
(12) United States Patent
Reed

(54) OBJECT-BASED ON-LINE TRANSACTION
INFRASTRUCTURE

(75) Inventor: Drummond Shattuck Reed, Seattle,
WA(US)

(73) Assignee: OneName Corporation, Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) bydays.days.

(21) Appl. No.: 10/068,341

(22) Filed:

(65)

Feb. 5, 2002

Prior Publication Data

(63)

(51)
(52)

(58)

(56)

US 2002/0095454 A1 Jul. 18, 2002

Related U.S. Application Data

Continuation of application No. 09/570,675, filed on May
15, 2000, now Pat. No. 6,345,288, which is a continuation
of application No. 09/143,888, filed on Aug. 31, 1998, now
Pat. No. 6,088,717, which is a continuation of application
No. 08/722,314, filed on Sep. 27, 1996, now Pat. No.
5,862,325, which is a continuation-in-part of application No.
08/609,115, filed on Feb. 29, 1996, now Pat. No. 6,044,205.

Int. Cl? G06F 15/15
U.S. Cl. 709/203; 709/200; 709/201;

709/217; 709/229; 705/26
Field of Search 709/200-203,

709/212, 216-219, 227-229, 232, 242,
244; 707/1, 9-10, 100--104, 200-204; 705/14,

26-27, 44; 713/200--201

References Cited

U.S. PATENT DOCUMENTS

4,799,156 A
5,347,632 A
5,440,744 A
5,473,772 A
5,485,370 A
5,710,887 A *

1!1989
9/1994
8/1995

12/1995
1!1996
1!1998

Shavit eta!.
Filepp eta!.
Jacobson et a!.
Halliwell et a!.
Moss eta!.
Chelliah eta!. 705/26

(List continued on next page.)

111111 111
US006757710B2

(10) Patent No.: US 6,757,710 B2
Jun.29,2004 (45) Date of Patent:

OTHER PUBLICATIONS

Ahmed, Rafi et al, "Using an Object Model in Pegasus to
Integrate Heterogeneous Data", Database Technology
Department, Hewlett-Packard Laboratories, Palo Alto, CA,
Apr. 1991.
Hsu, Cheng et al, "Enterprise Information Management for
Global Manufacturers", Rensselaer Polytechnic Institute,
Troy NY, pp. 1-9 [p. l="Abstract"], No Date.
March, Salvatore T. et al, "Information Management: A
Metadata Perspective", Journal of Management Information
Systems/Winter 1988-89, vol. 5, No.3.
"Supplementary Partial European Search Report", EPO, The
Hague, Apr. 18, 2002.

Primary Examiner---Bharat Barot
(74) Attorney, Agent, or Firm-Wolf, Greenfield & Sacks,
P.C.

(57) ABSTRACT

An automated communications system operates to transfer
data, metadata and methods from a provider computer to a
consumer computer through a communications network.
The transferred information controls the communications
relationship, including responses by the consumer computer,
updating of information, and processes for future commu­
nications. Information which changes in the provider com­
puter is automatically updated in the consumer computer
through the communications system in order to maintain
continuity of the relationship. Transfer of metadata and
methods permits intelligent processing of information by the
consumer computer and combined control by the provider
and consumer of the types and content of information
subsequently transferred. Object oriented processing is used
for storage and transfer of information. The use of metadata
and methods further allows for automating may of the
actions underlying the communications, including commu­
nication acknowledgements and archiving of information.
Service objects and partner servers provide specialized data,
metadata, and methods to providers and consumers to auto­
mate many common communications services and transac­
tions useful to both providers and consumers. A combination
of the provider and consumer programs and databases
allows for additional functionality, including coordination of
multiple users for a single database.

9 Claims, 47 Drawing Sheets

US 6,757,710 B2
Page 2

U.S. PATENT DOCUMENTS 5,948,054 A * 9/1999 Nielsen 709/200

5,806,045 A * 9/1998 Biorge eta!. 705/14
5,826,242 A * 10/1998 Montulli 705/27

6,345,288 B1 * 2/2002 Reed et a!. 709/201
6,363,488 B1 * 3/2002 Ginter et a!. 713/201

5,910,987 A * 6/1999 Ginter et a!. 705/26 * cited by examiner

Provider Computer 12

Provider Program

Provider Database

11
35

Copy of
14----1 Communications

Object Instance

;.:~

Consumer Program · 'JJ
of.:_::;_-.;==~ .. ::.~i:..<-s:io~~~~~:; . .-;:; .. ::::::::.:3:::::::h.:c:»-, .. ::: .. :x«i:~ .. k~~ .. : .. =~~ .. :::.:=>=·=~=.=~~==~~~ ::N::..::#.-~ ~:-:::==~~.:~~?:·::}~~ .. r-:=~~: .. ~ =f:::='!:== =~= .. =; .. ·~mi

Consumer Computer

1

2

FIG.1

Communications
Network

(e.g.lntemet)

"'--- 34

Distribution Server
(e.g. Web server, file

server, directory server)

Stored Copy of
Communications
Object Instance

35

d
•
\Jl
•
~
~
~ =

~

= ?
N
~~
N c c
~

'JJ.

=­~
~
"""" 0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~
1--"
Q

~
N

Web Browser

URL HTML Output

r-----oocument (llooj Generate Next Menu
or Form Display

Method

L Process Method
Request

57 j

Provider/Consumer Program
{acting as a Web Server)

FIG. 2

50

53

22

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
N
0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~
1--"
Q

~
N

Database 1 1 SyslemiO I"" 100 r_1os r 120 r 110
GIO\JPID Repott Recipient CommunicationsObjed

Name SyslemiO SystemiC r127 J
r 103 QueryOefmilion Name Version CommObjectPrels

103A NewFlag Name
Glcba!Prels Print Hold Flag De scription Nickname

EMaHAddress NewFtao Notes
0e raultMenu AttachmenlType HoldFtag ExpilaUonOate
CelaullRelreshlnl - Ad<Prelerence LastUpdale · NotifyPriority
NewObjectNolify 'r 1038 Ad< Interval Mar'<uplangVerslon ArchivePref
NewObjectRe~lpl AckPrelerenee -
Archive Pre I klnterval
RelryThreshold _\,. ..) Archive

Acknowledgmeot

-o·110A r 103C
Ad<DaleTime

/121 NewObjectNotily Ad<Fiag
Archive RetryCount ha< .

members

Rules Methods Pages Elements

"'- 130 '-131 "- 132 '-133

,r140 /141 /142 L143
Rule Method Page Element

SystemiO System tO t-- SystemiC
Relerence v-146 SystemiC '--

Version Version Ve,sion Type Version
Name ~ Name Name ~ Name t--- Name
Description Desc:ri plion Oesetiption OisplayOrder Description
Newflag NewFiag NewAag NewAag
HoldFiag HoldFiag Hold Flag Hold Flag

Value t_ 161 FieldValve
162 I has

data

... ,., " 11\ l t:.con~alns _
of typ~ I I ComposlleType

l£165 ,r164 I /163 I A119regateValue PrimitlvoValue J Composite Valve

II\
~
~I G.

;:-j
See FIG~

1 r 11s
Folder

Name

1 £117
ScheduledEvent

Parameters

;r147
ElementPtefs

Field ...r
Name

~

I '-152

I
J Prlml!lveType I
I .I I A '-1

r 116
Event

Data Time
SourceSystemiO
Taf!ieiSystemiD
Even!Type

A
1 .r111

Logged Event

Results

TypeDefinQions

"- 13•

./"14•
TypeDeftnition

SystemiC
Version
Name
Description
New Flag
HoldFiag

1
I

Aggregate Type

<

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~

0,
~
-..J

e
\Jl

_,.a-..
""-l
(It
""-l
~
1--"
Q

~
N

(NotlficatlonEiement) (EiemeniPrefs)

SystemiD
Name
Description

• • NaUfyFiag 201 223

224

FIG.4
NatilyReportFiag

~

4

133
221

Version (Me•sageEiement) Elements <:<:;)l~

J
TypeDefinitlon5 NewFiag

HoldFiag
SyslemiD

[r13
NotifyAag

Name

I
De scrip lion
Version

" NewFiag
Element~refs HoldFiag 147

211 Headline ,. Element TypeDcfinltion
Headlinellnk .

4

Body ,. SystemiO

I
SystcmtD

Bodylink Name Name
Description

_______r-
OeSClip~on

v-14 r161 r162 Version Field Version

I Value FleldValue
New Flag r-143

Name
NewFiag

Hold flag r152 HoldFiag

A conLns l has data of A
a type I

I r165 I r164 r163 Composite Type PrirruliveType Aggregate Type

AggregateValue J Primitive:Value I Compos~eValue I

;\' '--153 ;\ '-154 '--155

lr171 lr1~173lr174 r175 lr176 lr1B1 r182 lr1B4 r1BS I
Date Value FPointvalue NilValue LogicaiValue lntegerValue BinaryValue Date I FPoint I Logical I Integer I Binary I

r----
Day FPolnt Logical Integer Encoding Encoding
Month r---- Data Mlnlenglh
Year '-----

_;h I I Maxlanglh
Hour ~ecount

Minute fr17s 1c1as _LL:_ 189 186-., SegmaniCnl I
Second

r177 r11B - Range Ten con~uaon~ I

I True I I Fal•e Text I Type

I I I I L ____ I -----

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~

0

"""' ~
---l

e
\Jl

-..a-..
-.....l
(It
-.....l
~
1--"
Q

~
N

~

Provider Computer

Provider Program .
11

--.:
,43

Provider l...L SystemiD

L4s Database

'--.... .-'
35$

!~
v:·:-:;x·x-:-.·.·.- ·.·.·.·.·.·.-.·.·.-........ z·:~:::-~:-:~~=-:·:-:-:-:-~:-:-:.:,;:-:,:-:·~:o:~:':0::7.·:-:,;;:,~?~~~:._{:~~~~~~~;~@::«;:~>:~~<«.::~:.-:m~:.:::~~=-::~lt~

21
r

..L.-._

Consumer """"
Database

'-..

I

L4s
SystemiD

22

43

ill,~
:;:~~
tM
WI

1

Consumer Program ~~~J.
•• ·.:.:.~:..:.: . .,...:..:,:~J.t,.i!.-X•:u, .•. :-:-:-: :{-•-•·---•~~..:-:v:.:..,.::-:-·-~:-:h.·:.~~-:·:~~- .;,:,:~-:~-:~-:-·-:-:-.w:.;-:.;-:.:-.·:-;-,,·:: :-.~-;.;~- ,., :-. .,., :~:::~;;!~ I / 2

Consumer Computer

FIG.5

r44

'-- 45

System ID Server

System ID
Database

illW£tt.%:tmtJillillD&'~iW~tWT:&!1m:i@f%t*

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'Jl

=­~
~
Ul

0,
~
-..J

e
rJ'l
0'1

'"-...1
(It
""-l

'"-...1
1--"
Q

~
N

FIG. 6A

cso
SyslemiDDatabase

Syslemlq
Name
Description

L2s2 _c_!,51
SystemiCCategory

SyslemiO
Version
Name
DescripUon

SystemlD

SyslemiD
Name

• 1 Description
Key

Au then Uca te

has members
~

v-255

F-IG. 68

110
ComrnunicationsObject

SystemiC
Version
Name
Description
NewFiag
HoldFiag
LastUpdale
Mat1c.upl:1ngVeralon
AckPreference
AckJnterval

--
\

Relationship

Prov!derFiag
New Flag
Privile gelever

110A

111

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=-~
~
0'1

0,
~
-..J

e
rJ'l
0'1

'"-...1
(It
""-l

'"-...1
1--"
Q

~
N

Distribution Server
1

(Web Server)
35

"

b.~ m

.11

32

:;,w 36
im r

Copy of r- Manual HTTP Request
Communications (Original acquisition of object, I 1 11o c
Object Instance or manually-triggered update)

-+

@1; r37
· Automatic HTIP Request

''T:#KM&lilliJ&wlMl?WiM@iiM~M'ifllNltWJiilM(for automatic object update)

~

'-

-...,
~

Provider
Database

''ill r.~
~m

. . li
Co~mumcat1ons llg
Object Instance d

¥

_)
I
';.:-~;.

:~t1: w 12 wr-
/l!!~

iill
v----11

_....
l~!~

Provider Program m~
.0:•:-:~o ~.:,:~-: •. ,_._~,}_._v.•"' ,4}_, •· • • • • • • • • • •• • ""'-' LU.• &-.v..-.•.v."'-"=<..v.~·-~~.:•.o..v.•.'V.•.~•.-.. ... _..,_ ~~ii

FIG. 7

No

"'

Consumer Desktop

Web Browser

To Web Browser

21

Copy of
Communications
Object Instance

Consumer Program

cffl
@
il
ft
·~ ~~
~'

50

To other
Helper .

Applications

22

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
-..J
0,
~
-..J

e
\Jl

_,.a-..
""-l
(It
""-l
~
1--"
Q

~
N

,.-

......

FIG. 8

31

E-mail Server Consumer Desktop
62

E-Mail Program

Mail Server
Message Slore

{may also include
MIME Object Store)

Direct E-Mail
lolf 1- Polling Request 1 ._.<: >----.--Yes "• ~

\ r35

Communications

Provider
Object Instance

Database

---~
Provider Program

Polling Request
Direct to Server

12

Proxy E·
mail

No MIME
storage

63

Polling
Re,uesi------~------~-1L-----------~

;-65
PoUing Request Polling Request

to.E-Mail Program to File Syslem'(_ 66

Copy of
Communications
Object Instance

Consumer Program

External MIME
Object Store (i.e.

File System)

22

d •
\Jl •
~
~
~ =

~
N
~~

N c c
~

'Jl

=­~
~
00
0,
~
-..J

e
rJ'l

-..a-..
-....l
(It

-..'""-l
-....l
J-oo"
Q

~
N

Provider Main Menu-­
Objects
Pages

Elements r - 300
Type Definitions V

Methods
Reports

Preferences
· Publish

FIG. 9

31o 1 32o r JJo 34o ~-·· 37o
......-----"'----.
Recipient Form Object Form Page Form Element Form • Type Qefinjtion Method/Rule Repons Form

Create Create Create Create EQrm EQrm Create
,--J Edit Edit Edit . Edit Edit

Delete Delete Delete Delete Delete
Preview Preview Preview Display

w
311 ~1 . 341 351

ri"=i EJ 1.:0:1 i~'~
~

12 f==T i=:flr 1r~~r 1- Page Form Element form Type Qefinition
. Wm

~
313 r 323 BE333 · 353 · 363 373

~ ~ ~ ~
.t- 4 ~ _, Selected page Selected Type ~ m~tfwm Ewm . i~i!l 1 Me~ I
~

14 r 324 r 334 ~54 364 374
~ ~ ~ ~

..._. ~ -. Selected Page Selectee! Type ~

Obieot Eo<ID EQ!lll DefinWon Form i :~, I Rl:port '"""

~6
Preferences

E2rm
p,,..: ~2· r;& l

Edit £2un
. Preview ·

Distribute
L....----

0
•
7J1
•
~
~
~ =

~

~
N
~
N

~

r.F1 ::r
~

~
I.,Q

0
,&;;...
.....:t

e
00
a-,
':..l
~

"' ':..l
1-"
Q

~
N

FIG.10A

Display Error Form

Yes

~ y~
Yos

Store new Instance in
database

Go to UPDATE
PROPAGATION

ROUTINE

Store edited instance in
database following

consumer's preference
for archiving

Yes~

425
Store edited instance in

database following
consumer's preference

for archiving

~6
Generate next form I

END

No

FIG.10B

Get all associations
which contains this

Yes

Ves

441

Save edited Instance to
database following

consumer's preference
for archiving

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=-~
~
'"""' c
0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~
1--"
Q

~
N

d
•
\Jl
•

FIG.11 ~
511

~
Get communications Gat recipient where .l ~

object where =
NewFiag "TRUE and

NewFiag =TRUE and
HoldFlag =FALSE

HoldAag" FALSE

· r502 r512
~

521 = ?
N
~~
N c c
~

522

'Jl
Yes I -I I I I I I =-~

523 ~
'"""' No I

I
No

I
I '

OBJECT OBJECT No '"""'
INSTANCE INSTANCE

Yes 0

No No
.....,

GENERATION AND

I
GENERATION AND

I
~

TRANSMISSION TRANSMISSION -..J

ROUTINE ROUTINE Last instance?

-
Yes
:t

last recipient? f--' I I I Last object? f-----1 I () e END

Yes I I Yes i
\Jl

-..a-..
""-l
(It
""-l
~

"""" Q

~
N

Write formaUed
communicalions object

header data
lo markup file

538

Get elements
associated with object

Write formatted
communications object

footer data
to markup file

FIG.12

No

55()

Geftransmission
attributes/methods

from recipient

Get AckPreference and
Acklnterval from

communications object
and recipient

Yes

Yes 555

Set acknowledgment
AckDatenme to NOW
+ recipient Acklr1!eNai

Retum to Calling
Routine

No

562
Set acknowledgment
AckDatenme to NOW

+ communications
object Acklnterval

d
•
'Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~

"""" N
0,
~
-..J

e
rJ'l
0'1
~
(It
""-l
~
1--"
Q

~
N

FIG.13

_r610 i _r620

Qb.iect List Eorm
Select Object Search Form

Search
Sort

Export

l Print

...c-611
Search Results Form

Sele~;ted Qbie~:<t E!lrm
Sort

Search
Select Page rG22
Edit Object

Forward
Export
Print E!tit Qb.i~~~ E2rm

Delete

r612 r623

Selected Page E2[m
Sort

Search O~:lete Qbje~l EQ!!ll
Export
Print

-

C2D~!I!Dec Maio Menu
Object lisf

Search v-soo
Notification Report

Other Reports
Preferences

_r630 r640
f::l2tifi!;atiQD Bell:Qrt

E.oLm
Sort Other Reports form

Search
Print

Delete

;

Notification Reoorts Display Focrn
~[!~filcco!Oe:.i E2an

r634 r645

Sort Eorm E~QQd E21ID

_r635 .r646

E2rtt~cd E2rm Pdot Eocm

rss 0

Preferences Form

NOTE:
To reduce complexity, c ly
the highest level menu/1 ·arm
rerauonships are shown with

c9nnecting lines

d •
\Jl •
~
~
~ =

~

= =
N
~~

N c c
~

'JJ.

=­~
~
'"""' ~
0,
~
-..J

e
rJ'l

-..a-..
""-l
(It

-..""-l
""-l
1-"
Q

~
N

U.S. Patent Jun.29,2004 Sheet 14 of 47

F·nd· .. l ..

US 6,757,710 B2

You can use this page to find Hyperconnec:tors and messages that you
have received. You must enter a keyword in the 'contains" field in order
to see results.

Find ~· aU updates C the latest update

of all R) Hyperconnector names P.! message headlines R1 message
contents

that contain the following word or phrase:

t'"""'"''"''""'"'"''"'·'"'"''""''"""""""'""'"'"~ ~-~-~-
... (..... .. .(·~ ¢ . .., •·.·. , •.• ' .. ,, ·~. •· ..•.....•..•. ,..,'!.->

\!) Top

FIG. 14

No

I

No

Execute consumer's
GlobaiPrefs

NewObjeciReceipt
method

Get consumer's
GlobaiPrefs

NewObjectNo!ify
preference

Yes

Execute consumer's
GlobaiPrefs

703

1 NewObjectNotily method I
708

700

710

Yes

L

Olscarcl object
(or follow user
preferences)·

No

No

(u END)

713

No

Yes

Yes 727

Execute notification
method(s) assigned to

ElementPrefs

-- t_L728

Yes

FIG.15

~
Yas

~I.JU

~
•
00.
•
~
~
~ =

~

~
N :;o
N c c
~

'J1

=-~
~
1--'
Ul
0,
~
-..J

e
\J).

5"-
-.....l
(It
.......:~

':...1
"""'" = o=
N

d
•
'Jl
•

FIG.16A FJG.168 ~

~
~ =

~~ ~

Yes 763

~
N
'0
~

~~ N
c c
~

J
y
t c

No J n------ ,._ .. _ _,, ·'--' I \1).

=­~
~

'"""' 0'1

0,
~
-..J

e
rJ'l
0'1
~
(It
'""-l
~
1-"
Q

~
N

110
CommunlcationsObject

SystemiC
Version
Name
Description
NewFlag
Hold flag
lastUpdaleDate
MarkuplangVersion

A
I /810 .r811 .r813 /815 J£816 I .rB17

MessageObject CompositeObjecl SynlhesizedObject ServlceObject UserObjecl Schedule Object

/812
ComponeniObject

'---1 ~

/\
I ,r830 .r831 ,r832 ,r833 I .r834 1 .rsz

ReglslrationObject Maintenance Object NameObject DirectOI)'Object DislribullonObject EncodingObjecl

/840 I ,r841 .rB42 .r843 /844
I AIJihenticalion_Objec~J I Data_Ex~angeObjeel I l PayrneniObJect_ _I l _ R~ortin~O!lject___l L ~·~b~ci<O!l~

c:
•
00
•
~
~

"""'" ~ =
"""'"

~

~
N
~~
N c c
~

'JJ.

=­~
~

'"""' -..J
0,
~
-..J

e
rJl

0\
':...-.
Ul

"' ':...-.
1-"
Q

~
N

120
Recipient

SystemiD
Name
NewFiag
Hold Flag
EMaiiAddress
AUachmeniType
AckPrelerence
Aekfntervaf

r
Methods _r854 Pages

[PagaSubscrlba)

"-131 SystemiC '\.._ 132
Version
Name
Description
NewFiag
HcldAag

_r141 ,r142
Method Page

SystemiC rc···· ······ : SystemiD
Version Version
Name Name
Description DeseriptiDn
NewFiag Newflag
HoldAag HoldFiag

110
CommunicationsObjeet

System/D
Version
Name
Desertption
NewFiag
HDidFiag
LastUpdateOate
,MarkupLangVersion
Acll?reference
Acldnterval

a110A vsss has
members

v-857
_r853

(PageSubscrlptlon)

SystemiC

/858
Version
Name
OeSCI'iptlon
NewFJag
HoldFiag
SubseribeFiag
NotilyFieg

v-ass :
/146

Reference

Type
Name
DisplayOrder

FIG. 18

Elements

"-13:

_r14:
Element

SystemiC
Version
Name
Deseripllon
NewFiag
HoldFiag

~
•
00.
•
~
~
~ =

~

~
N :;o
N c c
~

'J'1

=­~
~
1--'
Q()

0,
~
-..J

e
\J1

5"-
-.....l
(It
.......:~

':...1
1--"
= o=
N

U.S. Patent Jun.29,2004

Begin Object Instance
Generation and)

Transmission Routine

~
Write formatted

communications object
header data

to markup file

J ~881

Get type definitions
where type definition is
contained by element

where element is
contained by page

where page
subscription

SubscribeFJag =TRUE

Write formatted type
definitions to markup

file

l
Get object methods/
rules associated with

recpient

l

Sheet 19 of 47 US 6,757,710 B2

FIG. 19

J
Get other

rules asso
methods/
dated with
ect ob·

Write fo rmatted
s/rufes to
up file

method
mark

Get ef
where el

containe
whe"r
subsc

ements
ement is

d by page
e page
ription

882

SubscribeF lag= TRUE
~

~

Write~
ele

to rna

. 883

Get pages where page
criptlon subs

SubscribeF Jag= TRUE

'

uew ith step 543,
FIG. 12

Provider Computer
12

Provider I (y 901~ J Database r 912 ~ _ Component . . .

Consumer
Database

21

Consumer Program

Consumer Computer

XI

2

FIG. 20

~;~~;~""""'/ "\ I Distribution Server I

900 I

901

901

I ~ \ J.-1 Object.lnstance J
902

32

d
•
\Jl
•
~
~
~ =

~

= ?
N
~~
N c c
~

'Jl

=-~
~
N c
0,
~
-..J

e
\Jl

5"­
-.....l
(It
-.....l
~
1--"
Q

~
N

;,,

FIG. 21

Provider Computer

Commun!cat!ons
Network

(e.g.lntemet)

r-------~----~------------------v--22
21

Compression
Consumer Program . - ,,..:

Consumer Computer

.12

Word

Provider Word
Processing

Program

I

Consumer Word Processing
Program

958

1

2

~
•
00
•
~
~
~ =

~

~
N
:;.c
N

~

00 ::r
~

~
N
I--'

0,
~
.....J

e
00
0\
':..-.
(It
-....l
':..-.
~
Q

co
N

U.S. Patent Jun.29,2004 Sheet 22 of 47 US 6,757,710 B2

Name:
Enter a name for the infonnation you will be sending with this topic.

l'3~~"""'""'"'"'""'""'""'""'"'""""'""'""'""'"""'""'"""""""'"'"'"'""""""'"j

Description:
Enter a short description of !he info1111ation readers wiU n ceive if they subscribe
to !his ·

daces on new kids Rerchandise available ac Spiegel.

FIG. 22

U.S. Patent Jun.29,2004 Sheet 23 of 47 US 6,757,710 B2

Cust.omiz_e
SpiegelCoruwct

Find out about sales and all the latest merchandise available atSpeigel.

Ri Fashion
Updates on new fashion merchendise available at Spiegel.

C Home
Updates on new home merchandise available at Spiegel.

C Electronics
Updates on new eleclronics merchandise available at Spiegel

P.! Kids
Updates on new kids merchandise anilab!e at Spiegel

C Barbie
Updates on now Barbie merchandise available u Spiegel

P1 Sales
When that blazer you've been eyeing goes on sale, you'll be the first to
know.

FIG. 23

U.S. Patent Jun.29,2004 Sheet 24 of 47

N:ew Messages

Kew Hyp.erconnector
SpiegelConnect
Publisher: Spiegel

rB Perscnal:ze connection

!!I Serd feedbadc

New 1\>Jessages ox Seplemher 23, 1996 at 10:58:33

Ill Sa~.e messsgesto .a.rchives !ill Delete Messages

~ IIEI'! Fashion 2
Classic Pique Polo From Polo Jeans Co.

~ Ntt~! Kids 2
5-In-1 SprJrt::; <~enter

~ HlW! Sales 2
Cotton Denim Dress on Sale 1

c~ e IP~, 1nlcccind C«po:'1tion. m Rl9llf R<savo4. Pl<ose nod our disclaimfr.
Bou on9• R.tJou•

FIG. 24

US 6,757,710 B2

Provider Program
11

Provider
Database

FIG. 25

21

Consumer
Database

Consumer Program

r1117

Provider Computer

Communications
Network

(e.g. Internet)

Consumer Computer

1127

12

2

.------r 1101

1102
---,

Help
Menu or

Help
screens

supported
Software
Program

1

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
N
Ul
0,
~
-..J

e
\Jl

-..a-..
-....l
(It
-....l
~
1--"
Q

~
N

U.S. Patent Jun.29,2004 Sheet 26 of 47 US 6,757,710 B2

Our support team is committed to helping you find answers to all of your questions or
problems. Our support department hours are 6:00am to 5:00pm Pacific Standard Time.

If you have a question or problem please use one ofthe two fonowing methods:

• Online SuppoJt and Feedback Forms
o Technical Support form
o Feedback form on Intermind Communicator or Intennind's Website
o Sales Request form
o Intermind Customer Service form

• Technical Support telephone numbers for beta testers
o L)cal Seattle nu:'!lber : 206-812-8406
o US Toll Free number: 800-625--6145

• Customer Service telephone nwnbers for beta testers
o Lo_cal Seattle nu.'nber: 206-812-8408
o US T,:-ll Free n!J!r!ber: 800--62~.:.91:50

Technical Suppott I Tutorial! Top 10 I Known Problems
Troubleshooter I Links & Resources I Contacting Support

FIG. 2G

U.S. Patent Jun.29,2004 Sheet 27 of 47 US 6,757,710 B2

Please answer each section as completely as possible.
The more details you provide, the more likely we will be able to address your problem.

USER INFORMATION

Your name:

Email. address: ~oh~d@i~t~~-~~t~omu ... uo u u'!i
>v:.:.;~,::~~ :: :.;.;,:.~ :.:.: ;::..;-.~:.!.~! :.: :.~::,:;.: :!.!!.~:-~: ~.:!!! ::::: !!! !!:-!:: T ~~:.: :.:.:.:.:.r:.~!-:-~: ! ~-::: ~:.:.:.:,:.;,:

Operating Syst~:

Prob1~ Type: [~!.~.~.~~ .. ~.~-~-~-~.~.~.~ .. ~.~-~.~

QUESTION/PROBLEM:

i~r you are having a problem, please try to describe ~hat you were
doing prior to eKperiencing the problem. Al~o please include what
you have already tried to tix the problem.

FIG. 27

Provider
Database

Consumer
Database

Provider Computer

Provider Program
11

21

Consumer Program
. ··.:······

· Consumer Computer

12
1

2

FIG. 28

Service Object Partner Server

Server
Database

1302

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
N
00

0,
~
-..J

e
rJ'l
0'1

'".....1
(It
""-l

'".....1
1--"
Q

~
N

1401
(OirectoryServObject)

S~stemiD
Name = Transportatton O~ea~
Description
Version

I
I r 1411 I r-1412 I

(CategoryObjectt (CalegoryObject) (CategoryObject)
SystemiC SystemiC SystemiD
Name =Automobiles Name = Bicycles Name • Boats
Description Description , OescripUon
Version Version Version

I I
I 1 1421 I r14: r r 1423 I

(CatagoryObJect) (CategoryObject) (CategGryObjact) (CatogoryObjeo;t)
SyslemiO S~stemiD SystemiC SystemiC
Name =Trucks Name= Minivans Name = Motorboats Name " SaDoaats
Oescrlpllon Description Oescriptlon Description
Version Version Version Version

----· .-----J

1451
(ToplcObject)

SystemiC
Name • How to increase speed?
Description
Version

I
I r-14, I

(ResponseThraadObject) (ResponseThreadObjoct)
SystemiC SystemiC
Name = Optimize database Name = Change Ultayer
Description Description
Version Version

I
I 1 1471 I l L_1473 t

(ResponseThreadObject) (ResponseThreadObject) (ResponseThraadObject) (RosponsoThreadObje<;t)
SystemlD SystemiD SystemiC SystemiC
Name =Add indexing Name • Change dalabases Name m Canl do this yet Name a CompatlbUity problem
Description Descrlpiion Description Description
Ve1sion VerEi~Dil Version Version

24

74

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'Jl

=­~
~
N
~

0,
~
-..J

e
rJ'l

9'­
-....l
(It
""-l
~
1--"
Q

~
N

Begin directory listing
routine

Provider chooses desired
category objects from

directory partner server
(DPS)

No
...-- ... uuJ 1

Create associations
between communications

objects and category
object

I

No I ncn ~t~ro _ ... ,... ... _,..,..

DPS creates associations
between communications

object and category
objects

I

I

I

I I C.o.h1rr't tn ,..o:Jflinn "\

FIG. 30

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=-~
~
~ c
0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~
1-"
Q

~
N

FIG. 31A

DSO data exchange rule
monitors for changes in
listed communications

objects

T / 4032
' DSO data exchange rule

triggers OSO data
exchange method

y / 4033
1 DSO creates message 1

object containing
changes

4034

OSO sends message
object to DPS

4035 -
DPS receives message

object

DPS updates listing
records

End

4036

DSO creates scheduled
event instance for

fTIOnitoring

FIG. 318

4052
Scheduled event instance

triggers a DSO update
query method

4053
----,

T / 4054
1 OSO creates message

object containing result
set

4055
OSO sends message

object to DPS

4056
DPS receives message

object

DPS queries for updated
category objects

4058

DPS returns result set to
provider program

Provider program
receives result set

Yes

Execute notification
methods

4059

4061
No

Cj
•
00
•
~
~

"""" ~ = """"

~

~
N
~~
N c c
~

'JJ.

=­~
~
~

'"""' 0,
~
-..J

e
r:J1

-..a-...
'I
01
'I
~
1-'
='
~
N

FIG. 32A

,r- 4101 -Provider obtains
authentic!! lion service

object (ASO)

FIG.328

Markup file signature and I
· PKC

are appended to markup file

FIG. 32C

Call to ASO by ~
communications object

receipt method

I --c4131
I

~ I ASO uses provider public key
to veriry communications

object markup fde signature 1

d
•
00
•
~
~
~ =

~

= ?
N
~~
N c c
~

'JJ.

=-~
~
~
N
0,
~
-..J

e
rJ'l
0'1
~
(It
""-l
~
1--"
Q

~
N

FIG. 33A

Originatots
authentication service

object (ASO) generates
pubiTc;Jprivate key pair

Originator ASO creates
pubflc key certificate

(PKC)

Originator ASO
generates introducer
selection input form

Originator ASO aeates
message object

containing PKC and
message

Originator ASO executes
originatots notification

methods

Recipient ASO verifies
originator's PKC
signatures using

introducer's PKCs

FIG. 338

End

Cj
•
00
•
~
~

"""'" ~ =
"""'"

~

~
N
~~
N c c
~

'JJ.

=­~
~
~
~

0,
~
-..J

e
r:J1

-..a-...
'I
01
'I
~
1-'
='
~
N

FIG. 34A

Advertiser chooses
desired category objects
from dassified ad partner

server (CAPS)

CASO creates message
object containing ad

UsUng and seller
components

4208
CAPS creates

communicaUons object
representing buyer

4209

CAPS creates
component object

representing ad listing

CAPS creates
acknowledgment
message object

FIG. 348

Buyer thooses ~esired
category objects from
dassified ad partner

se!Ver (CAPS)

No

CASO creates sclleduled
event instances to

monitor

4237

Scheduled event instance
!riggers a CASO data

exchange method

Yes
4245

Consumer program I No
executes CQnsllme(s
notification methods

d •
\Jl •
~
~
~ =

~
N
~~

N c c
~

'JJ.

=­~
~
~
~

0,
~
-..J

e
rJ'l

-..a-..
""-l
(It

-..""-l
""-l
1--"
Q

~
N

FIG. 35
Classified ad momtori;;g

with stored queries ~ r4268
process

~ r4261 CAPS creates scheduled
event Instances ror

CASO stores ad query
monitoring

l r4269
~ r4262

Scheduled event instance
CASO creates triggers a CAPS data

message object exchange method

containing ad query l and user object data r4270

! r4263
CAPS executes query

! . r4271
CASO sends message

object to CAPS CAPS caUs data

~
exchange method in BUO

r4264

CAPS receives 4272
message object Notification

l
desired?

r4265

CAPS creates buyer user Y!s r4273
. objecl (BUO)

~ r-4266
BUO data exchange

method calls CAPS data

CAPS creates exchange method

component object
representing ad query ~ r4274

i r4267 CAPS data exchange

CAPS crea!es member
method creates message

association
object containing result

set

I I

~ r42 75

CAPS sends message
object to consumer

program

_,42 76

I CAPS receives

I message object

~ 17 r42'l

Consumer program
executes consumer's
notification methods

No End

d
•
\Jl
•
~
~
~ =

~

= ?
N
~~
N c c
~

'Jl

=­~
~
~
Ul

0,
~
-..J

e
rJ'l
0'1
~
(It
""-l
~
1--"
Q

~
N

U.S. Patent Jun.29,2004 Sheet 36 of 47 US 6,757,710 B2

~ 4291

FIG. 36 Use composite and component communications objects to
represent meta data structure of a partner server database

l r-.42 92
Use communications object type definitions and elements
to model the data and metadata stored in partner server

database

1 .r42 93
Use service objects and message objects to automate data

exchange between tile provider/consumer programs and
the partner server

l ~42 94
Use user object indexes representing providers and

consumers on the partner server when it can increase
efficiency

J ~42 95

Use notification control at the provider and consumer
programs to_process message objects and query result sets

1 r42 96

Return communications objects in query result sets
whenever it will increase efficiency

1 r-42 97
Use link control in communications object"s and category

objects to simplify access .to service objects and other
· category objects

Obtain payment service
object (PSO)

4402
Provider executes d.;t;

exchange method in
PSO

4403
--,

PSO creates account
key pair

4404

PSO s<:cres ~ii-.'CI~ l<ey
as element of PSO

4405

PSO queries for account
data

4406

PSO generates account
Input rorm

4407

PSO creates account
order(AO)

4408 ._....,

ASO encrypts AO with
PPS public key

4409

ASO signs AD with
merchant private key

FIG. 37

4410 -PSO creates message
object containing secure
AO and merchant PKC

4411
-.,

PSO sends message
object to payment partner

server (PPS)

r4412

PPS receives message
~bj&l

4413

ASO decrypts ~ecure AO
wilh PPS private key

4414

ASO verifies merchant
PKC signature with ASO

public key

4415 -ASO verifies AO
signature with merchant

pubUc key

4416

PPS creates accoun!

4417

PPS creates merchant
account certificate (MAC)

4418
---,

ASO signs MAC wilh
PPS private key

4419

4420

PPS sends message
object to PSO

4421

PSO receives message
object

4422 -PSO verifies MAC
signature with PPS public

key

PSO stores MAC In
provider database

4423

4424 __,
PSO executes

merchant's noUflcation
methods

~
•
00
•
~
~

"""" ~ = """"

~

~
N
~
N c c
~

'J).
::r
~
~
~
-...l

0,
~
-...l

e
rJl
0\
~
Ol
"l
~
~
0

co
N

Merchant
communications object
creates PO including

MAC

Ves

No 4443
Uses link component
object to download

PSO

4444

Run account creation
routine

No 4446

Ves I Execute PSO update

L
method

~ r4447

Merchant j communications object I
calls PSO

4448

ASO encrypts PO using
PPS public key

4449

ASO signs PO using CAC
private key

4450

PSO creates message
object containing PO and

CAC

FIG. 38

4451

PSO sends message
object to PPS

4452

PPS receives message
• object

4453

ASO verifies signature on
PO using CAC public key

4454

ASO decrypts PO using
PPS private key

4455

ASO verifies signature on
MAC using PPS private

key

PPS carries out
transaction

4456

I I

4457

PPS saves transacUon
·receipt number in PPS

database

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~
00

0,
~
-..J

e
\Jl

-..a-..
""-l
(It
""-l
~
lr-"
Q

~
N

U.S. Patent Jun.29,2004 Sheet 39 of 47 US 6,757,710 B2

FIG. 39

Begin payment ! _,;--44
transaction receipt

77
process ASO verifies signature on

! r- 4471 PR with PPS public key

PPS creates purchase ~ ~44 78
receipt (PR)

ASO decrypts PR with

~ _,.-- 4472 CAC private key

, ! ~44 ASO encrypts PR with 79
CAC public key

PSO creates logged

~ .r- 4473 event instance or receipt

ASO signs PR with ! ~44 10
PPS private key

PSO calls merchant

~ ~4474 communications object

PPS creates message i _r-44 11
object containing PR PSO executes

! ~4475
consumer's notification

methods

PPS sends· message !
object to PSO

End

~ ~4476

PSO receives message
object

l

U.S. Patent Jun. 29, 2004 Sheet 40 of 47 US 6,757,710 B2

FIG. 40

r 4501

Reporting service object
(RSO) requests

anonymous key from
reporting partner server

(RPS)

.... ~45 02

RPS retums
anonymous key to

RSO

,II' ..,--45 03

RSO saves
anonymous key as

element

~, ~45 04

RSO submits reports
with anonymous key

"'
r-__45 05

RPS tracks reports with
anonymous key

FIG. 41A

No

No

FSO creates message
objecl containing

feedback data

4609

FSO sends message
object to feedbacl<

partner server (FPS)

FIG. 418

Feedback link caus
FSO

FSO creates message
object containing

feedback data

4636

FSO sends message
object to feedback

partner server (FPS)

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~

'"""' 0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~
1--"
Q

~
N

FIG. 42A FIG. 428

Begin multiuser editing
process

Begin multiuser edith
with distrib~tion contn

.......
process

L r4701 L r47 08 l r-4731

First provider specifies First provider receives
I

access control message object
i

First provider specifies
access control and

l r-4702 i r47 09
distrlbuUon control

First provider sends Message object receipt l r4732
communications object method saves

to recipient communications object

~
edits

r4703
l r47

Recipient receives
Receipt method executes communications object

providers notificatioo

l r-4704 methods

Recipient edits i
communications object (: l

End
r-4705

10

First provider sends
communications object

to distribution control
list

~ r-4733

Recipients receive
communications object

~ r4734

Recipients edit
communications object

Access control triggers
data exchange method l ...r-4735

l r-4706 Access control triggers
data exchange method

Data exchange method
creates message object ~ .r4ns

l r4707 Data exchange method
creates message object

Data exchange method
sends message object to l

first provider

I

1 r-47 7

Data exchange method
sends message object to

distribution control list

. 1 .)-47 8

Recipients receive
message object

~ _,..-47 9

Message object receipt
method saves ·.

communications object
edits

! j--47 0

. · Receipt method executes
redpient's notification

methods

!
End

c
•
00 •
~
~
ro =

~

= ?
N
~
N c c
.&;;;..

\J)

=-~
~ -.&;;;..
N
0 -.&;;;..
~

e
\Jl
0'1
~
Ol

" ~
~
0

~
N

U.S. Patent Jun.29,2004

Yes

Begin fax request
. coordination process

Consumer obtains
communications object

for fax service

4802

Consumer selects rax
request page

FSO generates Input
form

4806

Consumer submits input
form

Sheet 43 of 47 US 6,757,710 B2

FIG. 43

4807

FSO saves any new fax
preference data

FSO creates fax
message object
•

4808

4809
FSO sends fax message

object to fax partner
server (FPS)

FPS receives fax
message object

4810

4811

FPS sends faxes via
phone network

FIG. 44

Consumer obtains
communications object

tor recipient

4902

Consumer selects
pack3ge delivery option

No 4904

4905

4906

Consumer submits input
form

4907

PDSO saves any new
account data

4908
PDSO creates message
object containing delivery

order

4909

PDSO sends message
object to physical delivery

partner server (POPS)

POPS creates
acknowledgment

message object with
delivery number

PDSO receives message
object

4915

PDSO saves delivery
number

No

•4916
PDSO executes

consumer's notification
method:~ for pickup
acknowledgment

Yes

PDSO executes
monitoring routine

4919

d
•
'Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~
~

0,
~
-..J

e
rJ'l
0'1
~
(It
""-l
~
1--"
Q

~
N

I
Yes

Consumer activates
scheduling method In

communications object copy
(COC)

No

Yes

FIG.45

No

Yes

No 5008
~No-----------+--------------~

Y~s ,c 5009

Continue with step
5070", FIG. 46

No

No•----------~--~--------~

No

Yes 5024

~No
v;s ;c 5025

d
•
\Jl
•
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~
Ul
0,
~
-..J

e
\Jl
0'1
~
(It
-....l
~
1-"
Q

~
N

Consumer activates
scheduling melhcd in

communications object
copy(COC)

No

No

l>le

FIG.46

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~
0'1

0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~
1--"
Q

~
N

A\.r 5122
Individual

8r5124
Phone

Number

~5126
Open

Discussion

Dr5128

Response

Alice

"~r5133
Bob

A\A r 5134
Trent

Group

r7 r5125
News Topic

[fJ r5127

Closed
Discussion

~r5129
·Meeting

5131

~5142
What final features should

be added?
(24 responses, 4 new)

~r5143
When will ~ reaDy be ready?

(11 resPonses, 2 new)

Review Database with
Mary; Trent

Tuesday 9112, 1:OOpm

~r5145
Weekly Launch Meeting,

Wednesday 9/13, 10:00am

A\Ar 5146
Afice (4 discussions)

A\.r5147
Trent (3 dlscussions)

.&• ,,,r5148
Marketing

(2 discussions)

d
•
\Jl •
~
~
~ =

~

~
N
~~
N c c
~

'JJ.

=­~
~
~
-..J
0,
~
-..J

e
rJ'l

-..a-..
""-l
(It
""-l
~

Jooooo"
Q

~
N

US 6,757,710 B2
1

OBJECT-BASED ON-LINE TRANSACTION
INFRASTRUCTURE

This application is Continuation of prior application Ser.
No 09/570,675, filed on May 15, 2000, now U.S. Pat. No.
6,345,288 Allowed, which is a Continuation of application
Ser. No. 09/143,888, filed on Aug. 31, 1998, now U.S. Pat.
No. 6,088,717, which is a Continuation of application Ser.
No. 08/722,314, filed Sep. 27, 1996, now U.S. Pat. No.
5,862,325, which is a Continuation-in-Part of application
Ser. No. 08/609,115, filed on Feb. 29, 1996 now U.S. Pat.
No. 6,044,205.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to data communications

systems. More particularly, it relates to an automated com­
munications system which coordinates the transfer of data,
metadata, and instructions between databases in order to
control and process communications.

2. Discussion of the Related Art
All communications consist of a mechanism for exchang­

ing information between one entity, a provider, and another,
a consumer. The terms "provider" and "consumer" are used
to designate separate functions in information transfers.
Typically an entity, at various times, operates as both a
provider and a consumer in any communication relationship.
These relationships may be one-to-one, such as between two
individuals; one-to-many, such as between company and its
customers; or many-to-many, such as between the members
of a workgroup. These communications relationships may
also exist over multiple communications networks, such
phone networks, LANs, public data communications
networks, radio and TV networks, wireless networks, and
conventional postal mail networks.

