entity such as the
EASS client to reinitialize an EASS embedded agent so that
the EASS embedded agent can reestablish contact with an

Messages and commands that are passed to the device
controller 306 for a particular internal or peripheral device
over the communications bus 308 first pass through the
EASS embedded agent logic 302 before entering the ASIC
circuitry 304 that implements the device controller. The
EASS embedded agent 302 is associated with a number of
non-volatile registers 326 that store authorization state infor
mation. When the embedded agent has been authorized by
an EASS server 320, or during a short grace period follow
ing power up, the EASS embedded agent passes messages

60 EASS server following interruption of a previous connec
tion.

Following an initial power up 410 of the device hosting an
EASS embedded agent, the EASS embedded agent enters an
Initial Power-On Grace Period 402. The Initial Power-On

65 Grace Period allows operation of the device controlled by
the EASS embedded agent for some short period of time
following power up of the PC necessary for initialization of

US 6,594,765 B2
9 10

server. The sending of the SAVE ME message 428 does not,
by itself, cause a state transition, as indicated by arrow 428.
The Power-On Grace Period lasts a short period of time
sufficient for the PC to be booted and all of the internal

5 components to be initialized and for the EASS embedded
agents controlling those components to establish contact
with an EASS server. If an EASS server, upon receiving the
SAVE ME message, successfully completes a handshake
operation, the EASS embedded agent transitions 430 from

the PC that contains the device and embedded agent and
allows for establishment of contact between the EASS
embedded agent and an EASS server. When in the Initial
Power-On Grace Period 410, the EASS embedded agent
contains one of a certain number of initial passwords that are
recognized by EASS servers as belonging to EASS embed
ded agents in the Initial Power-On Grace Period. These
initial passwords allow an EASS server to distinguish a valid
request for handshake operation from an attempt to solicit
authorization by an embedded agent that has been previ
ously authorized by an EASS server. In the latter case, the
embedded agent may well be hosted by a stolen or misused
device. From the Initial Power-On Grace Period state, the
EASS embedded agent may send a solicitation message, for
example, a "SAVE ME" message to an EASS server to 15
announce that the EASS embedded agent has been powered

10 the Power-On Grace Period 404 to the Authorized state 406.

up for the first time, as indicated by transition arrow 412, and
to solicit a handshake operation. Sending of the SAVE ME
solicitation message does not, by itself, cause a state tran
sition. When an EASS server receives a SAVE ME message 20
from an EASS embedded agent, the EASS server undertakes
sending of an authorization to the EASS embedded agent
through a handshake mechanism, to be described below. The
handshake may either fail or succeed. If a handshake fails,
the EASS embedded agent remains in the state that it 25
occupied prior to initiation of the handshake.

If a successful handshake operation is not completed before
the short Power-On Grace Period authorization period
expires 432, the embedded agent transitions 432 from the
Power-On Grace Period 404 to the Not Authorized state 408.

A special mechanism may be provided for reinitialization
of an EASS embedded agent following normal power on.
That mechanism is referred to as the "back door" mecha
nism. The back door mechanism may be initiated, at the
direction of a user or administrator, by an EASS client
running on the same PC that includes the embedded agent,
or may be initiated by an EASS server upon discovery by the
EASS server of a failed or interrupted connection. When the
EASS embedded agent receives a message that implements
the back door mechanism, the EASS embedded agent tran
sitions 434 from the Power-On Grace Period 404 back to the
Initial Power-On Grace Period 402. In alternative
embodiments, the back door mechanism might allow for
transitions from either of the other two states 406 and 408
back to the Initial Power-On Grace Period state. In more

30 complex embodiments, the back door mechanism might
allow for transitions to states other than the Initial Power-On

When an EASS embedded agent is in the Initial Power-On
Grace Period, a successful handshake operation results in the
EASS embedded agent transitioning 414 to an Authorized
state 406. At regular intervals, the EASS server continues to
reauthorize the EASS embedded agent through successive
handshake operations 416 which result in the EASS embed
ded agent remaining in the Authorized state 406. In the
Authorized state 406, the EASS embedded agent passes
through commands and data to the device that it controls 35
allowing that device to operate normally. If, for any number
of reasons, the EASS embedded agent does not receive
reauthorization prior to the expiration of the current autho
rization that the embedded agent has received from an EASS
server, a time out occurs causing transition 418 of the EASS 40
embedded agent to the Not Authorized state 408.

In the Not Authorized state 408, the EASS embedded
agent blocks commands and data from being transmitted to
the device controlled by the EASS embedded agent, effec
tively disabling or shutting down the device. Alternatively, 45

the EASS embedded agent may actually power down a
device that can be powered down independently from other
internal components of the PC. When in the Not Authorized
state 408, the EASS embedded agent may send a SAVE ME
message 420 to an EASS server. Sending of this message 50

does not, by itself, cause a state transition, as indicated by
arrow 420. However, if an EASS embedded agent receives
the SAVE ME message and initiates a handshake operation
that is successfully concluded, the EASS embedded agent
transitions 422 from the Not Authorized state 408 back to the 55

Authorized state 406.

Grace Period.
FIG. 5 is an example state diagram for the interaction of

a security authorization server with one embedded agent.
With respect to an EASS embedded agent, the EASS server
may occupy any one of three states at a given instant in time:
(1) the EASS server may be in an Ignorant of Agent state
502; (2) the EASS server may be in a Knowledgeable of
Agent state, aware of but not having authorized the agent
504; and (3) the EASS server may be in an Agent Authorized
state 506. Initially, an EASS server is ignorant of the
embedded agent, and thus occupies the Ignorant of Agent
state 502. When the EASS server receives a SAVE ME
message from the EASS embedded agent that is in the Initial
Power-On Grace Period state (402 in FIG. 4), the EASS
server transitions 508 from the Ignorant of Agent state 502
to the Knowledgeable of Agent state 504. As part of this
transition, the EASS server typically makes an entry into a
database or enters a record into a file that allows the EASS
server to preserve its awareness of the EASS embedded
agent. The EASS server may receive SAVE ME messages
from the EASS embedded agent when occupying either the
Knowledgeable of Agent state 504 or the Agent Authorized
state 506. As indicated by arrows 510 and 512, receipt of
SAVE ME messages by the EASS server in either of states
504 and 506 does not, by itself, cause a state transition.

The EASS server may initiate and complete a successful
handshake operation with the EASS embedded agent while
the EASS server occupies the Knowledgeable of Agent state

The EASS embedded agent and the device that the EASS
embedded agent controls can be powered up any number of
times following an initial power up. The EASS embedded
agent stores enough information in a number of non-volatile
registers associated with the EASS embedded agent (e.g.,
registers 326 in FIG. 3) to differentiate a normal or non
initial power up from an initial power up. Following a
non-initial power up 424, the EASS embedded agent tran
sitions 426 to a Power-On Grace Period state 404. When
occupying the Power-On Grace Period state 404, the EASS
embedded agent may send a SAVE ME message to an EASS

60 504 with respect to an agent. Completion of a successful
handshake operation causes the EASS server to transition
514 from the Knowledgeable of Agent state 504 to the Agent
Authorized state 506 with respect to the agent. This transi
tion may be accompanied by the saving of an indication in

65 a database or a file by the EASS server that indicates that the
embedded agent is authorized for some period of time.
When occupying the Agent Authorized state, the EASS

US 6,594,765 B2
11 12

remaining period of two minutes, as indicated by the con
tents of the time remaining non-volatile register 608. This
initial time remaining period is chosen to be sufficient for the
EASS embedded agent 602 to establish a connection with

server may continue to imtlate and complete successful
handshake operations with the embedded agent and, by
doing so, continue to occupy the Agent Authorized state.
However, if a handshake operation is unsuccessful, the
EASS server transitions 518 from the Agent Authorized state
506 back to the Knowledgeable of Agent state 504.

In some embodiments of the present invention, there may
be an additional transition 520 from the Knowledgeable of
Agent state 504 back to the Ignorant of Agent state 502. This
transition corresponds to a purging or cleaning operation
that allows an EASS server to purge database entries or file
records corresponding to a particular EASS embedded agent
if the EASS server is unsuccessful in authorizing that EASS
embedded agent for some period of time. Such a purging
operation allows the EASS server to make room in a
database or file to handle subsequent entries for EASS
embedded agents that announce themselves using SAVE ME
messages from an Initial Power-On Grace Period state.

5 the EASS server 616, to solicit a handshake operation, and
to complete the solicited handshake operation and may vary
in duration for different types of computers. Both the current
password register 604 and the previous password register
606 contain a default initial password that is recognized by

10 EASS servers as corresponding to an EASS embedded agent
in the Initial Power-On Grace Period state. It should be noted
that there may be a great number of different such default
passwords. In the described embodiment, the circuitry that
implements the EASS embedded agent notes that the autho-

15 rization time remaining is two minutes, and that it is
therefore necessary for the EASS embedded agent 602 to
send a SAVE ME message 612 to an EASS server to request
continuation of authorization. Thus, the EASS embedded
agent 602 initiates sending of the SAVE ME message 612.

