
Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page2 of 21

(12) United States Patent
J enevein et ai.

(54) STORING A COMPUTER DISK IMAGE
WITHIN AN IMAGED PARTITION

(75) Inventors: Roy M. Jenevein, Austin, TX (US);
Heidi S. Kramer, Orem, UT (US);
Derrick S. Shadel, South Jordan, UT
(US); Andy V. Lawrence, Alpine, UT
(US); Val A. Arbon, Orem, UT (US)

(73) Assignee: PowerQuest Corporation, Orem, UT
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(21) Appl. No.: 09/532,223

(22) Filed: Mar. 22, 2000

Related U.S. Application Data
(60) Provisional application No. 60/188,671, filed on Mar. 11,

2000.

(51) Int. CI? ... G06F ll/OO
(52) U.S. CI. 714/6; 714/54; 711/162;

711/161
(58) Field of Search 714/3,5, 6, 8,

(56)

714/7,20,162,161; 707/204; 713/187,
189

References Cited

U.S. PATENT DOCUMENTS

5,418,918 A 5/1995 Vander Kamp et al. 395/375
5,537,540 A * 7/1996 Miller et al. 714/38
5,675,769 A 10/1997 Ruff et al. 395/497.04
5,706,472 A 1/1998 Ruff et al. 395/497.04
5,758,056 A * 5/1998 Barr 714/8
5,758,165 A 5/1998 Shuff 395/712
5,829,045 A 10/1998 Motoyama 711/162
5,852,713 A * 12/1998 Shannon 714/6
5,907,672 A * 5/1999 Matze et al. 714/7
5,930,831 A 7/1999 Marsh et al. 711/173
6,047,294 A * 4/2000 Deshayes et al. 707/204
6,115,705 A * 9/2000 Larson 707/3

111111 111
US006615365Bl

(10) Patent No.: US 6,615,365 Bl
Sep.2,2003 (45) Date of Patent:

6,151,685 A * 11/2000 Li et al. 714/6
6,195,695 B1 * 2/2001 Cheston et al. 709/221

OTHER PUBLICATIONS

Ron White, How Computers Work, Sep. 2001, Que, 6th
Edition, pp. 136-137.*
Patent Application PCT/US98/16992, publication No. WO
99/09513, Feb. 25, 1999.
Norton Ghost Competitive Matrix, no later than Jun. 4,
1999.
RapiDeploy from Altiris lets you sleep tonight, no later than
Jun.3, 1999.
"RapiDeploy", PC Magazine, May 4, 1999.

(List continued on next page.)

Primary Examiner-Nadeem Iqbal
Assistant Examiner-Tim M. Bonura
(74) Attorney, Agent, or Firm-Computer Law ++

(57) ABSTRACT

The invention provides systems and methods for storing and
recovering images in a computer partition, and more par­
ticularly to tools and techniques for placing and extracting
images to and from the same partition that is imaged. Both
a factory image and a user-update able image may be stored
on the same partition. Copies of a portion of the partition
data and/or the system data for the imaged partition can be
stored at a specified location within the imaged partition, in
a separate partition, or on a removable recovery medium,
thereby allowing images to be recovered after disruption of
the imaged partition's system data. The image may be stored
contiguously or non-contiguously. The image may also be
stored as a system file or as an image container which
comprises one or more than one image file. To speed
restoration time and to assist recovery, the image may be
stored at or near the end of the partition. Familiar or novel
image formats may be used. By storing one or more partition
images in the imaged partition, the invention eliminates
consumer confusion between bootable partition size and
disk size, without sacrificing the advantages provided by
imaging.

68 Claims, 5 Drawing Sheets

SYSTEM
DATA 102

'"'"
PARTITION 300 USER DATA

104 ---

IMAGE(S) 302
....

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page3 of 21

US 6,615,365 Bl
Page 2

OlliER PUBLICATIONS

"Performance Tests", PC Magazine, May 4, 1999.
"Drive Image 2.0", PC Magazine, May 4, 1999.
"ImageCast IC3", PC Magazine, May 4, 1999.
About Ghost, no later than Oct. 21, 1997.
Norton Ghost for NetWare: White Paper, no later than Aug.
10,1999.
Taking the tedium out of installs, Nov. 6, 1996.
GHOST Manual, pp. 1-4, 1997.
ShrinkWrap 2.1, no later than Jul. 30, 1998.
Power Quest Drive Image™ User Guide (entire manual),
Manual Edition 3, 1998-1999.
The UNIXTM Operating System, Apr. 29, 1997.
Hard Drive Management, Dec. 1996.
Installing NT to an NTFS partition larger than 4GB, no later
than May 17, 1999.

Review: DriveImage 2.0 DriveCopy 2.0, no later than Apr.
28,1999.

DiskClone, no later than May 6, 1999.
Partitioning, Apr. 15, 1999.

Lost&Found Product Information, no later than Apr. 30,
1999.

GHOST Software, no later than Apr. 29, 1999.
PowerQuest in OEM deal with WinBook, Aug. 11, 1998.

PartitionMagic 3.0 White Paper, no later than May 4, 1999.
Image-based Backup Versus File by File Backup, no later
than May 4, 1999.

Drive Image Version 2.0, Jul. 1998.

True Image Backup White Paper, no later than May 6,1999.

* cited by examiner

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page4 of 21

u.s. Patent

PARTITION 100

PARTITION 100

Sep.2,2003 Sheet 1 of 5

-<

SYSTEM
DATA 102

USER DATA
104

(PRIOR ART)

Fig. 1

SYSTEM
DATA 102

USER DATA
104 -

(PRIOR ART)

Fig. 2

SYSTEM
DATA 102

PARTITION 300 USER DATA
104

IMAGE(S) 302

Fig. 3

US 6,615,365 Bl

BACKUP ..
~ MEDIUM 106

BACKUP
MEDIUM 106

........

L....I

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page5 of 21

u.s. Patent

400~

FILE
SYSTEM
DATA 404

USER
SPACE
MANAGED
BY FILE
SYSTEM
414

-<

Sep.2,2003 Sheet 2 of 5

PARTITION TABLE 406

FILE ALLOCATION TABLE 410

ROOT DIRECTORY 412

USER FILES 416

FREE SPACE 418

USER IMAGE 420, 422

FACTORY IMAGE 420, 424

Fig. 4

l

r

US 6,615,365 Bl

SYSTEM
DATA 402

PARTITION
408, 300

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page6 of 21

u.s. Patent

500~

SYSTEM
FILES 504

/'

\.

Sep.2,2003 Sheet 3 of 5

PARTITION TABLE 506

MASTER FILE TABLE 510

LOG FILE 512

VOLUME FILE 514

ATTRIBUTE DEF'N TABLE 516

ROOT DIRECTORY 518

BITMAP FILE 520

BOOT FILE 522

BAD CLUSTER FILE 524

FILES 526

I APPLICATION PROGRAM 528

I USER DOCUMENT 530

I IMAGE FILE 420 l 532

I IMAGE CONTAINER 420 l 534

Fig. 5

1\

>--

US 6,615,365 Bl

f-S
D

YSTEM
ATA 502

PARTITION
508, 300

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page7 of 21

u.s. Patent Sep.2,2003 Sheet 4 of 5 US 6,615,365 Bl

COMPUTER SYSTEM 600

I PROCESSOR(S) 602 MEMORY 604

PERSISTENT STORAGE 606

I PARTITION TABLE 608

IMAGED PARTITION 610, 300

I USER DATA 614

I FILE SYSTEM DATA 616

IMAGE(S) 12.Q

END-USER
IMAGE 422

I PARTITION 612

I IMAGE CREATOR 618

I IMAGE LOCATOR 620

I IMAGE VERIFIER 622

I IMAGE RESTORER 624

Fig. 6

FACTORY
IMAGE 424

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page8 of 21

u.s. Patent Sep.2,2003 Sheet 5 of 5 US 6,615,365 Bl

H OBTAIN COpy OF AT LEAST SOME USER DATA 702 r---.

r----. CREATE IN-PARTITION IMAGE 704

I VERIFY DATA INTEGRITY 706 I

I
DETERMINE IMAGE STORAGE CHARACTERISTICS 708

I

I VACATE SPACE TO HOLD IMAGE 710 I

I
CREATE SUBDIRECTORY TO HOLD IMAGE 712

I

I COMPRESS, PACK AND/OR ENCRYPT DATA 714 I

I
PLACE IMAGE IN IMAGED PARTITION 716

I r----.

~ MAKE RECOVERY AID FOR LOCATING IMAGE(S) 718 ~
r--. UPDATE IN-PARTITION IMAGE 720

I VERIFY DATA INTEGRITY 722
I

I
STORE DATA IN IMAGE 724

I r---.

-4 LOCATE IMAGE(S) 726 ~
-. RESTORE FROM IN-PARTITION IMAGE 728

I SELECT IMAGE 730 I

I
VERIFY DATA INTEGRITY 732

I

I COpy DATA FROM IMAGE TO TARGET 734 I
I AVOID OVERWRITING IN-PARTITION IMAGE(S) 736

I
-----.

Fig. 7

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page9 of 21

US 6,615,365 B1
1

STORING A COMPUTER DISK IMAGE
WITHIN AN IMAGED PARTITION

RELATED APPLICATIONS

The present application claims priority to and incorpo­
rates by reference commonly owned U.S. provisional patent
application serial No. 60/188,671 filed Mar. 11, 2000.

FIELD OF THE INVENTION

2
storage devices and related concepts such as cylinders,
sectors, platters, tracks, heads, physical sector addresses,
and logical sector addresses are generally familiar in the art.
For instance, they are discussed in U.S. Pat. Nos. 5,675,769

5 and 5,706,472 assigned to PowerQuest Corporation, and
those discussions are incorporated herein by this reference.

An operating system manages access, not only to the
disks, but to other computer resources as well. Resources
typically managed by the operating system include one or

10 more disks and disk drives, memory (RAM and/or ROM),
microprocessors, and I/O devices such as a keyboard,
mouse, screen, printer, tape drive, modem, serial port, par­
allel port, or network port.