2
take different forms depending on the type of communica­
tions relationship. For example, in a one-to-many
relationship, particularly a mass-market relationship such as
a company and its customers, the problem is how to effi-

5 ciently disseminate information about products and services
to consumers. Optimally, such information would be dis­
seminated only to the consumers who need the information,
only at the precise time they need it, and only via the
communications network the consumer preferred. However,

10 knowing who needs what information, when, and how can
be very difficult. Therefore, providers typically disseminate
information widely in the form of mass advertisements and
mailings via all possible communications mediums in order
to reach all likely consumers. Because of this broad dis-

15 semination by providers, consumers receive large amounts
of information, much of which is irrelevant to them. Con­
sumers are forced to sort and filter through this information,
and frequently much of it is discarded. Information which is
kept may not be immediately useful, but may be needed at

20 a later time. Unless the consumer expends a great deal of
work to store, catalog, and index this information, the
information can be difficult or impossible to find when the
consumer actually needs it.

This same problem of efficient information distribution is

25 exacerbated in many-to-many communications
relationships, such as among the members of a workgroup.
Here, communications are much more frequent and timely,
and there is much greater quantity of information to be
shared, stored, archived, and indexed. Members of a work-

30 group also have a strong need to employ communications
for group coordination, such as scheduling meetings, con­
ference calls, project deadlines, etc. These communications
involve time deadlines and feedback requirements which are
not typically present in one-to-many communications rela-

35 tionships.
With one-to-one communications relationships, the prob­

lem of efficient information disemination is lessened
because the parties typically have a much higher knowledge
of each other's needs and interests. Conversely, the need to

40 use communications for coordination purposes is greatly
increased, largely because between individuals the need for
real-time communications sessions such as phone calls and
personal meetings is acute. Thus the universal problem of
"phone-tag", when both parties exchange numerous mes-

Establishing, maintaining, operating, and even terminat­
ing any one of these types of communications relationships
involves significant work on the part of both the provider
and consumer. For example, to initiate any type of commu­
nications relationship, providers must first locate the con­
sumers with whom to communicate and vice versa. Solving
this problem is subject of several entire industries, such as
the directory industry, the mailing list industry, and the
advertising industry. Once a provider or consumer has been
identified, contact information (e.g., names, titles, addresses,
telephone numbers, electronic mail addresses, etc.) must be
exchanged between the provider and consumer. This contact
information must be maintained by both parties so that
future communications can be effected as needed. When the 50

45 sages trying to coordinate the opportunity to communicate in
real time.

The next workload involved in communications relation-
ships is when the parties need to exchange, process, and
store structured data. In a one-to-many communications
relationship, a common example is a consumer ordering a
product. The consumer must place a telephone call, locate a contact information changes for an entity, all providers or

consumers having relationships with the entity must be
notified of the changes, who in turn must update their own
records. This work also extends to other data and records
exchanged in the context of the communications
relationship, e.g. orders, receipts, product numbers, invoice
numbers, customer numbers, notes, brochures, reports, etc.
Maintenance of this information requires significant human
time involvement for receiving information, storing
information, indexing information, searching for desired
information, and retrieving information. The human com­
ponent of record maintenance also creates a potential for
error, which can cause the information to be faulty or to
become lost.

Once the communications relationship is established, the
next major workload is the active use of the relationship to
accomplish communications objectives. The problems here

salesperson, and then manually transmit the necessary order­
ing information, which the salesperson must manually
record. Paper or electronic product order forms can help

55 automate this process for the provider, but they still must be
filled out manually by the consumer. Many of these forms
require the same standard information from the consumer,
which the consumer must enter repeatedly. All of these
information transfers require human involvement and thus

60 create the potential for data errors. On the provider's part,
more work is required to perform error checking on the
order, process it, and in many cases return an acknowledg­
ment to the consumer. Many providers invest heavily in data
processing and electronic communications systems for auto-

65 mating these functions. However, the lack of a standard
communications system for exchanging common data
means that providers adopt largely proprietary systems,

US 6,757,710 B2
3

increasing the investment necessary for every provider. In
addition, consumers must still interact with each these
systems manually.

In a many-to-many communications relationship, such as

4
Various computer-based systems have been created to

provide mechanisms for communicating information. The
Internet and World Wide Web provide a network of a large
number of information sources, providing a voluminous
amount of information. Computer programs exist which can
be executed on Internet-connected computers to search these
sources to obtain desired information. Additionally, through
the medium of hypertext, providers of World Wide Web
pages can create links in their pages between items of related

a workgroup, the need for structured data exchange is even 5

higher, especially when automated data processing tools
such as computer software are in widespread use. Also, the
need for structured data exchange for workgroup coordina­
tion activities, such as scheduling and planning, grows
significantly.

One-to-one communications relationships may also
involve strong needs for structured data exchange. For
example, two individuals from different companies may
need to review and revise a document involving both
companies. The ability to do so electronically, using a secure

15 method of exchange over public data networks, would make
the task considerably easier. Individuals involved with one­
to-one communications relationships also have an acute
need to use structured data exchange to solve the problem of
scheduling communications sessions, i.e. the phone-tag
problem.

10 information which can significantly aid consumers in find­
ing desired information. However, the links to the informa­
tion source are neither dynamic nor persistent; in the sense
that they do not provide new or updated information once
the consumer has found a topic of interest. "Bookmarks" in
a web browser program can facilitate subsequent access to
a particular web page to determine if new information is
present. However, if the web page referenced by the book­
mark is removed, the bookmark is no longer valid. Book­
mark polling programs, such as Smart Bookmarks from First

20 Floor, Inc., can also be used to determine whether a web
page has changed since the last time the consumer viewed it.
In addition, Smart Bookmarks can examine a changed page
and automatically transfer to the consumer a text string
embedded by the author of the page informing the consumer

Since all communications relationships are inherently
dynamic, they involve three other common tasks involved
for providers and consumers: copying the relationship,
transfering the relationship, and terminating the relationship.
Copying is when one consumer wants to share a particular 25

communications relationship with another consumer. For
example, a mail-order catalog customer may wish to give a
copy of the catalog to a friend, or a businessperson may need

of the nature of the change. However, Smart Bookmarks'
capability is limited to single text strings on single web
pages. Therefore the consumer must locate and bookmark
every Web page of interest. Smart Bookmarks does not
provide a way for the consumer to filter the update to share the phone number of a colleague with a customer.

Transferring is when one provider assumes a consumer 30

communications relationship from another, or one consumer
assumes a provider communications relationship from
another. An example would when a company changes the
salesperson responsible for the customers in a sales territory,

messages, nor does it provide the consumer with any mecha­
nism for exchanging structured information or managing a
communications relationship with the provider.

A different type of Web monitoring solution is provided
by Revnet Systems Inc. With its Group Master software, Web
providers can create and insert special hyperlinks represent­
ing interest topics on the pages of their Web site. When a
consumer clicks on this link a special data file is transferred
to the consumer's GroupMaster client software. The client
software then polls the Web server for updates to the interest
topic input by the provider. Unlike Smart Bookmarks, all
interest topics at the site can be checked in one update
polling action. Update messages can be delivered to the
consumer via the client software. However, these messages
only contain links back to pages with follow-up information

or when a customer transfers ownership of a product. 35

Termination is when either a provider or consumer wishes to
end a communications relationship, i.e. a provider no longer
wants to distributes information, and/or a consumer no
longer wants to receive, process, or store the information. A
widespread example is consumers who wish to be dropped 40

from direct mailing lists, and the providers who wish they
could efficiently identify such consumers to save mailing
costs. All three of these common, everyday communications
relationship operations involve considerable effort on the
part of the provider and consumers to carry out. 45 at the Web site. They do not store or index information from

the provider, nor do they provide a mechanism for the
consumer and provider to automate other types of structured
data exchanges or manage a communications relationship.

Therefore, a need exists for a communications system
which allows providers and consumers to quickly and easily
establish an automated communications relationship, one in
which the data necessary to operate the communications
relationship is exchanged and updated automatically, and
which can control all types of communications via all types
of communications network common to both the provider
and consumer. A need also exists for a communications
system which allows a provider to actively notify a con­
sumer of new information in which the consumer may be
interested, and which allows the consumer to precisely filter
the information being sent by one or more providers. A need
also exists for a communications system which allows
providers and consumers to automatically structure,
exchange, and process incoming or outgoing communica­
tions to the greatest extent possible. A need also exists for a
communications system which allows providers and con­
sumers to easily share access to many common communi­
cations services. Finally, a need exists for a communications
control system which allows providers and consumers to
easily copy, transfer, and terminate communications rela­
tionships.

Online navigation or "auto pilot" software, available from
50 various commercial online services or software companies,

can help the user automate access to online services, the
Internet, and other public networks. The software provided
by these services or companies can include capabilities such
as automatic logons, automatic navigation of the online

55 system according to consumer preferences, file searches,
uploading and downloading data, and storage of data. Some
systems can also automatically download the data necessary
to update their own operation. However, the navigation
software available from the online services typically

60 requires that the consumer first establish an account with the
online service, and may also involve establishing accounts
with specific providers on the service. In addition, these
navigator programs are specifically designed to work with
the architecture and communications protocols of the online

65 service, and cannot be easily adapted to other data commu­
nications networks, thus preventing other providers from
using the functionality of the online service to create and

US 6,757,710 B2
5

distribute data in the same manner. Finally, they require that
the consumer set up and maintain a communications rela­
tionship with each information provider on the service. If the
provider changes its information offerings, the consumer
must reprogram the autopilot or navigation software. This
last disadvantage also applies to online navigation programs
designed to work with the Internet and other non-proprietary
public data networks.

Electronic mail (e-mail) systems are another electronic
communications system that provides some communica­
tions contact persistence. E-mail addresses and messages
can be stored and indexed within e-mail programs, or
externally in other locations. E-mail rules engines allow for
some degree of automated storage or response to certain
message contents. However, these rules engines are typi­
cally constrained to acting on certain known information
about the messages, such as the address of the message
provider, or on semantic rules such as keywords which must
be guessed by the provider and consumer. There is no
common communications frame of reference, i.e., a struc­
tured data format and operations methodology, against
which both the provider and consumer can operate to filter,
classify, and organize messages. The lack of a common
frame of reference also severely limits the capability of
either the provider or consumer to automatically process the
contents of an e-mail message, or to automatically respond
to the message besides the capability to automatically
address a reply message.

E-mail systems which support electronic forms overcome
some of these limitations. Electronic forms allow the pro­
vider to control the content of a forms submission and to
automatically or semi-automatically route that data around a
network. Electronic forms also allow message consumers to
automate a response to the forms provider which can be
automatically processed by the provider. However, these
forms must be received and processed by the consumer in
the same manner as conventional e-mail messages. In other
words, they do not provide a means for the consumer to
control or filter messages from different providers. Forms
also do not provide the consumer with a mechanism for
automatically storing, indexing, or processing information
from the provider. In addition, while they may automate the
provider's ability to process the data returned from the
forms, the consumer must still manually enter information in
the form.

Specialized e-mail systems have been developed that
combine the use of electronic forms with a system-wide data
processing model. Examples are The Coordinator from
Action Technologies, Inc., or OVAL from the MIT Center
for Coordination Science. These systems allow providers
and consumers to share a frame of reference for messaging
such that messages can be classified into specific categories
and actions. This allows message providers and consumers
to automate the routing, storage, and processing of messages
based on these category and actions. However, these systems
require that all providers and consumers share the same
frame of reference. They do not provide a generalized means
for each provider on the system to establish and update their
own frames of reference with one or more consumers, nor a
generalized means for each consumer to coordinate the
frames of reference they have with different providers.

A different approach to the problem of automating com­
munications is the category of software that is commonly
referred to as "software agents" or "mobile agents". An
example is a platform for communications applications
developed by General Magic, Inc. called Telescript. The
Telescript language is an object-oriented, remote program-

6
ming language with three core concepts: agents, places and
"go". Agents "go" to places, where they interact with other
agents to get work done on a user's behalf. Agents are
mobile programs capable of transporting themselves from

5 place to place in a Telescript network. The language is
implemented by the Telescript engine. The Telescript engine
is a multitasking interpreter that integrates onto an operating
system through a programming interface called the Tele­
script API. The Telescript engine operates on server com-

10 puters connected over a communications network. Telescript
agents can operate independently anywhere within these
server computers to control the transfer of message data and
perform programmable actions upon that message data. For
example, if a message recipient is not available, the message

15 could be rerouted to a different location, rather than being
returned to the sender undelivered. Telescript is similar to
other agent technologies in that the architecture is based on
agents interacting with other agents on server computers
running agent "engines" or interpreters. In this architecture,

20 the establishment of a communications relationship requires
two agents: one to represent the provider and one the
consumer. Although agent programming systems like Tele­
script provide the necessary tools for creating these agents,
it is still necessary for both the provider and consumer to

25 create and administer the necessary agents. Furthermore,
Telescript does not provide a specific model for the filtering,
storage, and indexing of communications between a pro­
vider and consumer via agents. Lastly, agent architectures
require the addition of servers running agent interpreters to

30 the communications network in order to operate, increasing
the expense and complexity of the network.

A more specialized type of agent technology is delivery
agents. Examples include Digital Delivery from Digital
Delivery, Inc. and PointCast from PointCast Inc. Delivery

35 agents do not require a network of specialized servers, but
instead operate directly on a consumer's computer to
retreive information of specific relevance to the user over a
network. They are created by a particular provider to supply
information from a server or servers under that providers

40 control, or from a more generalized news source such as a
wire service. Delivery agents allow a consumer to specify
his/her topics of interest, which the delivery agent then uses
to filter the available news stream and show the user only the
information of interest. Delivery agents are also capable of

45 storing and indexing the received data for the consumer.
Other than communicating the consumer's topic preferences
back to the provider, however, delivery agents do not
provide a way to control or process other communications
between the consumer and provider. In addition, since each

50 delivery agent is typically designed as a separate executable
program which must be installed and run separately, the
consumer is limited as to the number of delivery agents the
consumer can manage and run.

Another approach to automating communications and
55 data transfers is shared replicated database systems such as

Lotus Notes and Collabra Share. With these systems, infor­
mation to be communicated is entered via a client program
into one or more databases which may reside locally on
client computers or on network server computers. These

60 databases are then replicated to other server computers or
local client computers throughout the system so that the data
can be easily accessed by any other user of the system who
needs the information and has the proper access privileges.
Access privileges are controlled by one or more system

65 administrators via the system servers. Some of these
systems, notably Collabra Share, also allow users to "sub­
scribe" to specific databases. These users can receive an

US 6,757,710 B2
7 8

with all communications networks shared by the provider
and consumer; which allows both parties to automatically
control, filter, store, index, and process communications
from the other; which allows both providers and consumers

5 to share many common communications services; and which
allows both parties to easily manage, copy, transfer, and
terminate the communications relationship.

e-mail notification from a database agent monitoring the
database when a new entry or a certain condition has been
made in that database. These systems may also employ
electronic forms and forms processing languages to structure
the data being entered into a database, and to take program­
mable actions based on the data entered. The architecture of
these systems is designed for groups of users to share
information related to specific topics, and to automate the
transfer of data between different computer applications
used by an organization. For this reason the core data 10
structure of the architecture is a subject database or "forum".
Each subject database covers a number of related interest
topics under which all entries in the database are catego­
rized. All copies of any subject database are synchronized
throughout the system when data in any one copy has been 15
changed.

While suitable for information sharing amongst the mem­
bers of a group, this architecture is not well suited for
automating communications relationships among a large
number of information providers and consumers. First, all 20

the providers and consumers need to be interconnected
through the system in order to communicate. This could be
done by having all providers and consumers enroll in one
large system in which they all had access privileges. In such
a system each provider would need to have at least one 25

subject database for communicating with his/her consumers.
This enormous number of subject databases would then need
to be replicated among the large number of servers required

SUMMARY OF THE INVENTION

The disadvantages of existing communications control
systems are significantly overcome by the present invention
in which software programs being executed by a provider
computer and consumer computer communicate directly in
order to maintain a communications control structure. This
structure originates at the provider computer and is trans­
ferred to the consumer computer. Changes to the structure on
the provider computer result in an updated version being
transferred to the consumer computer. The communications
control structure contains a combination of data, metadata,
and instructions which are used by the respective programs
to control the origination of outgoing communications and
the processing of incoming communications between the
provider and consumer.

In one aspect of the present invention, a communications
system is used to coordinate communications between pro­
viders and consumers. Provider computers transfer informa­
tion stored in the provider computer through a communica­
tions network to a consumer computer. The information
includes processes for updating the transferred information
in the consumer computer when the information in provider
computer has changed. For "push" processes, the provider
computer maintains address data necessary to transfer
updated information to various consumers. For "pull"
processes, the consumer computer uses information trans­
ferred from the provider to access a location where the
provider information is stored to determine whether it has
been updated and to retrieve it if necessary.

According to another aspect of the present invention,
existing communications networks and network accessing
programs are used to increase the functionality of the
communications system. The Internet and World Wide Web,
or similar type networks, are used to access and transfer the
information. According to this aspect, information is created
and maintained according to a recognized protocol, such as
HTTP, MIME and HTML, which can be used to access other
information. An appropriate display program, such as a web
browser, is used to retrieve and display the information.

According to another aspect of the present invention,
programs operating on the provider computer and consumer

to service the complete population of the system, which
would quickly overwhelm the capacity of the servers or 30

network to handle replication. A more realistic alternative
would be to have each provider or group of providers
operate and administer their own system, making their
internal subject databases available to consumers via public
data networks such as the Internet. Consumers would use the 35

system client software to "subscribe" to the subject data­
bases of each provider with which they desire to commu­
nicate. Only the subject databases a consumer subscribed to
would be replicated on his/her desktop. This solution would
spread the replication load to a large number of servers, each 40

handling a smaller amount of traffic. However, each server
would now have to manage replication for a large number of
external consumers as well as internal group members.
There is no easy way to distribute this replication load to the
consumer's computer. Second, subject databases do not 45

allow the consumer to control and filter the incoming
communications from providers. Consumers must still scan
the databases for items of interest. Providers could over­
come this by creating a subject database for each interest
topic, but the additional administrative and server replica­
tion overhead would strongly discourage this. Third,
because notification of new information is handled via a
separate application, e-mail, the consumer is forced to
coordinate notification and data storage/response among two
communications systems. Fourth, since subject databases 55

are replicated from the servers, they do not give consumers

50 computer operate as state machines in connection with an
appropriate display program. The programs operate to
receive information requests from a display program and to
generate a next display containing the requested informa­
tion.

an easy way to copy or transfer them to other consumers.
Finally, because the entire system depends on server-based
replication, administrative changes or reconfigurations of
these servers such as system name or address changes 60

require administrative updates to all subscribing consumers,
a job which consumers must handle manually.

Consequently, a need exists for a communications control
system which allows providers and consumers to quickly
and easily establish an automated communications relation- 65

ship; which automatically updates both parties with changes
in communications control data from the other; which works

According to another aspect of the present invention,
information is organized in a form which simplifies transfer
of data, metadata, and instructions. Object oriented pro­
gramming is used for combining data, metadata, and meth­
ods for storage and transfer. Specialized object classes and
type definitions are used to provide intelligence in process­
ing of transferred information. Elements in an transferred
object can be used by the consumer computer to filter
information and provide selective notification to a user of
changed information. The combination of methods and data
permits joint control by the provider and consumer over the
information transferred, together with how updates,
responses, and acknowledgments are processed.

US 6,757,710 B2
9 10

According to another aspect of the invention, the provider
and consumer programs and databases are combined to
obtain additional functionality. The communication system
can allow multiple users for a single program add database.

According to another aspect of the invention, a provider
program is used to create, edit, and maintain data, metadata
and instructions in a provider database. The provider pro­
gram also controls distribution of the information to various
consumers. Different information contained in the provider
database can be transferred and used in communications
relationships with different consumers. The provider data­
base includes information associating the information with
each potential recipient. The association information is used

5 The data, metadata, and instructions coordinate the opera­
tion of the programs for each user and allow for communi­
cations between users of the single database.

to selectively distribute information and information
10

updates. The provider program also receives and uses infor­
mation from the consumer computer to control encoding and
transfer of information to the consumer computer. Accord­
ing to another aspect, the provider program uses a markup
language to format the information for transfer.

According to another aspect of the invention, a consumer 15

program is used to receive and process the transferred
information. The consumer program receives information
from the provider or polls a location identified by the
transferred information to determine when information has
been updated by the provider. The consumer program then 20

retrieves the information from the proper source and com­
pares it to the existing information to determine what has
been updated. The consumer program maintains a database
of information from different providers. When updated
information is received, the consumer program executes 25

instructions associated with the information to store the
updated information, notify a user of updated information,
and generate responses for the consumer. The consumer
program also can transfer the information to second con­
sumer computer. The second consumer computer can obtain

30
updated information from the provider computer or have it
forwarded by the first consumer computer.

According to another aspect of the invention, methods in
the communcations objects are used to automate control of
underlying communication operations. When certain actions
are taken by a user, or when certain types of messages or 35

objects are received, the respective consumer and provider
programs can operate automatically based upon selected
methods and operations in order to act with or without input
from the users. For example, acknowledgements can be
automatically formatted and sent. Also, objects can be 40

automatically transferred to others. The consumer program
can transfer the information to a second consumer computer,
with or without notification or approval of the user of the
consumer program. The second consumer computer can
then obtain updated information from the provider computer 45

or have it forwarded by the first consumer computer.
Exchange of significant data, metadata, and methods, and
archiving or retrieval of changed objects can be automati­
cally carried out by the programs. Methods can also be used
to coordinate suspension or termination of communications 50

relationships.

With these and other objects, advantages and features of
the invention that may become apparent, the nature of the
invention may be more clearly understood by reference to
the following detailed description, the appended claims, and
the several drawings attached hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a communications system according to
an embodiment of the present invention.

FIG. 2 illustrates an embodiment of the provider program
and consumer program of FIG. 1 as state machines.

FIG. 3 illustrates object oriented data structures for stor­
ing communications data.

FIG. 4 illustrates the lower branches of FIG. 3, and
instances of various elements.

FIG. 5 illustrates the use of a system ID server.

FIGS. 6A and 6B illustrate object oriented data structures
for storing system ID data within the system ID database and
for user objects.

FIG. 7 illustrates a pull method of transmission of a
communications object.

FIG. 8 illustrates a push method of transmission of a
communications object.

FIG. 9 illustrates operation of a provider program of FIG.
1 according to an embodiment of the present invention.

FIGS. lOA and lOB are block flow diagrams of operations
of the processes for form submissions and update associa­
tions.

FIG. 11 is a block flow diagram for a process for distrib­
uting a communications object.

FIG. 12 is a block flow diagram for a communications
object generation and transmission routine.

FIG. 13 illustrates operation of a consumer program of
FIG. 1 according to an embodiment of the present invention.

FIG. 14 represents a user interface display for a form for
inputting information in conjunction with an embodiment of
a consumer program.

FIG. 15 is a block flow diagram for a process for receiving
a communications object.

FIG. 16Ais a block flow diagram for the main event loop
of the consumer or provider program.

FIG. 16B is a block flow diagram for the scheduled event
loop of the consumer or provider program.

FIG. 17 Illustrates the object oriented database structures
55 for different communications object types.

According to another aspect of the invention, service
objects and partner servers are used to provide data,
metadata, and instructions which can be used by providers
and consumers to automate various communications ser­
vices desired by both. The data, metadata, and instructions
are received by the provider and consumer computers in the
same manner as information is received by the consumer
computer. The provider can include data, metadata, and
instructions in the service object in the information trans- 60

ferred to the consumer computer. The information trans­
ferred from the service partners also controls communica­
tions with the service partner for both providers and
consumers. Both providers and consumers can use service
objects to communicate with a partner server in order to 65

obtain communication services provided by the partner
server.

FIG. 18 illustrates object oriented data structures used for
distribution control.

FIG. 19 is a block flow diagram for a process for
generating an object when page distribution control is used.

FIG. 20 illustrates operation of the communications sys­
tem for distribution control using a pull method of trans­
mission.

FIG. 21 illustrates operation of the communications sys­
tem for encoding control.

FIG. 22 illustrates a user interface display of a form for
creating notification elements in the provider program.

US 6,757,710 B2
11

FIG. 23 illustrates a user interface display of notification
elements on a edit object form in the consumer program.

FIG. 24 illustrates a user interface display of a notification
report.

FIG. 25 illustrates operation of the communications sys­
tem for data exchange involving technical support of a
software product.

FIG. 26 illustrates a user interface display of technical
support options for users of a software product.

FIG. 27 illustrates a user interface display of an input
form for gathering technical support information.

FIG. 28 illustrates operation of the communications sys­
tem for service objects.

12
DETAILED DESCRIPTION

System Overview
There is illustrated in FIG. 1 a first embodiment of a

system of the present invention which automatically updates
5 a database in a consumer computer with information from a

provider computer. Numerous providers and consumers
exist in the system of the present invention. However, since
all communications can be separated into transfers between
a single provider and consumer, the design and operation of

10 the system is illustrated with only one provider and one
consumer, except as otherwise noted. As illustrated in FIG.
1, a provider computer 1 includes a provider database 11 of
communications control information which it desires to

FIGS. 29A and 29B illustrate object oriented data struc- 15

tures for a directory system and a message or discussion
thread.

disseminate or make accessible to one or more consumers.
A consumer computer 2 includes a consumer database 21 of
communications control information received from provid-
ers and stored by the consumer. The organization, structure,
and content of the provider database 11 and consumer
database 21 are discussed below. The provider computer 1 is

FIG. 30 is a block flow diagram for a process for creating
directory listings using service objects and partner servers.

FIGS. 31A and 31B are block flow diagrams of processes
for updating directory listings and monitoring category
objects using service objects and partner servers.

FIGS. 32A, 32B, and 32C are block flow diagrams of
processes for use of authentication service objects.

FIGS. 33A and 33B are block flow diagrams of processes
for use of public key certificates.

FIGS. 34A and 34B are block flow diagrams of processes
for use of classified ad service objects and partner servers.

FIG. 35 is a block flow diagram for a process for
monitoring classified ad listings.

FIG. 36 is a block flow diagram for a process for
structuring and optimizing automated data exchange using a
communications object system.

FIG. 37 is a block flow diagram for a process for creating
payment accounts using service objects and partner servers.

FIG. 38 is a block flow diagram for a process for
executing payment transactions using service objects and
partner servers.

FIG. 39 is a block flow diagram for a process for returning
a transaction receipt using service objects and partner serv­
ers.

FIG. 40 is a block flow diagram for a process for
anonymous reporting using service objects and partner serv­
ers.

FIGS. 41Aand 41B are block flow diagrams for processes
for submitting feedback using service objects and partner
servers.

20 connected through a communications network 3 to the
consumer computer 2. Any communications network 3 may
be used to connect the provider computer 1 and the con­
sumer computer 2, including direct network connections,
server-based environments, telephone networks, the

25 Internet, intranets, local area networks (LANS), wide area
networks (WANS), the World Wide Web, other webs, and
even transfers of data on physical media such as disks or
computer-readable paper outputs via postal communications
networks. The particulars of the communications network

30 illustrated as preferred embodiments are not limiting fea­
tures of the invention. However, the Internet and World
Wide Web provide existing capabilities between computers
sufficient to provide the necessary connections. For this
reason, the description of the present invention is based on

35 this communications medium, which should be understood
to be used for purpose of illustration only. Organization and
operation of the Internet and communications over the
Internet are discussed generally in Kris Jamsa and Ken
Cope, Internet Programming (1995) and Marshall T. Rose,

40 The Internet Message: Closing the Book with Electronic
Mail (1993), which are incorporated herein by reference.
Communications over the World Wide Web are discussed
generally in John December and Neil Randall, The World
Wide Web Unleashed (1996), which is incorporated herein

45 by reference. Additionally, the illustrated embodiment is not
limited to the specific networks known as the "Internet" and
"World Wide Web", but relate to internet, intranet and web
networks generally. A specific feature of this invention is

FIG. 42 is a block flow diagram for a process for multiuser
50

editing using single-user versions of the combined provider/

that it is easily adaptable to control and automate commu­
nications via any type of communications network. In
addition, it can select a preferred communications network

consumer program.
FIG. 43 is a block flow diagram for a process for

coordinating fax document delivery using a communications
object system.

FIG. 44 is a block flow diagram for a process for
coordinating physical package delivery using a communi­
cations object system.

FIG. 45 is a block flow diagram for a process for
coordinating telephone calls using a communications object
system.

FIG. 46 is a block flow diagram for a process for
scheduling telephone calls using a communications object
system

FIG. 47 illustrates an object-oriented user interface of a
provider program of FIG. 1 according to an embodiment of
the present invention.

and message encoding format to be used for a specific
communications transaction, as further described below.

As illustrated in FIG. 1, there are two principal methods
55 for information transfer in a data communications system,

both of which can operate through the Internet. First, a
"pushing" method transfers information from the provider
computer 1 directly to a known consumer computer 2. An
example of such a system is e-mail. So long as the consum-

60 er's address is known, the information can be routed through
the communications network directly to that recipient. For
the pushing method, the provider must know the consumers
who want to receive the information. The provider must also
know how to address those recipients in the communications

65 network.
The second method, referred to as "pulling", occurs when

the consumer computer 2 requests and initiates a transfer of

US 6,757,710 B2
13

information directly from a provider computer 1 or from
another server computer 32 located on communications
network 3 on which a copy of the information has been
placed for distribution. An example of such a distribution
server 32 is when a copy of the information is placed on a 5

web server and accessed by the consumer computer 2. In the
pulling method, the provider and the provider computer 1 or
distribution server 32 do not need to know ab initio, the
identity or location of consumer computers 2. Rather, the
consumer computer needs to know the location of the 10

provider computer 1 or distribution server 32 and the
location of the desired information to be accessed on such
computers.
Basic Operation of Programs for Communications

14
mation is transferred to the consumer computer 2, through
either the push or pull method. Upon receipt, the consumer
program 22 will process the changed information and store
the new telephone number in the consumer database 21 for
later access by the user or by other programs operating on
the consumer's computer 2. At the consumer computer 2, the
consumer may or may not be interested in overt notification
of the new phone number; this depends on the consumer's
relationship with the provider and how often and in what
manner the consumer makes use of the phone number. This
invention provides a way for notification to be cooperatively
controlled by both the provider and consumer through the
use of notification elements, which are described below.

Additionally, receipt and storage of the new or updated
Appropriate programs executing on the provider com­

puter 1 and the consumer computer 2 perform the functions
necessary to transfer, maintain, and update the information

15 information can trigger other actions, such as automatically
forwarding the information to another consumer, exchang­
ing data with the consumer database 21, sending an auto­
mated response to the provider, or sending a message to
another software program on the consumer's desktop.

at both locations. A program represents a set of stored
instructions which are executed in a processor of the com­
puter to process data, transmit and receive data, and produce
displays. The provider program 12 operates to transmit
changes in information stored in the provider database 11 at
the provider computer 1. When changes are made to the
information and the database, the provider program 12
operates to disseminate the changed information through the 25

communications network 3. In the pushing method, the
provider program 12 transmits the changed information, for
example through e-mail, to the consumer computers 2 of all
intended recipients. In the pulling method, the changed
information is stored on a distribution server 32, such as a 30

web server, which then can be accessed by the consumer
computer 2. Any type of distribution server may be used,
including network file servers, FTP servers, gopher servers,
and so on. The type of distribution server used is not a
limiting feature of the invention. The consumer program 22 35

will typically poll the distribution server 32 to determine
whether the information has changed. This polling operation
can be as simple as issuing a Web server HTTP file date
request and comparing this with the file date of the last
update. Polling is controlled by the information transferred 40

from the provider program to the consumer program as
further described below. Upon receipt of changed
information, the consumer program 22 operates to perform
certain functions with regard to that changed information.
Principally, the information is stored in consumer database 45

21 on the consumer computer 2 for future reference and
usage in controlling and automating communications
between the consumer and provider. Furthermore, the infor­
mation may be presented to a user at the consumer location,

20 Again, this invention provides a means for such actions to be
cooperatively controlled by both the provider and the con­
sumer through the use of receipt methods, which are dis­
cussed below.

so that the user will be notified of the changed information. 50

The information can be presented in a number of manners,
including display or printing by the consumer program,
sending an e-mail or voice-mail message to the user, paging
the user, and other notification methods.

Since the provider knows what the changed information is 55

and how consumers would likely prefer to be notified of the
changed information, the transmitted information can
include instructions on how the consumer program 22
should process the information for purposes of notification.
For example, information from a provider may include the 60

provider's telephone number. If the telephone number
changes, the provider needs to supply everyone with whom
it does business with the new number. The present invention
provides a simple mechanism for carrying out such a data
transfer, and of controlling which consumers receive overt 65

notification. When the telephone number is changed in the
distribution database at the provider computer 1, the infor-

The information stored in the consumer database 21 can
also include data, metadata, and instructions to be used by
the consumer program 22 for controlling and automating
communications between the provider and consumer. Again,
because the provider of the information knows what com­
munications response options are available to the consumers
of the information, the provider can include the necessary
data, metadata, and instructions to simplify and automate
specific responses from the consumer to the provider. For
example, the provider can include Web URL (Uniform
Resource Locator) links to Web pages or forms on the
provider's Web server. Or, the provider can also include
special forms to be processed by the consumer program 22
that allow the consumer to automatically or semi­
automatically transfer data from the consumer database 21
back to the provider. Examples include product order forms,
survey forms, customer service request forms, scheduling
forms, etc.

In the most general case, the provider knows what com-
munications networks, network addresses, languages,
encoding formats, data structures, and other communica­
tions processing data and methods are supported by the
provider. Thus, the provider can include in the transferred
information the data, metadata, and instructions necessary to
control and coordinate general communications from the
consumer to the provider or to parties related to the provider.
For example, data, metadata and instructions in the trans­
ferred information can be used by the consumer program 22
or other computer programs running on the consumer com­
puter 2 to automatically format, compress, encrypt, address,
and transmit copies of a word processing document,
spreadsheet, database or database query, or other computer
file format. Corresponding data, metadata, and instructions
in the provider program 12 can control and automate the
reception of the received message, including decryption,
decompression, notification of the provider, and acknowl­
edgment of receipt to the consumer. The same control
technique can be applied to the execution of real-time
communications, such as telephone calls,
videoconferencing, or whiteboard applications.
HTML and HTTP Server Program Format

Although any kind of data communications network and
any kind of user interface can be used, the system can be
constructed to work with existing Internet or World Wide

US 6,757,710 B2
15 16

Web protocols for data communications and display. In
particular, the provider program and the consumer program
can be designed to use HyperText Mark-up Language
(HTML) for display and editing. HTML is discussed in
Internet Request for Comment No. 1866, which is incorpo- 5

rated herein by reference. The use of HTML allows links to

a method, then the method is executed using any additional
data supplied in the URL (step 57). After the method has
been executed, the consumer program generates a new
HTML page based upon the results of the method.

The user enters information to be operated upon or stored
by the consumer program through the use of HTML forms.

be made to other transmitted information or to other infor­
mation accessible anywhere on the World Wide Web. Also,
HTML forms can be used as an input mechanism. Standard
Internet protocols for accessing the Web can also be used for
accessing the information in the provider or consumer
databases. To do this, the provider program and consumer
program are designed to emulate a Web HyperText Transfer
Protocol (HTTP) server. Then, any Web browser program
conforming to the HTML/HTTP standard can generate Uni­
form Resource Locator (URL) requests to retrieve informa­
tion from the provider and consumer programs and data­
bases. A Web browser program is a set of instructions which
causes the computer to execute information requests to
various kinds of servers. The servers responded by trans­
ferring HTML files or other data files back to the browser
program for display, processing, and storage. Protocols or
formats other than HTML/HTTP can be used in the same
manner, with an appropriate interface program for
requesting, receiving, processing, and displaying data in
accordance with the selected protocol or format. The opera­
tion of the provider and consumer programs in connection
with the Web browser program is illustrated in FIG. 2. Since
the provider and consumer programs operate identically in
this regard, only the operation of the consumer program will
be discussed.

As illustrated in FIG. 2, the consumer program 22 can be
constructed to operate as a state machine in connection with

If the HTML page generated by the consumer program (step
53) includes a form, then the user can enter information in
designated locations in the form. When the information has

10 been entered, the form is submitted by selecting a button on
the page, and a set of program instructions (method) desig­
nated by this button is executed to process the inputted
information. Many browser programs can cache HTML
documents, so that a user could have several forms open at

15 one time. Since the consumer program works as a state
machine, it expects the last form generated to be the next one
returned. If the user switches the order of the forms, a state
error could occur. To prevent errors, each form produced by
the consumer program can be provided with a state version

20 value. If the version value of the returned form does not
match the current state of the consumer program, then an
error message can be returned rather than processing the
forms out of order.

Alternatively, the provider and consumer programs 12, 22
25 could include separate native interfaces which include the

display and processing functions found in a browser
program, as well as the ability to provide additional
functionality, such as that available in advance graphical
user interfaces like those of Microsoft Windows, Windows

30 95, and Apple Macintosh operating systems. The use of an
object-oriented graphical user interface will be specifically
discussed below. The provider and consumer programs 12,
22 may also call other Web helper applications or "applets",
such as those produced with Sun Microsystem's Java pro-a Web browser program 50. The consumer program 22

generates and outputs a first HTML screen (step 53) to the
Web browser. If necessary it also issues an operating system
call such as a Windows DDE request or Macintosh
Apple Event to the browser to accept this HTML file. It then
waits for an HTTP request from the Web browser program
50. The HTML screen can include information having one 40

or more different types of displayed information, namely,
text, graphics, hyperlinks, and forms. Text and graphics
refers to information which is only viewed by the user.
Hyperlinks associate specific text characters or graphics
display locations with specific URL requests. Forms provide 45

locations for inputting data such as text, numbers,
checkboxes, and "radio buttons" to be acted upon. Hyper­
links and forms allow HTML documents to be used for all
program operations including menus, editing, reports, and
error messages. The Web browser program 50 displays the
HTML page received from the consumer program 22 (step
54). The user operates on the displayed page in the same
manner as for any information accessed through the Web
browser program 50. The user can review the text or
graphics, manually input a new URL request into the Web
browser's URL input field, chose a hypertext link to auto­
matically generate a URL request, or complete and submit a
form. The Web browser program, typically, can also be used

35 gramming language or other programming languages, to
provide additional interface functions.
Basic Data Structures

Information can be stored in the provider and consumer
databases 11, 21, transferred between the provider and
consumer programs 12, 22, and processed by these programs
in a variety of ways. The use of software objects and
object-oriented databases, and in particular their ability to
encapsulate data and methods for operating on that data in
a single structure, provide certain degrees of functionality
which are useful in the storage, transfer, and processing of
information. For example, by using objects for transmission
of the communications control files, and an object-oriented
database for storage of these files, the received object can be
stored by the consumer program 22 in its database 21

50 without having to disconnect and store the object's variables
and methods independently. In addition, the data and meth­
ods of this object can be made available to other objects in
the database or program for processing operations. Object
oriented data structures, databases, programs, and process-

55 ing are generally discussed in Grady Booch, Object Ori­
entedAnalysis and Design with Applications, (2nd ed. 1994)
and James Rumbaugh, Object-Oriented Modeling and
Design (1991), which are incorporated herein by reference.
Thus, the following description of a preferred embodiment to move forward and backward through previously received

screens. Each of the user's actions, except reviewing text
and graphics, results in a URL request being generated. The
URL request is sent to the consumer program 22, acting as
a Web server (step 55). The consumer program processes the
URL request to determine whether it refers to a document or

60 will discuss the use of objects. However, other methods for
storing, transferring, and processing information, such as
relational databases, binary files, or procedural programs,
could be used.

a method (step 56). If the URL request is for a document, the 65

consumer program generates the new HTML page and sends

As discussed above, the provider computer 1 includes a
provider database 11 operated on by provider program 12,
and the consumer computer 2 includes a consumer database
21 operated on by consumer program 22. However, since it to the Web browser program (step 53). If the request is for

US 6,757,710 B2
17 18

4. Primitive types can include the conventional bottom-level
data primitives supported by most programming languages,
such as dates 181, floating point numbers 182, logicals 184,
integers 185, binaries 186, etc. Text 189 is a constrained

"provider" and "consumer" are merely functional
distinctions, in a preferred embodiment, a single computer
and computer program would be able to operate as a
provider computer 1 in executing instructions of the pro­
vider program 12 and as a consumer computer 2 in executing
instructions of the consumer program 22. In this instance,
only a single database may be used, if desired, to hold all of
the data for transmitted objects and for received objects. The
database structures described below could apply to a single
database, or to separate databases if the programs operated
separately. For ease of reference in describing operation of
the provider program and the consumer program, separate
databases will be illustrated.

5 form of binary 186. Range 188 is a multiplicity of other
primitive data types, such as array. As shown in FIG. 3,
aggregate types 155 represent a multiplicity of primitive
types 154, such as an array. Composite types 153 represent
a container of primitive types 154 or aggregate types 155

FIG. 3 uses a standard object-oriented notational format
to illustrate an embodiment of object classes in a single
database 100 of the present invention. As shown in the
global preferences object class 103, each object class
includes three parts: an identifier 103A, an attribute section
103B, and a method section 103C. The method section 103C
is used to perform operations on the attributes of the class.
Class associations are shown with connecting lines. A plain
line shows a one-to-one association. A line terminating in a
solid dot shows a one-to-many association. A line terminat­
ing in a open dot shows a optional (zero or one) association.

10 that is useful in a communications context. For instance, a
composite type might be PhoneNumber. A composite type
153 is composed of one or more fields 152 which each
contain primitive types 154 or aggregate types 155. For
example, a composite type PhoneNumber may include fields

15 for usage, country code, area code, number, extension, and
notes, each with its corresponding primitive type. A field 152
may also contain another composite type 153. In this way
composite types can be nested. For example, a composite
type BusinessCard could contain composite types Identity,

20 PhoneNumber, PostalAddress, EMailAddress, and Contact­
Notes. Composite types are further explained in the discus­
sion of elements below.

Type definitions provide a powerful tool for structuring
the data included in a communications object, object update,
or object message. This structured data provides the com­
mon "frame of reference" necessary to automate communi-
cations operations between a provider and consumer. It also
allows communications objects to call each other's methods,
and for other software programs to call the methods con-

A diamond at the start of a line shows an aggregation 25

association, i.e., the higher class contains the component
classes. Inheritance between classes is shown with a branch­
ing line. Only certain attributes and methods are shown in
object classes; many others have been omitted for clarity.
Class Overview

There are seven principal object classes: communications
objects 110, recipients 120, rules 130, methods 131, pages
132, elements 133, and type definitions 134. Communica­
tions objects are the primary data structure transmitted from
the provider program to the consumer program to control 35

communications between the provider and consumer. Like
any software object, a communications object consists of
attributes and methods. The type definitions class is used
together with the elements and pages classes to specify the
attributes of the communications object. The methods class 40

and rules class are used to specify the methods of the
communications object. By using separate object classes to
define the attributes and methods that will be included in a
particular communications object instance, a wide variety of
communications objects can be created and managed within
the same system.

3D tained in communications objects stored in the consumer
database 21. The latter technique requires the use of an
Applications Programming Interface (API) which will be
further discussed below.
Elements

"Elements" are the primary attributes of a communica­
tions object. An element 143 might be a phone number, a
postal address, an e-mail address, a text field, and so on. As
illustrated in FIG. 3, an element has data of a composite type
153 with a corresponding composite value 163. A composite
value 163 is composed of field values 162 in the same way
a composite type 153 is composed of fields 152. For
instance, the field values for the composite value Phone­
Number corresponding to the composite type PhoneNumber
described above could be "voice, 10188, 206, 812-6000,

Recipients include all the consumer computers 2 who
receive a copy of the communications object via push
distribution, or the distribution servers 32 who receive a
copy of the communications object for pull distribution.

45 x101, Business hours are 9-6 daily M-F". As with fields
152, field values 162 are either an aggregate value 165,
primitive value 164 or composite value 163. The value class
161 represents an abstract class inherited by the aggregate
value 165, primitive value 164 and composite values 163

The rules 130, methods 131, pages 132, elements 133, and
type definitions 134 classes are all special container classes

50 classes. Aggregate values 165 represent a multiplicity of
primitive data values, such as an array. Primitive values 164
contain the values corresponding to the lowest level primi­
tive types. These are shown in the continuation of the class
hierarchy in FIG. 4. Primitive values include date values

of the rule 140, method 141, page 142, element 143, and
type definition 144 classes. These special container classes
are used to facilitate the rendering of an instance of a
communications object in the object markup language used
for object transmission, as described further below. For this
reason the descriptions following will discuss only the rule
140, method 141, page 142, element 143, and type definition
144 classes. Collectively this set of classes will be referred 60

to as the "component" classes of a communications object.
Type Definitions

55 171, floating point number values 172, nil values 173,
logical values 174, integer values 175, and binary values
176. Text values 179 are a constrained form of binary values
176. Logical values branch into true values 177 and false
values 178.

The type definition class 144 is used to define the various
data types which may be used in the elements of a commu­
nications object. Type definitions can be of primitive type 65

154, aggregate type 155, or composite type 153. The inher­
itance tree for the primitive type 154 class is shown in FIG.