EASS Messages 20 The SAVE ME message 612 contains an indication or
operation code 638 designating the message as a SAVE ME
message, the contents of the current password register 640,
and the contents of the previous password register 642. In
the case of an EASS embedded agent in the Initial Power-On

FIGS. 6A-9B illustrate details of the sending and receiv
ing of SAVE ME messages and of the EASS server-initiated
handshake operation. In each of these figures, example
contents of the non-volatile registers associated with an
EASS embedded agent, contents of a message, and contents
of a portion of the database associated with an EASS server
are shown. FIG. 6A will be numerically labeled and
described in the discussion below, but the labels will be
repeated in FIGS. 6B-9B only when the labels are relevant
to an aspect of the EASS in the figure referenced in the
discussion of the figure.

25 Grace Period state, both the current password and previous
password registers contain the same initial password in the
present embodiment. Alternative embodiments might use
different initial current and previous passwords. In general,
sending both the current password and the previous pass-

3D word provides sufficient information for the EASS server
that receives the SAVE ME message to correct any errors or
discrepancies that may have arisen during a previous failed
handshake. An example of a recovery from a failed hand
shake operation will be described below with reference to

FIG. 6Aillustrates initiation of the sending of a SAVE ME
message by an EASS embedded agent. The EASS embedded
agent 602 is associated with three non-volatile registers that
contain: (1) the current password 604; (2) the previous
password 606; and (3) the time remaining for the current
authorization period 608. Passwords may comprise com
puter words of 56 bits, 64 bits, or a larger number of bits that
provide a sufficiently large number of unique initial pass- 40

words. The direction of propagation of the SAVE ME
message is indicated by arrow 610. The SAVE ME message
612 being transmitted is displayed along with its informa
tional content 614. The EASS server 616 contains a repre
sentation of a portion of a database that contains information 45

about EASS embedded agent authorizations 618. This data
base contains columns that indicate the communications or
network address of the EASS embedded agent 620, the
EASS embedded agent's current password 622, the EASS
embedded agent's previous password 624, and an indication 50

of whether the EASS embedded agent is currently autho
rized or not 626. Additional or alternative columns may be
present. For example, the next column 628 is used in
subsequent figures to store the amount of time for which the
EASS embedded agent is authorized. Each row in the 55

database 630--633 represents one particular EASS embed
ded agent. Rows 630 and 631 contain information for
previously authorized EASS embedded agents (not shown).
EASS embedded agent 602 of FIG. 6A is in the Initial
Power-On Grace Period state (402 of FIG. 4) and the EASS 60

server 616 of FIG. 6Ais, with respect to the embedded agent
602, in the Ignorant of Agent state (502 of FIG. 5). Rect
angular inclusions 634 and 636 represent the implementa
tion of, and any volatile storage associated with, the EASS
embedded agent and the EASS server, respectively.

In one embodiment, when the EASS embedded agent 602
is in the Initial Power-On Grace Period, it has an initial time

35 FIGS. 9A-B.
FIG. 6B illustrates receipt of a SAVE ME message by an

EASS server. In this case, the EASS server 616 was, prior
to receipt of the SAVE ME message, in the Ignorant of Agent
state (502 of FIG. 5) with respect to the EASS embedded
agent 602. Receipt of the SAVE ME message 612 causes the
EASS server 616 to transition to the Knowledgeable of
Agent state (504 of FIG. 5). In making this transition, the
EASS server 616 enters information gleaned from the SAVE
ME message 612 into row 632 of the database 618 associ
ated with the EASS server 616. The address from which the
message was received can be determined from fields con-
tained within a message header (not shown in FIG. 6B). This
address may be the communications address of an individual
EASS embedded agent, a combination of the communica
tions address of the client and an internal identification
number of the device hosting the EASS embedded agent, or
some other unique identifier for the EASS embedded agent
that can be mapped to a communications address. The
details of the formats of message headers are specific to the
particular types of communications mechanisms and imple
mentations. In this example, the addresses are stored as
Internet addresses. The stored Internet address is the address
of the EASS client running on the PC in which the EASS
embedded agent is resident. This address may be enhanced
by the EASS server 616 by the addition of characters to the
address or sub-fields within either the address or in the
message header to provide sufficient information for the
receiving EASS client to identify the particular EASS
embedded agent to which the message is addressed.

65 Alternatively, a different address might be established for
each EASS embedded agent or an internal address field
might be included in each message sent from the EASS

US 6,594,765 B2
13

server to an EASS client that further specifies the particular
EASS embedded agent to which the message is addressed.
Thus, receipt of the SAVE ME message has allowed the
EASS server 616 to store the address "xample@x.com" 632
to identify the EASS embedded agent 602 from which the
message was received, to store the current and previous
passwords 644 and 646 taken from the received SAVE ME
message 612, and to store an indication that the EASS
embedded agent 602 is not authorized 648.

FIGS. 7A-F illustrate the handshake operation that imme
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state. The handshake
operation is initiated, as shown in FIG. 7A, by the EASS
server 702. The EASS server 702 generates a new, non
initial password for the EASS embedded agent 704 and
stores the new password in volatile memory 706. The EASS
server then sends an authorization message 708, for example
an "AUTHORIZE" message, to the EASS embedded agent
704 that contains the newly generated password 710 along
with an indication 712 that this is an AUTHORIZE message.

FIG. 7B illustrates receipt of an example AUTHORIZE
message by an example EASS embedded agent. The EASS
embedded agent 704 stores the newly generated password
710 contained in the AUTHORIZE message 708 into a
volatile memory location 714 implemented in the circuitry
of the EASS embedded agent 704.

FIG. 7C illustrates sending, by an example EASS embed
ded agent, of an authorization confirmation message, for
example a "CONFIRM AUTHORIZATION" message. The
EASS embedded agent 704 sends a CONFIRM AUTHO
RIZATION message 716 back to the EASS server 702 from
which an AUTHORIZE message was received. The CON
FIRM AUTHORIZATION message 716 contains the new
password sent in the previous AUTHORIZE message by the
EASS server 718 as well as the contents of the current
password register 720. The CONFIRM AUTHORIZATION
message confirms receipt by the EASS embedded agent 704
of the AUTHORIZE message 708.

FIG. 7D illustrates receipt of the CONFIRM AUTHORI
ZATION message 716 by an example EASS server. The
EASS server 702 updates the current password and previous
password 722 and 724 within the associated database 726 to
reflect the contents of the CONFIRM AUTHORIZATION
message 716 after checking to make sure that the new
password returned in a CONFIRM AUTHORIZATION
message is identical to the in-memory copy 706 of the new
password. If the new password contained in the CONFIRM
AUTHORIZATION message is different from the new pass
word stored in memory 706, then the handshake operation
has failed and the EASS server 702 undertakes a new
handshake operation with the EASS embedded agent 704.

14
the EASS server 702 has transitioned from the Knowledge
able of Agent state (504 in FIG. 5) to the Agent Authorized
state (506 in FIG. 5). Upon receipt of the OK message 728,
the EASS embedded agent 704 updates the current password

5 register 720 to reflect the new password sent to the EASS
embedded agent in the original AUTHORIZE message 708
after placing the contents of the current password register
720 into the previous password register 732. The EASS
embedded agent 704 also updates the time remaining reg-

10 ister 734 to reflect the authorization time 736 contained in
the received OK message. At this point, the EASS embedded
agent transitions from the Initial Power-On Grace Period
state (402 in FIG. 4) to the Authorized state (406 in FIG. 4).

If the handshake operation fails after sending of the OK

15 message by the EASS server to the EASS embedded agent,
but prior to reception of the OK message by the EASS
embedded agent, the connection between the EASS embed
ded agent and the EASS server can be reestablished and
authorization reacquired by the sending by the EASS

20 embedded agent of a SAVE ME message to the EASS server.
The SAVE ME message will contain, as the current
password, the value that the EASS server has stored as the
previous password. From this, the EASS server can deter
mine that the previous handshake operation failed, can

25 update the database to reflect the state prior to the failed
handshake operation, and can then reinitiate a new hand
shake operation.

FIGS. 8A-F illustrate a second handshake operation that
follows the original handshake operation by some period of

30 time less than the original authorization period. By under
taking additional handshake operations, the EASS server
801 continues to initiate handshake operations to maintain
the EASS embedded agent 805 in the Authorized state (406
in FIG. 4). The EASS server 801 generates a new, non-initial

35 password 802 and sends this password in an AUTHORIZE
message 804. The EASS embedded agent receives the
AUTHORIZE message 804 and stores the newly generated
password in memory 806. The EASS embedded agent 805
then sends a CONFIRM AUTHORIZATION message 808

40 back to the EASS server 801 containing both the newly
generated password 810 and the contents of the current
password register 812. Upon receipt of the CONFIRM
AUTHORIZATION message 808, the EASS server 801
updates the database entries for the current and previous

45 passwords 814 and 816 and then sends an OK message 818
back to the EASS embedded agent 805 that contains the new
password and the new time period 809 for which the EASS
embedded agent 805 will be authorized. After sending the
OK message 818, the EASS server 801 updates the database

50 to reflect the new time of authorization 820 and, upon receipt
of the OK message by the embedded agent, the non-volatile
registers of the EASS embedded agent are updated to reflect
the new current password and the now previous password,
822 and 824, respectively.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent. In this case, the time
remaining continues to decrease and the EASS embedded

FIG. 7E illustrates sending by the EASS server of a
completion message, for example an "OK" message, in 55

response to receipt of the CONFIRM AUTHORIZATION
message in order to complete the handshake operation. The
EASS server 702 prepares and sends an OK message 728
that contains both the new password and an indication of the
time for which the EASS embedded agent 704 will be
authorized upon receipt of the OK message.