The present invention relates to storing and recovering
computer disk images in a computer partition. More
particularly, the invention provides tools and techniques for
placing images in the same partition that is being imaged,
and for extracting information from images stored in the 15

imaged partition, thereby allowing single large partitions to

Many disks mold the available space into one or more
partitions by using a partition table located on the disk. A
wide variety of partition types are used, and more partition
types will no doubt be defined over time. A partial list of
current partitions and their associated file systems is given in
U.S. patent application Ser. No. 08/834,004 and incorpo-

be used more effectively.

TECHNICAL BACKGROUND OF THE
INVENTION

Computers Generally

Computer hard disks and other computer storage devices
hold digital data which represents numbers, names, dates,
text, pictures, sounds and other information used by
businesses, individuals, government agencies, and others. To
help organize the data, and for technical reasons, many
computers divide the data into drives, partitions, directories,
and files. The terms "file" and "directory" are familiar to
most computer users, and most people agree on their mean­
ing even though the details of written definitions vary.

However, the terms "partition" and "drive" have different
meanings even when the context is limited to computers.
According to some definitions, a partition is necessarily
limited to one storage device, but a "file system" may
include one or more partitions, on one or more disks. Many
partitions reside on a single disk, but some approaches, such
as volume sets, stripe sets, mirror sets, and others, store a
single partition's data on more than one disk.

As used here, a "partition" is a region on one or more
storage devices which is (or can be) formatted to contain one

20 rated here by reference. The list includes a variety of 12-bit,
16-bit, and 32-bit FAT file systems and numerous other file
systems. Tools and techniques for manipulating FAT and
certain other partitions are described in U.S. Pat. Nos.
5,675,769 and 5,706,472 assigned to PowerQuest

25 Corporation, incorporated herein by this reference.

One partition table composition, denoted herein as the
"IBM-compatible" partition table, is found on the disks used
in many IBM® personal computers and IBM-compatible
computers (IBM is a registered trademark of International

30 Business Machines Corporation). Although IBM is not the
only present source of personal computers, server
computers, and computer operating systems and/or file
system software, the term "IBM-compatible" is widely used
in the industry to distinguish certain computer systems from

35 other computer systems such as Macintosh computer sys­
tems produced by Apple Computer (Macintosh is a market
of Apple Computer) and UNIX computer systems. IBM­
compatible partition tables may be used on a wide variety of
disks, with a variety of partition and file system types, in a

40 variety of ways.

As shown in U.S. Pat. Nos. 5,675,769 and 5,706,472, one
version of an IBM-compatible partition table includes an
Initial Program Loader ("IPL") identifier, four primary par-

45 tition identifiers, and a boot identifier. As also shown in those
patents, each partition identifier includes a boot indicator to
indicate whether the partition in question is bootable. At
most one of the partitions in the set of partitions defined by

or more files or directories. A partition may be empty. A
partition may also be in active use even without any
directories, file allocation tables, bitmaps, or similar file
system structures if it holds a stream or block of raw data.
Each formatted partition is tailored to a particular type of file
system, such as the Macintosh file system, SunOS file
system (a variant of the UNIX file system), Linux file system
(EXT2fs, a variant of the UNIX file system), Windows NT 50

File System ("NTFS"), NetWare file system, Linux file
system, or one of the MS-DOS/FAT file systems.
(MACINTOSH is a trademark of Apple Computer, Inc.;
SunOS is a trademark of Sun Microsystems, Inc.; WIN­
DOWS NT and MS-DOS are trademarks of Microsoft
Corporation; NETWARE is a trademark of Novell, Inc.;
LINUX is a mark of Linus Torvalds).

the partition table is bootable at any given time.
Each partition identifier also includes a starting address,

which is the physical sector address of the first sector in the
partition in question, and an ending address, which is the
physical sector address of the last sector in the partition. A
sector count holds the total number of disk sectors in the

55 partition. A boot sector address holds the logical sector
address corresponding to the physical starting address.

Some IBM-compatible computer systems allow "logical
partitions" as well as the primary partitions just described.
All logical partitions are contained within one primary

60 partition; a primary partition which contains logical parti­
tions is also known as an "extended partition."

Computers utilize a wide variety of storage devices as
storage media for user data. Storage technologies currently
provide removable optical, and magnetic disks, fixed and
removable hard disks, floppy disks, solid state storage
devices, and new storage technologies are continually being
actively researched and developed. Indeed, some storage
devices used by computers in the future may be cubical or
some other shape with no moving parts rather than flat and
circular, and in addition, storage devices which use com­
puter chips as storage media are being developed. Disks,

Each partition identifier also includes a system indicator.
The system indicator identifies the type of file system
contained in the partition, which in turn defines the physical

65 arrangement of data that is stored in the partition on the disk.
Values not recognized by a particular operating system are
treated as designating an unknown file system. The file

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page10 of 21

US 6,615,365 B1
3 4

restored, including all system and user data, including disk
partitions, operating systems information, user files, and
boot sector data. A sector-by-sector image preserves
optimizations, producing an exact image of the disk, with

system associated with a specific partltlon of the disk
determines the format in which data is stored in the partition,
namely, the physical arrangement of user data and of file
system structures in the portion of the disk that is delimited
by the starting address and the ending address of the
partition in question. At any given time, each partition thus
contains at most one type of file system.

5 the exception that some images do not contain data from
unallocated sectors.

Data Backup Approaches

The imaging approach facilitates sequential head moves
across the disk platters in so-called "elevator seeks", thereby
decreasing both the time needed to backup or restore entire

Many computers are sold with operating systems, appli­
cation programs, and other data already loaded on the disk.
Manufacturers and vendors of computers often would like to
provide users with a backup or image of the information they
originally loaded on a hard drive. Two basic approaches are
used in conventional systems and methods to backup com­
puter data. One approach is generally file-oriented, while the
other approach deals with files but operates primarily on
clusters, sectors, runs, or similar logical allocation units
which are smaller than files.

10 partitions and/or disks, and decreasing the chance of a head
crash. Imaging of the type shown in FIG. 2 can be performed
using the Drive Image product which is commercially
available from PowerQuest Corporation of Orem, Utah
(DRIVE IMAGE is a registered trademark of PowerQuest).

15 With either the file-oriented approach shown in FIG. 1 or
the sector imaging approach shown in FIG. 2, the backup
medium 106 may be a disk containing a target partition other
than the partition 100. The target partition mayor may not
be the partition 100; the partition 100 and the target partition

A file-oriented backup approach is illustrated in FIG. 1. A
partition 100 includes system data 102 and user data 104.
The system data 102 includes file system data such as sector

20 may be on the same disk, or they may be on two disks on the
same computer. The source and target computers may also
be connected by a network link, as when the target partition
is directly attached to a network server to receive backup
images of partitions 100 on clients of the server.

One backup method according to FIG. 2 involves two
partitions on a drive. The first partition is the source partition
100, which contains all the user programs and data 104,
while the target partition is separate partition 106 on the
same drive; the partition 106 often contains little or nothing

or cluster allocation maps or tables and directories. The
system data 102 also includes operating system data such as 25

partition tables and boot code. The user data 104 includes
data created by users, such as word processor or spreadsheet
files, as well as application programs, dynamic libraries, and
other data which is loaded by the vendor or system integrator
and organized in the partition by the file system structures. 30 more than an image of the first partition 100. For example,

a 10 GB hard drive might contain two partitions, namely, an
8 GB partition 100 with the system files and pre-installed
software and a 2 GB partition 106 that contains a disk image

As shown, this backup approach copies the user data 104 to
a backup medium 106, such as a ZIP disk (mark of Iomega),
a tape drive, a writable CD, a WORM drive, or a collection
of floppy disks.

With such a file-by-file backup, each file is backed up 35

separately, and can be recovered separately. This can be
advantageous. However, file-oriented approaches also have
some disadvantages. File-by-file backup programs access
the user data 104 through standard operating system and/or
file system routines, and they require that the operating 40

system and file system software be reinstalled prior to
system recovery. They may miss important files such as
registry or system configuration files, and they do not back

of the partition 100.
However, manufacturers are sometimes reluctant to

divide disk drives into more than one partition, because
some computer purchasers equate the size of their main
partition (for instance, the so-called "C: drive" on many
IBM-compatible computers) with the size of the entire disk.
If the primary partition on a new disk drive is substantially
smaller than the advertised disk size, purchasers may con-
clude that the disk drive itself is smaller than they requested.
In the example above, a user might erroneously conclude
that the computer came with an 8 GB drive rather than the
expected 10 GB drive, because the bootable partition 100
contains only 8 GB. This mistaken but understandable
conclusion leads to consumer dissatisfaction and increases
the vendor's support costs.

Another problem facing the computer user is how to

up data 104 from deleted files even if the sector(s) holding
the data have not been overwritten. In addition, a single file 45

may be stored in a series of clusters at locations scattered
across the disk. To restore such a file, the disk head must be
randomly positioned multiple times across the platter, which
increases restoration time and increases the chance of a disk
head crash. 50 acquire a fully functional backup of both system and user

data. Many critical system files, such as the registry files
which contain critical configuration information, are open
when a computer is running in the Microsoft Windows 95,
Windows 98, and Windows NT operating systems. Even if

FIG. 2 shows an imaging approach which also restores
files but deals primarily in clusters or another file allocation
unit which is typically smaller than a file. Unlike the
file-oriented backup shown in FIG. 1, the imaging backup
approach shown in FIG. 2 copies the entire disk state. An
image may be created on the backup medium 106 by reading
and writing each sector, in order, in one or more partitions
100 of a disk. Usually unallocated sectors are skipped.

55 an approach like that shown in FIG. 2 is used, these open
files cannot be successfully saved by standard backup soft­
ware. If a computer's hard disk crashes and all files must be
rebuilt, some user files 104 can be restored. But the oper­
ating system, device drivers, and perhaps even the backup This imaging approach can backup all data 102, 104,

including data in deleted files when that data has not been
overwritten, file system structures, operating system files,
device drivers, information about network cards and other
installed hardware, application programs, user-created files,
hidden files, and all other data 102, 104 stored in the selected
partition(s) 100. Some imaging approaches also copy par- 65

tition table information to the backup medium 106. When a
full disk image is restored, every byte of the original disk is

60 software itself, all must be reinstalled from some source
other than the image 106. Data files that were open when the
backup was made also would not be restored from the image
106.