Many elements with defined composite data types and
composite values are specifically useful in the context of
communications automation. Standard element composite
types can include standard types of contact information that
might typically be shared between providers and consumers
in the context of a communications relationship. These
include names, titles, phone numbers, fax numbers, postal
addresses, e-mail addresses, URLs, and customer numbers.

US 6,757,710 B2
19

Nested composite types, such as the business card, allow for
powerful combinations of smaller composite types.

20
longest refresh interval (to limit the total time one full object
update cycle can take), and the Setting field specifies the
actual interval to be used (the provider's recommended
setting would be used by default). The provider would

Other element composite types are useful for the storage,
transmission, and display of communications content
between the provider and consumer. Elements of this type
include text blocks, graphics, and HTML. HTML elements
are especially useful in the preferred embodiment as they
can contain standard HTML documents which the consumer
program 22 can pass directly, or with minor modifications,
to the Web browser 50 for display. This allows the provider
to control the appearance of data on all or a portion data
being displayed, and also allows the provider to include
URL links to the provider's Web server or any other related
Web documents. These links can be activated immediately

5 initially fill out these three fields, then the consumer would
be able to edit the Setting field within the Minimum and
Maximum allowed. (Enforcement of this requirement could
be provided by a rule 140.)

Another example of a preference element is a notification
10 element. Notification elements are used to control how a

by the consumer when viewing the communications object 15

using the Web browser 50 just as with conventional HTML
documents. HTMLelements may also include the provider's
own HTML forms for acquiring information from the con­
sumer when the object is transferred. Just as nested com­
posite types of contact data elements can be combined into 20

more comprehensive types such as business card elements,
nested composite types for communications content can be
combined into more comprehensive types such as message
elements. Message elements combine text headlines with
graphics, HTML, and other body content into full multime- 25

dia messages which can be filtered, sorted, and displayed by
the consumer program 22.

Elements 143 may also be associated with methods 141 or
rules 140. This is particularly useful for data exchange
elements, which control the process of exchanging data 30

between the consumer program 22 and the provider program
12 or another server program. Two specialized types of data
exchange elements are useful for controlling the transmis­
sion of data external to the provider database 11. Attachment
elements allow a provider to specify external files, objects, 35

or other data stored in the provider's local or network
computing environment to be included in the transmission of
a communications object, communications object update, or
message object. Query elements allow a provider to execute
a query against a local or network database and have the 40

results included in the transmission of a communications
object. Data exchange elements, attachment elements, and
query elements will be further explained in the description
of data exchange control below.

Another category of element composite types is link 45

elements. Link elements within a communications object are
the equivalent of URLs within a Web document. They create
associations between different elements of an object, differ­
ent pages of an object, or different communications objects.
Alink element can also be a URL, linking the element to any 50

Web page or other resource available on the World Wide
Web. By associating a link element 143 with one or more
link methods 141, even more powerful "link components"
can be created. Component objects and link components will

consumer is notified of new information when the object,
object update, or object message is transferred. The format
and structure of notification elements are discussed below in
connection with the special processing notification elements
receive. Any other consumer-editable preference regarding
communications object attributes or method processing can
be expressed as an preference element. Preference elements
receive special processing by the consumer program 22 and
storage in the consumer database 21 which will be further
described below.

In addition to its composite type and composite value,
each element 143 includes standard attributes such as system
ID, name, description, version value, NewFlag, and Hold­
Flag. The system ID is a unique identification value in the
database 100. Identification number assignments throughout
the database are discussed below. The name is a label used
to identify the element to the provider or consumer. The
version value is used to coordinate updates each time the
element is changed. The NewFlag is set to TRUE each time
an element has been changed by a provider so that new
information can be indentified for distribution by the pro-
vider program 12, and identified for updating when trans­
ferred to the consumer program 22. The HoldFlag is used to
identify changed elements which are not yet to be distrib­
uted. The structure and content of elements may be more
fully understood in connection with the description of noti-
fication elements discussed below.
Pages

In order to organize the many elements 143 which can be
contained in a communications object 110, one or more
container classes may be desired. Container classes allow
the grouping of elements for purposes of display, editing, or
other program operations. Container classes are also useful
for distribution control, which will be discussed below.
Different types of container classes can be implemented, and
container classes can contain other container classes. FIG. 3
illustrates the implementation of one primary container
class: the page class 142. A page contains one or more
reference instances 146 which associate elements 143 with
the page. References may contain attributes such as Dis­
playOrder which control the display order of the elements on
the page. Each element 143 must assigned to at least one
page 142 in order to be transmitted with an object, however
an element may be included on more than one page 142.

be explained further below. 55 Standard page attributes are similar to the standard element
attributes, i.e., SystemiD, Name, Description,
VersionNumber, NewFlag, and HoldFlag.

Special element composite types, called preference
elements, are used to control communications object pro­
cessing. Preference elements specify object attributes that
are editable by the consumer. For instance, a preference
element of a composite type Refreshinterval could govern 60

the polling interval used for object updates using the pull
method of updating. An element of type Refreshinterval can
consist of three fields 152: Minimum, Maximum, and
Setting, all of which could be primitive integer values
representing days. The Minimum field specifies the shortest 65

allowable refresh interval (to help reduce the load on the
provider's Web server), the Maximum field specifies the

Methods
The method class 141 is a form of metadata used to store

methods which may be included in a communications object
instance when it is transferred to a consumer. These methods
should not be confused with the methods belonging to each
of the other object classes in the system. A method object is
primarily a mechanism for storing a method in the database
for later inclusion in a communications object instance, at
which time the method becomes a formal method of the
communications object. Communications object methods

US 6,757,710 B2
21 22

are one of the most powerful aspects of communications
objects. They allow the provider to specify processing
instructions which will execute on the consumer's computer
when certain conditions exist in the consumer program. For
example, when a communications object is first received by 5

the consumer program 22, a "receipt method" can automati­
cally execute to return an acknowledgment message to the
provider with information about that consumer transferred
from the consumer database 21.

number of communications objects or recipients under a
particular software license. Rules may be understood further
in the discussion of communications object control functions
below.
Communications Objects

Communications objects 110 are the highest level data
structure because they serve as the container for type
definitions, elements, pages, methods, and rules. Each of
these is a one-to-many relationship. A type definition 144,

A second purpose of instances of the method class 141 is
to execute procedures in the provider program 12 or con­
sumer program 22. These procedures can be instructions
involved with the process of creating and publishing com­
munications objects, or they can be instructions to be
executed when a message object is received from a com­
munications object. Message objects are discussed further
below.

Instances of the method class 141 may implement com­
munications object methods in several ways. The method
can simply be a call to execute a system method included in
the consumer program 22. The method can be actual instruc­
tions included in the object as program code in an executable
format or an interpretable format, such as a script format.
The method can be a call to the methods of another com-

10 element 143, page 142, method 141, or rule 140 must be
assigned to an object 110 in order to be transferred to a
consumer, however each type definition, element, page,
method, or rule may be included in more than one object
110. Communications objects have many of the same stan-

15 dard attributes as elements, pages, and methods, i.e.,
SystemiD, Name, Description, VersionNumber, NewFlag,
and HoldFlag. In addition communications objects also have
attributes that apply only to communications objects as a
whole. These attributes can include the markup language

20 version used to generate instances of the object, the objects'
age, and the number of published updates to the object,
receipt acknowledgment preferences, and other universal
attributes.

Communications objects can be of specialized types.
munications object located in the provider database 11 or 25

consumer database 21. The method can also be a remote
There are several approaches for accomplishing this. One
approach is to define communications object types using a
special CommObjectType element included within or refer­
enced by the communications object itself. The preferred
embodiment of the present invention is to define commu-

procedure call to another object or application located
elsewhere on the consumer's computer or on a communi­
cations network 3 accessible from the consumer program.
This remote procedure call can be executed at the remote
computer, or it can be downloaded by the consumer program
for local execution. The application of communications
object methods to automating operations in the provider
program 12 or consumer program 22 will be further dis­
cussed below.

Methods 141 may be of specialized types. Method types
can be determined by a type attribute, or by method type
subclasses to which methods 141 are associated. Methods
types include receipt methods, public methods, private
methods, and system methods.
Rules

Rules 140 work in conjunction with methods to provide
the operational functionality of a communications object
system. Rules allow the provider database 11 and consumer
database 21 to operate as active object databases, capable of
initiating communications, database processing, or other
procedures based on time, system variables, system events,
or other conditions. Rules also supply constraints under
which methods operate. The usage of rules to control the
operation of an active object database is discussed generally
in Jennifer Widom and Stefano Ceri, Active Database Sys­
tems (1996), which is incorporated herein by reference.

Rules 140 consist of one or more conditions to be tested
against. Rules 140 are associated with methods 141 to
execute when the conditions are met. Rules 140 are typically
expressed in boolean logic using standardized query lan­
guages or other appropriate formats. Rules can govern the
behavior of individual communications objects, groups of
communications objects (such as all objects from a particu­
lar provider), all objects in the database, or general system
actions. Examples of common processing actions governed
by rules include backing up the database after X days or X
number of changes, deleting or proposing for deletion com­
munications objects that have not been accessed in X days,
archiving X number of previous copies of a communications
object or object component, using X amount of system
resources when Y conditions are present, and allowing X

30 nications object types as subclasses of the communications
object superclass. These subclasses are illustrated in FIG.
17. Primary communications object type classes include
message objects 110, composite objects 811, component
objects 812, synthesized objects 813, and service objects

35 815. Each of these subclasses will be further discussed
below.
Recipients

The Recipient class 120 is used to determine the distri­
bution of a communications object. Each communications

40 object 110 is associated with one or more recipients 120 who
receive an instance of the object when it is first created or
when changes are made to it. Recipients are of two types:
consumer programs 22, or distribution servers 32. A distri­
bution server 32 may also be represented by a distribution

45 service object. Distribution service objects are further dis­
cussed below. Transfer of communications objects 110 to
both types of recipients is typically via the push technique.
However recipients may also be tracked in the provider
database 11 even if they use the pull technique of updating

50 via the use of receipt acknowledgment messages. Acknowl­
edgment messages are further described below. The push
method may involve a fully automated transfer via a com­
munications network 3, or it may involve a manual transfer
such as a file copy over a network or via a computer floppy

55 disk. Recipient objects 120 include the attributes necessary
to generate and transmit an instance of the communications
object to the recipient. To uniquely identify recipients even
when names change, a SystemiD attribute can used in
addition to a Name attribute. System IDs are discussed

60 below. Other attributes include the recipient's communica­
tions network address, such as an e-mail address, the type of
encoding that should be used (e.g. MIME, BinHex,
UUencoding, etc.), and the maximum attachment file size
the recipient can accept (to determine if multiple attach-

65 ments need to be sent). Recipients 120 have an association
with methods 141 in order to allow different methods to be
assigned to different recipients. An example is the commu-

US 6,757,710 B2
23

nications object's update method. Communications objects
transmitted to consumers via e-mail push may use one
update method, while those transmitted to distribution serv­
ers may use a pull update method. Encoding methods,
transmission methods, and other recipient-specific methods 5

may also be assigned in this manner.
Recipients 120 also has an aggregate association with

acknowledgment 121 and page subscription 853. Acknowl­
edgment 121 has a one-to-one association with communi­
cations object 110. Acknowledgment 121 is where consumer 10

acknowledgment of the receipt of a communications object
can be stored. Page subscription 853 is the mechanism by
which a provider can control distribution by specifying
which pages are transferred to a recipient. Alternately, by
including in communications object 110 all instances of 15

page subscription 853 for all pages 142 associated with the
object but not necessarily transmitted to the consumer, the
provider can allow the consumer to choose which pages the
consumer wishes to receive. Distribution control is further

24
a communications network 3. Any type of machine readable
and writable format could be used, for example a com­
pressed binary file such as that used by most relational or
object-oriented database management programs. However,
for maximum compatibility with communications networks
3 and other data processing systems, object instances can be
written or read in an ASCII markup language, which is a
superset of HTML. As with HTML, or other standard
markup languages such as SGML, each item of structured
data such as an object class or container class is expressed
within a set of delimiters or "tags" defined in the markup
language. Certain classes in the database structure exist
specifically to provide the necessary container tags for other
classes. For example, in FIG. 3, the methods 131, pages 132,
elements 133, and type definitions 134 classes are all special
container classes used to provide the tags necessary to
delimit the methods, pages, elements, and type definition
sections of an object output in the markup language. Another
advantage of the use of an ASCII markup language is that

described below.
Other Classes

Four other classes in the database significantly involved
with program operations are global preferences 103, report
105, folder 115, and event 116. Global preferences 103
provides a means for storing the preferences of a provider or
consumer for general operation of the provider program 12
or consumer program 22. This may include attributes such as
the default menu to display upon program startup, the
default refresh interval to assign to new objects, the user's
preference for notification when new objects arrive, the
number of object archive copies the user wishes to keep, and
other such preferences. Global preferences 103 may also
include method preferences, such as the notification method

20 the data and methods contained in communications object
may be rendered readable to other data processing programs
for purposes of interoperability. Other programs may also be
programmed to output such a language or a subset thereof
for purposes of importing into a communications object

25 system program. The use of an ASCII markup language does
not preclude the use of additional formatting or encoding,
such as encryption, for the entire object or for portions of the
object.
Basic System Processes

30 System ID and Naming Services
Because communications objects and their component

type definitions, elements, pages, and methods are
exchanged among multiple providers and consumers, the
instances of these objects and components need to be to use when new objects are received, the method to use for

archiving versions of objects or object components, and the
method to use for backing up the database.

35 uniquely distinguishable in each provider database 11 and
consumer database 21. Name attributes alone cannot be

Report 105 is a class for storing report definitions and
report display or printing preferences. As in many database
management systems, reports may be defined by the system
or by the user, and can include any listings, statistics, or 40

analysis of value to the user.
Folder 115 is a container class useful for grouping objects,

particularly for consumers. Folder groupings allow groups
of communications objects to be referenced simultaneously
for analysis, display, sorting, searching, reporting, and trans- 45

mission. Alternatively, although not shown, folders or other
container classes can be applied to other classes, such as
pages and elements, for similar purposes.

The event 116 class is an abstract class defining the
attributes for scheduled events 117 and logged events 118. 50

The scheduled event 117 class is used to create a queue of
events for the provider program 12 or consumer program 22
to execute at some time in the future. An example is the
polling operation necessary to update communications
objects via the pull technique. The logged event 118 class is 55

the counterpart used to create a log of past events. System
events may need to be tracked for purposes of accumulated
statistics, tracking user or communications object activity,
documenting errors, providing payment transaction receipts,
etc. Scheduled event and logged event objects can be further 60

understood in the discussion of event loops, event logging,
and event scheduling below.
Object Markup Language

In order to transfer a communications object instance or
object update instance from a provider program 12 to a 65

consumer program 22, the object must be output from the
provider database 11 into a format suitable for transport via

relied upon to guarantee uniqueness. Other unique identifi­
cation numbering systems could be employed, such as the
provider's or consumer's U.S. Social Security numbers,
U.S. Federal Employer Identification Numbers, passport
numbers, etc. However, in a communications system which
may be used globally, not all users may be assigned unique
identifiers under one of these identification systems. A
separate global identification system could be employed,
such as the domain naming and e-mail addressing system
used by the Internet. Although not all Internet users have
their own Internet domain names, all of them have unique
e-mail addresses. However, since users can and do change
e-mail addresses, this would require that their system ID also
change. The ideal communications system allows complete
separation (or "abstraction" in object-oriented terminology)
of a user's communications system ID from any real world
names or physical communications network addresses with
which the user is associated. In this way, users can change
any of his/her names or physical communications network
addresses while still maintaining complete continuity of
his/her communications relationships. In addition, any
changes to the user's name or physical communications
network address can be automatically distributed by the
user's communications object(s) to all other consumers with
whom the user has a communications relationship.

To achieve this objective, a preferred embodiment of the
present invention assigns a unique system ID value to each
unique communications object and communications object
component. This function is the equivalent of an
automatically-generated unique key field ID in many con­
ventional database management systems. This objective can

US 6,757,710 B2
25

be achieved in several ways. A first technique is to employ
an algorithm that uses system state information together
with data unique to the computer on which it is being run to
produce system IDs whose probability of uniqueness is so
high that for practical purposes they can be treated as
unique. The use of such algorithms for creating globally
unique object IDs is discussed generally in Kraig
Brockschmidt, Inside OLE (1995), which is incorporated
herein by reference. Standard industry algorithms and func­
tions that have been created for this purpose include the
Universal Unique Identifier (UUID) specified by the Open
Software Foundation (OSF) Distributed Computing Envi­
ronment (DCE) documentation. This algorithm is fully
documented in Steven Miller, DEC/HP, Network Computing
Architecture, Remote Procedure Call RunTime Extentions
Specification, Version OSF TX1.0.11 (1992), which is incor­
porated herein by reference. The use of a generally accepted
industry UUID has the advantage of making a communica­
tions object identifier system directly compatible with other
industry standard distributed object system specifications.
Examples of such standards include the DCE and COREA
specifications from the Open Software Foundation and the
OLE and DCOM specifications from Microsoft Corporation.

The second alternative is to use a centralized server or set
of servers to produce unique system IDs as required. This
approach has the advantage of creating a centralized registry
of unique system IDs. Such a registry has other applications
within a communications object system, as further described
below. The architecture for centralized system ID assign­
ment is illustrated in FIG. 5. A central system ID server 42
contains a database of system ID assignments 41. The
system ID database 41 could be replicated across a group of
ID servers 42 at various nodes of a communications network
3 to improve performance as the number of users increases.
Upon initial installation, each provider program 12 or con­
sumer program 22 sends a request 44 via the communica­
tions network 3 to the ID server 42 for a unique system ID
43. The ID server 42 returns a response 45 to the requesting
program. The requesting program then saves the system ID
in the provider database 11 or consumer database 21. This
system ID 43 is shown in FIG. 3 as the SystemiD attribute
of the Database class 100. Within the database, the provider
and consumer programs 12, 22 can include a function for
assigning a separate unique system ID value to each instance

26
example, each employee of a large corporation would need
a unique provider system ID, however the corporation
would also need a group ID to identify the employee's
communications objects as part of the corporation. The

5 corporation may further desire to identify employees by
subgroups such as division and department.

The system ID assignment function can be modified to
provide this capability by including nested system IDs for
each group association within the system ID database 41.

10 The object class model for nested system ID associations is
shown in FIG. 6. The system ID database 250 contains any
number of unique system IDs 251. Each of these may in turn
contain zero, one, or more unique system IDs that function
as group IDs as shown in association 255. This nesting of

15 IDs may be as deep as necessary. Each system ID 251
includes a name and description attribute. For top level
system IDs this would be the name and description of the
provider. For lower-level group IDs this would be the name
and description of the group (company, division,

20 department, etc.).
Each system ID 251 also includes a key attribute. This

could be a password, encryption key, or any similar value.
This value could be used in conjunction with an Authenti­
cation method of the system ID 251 to verify that the user

25 applying for the group ID is authorized to be in that group.
For example, a corporate administrator could establish a
group ID for the corporation. The administrator would
receive the initial key for that group ID. The administrator
would need to communicate that key to each employee who

30 would supply it in the request 44 (FIG. 5) to be assigned that
group ID. Each system ID 251 can also be associated with
one or more system ID category objects 252. System ID
category objects can be used to establish system-wide
groups useful for program licensing, statistics, access

35 permissions, or other purposes. Category objects will be
further explained below.

The system ID server 40 shown in FIG. 5 is available
system-wide, and includes at least one system ID object
instance 43 in the system ID database 41 for each provider.

40 Since this object instance contains the provider's name,
description, and an authentication key, the system ID server
40 is a suitable mechanism to offer both system name
directory services and system authentication services. These
services are further described below.

of a communications object 110 or any class that will 45

become a component of a communications object. In FIG. 3,
these classes include the rule 140, method 141, page 142,
element 143, and typeDefinition 144 classes. Again, this
function is the equivalent of an automatically-generated
unique key field ID in a conventional database management 50

system. Since the provider's system ID 100 is unique for the
entire communications system, and since each instance of a
communications object system ID 110 or any or any com­
ponent class system ID is unique within the provider's
database, the combination of these system IDs creates a 55

hierarchical indentification system capable of uniquely iden­
tifying every communications object instance or object
component class instance throughout the communications
system. This unique ID for any communications object or
communications object component will be referred to as its 60

UID.

The system ID assignment function can be further
improved by using communications objects included with or
downloaded by provider and consumer programs 12, 22 to
control the access of the provider and consumer programs
12, 22 to the system ID server 42. For example, if a group
of system ID servers 42 was employed for performance or
loading reasons, a communications object could determine
the optimal member of the server group to access. Such
specialized communications objects are referred to as ser­
vice objects and will be further explained below.
Basic Object Transfer Processes

Besides using HTML as a display protocol, the Internet
and World Wide Web also offer suitable protocols for
accessing and transferring communications objects. A Web
browser program 50 can be used both to retrieve the com­
munications object and display it for viewing and editing to
the consumer. The transfer of an object using a Web server

It can also be desirable to be able to assign provider
groups within the communications system. Group identifiers
allow providers to be classified for purposes of program
licensing control, system attribute or system method access
permissions, object attribute or object method access
permissions, statistics gathering, or other purposes. For

32 is illustrated in FIG. 7. An object can be transferred to a
browser 50 as a result of a manual HTTP request by a user,
or it can be transferred directly to the consumer program 22

65 as a result of automatic event processing such as polling. In
the case of manual requests, the browser 50 issues a HTTP
request 36 to the web server 32 to receive the communica-

US 6,757,710 B2
27 28

filtered for communications objects directly by the consumer
program 22 before being transferred to the e-mail program
62.

tions object markup file 35 which is located on the web
server 32. The HTTP request 36 can result from a URL
manually entered by the user or through selection of a URL
link from any Web page. Thus, providers who have World
Wide Web documents can create links to their communica­
tions objects in those documents. A consumer can obtain a
communications object simply by using a browser 50 to
select the link. The object itself is then transferred as a
standard Multimedia Internet Mail Extension (MIME)
object type as defined by the Web HTTP protocol, in
response to the HTTP request. The MIME type is discussed
in Internet Request for Comment Nos. 1521 and 1522,
incorporated herein by reference. As with other MIME
objects, the browser program 50 determines whether a
helper application exists for this type of MIME object. For
a MIME type which uniquely identifies communications
objects, the browser program 50 transfers the object to the
consumer program 22 as the helper application.

Communications received via other types of communica-
5 tions networks can also be filtered for communications

object transmissions in a similar manner. For example,
telephone calls originated by a communications object can
carry a distinctive tone or tone series which can be recog­
nized by a receiving consumer program 22 in the same way

10 a fax tone is recognized by a fax machine. This tone could
be universal for all communications object types or could
vary by special communications object types. Once the tone
was recognized by the receiving program, a communications
object transfer negotiation could take place between the

15 calling provider program 12 and the receiving consumer
program 22. This could be used to accomplish the transfer of
communications objects, message objects, or other data
independently, or to control or augment a voice telephony
sesswn. In the case of a automatic HTTP request 37 from the

consumer program 22 to the web server 32, the same MIME 20

object transfer takes place, only the object is received
directly by the consumer program 22. In either case, the
transfer to the consumer program 22 principally results in
the execution of a set of processing steps. These steps
typically include decoding of the MIME object, reading of 25

the object, and storage of the object in the consumer
database 21. The consumer program 22 can also execute
other processing steps based upon the version of the object,
the consumer's settings for preference elements in the
object, other consumer preferences, and other methods in the 30

object. The processes for storing and processing communi­
cations objects are discussed below.

Communications via postal mail networks can also be
controlled by a communications object system in the same
manner. The originating provider program 12 can control the
printing of envelopes or enclosures in a machine-readable
format such as bar codes. It can also control the production
of transportable data files such as floppy disks or tape
cartridges for transport via a postal mail network. At the
receiving end, the mail or package envelope or contents can
be machine scanned for data that can be interpreted by the
receiving consumer program 22. Alternatively or in addition,
the transported data files contained in the postal mail can be
read by the consumer program 22 to process messages

FIG. 8 illustrates transfer of an object through e-mail
using the push technique. The browser program 50 is not
used for this function. The object may be attached as a 35

MIME object to an e-mail message 38. Other attachment or
encoding types may be used, such as BinHex or UUencod­
ing. The object may also be encoded in ASCII within the text

contained therein or to control the receipt and processing of
accompanying physical goods or information.

Broadcast networks such as television or cable systems
can represent particularly efficient means of transmitting
communications objects or object updates via the push
technique if the consumer computer 2 is equipped with a
device for receiving and decoding the broadcast signal. By
applying the filtering techniques described above to "listen-of the e-mail message itself. The optimal encoding method

for each recipient can be selected and employed automati- 40

cally by the provider program 12 when this information is
included in the Recipients (120, FIG. 3) class, as further
described below. The transmission steps for each attachment

ing" on a broadcast network, a consumer program 22 can
receive only the communications object updates intended for
communications objects in the consumer's database 21.
Because broadcast networks are transmit-only, communica­
tions back to the provider must be accomplished using a
"back channel" such as a telephone network or computer
network, e.g. the Internet.

or encoding type may vary slightly. The transmission steps
for a MIME attachment will be described here. The e-mail 45

message is sent in the ordinary manner, using whichever
e-mail servers and intermediaries are available (i.e., through
the Internet 3), to reach the consumer's e-mail server 31. The
consumer's e-mail program 62 retrieves the mail message
from its server in the ordinary manner. Depending upon
operation of the e-mail program, the attachment may be
downloaded for storage in either an internal or external
MIME directory 63, 64, or left for storage on the e-mail
server 31. The consumer program 22 then periodically polls
the MIME directory 65, 66 or the e-mail server 31 to locate
objects of a communications object MIME type. If a com­
munications object type is located, it is read from the storage
location and processed by the consumer program as
described below. It may also be deleted from the MIME
storage area by the consumer program 22 after it has been
read and processed.

Alternatively, all e-mail from a server can be filtered
through the consumer program 22. In this process, the
consumer program 22 acts as a proxy server. The e-mail
program 62 polls 68 the consumer program 22, as the proxy
server, for new mail. The consumer program 22, in turn,
polls 67 the e-mail server 31. The resulting mail response is

Provider Program Operation
As described above, the provider program 12 operates as

a state machine in generating HTML screens and forms
50 which are displayed by the user's browser program. The

provider program 12 is used to create and edit instances in
the provider database 11 of the object classes described
above. The provider program 12 is also used to publish and
distribute instances of communications objects to one or

55 more consumer programs 22 or distribution servers 32
through the communications network 3.

FIG. 9 illustrates the relationships between various
screens and forms produced and used by the provider
program. Upon starting, an HTML page of the main menu

60 300 screen is generated and displayed. If the browser
program 50 (FIG. 2) is not currently operating, the provider
program 21 starts the browser program 50 and generates a
DDE, OLE, Apple Event, or similar operating system request
to start the browser program 50 and have it display the

65 requested HTML page. The main menu 300 screen lists
various menu items which are hyperlinks to other HTML
pages containing additional menus or forms. The menus and

US 6,757,710 B2
29 30

submission of an editing form as described below. When a
create form is submitted (step 400), the provider program 12
first determines whether the form data is valid (step 401). If
it is not the provider program returns an error screen or form

5 with information about the error to the user (step 411). This
error screen may include a form for correcting the error, or
hyperlinks to other forms where the error can be corrected.
Once a form passes the validation test, the provider program
then determines whether the form is a create or an edit

forms discussed with respect to the provider program 22 or
consumer program 21 are merely illustrative of the capa­
bilities of the system. The features and functions of the
system can be organized in any order or hierarchy within the
screen based menu system. Alternatively, another native
interface system could provide a substantially different
organization. The use of a graphical user interface will be
specifically discussed below. Additionally, other functions
and features can be added by creating other menus or forms
and adding hyperlinks between the existing menus or forms 10

and those new screens. Furthermore, in addition to specific
menus, various choices can be implemented on toolbars
displayed on one or more of these HTML pages. In order to
satisfy user preferences, many menus, forms, and toolbars
can be editable by the user via preference forms or even 15

direct HTML source editing. Such preferences may allow a
different default startup menu screen, different toolbars,
different menu choices on any given screen, different screen
fonts or backgrounds, and other display or operational
preferences.

operation (step 402). For a create operation, the program
next assigns the new instance an initial version value (step
403), sets the instance's NewFlag attribute to TRUE (step
404), and saves the instance to the provider database 11 (step
405). The version value is used to compare changed object
class instances in the object reception processing. The
NewFlag attribute is used to indicate a class instance that
requires distribution.

The first five choices on the main menu 300 allow the user

The submission of any new or changed data in an com­
munications object component class triggers the update

20 association rule. This rule can be stored as a rule 140. The
method associated with this rule is illustrated in FIG. lOB.

to work with the communications objects, pages, elements,
type definitions, methods, and rules stored in the provider
database. The provider program is primarily creating,
displaying, editing, and reporting on objects in the provider 25

database. Therefore, the menus and forms used by the
provider program are similar to a the menuing, browsing,
editing, or reporting modes of any conventional database
application. Initially, there are no user-defined communica­
tions objects, pages, elements, type definitions, methods, or 30

rules. (System-defined communications objects, pages,
elements, type definitions, methods, or rules may exist but
are not editable by the user). Upon selection of one of the
menu choices, a HTTP request is generated to display the
requested HTML page. The communications object 320, 35

page 330, element 340, type definition 350, and method/rule
360 forms include similar functions: create, edit, delete, and
preview. Although the functions are similar, each menu has
links to different HTML forms used for performing the
functions on the different types of data (communications 40

object 321-324, page 331-334, element 341-344, type
definition 351-354, and method/rule 361-364). In addition

In this method, the provider program first queries the pro­
vider database 11 for all associated class instances which
contain the new or updated class instance (step 431). The
program then processes each associated class instance to
determine whether it is already identified as a new instance
(steps 432, 433). If the associated class instance is not new,
the version value is incremented (step 443), the NewFlag is
set to TRUE (step 442), and the instance is stored in the
provider database 11 (step 441). When an associated class
instance becomes new, every container association with this
instance must also be processed (steps 431-433). In this way
the program processes the entire tree of all class instances
which contain the newly created class instance, increment­
ing version values and marking them as new. This is
necessary to ensure the complete distribution of all associa-
tions to any new or changed class instances. When all
container class associations have been updated, the next
HTML screen is generated (step 435).

The edit forms 322, 332, 342, 352, 362 shown in FIG. 9
permit the editing of instance attributes and associations in
the database of the appropriate class. For example, the
communications object edit form 312 will list the pages
which currently exist in the database and therefore can be
assigned to the object. A submitted edit form 322,332, 342,
352, 362 is processed according to the steps illustrated in
FIGS. lOA and lOB. A test for an edit form is performed in
step 402. From this point there are only two differences from
create form processing. First, if the New Flag attribute of the

to the menu choices, a list of the appropriate class instances
from the provider database 11 is displayed in order to select
the data to edit, delete, or preview. In one embodiment, 45

hyperlinks or form buttons for editing, deleting, and pre­
viewing are associated with each data item in the list.
Alternatively, a single link to the edit, delete, or preview
forms can be used and the data item can be selected from a
list when the appropriate form is displayed.

The create forms 321,331, 341,351, 361 are respectively
used to create a new communications object, page, element,
type definition, or method/rule instance. A form is displayed
having entry locations to input the necessary attribute data
and create the desired associations. Association choices can 55

be shown as lists of the associated class instances with

50 edited class instance is already TRUE (step 412), this means
the instance has been edited since the last distribution

checkboxes or input fields for each instance. For example,
when a new page is created, the page create form 321 that
creates a new instance of a page (142, FIG. 3) would include
a list of communications objects (110, FIG. 3) to which the
new page can be assigned. It would also include a list of
elements (143, FIG. 3) that can be assigned to the page. The
display order for these elements could be input as numerical
values in input boxes representing each reference instance
(146, FIG. 3).

FIG. lOA shows the processing steps to be taken upon
submission of a create form. These steps also apply to

operation. In this case, the update association method need
not be performed. The edited instance can simply be saved
to the database (step 425) and the next HTML screen
generated (step 426).

Second, edited instances do not necessarily replace the
previous instance when stored in the database (steps 415,
425). Multiple versions of object instances may be main­
tained in the database so that the user can revert to previous

60 data. The number of previous versions stored is controlled
by a global preference attribute (103, FIG. 3) or a commu­
nications object preferences attribute (127, FIG. 3) and one
or more archiving rules 140. Each time an edit form is
submitted, the archiving rule 140 is triggered. Using the

65 appropriate preference attribute, the archive rule determines
if the preferred number of previous versions of the commu­
nications object (110, FIG. 3) are already stored in the

US 6,757,710 B2
31

database. If so, then the oldest version is deleted when a new
version is stored. If not, the new version is added to any
previous versions that exist. Data archiving control is further
discussed below.

The delete forms 323, 333, 343, 353, 363 shown in FIG.
9 are used to remove class instances from the database. The
form can require confirmation that the selected instance is to
be deleted. Additionally, the delete form can provide a list of
other instances of the same class in order to allow the
selection of multiple items for deletion. Processing of a
submitted delete form first involves executing the steps of
the update association method illustrated in FIG. lOB. Then
the selected class instance or instances can be deleted from
the database. Instance deletion may follow a user preference
for archiving a specified number of deleted instances, or
maintaining deleted instances for a specified interval of time
before purging them completely from the database.

The preview forms 324, 334, 344, 354 shown in FIG. 9
provide a display of a selected communications object, page,
element, or type definition as it would appear to the
consumer, without editing labels or internal naming labels.
This is similar to the print preview mode of a word proces­
sor. Submission of a completed method/rule preview form
364 executes, when possible, the selected method or rule to
test how it would operate in the consumer program 22.

The recipient form 310 accessed from the object menu
320 is used to assign the recipients (120, FIG. 3) who will
receive each communications object. From this form the
user can add or delete recipients associations for the selected
object by the use of checkboxes for each recipient. The user
can also choose to go to four additional forms. The create
recipient form 311 allows the user to add a new recipient
instance to the database. The edit selected recipient form 312
allows the user to edit the recipient's settings for commu­
nications object distribution. The delete recipient form 313
permits the user to delete a recipient from the database. No
special processing is required when adding, editing, or
deleting recipient instances since they are not a communi­
cations object component and there are no associations that
contain them. However, NewFlag and HoldFlag attributes
for recipients are set as described previously for purposes of
communications object distribution. The preview recipient
form 314 allows the user to see precisely how any selected
communications object and its component pages and ele­
ments will appear to a selected recipient.

The reports form 370 is used to create, edit, delete, and
display reports (120, FIG. 3) from the database. Menu items
link it to the create report form 371, edit report form 372,
delete report form 373, and display report form 374. The
preferences form 316 is used to edit the user's overall
preferences (GlobalPrefs 103, FIG. 3) for program display
and operation.

An object is published by using the publish menu form
326. Publishing refers to the process of reviewing and
finalizing changes and initiating distribution. When selected,
the publish menu 326 provides a list of communications
objects, pages, elements, type definitions, methods, rules,
and recipients which have been changed since the previous
publishing operation. The items on the list can be selected,
edited, and previewed in a manner similar to that under the
respective communications object, page, element, type
definition, and method/rule menus. One editing action a user
might typically take at this time is to set the HoldFlag
attribute to TRUE. When this is done all other editing
changes are preserved but the class instance will be withheld
from distribution until the HoldFlag attribute is reset to
FALSE. Once the user is satisfied that all the information is

32
correct, the user selects the distribute form 336. This form
first provides the opportunity for a final confirmation that the
new information is ready to be published. It also allows
setting of various parameters relating to the distribution

5 process. One such parameter is the date and time the actual
distribution operation should occur if it is not to take place
immediately. Another parameter is an acknowledgment set­
ting and acknowledgment interval, which are described
below. Once the distribute form 336 is submitted, the

10
communications object generation and distribution process
is initiated.
Basic Communications Object Distribution Process

In the communications object distribution process,
instances of the communications object (110, FIG. 3) are
created and transmitted to the recipients (120, FIG. 3)

15 associated with the object. This processing proceeds in
accordance with the instructions on the distribute form (336,
FIG. 9) and the attributes and methods of the recipient (120,
FIG. 3). Two different techniques can be used to publish an
existing communications object which has been updated.

20 The entire communications object, including all of the
changes, can be transmitted each time it is distributed.
Alternatively, only the component class instances which
have been changed may be sent. The only difference is that
in the second technique the distributed communications

25 object only contains the class instances and associations
where the NewFlag attribute is set to TRUE. Instances and
associations which have not changed are ignored. Therefore,
whether the unchanged data is sent to the consumer program
is irrelevant. Whether to send a complete object or only

30 changed components depends upon the complexity of the
object and the potential for communications objects to
become desynchronized due to transmission errors.
Complete-object transmissions can also be intermixed with
updated-components-only transmissions on a periodic basis

35 to prevent dysynchronization errors. The type of update
distributed can also be controlled on a per-recipient basis by
the attributes of the recipient's object (120, FIG. 3).

FIG. 11 illustrates the process performed by the provider
program 12 in distributing an entire object. The provider

40 database 11 is queried (step 501) to determine all new or
changed communications objects which need to be
published, i.e., those which have a NewFlag attribute set to
TRUE and a HoldFlag attribute set to FALSE. The program
then loops (step 502) through each communications object

45 instance 100 which is to be published. For each object the
program reads the associated recipients 120 (step 503). The
program begins a second loop (step 504) through each
recipient 120. Using the recipient attributes and methods, a
communications object instance is generated and transmit-

50 ted to this recipient (step 505, further shown in FIG. 12). The
loop is repeated for all recipients of the communications
object.

At this point all new or changed communications objects
have been distributed to their assigned recipients. However,

55 a new or edited recipient may need to receive an existing
communications object that has not changed. To account for
this case the provider program queries the database for all
recipients 120 whose NewFlag attribute is TRUE and Hold­
Flag attribute is FALSE (step 511). The program then loops

60 (step 512) through each of these recipients 120, quering for
the associated communications objects 110 where the New­
Flag attribute is FALSE (step 513). The program then loops
(step 514) through each of these communications objects
110 executing the object generation and transmission routine

65 for each object (step 515).
After all communications object instances 110 have been

transmitted, the program does another query of the database

US 6,757,710 B2
33 34

e-mail message. Compression, encryption, and other encod­
ing methods can also be applied. Encoding service objects
may also be employed. Encoding control and encoding
service objects are further described below. The recipients

for all class instances where the NewFlag attribute is TRUE
and HoldFlag is FALSE (step 521). The program loops
through these instances and resets their NewFlag attribute
reset to FALSE (steps 522, 523). This prepares the database
for the next round of editing and publishing.

The procedures for generating and transmitting the com­
munications object instance for each recipient are illustrated

5 encoding attributes and methods are read (step 547) and the
encoding methods are executed (step 548).

After encoding, the communications object is transmitted
to the recipient according to the attributes and methods of
the recipient (steps 550-551). As discussed previously,

in the flow chart of FIG. 12. The program begins by creating
(Step 531) a header portion of an object markup file from the
attributes of the communications object (110, FIG. 3). A
header portion includes a header tag, the provider's system
ID (the SystemiD attribute of database 100, FIG. 3), and any
group IDs or category IDs (250, 251, 252, FIG. 6), the
communications object 110 system ID attribute, and other
attributes of the communications object appropriate for
transmission. (Note that the combination of the provider's
system ID and the communications object 110 system ID
consitutes the communications object's UID described
previously.) Next, the program reads all type definitions
(144, FIG. 3) associated with the object (step 532) and writes
them in the markup language format to the markup file (step
533).

10
according to a preferred embodiment, objects sent directly to
consumer computers 2 using the push method are sent as
e-mail messages or message attachments to the addresses of
the recipients. These transmissions can be queued using
scheduled events 117 to reduce system load. Objects sent to
a distribution server 32 for distribution using a pull method

15 are saved to the appropriate web server document directory.
Alternatively, based upon the access the provider has to the
provider's web server, the object could be mailed to the Web
server administrator, uploaded as an HTTP form to the Web
server, or otherwise stored for later posting by the Web

The program then retreives the communications object's
methods and rules (step 534) which are associated with the
recipient (120, FIG. 3). Associating methods and rules with
recipients allows each communications object instance to
use optimal methods and rules for that recipient. An example

20 server administrator. The transmission steps could also
include an e-mail message, voicemail message, or other
notification to the administrator that the object is ready to be
stored on the server. Alternatively, transmission to a distri­
bution server 32 can be automated through the use of a

25 distribution service object. Distribution service objects will
be further discussed below.

is update methods. A communications object transmitted to
a distribution server 32 such as a web server would use an
update method for pull distribution. A communications 30

object transmitted via e-mail to a consumer would use an
update method for e-mail push distribution. Receipt methods
are another type of method that might typically vary by
recipient. Next, the methods and rules that are associated
directly or indirectly with the communications object are 35

read and written in the markup language to the markup file
(steps 536, 537). Indirect associations are methods or rules
that are associated with a page, element, or type definition
which is associated with the communications object. This
process is repeated for elements (steps 538, 541) and pages 40

(steps 542, 543). Finally the necessary footer information is
read from the communications object and written in the
markup language to the markup file (step 544). The markup
file now includes the complete object ready for transmission.

If only changed components of the communications 45

object were to be transmitted, rather than an entire object
being resent, only the type definitions, elements, pages,
methods, and rules which have changed, i.e., those having
NewFlag attributes set to TRUE, would be stored in the
markup file. Unchanged pages and elements would be 50

omitted.

The final set of steps is to record data about the distribu-
tion in an acknowledgment association (121, FIG. 3). First,
in step 552 an AckPreference value and the Ackinterval
value are retrieved from both the communications object
intance (110, FIG. 3) and the recipient instance (120, FIG.
3). This is necessary because acknowledgment can be con­
trolled at the communications object level, or the recipient
level. The acknowledgment attributes for the communica­
tions object are transmitted as parameters to a receipt
method, as further described below. The distribute form
(336, FIG. 9) contains radio buttons for three choices: no
acknowledgment, acknowledgment using communications
object settings, or acknowledgment using recipient settings.
If the provider's choice was no acknowledgment (step 553),
the routine is finished. If the recipient settings were selected
(step 554), an acknowledgment association (121, FIG. 3) is
created between the recipient (120, FIG. 3) and the com­
munications object (110, FIG. 3). The AckDateTime value
of the acknowledgment association (121, FIG. 3) is set to the
date/time of transmission plus the recipient's Ackinterval
and the AckFlag is set to FALSE (step 555). If the commu­
nications object settings were used, the AckDateTime is set
to the date/time of transmission plus the communications
object's Ackinterval and the AckFlag is set to FALSE (step
562). The AckDateTime value and the AckFlag value of the
acknowledgment association (121, FIG. 3) can now be used
by the provider program 12 to check for missing acknowl­
edgments as of the acknowledgment due date as further

Because the actual transmission may include addtional
data besides the communications object itself, the following
two steps involve executing any queries indicated by query
elements (step 545) and reading any attachments specified
by attachment elements (step 546). These two processes will
be further described in the discussion of data exchange
control below.

55 described below. This completes the object generation and

At this point all the parts of the message are ready to be
encoded for transmission. Encoding attributes and methods 60

are associated with the recipient 120. This allows commu­
nications object transmissions to be encoded in an optimal or
desired format for each recipient. For example, e-mail
recipients who use MIME attachments can receive MIME
objects, while e-mail recipients who cannot read MIME can 65

receive BinHex attachments or have the communications
object markup file encoded directly in the ASCII text of the

transmission routine.
Consumer Program Operation

One advantage of the communications system of the
present invention is that the transmitted communications
object instance can be automatically received, processed,
stored, and indexed by the consumer program 22. Since the
data is structured as an object and stored in an object­
oriented database 21, the data it contains can be easily
searched using the consumer program 22 in order to locate
specific information or perform certain functions.

The consumer program 22 may also coordinate with
operation of other applications on the consumer computer 2

US 6,757,710 B2
35 36

query is performed in the same manner as queries for any
object-oriented or relational database. A search report is then
generated as the next screen (step 53 in FIG. 2), which is
outputted to the browser program 50 and displayed (step 54

in order to provide the data to those additional applications.
For example, name and address information may be trans­
ferred to a personal information management program.
E-mail address information can be transferred to an e-mail
program for its address book. Similarly, data can be trans­
ferred to word processing or spreadsheet programs to be
incorporated into documents. Also, the proper information
can be used for standard electronic data interchange (EDI)
formats or other types of electronic information exchange.
Alternatively and in most cases preferably, these other
applications can access the consumer program through an
API to retrieve communications-related data when needed.
These applications can also call the methods of the com­
munications objects to automate data interchange with the
provider of the object. This has the advantage of storing the
data and methods only once on the consumer's desktop,
saving storage space, decreasing complexity, and increasing
the accuracy of the resulting communications. The use of an
API for communications object access will be further dis­
cussed below.

5 in FIG. 2). In the search report, the consumer program 22
will automatically generate a hyperlink URL for each com­
munications object name and page name displayed so that
the respective object and page can be selected.