60 agent 902 determines from the time remaining register 904
that sending of a SAVE ME message 906 is necessary to
initiate another handshake operation. Because the final OK
message 818 is not received by the EASS embedded agent
902, the values of the current password register 908 and the

FIG. 7F illustrates receipt of the OK message 728 by an
example EASS embedded agent. Once the EASS server 702
has sent the OK message, the EASS server 702 updates the
database 726 to indicate that the client is authorized 729 as
well as to store an indication of the time 730 for which the
EASS embedded agent has been authorized. At this point,

65 previous password register 910 have not been updated and
are the same as the values that were established as a result
of the first authorization, as shown in FIG. 7F. However, the

US 6,594,765 B2
15 16

to communicate with one or more EASS servers. In such
systems, it may be appropriate for the EASS embedded
agent to power on into a Not Authorized state, and transition
to an Authorized state upon completion of a successful

EASS server 912 has updated its internal database 914 to
indicate the new password generated during the previous
handshake operation 916. Thus, the EASS server database
914 does not reflect the actual state of the EASS embedded
agent 902. However, when the EASS server 912 receives the
SAVE ME message 906, the EASS server 912 can imme
diately determine that the previous handshake operation did
not successfully complete and can update the current pass
word entry and the previous password entry 916 and 918 in
the associated database 914 to reflect the actual current state
of the EASS embedded agent 902. Thus, upon receipt of the
SAVE ME message, the EASS server and the EASS embed
ded agent are again synchronized, and the EASS server can
initiate a new handshake operation to reauthorize the EASS
embedded agent.

s handshake. In such systems, there may be no backdoor
mechanism, and no capability of directly communicating or
interacting with the EASS embedded agent. Example appli
cations include a firearm containing an EASS embedded
agent that communicates with an EASS server located on the

10 person of a police officer or soldier, in a nearby vehicle, or
in a command station or centralized communications facil
ity. The EASS embedded agent has no initial grace period of
operation, because even a short grace period might enable an
unauthorized user to discharge the firearm.

15 A clever thief who has stolen a PC, who has managed to
discern the need to establish connections between EASS
embedded agents and an EASS server, and who possesses
the necessary passwords to gain entry to client and server
utilities that enable a connection between an EASS client

20 and an EASS server to be initialized, still fails to overcome
the EASS and may, in fact, broadcast the location and use of
the stolen PC to the EASS. A different EASS server to which
a connection is attempted immediately detects the attempt

The above-illustrated and above-described state diagrams
and message passing details represent one of many possible
different embodiments of the present invention. A different
communications protocol with different attendant state dia
grams and messages can be devised to accomplish the
authorization of EASS embedded agents by EASS servers.
Depending on the communications pathways employed,
different types of messages with different types of fields and
different types of header information may be employed.
Moreover, the EASS embedded agent may contain addi- 25

tional non-volatile registers and may maintain different
values within the associated non-volatile registers. As one
example, rather than passing passwords, both the EASS
server and each EASS embedded agent may contain linear
feedback registers that electronically generate passwords 30

from seed values. The communications protocols between
the EASS server and the EASS embedded agents could
ensure that, during transition from the Initial Power-On
Grace Period state, the EASS embedded agent receives an
initial seed for its linear feedback register that is also used 35

by the EASS server for the EASS server's linear feedback
register. Rather than passing passwords, both the EASS
embedded agents and the EASS servers can depend on
deterministic transitions of their respective linear feedback
registers to generate new, synchronized passwords at each 40

authorization point.

For some systems and devices, an initial grace period,
during which a device or system containing an embedded
agent is initially authorized, may not be required. In such
systems, the embedded agent may be somewhat autonomous 45

with respect to the device or system in which it is located,
and may be self-contained with regard to communications
with an EASS server or servers. For example, the EASS
embedded agent may be separately powered by a battery or
other independent power source, and contain a transceiver 50

and transceiver circuitry to allow the EASS embedded agent

by the thief to connect the stolen PC to the EASS server by
detecting non-initial passwords in the SAVE ME message
sent by the EASS embedded agent in order to solicit a
handshake operation. The reconnection attempt is readily
discernible to a security administrator using utilities pro
vided to display database contents on the EASS server.
Connection to a different EASS server fails because the
EASS embedded agents power up to the Power-On Grace
Period state, rather than the Initial Power-On Grace Period
state. The passwords sent to the different EASS server are
therefore not identified as initial passwords. The different
EASS server may then notify a centralized management or
administrative facility of the fraudulent attempt to connect
along with the network address from which the attempt was
made. An attempt to connect to the same EASS server also
fails, because the address of the EASS embedded agents
within the PC has changed.

Pseudo-code Implementation

A pseudo-code example implementation of an example
EASS server and EASS embedded agent is given below.
Although the EASS embedded agent will normally be
implemented as a logic circuit, that logic circuit will imple
ment in hardware the algorithm expressed below as pseudo
code. Software and firmware implementations of the EASS
embedded agent may, in addition, represent alternate
embodiments of the present invention.

enum MSG_TYPE {AUTHORIZE, CONFIRM_AUTHORIZE, OK, SAVE_ME, DEVICE};
2
3 enum ERRORS {QUEUED_AND_SAVE_ME, MULTIPLE_OKS_LOST, ALARM,
4 CONFIRM_AUTHORIZE_SYNC, NO_ENTRY, QUEUE_ERROR};
5

type PASSWORD;
7 type ADDRESS;
8 type TIME;
9

10 canst TIME initGrace ~ 2:00;
11 canst TIME saveMe ~ 0:20;
12
13 class Error
14

US 6,594,765 B2
17 18

-continued

15 Error (int err, ADDRESS add);
16
17
18 class DeviceMessage
19 {
20 Device Message ();
21
22
23 class Device
24
25 Device();
26 Void enable ();
27 Void disable ();
28 Void send (Device Message & dvmsg);
29 Boo! receive (Device Message & dvmsg);
30
31
32 class Timer
33
34 timer (TIMEt);
35 void set (TIME t);
36
37
38 class Timerlnterrupt
39 {
40 Timerlnterrupt ();
41 }
42
43 class TimeServer
44
45 TimeServer ();
46 TIME nextAuthorizationPeriod (Address add);
47
48
49 class Messages
50 {
51 Messages();
52 Boo! getNext ();
53 MSG_TYPE getType ();
54 PASSWORD getNewPassword ();
55 PASSWORD getCurrentPassword ();
56 PASSWORD getPreviousPassword ();
57 TIME getTime ();
58 ADDRESS getAddress ();
59 Boo! sendAuthorize (PASSWORD npwd, ADDRESS add);
60 Boo! sendConfirmAuthorize (PASSWORD npwd, PASSWORD cpwd, ADDRESS add);
61 Boo! sendOK (Time t, PASSWORD npwd, ADDRESS add);
62 Boo! sendSaveMe (PASSWORD cpwd, PASSWORD ppwd, ADDRESS add);
63
64
65 class AgentMessages:Messages
66 {
67 DeviceMessage & getDeviceMsg ();
68 Boo! sendDeviceMsg (DeviceMessage & msg);
69
70
71 class Passwords
72
73 Passwords ();
74 Boo! initialPassword (PASSWORD pwd);
75 PASSWORD generateNewPassword ();
76 void queue (ADDRESS add, PASSWORD npwd, PASSWORD ppwd);
77 Boo! dequeue (ADDRESS add, PASSWORD & npwd, PASSWORD & ppwd);
78
79
80 class Database
81
82 Database();
83 Boo! newAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Bod authorized,Time t);
84 Boo! updateAgent (ADDRESS add, PASSWORD cur, PASSWORD prev, Boo! authorized, Time t);
85 Boo! retrieveAgent (ADDRESS add, PASSWORD & cur, PASSWORD & prev, Boo! & Authorized,
~ TIME&*
87 Boo! deleteAgent (ADDRESS add);
88
89
90 agent (PASSWORD current, PASSWORD previous)
91 {
92 PASSWORD tpwd;
93 Timer time (init, Grace);

US 6,594,765 B2
19

-continued

94 AgentMessages msg 0;
95 Device dv 0;
96 DeviceMessage dvmsg 0;
97 Boo! authorized ~ FALSE;
98 Boo! enabled ~ TRUE;
99

100 do
101
102 try
103 {
104 while (msg.getNext 0)
105 {
106 switch (msg.getType ())
107 {
108 case AUTHORIZE:
109 tpwd ~ msg.getNewPassword 0;
110 msg.sendConfirmAuthorize (tpwd, current, msggetAddress ());
111 break;
112 case OK:
113 if (tpwd ~~ msg.getNewPassword 0)
114 {
115 time.set (msg.getTime 0 - save Me);
116 authorized ~ TRUE;
117 previous = current;
118 current ~ tpwd;
119 if (!enabled)
120 {
121 dv.enable 0;
122 enabled ~ TRUE,
123
124

}

break;
case DEVICE:

if (enabled) dv.send (msg.getDeviceMsg ());
break;

default;
break;