Accordingly, it would be an advancement in the art to
provide improved data backup tools and techniques, includ­
ing tools and techniques for avoiding consumer confusion
about disk size while still providing backup images.

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page11 of 21

US 6,615,365 B1
5

Such improved tools and techniques are disclosed and
claimed herein.

BRIEF SUMMARY OF THE INVENTION

6
The image can be restored to a number of locations,

including target locations inside the same partition that
contains the image, another partition on the same machine,
another partition on a physically different machine (such as

5 over a network connection), or onto a removable medium. The present invention provides tools and techniques for
storing and retrieving data images of a partition within the
imaged partition. As used here, "in-partition images" are
images of a partition stored within the imaged partition. An
image created in the factory before delivery to the user (a
factory image) as well as one or more user-update able 10

images can be stored in the same partition. The in-partition
images themselves may be compressed, or not compressed,
packed or not packed, and/or encrypted or unencrypted. The
in-partition images may be stored as one or more files within
the file system, or as an image container. If the image file 15

would be larger than the maximum file size allowed for a
particular operating system, (often 2 GB) the image may be
divided into multiple files that together make up all or part
of the container. The image may also be divided into
multiple files to facilitate later transfer to multiple smaller 20

storage media, such as writable removable media. To speed
restoration time and to assist recovery, the image may be
stored contiguously at or near the end of the partition, but is
not restricted to either being contiguous or at the end of the
partition. For improved efficiency, the image file or image 25

container can be stored in a separate subdirectory of the
imaged partition.

In one embodiment, creation of an image within a parti­
tion creates an exact copy of the entire partition, including 30

deleted but not overwritten files. Each sector of the partition,

One or more files from the image can be individually
restored without restoring the entire image. Other features
and advantages of the present invention will become more
fully apparent through the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

To illustrate the manner in which the advantages and
features of the invention are obtained, a more particular
description of the invention will be given with reference to
the attached drawings. These drawings only illustrate
selected aspects of the invention and thus do not limit the
invention's scope. In the drawings:

FIG. 1 is a diagram illustrating a conventional file­
oriented backup approach which copies user data from a
partition to a different medium.

FIG. 2 is a diagram illustrating a conventional imaging
approach which copies user data and file system data from
a source partition to a different medium and/or a destination
partition.

FIG. 3 is a diagram illustrating an approach according to
the present invention, which copies user data and file system
data in at least one direction between an imaged partition
and an image stored in that partition.

FIG. 4 is a diagram illustrating an imaged partition which
uses a FAT file system and is configured according to the
invention.

in order, is read into the image. The image must be created
when the computer has been put into a state that allows
exclusive disk access. This prevents inconsistencies in the
data and helps ensure that system files such as the Microsoft
Windows registry are closed and thus can be imaged. When
the image is made of the partition, the image itself is not
imaged. However, user images may be incrementally
updated.

FIG. 5 is a diagram illustrating an imaged partition which
uses an NTFS file system and is configured according to the

35 invention.

FIG. 6 is a diagram illustrating a computer system accord­
ing to the invention.

FIG. 7 is a flowchart illustrating methods according to the
If more than one image is stored on a single partition, a

user can choose which image should be used to restore the
partition. If the disk or its partition is damaged, it may still

40 invention.

be possible to recover the imaged data. Copies of a portion
of the partition data and/or the system data sufficient to
recover the imaged partition can be stored at a specified 45

location within the imaged partition, within the image
container, in a separate diagnostic and recovery partition,
and/or on a removable recovery medium such as a ZIP drive,
a floppy disk, and so on. Which system files or other data
should be saved depends both on the operating system 50

involved and the nature of the image. Using the saved
system data, the image can then be located on the partition
and restored. The image files and/or image container may
also contain unique signature bytes to allow them to be
detected by scanning the storage medium. In this way, if the 55

disk or partition is damaged, the image may be discovered
and used to restore the partition.

In one embodiment the file system data is verified when

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention relates to computer systems,
methods, and configured storage media for storing images
onto an imaged partition and for later recovering the images,
that is, using them to restore imaged data. The invention is
illustrated generally in FIG. 3. Unlike the conventional
imaged partition 100 of FIG. 2, the novel imaged partition
300 includes one or more images 302 of data 102, 104 from
the imaged partition 300. The images 302 are created using
sector-by-sector or cluster-by-cluster imaging tools and
techniques, which may be those already known or those
hereafter developed. However, some embodiments allow
users to select specific subdirectories and/or specific files
when creating or restoring an image 302.

The problem of consumer confusion between the size of
a bootable partition and the size of a disk is avoided, because
a separate partition is not needed to hold the image. The it is used, such as before an image is created or updated, after

an image is created or updated, and when system data is
stored in a separate location such as in a recovery disk or in
a diagnostic and recovery partition. The consistency and
integrity of the image itself is also verified when used, such
as after it is created or updated, and before and after it has
been used to restore user data. This can be performed by way
of check codes such as checksums or CRC codes embedded
in the image files and/or the image container.

60 bootable partition seen by the user is substantially the same
size as the disk. A small separate partition may be used, in
some embodiments, to hold information used to locate the
image(s) in the imaged partition 300 after system data 102
is damaged. But even in this case consumer confusion is

65 unlikely because the difference in the size of the bootable
partition 300 with the separate partition and the size without
the separate partition is at most a few megabytes (minimum

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page12 of 21

US 6,615,365 B1
7 8

known at boot time. For instance, a Master Boot Record
("MBR") stored at a fixed location on the disk contains the
"bootstrap" program that initially gets the computer up and
running. System data 402, 502 may also be stored at

partition sizes are imposed by file system and other system
constraints). Thus, on a typical disk of gigabyte or greater
capacity the bootable partition 300 can be made sufficiently
close in size to the size of the entire disk to alleviate
consumer concerns.

Operating Systems and File Systems Generally

Each partition 300 resides on a computer using at least
one specific type of operating system, and each partition 300
may have its own type of file system. The present invention
is illustrated mainly by reference to MS-DOS or Windows
operating systems and FAT or Windows NT file systems.
However, those of skill in the art will appreciate that the
scope of the present invention comprises the creation and/or
use of images 302 stored in imaged partitions 300 using a
UNIX-like file system (namely, Linux, BSD, System V,
SunOS, and/or other UNIX file systems), or operating
systems and file systems of various other types.

5 locations which are not hard-wired. System data 402, 502,
whether hard-wired or not, are generally familiar in the art.
But the use and imaging of system data 402, 502 according
to the present invention are novel.

System data 402, 502 include both data 404, 504 which is
10 specific to a given file system and data such as the partition

table 406, 506 which is not file-system-specific. The parti­
tion table 406, 506 for a given computer may be stored
outside a given partition 408, 508. The file-system-specific
system data 404,504 are stored inside the partition 408, 508.

15 As noted above, the partition tables 406, 506 define the
partitions, while the file-system-specific system data 404,
504 define the files within the partition 408, 508.

To allow creation of an image 302, the operating system
must allow exclusive file access, or else be able to defer to 20

another operating system that itself allows exclusive file
access. This can be accomplished by an operating system
that maintains a single-threaded environment or by one that
provides filesystem locking and hence allows exclusive
access. For example, the MSDOS operating system provides 25

exclusive file access because it is a single-threaded
environment, at least from an application program's per­
spective. One could also use a Linux (or another UNIX-like)
operating system and utilize system locks to provide for
exclusive access. While the Windows (currently Windows 30

95, 98, NT and Windows 2000) operating systems are
multi-threaded, they can defer to MS-DOS, Linux or another
single-threaded environment. An implementing program
according to the invention can begin execution in these
multi-threaded environments and then pass control to a 35

portion that runs in DOS or Linux mode and thus provides
exclusive file access. Some operating systems also provide
locks that ensure exclusive file access, or provide exclusive
access at subsystem load time before caching and virtual
memory are enabled, so deferral to another (single-threaded) 40

operating system is not needed.

FAT and NTFS File System Examples

In the illustrated FAT configuration 400, the file system
data 404 includes at least a file allocation table 410 and a
root directory 412. The file allocation table 410 contains
entries for space which is allocated within a space 414
managed by the FAT file system; the file allocation table 410
entries specify which clusters are allocated to each file 416
in the managed space 414. The root directory 412 contains
entries that describe the names and hierarchical position of
file system directories, subdirectories, and files 416. The
files 416 may include executable files, user-created files,
special files used to run programs such as .dll files, sound
files such as .wav files, and so on. Storage space not
allocated to any file 416 is free space 418.

In the illustrated NTFS configuration 500, the file system
data includes several system files 504. The system files 504
(also called "metadata files") serve roles in conventional
systems that are well understood. However, one of the
differences between FAT and NTFS configurations deserves
repeating. As shown, FAT file systems make a strong dis-
tinction between a file system area 404 and a user data area
414. FAT file system structures, such as directories and disk
allocation structures, are stored in the system area 404 while
application programs, documents, and other user files are
stored in the user data area 414. By contrast, NTFS stores all
data in files, including not only user data such as application
programs 528 or user-generated documents 530 but also file

45 system data such as directories 518 and disk allocation
structures (also referred to as bitmaps) 520.

FIG. 4 illustrates a computer configuration, indicated
generally at 400, according to the present invention in a
computer utilizing a FAT file system. FAT file systems
include, without limitation, FAT-12, FAT-16, and FAT-32 file
systems which employ a file allocation table ("FAT"-hence
the name "FAT file system"). FAT file systems are well 50

known.

Some configurations may mix system data and user data
differently. In particular, some may blur the line between
system data and user data, and some may treat a given piece
of data as system data while others treat the same or
analogous data as user data. Even in the FAT and NTFS
configurations shown, classification problems may arise. For
instance, one might ask whether registry information and
system configuration information should be classified as

FIG. 5 illustrates a computer configuration, indicated
generally at 500, according to the present invention in a
computer utilizing an NTFS file system. Discussions of
NTFS are provided in "Inside the Windows NT File
System", by Helen Custer, ISBN 1-55615-660-X, as well as
in marketing and technical materials available in hard copy
and on the Internet from Microsoft Corporation and other
sources.