Referring back to FIG. 13, other functions shown in the
10 object list form 610 (sort, export and print) operate as forms

in a manner similar to that for the search form 620. Selection
of the choice causes a URL request for the appropriate form,
which is displayed. The user can then complete the infor­
mation in the form and submit the form for processing. After

15 processing, the next appropriate screen will be generated and
displayed.

The sort form 634 presents a set of options for displaying
communications objects, pages, and elements. Choices
include sorting by container (such as a folder), order

20 (ascending or descending), and unit (object, page, element).
FIG. 13 illustrates the relationships between various

screens and forms produced and used by the consumer
program in processing objects stored in the consumer data­
base. The consumer program is primarily reading, editing,
and reporting on objects to the consumer database. 25

Therefore, the menus and forms used by the consumer
program are similar to a the browsing, editing, or reporting
modes of any conventional database application. Upon
startup, an H1ML page of the main menu 600 screen is
generated and displayed. As with the provider program 12, 30

the menus and forms discussed with respect to the consumer
program 22 are merely illustrative of the capabilities of the
system. They can be organized in any order or hierarchy, and
other functions and features can be added by creating or
modifying other menus, forms, or toolbars. 35

The main menu 600 lists the principal types of functions
which can be performed by the consumer program 22. The
object list form 610 provides a directory to the communi­
cations objects in the consumer database. A name or other
identifying information for each object is displayed in a list 40

format. The name or identifying information also functions
as a hyperlink to the object. The user can set various
attributes of the display, such as formatting of characters,
amount and order of information identifying the object, and
organization of the communications objects in the list, using 45

the preferences form 650. The choices in the object list form
provide access to forms for performing functions with
respect to the attributes or methods of one or more commu­
nications objects selected in the object list.

The search form 620, as illustrated in FIG. 14 will be used 50

as an example for processing of a form request. The search
form 620 presents the user with a screen which allows the
input of information, whether typed in or selected as check
boxes. As illustrated in FIG. 14 the search form 620 includes

The class instances in the consumer database 21 are then
sorted according to the selected criteria and redisplayed.

The export form 645 operates to transfer data from the
database to be used by other applications, such as a contact
file for a personal information manager or a mail merge list
for a word processor. First, a search or sort is performed to
select a group of communications objects, pages, or ele­
ments to be exported. The export form includes choices to
select the elements to export, the destination (such as a disk,
file, clipboard, etc.) and a format. Upon submission of the
completed form, the data meeting the export form criteria is
transferred to the selected destination in the selected format.
The data can then be used by the other application. A screen
identifying the results of the export is then displayed.

The print form 646 is used to print information in the
database. Some routine print functions can be performed by
the browser program 50. However, other printing functions,
such as printing selected elements or pages or using special
print formatting, can be performed directly from the print
form. The print form requests information relating to the
selection of elements to be printed and the format for
printing. A results screen can also be displayed after the print
operation.

The select object function results in a display of the
selected object form 611. An object may typically be
selected by selecting its name on a form, which is hyper­
linked to the object. In the selected object form 611, the
names of the pages of the object are displayed in a list, with
hyperlinks to each page. From the selected object form 611,
the user can sort, search, export and print using the forms as
discussed above with respect to the object list form 610.
Other choices are also possible with respect to the selected
object which will be discussed further below.

An edit object form 622 can be used to edit a communi-
a location to enter a search string. The search may also be
expanded or limited based upon the form from which the
search form was requested. For example, if the search form
220 was selected from the selected object form 211, then
only that selected object is searched. The user may elect to
search all objects instead by checking an appropriate check­
box. Similarly, the search can be limited to certain folders of
communications objects. The user can also select the method
for display of the search results. When the search form 220

55 cations object's attributes, including its component ele­
ments. Most attributes and elements of a communications
object are defined by the provider and are not editable by the
consumer. However, certain elements are defined by the
provider specifically for editing by the consumer. These

is submitted as a request, the consumer program 22 will then
act to process the form (step 57 in FIG. 2). The processing
of a search form results in a query of the consumer database
21 according to the search attributes entered in the form. The

60 preference elements may include polling refresh intervals,
return receipts, subscription elements, and notification ele­
ments. A consumer may also assign other attributes and
associations to a communications object. These include
folder assignments, nicknames, notes, notification priority,

65 expiration date, and archive method. All communications
object attributes and element attributes edited by the con­
sumer are stored separately from the object in the consumer

US 6,757,710 B2
37

database 21. This is accomplished by use of the CommOb­
jectPrefs class 127 and ElementPrefs class 147 shown in
FIG. 3. Whenever the consumer first edits or adds commu­
nications object attributes, an instance of the communica­
tions object preferences class 127 is created in the consumer
database 21 and associated with the communications object
110. Similarly, whenever the consumer first edits a prefer­
ence element, an instance of the element preferences class
147 is created and associated with the element 143. The
edited or assigned attributes are stored in these two class
instances, and appropriate methods 141 are stored with or
associated with these classes (these associations are not
shown in FIG. 3 due to space limitations). In this way the
consumer's data is not overwritten when an updated com­
munications object is received. Additionally, the consumer
may forward a communications object without including the
consumer's own attribute preferences, although the con­
sumer may optionally choose to do so. Communications
object forwarding is described further below.

The delete object form 623 shown in FIG. 13 allows a
communications object to be removed from the consumer
database 21 if the information is no longer desired. The form
also allows the consumer to reconfirm that the selected
object is to be deleted. Additionally, the user may select
certain options for deletion. Such options may include
maintaining the object for a predefined period before actual
deletion, or storing basic information (such as an object
name, UID, and update method) so that the object could
easily be retrieved again if needed.

The select page option displays the selected page form
612 which provides a listing of the elements on that page.
Typically, the page (142, FIG. 3) would be displayed using
the display order attribute of each page reference (146, FIG.
3) as specified by the provider. However, the user may resort
the elements using the sort form 634. If a page contains
editable preference elements (143, FIG. 3), the HTML
rendering of the element on the page would include the input
form fields necessary to edit the preference element. It
would also include the form processing method name nec­
essary for the consumer program 22 to validate and store the
edited element preferences in an element preference instance
(147, FIG. 3). The export form 645 and print form 646 can
also be used with respect to a selected page or elements on
the selected page.

38
startup, the colors and fonts for the forms and data, and field
defaults. The user may also select options such as a default
refresh interval to use for new objects, a default expiration
period, and default settings for editing or preference forms.

5 Basic Communications Object Reception Process
FIG. 15 is a flow chart illustrating the operations for

processing communications object instances 110 received
by the consumer program 22. As shown, an entire object is
provided (Step 700) to the consumer program 22 each time

10 any changes are made to the object. Alternatively, only the
changed portions of the updated object may be sent in an
object update. These processing steps for this case are not
described but are substantially similar. Upon receipt of the
object, the consumer program 22 first determines whether

15 the received object is a message object (step 701). Message
objects and their processing will be explained below. If the
received object is not a message object, the next step is
determining whether the communications object already
exists in the consumer database 21. This is done by querying

20 (step 702) the consumer database 21 for the UID of the
communications object 110. If the UID does not exist, the
object is processed as a new object.

For new objects, the consumer program 22 first executes
the consumer's GlobalPrefs NewObjectReceipt method

25 (step 703). This method allows the consumer to control the
processing of new communications objects. Typically this
method will store the object to the consumer database 21.
However, the consumer may wish to discard objects
received from any provider system ID on a list maintained

30 in the consumer database 21, commonly referred to as a "kill
file". Additionally, the NewObjectReceipt method controls
the permissions the consumer extends to the new object to
execute its own receipt method(s). For example, new objects
from providers whose system ID is not in the consumer

35 database 21 may not be allowed to execute their receipt
method, while new objects from known providers may be
extended this privilege. Receipt methods trigger automatic
actions taken when a communications object or object
update is first received by a consumer program 22. For

40 example, a receipt method may automatically return an
acknowledgment message back to the provider confirming
the consumer's receipt of the object or object update.
Receipt methods and acknowledgment messages are further
described below.

Once the NewObjectReceipt method has been executed,
the consumers notification preferences for new objects are
retrieved (step 704) from the NewObjectNotify attribute of
the GlobalPrefs class (103, FIG. 3) in the consumer database
21. A test is done to see if notification is desired (step 705).

The notification report form 630 is selected from the main 45

menu 600 in order to provide information about new com­
munications objects, updates to existing objects, messages
received by objects, database status messages, and other
news of which the user wishes to be informed. The notifi­
cation report form provides the user with the capability to
select and filter information received from a provider.
Operation of this form is discussed below in connection with
notification element processing.

50 If so the consumer program 22 retrieves and executes the
consumer's GlobalPrefs NewObjectNotify method (step
706). The user may wish to have the object displayed
immediately, to receive an e-mail about the new object, to
include a message about the new object in the user's The user can generate other reports relating to the con­

sumer database using the other reports form 640. Standard
reports might include database statistics (total objects, pages
and elements; database file size; and size of objects being
held), object statistics (frequency of use; last use; age in
system; total age; size; number of updates; and last update),
and transaction logs (number of updates; percentage of CPU
time used, online time used; percentage of errors; and types
of errors). Additionally, consumers could specify their own
database reports to be added to this form.

The preferences form 650 allows the user to edit opera­
tional preferences that apply to the consumer database 21 or
consumer program 22 as a whole. These can include con­
figuration options such as the initial menu to display upon

55 notification report (including its size, methods, update
intervals, etc.), or any other notification action or combina­
tion of actions. Notification preferences and methods are
further described below. Also, different actions may be taken
based upon the program state and operation involved with

60 the object's arrival. For example, the user may wish to have
an object displayed immediately if the user manually
selected it as a HTTP request from a Web site, but not if it
was an object update retrieved automatically via a Web
HTTP polling request by the consumer program 22, or if it

65 arrived via e-mail. Different actions may also be taken based
upon attributes or methods of the communications object
itself, or a comparison between these and with the existing

US 6,757,710 B2
39 40

This element preference instance 147 has a one-to-one
association with its parent element 143. Optionally it may
also have an association with one or more folder instances
115, which allow the consumer to further control processing

objects in the consumer database 21. For instance, the
consumer may wish to immediately display new objects
from selected providers whose system ID is already present,
but only have notification in the notification report of new
objects from any other provider system ID. 5 related to this preference element. When an updated com­

munications object is received by the consumer program 22,
the associations between the communications object prefer­
ence instance 127 and each element preference instance 147

After any notification methods have been executed, the
consumer program 22 executes any other system methods
that may apply to new communications objects (step 708).
For example, a Register method would check to see if the
updated object wished to register a new public method (141, 10

FIG. 3) in the consumer database 21. After any system
methods are executed, new communications object process­
ing is complete.

In step 702, if an object already exists in the database,
then it is processed to determine what changes have 15

occurred and what actions should be taken by the consumer
program 22 because of those changes. In this way the
communications control system of the present invention
functions not just as an information transfer system but as an
event processing system. Both the provider and consumer 20

share control over the processing that takes place when
knowledge of an event is transferred from provider to
consumer. The first event, the arrival of a communications
object update, is processed in step 714. The version value of
the updated communications object 110 is compared with 25

the version value of the most recent version stored in the
consumer database 21. In the authoring process, the update
association rule and method (FIG.10B) has ensured that any
change to a component of a communications object results
in the communications object's version value being incre- 30

mented. Therefore if the newly received object's version
value is older or equal to that of the existing object, the
newly received object is not new. In this case the object is
either discarded, or other processing may take place depend­
ing on the consumer's preferences, such as notification in the 35

consumer's notification report (step 713). Communications
objects with equal or lesser version values typically repre­
sent retransmissions due to distribution errors by the
provider, forwarded objects from other consumers, or
manual retrievals of an object by the consumer when the 40

consumer is unsure of the object's update status.
If the newly received communications object's version

value is newer than the last version stored, the consumer
program 22 first stores the updated object in the consumer
database 21 (step 715). The next set of steps involves 45

updating communications object associations. When a con­
sumer is able to edit data related to a communications object,
this data needs to be stored separately from the communi­
cations object so it is not overwritten by a subsequent
communications object update. The data structures neces- 50

sary to accomplish this are shown in FIG. 3. First, when a
consumer first edits any attribute relating to a communica­
tions object 110 as a whole, an instance of the communica­
tions object preference class 127 is created by the consumer
program 22. This instance 127 has a one-to-one association 55

with its parent communications object 110. It also has a
one-to-many association with folder instances 115. These
associations are created using the edit object form (622, FIG.
13), and allow the consumer to further control processing
related to this communications object. A consumer is also 60

able to edit preferences related to specific elements 143
within the communications object 110. As described above,
these preference elements are a mechanism for providers to
give consumers control of specific types of communications
object update processing. Whenever a consumer edits a 65

editable preference element 143, an instance of the element
preference class 147 is created by the consumer program 22.

need to be updated to the new "parent" communications
object 110 and elements 143. These update steps are shown
as steps 716 and 717 of FIG. 15. Referring again to FIG. 3,
if an element 143 for which an association with an element
preference 147 exists is absent in the communications object
update, the consumer may wish to be notified and/or the
element preference instance 147 deleted. This can be accom­
plished via a notification method as described below.

The consumer program 22 then proceeds with additional
processing steps depending on the contents of the new and
old versions of the communications object 110. First, this
means executing any receipt methods 141 or rules 140
associated with the communications object 110. Referring
again to FIG. 15, receipt methods 141 or rules 140 assigned
by the provider are executed first (step 721). Receipt meth­
ods 141 or rules 140 assigned by the consumer, i.e., those
associated with the communications object preference
instance (127, FIG. 3) associated with the communications
object, are executed next (step 722). Receipt methods and
rules and their use are further described below.

After receipt method processing, notification processing
is carried out. Processing of notification elements (steps
723-727) is further described below. After notification
processing, the consumer program 22 executes any other
system methods that apply to updated communications
objects, such as the Register method (step 731). Finally, the
consumer program 22 checks the archive preference
attribute of the communications object preference instance
(127, FIG. 3) to see if it exists (step 735). Archive prefer­
ences determine the number of previous instances of a
communications object stored in the consumer database 21.
This is identical to how archiving works for previous
versions of communications object components stored in the
provider database 11. In a preferred embodiment, consumers
can control archiving either globally or by individual com­
munications object. If the consumer has indicated an archive
preference for the object, the consumer program 22 executes
the archive method indicated by the communications object
preference (step 736). If no such archive preference exists,
the consumer program 22 executes the archive method
indicated by the consumer's global preferences (103, FIG. 3)
in step 737. This completes the processing of an updated
communications object.
Combined Provider and Consumer Program Operation

The functions of provider and consumer programs and
databases have been separated in the above discussion in
order to simplify the description of the communications
system of the present invention. However, in one
embodiment, the program functions and databases are com­
bined. Thus, a single database includes all of the commu­
nications objects and object components which have been
created or received by the user. This eliminates complexity
and saves disk space for the user. The program offers the
provider functions when creating and distributing commu­
nications objects, and the consumer functions when receiv­
ing and processing them. Combining the program functions
and databases in this way yields significant additional func­
tionality not available when the programs and databases are
separate.

US 6,757,710 B2
41 42

expiration of the main event loop (step 756). These special­
ized event loops may include a scheduled event loop, an
inbox/outbox monitoring loop, a rule-monitoring loop, and
so on. The specific event loops used are not a limiting feature

First, communications relationships can be linked in both
directions between users. Referring to FIG. 3, when the
programs are separate, the provider must create and maintain
a recipient instance 120 for each desired recipient. When the
programs are combined, however, the functions of a recipi­
ent instance 120 can be replaced by a communications
object instance 110 received from that recipient. By includ­
ing an element 143 of a special composite type
"ReceiveObject", the received communications object 110
can supply all the fields required of a recipient instance 120,
including network address, preferred encoding format, and
preferred transmission method. The provider only needs to
make an association once between the recipient's commu­
nications object and the provider's own communications
object or objects 110. From that point onward, the provider
no longer needs to maintain these attributes or methods of
the recipient instance 120, as they will be updated automati­
cally from the recipient's communications object 110.

5 of the invention.
The scheduled event loop is shown in FIG. 16B. When­

ever an event needs to be scheduled by any method, system
procedure, or direct user input, it generates an instance of the
scheduled event class (117, FIG. 3). This instance includes

10 the date and time of the event, the system ID of the object
requesting the event, the system ID of the object carrying out
the event, the event type, and the event parameters (if any).
When executing the scheduled event loop, the provider
program 12 or consumer program 22 first retrieves the

Second, all the elements, type definitions, and methods of
both received and transmitted objects are present in a single
database and program operation environment. This allows
the provider to use the attributes and methods of received
objects for other purposes. For example, special communi­
cations object types can be used to supply services needed
by other communications objects. Such services include
directory services, authentication services, payment
services, and feedback services. These "service objects" will
be further discussed below. Components from received
communications objects can also be reused within the pro­
vider's own communications objects, thus creating "synthe­
sized objects". Synthesized objects will be further discussed
below.

15 earliest scheduled event instance (step 761). It then checks
to see if the scheduled date/time is equal to or less than the
current date/time (step 762). If so, it processes the event
(step 763), then tests to see if event logging is required (step
764), as described above. If event logging is required, it

20 generates and saves an instance of logged event class (118,
FIG. 3) in step 765. Finally, it either deletes or updates the
scheduled event instance (step 766), depending on the nature
of the event. A communications object update polling event
would, for example, be incremented by the next polling

25 interval.
At the end of this process, or if the earliest scheduled

event instance had not yet elapsed in step 761, or if an
executed event did not require logging in step 764, the
program terminates the scheduled event loop (step 767) and

30 commences the next idle processing task.
Advanced Communication Object Types

The basic architecture of a communications object system
lends itself to many specialized communications object
types which enable significant additional functionality. As

Third, the elements and methods of the provider's own
communications objects can be made available to commu­
nications objects from other providers. This allows for the
automated, intelligent exchange of many types of standard
personal or business data which otherwise would require
human effort. Data exchange automation will be further
discussed below.

35 discussed earlier, in a preferred embodiment each of these
specialized types are implemented as subclasses of the
communications object superclass 110. Examples of these
subclasses are illustrated in FIG. 17. These examples are

Fourth, a single notification report system can be used to 40

report messages and events to the user, whether they are
associated with provider objects or consumer objects. Noti­
fication reports are described below.
Event Loops, Event Logging, and Event Scheduling

The provider program 12 and consumer program 22, 45

whether combined or separate, operate internal event pro­
cessing loops similar to many computer operating systems
or software programs which need to handle user and system
events as well as scheduled or automatic operations. The
main event loop is illustrated in FIG. 16A. In this loop the 50

program first checks to see if there is a system event waiting
for processing (step 751). If so, the program processes the
event (step 752). It then determines if the event requires
logging (step 753), either by a method included directly in
the event, or by checking the system ID of the source class 55

initiating the event against event logging rules in the rules
class 140. If logging is required, the program generates an
instance of the logged event class (118, FIG. 3), recording
the date and time of the event, the system ID of the source
object requesting the event, the system ID of the target 60

object carrying out the event, the event type (for example,
polling, inserting, editing, deleting), and the event results.

If there is not an event waiting in step 751, or when an
event does not require logging in step 753, or when the event
logging task is finished in step 754, the program begins idle 65

processing tasks (step 755). During idle processing periods
other specialized event loops can be processed until the

merely illustrated of the users of communications object
types and not a limiting feature of the invention.

Alternatively, these special object types could be distin­
guished by the use of a special element contained in a
communications object. This element would have a 70
special composite type such as CommObjectType, and the
value of this element would determine the communications
object object type for purposes of processing by the con-
sumer program 22, provider program 12, distribution server
32, or a communications object system partner server 1302.
Message Objects

Communications objects represent a transfer of commu­
nications intelligence, in the form of data, metadata, and
instructions, from a provider to a consumer who wishes to
form a communications relationship with that provider.
Once the communications object has been exchanged, fur­
ther communications between the provider and consumer
can carry greater intelligence because they can be be orgin-
ated and received as transmissions between these two com­
munications objects. Although these messages can be struc­
tured in any form, in a preferred embodiment they are
simply a special communications object type called a mes­
sage object 110. This means they can be generated, encoded,
transmitted, received, and processed in the same fashion as
any other communications object. The only difference is that
the generation or receipt of a message object may not result
in an update to the sending or receiving communications
object, but rather the execution of one or more methods at
the sending or receiving program, and optionally changes to

US 6,757,710 B2
43

other objects or object components in the sending or receiv­
ing databases. A communications object update may be
considered a special form of message object which includes
changes to the receiving communications object.

Message objects can also be sent to or received from any 5

other communications server, program, or process which is
not a formal part of the system but is compatible with the
message object format. Not all messages produced by a
communications object system need take the form of mes­
sage objects, however. The attributes and methods of com- 10

munications objects can also be used to generate and
received other structured or unstructured message formats
compatible with other communications systems, servers, or
processes, or any custom format of the provider's choosing.

As with any communications objects 110, message 15

objects may be transmitted or received via either the push or
pull technique, using any communications protocol.
Specifically, message objects can be transmitted and
received using both store-and-forward protocols, such as
SMTP e-mail, and direct transmission protocols, such as 20

HTTP. In the latter case, message objects can take the place
of HTTP forms for automated processing by the web server,
such as Common Gateway Interface (CGI) script process­
ing.

The processing steps for receipt of a message object by 25

the consumer program 22 are illustrated in FIG. 15. First, a
newly received object is tested to determine if it belongs to
the message object subclass (step 701). If so, the next test is
to see if the message object's "parent" exists in the consumer
database 21 (step 711) by searching for its UID. The parent 30

is the communications object (110, FIG. 3) that produced the
message object. If the UID of the parent object is not
present, the message object is rejected as invalid. This may
also result in an error message being displayed to the user or
placed in the the user's notification report, depending on the 35

user's preferences.
If the parent UID exists, the final step is to execute the

message object's receipt method or methods. Since a mes­
sage object is simply a special type of communications
object, it may carry its own methods, or it may call the 40

methods of its communications object "parent".
Additionally, when received by the originating provider
program 12, it may call any other method 141 present in the
provider database 11 which originated the parent commu­
nications object. For example, a communications object 45

could include a receipt method 141 named GetStatData
which obtains statistical data from a consumer database 21
and returns a message object to the provider program 12.
When the message object is received by the provider pro­
gram 12, it may execute a receipt method 141 named 50

PostStatData which is present in the provider database 11,
but not in the original communications object 110.
Alternatively, method names can be polymorphic. In this
case a method included in the communications object 110
could perform one action when received by the consumer 55

program 22, but another action when called by a message
object in the provider program 12. The method can distin­
guish between these programs by matching the system ID of
its originating database (100, FIG. 3) with the system ID of
the database in which it is executing. (Such a match may also 60

be made on a group ID rather than a specific system ID.) For
example, a communications object 110 could include a
method TransferStatData which, when executed by the
consumer program 22, would be used to gather statistical
data from the consumer database 21 and return a message 65

object to the provider. However, when the same Transfer­
StatData method is executed by the message object back at

44
the provider program 12, the method could be used to post
the statistical data to the provider database 11 (or another
database maintained by the provider).

Because of this, message objects generally do not need to
transport their own methods, but can instead call methods
present in their parent communications object (already
stored in the consumer database 21 and provider database
11), or other methods from their originating provider data­
base 11. This makes them a highly efficient means of
transporting structured message data and initiating auto­
mated processing of that data.

For providers, message objects allow the provider pro­
gram 12 to operate similarly to a consumer program 22. In
other words, message objects returned to a provider program
12 by communications objects which originated in that
provider program 12 can execute the receipt methods, noti­
fication methods, and other processing methods of their
parent communications object 110. This gives the provider
many of the same benefits that the communications object
gives to the consumer. The ability for both the provider and
consumer to benefit equally from the automated processing
of message objects is a core advantage of a communications
object system.
Component and Composite Objects

Another powerful feature of communications objects is
their ability to be physically or logically nested. This nesting
is illustrated in FIG. 3 by the one-to-many association 110A
for communications objects 110. Communications objects
contained by another communications object are called
component objects, and the container object is called a
composite object. FIG. 17 illustrates the one-to-many rela­
tionship between the composite object subclass 811 and the
component object subclass 812.

Each component object has an association 110A to the
composite object which contains it. A component object may
be contained by more than one composite object. As with
other associations in the provider database 11, changes to
component objects can be propagated upward to the com­
posite objects which contain them via the update association
method (FIG. lOB). Thus, for editing and display purposes,
component objects can be treated as one or more methods,
rules, pages, elements, or type definitions that become part
of the larger composite communications object. Composite
objects can access the elements or methods of their compo­
nent objects in the consumer database 21 just as if the
elements or methods were contained directly in the com­
posite object. In this manner component objects can be dealt
with as independently transferrable objects for purposes of
updating, distribution control, and other uses as described
below, while still functioning as an integral part of the
composite objects which contain them.

Composite objects may optionally contain additional ele­
ments 143 representing their component object members. In
this way a composite object can be separated from its
component objects yet still contain the information neces­
sary to retrieve or update its component objects. This use of
composite objects may be more fully understood in the
description of distribution control functions below.

Composite and component objects are particularly useful
for creating many different kinds of metadata structures in
communications object system databases 100. Example are
directory category hierarchies and discussion response
thread hierarchies, shown in FIGS. 29A and 29B. Another
example is schedule objects
Synthesized Objects

When the functions of the provider program 12 and
consumer program 22 and their respective databases 11 and

US 6,757,710 B2
45

21 are combined, a provider can create synthesized objects.
46

termination, event tracking, archiving, and reporting. Two
additional types of control functions, for multinetwork com­
munications and scheduling, will be discussed in the
advanced system architecture sections. This set of control

A synthesized object is a communications object which
contains components or component objects from other pro­
viders. These are referred to as "external components" or
"external component objects". FIG. 17 illustrates the syn­
thesized object subclass 813. A synthesized object does not
necessarily require a special communications object type,
although it may be desirable for licensing, authentication, or
other purposes. The uses of synthesized communications
objects may be more fully understood from the description
of service object types below.

5 functions is not exhaustive but merely illustrative of how the
control capabilities of a communications object system may
be applied. Distribution Control

A provider may wish to distribute different information to
different consumers. In addition, a provider may wish to

Just as with a standard communications object, when the
external components or component objects of a synthesized
object change after the receipt of an updated object from the
external provider, those changes trigger the update associa­
tion rule, described above. Thus the changes are propagated
upward to the components and communications objects
which contain them using the update association method
(FIG. lOB). In this fashion synthesized communications
objects transmit the changes to their external components in
the same fashion as they do with their internal components.
Service Objects

10 grant different consumers different communications control
and access privileges. One way to accomplish this is for the
provider to create different communications objects and
assign them (via push) or make them available (via pull) to
different consumers. However, when a large number of

15 communications object components are being distributed to
large number of consumers, this solution quickly becomes
unwieldy. A second drawback to this approach is that when
a global naming system is used, each of these communica­
tions objects must have a unique name. These different

Service objects are another special class of communica­
tions object whose primary function is to provide commu­
nications services to other communications objects. As
shown in FIG. 17, the service object superclass 815 can be
further broken into subtypes such as registration service
objects 830, maintenance service objects 831, name service
objects 832, directory service objects 833, and so on. Service
object types can be used by the provider program 12 and
consumer program 22 to distinguish the services that service
objects make publicly available to other objects. The use of
service objects will be discussed in separate group of
sections below.

20 names can easily confuse consumers, who would rather be
able to associate a single communications object name with
the real-world name of the person, company, product,
service, etc. that the communications object represents.
Thus, in a preferred embodiment, providers would be able to

25 automatically distribute customized versions of the same
communications object.

In addition, in some cases it is preferable for the consumer
to control this customization process. For example, a pro­
vider may offer several versions of a software product, all

30 sold under the same name. The provider may wish to offer
a single communications object corresponding to that prod­
uct name, yet allow it to be customized for the particular
product versions. However since the provider does not know
which version each consumer is using, it is preferable for the

User Objects 35 consumer to control customization.
User objects are communications objects 110 used to

represent communications object system users or groups of
users in a communications object system database 100. User
objects are shown as class 816 of FIG. 17. User objects 110
have many different applications for both service object 40

partner servers and multiuser implementations of a commu­
nications object system database 100. User objects will be
further discussed in the service object and advanced system
architecture sections below.

This leads to four scenarios for distribution control from
a single provider to one or more consumers: provider control
using the push technique, consumer control using the push
technique, provider control using the pull technique, and
consumer control using the pull technique. This section will
discuss each of these in turn. Distribution control involving
multiple providers will be discussed further in the multiuser
operation section below.

For provider control using the push technique, we have
Schedule Objects 45 already described how a provider can assign different com­

munications objects to be distributed to different consumers
using the create new recipient form or edit selected recipient
form (311, 312, FIG. 9). Distributing customized commu-

Schedule objects are communications objects 110 used to
represent scheduled real-world events in a communications
object system database 100. Scheduled objects are shown as
class 817 of FIG. 17. Schedule objects 110 are used to
coordinate communications about events, such as phone 50

calls and meetings. Schedule objects will be further dis­
cussed in the scheduling control section below.
Communications Control Functions

The preceding sections have explained the basic mecha­
nisms by which communications objects are created, 55

updated, and distributed by a provider, and received,
processed, and stored by a consumer. While the transfer of
a communications object may itself communicate informa­
tion between the provider and consumer, this is only a first
use of the present invention. A second principal use is 60

employing the transferred communications object to control
and automate additional communications between the pro­
vider and consumer. The following sections will explain
these control functions as they apply to distribution,
encoding, transmission, reception and acknowledgment, 65

notification, updating, data exchange, communications
object exchange, forwarding and chaining, transfer,

nications objects simply requires extending this same tech­
nique down to the component level. This means the com­
ponents for each communications object instance are
customized for each recipient during the communications
object instance generation process. This process is analo­
gous to steps 534, 545, 547 of FIG. 12 where object
methods, encoding methods, and transmission methods are
customized for each recipient by associating them with the
recipient instance (120, FIG. 3).

Any communications object component can be used for
customized distribution. FIG. 18 illustrates the data struc­
tures necessary for controlling distribution using pages 142.
While pages are the preferred embodiment that will be
discussed here, other classes, such as elements 143, could
also be used. Alternatively, additional container classes
could be employed, such as page groups. The components or
component groups used for distribution control are not a
limiting feature of the invention. When page distribution
control is used, a rule 140 exists such that the creation of any

US 6,757,710 B2
47 48

Once the communications object is received by the con­
sumer program 22, the SubscribeFlag values of the page
subscription elements 853 are editable by the consumer
using the edit object form (622, FIG. 13) (The operation of

page instance 142 also creates an instance of a page sub­
scription element 853 (and deletion of the page instance also
deletes the page subscription element instance). A page
subscription 853 is an instance of element class 143 with a
composite type PageSubscription. This composite type
includes a logical value SubscribeFlag. The rule 140 that
creates a page subscription instance 853 also creates a
one-to-one association 855 with the page 142 it represents.
Therefore, a list of page subscriptions 853 associated with
each page 142 contained by a communications object
instance 110 can be displayed on the edit selected recipient
form (312, FIG. 9). The SubscribeFlag attribute of each page
subscription 853 can be represented as a checkbox on this
form. By checking the desired boxes, the provider can create
an association 856 between the recipient instance 120 and
the page subscription 853. This results in specific pages
being assigned to the communications object instance that
will be transmitted to the recipient.

5 this form in conjunction with the operation of the consumer
program 22 is described above.) When this form is submit­
ted to the consumer program 22, its contents are processed
by the associated PageSubscribe method. This method first
creates a message object instance (810, FIG. 17) containing

10 the changed page subscription elements 853 and the receipt
method PageSubscribe. It then transmits this message object
instance 810 back to the provider program 12. When the
message object instance 810 is received by the provider
program 12, the PageSubscribe receipt method is executed

FIG. 19 illustrates the three minor modifications that
selective page distribution requires in the object generation
and transmission process illustrated in FIG. 12. First, in step
881, only those type definitions (144, FIG. 3) associated
with elements (143, FIG. 3) contained by pages (142, FIG.

15 using the changed page subscription elements 853 as a
parameter. As a polymorphic method, this results in an
update operation that changes the SubscribeFlag values of
the page subscription elements 853 associated with the
recipient 120. This in turn removes the association 856. In

20 this way the consumer is able to edit his/her own page
subscription settings in the provider's database 11. An
updated communications object instance can be returned by
the provider program 12 immediately, at a scheduled future

3) associated with page subscriptions (853, FIG. 18) having
a SubscribeFlag attribute which is TRUE are selected for 25

inclusion in the object markup file. Second, in step 882, only
elements contained by pages associated with page subscrip­
tions having a SubscribeFlag attribute which is TRUE are
selected. Third, in step 883, only pages associated with page
subscriptions having a SubscribeFlag attribute which is 30

TRUE are selected. All other steps are identical to those
shown in FIG. 12.

The second case covers how the provider can allow the
consumer to control distribution using the push technique.
For example, a software company might offer multiple pages 35

within a communications object pertaining to a software
product. Each page would correspond to a particular version
of that product. If the company did not know which version
a consumer was using, it could include a menu of these
pages in the communications object. A consumer's choices 40

from this menu would be automatically returned to the
provider via a message object, which would invoke a
method in the provider program 12 to change the consum­
er's page subscription settings in the provider database 11.
In this way the consumer can choose to "subscribe" to the 45

page or pages corresponding to the product version the
consumer is using. This saves transmission time for the
provider and file space for the consumer.

To accomplish this requires first that the page subscription
elements 853 be transmitted with the communications object 50

as a preference element that will be editable by the con­
sumer. To include page subscription elements in the com­
munications object, an "Include Page Subscription" check­
box can be included next to the "Include Page" checkbox for
each page listed on the create object or edit selected object 55

form (321, 322, FIG. 9). As shown in FIG. 18, when the form
is submitted with an "Include Page Subscription" checkbox
selected, a contained-by association 857 is created between
this page subscription element instance 853 and the selected
communications object instance 110. In addition, when 60

consumer page distribution control is in effect, each page
subscription instance 853 has an association 858 with a
PageSubscribe method 854. These two associations 857 and
858 mean that all page subscription elements 853 and one
PageSubscribe method 854 will be transmitted as commu- 65

nications object components in the same manner as any
other communications object element or method.

date/time, or at the time of the provider's next publishing
operation.

Both the foregoing distribution control processes operate
via the push technique. For high volume distribution, the
pull technique is more likely to be employed. Distribution
control using the pull technique is illustrated in FIG. 20. Pull
distribution requires the consumer program 22 to interact
directly with a distribution server 32. In a preferred
embodiment, this can be accomplished using a distribution
service object 1310 and a distribution partner server 1302.
These will be further discussed in the distribution service
object section below. Customized distribution, whether con­
trolled by the provider or the consumer, has two require­
ments. First, the components of a communications object
must be available independently on the distribution server
32. Second, the instructions governing the selection of these
components must execute either in the consumer program
22, or the distribution server 32, or both. In essence, program
logic must be used to replace the human intelligence of the
provider in determining how to customize communications
object components.

The first condition can be met by breaking the commu­
nications object into a composite communications object
900 and a set of component objects 901. Two such compo­
nent objects are shown in FIG. 20, however any number of
component objects can be used. The second condition can be
met by either including a distribution control method in the
composite communications object, or transferring a second
communications object with one or more distribution control
methods to the distribution server 32, or both. Alternatively,
the distribution control instructions can be programmed
directly into the distribution server 32, or supplied via
another program or object called by the distribution server
32. FIG. 20 illustrates an instance of a distribution control
communications object 902 produced by the provider pro­
gram 12 and transmitted to the distribution server 32.

Provider control of distribution via the pull technique
involves the following steps. First the object instance gen­
eration and transmission routine (FIG. 12) generates the
composite communications object instance 900 (step 910)
and the component communications object instances 901
(steps 911, 912). The composite communications object
instance 900 includes a distribution control method 901.
This method can execute automatically (as a receipt method)

US 6,757,710 B2
49

or manually (with consumer activation) within the consumer
program 22 to retreive the desired component objects from
the distribution server 32. If some distribution control logic
will reside at the distribution server 32, the object instance
generation and transmission routine also needs to produce
one or more distribution control objects 902 (step 913), or
this logic must be alternatively supplied to the distribution
server 32. (One alternate method of supplying this logic is
a distribution service object 1310. Distribution service
objects will be further described below.) Each of these
objects are then transmitted to the distribution server 32
(steps 920, 921, 922, 923), either separately or in a combined
transmission.

The next step is for the consumer to obtain a copy of the
composite communications object instance 900 (step 930).
When the object is received by the consumer program 22,
the distribution control method 931 can be executed auto­
matically as a receipt method or manually by the consumer
(step 931). The distribution control method 931 determines
which component objects 901 should be retrieved. These
instructions may incorporate any logic or business rules the
provider wishes to employ, using whatever data is available
to the communications object in the consumer database 21

50
tion element instances (853, FIG. 18) are included in the
composite communications object, the consumer can edit
their SubscribeFlag values using the edit object form (622,
FIG. 13). When this form is submitted to the consumer

5 program 22, the PageSubscribe method (854, FIG. 18)
processes the form data. The PageSubscribe method then
uses the link attributes of each page subscription element
instance (853, FIG. 18) to retreive from the distribution
server 32 the component objects 901 for whom Subscribe-

10 Flag equals TRUE. If the page subscription element
instances (853, FIG. 18) are included in the distribution
control object 902, the consumer could invoke a hyperlink
in the edit object form (622, FIG. 13) which calls an H1ML
form from the distribution server 32. This form displays the

15 page subscription element instances (853, FIG. 18) for
editing in the same manner as the edit object form (622, FIG.
13) displays in the consumer program 22. However, when
this form is returned to the distribution server 32, the
PageSubscribe method in the distribution control object 902

20 or its equivalent is used to return the specified component
objects 901 to the consumer program 22. Again, this latter
process can be more efficient than distributing page sub­
scription elements and large PageSubscribe methods in the

or elsewhere in the consumer's computing environment. For
example, if the communications object represented a soft- 25

ware product, the distribution control method 931 could
examine the consumer database 21 or the consumer's local

composite communications object to all consumers.
One advantage of using composite communications

objects for distribution control is that a single composite
communications object 900 can be used to control updating
for multiple component communications objects. This will
be further explained in the discussion of update control,

30 below. Alternatively, distribution control can be accom­
plished using specialized forms of data exchange control.
This will be further explained in the discussion of data
exchange control, below.

or network environment to determine if the product was
installed and what version the consumer was using. Alter­
natively it could present an input form to the consumer to
gather other relevant data for processing. The distribution
control method 931 could then determine and download the
appropriate component objects 901 from the distribution
server 32 (step 932). For example, it could download the
component objects 901 that correspond to the version of the 35

product the consumer was using. If the consumer did not
have the product installed, the distribution control method
931 could download the component objects 901 that are
compatible with the consumer's computer system.
Alternately, the distribution control method 931 could trans­
mit data it retrieves from the consumer database 21 or the
consumer's computer environment to the distribution con­
trol object 902 on the distribution server 32 (step 933). This
data could then be processed by the distribution server 32 to
determine the optimal component objects to return to the
consumer program 22. This can be more efficient than
transferring a sizable distribution control method to each
consumer. Automatic data exchange will be further dis­
cussed below.

The final scenario is consumer control of distribution via
the pull technique. This is similar to consumer control via
the push technique, and again uses page subscription ele­
ment instances (853, FIG. 18) and a PageSubscribe method
(854, FIG. 18). However there are three differences. First,
the page subscription elements include additional attributes
which allow them to function as link elements to the
corresponding component objects location on the distribu­
tion server 32. Link elements are more fully described in the
section on communications object exchange control below.
Secondly, the PageSubscribe method operates differently, as
explained below. Thirdly, both the page subscription ele­
ment instances and the PageSubscribe method may be
contained in either the composite communications object
900 or the distribution control object 902.

Encoding Control
Encoding refers to the formatting of communications data

to increase its communications value. Communications
encoding may take many forms, including human languages,
computer languages, character sets, data file formats, com­
pression formats, transmission formats, encryption formats,

40 and display formats. Multiple types of encoding may be
applied to the same communications transmission. A com­
munications object system represents a significant improve­
ment over existing communications encoding control pro­
cesses for three reasons. First, communications objects

45 provide a simple, automated way for the communications
sender to know which encoding formats are optimal for a
communications recipient. Secondly, because this encoding
data is stored within a structured database 11, 21, it can be
easily accessed by the provider program 12, consumer

50 program 22, or another software program using an appro­
priate API, for the purposes of automating both the encoding
process for the sender and the decoding process for the
receiver. Thirdly, the sharing of encoding and decoding
methods can be dramatically simplified through the use of

55 encoding service objects. Encoding service objects will be
further discussed below.

Communications objects can control the encoding of
transmissions of the communications objects themselves,
communications object updates, related objects such as

60 message objects, attachments to communications object
transmissions, or any other form of message, data stream,
broadcast, or data exchange process. They can also control
both the encoding process for the sender (be it the provider
or consumer), and the decoding process for the receiver.

Once the composite communications object is received at 65

the consumer program 22, the consumer can control com­
ponent distribution in one of two ways. If the page subscrip-

The fundamental process by which communications
objects control encoding and decoding is as follows. Using
the provider program 12, the provider supplies within a

US 6,757,710 B2
51

communications object (110, FIG. 3) one or more elements,
methods, rules, (143, 141, 140, FIG. 3) or any combination

52

of these governing the encoding formats to be used by
communications transmissions resulting from this commu­
nications object. Once the communications object 110 is 5
acquired by a consumer, any communications transmissions
resulting from the communications object, whether gener­
ated manually by the consumer using the consumer program
22, automatically by the consumer program 22 itself, or
automatically by another software program accessing the

10
communications object via an API, will use the appropriate
encoding. When such transmissions are received back by the
provider program 12, or by another software program or
process which has been programmed by the provider or by
other communications objects received from the provider
program 12, these transmissions can be decoded by refer- 15

ence to the same data and methods included in the original
communications object.

keys may be used. Multiple keys may be included within a
single communications object, or a single key may be
constantly changed via communications object updates, or
both techniques can be used together. Since encryption can
be applied automatically by the consumer program 22, the
encryption method 141 can programatically or randomly
chose from among the available public keys. By including
an indentifier value 161 within each public key element 143,
and including this unencrypted identifier value in the header
of the encrypted message objects 110, the provider program
12 can also automatically identify and apply the matching
private key element 143 for decryption. The use of multiple
rotating public keys significantly reduces the risk of security
breaches if any one key combination is broken, and
increases the effort necessary to compromise the security of
the messages.

The authentication of public keys and digital signatures
can also be automated via the use of authentication objects,
a special type of service object. Authentication objects and
servers will be further discussed below.

Encoding can be applied directly by methods contained
within the communications object, by encoding service
objects, by system methods contained in the programs 12, 20

22, by other utility software programs called by these
programs, or by other applications that call the data and
methods of the communications object via an appropriate
API.

An example illustrating the application of encoding con­
trol and automation using communications objects is shown
in FIG. 21. A provider using the provider program 12 has
created and distributed to a consumer program 22 a com-

Encoding control is particularly relevant to communica­
tions security. Many data encryption systems operate
through the use of a digital key or signature for securely
encoding a communications message, and a second related
key for decoding and authenticating the message. The two
keys are related through the use of a mathematical algo­
rithm. Such systems are often referred to as public/private
key encryption systems. The encoding key, which is gener­
ally publicly available, is called the public key; the decoding
key, which is guarded by the recipient, is called the private
key. Public keys can also be digitally "signed" so they can
be authenticated via reference to a trusted source. The use of
encryption algorithms, public and private keys, digital
signatures, authentication, and other topics related to secure
communications is discussed generally by Bruce Schneier,
Applied Cryptography, Second Edition (1996), which is
incorporated herein by reference.

As with other forms of encoding, communications objects
are an excellent mechanism for simplifying and automating
public/private key encryption. Referring to the data struc­
tures in FIG. 3, this is because a communications object 110
is an ideal vehicle for transmitting one or more of the
provider's public keys to the consumer's computer, where it
can be used to automatically encrypt messages being
returned to the provider. The public key can be stored as an
element 143, and the encryption method can be stored as a
method 141. By encrypting the return message as a message
object 110, the message object can invoke a receipt method
141 at the provider program 12 which can automatically
decrypt the message using the provider's private key and the
decryption method, stored as an element 143 and method
141 in the provider database 11, or otherwise made available
to the receipt method 141.

This security technique is not limited to public/private key
encryption systems, but can be applied to any form of
encryption where data and/or methods supplied by the
provider are necessary to accomplish automatic encryption
at the point of message origination (the consumer), as well
as automatic decryption at the point of message reception
(the provider). The specific encryption protocol or algorithm
is not a limiting feature of the invention.