125
126
127
128
129
130
131
132
133
134
135
136

while (dv.receive (dvmsg))
{

if (enabled) msg.sendDeviceMsg (dvmsg),

137 }
138 catch (Timerinterrupt)
139 {
140 if (authorized)
141 {
142 authorized~ FALSE;
143 msg.sendSaveMe (current, previous, msg.getAddress ());
144 time.set (saveMe);
145
146 else
147
148 enabled~ FALSE;
149 msg sendSaveMe (current, previous, msg.getAddress 0);
150 time.set (SaveMe);
151 dv.disable 0,
152
153
154
155
156
157 server 0
156 {
159 Messages msg 0;
160 PASSWORD current, previous, dcur, dprev, newp;
161 PASSWORD queuedNew, queuedCurrent, newpass;
162 Passwords pwds 0;
163 TIMEt;
164 Database db 0;
165 ADDRESS add;
166 TimeServer ts 0;
167 Boo! auth;
168
169 while (msg.getNext 0)
170 {
171 switch (msg.getType ())
172 {

20

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

US 6,594,765 B2
21

-continued

case SAVE ME:
current ~ msg.getCurrentPassword ();
previous ~ msg.getPreviousPassword ();
if (pswds.dequeue (msg.getAddress (), queuedNew, queuedCurrent))
{

if (queuedCurrent ~~current)
{

newp ~ pswds.generateNewPassword ();
pswds.queue (msg.getAddress (), newp, current);
msg.sendAuthorize (newp, msg.getAddress ());

else throw (Error (QUEUED_AND_SAVE_ME, msg getAddress ());

else

if (pswds initialPassword (current) && pswds.initialPassword
(previous))
{

db.deleteAgent (msg.getAddress ());
newp ~ pswds.generateNewPassword ();
pswds. queue (msg.getAddress (), newp, current);
msg.sendAuthorize (newp, msg.getAddress ());

else

if (db.retrieveAgent (msg.getAddress (), dcur, dprev, auth,tm)

}

{
if (dcur ~~ current && tm >~ getSystemTime ())
{

}

newp~pswds.generateNewPassword ();
pswds.queue (msg.getAddress (), newp, current)
msg.sendAuthorize (newp, msg.getAddress ());

else if (dprev ~~ current && tm >~ getSystemTime ())
{

msg.sendOK (ts.nextAuthorizationPeriod (msg.getAddress (),
dcur, msg.getAddress ());

else if (dprev ~~ current && tm < getSystemTime ())
{

throw (Error (MULTIPLE_OKS_LOST, msg.getAddress ());
}
else throw (Error (ALARM, msg.getAddress ());

else throw (Error (ALARM, msg.getAddress ());

case CONFIRM_AUTHORIZE:
newpass ~ msg.getNewPassword (),
current ~ msg.getCurrentPassword ();
if (paswds.dequeue (msg.getAddress (), queuedNew, queuedCurrent))
{

if (newpass ~~ queuedNew && current ~~ queuedCurrent)
{

if (db,retrieveAgent(msg.getAddress (), dcur,dprev,auth,tm))
{

if (dcur ~~current)
{
tm ~ ts nextAuthorizationPeriod (msg.getAddress ());

db.updateAgent(msg.getAddress (),newpass,current,
tm + getSystemTime ());

msg.SendOK (tm, newpass, msg.getAddress ());

else

throw (Error(CONFIRM_AUTHORIZE_SYNC,
msg.getAddress ());

else

if (pswds.initialPassword (current))
{

}

tm - ts.nextAuthorizationPeriod (msg.getAddress ());
db.newAgent (msg.getAddress (),newpass,current,

tm + getsystemTime ());
msg.sendOK (tm, newpass, msg.getAddress ());

else throw (Error (NO_ENTRY, msg.getAddress ()));

22

US 6,594,765 B2

252
253
254
255
256
257
258
259
260
261
262

23

-continued

}
else throw (Error (QUEUE_ERROR, msg.getAddress ())),

}
else throw (Error (ALARM, msg.getAddress ()));
break;

default;
break;

24

15 this class is initialized through the arguments passed to the
constructor. These include an integer value representing the
particular error that has been identified and an address value
that indicates the network or communications address of the

Lines 1-11 of the above program include definitions of
constants and types used in the remaining lines of the
program. Line 1 defines the enumeration MSG_TYPE that
includes five enumerated constants to describe the five
different types of messages used to implement the EASS.
These types of messages include the AUTHORIZE, CON- 20

FIRM AUTHORIZE, OK, and SAVE ME messages
described in FIGS. 6A-B and 7A-F, as well as DEVICE
messages which are exchanged between the CPU (214 in
FIG. 2) and the device controllers (242, 244, 246, 248, and
250 in FIG. 2) via the system controller (218 in FIG. 2) and 25

via any EASS embedded agents residing in the device
controllers. On lines 3 and 4, an enumeration is declared for
various types of errors and potentially insecure conditions
that may arise during operation of both the EASS server and
EASS embedded agents. These errors and conditions will be 30

described below in the contexts within which they arise. On
lines 6-8, three basic types used throughout the implemen
tation are declared. These types may be implemented either
using predefined types, such as integers and floating point
numbers, or may be more elaborately defined in terms of 35

classes. These types include: (1) PASSWORD, a consecu
tive number of bits large enough to express internal pass
words used within the EASS, commonly 56, 64, or 128 bits;

EASS embedded agent that the error relates to.
The class DeviceMessage, declared on lines 18-21,

encapsulates methods and data that implement the various
kinds of device messages exchanged between the CPU and
the device controllers of a PC. The methods and data for this
class depend on the types of communications buses
employed within the PC and are, therefore, not further
specified in this example program. The class Device,
declared on lines 23-30, represents the functionality of the
device controller within which an EASS embedded agent is
embedded. In general, the methods shown for this class
would be implemented as hardware logic circuits. The
methods include optional methods for enabling and dis-
abling the device declared on lines 26 and 27, a method for
sending device messages to the device, declared on line 28,
and a method for receiving device messages from the device,
declared on line 29.

The class Timer, declared on lines 32-36, is an asynchro
nous timer used in the agent routine. An asynchronous timer
can be initialed for some time period either through the
constructor, declared on line 34, or through the method
"set," declared on line 35. If the time period is not reini
tialized before the timer expires, the asynchronous timer
throws an exception or, when implemented in hardware,
raises a signal or causes an interrupt that may then be
handled either by the agent routine or the logic circuit that
implements the agent routine. The class Timerinterrupt,
declared on lines 38-41, is essentially a placeholder class
used in the exception handling mechanism to indicate expi
ration of a timer. The class TimeServer, declared on lines
43-47, is a class used by the server routine for determining

(2) ADDRESS, a number of consecutive bits large enough to
hold communications addresses for EASS servers and EASS 40

embedded agents; and (3) TIME, a time value expressed in
hours, minutes and seconds, possibly also including a date
and year. On lines 10 and 11, the constants "initGrace" and
"saveMe" are defined to be two minutes and 20 seconds,
respectively. The constant "initGrace" is the initial grace 45

period following power up during which an EASS embed
ded agent passes device messages to and from the device
controller into which it is embedded without authorization.
The constant "saveMe" is the interval at which an EASS
embedded agent sends SAVE ME messages to an EASS
server in order to reestablish authorization. In an alternative
embodiment, both the initial grace period and the SAVE ME
interval may be configurable by a user, by the EASS server,

50 the next authorization period for a particular EASS embed
ded agent. The method "nextAuthorizationPeriod," declared
on line 46, takes the network or communications address of
an EASS embedded agent as an argument and returns a time
period for which the EASS embedded agent will be next by an administrator, or by some combination of users, EASS

servers, and administrators.
On lines 13-88, a number of classes are declared that are

used in the routines "agent" and "server" that follow. Pro
totypes for these classes are given, but the implementations
of the methods are not shown. These implementations are
quite dependent on the specific computer hardware
platforms, operating systems, and communications proto
cols employed to implement the EASS. Much of the imple
mentations of certain of these classes may be directly
provided through operating system calls. The class Error,
declared on lines 13-16, is a simple error reporting class
used in the server routine for exception handling. Only the
constructor for this class is shown on line 15. An instance of

55 authorized. This authorization period may, in some
implementations, be a constant or, in other implementations,
the authorization period may be calculated from various
considerations, including the identity of the particular EASS
embedded agent or the previous authorization history for the

60 EASS embedded agent.
The class Messages, declared on lines 49-63, is a gener

alized communications class that allows an EASS server to
exchange messages with EASS embedded agents. The
method "getNext," declared on line 52, instructs an instance

65 of the Messages class to return a Boolean value indicating
whether there are more messages queued for reception. If so,
getNext makes that next message the current message from

US 6,594,765 B2
25 26

responds to messages from a remote EASS server as well as
passes messages exchanged between the CPU and the device
controller in which the EASS embedded agent is embedded.