55 system data or user data. However, an image 420 generally
contains both system and user data rather than user data
alone, to reduce or avoid the need to reinstall system
information when recovering a partition with data from the

In the illustrated configurations 400, 500, and in other 60

configurations according to the invention, some locations on
disk are reserved in that they are used to control the basic
operation of the computer, as opposed to controlling a
specific application program or a specific operating system
library. These special locations store certain types of system 65

data 402, 502, and they are generally "hard-wired" into the
computer system, in the sense that their disk locations are

image.

Image Types

The images 420 used according to this invention may be
compressed, or not compressed, packed or not packed,
and/or encrypted or unencrypted. Compression modifies
system data 102 and/or user data 104 by replacing selected
data elements with more compact representations through
redundancy-removal techniques such as run-length

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page13 of 21

US 6,615,365 B1
9

encoding, data dictionary use, and the like. Packing removes
some or all of the unused space in file allocation units, such
as by omitting from an image 420 copies of entirely unused
sectors at the end of a cluster. Encryption modifies data in
order to keep the meaning of the data hidden from unau- 5

thorized persons. Those of skill in the computing arts
understand how to use familiar tools and techniques to
encrypt, compress, and/or pack an image 420 in the present
context.

The images 420 may also be stored contiguously or 10

non-contiguously. A contiguous image 420 is stored as a
single block of data. By knowing the location of the initial
sector and knowing either the length of the image 420 or the
marker that signals the end of the image 420, an implement­
ing program can read the entire image 420 by beginning at 15

the first location and then continuing to read each sector until
the end of the image 420. By contrast, a non-contiguous
image 420 is stored in at least two, and possibly many more
separate locations on the disk with non-image data and/or
free space located between the pieces of the image 420. If 20

the image 420 is stored as a non-contiguous file, then at least
a portion of the file system data must be accessed to read the
image 420 (although not necessarily by reading the same
copy of file system data that is used by the operating system
and applications during normal operation). The parts of the 25

non-continuous image file can be accessed in the event of a
file system failure. This access information can be provided
in a specified location within the imaged partition, in the
image container, or in a separate diagnostic and recovery
partition. 30

For convenience, this discussion generally speaks of an
image 420 which is stored in an imaged partition such as the
partition 408 or 508 on a disk. However, the partition in
question may hold several images 420. The partition and the
image(s) 420 may be stored on several disks through fault 35

tolerance measures. The storage medium may also be some­
thing other than a disk, such as a CD-ROM, chip memory,
or other computer storage medium, including media devel­
oped hereafter but configured or utilized according to the
present invention. 40

An image 420 may be either a user-generated image 422
or a factory-generated image 424. A user image 422 is an
image of a machine's partition(s) generated after the
machine has been delivered to the user. The user will often 45

have added user data 104 and system data 102 to data placed
on disk by the "factory" (i.e., by an OEM, system integrator,
reseller and/or corporate Information Technology depart­
ment or the like). For instance, the user may have installed
additional programs. The user may also have removed data 50

that was installed by the factory. Some embodiments of the
invention permit user images 422 to be incrementally
updated.

By contrast, a factory image 424 is an image of the data
created by the manufacturer or other vendor/provider. A 55

factory image 424 contains a copy of the machine's disk,
including all factory installed software and system files,
before the user starts to use the machine. Embodiments of
the invention do not generally support incremental updates
to a factory image. 60

An image 420 may be stored either as an image file 532
or within an image container 534. Containers 534 are used
because, in some environments, there is an upper limit on
file size which makes single files too small to hold desired
images. For example, in some FAT file systems files cannot 65

be larger than 2 GB. To store an image 420 that would be too
large for a single file, the image 420 is divided into two or

10
more pieces and each piece is stored in a file that does not
exceed the maximum file size. The files that hold the image
420 collectively form the container 534. A given container
may have no contiguity (noncontiguous files stored apart
from each other), partial contiguity (contiguous files stored
apart from each other), or full contiguity (contiguous files
stored next to each other). In addition, an image container
may contain more than one image. In one embodiment, the
image container includes image files and additional control
files; in other embodiments, image contents and control data
are not necessarily stored in separate files. Within the control
files are such things as an image Table of Contents (TOC),
check codes, a copy of system data for the partition, and
unique signature bytes for identification. If a container that
holds two or more images is partially corrupted, but an
image within the container is intact, then that image's
signatures and/or checksums can be used to locate the
image, to verify its intactness, and to allow restoration of the
image. This may be done despite serious damage to the
container holding the image and/or to other image(s) in the
container.

By way of example, some embodiments use the following
fully contiguous container format:
<End of Partition, End of Image Container>
File: toc_end.pqc

Beginning TOC signature
Container Signature bytes
Offset to beginning of container
Number of image directory entries
Offsets from beginning of file for each image directory

entry
Major/minor format (this is the container format ver­

sion X.Y)
Unique Partition Signature, checksum and size of con­

tainer
Directory entry for image 1

Image name
Offset to image (if image is in container)
Checksum of image
Size of Image
Size of image data
Copy of system data and retrieval information for

image (in case of partition damage or if image is
not in the container)

Creation date/time
Directory entry for image 2

Image name

Creation date/time
End TOC signature

File: filename1.pqi (or multiple files if necessary)
Image 1 Data (actual image file or files)

File: inter1.pqc (between each image, if three images, next
file would be inter2.pqc)
Inter-Image partial TOC (only a TOC entry for the next

image)
Inter Container Beginning PTOC Signature bytes

PTOC Contents ...
Directory entry for image 2

Directory contents (as in image 1 above)
Inter Container End PTOC Signature bytes

File:filename2.pqi (or multiple files if necessary)
Image 2 Data

File: toc_begin.pqc (redudant TOC, duplicate of End TOC)
Beginning TOC signature

TOC Contents ...

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page14 of 21

US 6,615,365 B1
11

End TOC signature
<Beginning of Image Container>

An image 420 may also be stored in a non-contiguous file
or container. In some embodiments the block size is equal to
or smaller than the smallest cluster expected. Generally 4K
should be considered the smallest cluster, even though in
some implementations, a cluster size as small as 2K may be
assumed. In some embodiments every block contains the
following header information:

the file ID or unique image identifier which identifies
which file the block belongs to

the sequential ID which identifies each block's sequence
number

the checksum which is used to verify the contents of the
block, and

the image data.
The various image 420 characteristics just described may

be combined in various ways. For instance, a FAT partition
may hold a factory image stored in a contiguous container
and an incremental user image stored in a non-contiguous
file; an NTFS partition may hold factory and user images
stored in contiguous and/or non-contiguous files and/or
containers; images may be stored in HPFS or Linux parti­
tions; and so on. Various internal container and file formats
may also be used, with or without various familiar elements
such as checksums, long file names, and the like.

One of the benefits of contiguity in images according to
the invention is that data can sometimes be recovered even
if there is a physical head crash. These crashes usually occur
in the early sectors of a drive where the FAT table and other
system data are often stored, while the image is stored in a
rarely accessed part of the partition which is less likely to be
damaged.

Another benefit is minimized data movement when the
image is restored. If the image 420 is placed at a known
location, such as the end of the partition 300, then even if
FAT, NTFS, or other system information is lost, recovery
may still be complete. The image 420 can be located by its
position (for example, at either the beginning or the end of
the partition 300), and if the image 420 hasn't been cor­
rupted or damaged, it can then be read to restore data that
would otherwise be lost.

Computer Systems Generally

FIG. 6 illustrates a computer system 600 according to the
present invention. The system 600 contains at least one
processor 602, internal memory 604 such as random access
memory (RAM), and persistent storage 606. Suitable gen­
eral or specific purpose processors 602, memories 604,
persistent storage media 606, and supporting circuitry (e.g.,
buses, clocks, I/O) and software (e.g., device drivers, file
systems, operating systems), including those commercially
available and those yet to be developed, may be configured
for in-partition images by persons of skill in the art accord­
ing to the teachings herein.

A partition table 608, such as an IBM-compatible parti­
tion table of the type noted in the Technical Background,
defines at least one partition 610 in the persistent storage
606. Other system data, such as boot record data, may also
be present. As used herein, "data" includes spreadsheets,
word processor output, graphics files, and other documents,
as well as executable instructions such as machine language,
microcode, assembly language instructions, portable byte
codes, job control language, scripts, interpretable source
code, object code, linked code, and/or combinations thereof.

The partition 610 will often be the only bootable primary
partition on the system 600, but in some embodiments boot

12
management software and multiple operating systems will
be present, allowing a user of the system 600 to choose
between several bootable partitions. In such cases, one or
more of the bootable partitions may be configured for

5 in-partition images according to the invention. It is possible,
but not necessary, for every primary or logical partition on
a given system to be configured with respective in-partition
images.

In some embodiments a relatively small diagnostic and
10 recovery partition 612 is also present and defined in the

partition table 608. As explained below, this diagnostic and
recovery partition 612 can be used for recovery if the imaged
primary partition 610 is damaged. Because disk crashes,
virus attacks, and similar trauma sometimes damage only

15 the system data in the bootable primary partition 610,
recovery can be facilitated by storing a copy of the system
data and location information for retrieval of images 420 in
the diagnostic and recovery partition 612.

The imaged partition 610 includes user data 614 and file
20 system data 616. If the imaged partition 610 is a FAT

partition as shown in FIG. 4, then the user data 614 and file
system data 616 are organized as FAT user data 416 and FAT
file system data 404. If the imaged partition 610 is an NTFS
partition as shown in FIG. 5, then the user data 614 and file

25 system data 616 are organized as NTFS user data 526 and
NTFS file system data 502. When other file systems are
used, the user data 614 and file system data 616 are
organized accordingly.

The imaged partition 610 also includes at least one image
30 420 containing a copy of at least some of the user data 614.