One particular advantage of a communications object
system in this respect is the ease with which multiple public

25 munications object instance 35. This communications object
contains a WPFileSend method 141, plus such additional
elements, methods, and rules (143, 141, 140, FIG. 3) as are
necessary to govern the encoding and transmission of word
processing documents from consumers. A consumer wishes

30 to transmit a word processing file 951 produced by a is word
processing program 950 to the communications object pro­
vider. The word processing program 950 runs concurrently
with the consumer program 22 on the consumer computer 2.
The consumer invokes a command within the word process-

35 ing program 950 to execute a macro program 953 such as
those available within popular word processors such as
Microsoft Word from Microsoft Corporation and WordPer­
fect from WordPerfect Corporation. The macro program 953
makes an API call to the consumer program 22 (step 960)

40 which returns a list of the available communications objects
which support word processing file transfer (step 961).
These choices are presented to the consumer in a menu or
dialog box. Alternatively, the macro program 953 could
retain an internal list of frequently-used word processing file

45 recipients. If a communications object represented multiple
recipients, the macro program 953 could make additional
calls to the consumer program 22 to present such menus or
dialog boxes as were necessary to determine those sub­
choices. Once a particular recipient or recipients were

50 chosen, the macro program 953 would make one or more
calls to the consumer program 22 for the input options
necessary to execute the communications object's WPFile­
Send method (step 962). The consumer program 22 would
return the necessary parameters, including the provider's

55 choice of preferred word processing document formats,
message category options, encryption options, notification
options (such as priority), return receipt options, event
logging options, accounting options, and message attach­
ment options (step 963). Those which require consumer

60 input could be presented in one or more additional dialog
boxes.

Once the consumer has provided this input, the macro
program can use the provider's choice of preferred word
processing formats to save the consumer's designated word

65 processing file or files 952 in that format (step 964). If the
optimal format is not possible (due to word processing
program version differences, conversion filter capabilities,

US 6,757,710 B2
53

or other factors), the next most preferred format can be used.
Once the file or files 952 have been saved, the macro
program 953 can make a final API call to the consumer
program 22 (step 965). This calls the WPFileSend method of
the selected communications object and supplies the name s
of the word processing file or files to be sent together with
the additional parameters to the method. The WPFileSend
method executes a series of steps within the consumer
program 22. First, it uses the provider's preferred compres­
sion format to apply a compression algorithm such as PKZIP 10

from PKWARE, Inc. or SIT from Aladdin Systems to the
word processing file or files, Inc. (step 966). As with the
word processing file format, if the most preferred compres­
sion format is not available, the next most preferred format
can be used. The WPFileSend method then uses the provid- 15

er's public key to apply an encryption algorithm such as
RSA from RSA Data Security, Inc. to the word processing
file or files (step 967). Once the word processing file or files
are ready, in step 968 the WPFileSend method creates the
appropriate message object or objects (810, FIG. 17). Then 20

the WPFileSend method creates an e-mail message or mes­
sages 956 and applies the encoding format such as MIME,
BinHex, or UUEncoding specified by the communications
object 110 to attach the message object or objects (step 969).
Lastly, the e-mail message or messages are transmitted back 25

to the provider computer 11 (step 970).

54
voice, fax, and postal. To do so requires that the provider
program 12 or consumer program 22 include the external
drivers or function calls necessary to interface with these
communications networks. In the case of telephone com­
munications networks, this could be accomplished through
a serial interface driver and an appropriate voice/data/fax
modem hooked to the provider's or consumer's computer or
local area network. Alternatively the programs 12, 22 could
support operating system telephony API calls such as the
Telephony Applications Programming Interface (TAPI) pro­
vided with the Microsoft Windows family of operating
systems from Microsoft Corporation. For postal networks,
the interface could be accomplished through a print driver
capable of producing machine- or human-readable printer
output. This output could be printed directly on the trans­
mission media, such as a postcard or envelope, including
within the transmission media, such as within an envelope,
or applied to the exterior of the transmission media, such as
a label or routing slip. Incoming transmissions via a postal
network can be processed via manual data entry or auto­
matically via the use of a print scanner or barcode reader.
Alternatively the programs 12, 22 could output or input
digital files from removable magnetic or optical media, such
as floppy disks or disk cartridges, that are transmitted via
postal networks.

Transmission control is accomplished using a communi­
cations object system in the same manner as encoding
control. Using the provider program 12, the provider sup­
plies within a communications object (110, FIG. 3) one or
more elements, methods, rules, (143, 141, 140, FIG. 3) or
any combination of these governing the preferred commu-
nications network to be used for any communications trans­
mission resulting from the communications object. Once the
communications object 110 is acquired by a consumer, any
communications transmissions resulting from the commu­
nications object, whether generated manually by the con-
sumer using the consumer program 22, automatically by the
consumer program 22 itself, or automatically by another
software program accessing the communications object via
an API, will determine use the most preferred communica­
tions network available. The determination of the optimal
communications network is a cooperative endeavor between
the provider and consumer. The provider can indicate the
range of available choices and the provider's preferences
within this range. The consumer program 22 can
automatically, or manually with the consumer's input, deter-
mine the consumer's preference from among these choices.

Transmission control can be illustrated with a communi­
cations object which offers software technical support

When the e-mail message 956 is received by the provider
program 12, the WPFileSend method stored in the provider
database 11 is executed. This performs each decoding step in
reverse order. First the e-mail message 956 is decoded to 30

produce the message object attachment or attachments (step
971). Then the message object or objects are read and
processed to determine the subsequent decoding steps nec­
essary (step 972). Using the function calls and parameters
supplied in the message object, the word processing file or 35

files 952 are decrypted (step 973). The same procedure is
followed for decompression (step 974). Next, the file or files
files are saved to an appropriate storage directory (step 975).
Finally the provider's notification preferences for the
WPFileSend method are followed (step 976). For example, 40

this step may involve placing a notification message element
(211, FIG. 4) and a hyperlink to the file or files in the
provider's notification report. Clicking this hyperlink will
open the provider's word processor 958 and load the word
processing file 952, as is the convention with files of specific 45

MIME types submitted to a browser 50. In this way the
provider can view the fully translated word processing file or
files 952 in the optimal format without expending any
human effort to receive, decompress, decrypt, or translate
the file format. so options. Referring to FIG. 3, a page 142 within the com­

munications object 110 can include elements 143 which
allow a consumer to access technical support resources via
e-mail, fax, postal mail, or voice. Each element 143 is
associated with a method 141 governing the communica-

Transmission Control
As discussed earlier, a communications object system can

control and automate communications via any type of com­
munications network to which both the provider and con­
sumer have access. The particular communications network
used is not a limiting feature of the invention. For example,
many providers and consumers share access to three com­
mon communications networks: the Internet (a data com­
munications network), the telephone system (a voice/fax/
data communications network), and the postal system (a
physical communications network). Communications
objects themselves are typically transmitted and updated via
a data communications network such as the Internet
(although alternate communications networks such as the
telephone system or postal systems could also be used).
However, these objects can be used to control communica­
tions via other types of communications networks such as

ss tions network to be used for that type of transmission.
E-mail options can invoke a SendEMail method 143 which
can obtain from the element 143 all data necessary to
address the e-mail, specify the subject line or subject line
subsections, add other carbon copy or blind carbon copy

60 recipients, and include any additional data in the body of the
message or as attachments to the message (data exchange
control is further discussed below). The consumer can enter
the balance of the message manually via a text input field on
an HTML form, or by designating an appropriate computer

65 file or files. The SendEMail method can then send the e-mail
via Internet SMTP. Fax options can similarly invoke a
SendFax method which can obtain from the element 143 the

US 6,757,710 B2
55

provider's fax number, calculate any necessary prefixes or
long distance area codes, and compose automatic cover
pages and body pages. Again the consumer can enter the
balance of the message manually via a text input field on an
HTML form, or by designating an appropriate text or
computer file or files. The SendFax method can then trans­
mit the fax message via model or fax API interface. Postal
mail options are handled using a similar SendPostal method.
In this case the output is printed to a local or network printer.
Fully addressed and barcoded postcards, envelopes, or labels
can be printed automatically depending on the capabilities of
the consumer's printer. These can include human or
machine-readable routing codes for use when the postal
delivery is received by the provider. Voice options can call
a Send Voice method that can provide powerful control over
telephony. For example, beyond just autodialing a phone
number obtained from the element 143 (which, like a
telephone speed dial button, the consumer need never see),
a SendVoice method may use additional touchtones to
navigate a receiving voice menu or voice mail system until it
has reached a specific destination. At this point it may
visibly or audibly notify the user that the line is ready.
Another option with appropriately equipped computers is for
the SendVoice method to allow the user to record a voice­
mail message immediately using a microphone and sound­
card. Then the SendVoice method can completely automate
the transmission of this voicemail message in the back­
ground while the user does other work. If the provider is
appropriately equipped, a SendVoice method could also
coordinate the alternating transmission of data and voice in
the same telephone call. Alternately, it could employ proto­
cols such as Voice View from Radish Software, Inc. for
mixing data and voice in one telephone session.

When a data communications network, such as the
Internet, is available to both the provider and consumer,
many communications transmissions can be more efficiently
and automatically accomplished via this channel. However,
certain tasks such as the shipment of physical goods or live
voice telephony must occur via alternate communications
networks. Because they can operate so efficiently via a data
communications network such as the Internet, communica­
tions objects are particularly well-suited to the scheduling,
tracking, and coordination of communications transmissions
taking place via alternate communications networks. Com­
munications coordination will be discussed further below.
Receipt and Acknowledgment Control

In conventional communications systems, the vast major­
ity of communications message processing must be done by
humans. In a communications object system, both providers
and consumers have a powerful way to automatically control
the processing that takes place when specific communica­
tions events occur. Like many other aspects of a communi­
cations object system, this control is cooperatively shared by
the provider and consumer. The provider can specify what
processing the provider wishes to have take place. The
consumer can place limits upon what processing a provider
is allowed, as well as specify additional processing the
consumer wishes to have take place.

The primary mechanism for controlling automatic event
processing within a communications object system is the
receipt method. A receipt method is one or more methods
which are executed automatically upon receipt of a com­
munications object. Receipt methods are identified by their
method type as described above. Receipt methods can be
associated with any type of communications object 110,
including communications object updates, composite
objects 811, and message objects 110. In addition to the

56
receipt methods included by a provider, a consumer can also
assign his/her own receipt methods to a communications
object. Like any method, receipt methods can call other
methods, so a series of receipt methods can be chained in a

s particular order.
As shown in FIG. 15, receipt method processing is a

standard part of communications object reception process­
ing. Receipt methods assigned by the provider are executed
first (step 721), followed by any receipt methods assigned by

10
the consumer (step 722). The provider's methods are given
execution priority because a consumer's receipt methods
could result in program state changes the provider cannot
predict.

Perhaps the most common example of how a provider can
use receipt methods is acknowledgment messages. Although

15 acknowledgment messages can take any form and be sent to
any receiving program (or human), in a preferred embodi­
ment they are transmitted as message object instances 810
back to the provider program 12 or to a distribution server
32. Alternatively they can be sent to another computer

20 program designed by the provider to receive the message
object instances 810 or another structured message format.
Acknowledgment messages are used to confirm receipt of
any type of communications object, including another mes­
sage object. Acknowledgment messages can be produced by

25 a consumer program 22 to acknowledge receipt of a com­
munications object from a provider program 12. They can
also be produced by a provider program 12 to acknowledg­
ment receipt of a message object from a consumer program
22. The ability of a communications object system to

30 produce and process acknowledgment messages automati­
cally is another strong advantage it holds over other com­
munications systems. This is because with most conven­
tional communications systems, acknowledgment messages
are either not produced at all, or if they are, they must be

35 processed manually by the user. If acknowledgment mes­
sages are not produced at all, the user has no way to
guarantee that important communications transmissions
have succeeded. If they must be manually processed by the
user, the user is forced to periodically check for receipt of

40 the acknowledgment message, then take appropriate action
if it has not been received. Automatic acknowledgment
processing shifts this burden entirely to the provider and
consumer programs 12, 22. The user can simply instruct the
program to alert the user if an acknowledgment message has

45 not been received within an expected period. The user is then
able to forget about the matter completely, knowing the
program will notify him/her only if there has been a problem
with the transmission. The program can also be instructed to
attempt automatic retransmissions before notication, further

so reducing the potential workload on the user.
The data structures necessary for acknowledgment auto­

mation are shown in FIG. 3. The primary structure involved
is the acknowledgment association 121. This is a one-to-one
assocation between a recipient instance 120 and a commu-

ss nications object instance 110. It includes an AckDateTime
attribute which is a date value and an AckFlag attribute
which is a logical value. As explained earlier in the distri­
bution process for communications object or object update
(steps 552-562, FIG. 12), the AckDateTime value is set to

60 the the date/time of distribution plus the acknowledgment
interval. The acknowledgment interval is taken from the
Ackinterval attribute of either the communications object
110 or the recipient 120, depending on which the provider
chooses to govern acknowledgment. The AckFlag value is

65 also initially set to FALSE.
The steps necessary for acknowledgment automation are

shown in FIG. 1. When a consumer program 22 receives a

US 6,757,710 B2
57

communications object instance 35 from a provider program
11, the consumer program 22 executes the object's receipt
methods. By including an Senc!Ack receipt method in the
communications object 35, the provider can cause an
acknowledgment message 33 to be returned to the provider 5

program 12. The SendAck method simply generates a mes­
sage object instance (810, FIG. 17) that includes another
SendAck receipt method and the recipient's database system
ID (100, FIG. 3). When the acknowledgment message object

58
accomplished identically to the above except for the follow­
ing. First, the acknowledgment message object instance
(810, FIG. 17) returned to the provider program 12 includes
such additional data about the consumer as is necessary to
create a recipient record 120. Second, if the recipient record
120 instance does not exist in the provider database 11, the
SendAck method needs to create it, and also create the
association 121 between the recipient 120, the communica­
tions object 110, and one or more methods 141, including an
update method. This specialized use of an acknowledgment
message object 110 is referred to as a registration message.
Registration messages are important for three reasons. First,
registration messages can be used to track communications
object distribution and usage even when the provider does
not have the capability to distribute updates using the push
technique. An example is when an expensive, high-powered
web server is used for high-volume distribution of a com­
munications object, but an inexpensive personal computer
and e-mail account is used for tracking communications
object acknowledgment messages. Second, registration mes­
sages can be used on an intermittent basis by only including
the SendAck receipt method in selected communications
object updates. This allows distribution statistics and other
data to be gathered periodically rather than with every

33 is received by the provider program 12, its SendAck 10

receipt method 141 is executed. Being a polymorphic
method, the operation performed by the Senc!Ack method
141 at the provider program 12 is different than at the
consumer program 22. Referring again to FIG. 3, the Sen­
dAck method 141 first uses the system ID of its parent 15

communications object 110 and the system ID of its origi­
nating recipient 120 to query the database for a acknowl­
edgment association 121. It then changes the value of the
AckFlag attribute to TRUE. The AckFlag attributes of all
acknowledgment associations 121 are maintained in this 20

way. Now all that is required to complete acknowledgment
automation is for the provider program 12 to periodically
execute a scheduled event 117. This event executes a Ack­
Monitor method which queries for all acknowledgment
associations 121 where AckDateTime is equal to or less than
NOW and AckFlag is FALSE. Those instances meeting this
criteria represent recipients 120 from whom acknowledg­
ment messages have not been received in the alloted inter­
val. The AckMonitor method could then take appropriate
actions. For example, it could execute a designated notifi­
cation method to notify the user, such as placing an entry in
the user's notification report. Notification control is further
discussed below. Alternatively, the AckMonitor method
could automatically retransmit the appropriate communica­
tions object instance 110. Each time it did this it would 35

increment the AckDateTime value of the acknowledgment
association 121 by the appropriate Ackinterval. It would also
increment the integer value of the RetryCount attribute by
one. If the acknowledgment association 121 continued to
fail the AckMonitor check, each subsequent retransmission 40

would continue incrementing the RetryCount attribute until

25 update. Third, if the acknowledgment message object 110
includes the e-mail address of the consumer, the resulting list
of recipients 120 created by registration messages can allow
the provider to convert the communications object update
method from pull to push. Conversion between update

30 methods is discussed further below.
Another common example of a provider-assigned receipt

method is scheduling polling events when a communica­
tions object uses the pull technique for updating. A SetPoll­
ing receipt method can cause the previous polling even to be
deleted and the next polling event to be scheduled. With
composite communications objects (811, FIG. 17), a Get-
Components receipt method can govern the updating of each
component object to which the consumer is subscribed. This
allows a composite object to control the updating of all its
component objects as described in the distribution control
section above. Update control will be described further

it equaled a RetryThreshold attribute value stored in the
global preferences instance 103. At this point user notifica­
tion could be triggered, as well as other appropriate actions
designated by the provider, such as deletion or inactivation 45

of the recipient instance 120.

below.
Another example of a provider-assigned receipt method is

registration. Certain communications objects such as service
objects may explicitly wish to register themselves or their
public methods within the consumer database 21. Object and

Like any other message object, acknowledgment mes­
sages can also be used to report back useful information to
the provider about the consumer, such as statistical or usage
data. Data exchange control and reporting control will be 50

further discussed below.

method registration will be discussed further below.
The foregoing cases are all provider-assigned receipt

methods. A unique feature of the present invention, however,
is that once a consumer has received a communications
object from a provider, the consumer is also able to assign

When communications objects are distributed using the
push technique, receipt acknowledgment messages can be
used to delete recipients 120 who do not wish to continue
receiving communications object updates. This is accom­
plished in the same manner as consumer distribution control
using the push technique, described above. In this case, the
SendAck receipt method presents a form to the consumer
allowing him/her to edit the logical value of a Subscribe
element 143. The resulting value is returned with the
acknowledgment message object instance 810. Upon receipt
by the provider program 12, a negative Subscribe element
value causes the SendAck method to delete the association
between the recipient 120 and the communications object
110.

Acknowledgment messages can still be used even when
the distribution method uses the pull technique. This is

receipt methods. These methods can be assigned to the
object as a whole, or to specific preference within the object.
The data structures necessary for accomplishing this are

55 shown in FIG. 3. Receipt methods applying to the commu­
nications object 110 as a whole can be assigned via an
association created between the communications object
preference element 127 and a method 141 (this association
is not shown due to space limitations). Receipt methods

60 applying to specific preference elements can be assigned via
an association between the element preference instance 147
and a method 141.

A common example of a consumer-assigned receipt
method is forwarding, wherein receipt of a communications

65 object update causes that update to be forwarded to another
consumer program 22. Forwarding is further described
below.

US 6,757,710 B2
59

Consumer-assigned receipt methods can also be used to
control data or message exchange with other software pro­
grams operating on the consumer computer 2 or within the
consumer's local network environment. This can be accom­
plished via receipt methods which call operating system
methods or the methods of the target computer program.
Update Control

One of the most distinguishing features of a communica­
tions object system is its ability to control the automatic
updating of communications objects. Certain types of com­
munications objects, such as those designed for one-time
data exchange operations, may not be persistent in the
consumer database 21 and thus not require updating. How­
ever every communications object that will be persistent in
the consumer database 21 needs to be updated when the
provider makes changes to the object. Push-based updating
is automated through the use of the update association rule
(FIG. lOB) described above. Pull-based updating is accom­
plished through the use of update methods. As with any
other object method, an update method may be a reference
to a system method, an method carried internally in the
object, or a call to a remote method stored on another
computer accessible via communications network 3. A com­
munications object may also be associated with multiple
update methods.

When a communications object instance is distributed
using the push technique, updates are pushed by the provider
program 12, so an update method is not required in the
communications object. However, an update method may
still be employed in this case for error correction. For
example, if the provider typically distributes communica­
tions object updates via the push technique every 30 days,
the provider could include in the communications object a
receipt method that creates a scheduled event instance (117,
FIG. 3) in the consumer program 22 to be activated in 60
days. With each subsequent update of the communications
object, the receipt method would reschedule this scheduled
event instance for another 60 days into the future. If a push
transmission from the provider did not reach the consumer
within a 60 day period, the scheduled event instance would
be actived. It would trigger the update method which would
send a message object 110 back to the provider program 12.
This message object could contain the e-mail address of the
consumer computer 2, the version and date of the last
communications object received, and other such data as
would allow the provider program 12 and consumer pro­
gram 22 to resynchronize after an error condition.

60
Referring again to FIG. 3, the triggering of update meth­

ods is typically controlled by a scheduled event instance 117
in the consumer program 22. As described above, this
scheduled event instance 117 can be created by a receipt

5 method executed when a communications object or object
update 110 is received. It can also be scheduled or resched­
uled by an update method triggered by a scheduled event
instance 117. This combination of using receipt methods and
update methods to control scheduled event instances 117

10 provides comprehensive control over update events. This is
further augmented by the ability of receipt and update
methods to use any data available to them within the
communications object 110 or the consumer database 21 to
make update decisions. For example, update events can be

15 scheduled based on a specific periodic interval or specific
date/time set by the provider. By the use of preference
elements, the provider may also allow the consumer to
choose an update interval or date/time, or to choose from
within an update interval range or data/time range offered by

20 the provider. The provider can also let the update method
determine a random date/time within a periodic interval or
date/time period. This last approach, commonly referred to
as a "back off", can be useful for controlling server loads.
For instance, a provider may publish a weekly newsletter on

25 Friday afternoons at 2 p.m. Eastern Standard Time. By
specifying that the receipt or update method schedule the
update polling event for a random time within the next 3
hour period, the provider can efficiently distribute a very
large volume of updates within that 3 hour period without

30 overloading the server. Receipt or update methods can also
use other logic or data to control update polling. This might
include factors such as the total age of the communications
object in the consumer database 21; the frequency with
which the consumer has viewed or acted upon the commu-

35 nications object; costs or fees associated with an update; or
other criteria. The specific algorithm or algorithms used to
control update scheduling are not a limiting feature of the
invention. The consumer may also wish to have the con­
sumer program 22 dynamicaly reschedule update events

40 depending on other factors such as the time of day, the
interval since the program was last run, local or Internet
network traffic levels, the consumer's own system activity
level, other system or environment variables, disk space
availability, or other factors. Update methods can also be

45 triggered manually by the consumer.
Different update methods, or differing parameters to one

update method, can also be active depending on the con­
sumer's preferences or other rules determined by the pro­
vider or consumer. For example, a different polling interval

50 may be associated with one or more notification elements, so
the polling frequency may be determined by which notifi­
cation elements a consumer has activated. Notification ele­
ments are further discussed below.

When a communications object employs the pull tech­
nique of updating, an update method is used to control the
update operation. Pull-type update methods can use any
services available at the consumer program 22 to initiate an
update. In a preferred embodiment shown in FIG. 1, an
update method initiates a polling request from the consumer
program 22 to a distribution server 32. For example, the
consumer program 22 can issue a HTTP "Get" request to
Web server using the "If-Modified-Since" parameter in the 55

header. The date/time of the most recent existing commu­
nications object version in the consumer database 21 is
supplied as the value for the "If-Modified-Since" parameter.
This value is stored as the LastUpdate date attribute of the
communications object (110, FIG. 3). If the date/time of the 60

the communications object markup file 35 on the Web server
has not changed, the Web server returns a response code
indicating "no change", and the update method will schedule
the next polling event. If the date of the file 35 stored on the
Web server 32 is newer, the Web server returns the com- 65

munications object markup file 35, and processing begins as
shown in FIG. 16.

The nature of communications object architecture makes
it easy for a provider to convert a communications object
110 from push to pull updating and vice versa. To convert
from push to pull updating, the provider need only add a
pull-based update method to the communications object,
then distribute it via the push technique to all recipients 120.
As soon as it is received by each recipient the object will
begin to use pull updating. The conversion from pull updat-
ing to push updating is almost as straightforward. The
provider first adds a receipt method to the communications
object 110 that will return a registration message to the
provider program 12 or a distribution server 32. As
described above, registration messages create or update a
recipient instance 120 and its association with the commu-

US 6,757,710 B2
61

nications object 110 and an update method 141. As each
registration message is received, the recipient is converted to
a push update method. The provider need only maintain the
pull version of the communications object 110 on a distri­
bution server 32 until the provider believes all outstanding 5
copies of the object have returned a registration message.

In certain cases it may be advantageous to combine both
the push and the pull techniques of updating for a single
communications object 110. For example, a provider may
wish to use pull updating for distribution of a monthly

10
newsletter, but also wish to be able to distribute an update
via the push technique when very timely news occurs, such
as a special event. In this case the provider can use pull
updating in the communications object 110, but also include
a receipt method that returns a registration message from the
consumer the first time the communications object 110 is 15

received. (Consumer registration information can be
updated whenever the consumer changes it. Registration
updates will be further discussed below.) These registration
messages create a special association between the recipient
120 and communications object 110 which has a PushSpe- 20

cial attribute (not shown in FIG. 3). Recipients 120 whose
association with a communications object 110 has a Push­
Special attribute are ignored during standard communica­
tions object updates. However when the provider needs to
distribute a push update, the provider can set a PushSpecial 25

flag for the communications object 110 using the edit object
form (322, FIG. 9). When this flag is set, all recipients 120
associated with the communications object 110 will receive
the update via the push technique. Alternatively, the provider
may choose to distribute a message object 110 to all recipi- 30

ents 120 who have a PushSpecial association with a com­
munications object 110. This message object can include a
receipt method that triggers an update via the pull technique.
In this fashion a small message object may be distributed via
a push medium such as e-mail in order to trigger the 35

downloading of a much larger update via another medium
such as the World Wide Web or FTP.

62
Another highly efficient update control technique,

referred to as update query control, requires the use of
database program operating on a distribution server 32. In a
preferred embodiment, this can be accomplished using a
distribution service object 1310 and a distribution partner
server 1302. These will be further discussed in the distri-
bution service object section below. With update query
control, the communications object 110 controlling the
updating need not contain any direct references to the
specific communications objects or component objects
being updated. Rather the controlling communications
object 110 can contain one or more data exchange elements
143 and data exchange methods 141 which function as an
update method. (Data exchange elements and data exchange
methods will be further explained in the data exchange
control section below.) The data exchange method 141 can
first execute a query of the consumer database 21 for all
communications objects which match the query critieria. For
example, a composite communications object 900 could
query for all its component communications objects 901.
The query result includes the UID and current version value
of each component object 901. The data exchange method
then uses the result set to perform a second query of the
distribution server 32. The distribution server 32 would
return each component object 901 for which the version
value on the distribution server 32 was greater. In this
manner a single communications object could be used to
very efficiently update thousands or even millions of com­
munications objects stored on high performance database
servers.

This process can be made even more efficient for the
consumer by the maintenance of an index of provider UIDs
and the communications objects 110 with which they are
associated with on the distribution server 32. This process is
further described in the directory service object section
below.

Another update control approach that can be used with
both the pull and push techniques is version monitoring.
Version monitoring can be employed with either the push or

One communications object can be used to control the
updating of other communications objects. For example, the
receipt method for a composite communications object can
trigger the updating of each of its component objects. To
illustrate this, refer to FIG. 20 and the preceeding discussion

40 the pull technique. Version monitoring uses a rule 140 to
monitor version values included in message objects passed
between the programs 12, 22, and 32 to detect when a
communications object 110 needs to be updated. Version
monitoring is further discussed in the sections on data

of consumer distribution control using the pull technique. A
composite communications object 900 can contain multiple
page subscription element instances (853, FIG. 18) corre­
sponding to its component communications objects 901.
Each page subscription element instance can include an
attribute for the current version value of the corresponding
component object 901. This version value attribute can be
maintained using a rule 140 that updates the version value of 50

the page subscription element instance when the version
value of the component communications object 901
changes. When the composite communications object 900 is
updated, its receipt method can compare the version value in
this attribute with the version value of the corresponding 55

component object 901 currently stored in the consumer
database 21. When the version value has changed, the update
method of the corresponding component object 901 can be
executed to update the component object. In this manner the
component objects themselves do not need to be polled for 60

updates. This same technique of "indirect updating" can be
applied to any set of communications objects, where ele­
ments in one communications object are processed to trigger
the updating of other related communications objects. In this
way, for example, a single communications object at a web 65

site could be used to check for updates on many additional
communications objects on the web site or related web sites.

45 exchange control and data archiving control below.
Notification Control

One of the greatest advantages of a communications
object system over other communications systems is the
ability it gives information consumers to control notification
about communications events. The fundamental reason for
this is that within a communications object system all
messages are transmitted and received as some type of
communications object. This allows messages to be "pre­
processed" by the consumer program 22 or provider pro­
gram 12 using data or methods from one or more commu­
nications objects already present in the consumer database
21 or provider database 11. This preprocessing allows these
programs to do a large amount of the sorting, filtering, and
notification work that otherwise would require human effort.

In a communications object system notification control is
achieved primarily through the use of notification methods
141, notification rules 140, and notification elements 141.
Collectively these are referred to as notification components.
Notification methods 141 can operate on a communications
object as a whole, or they can be associated with specific
notification elements 143 contained within a communica­
tions object. Since notification elements 143 describe the

US 6,757,710 B2
63

nature of other data or events about which the consumer may
be notified, they are one of the principal metadata constructs

64
FIG. 9) in the provider program 12 to create notification
element instances for each communications topic where the
provider wishes to allow consumers to control notification.
FIG. 22 illustrates a typical create new element form for

of the present invention. Communications objects or object
updates can carry multiple notification elements 143. Each
notification element 143 may also be associated with mul­
tiple other elements 143 such as message elements 143.
Consumers can accept default notification methods 141
assigned to each notification element 143, assign other
system notification methods 141, or create and assign their
own notification methods 141. The combination of these
capabilities provides a powerful means of active messaging.

5 notification elements. The provider inputs the name and
description attribute for the information topic covered by the
notification element. For example, the name of a notification
element for a company selling a software product might be
"New Version Announcements". For an on/off-type notifi-

As described above, notification elements 143 have a
special type definition which the consumer program 22 uses
to trigger notification processing. FIG. 4 illustrates a basic
example of a notification element instance 201 called a topic
element. Topic elements allow providers to specify interest
topics on which consumers can choose to receive notifica­
tion of new messages. A topic element 201 includes the
attributes of element class 143, namely system ID, name,
description, version, NewFlag, and HoldFlag. It also
includes an attribute NotifyFlag which accepts a logical
value for the default notification state set by the provider. A
topic element 201 is associated with one or more message
elements 211. A message element 211 carries the actual
content of the message about which consumers can choose
to be notified. It includes attributes for headline, headline
link, body, and body link. The headline is a text field that will

10 cation element, the description might be, "Includes all new
version announcements, both minor and major upgrades".
For a range-type notification element, the description might
be "Choose from one to five. One receives only full point
upgrade announcements. Five receives all new product

15 announcements, including weekly maintenance patches." A
list of these notification elements would appear similar to the
table of contents for a newsletter, or the items on a customer
interest survey. The provider can assign notification ele­
ments to one or more pages (142, FIG. 3) which in turn can

20 be assigned to one or more communications objects (110,
FIG. 3). The provider may consolidate notification elements
on one or more pages specifically for this purpose, or
intersperse them with other element types on various pages.
Optionally the provider can also create the initial versions of

25 each message element or other type of element associated
with each notification element.

be displayed in a notification report for the consumer. The
body is a text field that contains the body of the message,
which can be displayed on its own report page. By default 30

the headline can be linked to the body. Optionally the
provider can choose to supply a headline link attribute, such
as a URL, which would link the headline to another web
page, communications object, or other resource. The pro­
vider can also supply a body link which would link the 35

message body and another web page, communications
object, or other resource. Alternatively, the body can be an
HTML field, which allows the provider to completely con­
trol the formatting and presentation of the body page as well

When the communications object containing the notifi-
cation elements is transferred to the consumer program 22,
the preference values for each notification element are
editable by the consumer. As shown in FIG. 4, these pref­
erence values are stored in an instance 221 of the element
preferences class 147. This instance inherits the logical
attribute NotifyFlag from the notification element instance
201. The value for this field is represented by a checkbox
next to the name and description of the notification element
202 when the consumer is editing any form containing the
notification element. This could be the selected page form
(612, FIG. 14) or the edit object form (612, FIG. 14). The
selected page form would present the notification element in

as provide any number of URL links within this page. 40 the context of the other elements on the page. The edit object
form allows all preference elements for the object, including
all notification elements, to be edited at once. FIG. 23
illustrates how notification elements on a typical edit object

The topic element 201 illustrated is a simple "on/off"
notification element. Notification elements may also be of
other composite types which give providers and consumers
more latitude over notification control. Specifically, the
composite type could include additional fields 152 of a 45

primitive type integer range which allow the notification
element to have a "threshold" value rather than an on/off
setting. Thresholds let providers add a valuative dimension
to communications events. For instance, a notification ele­
ment about new product announcements could have a range 50

setting of one to five indicating the importance of the
announcement. Consumers can now choose from a gradient
of interest levels in this topic rather than just an on/off
setting. Another use of thresholds is a frequency threshold.
Frequency thresholds allow consumers to control the fre- 55

quency of messages they will receive related to a specific
notification element. For example, a consumer could choose
to receive a maximum of three messages on a specific topic
in any 30-day period. The notification method associated
with this element would track the messages associated with 60

this notification element and turn off notification for any that
exceeded this frequency threshold. The specific configura­
tion of notification elements used is not a limiting feature of
the invention.

The use of notification elements and notification methods 65

to control messaging involves the following sets of steps.
First the provider uses the create new element form (341,

form might appear.
When the provider wishes to transmit information related

to a notification element, the provider uses the edit selected
element form (342, FIG. 9) to create or edit the message
elements 211 or other elements associated with one or more
notification element. The provider does this for all messages
or other notification events the provider wishes to transmit
in a particular communications object distribution. Of
course any other communications object or object compo­
nent changes will also be transmitted in the same distribu­
tion operation.

The processing of notification elements in an updated
communications object received by the consumer program
22 is shown in steps 724-728 of FIG. 15. After the appro­
priate element preference associations have been updated
(step 717), the consumer program 22 queries the updated
communications object for all notification elements (step
723). Notification element types can be designated by any of
the techniques discussed in the data structures sections
above. One such technique is to include a logical value
IsNotifyElement in all such elements. The program then
begins a loop through each notification element (step 724).
First, it checks to see if an associated element preference
instance (147, FIG. 4) exists (step 725). If not, the notifi-

US 6,757,710 B2
65 66

the Internet. Another option is for the consumer to see
communications objects for which there are new notifica­
tions displayed differently than other communications
objects for which there are no new notifications. Notification
reports may also be sorted according to the settings of the
sort form (634, FIG. 14), or by using various toolbar buttons
for common sorting or filtering options. For example, noti­
fication data could be sorted by communications object
name, communications object nickname, date, folder, or

cation element is skipped. Alternatively, the program could
follow object-level or global-level consumer preferences for
this case. A special rule could also be followed for new
notification elements. Alternatively, notification of new noti­
fication elements can be accomplished by having the pro- 5

vider include one or more special notification elements
specifically for this purpose. Updates to these special "meta­
notification elements" can include links to the new notifi­
cation elements for easy editing by the consumer. For each
element where an associated element preference instance
(221, FIG. 4) exists, the consumer program 22 performs a
notification test (step 726). For example, the test for an
on/off topic element (201, FIG. 4) would be if the Notify Flag
value of the consumer's element preference instance (221,
FIG. 4) was equal to TRUE. In the notification element fails 15

the test, the consumer does not desire notification, and the
program proceeds to the next notification element for pro­
cessing. If the notification element passes the test, the
program executes the notification methods the consumer has
assigned to the element preference instance (step 727).

10
notification priority. Different standard or custom notifica­
tion reports can also be stored and presented as menu options
or toolbar buttons. A example of a notification report sorted
by date showing headlines only for communications objects
which had new notifications is shown in FIG. 24. Each
notification report entry can include a button for deleting the
entry from the notification report immediately, or a check­
box for batch deletion, or both. In either case, when the
notification report form is submitted, this button or check­
box causes the NotifyReportFlag attribute 223 of the corre­
sponding preference element instance 221 to be set to

20 FALSE. The format of a notification report is not a limiting
feature of the invention. Notification methods provide the consumer with a pow­

erful mechanism for controlling notification of communica­
tions events. Rather than simply maintaining a passive
message queue as is typical of most e-mail or voicemail
systems, notification methods allow the consumer to specify 25

message processing actions to take upon receipt of a specific
type of communications event or specific communications
content. The consumer is able to specify such actions
because of the metadata provided by the notification element
143, and because of the structured format of the message 30

data contained in the communications object. Notification
methods 141 may trigger any action available to the con­
sumer program 22, subject to the user's permissions.

These examples are merely illustrative of the actions that
can be taken by notification methods. Notification methods
may trigger any method operation available to the consumer
program 22. Other examples include sending messages to
other applications running on the consumer machine 2;
sending messages to the consumer's operating system to
trigger dialog boxes or trigger other system events; creating
or controlling a screensaver display on the consumer
machine 2; creating or controlling a background desktop
graphic or set of graphics on the consumer machine 2; and
sending voicemail to the recipient. Any combination of
notification methods 141 may also be used together. The
specific notification method used is not a limiting feature of
the invention.

Notification methods 141 can also be assigned to com­
munications objects as a whole. For example, notification
about new communications objects can be controlled
through a NewObjectNotify method of the global prefer-

40 ences instance (103, FIG. 3). Described further above, the
use of the NewObjectNotify method is illustrated in steps
704-706 of FIG. 15. Notification at the object level is also
useful for certain communications object updates. This is
particularly true for "metamessages" that the provider

FIG. 4 illustrates two typical notification methods
assigned to an element preference instance 221. A SendE- 35

Mail method 224 causes each message element 211 associ­
ated with the notification element 202 to be sent as an e-mail
message to an address or addresses specified by the con­
sumer. Preferably, such an e-mail message would use as the
start of its header a signifying string such as "Special Alert:",
followed by the headline text value from the associated
message element 211. The body of the message would then
contain the body value from the associated message element
211. It could also contain the headline link value, body link
value, and other status or navigational information, such as
the name of the originating communications object, the
name of the provider, or other actions taken. An AddToNo­
tifyReport method 225 causes the headline of each associ­
ated message element 211 to appear in the consumer's
notification report (630, FIG. 14). To set this trigger, the 50

AddtoNotifyReport method adds a logical NotifyReportFlag
attribute 223 to the element preference instance 221 and sets

45 wishes to transmit to all recipients of a communications
object, such as a change in business name or ownership,
significant structural or operational changes to a communi­
cations object, or splitting a communications object into
multiple objects.

A receipt method 141 can also be used to control notifi-
cation. For example, a receipt method 141 could automati­
cally search the message elements within a communications
object update for text strings specified by the consumer. As
shown in FIG. 3, these text strings could be stored in an

55 element preferences instance 147 associated with the com­
munications object 110 and the receipt method 141. When
this receipt method 141 executes, if it finds any instance of
the search string in the message elements, it causes the
notification element or elements 143 associated with that

its value to TRUE. To display the notification report (630,
FIG. 14), the consumer program 22 performs a query of the
consumer database 21 for all message elements 211 associ­
ated with all element preference instances 221 where the
NotifyReportFlag 223 value is TRUE. The actual content
displayed in the report is determined by attributes of the
consumer's global preferences (103, FIG. 3). The consumer
may wish to see headlines only. In this case each headline 60

can be displayed as a hyperlink. When selected, the hyper­
link will display the message body and body links as a
separate page. Alternatively, the consumer may wish to see
all headlines, messages, and links in the notification report.
Headlines may also be linked to other elements or methods, 65

such as those used for data exchange. Headlines may also
function as a hyperlink directly to another URL anywhere on

message element to pass the notification test and trigger the
corresponding notification method 141. Such a receipt
method 141 provides a powerful secondary means of noti­
fying the consumer of communications object content which
may not be directly related to topic elements or other types
of notification elements.

Notification control operates similarly in the provider
program 12. Here notification methods 141 are associated

US 6,757,710 B2
67 68

primarily with message objects 110. As with the consumer
program 22, notification methods 141 can be assigned to a
message object 110 as a whole, to elements within a message
object, or activated by receipt methods associated with the
message object. When the provider program 12 and con- 5

sumer program 22 are combined, the same notification
reporting system can be used for both provider and con­
sumer operations. Report sorting options can allow provider
notifications to be shown separately from consumer
notifications, or they can be combined on the same reports. 10

by the provider program 12 or consumer program 22 in the
same fashion as the forms produced for operation of the
programs themselves. A typical input form is shown in FIG.
27. Each data field that accepts input on the form is an
attribute of an element 143. Other text or graphics that
appear on the form, as further instructions or directions to
the user, are other elements either supplied by the provider
or drawn from the consumer database 21 or provider data­
base 11. Any communications object component stored in
either of these databases may be included, subject to the
consumer's or provider's data access rules discussed below. Notification methods 141 can also be assigned to system

events, and these too can be integrated into the same
notification reports. For example, a system event can trigger
notification that a provider is due to release a periodic
communications object update, or a consumer that his/her 15

consumer database 21 needs to be backed up.

The only difference between input forms produced by data
exchange methods and standard program forms is that an
data exchange input form is generated by and processed by
a data exchange method. Alternatively, user input can be
obtained through other user interface options including

Data Exchange Control
The ability of a communications object system to auto­

mate common communications tasks is perhaps best exem­
plified by its ability to automate data exchanges between 20

consumers and providers. Typical examples include the
exchange of contact information, demographic data, psy­
chographic data, billing information, product registration
information, customer service data, technical support data,
transaction histories, stock feeds, news data, weather data, 25

and so on. A communications object system is capable of
automating the exchange of such data to a greater degree
than any other existing communications system for five
reasons. First, such data is already stored in a consumer
database 21 in such a fashion as to be available for auto- 30

standard operating system functions such as dialog boxes
and menus. The use of a graphical user interface will be
specifically discussed below.

Besides input form and message object generation, data
exchange control in a communications object system
involves data type control, data persistence control, data
access control, and data security control. Each of these must
be considered from the standpoint of internal data, i.e. data
within the provider database 11 or consumer database 21,
and external data, i.e. data available elsewhere within the
provider's or consumer's computing or network environ­
ment.

Data type control is required because providers need a
way to specify the data they require in a specific data
exchange transaction. The data type definition features of a
communications object system, as explained above in the
data structure section, are ideally suited to this need. By
creating a system-wide set of low-level composite type

mated access and delivery. Second, such data is available in
structured, typed formats that allow providers to easily
specify the data they require. Thirdly, communications
objects give providers the tool they need to transfer such
data from the consumer back to the provider. Fourth, mes­
sage objects and the architecture of the provider program 12
allow the provider to automate the processing of such data
when it is received back at the provider. Fifth, the ability of
the provider program 12 and consumer program 22 to
automatically trigger events and respond to message objects
means a multi-part data exchange transaction (such as a
purchase and receipt acknowledgment) can be automated
throughout.

The primary data structures involved with data exchange
control are data exchange elements 143 and message objects
110, both described above. Any communications object
method 141 involved with data exchange can be referred to
as a data exchange method. Data exchange elements 143 in
a communications object 110 can call a data exchange
method 141. Data exchange methods 141 in the consumer
program 22 can produce message objects that can be trans­
mitted back to the originating provider program 12, or to any
other program capable of processing the message object.
Data exchange methods in the provider program 12 can also
produce message objects that can be sent to any consumer
program 22 containing the parent communications object.
Like any communications object, message objects can con­
tain any combination of components required to transport
and process the data they contain. Data exchange methods
that produce message objects can be fully automatic. For
example, a receipt method can produce and transmit an
acknowledgment registration message object, described
above, with no consumer intervention. Data exchange meth­
ods that produce message objects can also obtain manual
data input from the consumer or provider. In a preferred
embodiment the mechanism for obtaining this input is an
HTML form. Such input forms are produced and displayed

35 definitions, such as N arne, Address, and Telephone, and then
nesting these inside of progessively more comprehensive
composite type definitions, such as BusinessCard or
Resume, a hierarchy of standard data type definitions can be
created that are available to all providers and consumers.

40 This has two very significant advantages. First, as providers
design input forms and methods for data exchange tasks,
they can choose from among these standard data type
definitions rather than needing to create their own composite
data type definitions, saving considerable time and effort.

45 Second, data type standardization means that consumers
need only enter data once into each instance of each data
type that pertains to them. For example, the consumer only
needs to enter his/her name, addresses, telephone numbers,
birthdate, and other personal data one time into the con-

50 sumer database 21. From that point on all communications
objects which need data of these types can access these data
type instances. This saves the consumer data input time and
also vastly reduces the potential for data input errors.

Like any communications object component, every com-
55 posite data type can be identified by the unique system ID of

its type definition (144, FIG. 3). When multiple instances of
a particular data type exist, such as multiple telephone
numbers, the provider can use a data exchange method to
specify if all instances are desired, or query for selected

60 instances using additional criteria, or use an input form to
prompt the consumer to select one or more specific
instances. Such an input form can be generated dynamically
by the data exchange method based on the presence and
number of instances of a data type that satisfy a provider's

65 selection criteria. The input form can also be dynamically
generated based on the need for further input by the
consumer, or to conform to the consumer's data exchange

US 6,757,710 B2
69

rules, discussed below. Data type standardization can be
further extended by the use of type definition service objects,
which will be further discussed below.