A large portion of the message handling logic is enclosed
within a try block that begins on line 102 and ends on line
137. Exceptions generated during execution of the code
within the try block are handled in the catch block beginning
on line 138 and extending to line 153. In the case of the
agent routine, exceptions are generated by the asynchronous

which information can be obtained by calling the methods
declared on lines 53-58. These methods allow for obtaining
the type of the message, the address of the sender of the
message, and the contents of the message, depending on the
type of the message, including new passwords, current 5
passwords, previous passwords, and authorization times.
The methods "sendAuthorize" and "sendOK" declared on
lines 59 and 61 are used in the server routine to send
AUTHORIZE and OK messages to EASS embedded agents,
respectively. The methods "sendConfirmAuthorize" and
"sendSaveMe" declared on lines 60 and 62 are used in the
agent routine to send CONFIRM AUTHORIZE and SAVE
ME messages to an EASS server, respectively. The class
"AgentMessages," declared on lines 65-69, derived from
the class "Messages," allows an EASS embedded agent to
communicate both with an EASS server as well as with the
CPU. In other words, the two methods "getDeviceMsg" and
"sendDeviceMsg," declared on lines 67-68, allow an EASS
embedded agent to intercept device messages sent by the
CPU to the device controller in which the EASS embedded
agent is embedded and to pass device messages from the
device controller back to the CPU.

10 timer "time." Within the "while" loop that begins on line 104
and extends through line 132, the agent routine handles any
messages received from a remote EASS server and responds
to those messages as necessary. The "while" statement on
line 104 iteratively calls the getNext method of the Agent-

15 Messages instance "msg" to retrieve each successive mes
sage that has been received and queued internally by msg.
When the member "getNext" returns a TRUE value, msg has
set an internal pointer to make the next queued message the
current message. When the member "getNext" returns a

20 FALSE value, there are no further messages that have been
received and queued. Thus, any members of msg called
within the "while" loop on lines 106-130 that retrieve values
from messages retrieve those values from the current mes
sage.

The class Passwords, declared on lines 71-78, is used
within the server routine for queuing certain password
information as well as for generating passwords and deter- 25

mining whether a password is an initial password. The
method "initialPassword," declared on line 74, takes a
password as an argument and returns a Boolean value
indicating whether the password is an initial password or
not. The method "generateNewPassword," declared on lines
75, generates a new, non-initial password to pass to an EASS
embedded agent as part of an AUTHORIZE message. A
more sophisticated implementation of generateNewPass
word might use an input argument that identifies a particular
EASS embedded agent for generating new passwords spe
cific to particular EASS embedded agents. The methods
"queue" and "dequeue," declared on lines 76-77, are used in
the server routine for temporarily storing address/new
password/previous password triples. The class Database,
declared on lines 80-88, represents the database (618 in
FIG. 6A) used by the server to track EASS embedded agents
that are authorized by the server. The methods declared on
lines 83-87 allow for adding new agents into the database,
updating a database entry corresponding to an agent, retriev
ing the contents of an entry corresponding to an agent, and
deleting the entry for an agent. The address of an EASS
embedded agent is used as the unique identifier to identify
that agent's entry in a database. In other implementations, a
unique identifier may be generated and stored in the data
base for each EASS embedded agent authorized by the
server routine rather than using the address of the EASS
embedded agent.

If the current message is an AUTHORIZE message, as
detected on line 108, the agent routine saves the new
password contained in the AUTHORIZE message in the
local password variable "tpwd," on line 109, and returns a
CONFIRM AUTHORIZE message to the EASS server on

30 line 110. If the message received from the EASS server is an
OK message, as detected on line 112, the routine agent first
checks, on line 113, if the new password contained within
the OK message is the same as the new password stored in
the local password variable "tpwd." If so, the routine agent

35 reinitializes the asynchronous timer on line 115, sets the
local variable "authorized" to the value TRUE on line 116,
transfers the contents of the password variable "current" into
the password variable "previous" on line 117, transfers the
new password from the local password variable "tpwd" into

40 the local password variable "current," and, if the local
variable "enabled" contains the value FALSE, enables the
device by calling the member "enable" on line 121 and sets
the local variable "enable" to TRUE on line 122. If, on the
other hand, the new password contained in the OK message

45 is not equal to the new password contained in the local
password variable "tpwd," then the agent routine simply
ignores the received OK message. If the message received is
a device message, as detected on line 126, and if the local
variable "enabled" has the value TRUE, then the agent

50 routine passes that received device message on to the device
by calling the device member "send" on line 127. If the
received message is not of the type AUTHORIZE, OK, or
DEVICE, the agent routine simply ignores the message. The routine "agent," declared on lines 90-155, is an

example implementation of an EASS embedded agent. The
agent routine takes two passwords, "current" and
"previous," as arguments. These two input arguments rep
resent the non-volatile current and previous password reg
isters 604 and 606 shown in FIG. 6A. Various local variables
are declared on lines 92-98. These include a temporary
password "tpwd," an asynchronous timer "time," an instance
of the AgentMessages class "msg," an instance of the device
class "dv" that represents the device controller into which
the EASS embedded agent is embedded, a device message
"dvmsg," and two Boolean variables "authorize" and
"enabled." The agent routine is implemented within a single
"do" loop starting at line 100 and ending at line 154. Within
this "do" loop, the agent routine continuously receives and

Once all the received and queued messages have been
55 handled in the "while" block starting on line 104 and

continuing to line 132, the agent routine passes any mes
sages sent by the device to the CPU if the local variable
"enable" has the value TRUE. Messages are received from
the device by calling the receive member of the Device

60 instance "dv" and are transmitted by the agent routine to the
CPU by calling the member "sendDeviceMsg" of the Agent
Messages instance "msg."

If the asynchronous timer "time" expires and generates an
interrupt, that interrupt is handled on lines 140--152. If the

65 local variable "authorized" has the value TRUE, then autho
rized is set to the value FALSE on line 142, a SAVE ME
message is sent by the agent routine to the EASS server on

US 6,594,765 B2
27

line 143, and the asynchronous timer "time" is reinitialized
on line 144. However, if the local variable "authorized" has
the value FALSE, then the asynchronous timer has already
once expired after the agent routine failed to acquire autho
rization from the remote EASS server. In that case, the agent 5
routine sets the local variable "enable" to FALSE on line
148, sends another SAVE ME message to the EASS remote
server on line 149, reinitializes the asynchronous timer on
line 150, and finally disables the device on line 151 by
calling the member "disable" of the Device instance "dv."

10
The routine "server" on lines 157-264 implements the

EASS server. Local variables are declared on lines 159-167,
including an instance of the Messages class "msg," an
instance of the Passwords class "pwds," an instance of the
Database class "db," and an instance of the TimeServer class 15
"ts." A number of local PASSWORD variables are declared,
including the local variables "current," "previous," "dcur,"
"dprev," "newp," "queuedNew," "queuedCurrent," and
"newpass." In addition, a local TIME variable "tm," a local
ADDRESS variable "add," and a local Boolean variable 20
"auth" are declared.

The server routine continuously receives messages from
EASS embedded agents and, as necessary, responds to those
messages in the "while" loop beginning on line 169 and
ending on line 262. The server routine receives only two 25
types of messages: SAVE ME messages as detected on line
173, and CONFIRM AUTHORIZE messages, as detected on
line 220.

28
line 194. This is done because the SAVE ME message was
sent from an EASS embedded agent in the Initial Power-On
Grace Period state (410 in FIG. 4), or, in other words, from
an EASS embedded agent that is attempting to connect to the
server either for the first time or for the first time following
a reinitialization. If, on the other hand, the current and
previous passwords in the SAVE ME message are not initial
passwords, then the server routine attempts, on line 198, to
retrieve from the database an entry corresponding to the
EASS embedded agent identified by the address of the agent.
If an entry exists in the database, then the server routine
attempts to identify, on lines 200-217, a scenario by which
the SAVE ME message was sent by the EASS embedded
agent. If no entry is present in the database for the EASS
embedded agent, then the server routine throws an alarm
exception on line 217. This alarm exception indicates a
potential attempt by a stolen or otherwise misused PC to
establish a connection and authorization with the EASS
server represented by the server routine.

On line 200, the server routine compares the current
password stored within the retrieved database entry to the
current password retrieved from the SAVE ME message and
compares the expiration time stored in the database to the
current time as retrieved by the operating system routine
"getSystemTime." If the current password in the database
entry is the same as the current password in the SAVE ME
message and authorization has not yet expired for the EASS
embedded agent, then a likely explanation for the SAVE ME
message is that a previous CONFIRM AUTHORIZE mes-If the next received message is a SAVE ME message, the

server routine first extracts the current and previous pass
words from the SAVE ME message and places them into the
local PASSWORD variables "current" and "previous,"
respectively. The server routine then attempts to dequeue an
address/new password/current password triple from the
"pswds" instance of the Passwords class. The address of the
EASS embedded agent that sent the SAVE ME message is
used as a unique identifier to locate the queued triple. If a
triple is found, as detected on line 176, and if the current
password extracted from the SAVE ME message is equal to
the current password saved within the triple, as detected on
line 178, then the server routine must have previously sent

30 sage sent from the EASS embedded agent to the server
routine was lost. Therefore, the server routine, on lines
202-204, generates a new, non-initial password, queues a
new address-new password-current password triple, and
sends a new AUTHORIZE message to the EASS embedded

35 agent. If, on the other hand, the previous password from the
database entry equals the current password in the SAVE ME
message and authorization has not expired, then an OK
message from the server routine to the EASS embedded
agent was probably lost, and the server routine resends the

40 OK message on lines 208-209. If the previous password
from the database entry equals the current password in the
SAVE ME message and authorization has expired, probably
multiple OK messages have been lost indicating some error
in communications, and the server routine throws a

an AUTHORIZE message to the EASS embedded agent, but
the handshake mechanism must have failed after the
AUTHORIZE message was sent. In this case, the server
routine simply generates a new password on line 180,
queues the address/new password/current password triple on
line 181, and sends a new AUTHORIZE message to the
EASS embedded agent on line 182. If, on the other hand, the
current password extracted from the SAVE ME message is
not equal to the current password dequeued from pswds, a
more serious error has occurred and the routine server
throws a QUEUED_AND_SAVE_ME exception on line
184. The exception handlers are not shown in this example
program because they are quite dependent on implementa
tion details and detailed error handling strategies that may 55

vary depending on the use to which the EASS has been
applied.