Note that even though the same data thus appears in at least
two places in the partition 610, the data 614 outside the
image 420 is directly usable by conventional operating
system and/or applications software while the copy in the

35 image 420 is not. User data 614 outside the image 420 is
directly accessible to the operating system or application
programs, through the file system, because it is stored in a
format assumed by that conventional operating system soft­
ware. By contrast, the copy within the image 420 is stored

40 by a program implementing the invention in an internal
format unknown to most or all file systems, operating
systems, and conventional applications. For instance, the
copy of user data inside the image will generally be
compressed, packed, and/or encrypted, making the data

45 unusable by most software until the implementing program
decompresses, unpacks, and/or decrypts the data, and lays it
back down in a conventional file system format.

Note that in some cases the only copy of particular user
data will be in the image 420. For instance, the following

50 sequence of events might occur. The vendor installs the
operating system and applications in the partition 610. The
vendor also creates an image 424 of the partition 610 and
stores the factory image 424 in the partition 610. The user
receives the system 600 and begins using it. Then some user

55 data 614 is lost through a virus attack, user error, overwriting
during installation of other software, or another event. At
this point, the only copy of the lost data in the partition 610
is the copy in the factory image 424. Similarly, the only copy
of certain user data at a given point in time might be the copy

60 in a user-generated image 422. In short, the images 420 are
not "in-partition images" simply because they are images of
some partition stored in some partition. Nor are they
in-partition images because they (may) contain a copy of
user data which is stored in standard file system format

65 elsewhere in the partition containing the image.
Rather, an image 420 is an in-partition image at least

because it contains user data which came, at some point in

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page15 of 21

US 6,615,365 B1
13

time, from the partition 300 that currently contains the image
420. In some embodiments, an in-partition image 420 is an
image which is created from a partition and then stored in
that partition without any intermediate storage in another
partition or on another persistent storage medium.

If there are two or more images 420 in the imaged
partition 610, then the images 420 may include a factory
image 424 and one or more end-user images 422. The
configuration with one end-user image 422 and one factory
image 424 shown in FIG. 6 is just one example of the many
possible embodiments.

Image Creator

The illustrated system 600 also includes an image creator
618. Image creation generally is well-known in the art, and
may be readily adapted for use with in-partition images
through application of the teachings presented herein. In one
embodiment, the image creator 618 initially creates each
image 420 but does not update previously created images
420. In another embodiment, the image creator 618 also
updates end-user images 422. A user-defined portion of the
image 422 can be selectively updated, or a predefined set of
user files within the image could be updated. The specific
system and user files to be updated could also be defined at
the factory when the update is automated, so that the
specified data is updated by imaging it after predefined
events and/or at predefined times.

14
(sector or cluster addresses) are embedded in the image 420
itself This embedding approach has the disadvantage that it
is not compatible with widely used image formats such as
the Power Quest Drive Image® image container format. Yet

5 another embodiment might place such retrieval information
in the diagnostic and recovery partition, a specific location
on the disk, or in the image container.

The images 420 may be stored in predefined locations
within the partition 300, with one preferred location being at

10 the end of the partition 300. If this location is used, the image
420 will be easier to find after a disk crash. For instance,
suppose the FAT or Master File Table has been badly
damaged, but the end of the partition 300 can be located, the
image 420 is stored contiguously at the end of the partition

15 300, and the front of the image 420 is marked with a
beginning signature value. Then the image 420 can be
located by searching backward from the end of the partition
until the front of the image 420 is located. If the partition
table 608 has been destroyed and the end of the partition 300

20 is thus unknown, the search can start at the end of the disk
or other storage device 606 and work backwards until the
front of the image 420 is located. The image 420 can then be
used to restore the lost partition 300, either to the same
storage device 606 if that device still functions, or to another

25 storage medium if necessary. The image could also be
placed in a image container and found by searching for the
container signatures.

In one embodiment, the image creator 618 creates only
factory images 424. In another embodiment, the image
creator 618 creates only end-user images 422. In other 30

embodiments, the same image creator 618 creates both
factory images 424 and end-user images 422.

Image Locator

Image 420 creation and image 420 location are closely
related. For convenience, FIG. 6 shows an image locator 620
separate from the image creator 618, but the creation and
location functions could be performed with overlapping or
interwoven code in a given implementing program. The The images 420 can be stored in various ways. For

instance, images 420 may be stored contiguously either as a
file with adj acent clusters or as a container whose multiple
contiguous files are stored adjacent to one another. Images
420 can also be stored non-contiguously, in the sense that the
file(s) used has non-adjacent clusters (or sectors) and/or in
the sense that image files in an image container are not
adjacent.

Sectors, clusters, and larger image 420 components may
be grouped in various ways. The image 420 may be stored
as a file, or in a container whose files have some common
characteristic such as an extension name or use of another
file naming convention. All components of an image could
also be stored in the same subdirectory.

If the image 420 is stored as a single contiguous block,
then care should be taken to prevent fragmentation by
utilities such as defragmentation tools and/or partition
manipulation tools. The image file(s) could fragment if a
utility attempts to place all of the free space in a contiguous
block. Some utilities will slice up one or more large image
files and place their pieces into the holes near one end of the
partition, particularly if the partition that holds the image
420 is resized smaller. If the image 420 is fragmented then
some implementing programs will report an error and fail
when data recovery using the image 420 is attempted. Other
implementing programs merely prefer contiguous images
420; although data recovery using the fragmented image 420
takes longer, it is still possible with such programs.

When images are fragmented, some mechanism must be
used to link the fragments together in the proper sequence.
This mechanism may include the file system data for the
image file(s) involved, and may include file naming con­
ventions for sequencing files in an image container. In
alternative embodiments, sequence numbers and/or pointers

35 image locator 620 is used to locate one or more images 420
for data recovery, image updating, image deletion, image
defragmentation, and similar operations pertinent to
in-partition images. If multiple images 420 are found, the
user can choose the image 420 desired, or the image 420 to

40 operate on can be automatically chosen by creation date,
name, or some other defining feature. For example, a par­
tition 300 may contain both a factory image 424 and an
end-user image 422. To restore data placed on the computer
600 after the purchase, the end-user image 422 would be

45 chosen (unless it is incremental with respect to the factory
image 424, in which case the factory image 424 would be
used first and then the incremental end-user image 422
would be used).

When the partition table 608 and/or the file system data
50 616 that would otherwise be used to locate an image 420

have been damaged, the image locator 620 can be used to
determine where the image 420 was stored within the
damaged partition 610. If the image 420 was not stored as
a contiguous image, recovery will be facilitated if a FAT

55 cluster chain or equivalent structure can be found (MFT runs
in NTFS or inode information in UNIX-like file systems); if
the image 420 was stored in a container then directory
information will also be used. As noted, the cluster chain and
directory information is normally stored in file system data,

60 but this retrieval information may be alternatively or addi­
tionally stored inside the image 420 itself if compatibility
with the existing Drive Image® format is not required. If
compatibility is required, this retrieval information may be
stored in the image container or the diagnostic and recovery

65 partition. If an image cannot be found or recovered, because
the media is irreparably damaged, because the user has
deleted the image file(s) intentionally or inadvertently, or for

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page16 of 21

US 6,615,365 B1
15

other reasons, then an error is returned, the user is informed,
and, in some implementations, the program exits.

One way to implement the image locator 620 is to store
portions of the system data in a known, fixed location within
the imaged partition 300. The copied system data can be
located, after the normal system data has been lost, by
moving the disk head to the fixed location in question. This
location would normally be marked as system, hidden, and
read-only so it is not easily accessible to the end-user and is
not easily deleted or overwritten. Another implementation
stores the system data needed for image recovery outside the
imaged partition 300 in a diagnostic and recovery partition
612. Yet another implementation, or a system that could also
use one of the approaches already mentioned, backs up the
necessary system data as recovery information onto a
removable medium, such as a Zip drive, a Jaz drive, a
WORM drive, a floppy (or floppies), a tape drive, and so on.

In short, the system 600 saves necessary system data such

16
components, functions of the image verifier 622 could be
performed in a given implementing program with code that
overlaps or is interwoven with the code for other
components, such as the image creator 618, image locator

5 620, or image restorer 624.

The image verifier 622 may also check the integrity of the
contents of an image file by utilizing error checking tech­
niques such as checksums, cyclic redundancy checks or
other means known to the art. If errors or other exceptional

10 conditions are detected by the image verifier 622 in any of
its verifications, then appropriate measures are taken. If an
error is discovered the verifier 622 may simply report the
error, may attempt to fix the error by itself, or may attempt
to use the image locator 620 and/or image restorer 624 to fix

15 the error. In the case of a fatal error, conditions on the disk
606 that were changed by the implementing program are
restored to the extent possible, a message may be passed to
the end user (before or after the conditions are restored), and

as the partition table, boot record, root directory, and file
allocation table (for FAT systems), Master File Table entries 20

(for NTFS systems), boot block, super block, bitmap and
inode information (for UNIX-like systems) or equivalent
structures in other file systems. Thus, the system 600 is able

the implementing program is terminated.

When a diagnostic and recovery partition is used to store
system data and image location retrieval information, in the
event of disruption of the system and/or partition files, then
during the startup routine the location of the factory and
end-user in-partition images should be verified, and fixed if
necessary, within the diagnostic and recovery partition. The
partition and/or its images could have been moved or resized

to restore a desired image 420 when the partition table is
damaged, when the boot record is damaged, when the file 25

allocation table is damaged, when the Master File Table is
damaged, when the boot block, superblock, bitmap or inode
information is damaged and when equivalent structures in
other file systems are damaged. Sometimes an image cannot
be found, because of damaged media or for other reasons, 30

even using all of the backup procedures. In this case, an error

or otherwise altered by a partition-manipulating tool. In such
a situation, the diagnostic and recovery partition should be
updated as soon as possible, such as at system boot or
start-up time.

is returned, the user is informed, and the program exits.

Image Verifier

An image verifier 622 confirms that the image 420 has not
been corrupted. In many embodiments, great care is taken by
the image verifier 622 to detect inconsistencies in the file
system data 616 before an image 420 is created or updated,
in the file system data 616 after an image 420 is created or
updated, in the image 420 itself after it is created or updated,
and in the image 420 before and after it has been used to
restore user data.