70
to protect their integrity, data access rules can also enforce
the ability to add or change other data access rules, and also
the hierarchy in which rules take precedence when two or
more rules apply. Data access rules can also be selectively Providers can also create their own data type definitions

and specify the use of these composite data type definitions 5 applied by the consumer to particular communications
objects 110 or communications object groups such as folders
115 by creating associations between these and a data access
rule 140. The application of rules to control data access
within an active database is further discussed in the afore-

in data exchange methods. When a provider-specific data
type can be aggregated or calculated from other system
standard data type definitions which are already present in
the consumer database 21, the resulting element can be
composed automatically by a data exchange method. When 10

a provider-specific data type requires the input of new data
from the consumer, an input form can be generated by the
data exchange method. Once submitted, the data can also be
saved as a element preference instance (147, FIG. 3) in the
consumer database 21. The provider can then use the system 15

ID of the type definition of this element to query for this
element preference instance in future transactions. This
allows a provider to dynamically generate and persistently
store provider-specific data type definitions in the consumer
database 21. A common example of such a data type might 20

be a consumer's preference between a provider's selection
of product colors, such as clothing or paint. Storing this data
locally at the consumer database 21 means that it can easily

mentioned Active Database Systems.
As the preceeding examples illustrate, enforcement of

data access control rules is of paramount importance when
automatic data exchange methods have shared access to a
pool of private data belonging to the consumer. One mecha­
nism for enforcing data access rules is system- or consumer­
controlled encryption of sensitive private data. Any access to
such data requires that the consumer enter the necessary
passkey in order to decrypt the data. A second mechanism is
system- or consumer-controlled authentication of commu­
nications objects. This requires the use of digital signatures
and authentication protocols for communications objects.

be included in any future communications from the con­
sumer. Additionally, such data can be shared among all 25

communications objects or data exchange methods from that
provider, as further explained below. Another key benefit is
that this data can be easily and immediately edited by the
customer should the customer's information or preferences
change. Such changes can also be automatically transmitted 30

back to the provider through the use of data association
rules, discussed below.

Such protocols are fully described in the aforementioned
Applied Cryptography by Bruce Schneier, and will be fur­
ther discussed below.

Data type, persistence, access, and security control can be
applied to the exchange of data external to the provider
database 11 or consumer database 21 in the same manner as
internal data. Such external data falls into three general
categories: system data, file data, and data available via
external queries. System data includes system environment
variables, configuration variables, and operating statistics.
File data includes data available directly via operating
system calls such as files, persistent system objects, or any
other data stored directly in the user's local or network
computing environment including removable storage
devices mechanisms such as floppy disk drives, CD-ROM

As with any multiuser database system, shared access to
data requires data access controls. This control should cover
all common data operations such as creating, reading, 35

writing, moving, and deleting data. In a communications
object system, data access controls need to extend beyond
human operators to communications objects, since these
objects are essentially acting as "surrogates" for their
respective providers. The key data structure involved with 40

data access control is the rules class 140. Data access rules

drives, or tape drives. Data available via external queries
includes data stored in and available through other computer
programs operating in the user's local or network computing
environment, including application programs, database
servers, naming or address servers, web servers, or any other

can monitor all forms of data access within the provider
database 11 or consumer database 21 as well as external data
in the provider or consumer's computing or network envi­
ronment. For example, a typical rule governing access to
communications object components or element preference
instances might be that only other communications objects
sharing the same database system ID (100, FIG. 3) can read,
write, or delete such instances. This would prevent different
providers from having access to each other's private data.
This rule could be modified so that only communications
objects sharing a group system ID (251, FIG. 6A), described
above, could have access to such data. This would allow all
communications objects created by employees of the same
company, or within a company division, to access each
other's communications object component or element pref­
erence instances. Data access rules can be system-wide,
assigned by providers, or assigned by consumers. An
example of a provider-assigned rule would be restrictions on
communications object forwarding, which will be further
discussed below. An example of a consumer-assigned rule
would be that designated personal data, such as household
income, must be explicitly authorized by the consumer
before it is transmitted in any data exchange. A stricter rule
would state that more sensitive private data, such as credit
card numbers, must be encrypted and require one or more
passkeys for decryption prior to any data exchange. In order

type of server.
Data type, persistence, access, and security control for

system data is generally dictated by the features of the
45 operating system and the privileges it grants to the provider

program 12 or consumer program 22. The use of standard
system environment variables such as the current date and
time are central to the operation of these programs, and this
data is frequently incorporated automatically into commu-

50 nications object components.
For external file data, data type control can be particularly

useful. For example, personal computers running the
MS-DOS or Microsoft Windows operating systems use a
standard set of setup and initialization files including

55 AUTOEXEC.BAT, CONFIG.SYS, WIN.INI, and SYS­
TEM.INI. Standard data type definitions can be created for
elements that store information about each of these files,
such as their name, size, date, and local directory path. A
composite data type PCSetupFiles can also be created which

60 included elements for each of these specific files. Providers
can use these standard data type definitions to easily access
the contents of these files for processing or data exchange.
This access can be controlled by data access rules in the
same way as internal data. This capability is particulary

65 valuable for software or hardware technical support, where
it can save both the provider and consumer considerable
manual time and effort obtaining and exchanging this data.

US 6,757,710 B2
71

A communications object system allows data persistence,
access, and security control for external file data to operate
at two levels. First are the standard file privileges granted to
the user of the provider program 12 or consumer program 22
by the operating system or network administrator. Second 5

are the rules 140 that can be enforced within the provider
program 12 or consumer program 22 themselves. Data
persistence control is particularly relevant to external file
data. With the appropriate file creation privileges, data
exchange methods can control the creation, modification, 10

and deletion of external files on the user's computer system.
These files can be used for many purposes, including the
storage of message attachments, web helper files, log files,
troubleshooting files, and files created by or intended for use
by other software programs in the user's local or network 15

computing environment. Access control and data security
enforcement for these files, including encryption and
authentication of individuals or communications objects
requesting access, can be handled in the same manner as
internal data. The ability to access and manage external file 20

storage is particularly valuable in conjunction with the use
of attachment elements. Attachment elements allow a pro­
vider to store the specification for a file or files as a specific
type of communications object element 143 which receives
special processing during the communications object gen- 25

eration and transmission routine. This is shown as step 546
in FIG. 12. After the communications object itself is gen­
erated for transmission, any attachment element it contains

72
it easier for providers to create or consumers to modify
routine data queries. SQL and other approaches to standard­
ized data query languages are discussed generally in R. G.
G. Cattell, Object Data Management-Object-Oriented and
Extended Relational Database Systems (1994), which is
incorporated herein by reference. In a communications
object system, the specifications for a structured query can
be stored as a special type of communications object ele­
ment 143 called a query element. Query elements receive
special processing during the communications object gen­
eration and transmission routine. This is shown as step 545
in FIG. 12. After the communications object itself is gen­
erated for transmission, it is tested for any query elements.
For each query element it contains, the data exchange
method associated with the query element is executed to
perform the query. This could be a query against the provider
database 11, against another local application acting as a
server, against a network database server, against a web
server, or against any other server capable of query process­
ing. When the query result set is returned, the data exchange
method determines what further steps to take. These may
include appending the data to the communications object
transmission as a file attachment, creating and appending a
message object, or otherwise modifying the communications
object or its encoding or transmission. Query elements thus
provide a powerful extension to a provider's ability to
control and customize communications object distribution.

Data persistence, access, and security controls all apply to
external data queries as well. Again, a communications
object system allows these to be implemented at two levels.
At one level, these can be the same controls that apply to the
human operator of the programs 12, 22. For example, the
user's ability to read, write, or create new records in a
database server can be governed by a user ID and login
password controlled by a system administrator. The pro­
grams 12, 22 can simply require the same information to be
entered manually. Alternatively, the programs 12, 22 could
store this information as global preferences that it can
submit automatically as part of executing data exchange
methods. The programs 12, 22 can then implement their own
layer of internal security. This can include the use of
system-wide login names and passwords, the implementa­
tion of rules 140 controlling data access, and the encryption
of sensitive data, all as described above. Data access and

is processed to determine the file, system object, or other
attachment it specifies to attach to the transmission. Such 30

attachments can be encoded in MIME, BinHex, UU
encoding, or other attachment encoding format as described
above. When the communications object bearing the attach­
ment is received by the consumer program 22, the attach­
ment is stored according to a corresponding receipt method. 35

The attachment can be stored internally as an element 143 in
the consumer database 21, or externally in the consumer's
file system. File data exchange control can also be combined
with notification control. For example, a message element
(211, FIG. 4) including a hyperlink to the attachment can 40

also be created for inclusion in a notification report (630,
FIG. 13) by the consumer program 22. In this way commu­
nications object updates can serve as a powerful means of
automatically distributing and indexing one or more external
attachment files. 45 security control is particularly useful when data exchange

methods employing queries are executed by the consumer
program 22 on the behalf of the consumer. Using such
controls, a provider is able to select the subset of consumers
on a communications network 3 such as the Internet who

One of its most powerful forms of data exchange control
in a communications object system is the ability to automate
external data queries and the processing of query result sets.
This is because it gives providers a tool to allow consumers
quickly and easily set up automated queries against any type 50

of data server maintained by the provider. These queries are
easily set up because they can be composed using any data
available in the consumer database 21 (subject to the con­
sumer's data access rules, as explained above), so the
consumer need only enter any new data required. The 55

queries are easily automated because the data exchange
method that executes them can create its own scheduled
event instances (117, FIG. 3) to execute future instances of
the query. External query control can also be combined with
notification control to automate notification depending on
the query results. For example, a data exchange method that
executes a data query for a stock price can notify the
consumer if the new price is a certain dollar amount or
percentage amount changed from the previous price.

Data type control is especially useful with external que­
ries. This is because the use of standardized data query
languages such as Structured Query Language (SQL) makes

will have access of some kind to one or more databases or
database servers operated by the provider. This control is
useful when the provider wishes to charge access fees for the
data, to protect the data for competitive or security reasons,
or to monitor or track access to the data.

By being able to control the exchange of external system
data, file data, and data available via external queries in
addition to internal data, the programs 12, 22 can automate
many routine information transactions on data communica­
tions networks. This can produce a vast savings in the human

60 labor normally required to exchange such data. The present
invention is able to further increase this labor savings by
automating the processing of such data once it has been
exchanged. As with other data exchange operations, this is
accomplished through the use of data exchange elements

65 143, data exchange methods 141, and message objects 110.
Any data exchange method can produce a message object
110 that can call itself or another method or methods for

US 6,757,710 B2
73

processing the contents of the message object once it is
received. As explained above, data exchange methods that
call themselves are polymorphic, performing different
operations at the provider program 12 than at the consumer
program 22. An example of such a method is the SendAck
method discussed above. Like any communications object
method, data exchange methods can also call other methods,
including other data exchange methods. In this way a
succession of automated data exchanges may take place
between a provider program 12 and consumer program 22
without any human intervention if none is required. Such
automated data exchanges may also occur between the
provider program 12 or consumer program 22 and other data
servers as explained in the discussion of data query control
above and the sections on service object partner servers
below. This includes requesting data from the server or
posting data to the server.

As explained above, when the provider program 12 and
consumer program 22 are combined, the same facilities for
processing communications objects on behalf of the con­
sumer are available for processing message objects on
behalf of the provider. For example, message objects 110
can contain or produce message elements (211, FIG. 4) for
inclusion in a notification report (630, FIG. 13). Because
notification reports are produced by queries against the
databases 11, 21, these message elements can be sorted by
any criteria desired by the provider. For example, they can
be sorted by their parent communications object (110. FIG.
3), by related notification element (201, FIG. 4), by the type

74
(step 1110). FIG. 26 is an illustration of how such a page
might typically appear. Each data exchange element 143
representing a support option appears as a hyperlink com­
mand or button. When activated by the consumer, this

5 command calls the data exchange method 141 associated
with the data exchange element 143. The data exchange
method 141 then generates an input form for gathering
additional data from the consumer (step 1111). FIG. 27
illustrates how such an input form might typically appear. As

10 described above, an input form can display fields for manual
input from the consumer which are attributes of a data
exchange element. These include checkboxes, radio buttons,
drop-down lists, and text input fields. Text input fields can
be used for free-form text input such as writing technical

15 support questions in a manner similar to writing e-mail
messages. The input form can also display data already
present as elements in the consumer database 21 for con­
firmation and authorization by the consumer. When the
consumer submits the input form, the data exchange method

20 141 processes the form input in the same manner that system
methods process program form input as described above
(step 1112). This includes any error detection routines,
which may display additional messages or input forms.
Once the form data is validated, the data exchange method

25 141 produces a message object instance 1115. This message
object instance may include internally or as attachments any
of the different types of exchange data discussed in this
section. For example, it could include system data such as
the time and day, computer type, CPU type, and RAM

30 available. It could also include file data such as the con-of action required by the provider, or by any other element
contained in the message object which produced them.
Within the notification report, message elements can be
hyperlinked to other data exchange methods to control
further processing of the message object data. As with data
exchange methods in the consumer program 22, this can 35

include the generation of input forms for gathering addi­
tional input from the provider and the generation of message
objects that can be returned to the consumer or to other data

sumer's AUTOEXEC.BAT or the initialization file for the
supported software program 1102. It could also include data
from a data query such as a error log report produced via an
API call to the supported software program 1102. The
automated inclusion of this data not only saves a great deal
of manual effort on the part of the consumer, but elimates
manual data entry or attachment errors. Finally, the data
exchange method 141 transmits the message object instance
1115 to the provider program 12 (step 1117). servers.

At the provider program 12, the message object instance
1115 executes a data exchange receipt method 141 (step
1120). This data exchange method 141 could be a polymor­
phic version of the same data exchange method 141 used in
the consumer program 22, or a separate data exchange

45 method 141. The data exchange method 141 processes the
data contained in the message object instance 1115. Because
this data is of known data types in a structured transmission
format, the data exchange method can apply the provider's
own rules 140 or other processing logic to automate message

An example of the full cycle of automated data exchange 40

and message object processing would be the use of a
communications object system to provide technical support
for a software product. This is illustrated in FIG. 25. The
company producing the software product 1101 would use
the provider program 12 create a communications object 35
representing the product. The company would then distrib­
ute this communications object 35 to the consumers using
the product (step 1103). This could occur in many ways, for
example by delivering it with the product, shipping it
separately on a floppy disk or CD-ROM, e-mailing it to the
consumers, or making it available on the company's web
server. When a consumer using the product had a technical
support question, the consumer could manually locate the
company's communications object 35 within the consumer
program 22. Alternatively the company could add an API
call directly from the software product 1101 to the commu­
nications object 35 in the consumer program 22. Such an
API call could be made from commands placed in the
software product's Help menu or product help screens 1102.

50 processing to the greatest extent possible. This includes
doing an automated scan of the consumer's input data and
included system data, file data, or the results of data queries
to spot the symptoms of known bugs in the software
program 1101 or of common operator errors. Based on the

55 results of this processing, the provider program 12 can
produce an message element instance (211, FIG. 4) associ­
ated with a particular notification element instance (201,
FIG. 4) which the provider has classified for techical support
requests matching this profile (step 1121). This classification

By activating such a command, the customer can automati­
cally call the appropriate page (142, FIG. 3) of the commu­
nications object 35 in the consumer program 22 (step 1105).
API calls are further described below.

Whether called up manually by the consumer or auto­
matically by an API call, the appropriate page (142, FIG. 3)
within the communications object 35 would display the
various technical support options offered by the company

60 can be based on any data contained in the message object
1115. This could include the version and platform of the
software product 1101 used by the consumer, the original
technical support option chosen by the consumer, the prob­
able diagnosis produced by the data exchange method

65 processing, the number of technical support messages
received from the consumer, and so forth. The headlines
from these message element instances (201, FIG. 4) can then

US 6,757,710 B2
75 76

that would otherwise notify the consumer if an acknowl­
edgment was not received within the expected interval.

Referring to FIG. 3, the preceeding discussion of data
exchange has focused primarily on data exchange events

be displayed in a notification report (step 1122) similar to
that used for consumer notification (see FIG. 24). In this way
notification control can be combined with data exchange
control to give the provider a powerful mechanism for
filtering and categorizing technical support requests.

When the provider activates a headline link on the noti­
fication report, this calls the associated data exchange
method which produces an input form allowing the provider

5 initiated either manually by the consumer or automatically
by scheduled events 117. Either one of these techniques can
be employed to either pull new data to the consumer or push
data from the consumer to the provider. However data

to respond to the consumer (step 1123). Similar to the input
form presented to the consumer in step 1111, this input form 10

can contain pre-configured response options from which the
provider can choose. As with consumer messages, these
response options can include both internal and external data
and attachments. For example, the provider could choose
from a list of standard answers to frequently-asked questions 15

that would automatically be incorporated in the provider's
reply message object. The provider could also choose from

exchange events can also be triggered automatically by data
exchange rules 140. Perhaps the most common example is
the update association rule discussed above. The update
association rule (FIG. lOB) ensures that changes made
within the provider database 11 are distributed to all asso­
ciated recipients 120 via all associated communications
objects 110. When the provider and consumer programs 12,
22 and databases 11, 21 are combined, a corresponding data
exchange rule 140 can be employed by a consumer com­
munications object 110 to monitor changes to one or more
provider elements 143. Such a data exchange rule creates an
association between an element 143, a communications
object 110, and a data exchange method 141. When the
version value of the element 143 changes, the rule 140 is
invoked which calls the data exchange method 141 of the
communications object 110. The data exchange method 141
can then produce a message object 110 to transmit the
changed data back to the provider program 12. Alternatively,
a message object or another type of structured message can
be transmitted via any available communications network to
any other address the provider designates. In this fashion a

a list of technical support documents related to the consum­
er's symptoms that could be automatically attached to the
provider's reply. Once the provider submits the input form, 20

the process is a mirror of the steps that took place at the
consumer program 22. First, the form data is validated and
processed (step 1124), and then another message object
instance 1125 is produced. In order to maintain the conti­
nuity of the "thread" of messages passing back and forth 25

between the provider and consumer, this message object
1125 uses the same system ID as the original message object
1115, but updates the version value. This updated message
object is transmitted back to the consumer program 22 (step
1127).

At this point the steps mirror the processing that took
place at the provider program 12. First, the message object
instance 1125 executes a data exchange receipt method 141
(step 1130). The data exchange method produces a message
element instance (211, FIG. 4) associated with the notifica- 35

tion element instance (201, FIG. 4) which the consumer
designated for this type of response (step 1131). The head­
line from this message element instance will now appear on
the consumer's notification report as described above in the
discussion of notification control. When the consumer acti- 40

vates the message element's headline link, the data exchange
method 141 associated with the message element instance
(211, FIG. 4) produces an input form, and the cycle begins
again at step 1111. This input form can display the provider's
response as well as the consumer's new reply options. For 45

example, if the provider suggests a solution, but the con­
sumer finds the solution does not work, the consumer can
use the form to send this input back to the provider. Again,

30 communications object consumer who is also a provider can
automatically update all of his/her communications object
relationships associated with a particular element 143 just by
editing the element 143. A common universal example is

to maintain the continuity of the messaging thread between
the consumer and provider, each message object 1115, 1125 50

produced uses the same system ID, but updates the version
value. By archiving message objects 1115, 1125, the data
exchange methods at both the consumer program 22 and
provider program 12 can automatically interlink new mes­
sages with older versions, allowing both the provider and 55

consumer to easily refer to previous messages in the thread.
Communications object archiving is further discussed
below.

change-of-address notifications. With any other communi­
cations object network, such as postal systems, telephone
systems, fax systems, or e-mail systems, a change of address
involves significant human labor on the part of the party
whose address is changing to notify all his/her communica­
tions partners. For their part, each communications partner
must update their own records when a change-of-address
notification is received. When data exchange rules 140 are
employed in the present invention, every communications
partner is updated automatically whenever relevant commu­
nications data elements change. This includes both partners
who are recipients 120 of the user's own communications
objects 110, as well as partners from whom the user has
received a communications object 110 employing data
exchange rules. As the number of users of a communications
object system grows, the overall human labor savings
involved in this automatic two-way updating of contact data
can become very significant.

A specific application of data exchange rules is registra-
tion updates, discussed in the update control section above.
A registration update is a message object returned by a
consumer program 22 to a provider program 12 or distribu­
tion server 32 in order to modify a recipient instance 120
and/or other elements associated with a communications
object 110. Typically any element 143 in the consumer
database 21 that is part of the registration data maintained in Data exchange control can also be combined with receipt

and acknowledgment control. For example, at any stage of
message object exchange in the preceding example, the
message object's receipt method could automatically pro­
duce an acknowledgment message object that would be
immediately transmitted back to the originating program 12,
22. As explained in the discussion of receipt control above,
this acknowledgment message could produce an explicit
notification of receipt, or simply disable a scheduled event

60 the provider database 11 will be monitored by a data
exchange rule 140 contained by the communications object
110. Any changes to these elements 143 will result in a
message object being produced that produces an update in
the corresponding recipient instance 120 or other element

65 143 in the provider database 11.
Another example of data exchange rules is version moni­

toring. Version monitoring can be a more efficient updating

US 6,757,710 B2
77

technique when the message object traffic volume produced
by a communications object 110 is more frequent than
changes to the communications object 110 itself. With
version monitoring, changes to a communications object 110
are neither explicitly pushed by the provider program 12 nor 5

regularly pulled by the consumer program 22. Instead each
message object passed between the programs 12, 22 con­
tains the most recent version value of the parent communi­
cations object 110. A version monitoring rule 140 operating
in either or both programs 12, 22 compares this version 10

value in the message object with the current version of the
communications object 110. Whenever a change is detected,
the version monitoring rule 140 executes the update method
141 of the communications object 110 to update the current
version in the consumer database 21. A specific example of 15

version monitoring is shown in FIG. 37, explained in the
payment service object section below. Version monitoring
rules 141 can also be implemented at distribution servers 32
to add efficiency to the update polling process. This is
discussed further in the data archiving control section, 20

below.

78
the consumer. One existing approach is to have consumers
establish an ID, choose a password, and enter personal
preference data into input forms provided by the web server.
This data is then stored at the web server or another remote
location and used to present customized views of the web
site. An example is MyYahoo from Yahoo Inc. To see new
content, the consumer must then manually visit the web site,
enter the necessary ID and password, and browse their
customized content, which is only available online. When-
ever the consumer's preference data changes, the consumer
must manually change it on all such web sites.

A communications object system overcomes all of these
disadvantages. Using a communications object 110 employ­
ing data exchange methods 141 to control the relationship,
the provider can first gather most or all of the consumer's
preference data automatically. This can be controlled by
rules 140 imposed by the consumer. The provider's com­
munications object 110 itself can create the necessary ID for
the consumer using the system ID (100, FIG. 3) of the
consumer database 21 or a derivative thereof. The consumer
is not required to give a password manually because the
provider's communications object 110 can communications
with the consumer program 22 to establish the consumer's
identity (the consumer's own indentification and preference

Because data exchange control is one of the core func­
tions of the present invention, it can be applied in many
unique ways. An example is offline viewing of World Wide
Web content. Existing software programs such as Freeloader
from Individual Inc. and WebEx from Travelling Software
Corporation allow Internet users to download to their local
hard disk selected Web pages together with all or a selected
subset of the helper files (graphic files, sound files, multi­
media files, etc.) used on that page. These programs are
called "offline browsers" because they allow the reader to
view all or a majority of the web page's content while
offline. This speeds up viewing times and reduces online
access charges. These programs can also monitor the web
page using a polling interval set by the user and download
new versions when the page is updated.

25 elements 143 stay safely within the consumers own com­
puting environment). The provider's communications object
is able to automatically download and selectively notify the
consumer of new personalized content as described above.
Finally, any changes to identification or preference elements

30 143 are made once locally and are transmitted automatically
to all such web provider relationships.

Another approach to web content customization is com­
monly referred to as "cookies". A cookie is a data structure
passed from a web server to a browser as part of the HTTP

35 protocol. Cookies are produced by the web server and stored
locally in a preferences file by the browser. When the user
next connects to the web server with the browser, the web
server can interrogate the browser for the cookie and use it
to identify the user. The cookie can additionally store

This functionality can be significantly improved upon
using a communications object system and data exchange
controls. First, in existing offline browsers, a user must
select specific web pages for monitoring and downloading,
and there is no selective notification about changes to those
pages. With a communications object system, a single
communications object 110 can allow the consumer to select
from a variety of notification elements (201, FIG. 4), each
with its own notification control. Second, most existing
offline browsers require the user to choose the "depth" of
linked pages and helper files that will be downloaded for
new or changed pages. This is strictly a guessing game for
users, who have no clear idea what additional pages or
supporting helper files they may be interested in. With a 50

communications object system, the provider of the content
can create a data exchange method 141 that presents the
relevant downloading options to the consumer, and then
intelligently sets a polling interval and selects the content the
provider knows is related to the consumers expressed inter­
est. Third, with offline browsers, downloaded web pages
have no feedback component other than hyperlinks con­
tained on these pages. With a communications object
system, the downloaded data can include or be linked to
communications objects 110 and their components. Thus
feedback can happen both manually using data exchange
elements 143 that return message objects 110, and automati­
cally using reporting control. Reporting control is further
discussed below.

40 preference data about the user, whether entered manually by
the user via HTML forms or collected automatically by the
web server based on the user's browsing choices. Cookies
are an attempt to surmount the manual data entry and
maintenance requirements of the first approach above.

45 Unfortunately, cookies are not directly viewable or editable
by the consumer, nor do cookies give the consumer any
control over the data collected or transmitted by the cookie.
(Some browsers do give consumers the ability to turn off the
cookie function altogether.)

A communications object system overcomes these limi-
tations by replacing the cookie with a communications
object 110 from the provider. In fact such an improvement
can be made under the existing HTTP protocol if a com­
munications object exchange is initiated manually by the

55 consumer during a browsing session by clicking on a
hyperlink representing a communications object 110 on a
web page presented by the web server. The resulting down­
load of a communications object 110 can trigger a data
exchange receipt method 141 which automatically transmits

60 back to the web server any necessary data elements 143 from
the consumer database 21. This can be controlled by rules
140 imposed by the consumer. The web server can then
prepare and return customized content for the consumer
program 22 to display to the browser. Alternatively, the web

A second application is personalization of web or hyper­
media content, i.e., presenting a customized or filtered view
of a web site to reduce the need for scanning or browsing by

65 server can return another communications object 110 to
repeat the information interchange process. In contrast to
cookies, the consumer can be completely in control of this

US 6,757,710 B2
79 80

hypertext document retrieval protocols in hypertext systems.
The best example is the usage of URLs (Uniform Resource
Locators) in the World Wide Web. In their simplest form,
link elements 143 can in fact be URLs, in which case no link

process. The consumer can view the elements 143 of the
relevant communications object; edit those elements 143
which involve consumer preferences; and apply rules 140
governing data access, data security, and data logging by the
communications object. These improvements can bring rich,
automated new forms of web content personalization with
none of the disadvantages of cookies.

5 method 141 is required if a web browser is used as the
display interface. However the architecture of a communi­
cations object system permits much more powerful forms of
link control than URLs. Another approach is to have personalized content deliv­

ered automatically to the consumer via a content delivery
application. An example of this solution is PointCast from 10

PointCast Inc. Here the personalization options are stored
locally as part of the application, so the consumer effort
required by the server-based solution above is avoided.
However the disadvantage to this solution is that the pref­
erences are part of a single application, or at best part of a 15

limited number of modules within the application. Thus, it
is not possible for a large number of providers at multiple
locations to offer content personalization options. Notifica­
tion options are determined at the application level, not the
provider level or content level, so a user's choice of notifi- 20

cation options is very limited. The personalization options
are for the reception of information only. They do not extend
to feedback or data exchange automation.

A communications object system overcomes these limi­
tations by allowing providers and users to control commu- 25

nications relationships at the level of individual communi­
cations objects 110. Any number of providers and
consumers can take part, each with access to the full range
of data exchange control provided by communications
objects 110 and data exchange methods 141. Thus a com- 30

munications object system can be used to provide any
number of of personalized content delivery services, rather
than the limited number offered by one particular applica­
tion. For example, data query control can be used to submit
an HTTP request to any web server. This query request can 35

include a unique identifier for the consumer such as the
consumer's UID or a derivative thereof. This query can also
include any new or updated data elements 143 in consumer
database 21 that pertain to the provider and are not already
present or current at the web server. The elements 143 or 40

communications objects 110 returned by this query can offer
completely customized news reports, weather reports, prod­
uct brochures, advertisements, stock quotes, real estate
listings, classified listings, Internet searches, health care
advice, or any other current personalized information 45

desired by the consumer. The specific data type is not a
limiting feature of the invention. The consumer can also
control notification options for this information down to the
level of elements 143. The information can also be hyper­
linked to data exchange elements 143 within the relevant 50

communications object for direct, automated feedback by
the consumer.
Communications Object Exchange Control

A special case of data exchange control is communica­
tions object exchange control. This are the functions by 55

which communications objects 110 can control the retreival
and transmittal of other communications objects 110. The
retreival of one or more communications objects 110 by
another communications object 110 is known as link control.
Link control can be provided using link elements 143, link 60

methods 141, and link rules 140. Collectively these are
referred to as link control components. For ease of sharing
between communications objects 110, link control compo­
nents can be combined in a separate component object type
(812, FIG. 17) called a link component object 110. In a 65

communications object system, the function of link compo­
nent objects 110 is directly analogous to the function of

The first advantage is the use of link methods 141. URLs
are a standardized addressing protocol for the retrieval of
hypertext files, binary files, and other digital resources used
anywhere on the web. The URL protocol, when combined
with the HTML encoding/display protocol and the HTTP
communications protocol, forms the standards that make the
web possible. All web programs must incorporate this pro­
tocol in order to operate. Introducing other addressing
protocols would require an enormous reengineering and
upgrading effort throughout the web. With a communica­
tions object system, the URL protocol is just one possible
link method 141. Other link methods could employ other
protocols, syntaxes, name resolution services, and features.
Since those methods can be made available via any of the
mechanisms described in the discussion of methods above,
new link methods 141 can easily be propagated throughout
a communications object system.

A second advantage is multiplicity. A URL can only
represent a single resource on the web, although the browser
receiving that resource can be programmed to retreive
additional resources, such as the graphics associated with an
HTML page, automatically. A link element 143, on the other
hand, can designate any number of resources to be retreived
in one action. It can supply these resources through its own
attributes, through other associated elements, or through link
methods 141.

A third advantage is processing flexibility. The processing
of the resource received by a URL request is determined by
the browser or other program executing the URL request.
This processing can only be modified by changing the
protocol or reprogramming the receiving software. With a
communications object system, a link method 141 also
controls the processing of the resource retrieved. The link
method 141 can also call other methods for processing the
resource retreived. If the resource is a communications
object 110, its own receipt method or methods 141 can
further determine the processing it receives.

A fourth advantage is the power of the address resolution
protocol. As explained in The World Wide Web Unleashed,
cited above, a URL is resolved by a web program in several
steps. First the IP (Internet Protocol) address of the host
computer is resolved via a lookup via a lookup to the user's
local DNS (Domain Name Service) host. This host may in
turn lookup the name on additional DNS hosts until the
name is resolved successfully or an error message is pro­
duced. Next the web program requests the specific HTTP
resource on the IP host specified by the URL. This can be the
name of any document or MIME file supported by the web
protocols, or it can be the name of a method available on the
host together with the parameters to pass to that method. In
the latter fastion, it is possible for the host to "resolve" a first
URL into a second URL by returning the second URL in the
form of an HTTP redirect command as the result of its
processing. An HTTP redirect is a URL that is automatically
processed by the web software that made the original URL
request. In this manner a succession of redirects is possible
until the final resource is resolved. The use of HTTP
redirects to accomplish the persistent naming of web
resources is generally discussed in Stuart L. Weibel and Erik

US 6,757,710 B2
81

Jul, "PURLs to Improve Access to Internet" in the 1995
November/December issue of the Online Computing
Library Center (OCLC) Newsletter, page 19. Information on
the PURL naming service is also available on the World
Wide Web at http://purl.oclc.org/.

This approach requires that all address resolution logic be
present in one of two places: in the DNS protocol, or in the
address resolution methods available at remote hosts. With
a communications object system, the address resolution
logic first resides in the link method 141, which can in turn
call any other communications object method 141 or partner
server method 141 as described in the section on commu­
nications object methods above. This means that by using a
UID, URL, name, or other attribute or combination of
attributes supplied in a link element 143, the link method
141 can first search the local databases 11, 21 within the
programs 12, 22 for the specified communications object or
objects. If the communications object is not found locally,
the link method 141 can then query one or more distribution
servers 32 where the communications object is likely to be
stored, such as LAN or WAN distribution servers. These
distribution servers 32 may be represented by distribution
service objects 1310, which will be further discussed below.
If the target communications object 110 is not found on a
distribution server 32, then the link method 141 can process
the attributes of the link elements 143 to determine the next
most efficient means of retreiving the communications
object. For example, if a URL is available, the link method
141 could process this. If a URL is not present but a UID is
available, the link method 141 could automatically use a
UID resolution service. If a UID is not present but a name
is available, the link method 141 can use a name resolution
service. UID or name resolution services can operate simi­
larly to the Domain Naming Service (DNS) for the Internet,
or to the PURL naming service cited above. Additionally, the
name resolution service could incorporate features under
consideration by the World Wide Web Consortium (W3C)
for Uniform Resource Identifiers (URis) and Uniform
Resource Name (URNs). These systems are discussed gen­
erally by the W3C staff at the W3C World Wide Web site at
http://www.w3.org/pub/NWW/Addressing/.

A communications object system offers particular advan­
tages for deploying a global name resolution service. With
such a service, each communications object provider would
have the opportunity to obtain a unique name corresponding

82
automate the exchange of communications objects 110
between two providers. This is a common need analogous to
the exchange of business cards between individuals.
Although only one business card need be exchanged to

5 create a communications relationship, a two-way exchange
provides the greatest number of communications options in
both directions. This synchronization can be accomplished
by the use of a special method 141 called an autoexchange
method. An autoexchange method 141 operates as both a

10 receipt method 141 and a data exchange method 141. The
the data structures involved are illustrated in FIG. 3. When
a provider program 12 first receives a communications
object 110 with an autoexchange method 141, it first com­
pares the database system ID of the communications object

15 110 with those of its recipient instances 120. If the database
system ID is already present, the relationship is already
established, and the autoexchange method is ignored. If not,
the autoexchange method 141 is executed according to the
receiving provider's preferences. Such preferences can be

20 specified using the provider preferences form (316, FIG. 9)
and stored in the global preferences instance 103. One
preference may be to automatically generate and transmit a
default communications object 110 instance back to the first
provider. Another preference may be to generate a message

25 element (211, FIG. 4) for use with the notification report
(630, FIG. 13) to notify the receiving provider of the
autoexchange request. The headline of the message element
(211, FIG. 4) could be linked to the create new recipient
form (311, FIG. 9). This form would serve as the input form

30 for the autoexchange method 141. The received communi­
cations object 110 could supply the attributes necessary for
the recipient instance 120 on this form. Therefore the
receiving provider need only select the preferences for the
communications object or objects 110 to be returned to the

35 first provider. When this form is submitted, the autoex­
change method will trigger the distribution of this commu­
nications object as described above.

The autoexchange of communications objects 110 can
also be extended to web servers, data servers, and other

40 electronic communications relationships. This is an exten­
sion of the process of using communications objects as
"cookies" described in the preceeding section on data
exchange control.
Forwarding and Chaining Control

to the UID for any communications object 110. This naming 45

service would operate in the same manner as DNS, where
Internet users can currently apply for a unique domain name
corresponding to a unique Internet host IP address. Just as
DNS allows any web program to resolve a domain name in

A special case of communications object exchange is
when a consumer wishes to send a provider's communica­
tions object in the consumer's database 21 to another
consumer. This is the real-world equivalent of a businessper­
son needing to share the contact information for a customer

a URL to a unique host IP address, a global communications
object name service would allow any link method 141 to
resolve a communications object name to its UID, URL, or
any other unique addressable attributes. Because this name
resolution service is completely abstracted from any under­
lying communications addressing protocol, it would allow
the use of names that are exactly the same as the real-world
name of the person, company, product, service, or other
entity that the communications object represents. Also,
because the name service results are processed by a link
method 141, the link method 141 can determine the most
efficient way to retreive the specified communications object
110. Such a name service can be made available to other
communications objects 110 by use of a name service object
1310. The use of name service objects and name partner
servers will be further discussed below.

When the provider program 12 and consumer program 22
are combined, a communications object system can also

50 with a business associate, or a mail order customer wanting
to tell a friend how to subscribe to a mail order catalog. A
communications object system can accomplish this using
forwarding methods. A forwarding method 141 allows the
user of one consumer program 22 to transmit another

55 provider's communications object via the push technique to
another consumer program 22.

Execution of a forwarding method typically displays the
forward form (635, FIG. 13). The forward form allows the
user to manually input the e-mail address, encoding data,

60 and any other data necessary to forward the communications
object 110 to the recipient. Alternatively, the user can select
the recipient from a list of recipients (120, FIG. 3) already
present in the consumer database 21. In this case, the
recipient instance (120, FIG. 3) contains the necessary

65 information to address, encode, and transmit the communi­
cations object. When this form is submitted, the forwarding
method generates a message object 110 and transmits it to

US 6,757,710 B2
83 84

munications objects. A particular example of chaining is the
distribution of communications objects on a local area
network (LAN). If one consumer program 22 or distribution
server 32 on the LAN is receiving communications object

s updates from over a public data network such as the Internet,
this program can automatically distribute updates to other
consumers on the LAN. This can significantly lower traffic
on the public data network and increase the efficiency of the

the recipient. The contents of this message object can vary
with the type of forwarding desired. An anonymous for­
warding or "redirect" operation would simply send the
communications object 110 itself, exactly as if it had been
pushed from the original provider. This communications
object would be received at the recipient's consumer pro­
gram 22 just like any other communications object 110. A
signed forwarding operation would include a forwarding
element 143. A forwarding element is a recipient instance
120 representing to the forwarding consumer, e.g. their 10

system ID, name, e-mail address, and so on. This informa­
tion could be displayed by the notification method at the
receiving consumer program 22. A signed forwarding opera­
tion could also include a message element (211, FIG. 4). In
this case the forwarding consumer could control the headline
and message displayed by the notification method at the
receiving consumer program 22. A signed forwarding opera­
tion could also include copies of the forwarding consumers
element preference instances (147, FIG. 3). In this case the
receiving consumer would be able to choose whether to
adopt these preferences or start with the default preferences

communications object distribution process.
Chaining can be implemented via push or pull techniques.

Chaining via the push technique is accomplished in the
consumer program 22 by use of a consumer receipt method
141 that invokes a forwarding rule 140. A forwarding rule
associates a communications object instance 110 with one or

15 more recipients 120. When an update to a communications
object 110 is received by the consumer program 22, the
receipt method checks to see if it is subject to a forwarding
rule. If so, a copy of the communications object 110 is
transmitted to the recipient 120. Chaining offers the same

20 update control options as described in the update control
section above. This means it can be controlled by the
forwarding consumer, or the forwarding consumer can pass
control to the receiving consumer. When the push technique
is used, message objects 110 can be used to control the

of the original communications object 110. Any of these
forwarding operations could also be authenticated, which
would add an element 143 with a digital signature verifying
the identity of the forwarder. Authentication is described in
the encoding control section above, and authentication ser­
vice objects are further described below.

25 creation and modification of recipient instances (120, FIG.
3) and acknowledgment instances (121, FIG. 3) in the
forwarding consumer program 22 in the same way as they
are in the provider program 12, described above in the Alternatively, the forwarding operation also need not

include the original communications object 110. The for­
warding message object 110 can instead include a data 30

exchange element supplying the attributes of the communi­
cations object 110 and a data exchange method for retreiving

update control section.
The original provider of a communications object 110 can

also control forwarding and chaining pertaining to the
object. This is necessary because communications objects
may contain sensitive data or methods which the provider
does not wish other consumers to obtain without the pro-

it. Such data exchange method can operate automatically as
a receipt method or can present an input form for manual
confirmation by the consumer. If the communications object
110 is distributed via the pull technique, the data exchange
method can retreive it from the distribution server 32. If the
communications object 110 is distributed via the push
technique, the data exchange method can send a message
object 110 to the originating provider program 12 requesting
transmission of the communications object 110. Such mes­
sage object can be processed automatically by the provider
program 12 or require manual approval by the provider,
depending on the rules 140 applied by the provider to
communications object transmission requests.

Forwarding is a unique operation in that update control
can be specified by the forwarding and/or receiving con­
sumer. By default, the forwarded communications object
will use the update control specified by the original provider.
However, subject to forwarding control rules (discussed
below), the forwarding consumer can also control updating.
This is accomplished by including in the forwarding mes­
sage object 110 a receipt method governing updating. This
receipt method can designate that the communications
object 110 will be updated via the push technique from the
forwarding consumer program 22 or another consumer
program 22, or updated via the pull technique from a
distribution server 32 other than the original distribution
server 32. This can be done regardless of how the commu­
nications object 110 is updated at the originating consumer
program 22. The ability of a communications object to be
updated from another consumer program 22 or distribution
server 32 is referred to as chaining. Chaining is a powerful
means of distributing communications object updates,
because it spreads the load for distributing objects through­
out the communications network 3. This makes the push
method more feasible for large-scale distribution of com-

35 vider's control. As shown in FIG. 3, this can be accom­
plished through the use of forwarding control attributes of
the communications object itself 110, forwarding control
elements 143, and forwarding control rules 140. As with
other rules, forwarding control rules may be implemented at

40 the system level, or they may be implemented by a particular
communications object. In case of conflicts, the more
restrictive forwarding control rule takes precedence. For­
warding control rules can cover all aspects of forwarding
and chaining operations. Specifically, they can prohibit any

45 forwarding, permit forwarding but prohibit chaining, permit
chaining only using specified update techniques, permit
forwarding without the inclusion of element preference
instances 147, and permit forwarding or chaining only with
notification to the original provider. Notification to the

so original provider can be accomplished by having the for­
warding method transmit a message object 110 back to the
original provider whenever a forwarding event takes place.
These messages objects can be used to track recipients in the
same fashion as described above in the receipt and acknowl-

ss edgment control section. Forwarding control rules can also
control the "depth" of chaining. This can be accomplished
by incrementing an integer counter attribute of a forwarding
control element 143 each time a communications object 110
is advanced to another consumer program 22 in the chain. If

60 the maximum chain depth is exceeded, further chaining is
not allowed. A forwarding method can track the consumer
programs 22 that comprise the chain by including the
forwarding elements 143 for each forwarding consumer in
the communications object 110. A receipt method 141 can

65 optionally generate an input form whereby the receiving
consumer can choose to receive updates from any consumer
program 22 higher in the chain. A forwarding control

US 6,757,710 B2
85

method can also use an input form to have forwarding
control rules applied manually by the forwarding consumer.
Such an input form can include reminders about sensitive
data and display rules about forwarding or chaining for the
consumer to follow manually. Distribution control can allow
the original provider to selectively apply forwarding rules to
specific consumers. This is done by producing custom
forwarding control attributes 110, elements 143, or rules 141
for each recipient. Distribution control procedures are
described above in the distribution control section.
Transfer Control

A forwarding operation creates a copy of a communica­
tions object 110 at a second consumer program 22, leaving
the first communications object 110 at the first consumer
program 22 intact. This creates a new communications
relationship between the new consumer and the original
provider. By contrast, a transfer operation moves a commu­
nications object 100 from one consumer program 22 to
another consumer program 22, and does not leave a copy of
the communications object 110 at the first consumer pro­
gram 22. Thus, a transfer operation does not create any new
communications relationships, but instead transfers owner­
ship of a communications relationship from one consumer to
another. This is similar to the difference between copying or
moving a computer file. The copy operation creates a second
physical copy in a second location; the move operation
keeps only one copy in the new location.