45 MULTIPLE_OKS_LOST exception on line 213. Finally, if
the contents of the database entry do not reflect one of the
above three scenarios handled on lines 200-214, the
received SAVE ME message most likely indicates an
attempt to establish a connection and acquire authorization

50 by a stolen or misused EASS embedded agent and the server
routine therefore throws an alarm exception on line 215.

If there is no queued entry for the EASS embedded agent,
then, on line 188, the server routine calls the initialPassword
member of pswds in order to determine whether both the 60

current and previous passwords that were included in the
SAVE ME message are special initial passwords. If these
passwords are initial passwords, then, beginning on line 191,
the server routine deletes any database entries for the EASS
embedded agent, generates a new password, queues a new 65

address-new password-current password triplet, and sends
an AUTHORIZE message to the EASS embedded agent on

When the server routine receives a CONFIRM AUTHO-
RIZE message, it first extracts the new password and current
password from the CONFIRM AUTHORIZE message on
lines 221 and 222. The server routine then attempts to
dequeue an address-new password-current password triple
on line 223 corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message. If a queued
triple is found, then the code contained in lines 225-255 may
be executed in order to properly respond to the CONFIRM
AUTHORIZE message. If there is no queued triple, then, on
line 256, the server routine throws an alarm exception to
indicate a potential attempt to connect to the server and to
acquire authorization from the server by a stolen or misused
EASS embedded agent. After dequeuing a triple, the server
routine checks, on line 227, whether the new password and
current password retrieved from the CONFIRM AUTHO-

US 6,594,765 B2
29

RIZE message correspond to the new password and current
password that were queued in the dequeued triple. If so, then
the server routine attempts, on line 227, to retrieve a
database entry for the EASS embedded agent. If a database
entry is retrieved, then the server routine tests, on line 229, 5
whether the current password in the database entry is equal
to the current password in the CONFIRM AUTHORIZE
message. If so, the CONFIRM AUTHORIZE message is a
valid response to a previous AUTHORIZE message sent by
the server routine to the EASS embedded agent, and, on 10
lines 231-234, the server routine updates the database entry
for the EASS embedded agent and sends an OK message to
the agent. If, on the other hand, the current password
retrieved from the database entry is not equal to the current
password that was retrieved from the queue, the server 15
routine throws a CONFIRM_AUTHORIZE_SYNC excep
tion on line 238. If there was no database entry correspond
ing to the EASS embedded agent, but if the current password
included in the CONFIRM AUTHORIZE message was an
initial password, then this CONFIRM AUTHORIZE mes- 20
sage came from a EASS embedded agent in the Initial
Power-On Grace Period (410 in FIG. 4) and the server
routine creates a new database entry for the EASS embedded
agent and sends an OK message to the EASS embedded
agent. However, if the password included in the CONFIRM 25
AUTHORIZE message is not an initial password, then the
server routine throws a NO_ENTRY exception indicating a
serious problem in the handshake. If no triple was found in
the queue corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message, the server 30
routine, on line 256, throws a QUEUE_ERROR exception
indicating a potential problem with the queuing mechanism.

One skilled in the art will recognize that the above
described implementation of an example EASS server and
EASS embedded agent describes one potential embodiment 35

of the present invention and that other implementations may
be realized. For example, the EASS server can be imple
mented in any number of programming languages for any
number of different operating systems and hardware plat
forms. The EASS embedded agent is preferably imple- 40

mented as a hardware logic circuit within the device con
troller for the device into which the EASS embedded agent
is embedded. A hardware logic circuit cannot be removed
without destroying the device controller. A firmware or
software routine can, by contrast, be removed or re-installed. 45

The handshake mechanism can be implemented with any
number of different communication message protocols, with
any number of different types of databases, and with any
number of different strategies for handling potential error
and alarm exception. Furthermore, additional error and 50

alarm conditions might be detected by a more elaborate
implementation. The database may itself be encrypted or
protected by additional security mechanisms.

In the above-described embodiment, an EASS embedded
agent can only receive authorization by first sending a SAVE 55

ME message to an EASS server. In alternative embodiments,
the EASS server or a user of the system hosting the EASS
embedded agents may be provided with the capability to
initiate authorization of an EASS embedded agent.
Moreover, the EASS embedded agents may be manufac- 60

tured to contain an initial unlock password and to initially
have an unlimited period of authorization. Once the system
hosting the EASS embedded agent is powered up and
running, the EASS embedded agent can then be identified by
an EASS server and controlled by the EASS server by 65

sending the EASS embedded agent an authorization for a
period of time which overrides the unlock password and

30
initial unlimited period of authorization and which requires
the EASS embedded agent to be re-authorized prior to
expiration of the period of time of authorization.

Additional EASS Components and Additional
Applications for the EASS

The EASS server may include a package of system
administration utilities that allow a system administrator to
configure and monitor the EASS server's authorization
activities. These utilities can be used to graphically display
the contents of the database associated with the EASS server
and to allow the system administrator to manipulate those
contents. Also, the EASS client and EASS server may
contain additional utilities that allow a privileged user to
reinitialize EASS embedded agents in the event of discon
nections or corruptions so that the EASS embedded agents
can reconnect to EASS servers to reestablish authorization.

The embodiments of the present invention described
above are directed towards providing component-level secu
rity for a PC. The EASS does not require users to know or
remember passwords. All password information is internally
generated and internally manipulated by the EASS. The
EASS cannot be easily thwarted by reconfiguring the soft
ware on a PC or even by replacing a firmware component
such as a PROM. This is because the EASS embedded
agents are contained within the ASICs that implement the
various device controllers. If those EASS embedded agents
do not quickly establish a connection to an EASS server and
do not quickly transition from an Initial Power-On Grace
Period state or a Power-On Grace Period state to an Autho
rized state, the devices controlled by the EASS embedded
agents will fail to operate.

In the special case of an EASS embedded agent that is
embedded within the circuitry of a hard disk controller, the
EASS embedded agent may additionally encrypt data that is
received over a communications bus for storage on the
physical platters of the disk and may decrypt data read from
those physical platters before sending the data back through
the communications bus. In this fashion, even if a thief were
to steal the hard disk and remove the disk controller
circuitry, the data contained on the disk would not be
available for use. The data can be encrypted by any of many
well-known techniques, including RSA-based encryption
and password-based encryption.

In addition, embodiments of the present invention have
applications in other areas related to security and in many
areas not related to security. One area in which the present
invention can be applied is that of enabling hardware or
software components of a PC from a remote site on a
pay-per-use or pay-for-purchase basis. It is increasingly
common for the incremental costs associated with installa
tion of a specialized hardware device or specialized software
program during the manufacturing process to be quite small
for a given PC. For example, the cost of installing a software
program on a hard disk during the manufacturing process
may have an incremental cost of well under a dollar.
Likewise, the actual physical circuitry that implements
many specialized devices can be mass-produced at a very
low cost per unit. However, the cost of installing the
specialized hardware components or software once the PC
has been manufactured and sold may be much higher. For
this reason, it is desirable for PC manufacturers to include
popular specialized hardware devices and software pro
grams at the time of manufacture in a disabled state. The
purchaser of the PC can then pay a fee either for using the
hardware components or software programs or can later

US 6,594,765 B2
31

purchase the hardware components or software programs. In
the former case, the device or program can be enabled, or
authorized, for some time period. In the latter case, the
device or software program can be enabled on a permanent
basis. Embodiments of the present invention, including a
server, client, and a number of embedded agents, could be
used as a basis to provide for selectively enabling and
disabling both hardware components and software pro
grams. In the case of software programs, for example, the
embedded agent within the disk controller could selectively
make available data stored on the disk, including a non
volatile copy of the software program to be enabled.

In a slightly different application of the present invention,
the EASS may be employed to protect software manufac
turers from software pirates. Software programs, including
operating system software, can be manufactured to require
authorization by EASS embedded agents, or software
implemented EASS embedded agents may be incorporated
into the software programs themselves. Thus, for example,
a running database management system or operating system
may incorporate software-implemented EASS embedded
agents that require periodic authorization from an EASS
server. Alternatively, an EASS embedded agent within the
disk controller on which the programs are stored may be
controlled by an EASS server to selectively enable and
disable particular programs.