Images 420 may be modified in various ways, so the
image verifier 622 should perform checks at each point
where a critical assumption about the file system and/or
image data might be incorrect. For instance, the user may
create and restore an image 420 using various products,
including the PowerQuest® Drive Image® product. If the
image 420 is stored as a file accessible through the file
system, the image 420 may be moved. A partition 300
holding one or more inpartition images may be resized or
moved, thereby moving or fragmenting the image(s). In such
cases, the software implementing in-partition images must
be notified of the changes or must itself detect them.

The specific tests performed by the image verifier 622
depend in part on which file system is associated with the
partition 300. Thus, for a FAT file system, integrity is tested
by searching for lost clusters, illegal values in the boot
sector, or inconsistencies between copies of the file alloca­
tion table (if multiple copies are present). In general, the
image verifier 622 includes checks such as those made by
the well-known utilities CHKDSK and SCANDISK, as well
as checks on images such as those made by PowerQuest
Drive Image® or other imaging tools. The image verifier
622 may also check for image 420 fragmentation and/or
movement. As with the other implementing program

Image Restorer

The illustrated system 600 also includes an image restorer
35 624 which uses a selected image 420 to restore the partition

610 to the state it was in when the image 420 was created.
In some implementations, the image restorer 624 will restore
the user data to target locations inside the same partition 610
that contains the image 420. In other implementations, the

40 image restorer 624 is able to restore the image 420 to another
location, such as another partition on the same machine,
another partition on a physically different machine (e.g.,
over a network connection), or a removable medium.

If a single partition 300 which stores images 420 as files
45 contains both a factory image 424 and a user image 422,

when the image restorer 624 restores the factory image 424
it will typically overwrite the user image 422. The user
image 422 was not on the partition 300 when the factory
image 424 was created, and so the user image 422 will not

50 be restored. On the other hand, if the user image 422 was
made while the partition 300 contained the factory image
424 then a restoration from the user image 422 it will not
lose the contents of the factory image 424. An image that is
stored in the partition may be overwritten during a restore to

55 the partition. If the image is not part of the image being
restored, an option must be chosen as to retain the image or
not. The default should be to retain the image. If the image
is retained, the directory and allocation information must be
modified after the image is restored so that it remains

60 allocated and in the file system directory structure. An image
that is stored in the partition may be included in an image
being made of the partition if the image is not in a container.

As noted above, when the system data such as system data
402, 502 has been damaged, the image locator 620 and the

65 image restorer 624 can cooperate to locate and restore an
image 420 from an image file or container 420. The image
locator 620 finds the location of the image 420 within the

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page17 of 21

US 6,615,365 B1
17

partition 300, and the image restorer 624 uses the image 420
to restore the imaged data back onto the partition 300.

Methods Generally

18
image 420 to avoid laying down a corrupt image during a
restoring step 728.

The determining step 708 determines image storage char­
acteristics. The determination may be implicit by virtue of

FIG. 7 illustrates methods of the present invention utiliz­
ing images 420 of an imaged partition 300 within that
partition 300. Aspects of these methods have already been
discussed in connection with the system 600. Unless clearly
indicated otherwise, the discussion of these methods applies
to systems, storage media, and signals according to the
invention, and the discussions of systems, storage media,
and signals also apply to the inventive methods.

5 being hard-coded in the implementing program, or it may be
explicit by virtue of being subject to a configuration file, user
selection, or other parameter. The storage characteristics
determined include whether storage is in an image file 532
or an image container 534, whether the image 420 is a

10 factory image 424 or a user image 422, and the degree of
contiguousness within the image 420.

If the image 420 is stored at the end of a partition, the
vacating step 710 relocates allocated sectors or clusters to
make room for the image 420. If the image is being placed

During an obtaining step 702, an implementing program
obtains a copy of user data which is stored in the partition
300. This may include all of the user data 614 or it may
include selected user data, such as selected files and/or
subdirectories. Familiar file and subdirectory selection tools
and techniques such as wild cards, dialog boxes, and the like
may be used. The obtaining step 702 may read user data
directly from the partition 300, using standard file system
file-oriented calls or (preferably) lower level sector/cluster­
oriented routines. Tools and techniques for accessing user
data without going through the file system are well known

15 in an image container, the container contents may need to be
moved and/or modified. As noted, this space may be located
at one end of the partition to aid the image locator 620. If file
system data is kept at one end of the partition, as in FAT
partitions, then the image(s) 420 are placed at the opposite

20 end of the partition. Tools and techniques for relocating
portions of a file without destroying user data are known in
the art.

in the art. Instead of reading user data from locations 25

organized by the file system, the obtaining step 702 may read
a copy of user data from a previously created image 420 of
the partition 300. For instance, one could select an image,
identify files or subdirectories that were stored in that image
but will not be stored in a new image, and then create the 30

new image.
During a creating step 704, the system creates an

in-partition image 420 by at least storing a copy of at least
a portion of the user data from the partition 300 in at least
one image 420 in the same partition 300. The storing step 35

within the creating step 704 includes at least an explicit
placing step 716 and an implicit or explicit determining step
708, and optionally includes one or more of a verifying step
706, a vacating step 710, a subdirectory creating step 712,
and a data preparing step 714. Which steps are required 40

depends on the appended claims, as they are understood by
those of skill in the art. It will also be appreciated that these
steps, like others described herein, may generally be per­
formed in various orders or concurrently, may be repeated,
and may be renamed or grouped differently in different 45

embodiments. Each of these steps will now be discussed in
turn.

The subdirectory creating step creates a system and/or
hidden subdirectory dedicated to holding image(s) 420 or
the image container 534 and having a special name readily
identified by the implementing program. Placing all images
420 in such a subdirectory makes it easier during step 736
to avoid overwriting the image(s) 420 which are stored in the
partition 300 when the data from an image 420 is laid down
on top of existing partition 300 contents during the restoring
step 728.

The data preparing step 714 compresses, packs, and/or
encrypts the user data which is being imaged. These actions
are discussed above in connection with the image creator
618.

The placing step 716 places the user data in the image,
with the determined characteristics, in the vacated space
and/or hidden subdirectory, after verification and data prep a -
ration. The specific act of creating an image 420 may be
done with familiar tools and techniques, but the use of those
tools and techniques for in-partition images is novel.

The image 420 must be created when the computer has
been put into a state that allows exclusive disk 606 access.
This prevents inconsistencies in the data (modification dur­
ing the imaging process) and helps ensure that system
information such as the Microsoft Windows registry are
closed (or inaccessible to any other process, for example if
running under a variant of the UNIX operating system) and

The verifying step 706 verifies the integrity of the file
system data which organizes the user data being placed in
the image 420. Note that FIG. 7 shows two additional
verifying steps, identified as 722 and 732. The three veri­
fying steps perform the same general task, which is to detect
inconsistencies in the data on which the system 600 relies
and correct them or otherwise prevent image utilization
based on the inconsistencies. Each of the verifying steps
706, 722, 732 may use routines or data structures in the
image verifier 622 that are also used by one or both of the
other verifying steps.

50 so can be imaged. Some operating systems provide a lock
guaranteeing exclusive disk 606 access. On some systems,
the implementing program can be run after rebooting to a
single-threaded operating system such as MS-DOS. On
Systems running Windows NT or Windows 2000, the imp le-

55 menting program can be run at subsystem load time before
virtual memory and multiprocessing subsystems are run­
ning. On systems running a variant of UNIX, the imple­
menting program can be run in single user (root only login)
mode. However, the type of data being verified depends on the

context. Thus, the verifying step 706 verifies file system data 60

616 to avoid creation of a corrupt image during image
creating step 704. The verifying step 722 verifies both file
system data 616 and the contents of an image 420 to avoid
corruption of the image during an image updating step 720;
the inputs to the update include both the current version of 65

the image 420 and the user data organized by the file system
data 616. The verifying step 732 verifies the contents of an

A recovery aid making step 718 creates a copy of neces­
sary portions of system data on a removable or other
medium which can then be used by the image locator 620 as
discussed above to locate the image(s) 420 if some or all of
the system data is lost. The recovery aid medium could be
a diskette, a writable CD, a Zip drive, a tape drive, a remote
or alternate disk, or another medium which does not contain
the partition 300 that holds the day-to-day working copy of

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page18 of 21

US 6,615,365 B1
19 20

Additional Implementation Notes
Image Creation

One embodiment of the invention creates and writes
images to a contiguous file in the PowerQuest image con-

the system data. Note that a recovery aid such as a "rescue
diskette" does not itself necessarily contain any images 420.
Rather, it assists the system 600 in locating in-partition
images 420 located on some medium other than the recovery
aid medium. S tainer format and places the image container 534 at one end

of the partition 300. The Power Quest Drive Image® utility
also uses this image container format. The .pqi and .pqc files
forming the image container 534 may reside in a subdirec-

The recovery aid should hold a subset of the partition
system data that allows the image 420 stored within the
partition 300 to be recovered. Which system files or other
data should be saved on the recovery aid depends both on the
file system involved and the nature of the image 420. For 10

instance, if the image 420 is stored in a non-contiguous file
and the file system environment is FAT 12, FAT16 or FAT32,
then copies of the MBR, boot sector(s) and extensions, FAT
and the root directory of the partition 300 should be stored
on the recovery aid medium. If some other file system is
used, then the equivalent of these file system structures 15

should be stored. If the image 420 is stored in a contiguous
file, then the boot sector (and its offset from the beginning
of the drive), and root directory (and its offset from the
beginning of the partition) of the partition 300 or equivalent
system data should be stored. If the image 420 is stored 20

contiguously at the end of the partition 300 then only enough
information to locate the partition 300 end is stored. If the
image 420 is stored non-contiguously then the method used
to store the image 420 should be known to the program that
reads the recovery aid copy of the system data. This method 25

may be similar to that used in a FAT table, or it may be a size
and a list of offsets, or some other method might be used to
link the non-contiguous pieces of the image 420. As an
alternative, block sequence numbers along with unique
image signature can be placed in the image file(s). The 30

recovery process would then link up all blocks of the image
420 in sequence order to regenerate a complete image.