Methods 141 used to transfer communications objects
between consumers are referred to as a transfer methods.
Just as a move operation on a computer file is often
implemented by the operating system as a copy operation
followed by a delete operation on the original file, a com­
munications object transfer method may be carried out as a
forwarding method followed by a termination method. In
addition, just as most computer operating systems first
confirm the successful copy of the file to the new location
before deleting the file in the old location, a communications
object system should preferably allow consumers to confirm
the successful transfer of the transferred communications
object to the new consumer before deleting the communi­
cations object from the transferring consumer. This can be
accomplished by using of message objects 110 as described
above in the receipt and acknowledgment control section.
Specifically, as illustrated by the data structures in FIG. 3, a
transfer method 141 generates a message object 110 to the
receiving consumer in the same manner as a forwarding
method. The primary difference is that the message object
includes a transfer receipt method 141 that adds a transfer
rule 140 and an associated scheduled event 117 to the

86
rece1vmg consumer. The scheduled event 117 can also
execute the transfer method 141 which produces a message
object 110 and transmits it back to the transferring consumer
program 22. This message object invokes the originating

5 transfer method 141. This transfer method can then either
attempt a retransfer of the communications object 110, or
produce a message element (211, FIG. 4) to provide notifi­
cation to the transferring consumer, or both. The options for
automatic error correction are more fully described in the

10 receipt and acknowledgment control section above.
As with forwarding control, transfer control can also be

exerted by the original provider using transfer rules 140 and
transfer methods 141 in the communications object 110.
Transfer rules and transfer methods are a particularly pow-

15 erful means of data exchange control because they can
accomplish automatic data exchange events involving the
provider, the transferring consumer, and the receiving con­
sumer all in one. An example is the transfer of ownership of
a real world object, such as an automobile. Areal-world rule

20 applies to such a transfer, namely that the selling consumer
must notify the automobile licensing authority, and the
buying consumer must apply for a new title from the
licensing authority. In this case the licensing authority would
be the provider of a communications object 110 representing

25 an automobile title. The selling consumer would have
obtained the communications object 110 when he/she pur­
chased the automobile. Using data exchange methods as
explained above, the licensing authority would have used
the communications object 110 to obtain the necessary

30 elements 143 from the consumer required by law to register
the vehicle. The licensing authority could then use updates
to the communications object 110 to communicate with the
consumer about the license, such as sending notifications
about annual license renewals. (Payment for such license

35 renewals can also be automated by data exchange methods
in the communications object 110, as further described
below.) When the time came to transfer the automobile title,
the selling consumer would invoke the transfer method 141
in the communications object 110. The transfer method 141

40 would first generate an input form requesting the necessary
data about the buying consumer and transaction details. (If
a communications object 110 representing the buying con­
sumer was also present, an association with such object 110
could be used to provide such data.) The transfer method 141

45 would then produce two message objects 110. The first
message object would be transmitted to the licensing
authority, containing the necessary elements 143 to auto­
matically register the sale. The second message object would

receiving consumer's consumer database 21. The transfer 50

rule 140 is associated with the transferred communications

be transmitted to the buying consumer. This would include
the forwarded communications object 110 representing the
title. A transfer rule 140 would also determine which ele-

object 110 such that when an update to the communications
object 110 is received, the rule 140 is triggered. The rule 140
then executes the transfer method 141 which first deletes the
associated scheduled event 117. The transfer method 141 55

ment preference instances 147 must be transferred with the
communications object 110. For example, the Vehicle Iden­
tification Number (YIN) must be transferred with the title; a
new YIN may not be specified by the buyer. The transfer
method 141 would also add a rule 140 to the selling
consumer's database 21 requiring that affirmative acknowl­
edgment message objects needed to be received from both
the licensing authority and the buying consumer before the

60 communications object 110 representing the title will be
deleted. The transfer method 141 could also create a sched-

then produces a message object 110 and transmits it back to
the transferring consumer program 22. This message object
invokes the originating transfer method 141 which then
deletes the associated communications object 110.
Optionally, the transfer method 141 could also produce a
message element (211, FIG. 4) to provide notification to the
transferring consumer that the transfer is complete. If an
update to the communications object 110 in the receiving
consumer program 22 is not received before the scheduled
event 117 is triggered, it means an error condition likely 65

exists. In this case the scheduled event 117 can produce a
message element (211, FIG. 4) to provide notification to the

uled event 117 that checked for the receipt of these message
objects after a specified interval.

On the buying consumer's part, the message object 110
received with the transferred communications object would
invoke a transfer method 141. This transfer method 141
would first add a transfer rule 140 to monitor updates to the

US 6,757,710 B2
87

communications object 110 to ensure that it was operating
properly. The transfer method 141 could also produce a
scheduled event 117 associated with the transfer rule 140.
This scheduled event 117 would check for the receipt of a
reply message object from the licensing authority. Next the
transfer method 141 would produce an input form requesting
confirmation of the purchase and application for the new
title by the buying consumer. It is signficant to point out that
the buying consumer should not need to enter a single piece
of data other than authentication or confirmation inform a­
tion. All such data is already present either in the commu­
nications object 110 or the consumer database 21. The
transfer method method 141 would then produce a message
object 110 to be transmitted to the licensing authority with
the title application. When the licensing authority returned a
acknowledgment message object 110 to the buying
consumer, it would trigger the transfer rule 140. The transfer
rule 140 would execute the transfer method 141. The trans­
fer method 141 would first delete the transfer rule 140 and

88
control over any communications object relationship. From
the consumer's perspective, this is accomplished simply by
deleting the corresponding communications object 110
using the delete object form (623, FIG. 13). If a termination

5 method 141 (FIG. 3) is present in the communications object
110, the delete object form calls this method; otherwise, it
calls a default system termination method 141. A system
termination method 141 would simply delete the commu­
nications object 110 from the consumer database 21. Option-

10 ally the system termination method 141 can replace the
association between the communications object 110 and the
database 100 with an association between the communica­
tions object 110 and a special "trash" folder 115. This
permits the user to change his/her mind and recover the

15 terminated communications object 110 at a later date by
reversing this operation. A similar technique can also be
used just to temporarily suspend or deactivate a communi­
cations object 110, which could later be reactivated by
reversing the operation.

its associated scheduled event 117. The transfer method 141 20 By including a termination method 141 in the communi-
would then produce another acknowledgment message
object 110 to return to the selling consumer. When this
acknowledgment message object was received, the same
sequence of events would take place. The transfer rule 140
would execute the transfer method 141, which would first
delete the transfer rule 140 and its associated scheduled
event 117. It would then delete its associated communica­
tions object 110 and then delete itself. This would complete
the transfer, with all parties assured of verified data delivery
to the others.

Transfer control can be applied to almost any situation
where the real world ownership of an object or goods is
transferred by an exchange of data between the transferee
and the transferor, or between the transferee, transferor, and
a third party such as a licensing authority, broker, agency,
listing service, and so on. A universal example is classified
ads. By using a communications object instance 110 to
represent goods for sale via a classified advertising service,
all or most of the communications transactions between the
buyer, seller, and classified ad service can be automated. The
use of a communications object system for classified adver­
tising is further discussed in the description of data exchange
service objects below.
Termination Control

A communications object system also offers an efficient
new way for providers and consumers to control the termi­
nation of communications relationships. In most communi­
cations systems, it is easy for a provider to terminate a
communications relationship. This is also true of a commu­
nications object system. As discussed in the distribution
control section above, providers can control communica­
tions object distribution by both push and pull techniques.
Referring to FIG. 3, if a provider controls the distribution of
a communications object 110 via the push technique, the
provider need only delete the association of a recipient 120
with a communications object 110. If the provider controls
the distribution of a communications object 110 via the pull
technique, the provider can change the behavior of the
distribution control method 141 or distribution control rules

cations object 110, a provider can also control the actions
taken upon termination of a communications relationship.
Generally, this does not mean the provider can prevent the
consumer from terminating the relationship (i.e., deleting

25 the communications object). Rather, the provider can control
some of the actions taken when a communications relation­
ship is terminated. An example is notification. If a commu­
nications object 110 is updated via the push technique, the
provider must be notified in order to delete the association

30 between the recipient instance 120 and the communications
object 110. This notification can be processed manually by
the provider, or automatically by the provider program 12.
In either case the termination method 141 produces a
message object 110 and transmits it back to the provider

35 program 12. When it is received, a receipt method 141 of the
message object can delete the association between the
recipient 120 and the communications object 110.
Alternatively, it can first produce a message element (211,
FIG. 4) that notifies the provider of this action. When the

40 headline of the message element (211, FIG. 4) is selected,
the termination method 141 can produce an input form
which may give the provider further options. For example,
the provider may wish to replace the association between the
recipient 120 and the communications object 110 with

45 another one between the recipient 120 and a special folder
115 such as an "Former Customers" folder. This maintains
the consumer information so that the provider can attempt to
reestablish the relationship at some future date.

If a communications object 110 is updated via the pull
50 technique, it is not necessary for a message object 110 to be

returned to the provider program 12. Deletion of the com­
munications object 110 at the consumer program 22 will
terminate the relationship. However, the provider may still
wish to employ a termination method 141 to receive overt

55 notification of this event. Furthermore, regardless of the
update technique used for the communications object 110,
the provider may wish to employ a termination method 141
as a data exchange method. A common reason for doing this

140 included in the communications object 110 or transmit- 60

ted to a distribution server 32.

would be to ask the consumer why he/she is terminating the
communications relationship. In this case the termination
method 141 generates an input form where the consumer

However, in many communications systems, it is often
very difficult for a consumer to terminate a communications
relationship. An example is the difficulty many consumers
have in being removed from direct mailing lists or telephone
solicitation lists. With the communications system of the
present invention, consumers have complete and immediate

could indicate his/her reasons by selecting from checkboxes,
radio buttons, or drop-down lists, entering text into a text
box, or any other means of data input. When this input form

65 is submitted, the termination method 141 generates a mes­
sage object 110 and transmits it back to the provider program
12. At the provider program 12 a receipt method can

US 6,757,710 B2
89 90

automatically compile the consumer's input by storing it as
elements 143, incrementing counters within elements 143,
storing it in an external database, or any other data process­
ing method. In this fashion the provider could periodically
review aggregate statistics and/or direct textual feedback 5

from consumers about why they terminated the communi­
cations relationships.

Event Tracking Control
Unlike many other communications systems, a commu-

nications object system is able to provide direct, seamless
control over event tracking. As shown in FIG. 3, the prin­
ciple data structures involved with event tracking control are
the event class 116 and the logged event class 118. Any
communications object system method may produce a
logged event instance 118 for purposes of tracking commu­
nications actions. In certain cases, a termination method 141 can be com­

bined with termination rules 140 in order to control the
10 There are many uses for communications event logs. One

processing of a termination method 141. An example is the
case of a communications object 110 representing an auto­
mobile title given above. Here a termination rule 140 could
specify that, once initiated with an actual automobile title, a
communications object 110 could not be terminated until a
some form of acknowledgment message object 110 had been
received from the licensing authority. This might be a
transfer acknowledgment, or a destroyed vehicle
acknowledgment, or any other form of acknowledgment for
proper disposition of the title. Such a rule could be very
valuable to the licensing authority in enforcing compliance
with the laws covering automobile title registration.

A communications object system provides a unique
mechanism for enforcing the termination of a communica­
tions relationship. In the course of a communications
relationship, a provider may have obtained a consumer's
e-mail address. If so, the provider would have the ability to
send the consumer new communications objects even after
the consumer has already terminated the communications
relationship. Although the consumer is able to delete these
new communications objects with a single action, a large
number of providers taking this action still requires signifi­
cant effort and irritation on the part of the consumer. This is
essentially the electronic equivalent of "junk mail". To
prevent this, the consumer database 21 can track all or
selected terminated communications objects 110. Such a
record is commonly referred to as a "kill file". This is
accomplished using a termination rule 140. First, the termi­
nation rule 140 requires that any termination method 141
executed in the consumer program 22 replace the association
between the communications object 110 and the database
100 with an association between the communications object
110 and a designated "kill folder" instance 115. The termi­
nation rule 140 may also make this an optional checkbox on
any input form generated by the termination method 141.
Second, the termination rule 140 is triggered by the receipt
of any new communications object 110. The termination rule
140 executes a termination method 141 that compares the
UID of the new communications object 110 with the UIDs
of all communications objects 110 associated with the kill
folder. If there is a match, the termination method 141 can
take whatever action is specified by the consumer. Typically,
this will be to delete the communications object 110 without
notification to the consumer. Alternatively, the termination
method 141 could compare only the provider ID (the system
ID of the provider database 100) with the provider ID of all
communications objects 110 associated with the kill folder.
This would detect any communications object 110 produced
by a particular provider, not just a specific communications
object 110. Another option is for the termination method 141
to track the number of attempted transmissions for any
particular communications object 110 by incrementing an
integer value attribute of the association between the com­
munications object 110 and the kill folder 115. When this
integer value reached a threshold, the termination method
executes a notification method notifying the consumer, who
may then take appropriate action.

of the most common is error tracking. System rules 140 can
monitor logged event instances 118 to provide alerts to
frequent error conditions. Another common usage is provid­
ing communications relationship histories. For example, a

15 provider can specify that a data exchange method 141 used
for product ordering create a logged event instance 118 each
time a product is ordered. The provider can have the same
or a related data exchange method 141 make logical deci­
sions within the consumer program 22 based on a query of

20 the logged event instances 118 for previous product orders.
Such data can also be reported in a message object 110
transmitted to the provider. This can decrease data process­
ing requirements on the provider's end and increase the
ability of data exchange methods 141 to make decisions

25 relevant to the consumer's actual needs.
Event tracking control is particularly valuable for the

generation of reports and statistics reports related to the use
of particular communications objects, groups of communi­
cations objects, or the usage of a provider program 12 or

30 consumer program 22 as a whole. Reporting control will be
further discussed below.
Data Archiving Control

By functioning as active databases, the provider program
12 and consumer program 22 can control the archiving of the

35 data they store. This is a very useful capability for many
communications functions. First, many providers and con­
sumers frequently wish to refer to past communications
data. When stored in electronic format, this data is also
computer searchable, which is another key advantage.

40 Additionally, archiving data can be useful for error
correction, as explained below. As shown in FIG. 3, data
archive control is achieved primarily through the use of
archive attributes, archive rules 140 and archive methods
141. The application of data archiving rules 140 in both the

45 provider program 12 and consumer program 22 is explained
above and in steps 735-737 of FIG. 15. These examples
show how an archiving attribute and rule are used to control
the number of previous versions of a communications object
that will be archived. Archiving rules also allow control of

50 archiving using time intervals, data size parameters, by the
presence or absence of element preferences 147, and other
parameters.

It is particularly useful for both providers and consumers
to be able to control archiving at both a global database level

55 and a communications object level. It can also be useful to
control archiving at the element level. Global archive con­
trol is accomplished by storing communications object
archive preferences as attributes of global preferences 103
and applying system archiving rules 140 and system

60 archiving methods 141. Individual communications object
archive control is achieved by storing archive preferences as
attributes of the communications object preferences element
127 and applying archive rules 140 and archive methods 141
associated with the communications object 110. Element

65 archive control is accomplished by storing archive prefer­
ences as attributes of the element 143 and applying archive
rules 140 and archive methods 141 associated with the

US 6,757,710 B2
91

element 143. These three levels can also be intermatched.
For example, if a communications object included a archive
preference attribute in its preference element 127, but had no
archive method 141, then the global system archive method
141 uses the local archive preference attribute.

Archive control can also maintain instances of system
objects. This is particularly valuable for maintaining the
queue oflogged event instances 118. For example, a rule 140
can specify that any logged event instances 117 older than X
interval be deleted, preventing an unnecessary buildup of
data.

In general, providers only need to control archiving in the
provider database 11 and consumers only need to control
archiving in the consumer database 21. However, archiving
control can also be combined with distribution control and
data exchange control as a way to ensure the versions of a
communications object in a provider database 11 and a
consumer database 21 stay synchronized. This is another
aspect of version monitoring, discussed above. Version
monitoring is desirable because it is possible for the con­
sumer to miss versions of a communications object instance
110. For example, if the communications object instance 110
is distributed via the push technique, communications net­
work errors may cause the transmission to fail. If the
communications object instance 110 is distributed via the
pull technique, communications network errors or distribu­
tion server errors may also prevent an update from occuring,
although the polling retry process can frequently correct
this. A more likely scenario is that either the consumer
computer 2 or the consumer program 22 is not operated by
the consumer during one complete version update cycle by
the provider. For example, if the provider updates the
communications object once per day, but the consumer does
not operate the consumer program 22 for a week, the
consumer may have missed six communications object
versions. Finally, a communications object version could
become corrupted in the consumer database 21.

If a uniform version value algorithm is used throughout
the communications object system to increment the value of
version attributes of communications object instances 110 or

92
When the pull technique of updating is used, the steps are

slightly different. In this case the version monitoring method
141 at the consumer program 22 needs to be able to
determine the network address of the missing communica-

5 tions object versions on a distribution server 32. This can be
done in several ways. A first technique is to use a version
naming algorithm to derive the address from a combination
of the network address of the current communications object
110 and the missing version value. For example, if the

10 network address of the current communications object
instance 110 is http://company.com/commobject.cos and the
missing version value is 3481, then the computed network
address would be http://company.com/
commobject3481.cos. This requires two minor modifica-

15 tions to the communications object instance generation and
transmission routine (FIG. 12). First, a step is added in
which the version naming algorithm is used to rename a
copy of the previous communications object version
instance 110 stored on the local or network file system.

20 Alternatively, the routine could regenerate this previous
instance if it were missing. Second, at the conclusion of the
routine, both the current and renamed previous version of
the communications object 110 are transferred to the distri­
bution server 32. Now when a new communications object

25 instance 110 is received at a consumer program 22, the
version monitoring rule 140 executes a version monitoring
method 141. The version monitoring method 141 first deter­
mines if any versions are missing. If so, it uses the version
naming alrogrithm to determine the network addresses of

30 each missing communications object version. It then
executes a polling operation for each missing communica­
tions object from the distribution server 32, restoring syn­
chronization.

A second technique is to store the date and network
35 address of previous versions in the communications object

110 itself. This approach has the advantage of allowing any
number of version naming algorithms to be used. This can
be done with three minor modifications to the communica-
tions object instance generation and transmission routine
(FIG. 12). The first modification provides that each time a
new version of a communications object instance 110 is
generated, the version naming algorithm is used to generate
a unique network address name for this version. This unique
network address name together with the version value and
current date and time is stored as a archive composite type
element 143 contained in the communications object 110.
This element is itself maintained by an archive rule 140 such
that only n instances, or only instances newer than X
interval, are stored. The second modification is the same as
described above, i.e., the communications object instance
generation and transmission routine uses the unique network
address name to rename a copy of the previous communi­
cations object version instance 35 stored on the local or
network file system. Alternatively it could regenerate the

its components, recovery of lost or missing versions is 40

straightforward. When the push technique of updating is
used, recovery is accomplished using a version monitoring
rule 140 and version monitoring method 141 at the con­
sumer program 22. These can be implemented by the
provider or the consumer. The version monitoring method 45

141 operates as a specialized data exchange method 141,
explained above. The version monitoring rule 140 is asso­
ciated with the communications object 110 so it is triggered
each time an update is received. The version monitoring rule
140 executes the version monitoring method 141 which 50

compares the version value of the update received with
version value of the most recent communications object 110
stored in the consumer database 21. If the version value
algorithm indicates that a version value is missing in the
sequence, the version monitoring method 141 generates a
message object 110 containing a data exchange element 143
specifying the missing version values and the system ID of
the consumer. The version monitoring method 141 then
transmits the message object back to the provider program
12. Here, the message object executes a version monitoring 60

receipt method 141. The version monitoring method 141
then executes the communications object instance genera­
tion and transmission routine (FIG. 12) for the specified
missing version communications object versions and the
specified recipient 120. When these new instances are 65

received by the consumer program 22, synchronization is
restored.

55 previous instance of the communications object instance 35
it were missing. Finally, at the conclusion of the routine,
both the current and renamed previous version of the com­
munications object instances 35 are be transferred to the
distribution server 32. Now when the new communications
object instance 35 is received at a consumer program 22, the
version monitoring rule 140 executes a version monitoring
method 141 as above. The version monitoring method 141
compares the version value attributes of the archive ele­
ments 143 contained in the updated communications object
instance 35 with those in the consumer database 21. If any
are missing, the version monitoring method 141 uses the
network address stored in the archive element 143 to execute

US 6,757,710 B2
93

a polling operation for each missing communications object
from the distribution server 32, restoring synchronization.

94

A third approach is to use a version monitoring method
141 as an enhancement to the basic communications object
update polling method described above. This requires a 5

distribution server 32 capable of executing a data exchange
method, however it tremendously simplifies version moni­
toring. In this case, a version monitoring method 141
operating at the consumer program 22 need only submit the
UID and version value of the communications object 110 to 10

be updated to the distribution server 32. The distribution
server 32 then executes its own version monitoring method
141 to compare the version value submitted with the version
values of the archived communications object instances 110
stored on the server. The distribution server 32 then returns 15

case of data exchange methods 141, discussed above. As
with data exchange methods, reporting methods are gov­
erned by reporting rules 140. Reporting rules function as a
special case of data access rules 140, discussed above.

A unique feature of a communications object system is its
ability to produce reports about the metadata it uses to
control communications. This can happen at both the com­
munications object level and at the element level. A specific
example is communications object subscription reports.
Referring to the example in the notification section above
and illustrated in FIG. 4, in a communications object 110 a
provider may create topic elements 201 from which a
consumer can choose their notification preferences for topics
of interest. These preferences are stored in a element pref­
erences instance 221. By including a reporting rule 140 and
a reporting method 141 in the communications object 110, to the consumer program 22 all missing versions. In a

preferred embodiment this process can be automated using
a distribution service object working in conjunction with a
distribution partner server. Distribution service objects and
partner servers will be discussed further below.

In all of these approaches the version monitoring method
141 could also accept parameters used to control the quan­
tity or dates of previous versions received. In this manner the
consumer could specify that he/she only wishes to receive n
past updates or updates back to X date.

A communications object system can also automate a
different form of archiving commonly required of any
software program using a database. This is the storage of
backup copies of the provider database 11 or consumer
database 21 in order to prevent data loss from corruption,
hardware failures, or other problems. In this case an archive
method is functioning as a data exchange method 141.
Backup control can be accomplished using backup prefer­
ences stored as attributes of global preferences 103, or as
special backup elements 143, together with backup methods
141. Backups can be performed manually, or automated
using scheduled events instances 117. Backup services can
also be automated via a data exchange service object, which
will be further discussed below.
Reporting and Statistics Control

Reports are typically one of the most valuable functions

the provider can be updated on any changes to user's
preference element instances 221. The reporting rule 140
operates as a data exchange rule monitoring the element

20 preference instances 221. When an element preference
instance 221 is created or edited, the reporting rule 140
triggers the reporting method 141 which generates a mes­
sage object 110. This message object contains the changed
attributes of the preference element instances 221. The

25 reporting method 141 next transmits the message object
back to the provider program 12. When It is received, the
message object calls another reporting method 141 to pro­
cess the reported data, for example by creating or updating
associations to the recipient instance 120. The provider is

30 now able to run reports 105 against this data in the provider
database 11 to produce statistics about communications
object usage. These can include the total subscribership to
any communications object 110 as well as the total sub­
scribership to any particular topic element 201. In this way

35 the provider can see the precise communications needs of
the provider's audience. This feedback loop also allows
providers to further refine communications topics and mes­
sages to better meet the needs of this audience. Alternatively,
the first reporting method 141 can transmit a message object

40 110 or another form of structured message to another
reporting server. Reports can be generated in the same
fashion at this reporting server. This process can also be
automated using reporting service objects, which will be
further discussed below.

of any database system. In a communications object system,
reports have particular value because they can be delivered
automatically using the same system about which they are
reporting. In this sense reporting control is simply a spe- 45

cialized case of data exchange control. Reporting control is
especially useful to providers because it can give them
valuable statistics and feedback about the communications
needs and behaviors of their audience. Reporting control can
also be used by the operators of a communications object
system as the basis for billing and licensing, much as
telephone usage reports are the basis for billing telephone
system customers.

In addition to control of metadata, reports can also moni-
tor communications activity. Continuing the example above,
a communications object 110 can include a reporting rule
140 which monitors access to any message element instance
(211, FIG. 4) contained in the communications object 110.

50 When the message element is read from the consumer
database 21 for the first time (i.e. read by the consumer), the
reporting rule 140 is triggered. This executes a method 141
that creates a logged event instance 118 recording the UID
of the communications object 110 and message element As shown in FIG. 3, reports can be compiled on any class

or group of classes in a database 100. These include specific
communications object components 140, 141, 142, 143, and
144; individual communications objects 110; folders 115 or
other groups of communications objects 110; recipients 120;
and events 116, scheduled events 117, and logged events
118. Reports which are locally useful to the provider or
consumer can be defined and executed using report instances
105. These reports are activated using the other reports form
(640, FIG. 13). Report instances 105 are in essence a special
case of the overall reporting capabilities of the system. If a
report does not exist as a report element 105, a report is
generated using a reporting element 143 and a reporting
method 141. Reporting methods 141 function as a special

55 (211, FIG. 4). The communications object 110 can also
include a receipt method 141 that creates a scheduled event
instance 117. This scheduled event instance will periodically
execute a reporting method 141 which queries the consumer
database 21 for new logged event instances 118 matching

60 the UID of the communications object 110 and the appro­
priate event type. This reporting method 141 can then
produce a message object reporting the results as explained
above. Any data present in the queue of logged event
instances 118 can be reported on in this fashion. As with

65 other forms of data exchange, protection of both provider
and consumer security is achievable through the use of
reporting rules 140. Such rules can limit reporting access,

US 6,757,710 B2
95

for example, to logged event instances 118 which matched
a particular communications object UID or a provider group
UID.

For many reasons, including efficiency, security, and
consumer anonymity, reporting control may operate at the
system level. In this case, reports may be aggregated for
providers by the system operators using a reporting server or
system of servers using reporting service objects. System
level reporting may also be used to enforce licensing rules
and create billing and service reports. Reporting service
objects and reporting partner servers will be further dis­
cussed below.
Service Objects and Partner Servers

As described above, service objects are a special class of
communications object whose primary function is to provide
communications services to other communications objects.
A service object is used to coordinate communications
between providers and users. The server which provides and
operates on a service object is referred to as the service
object's "partner server". As with any communications
object, the service object includes certain elements,
metadata, and methods. Since different users can utilize a
service object having certain features, actions between users
or by different users can be coordinated by the service
object. A provider may include features from a received
service object in its own communications objects. A user
may also use the methods in the service object to perform
routine communication functions with others, including a
third party partner server which created the service object. A
service object can include any data, metadata, or methods
which are useful to a significant number of providers or
consumers. Various types of service objects and service
providers are discussed below as examples. These examples
relate to common functions to be performed in the commu­
nication system, and illustrate the operation of service
objects. Of course, many other service objects having dif­
ferent features and functions could be created and used in
connection with the communication system.

Any given service object (815, FIG. 17) may provide
services to providers, consumers, or both. Service objects
that offer services to both providers and consumers are
called polymorphic. Polymorphic service objects are par­
ticularly useful in a communications object system because
many of the same services are required by both partners to
a communications relationship, each in a different form
depending on whether the partner is the provider or con­
sumer. Such services typically fall into three categories:
editing or searching databases, encoding or decoding
communications, and automating transactions with third
parties. An example of the first category is a directory
service object, which permits providers to place or update
listings in a directory service and permits consumers to
automate searches of the same directory service for a spe­
cific provider. An example of the second category is an
authentication service object, which permits providers to
digitally sign communications objects and permits consum­

96
case, the service object forms the basis for communicating
the necessary information to the server so that the service
can be provided. The latter case is also particularly useful
because the service object can abstract or "encapsulate" the

5 interface to the server or servers, removing the need for
either the provider or consumer to deal with this complexity.
A service object may represent services provided by a
network of related servers, for example a replicated direc­
tory database such as the Internet's Domain Name Service

10 (DNS). The service object can then also abstract and auto­
mate the process of choosing one of the network servers as
a current partner server which will result in optimal perfor­
mance and minimal network traffic. Referring to FIG. 3, this
feature is accomplished by including a receipt method 141

15 in the service object (815, FIG. 17) having one or more
algorithms for determining the optimal partner server. Such
algorithms can access elements 143 in the provider database
11 or consumer database 21 for necessary input data such as
the user's geographic location, time zone, network address,

20 and so on, or they can prompt the user for such data via input
forms. The service object's receipt method may also use a
data exchange method 141 to query a reference server,
perform network packet timing tests, or use other techniques
to determine the optimal partner server. The same approach

25 can also be used to determine one or more backup partner
servers to use in case the primary partner server is unavail­
able. The particular algorithm or method for determing an
optimal partner server or backup partner servers is not a
limiting feature of the invention. Once determined, the

30 receipt method can save this data in the provider database 11
or consumer database 21 as one or more element preference
instances 147. These element preference instances can then
be accessed by the service object's update method 141 or
any of its other methods whenever it needs to call operations

35 at the partner server.
Service objects are distinguished in a communications

object system by their communications object type.
Examples of service object types are shown as classes
830-844 in FIG. 17. Service object types serve the same

40 function at the communications object level as element types
serve at the element level. Service object typing allows the
programs 12, 22 and other communications objects to make
calls to service objects by type. When more than one service
object of the proper type is present, the programs 12, 22 can

45 prompt the provider or consumer to choose the desired
service object, or the programs 12, 22 can make the choice
programmatically. For example, a provider seeking to list a
new communications object in one or more directories could
execute a system method 141 that would call all directory

50 service objects 832 present in the provider database 11. If
more than one was present, the system method 141 would
generate an input form prompting the provider to choose the
desired directory service object or objects 832. When this
form was submitted by the provider, the system method

55 would proceed to call a DirectoryList method of each
directory service object 832. The DirectoryList method for
each directory service object would then carry out the
balance of the operations needed to complete the directory

ers to automatically verify these digital signatures. An
example of the third category is a payment service object,
which permits a provider to automate receiving payments
from a bank or credit company and permits consumers to 60

automate sending payments to the bank or credit company.
Alternatively, where it is more efficient, service objects can

listing.
The same fundamental data structures used in the provider

database 11 and consumer database 21 can be used in a
partner server database 1301. These data structures are
shown in FIGS. 3 and 4. Service objects (815, FIG. 17) can
be stored as communications objects 110. They can also be
nested as composite and component objects (811, 812, FIG.
17) using association 110A as explained above in the

be split into provider/consumer "pairs", each containing a
link component object 110 linking it to the other.

Service objects can wholly contain the services they offer, 65

or they can represent the services of one or more servers
available in the communications object system. In the latter description of composite and component objects. The use of

US 6,757,710 B2
97 98

110 in the service object (1310, FIG. 28) and the provider's
communications object 110. This association can also be
created automatically when any service object method 141
is executed that creates a service relationship between the

composite and component service objects is ideally suited to
many partner server functions, as further explained below.
Alternatively, partner servers can use other data structures in
order to optimize database performance, particularly for
high-volume applications. Such additional data structures
may include the use of special indexes or indexing
algorithms, special caches or cache techniques, and other
database performance enhancement technologies.

The same basic program operations used in the program
12, 22 can be used in a partner server 1302. In particular, a
partner server 1302 may use the same HTML and HTTP
interface system as described for the programs 12, 22. This
allows the partner server 1302 to function as a web server for
human interaction via a browser 50, while at the same time
providing automated interaction with the programs 12, 22
via the HTTP protocol and any other mutual protocol such
as SMTP/MIME.

5 service object and the communications object 110. The
communications object 110 thus becomes a synthesized
object (813, FIG. 17), wherein the link component object
110 is supplied by the service object 1310. Examples of such
a service object relationship include listing a communica-

10 tions object 110 in a directory server, registering a commu­
nications object 110 with an authentication server, or autho­
rizing a communications object 110 for use with a payment
server. Further examples will be given below. Referring
again to FIG. 28, the next step is that a communications

As a subclass of standard communications objects 110,
service objects can include all the control functions of
communications objects described above. Certain control
functions have special relevance for service objects. First,
link control allows other communications objects to call the
methods of a service object object regardless of where the
service object may be located on a communications network

15 object instance 35 is transferred to a consumer program 22
(step 1322). This may be via e-mail using the push
technique, via a distribution server 32 using the pull
technique, or any of the other techniques described above.
Once the communications object instance 35 is transferred

20 to the consumer program 22, a link method 141 of the link
component object 110 may be manually executed by the
consumer or automatically executed by another system
method or communications object method. For example, the
consumer may wish to look up related communications

25 objects instances 35 in a directory server, or authenticate the
communications object instance 35 before forwarding it, or
make a payment transaction using the communications
object instance 35. When the link method 141 is executed,
it uses the attributes of the link element 143 to locate the

3. The special applications of link control will be discussed
below. Second, update control allows a service object to stay
current regardless of where it is located on a communica­
tions network 3. Version monitoring and update querying are
particularly efficient techniques of update control for service
objects and will be discussed below. Third, notification 30

control allows a service object provider to notify providers
or consumers using the service object about relevant
changes to the service object or the communications services
it makes available. Fourth, data exchange control allows the
service object to automate data exchanges with the server or 35

servers the service object may represent. Fifth, data archive
control allows service objects to delete themselves if they
age beyond a certain date or have not been used within a
certain period. This allows databases 100 to avoid an accu­
mulation of seldom-used service objects. Finally, event 40

tracking control and reporting control allows service objects

designated service object 1310 as described in the commu­
nications object exchange control section above. For
example, if the service object 1310 is not present locally in
the consumer database 21, the link method uses other
attributes of the link element to locate the service object
1310. For instance, if a URL was present, the link method
would use it to obtain the service object 1310. If this fails,
the link method would use the UID or name of the service
object 1310 to obtain its URL or other current network
address via a name server. The link method could also call
the methods of a name service object, described below. Once
the link method located the proper network address, it would
download the service object 1310 from the partner server
1302 (step 1323). At this point the link is reestablished, and
the communications object instance 35 can call the service

to create and report transaction records which can be pro­
cessed to provide further services to the provider or con­
sumer. These transaction records can also be used by the
service object provider for billing or statistical purposes.

Link control and update control have special applications
45 methods of the service object 1310 to perform the services

requested (step 1324).
to polymorphic service objects. The application of link
control to polymorphic service objects is illustrated in FIG.
28. A provider using the provider program 12 has need of the
services offered by a service object partner server 1302. First 50

the provider obtains a service object 1310 from the partner
server 1302 (step 1320). This may be by browsing with a
web browser 50, receiving the service object 1310 via
e-mail, or any of the other techniques described above. Such
partner server 1302 may be a distribution server 32 or any 55

other type of service object partner server such as those
described below. Once the provider has obtained the service
object 1310, the provider may add a link component object
110 to any of the provider's communications objects 110
which need to access the elements or methods the service 60

object 1310. This link component object 110 will then be
included in any communications object instance 35 gener­
ated from the consumer database 21 (step 1321). In a
preferred embodiment, the link component object 110 is
supplied by the service object 1310 itself. In this case, 65

referring to FIG. 3, the provider need only create a
contained-by association between the link component object

Once a service object 1310 has been transferred to a
consumer database 21 via this technique, version monitoring
can be a very efficient update control technique. This is
because the services of the service object 1310 may not be
required again until they are called by another communica-
tions object instance 35. Version monitoring can be
employed as follows. First, the service object 1310 can use
a standard push or pull update control technique at the
provider program 12 to maintain a current version. Such
version changes will also maintain current version values in
any link element 143 associated with the service object
1310. By including this link element 143 in any update of a
communications object 110 which contains it, the link
element 143 will be transferred to all recipient consumer
programs 22 when the communications object 110 is
updated. At this point, whenever a method call is made from
a communications object instance 35 to the service object
1310, a version monitoring rule 140 contained in the service
object 1310 can be triggered. The version monitoring rule
140 compares the service object version value stored in the
link element of the calling communications object 110 with

US 6,757,710 B2
99

the version value of the service object 1310. If the version
value in the link element 143 is greater than the version
value of the service object 1310, the update method of the
service object 1310 is executed and the service object 1310
is updated prior to completion of the original service object
method call.

Update queries are also a highly efficient update control
technique for service objects. This is especially true when a
service object 1310 is used to represent access to a large
database of communications objects 110, such as the cat­
egories of a yellow pages directory server or a classified
advertising server. Basic update query control is explained
in the update control section above. When used in conjunc­
tion with a service object 1310 and partner server 1302,
update query control can be even more efficient by employ­
ing user objects 110 on the partner server 1302. The data
structures for user objects are shown in FIG. 6B. User
objects 110 represent either the providers or consumers
interacting with the partner server 1302. The partner server
1302 maintains an index of the provider and consumer
relationship associations 111 between all communications
objects 110 and the user objects 110. Updates to communi­
cations objects 110 in the partner server database 1301 set
the New Flag attribute value of the relationship association to
TRUE. This can be accomplished very efficiently on the
partner server 1302 using an update association rule 140 and
the update association routine (FIG. lOB). By employing
such a user object index, an update query method 141 of a
service object 1310 need only submit the provider UID in its
update query. The partner server 1302 executes the query
against the user object index to determine all communica­
tions objects 110 associated with that user UID where the
NewFlag attribute value is TRUE. Those communications
objects 110 are returned immediately as the query result set
and the NewFlag attribute for each of these relationship
associations 111 is reset to FALSE. User objects 110 can also
act as recipients 120. In this case the partner server 1302 can
transmit communications object updates via the push tech­
nique. The data and methods in user objects 110 on a partner
server 1302 can be automatically kept current by a data
exchange rule 140 in the service object 1310 as explained in
the data exchange control section. The use of user objects
110 in a communications object system can be better under­
stood in the discussion of multiuser operation in the
advanced architecture sections below.

The following sections will explain how service objects
and partner servers can be employed to provide registration,
maintenance, name, directory, distribution, encoding,
authentication, data exchange, payment, reporting, and feed­
back services for a communications object system. This set
of service object applications is not exhaustive but merely
illustrative of how service objects may be employed. Service
objects and partner servers may also combine any number of
services. Alternatively, any of the services described below
may also be performed directly by one or more system
methods 141, rules 140, and elements 143 instead of service
objects 1310. Service objects are a preferred embodiment
because they allow such services to be encapsulated,
distributed, optimized, and updated throughout a communi­
cations network 3.
Registration Service Objects and Partner Servers

A registration service object type (830, FIG. 17) can be
used to obtain the initial database system ID (100, FIG. 3)
used to uniquely identify a provider database 11 or consumer
database 21. This process is explained in the system ID and
naming services section above. As illustrated in FIG. 5, if a
communications object system only requires one system ID

100
server 42 (also called a registration partner server), regis­
tration services are easily be accomplished using a system
method 141. However, this same process can also be used to
obtain other system IDs which can function as group IDs,

5 registration keys, licensing keys, and so on. In this case
multiple registration partner servers may be desirable. For
example, in addition to a global Internet-wide registration
server, a company may wish to have its own registration
partner server to manage communications object system

10 group IDs and authorization keys for its employees. By
creating its own registration service object, the company can
quickly and easily add these services to the programs 12, 22.

Registration partner servers can do more than just auto­
mate and track system ID and group ID assignments. By

15 including data exchange methods for other registration data,
such as names, addresses, contact information, and so on,
registration partner servers can obtain and store all the
information necessary to fully register communications
object system users. By using data exchange methods to

20 return registration keys and licensing keys to the databases
11, 21 which enable the operation of all or selected subsets
of features, registration partner servers also function as
licensing servers. For this reason registration servers can be
efficiently coupled with naming, authentication, and report-

25 ing service objects and partner servers.
Maintenance Service Objects and Partner Servers

A maintenance service object type (831, FIG. 17) can be
used to acquire, maintain, and register communications
object system components from a system maintenance part-

3D ner server 1302. This can cover any communications object
system component that employs versioning. Referring to
FIG. 3, this includes rules 140, methods 141, pages 142,
elements 143, and type definitions 144.

If all the components of the programs 12, 22 are stored as
35 one of these classes, the use of maintenance service objects

1310 to monitor and update these components enables the
programs in a communications object system to be self­
updating. Existing components can be updated, new com­
ponents can be downloaded as required, and outdated com-

40 ponents can be deleted.
Maintenance service objects 1310 also allows all the

providers in a communications object system to contribute
and obtain new system components. This is accomplished by
including a data exchange method 141 in the maintenance

45 service object 1310 that automates the process of uploading
and registering the new components in a database 1301 at a
maintenance partner server 1302. Another data query
method 141 in the same maintenance service object 1310
allows other providers to manually or automatically search

50 the maintenance partner server database 1301. This process
is fully described in the data exchange service object section
below. The sharing of communications object components
across a communications object system is particularly valu­
able in relation to rules 140, methods 141, and type defini-

55 tions 144. New rules and methods allow providers to extend
the functionality of the communications object system eas­
ily. For example, new system objects can encapsulate the
services of particular communications protocols. These
include network protocols, such as TCP/IP, IPX/SPX, and

60 NetBEUI; communications protocols, such as XMODEM,
YMODEM, HTTP, NNTP, and SMTP; APis such as TAPI,
MAPI, and Visual Basic; and even device driver protocols
such as those required for printers, modems, CD-ROM
drives, monitors, and so on. The particular protocols used

65 are not a limiting feature of the invention. Since newer, more
powerful, more efficient, and more secure protocols are
always evolving, encapsulating these in component commu-

US 6,757,710 B2
101

nications objects that can be easily distributed throughout a
communications object system is a major advantage.

102
UniqueName for each user object 110 listed. A user object
110 could have more than one unique name by allowing
more than UniqueName element 143 to be associated with
the user object 110. Alternate names may also be desirable,

New type definitions allow groups of providers to create
shared data structures that meet particular needs, such as
specialized electronic data interchange (EDI) standards for
vertical markets. Shared type definition repositories have
particular applications that enable new types of intelligent
information interchange. An example discussed above in the
data exchange control section is the customization of web
server content for web browser users. This interchange can
be substantially enhanced through the establishment on a
maintenance partner server 1302 or a distributed network of
partner servers 1302 of a server database 1301 of shared type
definition instances 144. These type definition instances
could cover families of common psychographic variables
such as political affiliations, color preferences, food and
beverage preferences, entertainment preferences, and so on.
Using a maintenance service object 1310, providers can
search for and download these type definitions 144 to be
incorporated into the design of the provider's web content
customization system as well as the provider's own com­
munications objects 110. When a consumer browses the
provider's web server, the web server can return a commu­
nications object 110 that queries the consumer database 21

5 for example to allow individuals using nicknames to be
located using the nickname. Alternative names are also
advantageous in a commercial tradename name service
because it allows companies who use the same trademark
name across different industries to all reference that name.

10 Alternate names can be created using an element 143 of the
communications object 110 with the composite type Alter­
nateName. By including methods 141 for listing and editing
a name as well as searching for a unique name or an alternate
names, a name service object 110 can automate name server

15 access for both providers and consumers.
Name service objects 1310 and name partner servers 1302

allow multiple naming systems to be employed in a com­
munications object system, either globally or across any
subset of the system. A global communications object sys-

20 tern name is particularly valuable to individuals because it
allows them to obtain a lifetime communications address

for the values of elements 143 corresponding to specified 25

psychgraphic type definitions 144. If these type definitions
are not present, the communications object 110 will include

that never needs to change regardless of any changes to
specific communications network addresses the individual
may hold. This address may also be completely identical to
the individual's real name if such a name is unique in the
naming system. The same advantage may be realized by
organizations using tradenames for their company, product,
or service.

Other advantages of communications object system nam-
a link component object 110 to obtain the necessary type
definitions 144 from the maintenance server 1302. The
communications object 110 then generates an input form
requesting the values for elements 143 corresponding to
each type definition. Once these element preference
instances 147 are saved in the consumer database 21, the
consumer need not enter this pschographic preference data
again. It will be available automatically to any other pro­
vider who needs it, subject to data access rules 140 applied

30 ing services are enumerated in the communications object
exchange control section above. Besides individual names
and commercial trademark names, communications object
system naming services can be applied to many specialized
or vertical market naming needs such as industrial part

35 names; research topic names; corporate department, group,
or project names; software programming object names; and
so on. The specific naming service used is not a limiting
feature of the invention.

by the consumer. In this way the consumer database 21 can
steadily grow "smarter" about the consumer's interests and
tastes, and providers have a highly direct, efficient, and
automated mechanism with which to obtain such psycho- 40

graphic data from the consumer.
This process can be generalized to any set of data types

that need to be shared amongst a group of providers. This
includes many vertical market applications, such as indus­
trial part types, chemical types, academic research types, 45

business application types, software programming object
types, and so on. The specific data type service is not a
limiting feature of the invention.
Name Service Objects and Partner Servers

A name service object type (832, FIG. 17) can be used to 50

register and search communications object names or any
other kind of names on a name partner server. A name
service object is an excellent example of a polymorphic
service object because the same service object used by a
provider or a provider program 12 to list or edit a commu- 55

nications object name with a name partner server can be
used by a consumer or a consumer program 22 to locate
communications objects using the name partner server.

The use of naming and name resolution services in a
communications object system are fully discussed in the 60

communications object exchange control section above. A
name partner server 1302 can implement name services
using many database structures. In a preferred embodiment,
name services for individuals are provided using commu­
nications objects 110 of the user object type (816, FIG. 17). 65

Referring to FIG. 3, a basic "white pages" name service can
be implemented using an element 143 of a composite type

Directory Service Objects and Partner Servers
A directory service object type (833, FIG. 17) and a

directory partner server 1302 provide an extension to name
services whereby communications objects can be listed and
located by additional attributes. Any attribute that enables
consumers to locate communications objects of interest may
be employed. For example, consumers may wish to locate
user objects 110 representing other consumers. In this case,
desirable attributes may include geographic location, age,
occupation, family lineage, educational affiliation, political
affiliation, religious affiliation, and so on. These attributes
may all be represented by different elements 143 in a
directory partner server 1302 in the same manner as
described above for psychographic attributes on a type
definition maintenance server. When a provider of a com­
munications object 110 uses a directory service object 1310
to create a directory listing on the directory partner server
1302, a data exchange method 141 in the service object uses
the system ID of the type definition 144 for each required or
desired attribute to automatically identify and copy these
attributes from elements 143 in the provider database 11 to
elements 143 in the directory partner server database 1301.

Another commonly desired set of directory attributes is a
hierarchical categorization system such as that employed by
many "yellow pages" directories. In a preferred
embodiment, such a categorization system is implemented
on a directory partner server 1302 using composite commu­
nications objects (811, FIG. 17) and component communi-
cations objects (812, FIG. 17). Such a data structure is

US 6,757,710 B2
103 104

executes its receipt method 141 (step 4017). The receipt
method 141 executes the provider's desired notification
method 141 to complete the listing (step 4018). This direc­
tory listing process can also include authentication services,

illustrated in FIG. 29A. The directory service object 1401
functions as the highest-level composite communications
object. Each of its first-level component objects represents
the top-level categories 1410, 1411, 1413. These component
objects are called category objects. Component objects of
each top-level category object represent the second-level
categories 1421, 1422, 1423, 1424. Such a category object
structure can be nested as many layers deep as is necessary.
Alternatively, a separate directory service object 1401 could
represent a particular branch within the category structure.