32
it is embedded have been powered down or damaged. A
system administrator or a diagnostician can use a graphical
display of contents of the database associated with the EASS
server to identify powered-down or defective devices. In this

5 case, the database could be expanded to include more
specific information about the geographical location of each
EASS embedded agent, as well as the identity and type of
device that the EASS embedded agent is controlling. The
data included in the database can be presented in many

10 different fashions with a variety of different graphical user
interfaces allowing, for example, information about all the
EASS embedded agents within a particular computer to be
displayed within a diagram of that computer. As another
example, EASS embedded agents may be incorporated into

15 control points within utility energy grids to provide diag
nostic and maintenance capabilities.

EASS embedded agents may be embedded into home
entertainment systems to protect the home entertainment
systems from theft and misuse. EASS embedded agents may

20 also serve to obtain identification information from media
containing recorded audio and/or video data inserted into a
home entertainment system, or similar broadcast or display
device, and provide the identification information to a
remote server in order to receive authorization from the

25 remote server for broadcast or display of the recorded audio
and/or video data. Similarly, EASS embedded agents may
serve to obtain identification information from an electronic
card or key in order to obtain authorization from a remote

Another application for embodiments of the present
invention is in the field of adaptive systems. Such systems
automatically reconfigure themselves to adapt to changing
demands placed on their components. The protocol for 30

communications between a server and embedded agents can

server for the operation of a motorized vehicle or firearm.
EASS embedded agents may even be embedded in paper
currency or cash machines to monitor cash transactions and

be expanded to allow for general information exchange
relating to the load experienced by a particular device and
the throughput achieved by the device. The server can
collect such information and direct the embedded agents to 35

enable additional components where needed or to fine tune
and adjust the operation of components to better handle the
demands placed on the components. For example, additional
CPUs or disk drives can be enabled and configured into the
system when processing bottlenecks and non-volatile star- 40

age space becomes scarce. System components can be
enabled and disabled in order to effect load balancing.

prevent acceptance of counterfeit currency. The fact that, in
all of these applications, an EASS embedded agent is
involved in obtaining identification information from media,
electronic cards, or keys, provides for remote monitoring of
the use of protected systems and flexible remote control of
the authorization for use of the protected systems. For
example, although a thief may steal both a car and the key
to the car, the owner can still contact the administrator of the
remote server to discontinue authorization of the use of the
car.

The list of devices and systems that may be protected and
made secure by hosting EASS embedded agents is almost The present invention may be applied to security systems

for devices other than PCs, including more complex com
puter systems or even to electromechanical systems such as
airplanes, automobiles, diesel locomotives, and machine
tools. The present invention could also be applied in indus
trial control processes to start and stop production compo
nents and machine tools.

45 limitless, as are the specific messaging protocols, states
inhabited by EASS embedded agents, and mechanisms by
which EASS embedded agents deactivate or disable their
host. For example, in some cases, an EASS embedded agent
may electromechanically block, disable, disarm, or other-

50 wise actively disrupt operation of a host. In other cases, the
EASS embedded agent may simply fail to pass messages
needed by the host to maintain a state of operability. A partial
list of system and device categories that may be secured via

Embodiments of the present invention also may be
applied to protecting firearms. Electromechanical devices
that include EASS embedded agents may be incorporated
into electromechanical trigger locks or firing mechanisms.
Authorization of the EASS embedded agents might be 55
controlled from a centralized EASS server to insure that

embedded EASS agents follows:
Automotive

EASS embedded agents may be included within ignition
systems of cars, trucks, and other types of vehicles, as well
as in mechanical components including fuel delivery
components, engine components, drive train components,

only licensed firearms within predetermined geographical
locations can be fired. In such cases, the communications
medium that allow exchange of messages between an EASS
server and an EASS embedded agent may be a microwave
or satellite link.

Diagnosing and correcting defects in complex systems is
yet another problem area in which the present invention may
find application. In the embodiment discussed above, the
EASS server can easily determine when a particular EASS
embedded agent is no longer functioning, indicating that the
EASS embedded agent and the device controller into which

60 and steering components. Additionally, audio and video
components, GPS systems, and other electronic devices
installed in cars, trucks or other types of vehicles may host
EASS embedded agents. The EASS server or servers may be
located within the vehicle, in some cases, or may be located

65 in one or more fixed locations, providing coverage for a
region in which the EASS embedded agents are meant to be
authorized.

US 6,594,765 B2
33 34

Aviation resource and an ever-present danger to surrounding com
munities and regions. Subsystems, components, and trans
port and intercommunication media for such systems may be
protected by EASS embedded agents.

5 Entertainment

EASS embedded agents may be included within ignition
systems of airplanes, helicopters, and perhaps even space
vehicles, as well as in electrical and mechanical components
including fuel delivery components, engine components,
audio and video components, GPS systems, avionics, com
munications and navigation systems, and other such com
ponents. The EASS server or servers may be located within
the vehicle, in some cases, or may be located in one or more
fixed locations, providing coverage for a region in which the 10

EASS embedded agents are meant to be authorized.

Cable and satellite technology-based delivery systems,
including pay per view services, may be secured and con
trolled by EASS embedded agents.
Manufacturing

Motors, pumps, generators, compressors, conveyors,
shaping, cutting, drilling, and welding systems, robotic
systems, process instrumentation, sensors, and other com
ponents of industrial manufacturing facilities may be pro
tected by EASS embedded agents.

Banking and Financial Systems
EASS embedded agents may be included within auto

matic teller machines and other electronic payment systems
that enable automated transfer of funds, bank safes and safe
deposit box rooms, teller drawers, and in credit cards, debit
cards and similar devices that permit electronic or manual
financial transactions. The EASS server or servers may be
located within bank branch offices, in some cases, or may be
located in more central locations, such as regional or
national offices. Alternatively, EASS servers may be hier
archically organized, with lower-level EASS servers in
branch offices themselves hosting EASS embedded agents
authorized by higher-level EASS servers in regional or
national offices.
Building and Construction

15 Marine
EASS embedded agents may be included within ignition

systems of personal watercraft, boats, ships, submarines, and
other types of watercraft, as well as in mechanical compo
nents including fuel delivery components, engine

20 components, drive train components, and steering compo
nents. Additionally, audio and video components, GPS
systems, navigation systems, radar and sonar systems, and
other electronic devices installed in boats, ships,
submarines, and other types of watercraft may host EASS

25 embedded agents. The EASS server or servers may be
located within the watercraft, in some cases, or may be
located in one or more fixed locations, providing coverage
for a region in which the EASS embedded agents are meant
to be authorized.

EASS embedded agents may be included within security
systems that control access to buildings, that monitor the
interior and exterior environments of buildings, and that
provide warnings through various mechanisms and media.
Additionally, tools and equipment used to construct and
repair buildings may host EASS embedded agents, with
EASS servers located within the building, in some cases,
and in more centralized locations, in other cases. When
EASS servers are located in the building, authorization of an 35

EASS embedded agent may directly or indirectly depend on
the EASS embedded agent being located within the
building, or within some threshold distance from the build
ing.

30 Medical and Scientific
EASS embedded agents may be hosted by a wide variety

of scientific, technical, and medical instrumentation, includ
ing diagnostic equipment, measurement and monitoring
equipment, therapeutic devices, devices that dispense
medication, medical information storage systems, radiation
sources, and other such devices and systems.
Personal Identification

EASS embedded agents may be hosted by smart, elec
tronic passports, driver's licenses, and other personal iden-

40 tification documents and devices Computer Hardware and Peripheral Devices
Any computer component or peripheral device containing

an integrated circuit that is a part of or connected to a
computer, including personal digital assistants, hand held
devices, tablet and pen-based computers, laptops, desktops,
workstations, servers, mini-computers, and mainframes,
may be protected by one or more EASS embedded agents.
Consumer Electronics

Any consumer electronics device containing an integrated
circuit may be secured by hosting an EASS embedded agent.
Examples include audio and video equipment, photographic
equipment, appliances, and game devices.
Defense Systems, Weapons, and Armaments

Defense systems, weapons, and armaments represent an
especially suitable area for EASS-based security. EASS
embedded agents may be included in a wide range of
devices, including firearms, missiles, bombs, ordinance,
launching, targeting, tracking, and delivery systems,
armored vehicles, and other types of weapons systems.
Complex and fault-tolerant hierarchies and networks of
EASS servers may be employed to exert multi-tiered autho
rization control within regions, sub-regions, and local areas
of interest.
Energy

Security Systems
Standard, non-EASS security systems may be addition

ally secured via EASS embed agents and EASS servers,
including sensors, monitors, video equipment, alarm

45 systems, card keys, smart cards, retinal scanners, finger-print
identification systems, and other biometric devices. By
embedding EASS agents in such devices, and additional
level of security is obtained. As discussed above, EASS
security is different from such methods in that passwords

50 and keys are not exposed, and constant authorization is
required to maintain operability. Thus, EASS security may
complement other types of security mechanisms.
Telecommunications Equipment

EASS embedded agents may be hosted by any device
55 containing an integrated circuit that is used as part of a cable

or wireless telecommunication network to transmit audio,
video, and/or encoded data. For example, EASS embedded
agents may be hosted by cellular phones, personal digital
assistants, pagers, radios, high-end communications switch-

60 ing and distribution systems, video conferencing systems,
and broadcast facilities and equipment.