During the updating image step 720, an image 420
previously created can be updated to reflect changes such as
changes in the user data (content and/or placement), the 35

partition 300 size, and changes in system data (content
and/or placement). In some implementations, a portion of an
image 420 may be updated, with the user selecting which
files or subdirectories to update, or a predefined list of data
may automatically be selected for updating. In other 40

implementations, the entire partition 300 is automatically
copied over the image 420 being updated.

During the verifying step 722 the reliability of the data to
be imaged is checked. The image 420 being updated may be
verified at least before the update, after the update, or at both 45

times. Likewise, the other verifying steps may be performed
before, after, or both before and after the image utilizing
steps 716 and 734.

Alocating step 726 locates one or more images 420 which
may subsequently be updated during step 720 or used for 50

restoration during step 728. Image 420 location was dis­
cussed above in connection with the image locator 620.

An image 420 is restored during the restoring step 728. If
multiple images 420 of the partition 300 are stored in the
partition 300, the implementing program or a user selects a 55

particular image 420 to be restored during a selecting step
730. For instance, the most recent user-generated image 422
could be the default selection when several images 420 are
present. The verifying step 732 proceeds as discussed above.

The copying step 734 proceeds generally as in standard 60

image restoration tools, so restoring the image will also
restore any damaged system files, lost device drivers, and
like data which is not protected by the approach illustrated
in FIG. 1. In some embodiments the copying step 734 is
coordinated with an avoiding step 736 to prevent image 65

restoration from overwriting images 420 stored in the target
partition 300.

tory which is marked with the system, hidden, and read-only
directory attributes. This helps prevent image files and
image containers from accidentally being modified by the
user.

A factory image 424 will normally be created by the
vendor at about the same time the original operating system
and disk are installed in the computer. A factory image
usually cannot be updated by the user, but some embodi-
ments allow factory image updates.

When creating or updating an image 420 the storage size
of the completed image 420 is first estimated. In one
implementation, a bitmap which tells the state of each
cluster (including at least an indication of whether a given
cluster is in use) is created using the file allocation table or
its equivalent. The number of used clusters is then multiplied
by the cluster size to approximate the image 420 size. If
compression is to be used, then conservative compression
estimates should also be considered during the estimation.
Methods of creating a bitmap of used sectors or clusters are
known by those of skill in the art; if the NTFS file system
is being used, the existing bitmap 520 can be used.

The estimated space needed for the image 420 at the end
of the partition 300 is then vacated to make enough room for
the image 420 to be stored contiguously. The image 420 will
often be larger than the maximum file size, which is 2 GB
on many systems 600. Accordingly, an image container 420
is used to hold the image contents.

In one implementation, the container includes a first file
named filename.pqi, with "filename" specified by the user,
and subsequent files in the container 534 have sequential
numbers for the extension, with the same filename. For
instance, if the user named the image 420 "MyImage" and
three files were needed to store the image 420, then the files
in the container would be named MyImage.pqi,
MyImage.OOl, and MyImage.002. Other naming conven­
tions may also be used. In addition, the container may
include some control files to aid in recovery consisting of
toc_begin.pqc, image files, inter<n>.pqc files between
image files, and a toc_end.pqc file at the end of the
container. The contents of these files have been discussed
above.

When a subdirectory dedicated to images 420 does not
exist, one is made using standard file system directory
creation and attribute-setting calls, or their equivalent in
terms of direct manipulation of file system data. If space for
the dedicated subdirectory is not at the end of the partition
300, then the data stored there can be vacated to make room
for the subdirectory of images 420. Alternatively, if enough
contiguous space is not available, the user may be informed
that there is insufficient space and the program exits or the
image 420 is stored non-contiguously.

The bitmap generation is modified to exclude both the
image 420 that will be created and its file structure, as the
image 420 is generally not stored within itself. If the NT file
system or another file system that provides a bitmap auto­
matically is being used, the copy of the bitmap file 520 is
altered. Depending on how the image 420 is stored, this may
involve including or excluding a single file (if the image 420
is stored in a single file), an entire subdirectory (if the image

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page19 of 21

US 6,615,365 B1
21

420 is stored in a single subdirectory), or a list of files (if the
image 420 is stored as a series of files in a container). The
modified bitmap indicates which clusters or sectors are free
and which are allocated in the partition 300 outside of the
image 420. The image files themselves are listed as unallo- 5

cated space to avoid imaging them.
After creation of an image 420, directory entries in the

root directory or equivalent file system structure should be
updated to reflect the new image 420 including the image's
file(s) and/or subdirectory. The FAT 410 or equivalent struc- 10

ture is also updated.

22
Once the location of the image 420 is known, the data

integrity should be verified; if problems are discovered, then
the user is notified, and the process will end. Otherwise, one
implementation then compares a bitmap stored in the image
420 with the bitmap that contains the .pqi files to ensure that
the restore operation will not overwrite the existing image
(.pqi) files. One implementation saves in memory all image
file system information, such as cluster chains and directory
entries, and then adds that file system information to the
restored image, thereby ensuring that the image(s) are
known to the file system in the partition 300 after the restore.
The size of the current partition 300 is checked to ensure that
it is large enough to hold the restored image 420. If the
partition 300 is too small, the restore should not be per-

To optimize disk head movement, image files can be
allocated in reverse cluster order based on reasonable block
size. All cluster allocations should, if possible, be made in
memory so the FAT 410 or equivalent structure(s) can be
flushed to disk 606 after the image has been built. Internal
storage of block location varies by implementation, but
locations may be stored in the bitmap or in a run list.

15 formed.

Image Restoration
To begin restoration, one implementing program checks 20

to see if the system 600 is bootable, by virtue of a bootable
hard drive partition, a bootable floppy, or downloadable
operating system available over a network, for instance. If it
is, the implementing program tries to locate (image locator
620) at least one image 420. If no image 420 is found, the 25

program returns an error. If more than one image 420 is
found, the program returns the names of all images. All
operations should be designed to be halted between any of
the steps without causing damage to the image 420.

If the system is not bootable from a bootable hard drive 30

partition, then the restoration involves booting from a rescue
diskette that contains the boot files and a recovery applica­
tion. If critical system data is intact, then image recovery
proceeds. Critical system data generally includes the parti­
tion table, the boot record, the FAT or equivalent, and the 35

directory.
A more difficult situation exists when the system data on

the persistent storage 606 is damaged. This occurs when the
partition table is damaged, the boot record is damaged, the
drive has been reformatted, the FAT is damaged, and/or the 40

root directory is damaged. One implementation recovers
data by enabling a key instruction sequence at start-up that
will look for a boot-up sequence to automatically boot the
machine and start the recovery process. For this to occur, the
"rescue diskette" executable code and the restore application 45

should previously have been placed at a known location on
the partition 606.

Another method for catastrophic disk recovery is to place
key partition files such as image file names, locations, and
other key information in a diagnostic and recovery partition 50

612. This diagnostic and recovery partition 612 may be a
"one cylinder" primary partition which contains the file
names, run lists, checksums, cluster run information, and
other information required for recovery. If diagnostic and
recovery partition 612 is used, a check should be performed 55

(when booting or otherwise) to ensure that the image loca­
tions are synchronized with the diagnostic and recovery
partition 612 information. Furthermore, checksum informa­
tion should be stored in the .pqi file(s) for verification during
disaster recovery. Using this method, images 420 can be 60

restored even after a partition table has been modified with
the FDISK tool, and even when partition system information
stored in the partition table, the boot record, the FAT or
Master File Table, and/or the root directory has been dam­
aged. Of course, physical damage to the storage medium 606 65

itself may prevent recovery even when the diagnostic and
recovery partition 612 is used.

Next, the image 420 is used to restore the original
partition information. The image 420 itself is not stored
within the image 420, and so the copy of the image 420 on
the medium 606 should be protected as discussed above
while the image contents are being written to that medium
606 outside the on-disk image file or image container. The
position of the image (.pqi) file(s) should be checked. If the
image 420 is not contiguous and at the end of the partition
300, then the image may be moved to that contiguous
location before the restore begins. If both a user image 422
and a factory image 424 exist, the factory image 424 may be
the last one in the partition 300.

If the image 420 is stored in a contiguous file or container,
then the factory image 424 may be created as a "master"
image on a smaller drive and then cloned to a larger drive.
For example, the image 420 may be created on a 4 Gb drive
and then be cloned to a 20 Gb drive. The cloned image 420
in the larger, cloned partition will not necessarily be at the
end of the partition. In some implementations, the cloned
image 420 is then moved to the end of the partition; in others
it is left in its original location.

If the image 420 is at the physical end of the drive 606 and
is stored either as a file or as a series of files in a container,
then at least some hardware disk replicators will duplicate
the entire drive 606. If this is not desired, the image 420 can
be stored closer to the front of the drive 606.

One implementation places the contiguous image at the
end of the partition. This location is then marked. The
implementation also creates a separate partition 612 which
contains access and validity information for the image(s).
For instance, this partition 612 may contain a file index
giving the name(s) of the image file(s) and their physical
location(s) on the disk, and the information as defined in the
container file for signatures and checksums. Placing the
image 420 as a contiguous block at the end of the partition
300 offers some protection in the event of a head crash, as
crashes more commonly occur at the beginning of a parti­
tion. Likewise, a head crash is less likely to damage data in
the partition 612 because the head is less frequently over that
data.

A disadvantage is that the partition 612 counts as one of
the four permitted primary partitions. This is an issue if the
user wants to create multiple bootable partitions and reaches
the four partition limit. For example, this may be an issue
with LINUX and its use of swap partitions. However, to
ameliorate this problem, LINUX (and other operating sys­
tems such as Windows NT) can boot from an extended
partition.

An image 420 can be written as one or more files utilizing
the file system structures. Thus, writing the image 420 to
disk and allocating space for it is handled by the file system.
If the file is fragmented, even if marked hidden/system, the

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page20 of 21

US 6,615,365 B1
23

file system itself handles all implementation details. It may
be more difficult to recover the image 420 if the file system
data is damaged, but this problem can be avoided by using

24
a processor, a volatile memory in operable connection

with the processor, and a persistent storage medium
accessible to the processor;

a recovery aid, as discussed above. Extra care must also be
taken to modify the imaging process so the image file itself 5

is not imaged. Also, confusion may arise during recovery
because of the existence of extraneous "old" blocks of data

a partition stored in the persistent storage;
user data stored in the partition;
file system data stored in the partition; and
at least one image which contains a copy of at least a

portion of the user data, the image also being stored in
the partition.

on the disk that previously belonged to other, currently
invalid images, so care must be taken to ensure that the
clusters read belong to the correct image. This is possible if 10

the header information discussed above is implemented
within the blocks.