Power generation systems, fuel and energy storage and
dispensing facilities, oil refineries and gas distillation 65

facilities, and other energy-related devices and systems
represent an increasingly critical and valuable societal

Although the present invention has been described in
terms of preferred embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
skilled in the art, and in alternate scenarios as described
above. For example, while EASS embedded agents are

US 6,594,765 B2
35

preferably implemented as hardware circuitry, software
implementations could be devised to provide an EASS that
can be implemented on existing computers without special
ized circuitry built into device controller ASICs. As pointed
out above, the EASS client could possibly be omitted in 5

certain embodiments where it is possible to directly establish
communications between EASS embedded agents and
EASS servers. The method in which the EASS server stores
and manipulates stored authorization and embedded agent
information may differ widely in different embodiments. A 10

relational database, a fiat file, record-based database, or an
object-oriented database could be used to store the
information, and any number of hybrid systems can be
devised using combinations of these types of databases. The 15
handshake mechanism, the mechanism for announcing the
presence of embedded agents, and the mechanism for reini
tializing embedded agents can differ markedly in different
embodiments, as can the formats and contents of the mes
sages exchanged between EASS servers and EASS embed- 20

ded agents. Certain embodiments may allow a particular
EASS embedded agent to communicate with several EASS
servers in order to provide additional reliability or geo
graphical flexibility. An EASS server may be owned and
operated by an entity protecting its own, on-site computers 25

or machines, or an EASS server service may be provided by
specialized security providers over the Internet or other
communications media. In the above specification, simple
single or multiple EASS server and EASS embedded agent
applications are described, but a much more complex 30

network, or graph, of EASS servers may be implemented for
specialized applications. For example, EASS servers may be
hierarchically organized, with lower level EASS servers
authorizing subsets, perhaps overlapping with subsets au tho-

35
rized by other lower level EASS servers, while the low-level
EASS servers are themselves authorized by higher-level
EASS servers. Graph-like authorization networks may be
exploited to avoid single-point failure within such systems.
Any number of different types of devices can be controlled 40

by EASS embedded agents implemented either as hardware
circuitry within the devices, as specialized programs within
other programs that control the device, or implemented as
hardware/software hybrids. The present invention can be
applied not only to the problem of securing PCs and com- 45

ponents within PCs, but also to problems of fault tolerance,
adaptive systems, reconfiguration of systems, monitoring of
components within systems, and other similar systems or
environments.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough under
standing of the invention. However, it will be apparent to
one skilled in the art that the specific details are not required

50

in order to practice the invention. The foregoing descriptions 55
of specific embodiments of the present invention are pre
sented for purpose of illustration and description. They are
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Obviously many modifications and
variations are possible in view of the above teachings. The 60

embodiments are shown and described in order to best

36
What is claimed is:
1. A system for securing an automotive system, the system

comprising:

an automotive system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

2. The system of claim 1 wherein the automotive system
is one of:

an automobile;

a truck;

a fuel delivery component of an automobile;

an engine component of an automobile;

a drive train component of an automobile;

a steering component of an automobile;

an audio component of an automobile

a video component of an automobile; and

a GPS systems installed in an automobile.
3. A system for securing an aircraft system, the system

comprising:

an aircraft including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

4. The system of claim 3 wherein the aircraft system is
one of:

an airplane;

a helicopter;

an ignition system;

a fuel delivery component;

an engine component;

audio and video components;

an audio and video components;

a GPS system;

an avionics; and

a communications and navigation system.
5. A system for securing a banking system, the system

comprising:

a banking system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

explain the principles of the invention and its practical
applications, to thereby enable others skilled in the art to
best utilize the invention and various embodiments with
various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalents:

6. The system of claim 5 wherein the banking system is

65
one of:

an automatic teller machine;

a bank safe;

US 6,594,765 B2
37

a safe deposit box room;

a teller drawer;

38
together compose a handshake operation, authorizes
the embedded agent to enable operation of the subcom-

a credit card; and ponent.
a debit card. 12. The system of claim 11 wherein the consumer elec-
7. A system for securing a building system, the system

5
tronics device is one of:

comprising:

a building including a device;
an agent embedded in the device that, when authorized,

enables operation of the device and that, when not 10

authorized, disables operation of the device; and
a server coupled to the embedded agent that, by exchang

ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device. 15

8. The system of claim 3 wherein the building system is
one of:

a building;

a security system that controls access to a building;

a security system that monitors the interior environment
of a building;

a security system that monitors the exterior environment
of a building;

20

a security system within a building that provides warn- 25

ings; and

equipment used to construct and repair a building.
9. A system for securing a computer-related system, the

system comprising:
a computer-related system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

30

a server coupled to the embedded agent that, by exchang- 35

ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

10. The system of claim 9 wherein the computer-related
system the is one of:

a personal digital assistant;
a hand-held device;

a tablet-based computer;

a pen-based computer;

a laptop;

a desktop;
a workstation;

a server;

a mini-computer;
a mainframe;
a printer;
networking equipment, including a hub, a router, and a

concentrator;
a display device; and
an input device.
11. A system for securing a consumer electronics device,

the system comprising:
a consumer electronics device including a subcomponent;
an agent embedded in the subcomponent that, when

authorized, enables operation of the subcomponent and
that, when not authorized, disables operation of the
subcomponent; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that

40

45

50

55

60

65

an audio device;

a video device;

a photographic device;

a fax machine;

a copy machine;

an appliance, and

a game device.
13. A system for securing a weapons system, the system

comprising:

a weapons system, including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

14. The system of claim 13 wherein the weapons system
is one of:

a firearm;

a missile;

a bomb;

ordinance;

a launching system;

a tracking system;

a targeting system;

a weapons delivery system; and

an armored vehicle.
15. A system for securing an energy system, the system

comprising:

an energy system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

16. The system of claim 15 wherein the is one of:

a power generation system;

a fuel storage facility;

an energy storage facility;

a fuel dispensing facility;

an energy dispensing facility;

an oil refinery; and

a gas distillation facility.
17. A system for securing an entertainment-related

system, the system comprising:

an entertainment-related system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

US 6,594,765 B2
39

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

18. The system of claim 3 wherein the entertainment- 5

related system is one of:

a cable delivery system;
a satellite delivery system; and

a wireless delivery system.
10

19. A system for securing a manufacturing system, the
system comprising:

a manufacturing system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not 15

authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device. 20

20. The system of claim 19 wherein the manufacturing
system is one of:

a motor;

a pump;

a generator;

a compressor;

a conveyor;

a shaping system;
a cutting system;

a drilling system;

a welding system;

a robotic system;

a process instrument; and

a sensor.
21. A system for securing a marine system, the system

comprising:

a marine system including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

25

30

35

40

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that 45

together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

40
23. A system for securing medical equipment, the system

comprising:

medical equipment including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

24. The system of claim 23 wherein the medical equip-
ment is one of:

diagnostic equipment;

measurement equipment;

monitoring equipment;

therapeutic equipment;

medication dispensing equipment;

medical information storage equipment;

radiation source equipment; and

injectable or implantable electronic medical devices.

25. A system for securing a personal identification device,
the system comprising:

a personal identification device including a subcompo
nent;

an agent embedded in the subcomponent that, when
authorized, enables operation of the subcomponent and
that, when not authorized, disables operation of the
subcomponent; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the subcom
ponent.

26. The system of claim 3 wherein the personal identifi-
cation device is one of:

an electronic passport;

an electronic driver's license; and

an electronic personal identification document.

27. A system for securing a security device, the system 22. The system of claim 21 wherein the marine system is
one of:

a personal watercraft,
a boat;

comprising:
50

a ship;

a submarine;

an ignition system of a watercraft;

a fuel delivery component of a watercraft;

an engine component of a watercraft;

a drive train component of a watercraft;

a steering component of a watercraft;

an audio component of a watercraft;

a video component of a watercraft;
a GPS system of a watercraft;
a navigation system of a watercraft;
a radar system of a watercraft; and
a sonar system of a watercraft.

55

60

65

a security device including a subcomponent;

an agent embedded in the subcomponent that, when
authorized, enables operation of the subcomponent and
that, when not authorized, disables operation of the
subcomponent; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the subcom
ponent.

28. The system of claim 27 wherein the security device is
one of:

a sensor;

a monitor;

a video device;

US 6,594,765 B2

an alarm system;

a card key;

a smart card;

41

a retinal scanning device;

a finger-print identification device; and

an embedded agent security system server.

29. A system for securing a telecommunications network,
the system comprising:

5

42
a telecommunications network including a device;

an agent embedded in the device that, when authorized,
enables operation of the device and that, when not
authorized, disables operation of the device; and

a server coupled to the embedded agent that, by exchang
ing a number of messages with the embedded agent that
together compose a handshake operation, authorizes
the embedded agent to enable operation of the device.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,594,765 B2
DATED : July 15, 2003
INVENTOR(S) : Sherman et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 37,
Line 1, delete the numeral "3" and insert the numeral-- 7 --.

Column 39,
Line 1, delete the numeral "3" and insert the numeral-- 17 --.

Column 40,
Line 1, delete the numeral "3" and insert the numeral-- 25 --.

Signed and Sealed this

Twentieth Day of July, 2004

JONW.DUDAS
Acting Director of the United States Patent and Trademark Office