2. The system of claim 1, wherein the partition is defined
by an IBM-compatible partition table.

3. The system of claim 1, wherein the image also contains
a copy of at least a portion of the system data.

SUMMARY

In summary, the present invention provides systems and
methods for using an image of a partition within the partition
being imaged. The image contents can be recovered in at
least most cases even if the system files such as the File
Allocation Table, NTFS run information, or UNIX inode
information is lost through a drive failure, virus attack, user
error, or other event.

Articles of manufacture within the scope of the present
invention include a computer-readable storage medium in
combination with the specific physical configuration of a
substrate of the computer-readable storage medium. The
substrate configuration represents data and instructions
which cause the computers to operate in a specific and
predefined manner as described herein. Suitable storage
devices include floppy disks, hard disks, tape, CD-ROMs,
DVD devices, RAM, and other media readable by one or
more of the computers. Each such medium tangibly embod­
ies a program, functions, and/or instructions that are execut­
able by the machines to perform imaging and image usage
steps with images that have been or are being stored in the
imaged partition, substantially as described herein.

Although particular methods and embodying the present
invention are expressly illustrated and described herein, it
will be appreciated that system and configured storage
medium embodiments may be formed according to the
methods of the present invention. Unless otherwise
expressly indicted, the descriptions herein of methods of the
present invention therefore extend to corresponding systems
and configured storage media, and the descriptions of sys­
tems and configured storage media of the present invention
extend likewise to corresponding methods.

In addition, the method steps discussed may be performed
in various orders, except in those cases in which the results

4. The system of claim 1, further comprising an image
restorer which uses the image to restore user data.

15 5. The system of claim 4, wherein the restorer restores the
user data to a destination that is within the same partition as
the image.

6. The system of claim 4, wherein the restorer restores the
user data to a destination that is outside the partition that

20 contains the image.
7. The system of claim 4, wherein the system further

comprises an image locator which uses system data to locate
the image within the partition.

8. The system of claim 7, wherein multiple images are
stored in the partition and the image locator locates a specific

25 image from which the image restorer can restore user data.
9. The system of claim 7, wherein the image locator uses

system data read from a removable persistent storage
medium.

10. The system of claim 7, wherein the image locator uses
30 system data read from a fixed location in the partition.

11. The system of claim 7, wherein the image locator uses
system data read from a different partition than the partition
that contains the image.

12. The system of claim 7, wherein the image locator uses
35 system data read from an image container.

13. The system of claim 12, wherein the different partition
is a diagnostic and recovery partition.

14. The system of claim 7, wherein the system data
includes file system data.

15. The system of claim 14, wherein the system data
40 includes a copy of the partition table and the image restorer

restores the image when the copied partition table is dam­
aged.

16. The system of claim 14, wherein the system data
includes a copy of the boot record and the image restorer

45 restores the image when the copied boot record is damaged.

of one step are required as input to another step. Likewise,
steps may be omitted unless called for in issued claims,
regardless of whether they are expressly described as
optional in this Detailed Description. Steps may also be 50

repeated, or combined, or named differently.

17. The system of claim 14, wherein the system data
includes a copy of a file allocation table and the image
restorer restores the image when the copied file allocation
table is damaged.

18. The system of claim 14, wherein the system data
includes a copy of a master file table and the image restorer
restores the image when the copied master file table is
damaged.

As used herein, terms such as "a" and "the" and item
designations such as "image" are inclusive of one or more of
the indicated item. In particular, in the claims a reference to
an item means at least one such item is required. When
exactly one item is intended, this document will state that
requirement expressly.

The invention may be embodied in other specific forms
without departing from its essential characteristics. The
described embodiments are to be considered in all respects
only as illustrative and not restrictive. Headings are for
convenience only. The scope of the invention is, therefore,
indicated by the appended claims rather than by the fore­
going description. All changes which come within the mean­
ing and range of equivalency of the claims are to be
embraced within their scope.

What is claimed and desired to be secured by patent is:
1. A computer system comprising:

19. The system of claim 14, wherein the system data
55 includes a copy of inode information and the image restorer

restores the image when the copied inode information is
damaged.

20. The system of claim 1, further comprising an image
verifier which verifies the integrity of the image.

21. The system of claim 1, further comprising an image
60 creator which creates an image of at least a portion of the

user data and stores the created image within the partition.
22. The system of claim 1, wherein at least one image

within the partition is an end-user image.
23. The system of claim 1, wherein at least one image

65 within the partition is a factory image.
24. The system of claim 1, wherein at least one image

within the partition is an incremental image.

Case3:11-cv-05310-EMC Document74-5 Filed05/09/12 Page21 of 21

US 6,615,365 B1
25

25. The system of claim 24, wherein the incremental
image is incremental with respect to a factory image.

26. The system of claim 1, comprising at least two images
stored in the partition, one of the images being a user image
and another of the images being a factory image.

27. The system of claim 1, wherein the image is stored
contiguously.

28. The system of claim 1, wherein the image is stored at
one end of the partition.

26
cause at least a portion of a computer system to perform
method steps for utilizing a partition within a computer
system, the method steps comprising the steps of locating an
image of the partition which is stored in the partition, and

5 restoring selected user data from the image to the partition.
51. The configured program storage medium of claim 50,

wherein the partition is a bootable primary partition.

29. The system of claim 1, wherein the image is stored as
a file. 10

52. The configured program storage medium of claim 50,
wherein the method further comprises the step of verifying
the consistency and integrity of the image before the restor­
ing step. 30. The system of claim 1, wherein the image is one of at

least one image that is stored in an image container.
31. The system of claim 1, wherein the file system data

includes FAT file system data.
32. The system of claim 1, wherein the file system data

includes NTFS file system data.
33. The system of claim 1, wherein the file system data

includes file system data of a UNIX-like file system.

53. The configured program storage medium of claim 50,
wherein the method further comprises the step of verifying
the consistency and integrity of the image after the restoring

15 step.

34. A method of utilizing a partition within a computer
system, the method comprising the computer-aided steps of: 20

obtaining a copy of user data which is stored in the
partition; and

54. The configured program storage medium of claim 50,
wherein the locating step locates the image in an image
container, and the restoring step restores user data from the
image despite damage to the image container.

55. The configured program storage medium of claim 50,
wherein the locating step locates the image among at least
two images in an image container, and the restoring step
restores user data from the image despite damage to another
image in the image container.

creating an in-partition image by at least storing a copy of
at least a portion of the user data in at least one image
in the same partition.

35. The method of claim 34, wherein the method com­
prises reading an IBM-compatible partition table.

36. The method of claim 34, wherein the obtaining step
comprises reading user data directly from the partition.

37. The method of claim 34, wherein the obtaining step
comprises reading user data from a previously created image
of the partition.

38. The method of claim 34, wherein the creating step
creates an in-partition factory image of the partition.

39. The method of claim 34, wherein the creating step
creates an in-partition user-generated image of the partition.

40. The method of claim 39, further comprising the step
of updating the user-generated image within the partition.

41. The method of claim 39, wherein the creating step
comprises vacating the end of the partition to make room for
the user-generated image of the partition.

42. The method of claim 34, wherein the storing step
comprises storing an image of the partition in a subdirectory
of the partition which is dedicated for holding at least one
image of the partition.

43. The method of claim 34, further comprising the
computer-aided steps of reading system data which is stored
in the partition, and storing a copy of at least a portion of the
system data in the image in the partition.

44. The method of claim 34, further comprising the
computer-aided steps of reading system data which is stored
in the partition, and storing a copy of at least a portion of the
system data outside the partition.

45. The method of claim 34, wherein the storing step
comprises storing an image of the partition in a file in the
partition.

46. The method of claim 34, wherein the storing step
comprises storing an image of the partition in an image
container in the partition.

25 56. The configured program storage medium of claim 50,
wherein the restoring step restores user data to the partition
from the image stored in the partition without overwriting
the image.

57. The configured program storage medium of claim 50,
30 wherein the method further comprises the step of making a

recovery aid by copying selected system data onto a remov­
able persistent storage medium, and the locating step uses
the recovery aid to locate the image.

58. The configured program storage medium of claim 57,
35 wherein the locating step uses the recovery aid to obtain a

copy of a partition table identifying the partition.
59. The configured program storage medium of claim 57,

wherein the locating step uses the recovery aid to obtain a
copy of file system data for the partition.

60. A configured medium comprising a persistent
40 computer-readable storage medium, an imaged partition

containing user data and a partition image including at least
a portion of the user data, the configured medium further
characterized in that the partition image is stored within the
imaged partition on the persistent computer-readable storage

45 medium.
61. The configured medium of claim 60, wherein the

partition image is stored within a dedicated subdirectory of
the imaged partition.

62. The configured medium of claim 60, wherein the
50 partition image is stored at an end of the imaged partition.

63. The configured medium of claim 60, wherein the
partition image is stored within an image container.

64. The configured medium of claim 63, wherein the
image container also contains a copy of file system data.

55 65. The configured medium of claim 60, further compris-
ing at least one additional partition image which is also
stored in the imaged partition.

66. The configured medium of claim 60, wherein the
imaged partition includes FAT file system data organizing
the user data.

47. The method of claim 34, wherein the storing step
comprises storing an image of the partition contiguously in
the partition. 60 67. The configured medium of claim 60, wherein the

imaged partition includes NTFS file system data organizing
the user data.

48. The method of claim 34, wherein the storing step
comprises storing an image of the partition non­
contiguously in the partition.

49. The method of claim 34, further comprising the step
of restoring selected user data using the image.

50. A computer program storage medium having a con­
figuration that represents data and instructions which will

68. The configured medium of claim 60, wherein the
imaged partition includes UNIX-like file system data orga-

65 nizing the user data.

* * * * *