5 payment, or reporting services as further described below.
A second advantage of a communications object-based

directory service is that it automates the directory updating
process in both directions. The steps in the process of
updating a provider's listings on a directory partner server

The use of a communications object-based directory
service offers several advantages over conventional direc­
tory systems. First, it can simplify and automate the listing
process for providers. The steps in this process are illustrated

10 1302 are shown in FIG. 31A. This process employs a data
exchange rule 140 in the directory service object 1310,
explained in the data exchange control section above. The
data exchange rule 140 monitors for changes in attributes or
elements 143 of a communications object 110 associated

in FIG. 30. In this example a directory system is imple­
mented on a directory partner server 1302 as a web server
using HTML pages to display the category hierarchy. Each
category description includes a hyperlink to its category
object 110. The process begins with the provider using
his/her browser 50 to navigate the directory partner server
1302. The provider chooses the hyperlink representing each
category object 110 in which the provider is interested in
listing a communications object 110 (step 4001). The receipt
method for the category object 110 first checks to see if its
parent directory service object 1310 is present in the pro­
vider database 11 (step 4002). If not, the category object uses

15 with a category object 110 or a directory service object 1310
(step 4031). When such changes occur, the data exchange
rule triggers a data exchange method 141 in the directory
service object 1310 (step 4032). The data exchange method
141 creates a message object 110 containing those changes

20 (step 4033). The data exchange method 141 transmits the
message object 110 to the directory partner server 1302 (step
4034). When received by the directory partner server 1302,
the message object 110 triggers a corresponding data
exchange method 141 (step 4035). This data exchange

25 method 141 updates the necessary attributes and associa­
tions in the directory partner server database 1301 (step
4036). If desired, data exchange method 141 also returns an
acknowledgment message object 110 to the directory service
object 1310 at the provider program 12 to confirm the update

its link component object 110 to download the directory
service object 1310 from the directory partner server 1302
(step 4003). Next the receipt method 141 for each category
object 110 generates an input form prompting the provider
for the communications object or objects 110 to be listed in
this category (step 4004). When this input form is submitted,
the receipt method creates an association between the com­
munications object or objects 110 and the category object
110 (step 4005). Finally, the receipt method 141 asks the 35

provider if he/she would like to choose additional category
objects (step 4006). If so, the above steps are repeated. Once
the provider has chosen all desired category objects 110, the
provider executes a data exchange method 141 in the
directory service object 1310 that will carry out the listing 40

procedure (step 4007). This data exchange method 141
queries the provider database 11 for all category objects 110
belonging to the directory service object 1310 (step 4008).
The data exchange method 141 then queries for all of the
provider's communications objects 110 associated with 45

these category objects 110 (step 4009). The data exchange
method 141 creates a message object 110 containing this
query result set together with the necessary attributes or
elements of the listed communications object or objects 110
(step 4010). The data exchange method 141 transmits this 50

message object 110 to the directory partner server 1302 (step
4011). When received by the directory partner server 1302,
the message object 110 triggers a corresponding data
exchange method 141 (step 4012). This data exchange
method 141 creates or modifies the listing for each commu- 55

nications object or objects 110 in the directory partner server
database 1301 (step 4013). This listing consists of a new
component object 110 containing the desired listing ele­
ments 143. The data exchange method 141 then creates the
appropriate associations with each composite category 60

object 110 (step 4014). When this process is completed, the
data exchange method 141 creates a message object 110
containing an appropriate acknowledgment message (step
4015). The data exchange method 141 transmits this mes­
sage object 110 back to the directory service object 1310 at 65

the provider program 12 (step 4016). When received by the
directory service object 1310, the message object 110

30 has been made.
The steps in the process of notifying a provider about

changes to one or more category objects on the directory
partner server 1302 are shown in FIG. 31B. Such changes
occur when a category definition is changed, the directory
provider needs to bifurcate a directory category into two or
more categories, when a category is replaced by another
category or categories, and so on. This process uses the
update query technique described in the update control
section above to monitor the directory partner server 1302
for changes. When the first directory listing is made by the
directory service object 1310, the data exchange method 141
creates a scheduled event instance 117 in the provider
database 11 (step 4051). When activated, the scheduled
event instance 117 triggers a update query method 141 in the
directory service object 1310 (step 4052). The update query
method 141 first queries the provider database 11 for the
UID and version value of all category objects 110 associated
with the directory service object 1310 (step 4053).
Alternatively, an index of these values could be maintained
as an element in the directory service object 1310. The
update query method 141 then creates a message object 110
containing the result set (step 4054). The update query
method 141 transmits this message object 110 to the direc­
tory partner server 1302 (step 4055). When received by the
directory partner server 1302, the message object 110 trig­
gers a corresponding update query method 141 (step 4056).
This update query method 141 uses the message object
result set to query the directory partner server database 1301
for any changes to the corresponding category objects 110
(step 4057). The update query method 141 then returns the
result set to the provider program 12 (step 4058). If there are
no changes, the result set is a message object 110. If there
have been changes, the result set is the changed category
objects 110. The provider program 12 receives the result set
and executes any receipt methods pertaining to the result set
objects (step 4059). This includes the notification test (step
4060). If the provider desires notification of changes to

US 6,757,710 B2
105

directory category objects upon which the provider may
wish to take action, the provider program 12 executes the
desired notification methods (step 4061).

Alternatively, for high-volume applications, the directory
partner server 1302 can maintain an index of the provider
UIDs associated with each category object 110. These UIDs
can be stored in user objects 110. In this case step 4053 can
be eliminated, and the update query in step 4054 can consist
of just the provider UID. The provider user objects 110 can
also function as recipients 120 on the directory partner
server 1302. In this case, updated category objects can be
distributed using the push technique. This process is
explained in the service object introduction section above.

106
munications objects on a distribution partner server 1302.
While any server on a communications network 3 capable of
file storage and retrieval can operate as a distribution server
32, a distribution partner server 1302 which includes the full

5 capabilities of a database 100 offers many additional ser­
vices to communications object providers and consumers.

The first of these advantages is the automated transmis­
sion of communications objects and communications object
updates from the provider program 12 to the distribution

10 partner server 1302. This is accomplished through the use of
a data exchange method 141 in the distribution service
object 1310. Referring to FIG. 12, this data exchange
method is called at step 550 of the object instance generation
and transmission routine. The distribution service object A third advantage of a communications object-based

directory service is that consumers may use a directory
service object 1310 to monitor a directory partner server
1302 for new listings in any category or changes to the
category structure. Because they are symmetric and can be
performed by a polymorphic directory service object 1310,
these processes are largely identical to those described 20

above for a provider. In addition, data exchange methods in

15 1310 then carries out step 551 before returning to the calling
routine. If multiple communications objects or object
updates are to be transmitted to the same distribution server
32, the distribution service object 1310 aggregates these and
performs fewer, more efficient transmissions.

The inverse of this process becomes a key advantage for
consumers because a single distribution service object 1310
can use the update query technique to monitor a distribution
partner server 1302 for updates to all communications
objects 110 associated with the distribution service object

a directory service object 1310 can allow consumers to
create custom queries that can be run at scheduled intervals
against the directory server 1302. Thus a consumer could,
for example, be notified if any new listing containing the
word "Mustang" was added to a directory server 1302 even
if there was no "Mustang" category object 110. This is
further discussed in the section on data exchange service
objects below.

25 1310. The greater the number of communications objects
110 associated with a single distribution service object 1310,
the more efficient the update process becomes. Only a single
update query needs to be made to the distribution partner
server 1302. This update query technique is further

30 described in the update control and directory service object
sections above. This technique is particularly efficient when
used in conjunction with a user object 110 index at the
distribution partner server 1302. User object indexes are

The value of a communications object-based directory
services can be further increased using link control. Any
provider who associates (lists) a communications object 110
with one or more category objects 110 on a directory partner
server 1302 can include a link component object 110 from
those category objects 110 in the communications object 35

110. This is identical to the process of including a link
component object 110 from a service object 1310 as
described above. Category object links provide a powerful
new way for consumers to locate communications objects in
which they are interested. The consumer can just activate the
link method 141 to immediately download the desired
category object 110 and access directory listings for other
communications objects 110 in the same category. Using the
directory service object 1310 linked to the category object
110, the consumer can also immediately begin monitoring
the directory partner server 1302 for new listings in that
category.

explained in the service object introduction section above.
A second advantage to providers is that the distribution

partner server 1302 can offload the work of transmitting
communications object updates via the push technique. For
large numbers of recipients 120, e-mail generation and
transmission can require large amounts of computer proces-

40 sor time and network bandwidth. Offloading this to a dis­
tribution partner server 1302 can free the operation of the
provider program 12 on a smaller personal computer. By
maintaining a user object index at a distribution partner
server 1302, the distribution partner server 1302 can also

45 receive and process all acknowledgment message objects
used to maintain the user object index for any communica­
tions object 110.

Directory partner servers are well-suited to be combined
with distribution partner servers and data exchange partner
servers because it is easy to create and maintain associations
in a single database 100 between directory category objects
110, the listed communications objects 110, elements 143
associated with the communications objects 110, and user
objects 110.

Since a communications object can represent anything
which a provider wishes to communicate, the advantages of

A third advantage to providers is that a distribution
service object 1310 and distribution partner server 1302 can

50 provide distribution control capabilities, i.e. the ability to
deliver customized communications objects 110 to consum­
ers. This process is fully explained in the distribution control
section above. In particular, a distribution service object
1310 can use a data exchange method 141 to transmit

55 distribution control methods 141 from a provider program
12 to the distribution partner server 1302. At a distribution
partner server 1302, these methods 141 are called by a
distribution service object 1310 or a communications object
110.

a communications object system directory service can be
transfered to any real-world function where directory ser­
vices are useful. Besides conventional white pages and
yellow pages, this includes catalogs, professional and aca- 60

demic directories, computer network directories, personal
address books, classified advertising services, and so on. The
specific directory service is not a limiting feature of the
invention.

A fourth advantage to providers is that a distribution
service object 1310 and distribution partner server 1302 can
automate archive control, i.e. the ability to retreive previous
updates to a communications object 110. This process is
fully described in the data archive control section above. In

Distribution Service Objects and Partner Servers
A distribution service object type (834, FIG. 17) can

automate the transmission, storage, and updating of com-

65 particular, a distribution service object 1310 can use a
version monitoring method 141 to call a version monitoring
method 141 at the distribution partner server 1302 to retrieve

US 6,757,710 B2
107

missing updates for all communications objects 110 associ­
ated with the distribution service object 1310.

Distribution services are integral to the performance of
almost any type of partner server 1302, so it can be desirable
to combine them with any of the service object types 5
discussed herein.
Encoding Service Objects and Partner Servers

An encoding service object type (834, FIG. 17) can
automate the encoding and decoding of any type of com­
munications object or communications transmission result-

10
ing from a communications object. Encoding service objects
are perhaps the purest example of a polymorphic service
object because in many forms of communications encoding,
the same algorithm or process used to perform the encoding
is used in reverse to perform the decoding. Because com­
munications partners by nature need to be able to efficiently 15

encode and decode each other's transmissions, shared access
to the same encoding service object 1310 is an ideal mecha­
nism for accomplishing this objective. Of particular attrac­
tiveness to providers is the ability described above for an
encoding service object 1310 to be retreived from a distri- 20

bution server 32 or encoding partner server 1302 automati­
cally using the encoding service object's link component
object 110. This gives providers a mechanism to automati­
cally share any desired encoding/decoding method with any
consumer with no effort whatsoever on the consumer's part. 25

This is especially useful for globally distributing a new
encoding/decoding standard such as a file format, graphics
format, or encryptions format across a wide area network
such as the Internet.

Encoding service objects 1310 can supply any of the 30

elements 143 or methods 141 required to perform encoding
or decoding operations in the programs 12, 22 or at a partner
server 1302. The application of encoding and decoding
methods in these programs is fully described in the encoding
control section above. In particular, referring to FIG. 21 35

illustrating the example of a word processing file transfer, an
encoding service object 1310 can be used to perform the
encoding steps 966, 967, and 969 and the decoding steps
971, 973, and 974. The appropriate encoding service objects
1310 for each step can be retrieved automatically by the 40

consumer program 22 using link component objects 110
included in the provider's communications object instance
35.

108
over data networks. These include Kerberos 5, developed at
MIT; SPX, developed by Digital Equipment Corporation;
Privacy Enhanced Mail (PEM), adopted by the Internet
Engineering Task Force (IETF); Pretty Good Privacy (PGP),
developed by Philip Zimmermann; and the CCITT X.509
protocols. Such protocols are fully described in the afore-
mentioned Applied Cryptography by Bruce Schneier.
Authentication service objects 1310 and authentication part­
ner servers 1302 can be employed to automate the operation
of many of these protocols. This is accomplished by storing
the appropriate encryption keys as elements 143 and the
appropriate encryption functions as methods 141 of the
authentication service object 1310 or authentication partner
server 1302.

An example is authentication using digital signatures
based on public/private keys. The first set of steps in this
process are shown in FIG. 32A. The process begins with the
provider obtaining a suitable authentication service object
(1310, FIG. 28) if one is not already present in the provider
program 12 (step 4101). An authentication service object
1310 contains one or more public keys from its correspond-
ing authentication partner server 1302, stored as elements
143. The authentication service object 1310 also contains the
encoding method or methods 141 necessary to carry out its
authentication functions, called authentication methods.
When the provider is ready to create an authentication
account, the provider executes one of the authentication
methods 141 to generate a public/private key pair (step
4102). The private key is stored as an element 143 of the
authentication service object 1310 in the provider database
11 (step 4103). Optionally, the data exchange method 141
may also encrypt this private key element 143 with a
password known only to the provider and not stored any­
where in the provider database 11 or on the local computer.
The authentication method 141 next creates an authentica­
tion order consisting of three elements: the public key
generated in step 1402, the provider's UID, and a unique
registration key known only to the provider and the authen­
tication partner server 1302 (step 4104). Other elements or
variables, such as a timestamp, may also be included. If the
authentication partner server 1302 is operated in conjunction
with a registration partner server 1302, the unique registra­
tion key may be the provider's password or other identifi­
cation key created at the time of registration. This is shown Encoding service objects 1310 can also supply encoding/

decoding methods to other software programs via an API to
the programs 12, 22 as described in the word processing
transfer example. Using remote procedure calls, such an API
could also be extended to methods stored on an encoding
partner server 1302.

45 as the Key attribute of the system ID instance (251, FIG.
6A). This unique registration key is stored in the provider
database 11 as an encrypted element 143 which can be
decrypted using a provider-supplied password.
Alternatively, it may not be stored at all locally but be

As explained in the encoding control section above,
encoding services in a communications object system can be
applied to any form of encoding. This includes human
languages, computer languages, object languages, character
sets, data file formats, compression formats, transmission
formats, and encryption formats. The specific encoding
service is not a limiting feature of the invention.
Authentication Service Objects and Partner Servers

An authentication service object type (840, FIG. 17) is a
specialized type of encoding service object used to authen­
ticate the identity of a communications object provider,
consumer, or another service object. Authentication service
objects are especially useful in a communications object
system because they can largely automate the process of
creating secure communications channels between providers
and consumers.

Many cryptographic protocols have been devised to pro­
vide authentication of user identity and message integrity

50 entered manually by the provider when required. The
authentication method 141 next encrypts the authentication
order using the authentication partner server's public key
(step 4105). The authentication method 141 then creates a
message object 110 containing the encypted authentication

55 order (step 4106). The authentication method 141 transmits
this message object 110 to the authentication partner server
1302 (step 4107). The authentication partner server 1302
receives the message object 110 and executes its receipt
method 141, which is either the same authentication method

60 or another authentication method residing on the authenti­
cation partner server 1302 (step 4108). This authentication
method 141 decrypts the authentication order using the
authentication partner server's private key (step 4109). Next
the authentication method 141 verifies the provider's unique

65 registration key and UID in the authentication partner server
database 1301 to validate the authentication order (step
4110). The authentication method 141 then creates a public

US 6,757,710 B2
109

key certificate by combining the provider's public key with
certain other identifying data, such as the provider's UID
(step 4111). The authentication method 141 digitally signs
the public key certificate using the authentication partner
server's private key (step 4112). The authentication method
141 then creates a message object 110 containing the public
key certificate (step 4113). Finally, the authentication
method 141 transmits the message object 110 back to the
authentication service object 1310 in the provider program
12 (step 4114). There the provider program 12 receives the
message object 110 and executes the original authentication
method 141 in the authentication service object 1310 (step
4115). This authentication method 141 first verifies the
signature of the public key certificate using the public key of
the authentication partner server 1302 (step 4116). Lastly the
authentication method 141 saves the public key certificate in
the provider database 11 as an element 143 (step 4117).

The provider is now ready to digitally sign communica­
tions object instances 35 using the provider's private key.
This process would take place as part of the communications
object instance generation and transmission routine, specifi­
cally as part of step 548, FIG. 12. The steps in this process
are illustrated in FIG. 32B. First, an authentication method
141 in the authentication service object 1310 uses a one-way
hash function to generate a hash of the communications
object markup file (step 4121). Next the authentication
method 141 uses the provider's private key to create a digital
signature of the hash (step 1462). Finally the digital signa­
ture of the markup file together with the provider's public
key certificate are appended to the markup file before the
communications object markup file is transmitted (step
1463).

The final portion of the authentication process takes place
when a communications object instance 35 bearing a digital
signature arrives at a consumer program 22. These steps
occur as part of the communications object receipt process,
specifically as part of steps 721 or 722, FIG. 15. The steps
in this process are illustrated in FIG. 32C. The process is
initiated when a receipt method 141 of the communications
object instance 35 calls an authentication method 141 in an
authentication service object 1310 to verify the digital
signature. First, the authentication method 141 uses the
authentication partner server's public key, stored as an
element 143 in the authentication service object 1310, to
verify the digital signature on the provider's public key
certificate (step 4131). Since the authentication partner serv­
er's private key was used to sign the certificate, only the
authentication partner server's public key can be used to
verify it. Once the public key certificate is authenticated, the
authentication method 141 generates a hash of the commu­
nications object markup file using the same one-way hash
algorigthm used at the provider program 12 (step 4132).
Finally, the authentication method uses the provider's public
key to verify the provider's digital signature of the hash (step
4133). If the results of step 4132 and 1633 match, the
communications object markup file is authenticated, and
processing proceeds.

Other data may be encrypted and signed with the authen­
tication partner server's or provider's digital signatures in
order to ensure a secure communications channel. Such data
may include time/date stamps, the provider's UID or group
IDs, random session keys, initialization vectors, incremental
counters, and so on. Other authentication protocols such as
Kerberos, SPX, or PEM may also be employed. The specific
authentication protocols used are not a limiting feature of the
invention. Multiple encryption or authentication protocols
may also be used by the same authentication service object

110
and authentication partner server or by different authentica­
tion service objects and authentication partner servers. The
use of additional protocols further increases the overall
security of the system because the compromise of any single

5 protocol does not compromise the security of the entire
system.

Authentication on a communications object system may
also take place without using centralized authentication
partner servers 1302. This technique, known as distributed

10 key management, is used by the public-domain encryption
program Pretty Good Privacy (PGP). It is based on the
concept of an "introducer". An introducer is a person who
signs the public key certificate of another person whose
identity they personally know and are willing to certify.

15 Introducers are easily employed on a communications object
system using authentication service objects 1310. The steps
in the process for using introducers are illustrated in FIG.
33A. First, a user requring a public key certificate
introduction, called the "originator", executes a data

20 exchange method 141 of an authentication service object
1310 to generate a public/private key pair (step 4151). Next,
the data exchange method 141 stores each key as an element
143 of the authentication service object 1310 (step 4152).
Then the data exchange method 141 creates a public key

25 certificate consisting of the public key element 143 plus such
additional elements 143 as will allow any potential intro­
ducer to certify the identify of the orginator (step 4153).
These first three steps can be omitted if the originator only
wishes to add introducers for an existing public key certifi-

30 cate already stored as an element 143 of the authentication
service object 1310. Now, the data exchange method 141
generates an input form prompting the originator for the
recipients 120 whom the originator would like to make
introduction requests (step 4154). The checkboxes on this

35 input form can represent each of the recipients 120 in the
originator's consumer database 21, or the originator can
specify the e-mail addresses of still other potential introduc­
ers. The input form also allows the originator to enter the
attributes of a message element (211, FIG. 4) to be sent to

40 these recipients. When the input form is submitted, the data
exchange method 141 creates a message object 110 consist­
ing of the public key certificate, the message element, and
any other relevant data, such as a timestamp (step 4155). The
data exchange method 141 transmits this to all recipients

45 120 selected by the originator (step 4156). When received by
the recipient's consumer program 22, the message object's
receipt method 141 executes the recipient's selected notifi­
cation method or methods 141 for introduction requests
(step 4157). If distributed key management was imple-

50 mented on a communications object system, message
objects containing introduction requests can use a standard
notification element type definition 144. This type definition
144 allows consumers to assign notification methods 141
globally for all introduction requests, or designate specific

55 notification methods for introduction requests from indi­
vidual recipients 120. When the recipient responds to the
notification message, a data exchange method 141 in the
authentication service object 1310 is executed (step 4158).
This data exchange method 141 generates a input form for

60 confirming the introduction request from the originator (step
4159). This input form may include any such data as may be
relevant to an introduction request, including the elements
143 of the public key certificate that fully identify the
originator. The recipient may also wish to verify the public

65 key with the originator via another secure channel, such as
via telephone. When the recipient is satisifed that the request
is genuine, the recipient submits the input form (step 4160).

US 6,757,710 B2
111

The data exchange method 141 calls an authentication
method 141 in the authentication service object 1310 which
digitially signs the originator's public key certificate using
the recipient's private key (step 4161). If the recipient's
private key is stored as an encrypted element 143 of the
authentication service object 1310, the recipient may need to
enter password or passphrase for decryption. Then the data
exchange method 141 creates a message object 110 contain­
ing the signed public key certificate (step 4162). The data
exchange method 141 transmits this message object 110 to
the originating authentication service object 1310 at the
originating consumer program 22 (step 4163). When the
message object 110 is received, the consumer program 22
executes the originating data exchange method 141 (step
4164). This data exchange method 141 stores the signed
public key certificate as an element 143 of the authentication
service object 1310 (step 4165). Finally, the data exchange
method 141 executes any notification methods 141 assigned
by the originator to the acknowledgment of introduction
requests (step 4166).

Once a set of signed public key certificates has been
received by the originator, the originator can send a public
key acceptance request to any other communications object
system user. The steps in the process for public key certifi­
cate acceptance requests are illustrated in FIG. 33B. The
originator initiates the request by executing a data exchange
method 141 of an authentication service object 1310 (step
4181). This data exchange method 141 generates an input
form for the acceptance request (step 4182). This input form
can include the attributes of a message element (211, FIG. 4)
allowing the originator to compose the electronic equivalent
of an introductory letter. The input form can also allow the
originator to choose the introducers whose public key cer­
tificate signatures the originator wishes to present to the
recipient. When the input form is submitted, the data
exchange method 141 creates a message object 110 consist­
ing of the selected public key certificate signatures, the
message element, and any other relevant data, such as a
timestamp (step 4183). Note that the first two steps above
may be omitted if the acceptance request comes directly
from another communications object method 141. In this
case the recipient of the acceptance request will be specified

112
notification message, a data exchange method 141 in the
authentication service object 1310 is executed (step 4190).
This data exchange method 141 generates a input form for
confirming the acceptance request from the originator (step

5 4191). This input form can include the results of the com­
parison test in step 4186. It can also include input fields for
a message back to the originator, messages to the
introducers, or other automated options. For purposes of this
illustration, we will assume the recipient confirms the accep-

10 tance request when the input form is submitted (step 4192).
(If the recipient denies the request, the following steps could
produce a negative acknowledgment message to the
originator.) The data exchange method 141 then saves the
originator's public key certificate as an element 143 of the

15 authentication service object 1310 (step 4193). This now
becomes another of the recipients trusted public key certifi­
cates. The data exchange method 141 next creates a message
object 110 containing an acknowledgment of the acceptance
request (step 4194). Optionally, this message object 110

20 could also include a copy of the originator's public key
certificate signed by the recipient using the recipient's
private key. The data exchange method 141 transmits this
message object 110 to the originating authentication service
object 1310 at the originating consumer program 22 (step

25 4195). When the message object 110 is received, the con­
sumer program 22 executes the originating data exchange
method 141 (step 4196). This data exchange method 141
stores the public key certificate acceptance acknowledgment
as an element 143 of the authentication service object 1310

30 (step 4197). Such acceptance acknowledgments can now be
checked automatically by data exchange methods 141 in the
consumer program 22. Alternatively, if the acceptance
acknowledgment included a copy of the originator's public
key certificate signed by the recipient, this public key

35 certificate could be added to the originator's set of intro­
ducers. Finally the data exchange method 141 executes any
notification methods 141 assigned by the originator to the
acknowledgment of acceptance requests (step 4198).

These public key certificate introduction and acceptance
40 processes can be further improved by the use of "trust

levels". A trust level is one or more attributes of a public key
certificate that indicate the level of trust the introducer
extends to the originator. For example, a trust level attribute in the method call, the set of introducer signatures can be

selected algorithmically, and the message object in step 4183
can be created automatically. Next the message object 110 is 45

transmitted to the recipient 120 (step 4184). When received

could accept an integer value range from 1 to 10, where 1
equals the lowest level of trust and 10 the highest level. The
trust level is part of the public key certificate and is signed

by the recipient's consumer program 22, the message
object's receipt method 141 executes a data exchange
method 141 of an authentication service object 1310 (step
4185). This data exchange method 141 compares the UID of 50

the introducer public key certificate signatures in the mes­
sage object 110 with the UID of the trusted public key
certificates stored in the recipient's consumer database 21
(step 4186). These trusted public key certificates are stored
as elements 143 of the authentication service object 1310, 55

and represent introducers whom the recipient trusts. For any
matching UIDs, the data exchange method 141 then calls an
authentication method 141 to verify the introducer signature
using the introducer's public key (step 4187). The data
exchange method 141 then checks an acceptance request 60

preference element 147 in the recipient's consumer database
21 to determine if notification is desired (step 4188). For
example, notification may not be desired if the signatures of
3 or more introducers are verified. If notification is desired,
the data exchange method 141 executes the assigned noti- 65

fication methods 141 to generate a notification message for
the recipient (step 4189). When the recipient responds to the

by the introducer so it cannot be modified by the originator.
The trust level value can be entered by the introducer in step
4159 of FIG. 33A. Trust level values play the same role for
public key certificates as threshold values play for notifica­
tion elements, as explained in the notification control sec-
tion. This means trust levels permit recipients to further
automate the processing of acceptance requests and other
operations pertaining to secure communications. This pro­
cessing would take place in step 4186 of FIG. 33B. By
implementing a trust rule 140, the recipient can determine
what trust characteristics would qualify to generate an
acceptance request automatically by the authentication ser­
vice object 1310 without prior notification to the recipient.
For example, a trust rule 140 could dictate that if an
acceptance request had two or more verified introducers
with trust levels of 8 or greater, an positive acknowledgment
would be generated automatically. Trust rules 140 could also
govern the autoexchange of signed public key certificates.
For example, a trust rule could dictate that if an acceptance
request had three or more verified introducers with trust
levels of 9 or greater, the authentication service object 1310

US 6,757,710 B2
113

would automatically sign and return a copy of the origina­
tor's public key certificate. Trust levels are a powerful
technique for enabling efficient and effective distributed key
management. Trust levels can also be used with other
communications object system services such as feedback
services, as described further below.

Another way authentication service objects 1310 and
authentication partner servers 1302 increase the security of
a communications object system is by automating key
exchange. Automated key exchange makes it feasible to use
larger keys, to change keys frequently, to autoexchange keys
among communications partners, to share keys among com­
munications groups, and to use specific keys chosen from
among larger key sets. In particular, authentication service
objects 1310 can use update control to change they public
keys they obtain from their authentication partner server as
frequently as is deemed necessary to maintain adequate
security. Each update to an authentication service object
1310 can be verified using a digital signature created with
the existing public/private key as described above. Only
after the authentication service object 1310 has verified the
signature of its update will it inherit its new public key. This
capability can be further enhanced by the use of acknowl­
edgment control. Each authentication service object update
can include a receipt method 141 that generates a acknowl­
edgment message object 110 back to the authentication
partner server 1302. This acknowledgment message object
can include a digital signature generated by the new public
key. This digital signature allows the authentication partner
server 1302 to verify the authenticity of the acknowledg­
ment as described above. If the acknowledgment is not
received on a timely basis or is not authentic, rules 140
implemented at the authentication partner server 1302 can
trigger notification of the authentication partner server pro­
vider. This constant "challenge" technique can ensure that
authentication service objects 1310 are operating correctly
throughout a communications object system.

A final way authentication service objects 1310 can help
ensure the security of a communications object system is
security rules 140. Security rules can monitor all aspects of
key handling and signature verification. Security rules can

114
server 1302. Since communications objects can include their
own data exchange methods as described in the data
exchange control section above, the primary purpose of data
exchange service objects 1310 is to consolidate the data

5 exchange methods required by a group of communications
objects. This may be for a single data exchange specialized
service needed shared by a small group of communications
objects from a single provider, or a common set of data
exchange services needed shared by a large set of commu-

10 nications objects from many providers.
An example of the first case is a product registration

service object 1310. A software company may offer a large
number of software products, each with its own represen­
tative communications object 110. If the software company

15 wanted all these communications objects to share the same
product registration services for new buyers of the compa­
ny's software products, the company could create a product
registration service object 1310. Any of the company's
product communications objects 110 could then call the

20 services of the product registration service object 1310 to
carry out a new user product registration via a product
registration partner server 1302. Ideally, such a shared
service object would also offer other common services to the
individual product objects, such as distribution/update

25 control, directory services, and so on.
For a communications object system deployed on a wide

area network, such as the Internet, there are a number of
common data exchange services desired by many providers.
Besides the specialized services discussed above, examples

30 include file transfer, fax transfer, news distribution, discus­
sion databases, knowledgebases, and classified advertising
services. In most cases polymorphic service objects 1310 are
desirable for data exchange. This is because the same data
exchange service objects 1310 that allow communications

35 object system users to upload and maintain data at a data
exchange partner server 1302 can allow other communica­
tions object system users to automatically monitor and/or
download that data as desired. A simple example is an FTP
service object 1310 and an FTP partner server 1302 offered

40 by a provider of network file backup services. The FTP
service object 1310 would allow users to select a local file
or files which the FTP service object 1310 would monitor
and automatically transfer to the FTP partner server 1302 at
periodic intervals or when the files had changed. The same

be particularly useful for enforcing a provider's control over
forwarding or chaining of the provider's communications
objects 110. When digital signatures do not match, these
rules can automatically trigger notification of the user of the
programs 12, 22 via any notification method 141 the user
desires. These rules can also generate message objects 110
capable of notifying the communications object provider,
the authentication service object provider, and the commu­
nications object system vendor. Since authentication service 50

objects play such a central role in the security of a commu­
nications object system, they can be subject to special rules
140. For example, a rule may require one or more authen­
tication service objects 1310 to be included with the pro­
grams 12, 22 at all times, or the programs will not function.
Alternatively, rules 140 may govern the acceptance of
authentication service objects or object updates, for example
requiring explicit approval from the user. Another approach

45 FTP service object 1310 could be used to restore backed up
files from the FTP partner server 1302 to the user's local
system. The FTP service object 1310 could combine these
backup services with payment and reporting services. Pay-
ment and reporting services are discussed below.

A more advanced example is classified advertising ser-
vices. A classified ad service object 1310 combines the
functions of a data exchange service object 1310 and a
directory service object 1310. (It could also incorporate the
functions of an authentication service object 1310, payment

55 service object 1310, reporting service object 1310, or other
such service object functions as may be applicable.) A
classified ad partner server 1302 represents the categories of
the classified advertising system as category objects in the
same manner as a directory partner server 1302 (FIG. 29A). is the use of a master authentication service object 1310 to

authenticate all other authentication service objects 1310.
This master authentication service object may be a built-in
system object. It may also use a large public key or keys that
are publicly verifiable via other trusted communications
networks such as newspapers or telephones.
Data Exchange Service Objects and Partner Servers

A data exchange service object type (841, FIG. 17) can
automate the exchange of data with a data exchange partner

60 Each of these category objects 110 includes one or more
elements 143, methods 141, and rules 140 that allows a
classified advertiser to define the attributes and values of an
ad listing in this category.

The steps involved in the process of a seller using a
65 classified ad service object 1310 to create an ad listing in a

classified ad partner server database 1301 are shown in FIG.
34A. (These closely parallel the steps involved in creating a

US 6,757,710 B2
115

listing on a directory partner server 1302 shown in FIG. 30.)
The process begins with the seller using his/her browser 50
to navigate the classified ad partner server 1302. The seller
chooses the hyperlink representing the category object 110
in which the provider is interested in making an ad listing
(step 4201). The receipt method for the category object 110
first checks to see if its parent classified ad service object
1310 is present in the provider database 11 (step 4202). If
not, the category object uses its link component object 110
to download the classified ad service object 1310 from the
directory partner server 1302 (step 4203). The receipt
method 141 then executes a data exchange method 141 in
the classified ad service object 1310 that generates a listing
input form (step 4204). This input form consists of the
category attribute and value choices obtained from the
category object 110. For example, a category object 110
such as "Minivan" might generate an input form for
attributes including make, model, year, color, mileage,
condition, and so on. The appropriate value choices for each
of these attributes would be displayed as drop-down lists,
radio buttons, and so on. When the seller submits the
completed input form, the data exchange method 141 creates
a message object 110 containing this input data (step 4205).
This message object 110 also contains such other commu­
nications object components as are necessary to let prospec­
tive buyers communicate with the seller. The data exchange
method 141 then transmits this message object 110 to the
classified ad partner server 1302 (step 4206). When received
by the classified ad partner server 1302, the message object
110 triggers a corresponding data exchange method 141
(step 4207). This data exchange method 141 first creates a
communications object 110 representing the seller in the
classified ad partner server database 1301 (step 4208). Next
the data exchange method 141 creates a communications
object 110 of the component object type (812, FIG. 17)
containing the ad listing element or elements 143 (step
4209). Then the data exchange method 141 creates member
associations 110A between the seller's composite commu­
nications object 110 and the category composite communi­
cations object 110 (step 4210). In this manner the seller can
submit additional ad listings without needing to duplicate
the data in the communications object 110 representing the
seller. When this process is completed, the data exchange
method 141 creates a message object 110 containing an
appropriate acknowledgment message (step 4211). The data
exchange method 141 transmits this message object 110
back to the classified ad service object 1310 at the provider
program 12 (step 4212). When received by the classified ad
service object 1310, the message object 110 executes its
receipt method 141 (step 4213). The receipt method 141
executes the seller's desired notification method 141 to
complete the ad listing process (step 4214). This process
could also incorporate authentication services as described
above or payment and reporting services as described below.

Any interested buyer can use the same classified ad
service object 1310 and category object 110 to specify and
monitor ad listings that meet the buyer's interests. The steps
involved in this process are shown in FIG. 34B. (This
process is similar to the process of monitoring category
objects 110 on a directory partner server 1302 as shown in
FIG. 31B.) As with the ad listing process, the monitoring
process begins with the buyer using his/her browser 50 to
navigate the classified ad partner server 1302. The buyer
chooses the hyperlink representing the category object 110
in which the buyer is interested in making a purchase (step
4231). The receipt method for the category object 110 first
checks to see if its parent classified ad service object 1310

116
is present in the consumer database 11 (step 4232). If not, the
category object uses its link component object 110 to
download the classified ad service object 1310 from the
directory partner server 1302 (step 4233). The receipt

5 method 141 then executes a data exchange method 141 in
the classified ad service object 1310 that generates a moni­
toring input form (step 4234). The monitoring input form is
largely identical to the listing input form described above. It
draws some of its attributes and values from the category

10 object 110. The principle difference is that it allows the
buyer to specify value ranges or other query formulas for
category attributes obtained from the category object 110. To
use the automobile example above, a "Minivan" category
object might use drop-down list of integer values for the

15 "Not older than" year attribute; use checkboxes for multiple
color choices; accept an integer value for "maximum mile­
age"; use radio buttons for acceptible condition attributes;
and so on. When the form is submitted, the data exchange
method 141 first saves the input form data as a query

20 element 143 (step 4235). Secondly it creates one or more
scheduled event instances 117 in the consumer database 11
(step 4236). These scheduled event instances 117 can begin
immediately and repeat at intervals or according to rules 140
specified by the consumer on the input form. They can also

25 be subject to monitoring rules 140 imposed by the classified
ad service provider in the category object 110 or classified
ad service object 1310. When activated, these scheduled
event instances execute a data exchange method 141 in the
classified ad service object 1310 (step 4237). The data

30 exchange method 141 then creates a message object 110
containing the ad query (step 4238). The data exchange
method 141 transmits this message object 110 to the clas­
sified ad partner server 1302 (step 4239). When received by
the classified ad partner server 1302, the message object 110

35 triggers a corresponding data exchange method 141 (step
4240). This data exchange method 141 uses the ad query to
to query the classified ad partner server database 1301 for
any ad listings satisfying the query (step 4241). The data
exchange method 141 then returns the result set to the

40 consumer program 12 (step 4242). If there are no ad listings
that satisfy the query, the result set is a message object 110
reporting this. If there are ad listings that satify the query, the
result set are the communications objects 110 representing
the seller together with the component object 110 represent-

45 ing the seller's ad listing. This is advantageous because these
communications objects 110 enable the buyer and seller to
immediately establish their own communications relation­
ship to consummate the sale. After the consumer program 22
receives the result set, it executes any receipt methods

50 pertaining to the result set objects (step 4243). This includes
the notification test (step 4244). If the there were no match­
ing ads, the buyer may not desire notification. If there are
matching ads, the buyer may desire different notification
based upon the attributes values of the matching ads. For

55 example, if a minivan meeting the buyer's query was listed
at a price below a certain value, the buyer might desire to be
paged immediately, whereas at a higher price the buyer may
only wish to receive notification in the buyer's notification
report (630, FIG. 13). The provider program 12 then

60 executes any desired notification methods (step 4245).
Again, this process could also incorporate authentication,
payment, reporting, or other service object services.

The above classified ad monitoring process operates by
storing and executing the classified ad query at the consumer

65 program 22. In the same fashion that it can be more efficient
to monitor a high-volume directory partner server 1302
using a user object index, it can be more efficient to monitor

US 6,757,710 B2
117 118

news services, document retreival services,
knowledgebases, discussion databases, and so on. The spe­
cific type of database, database server, or data exchange
service is not a limiting feature of the invention. The only

5 differences are the organization and format of the data stored
on the server database and the queries and rules used to
automate information interchange. These generalized steps
are summarized in FIG. 36. The first step is to use composite
and component communications object types (811, 812,

a high-volume classified ad partner server 1302 using a user
object index that includes the buyer's stored queries. This
also allows query result sets to be transmitted to to buyers
via the push technique, as opposed to the pull technique
illustrated above. The steps for implementing monitoring
with a user object index with stored queries at a partner
server are shown in FIG. 35. The first step is identical to step
4235 of FIG. 34B, where the data exchange method 141 of
the classified ad service object 1310 saves the input form
data as a query element or elements 143 (step 4261). The
data exchange method 141 then creates a message object 110
containing the query element or elements 143 (step 4262).
This message object 110 also contains such other commu­
nications object components as are necessary to create a user
object 110 representing the buyer. This includes a data 15

exchange method 141 for processing result sets produced at
the classified ad partner server 1302. The data exchange
method 141 of the classified ad service object 1310 next
transmits this message object 110 to the classified ad partner
server 1302 (step 4263). When received by the classified ad 20

partner server 1302, the message object 110 triggers a
corresponding data exchange method 141 (step 4264). This
data exchange method 141 first creates a user object 110
representing the buyer in the classified ad partner server
database 1301 (step 4265). Next the data exchange method 25

141 creates a communications object 110 of the component
object type (812, FIG. 17) containing the ad query element

10 FIG. 17) to represent organizational or topic structure in the
data exchange partner server database 1301 (step 4291).
This creates a metadata structure for the data stored in the
database. Category objects discussed above and shown in

or elements 143 (step 4266). This component object 110 is
given a member association 110A with the buyer's compos-
ite communications object 110 (step 4267). In this manner 30

the buyer can submit additional ad queries without needing
to duplicate the user object 110 representing the buyer. User
objects 110 and ad query component objects 110 can also be
indexed for performance optimization. Next the data
exchange method 141 uses the query elements 143 of the ad 35

query component object 110 to create one or more scheduled
event instances 117 in the classified ad partner server
database 1301 (step 4268). As with stored queries in the
consumer program 22, these scheduled event instances 117
can begin immediately and repeat at intervals or according 40

to rules 140 specified by the consumer or the classified ad
service provider. When activated, these scheduled event
instances execute a data exchange method 141 on the
classified ad partner server 1302 (step 4269). This data
exchange method 141 then executes the ad query (step 45

4270). When the query result set is returned, the data
exchange method 141 calls another data exchange method
141 in the buyer user object 110 (step 4271). The buyer's
data exchange method 141 processes the result set to deter­
mine if notification is desired by the buyer (step 4272). If so, 50

the buyer's data exchange method 141 calls a data exchange
method 141 in the classified ad partner server 1302 (step
4273). This data exchange method 141 creates a message
object 110 containing the result set (step 4274) and transmits
it to the consumer program 22 (step 4275). There the 55

consumer program 22 receives the message object 110 and
executes its receipt method 141 (step 4276). The consumer
program 22 then executes any notification methods 141
specified by the buyer to control notification about classifed

FIG. 29A are one example of such a metadata structure. A
second example is shown in FIG. 29B. This illustrates how
composite and component communications objects can be
organized as the main topic and response "threads" in a
message database, discussion database, or knowledgebase.
The main topic is a composite communications object type
1451. Each response to this main topic is shown as a
first-level response thread object 1461, 1462. Each response
to a first-level response is shown as a second-level response
thread object 1471, 1472, 1473, 1474. Just as software
object relationships can be used generally to model many
real-world relationships, the association and aggregation
relationships (shown in FIGS. 3 and 4) between composite
and component communications objects can be used gener­
ally to model many metadata relationships. The first advan­
tage to using communications objects 110 to represent the
metadata structure of a partner server 1302 is that the
structure is dynamic. Communications objects 110 can be
added, deleted, and edited easily. Secondly, when these
changes take place to the metadata structure, every provider
and consumer affected by the change is updated and notified
automatically.

Referring back to FIG. 36, the second step is to use
communications object type definitions 144 and elements
143 to model the data and metadata stored within the larger
metadata structures on the partner server (step 4292). The
use of type definitions 144 and elements 143 to model data
and metadata is explained in multiple sections above. A
specific example is the use of notification elements and
message elements (201, 211, FIG. 4) as discussed in the
notification control section above. Again, the use of software
objects allows such modelling to be applied broadly to many
real-world database needs. The third step is to use data
exchange service objects 1310 and message objects 110 to
automate data exchange between the programs 12, 22 and
the data exchange partner server 1302 (step 4293). As
explained throughout this section and the data exchange
control section, a combination of data exchange methods
141, data exchange rules 140, and data exchange elements
143 can be used to automate many kinds of data uploading
and updating for providers and data monitoring, querying,
and downloading for consumers. The fourth step is using
user object indexes representing the providers and consum-
ers interacting with the data exchange partner server 1302
whenever transferring processing tasks from the programs
12, 22 to the partner server will increase data exchange or

ad queries (step 4277). 60 network efficiency (step 4294). This procedure is explained
in the service object introduction section, the directory
service object section, the distribution service object section,
and illustrated in detail in this section and FIG. 34B. In

The data exchange procedures illustrated here for sellers
and buyers using a classified service object 1310 to automate
interchange with a classified advertising database 1301
stored on a classified ad partner server 1302 can be gener­
alized to any type of data that can be stored in a server 65

database mutually accessible to providers and consumers on
a communications network 3. This includes search services,

particular, it allows data updates or query result sets to be
transmitted via the push technique when it is more efficient
than the pull technique. The fifth step is to use data exchange
methods 141 and notification control at the programs 12, 22

US 6,757,710 B2
119

to process message objects and query result sets (step 4295).
This is shown in the final steps of FIGS. 34A, 34B, and 35.
This allows providers and consumers to realize the maxi­
mize benefit of data exchange automation by not being
notified of anything but the most highly relevant 5

information, and then having complete control over the
notification method. The sixth step is returning communi­
cations objects 110 in query result sets whenever it would
increase the efficiency of data exchange or communications
for the user (step 4296). This is illustrated in step 4242 of 10

FIG. 34B, where the seller's communications object 110 is
returned together with the seller's ad listing. This technique
is particularly powerful when the communications object
110 returned is a category object 110 or a service object 1310
or granting the user access to a new set of communications 15

objects 110 or partner servers 1302. The final step is using
link control in communications objects 110 and category
objects 110 to simplify and automate access to service
objects 1302 and other category objects 110. This is dis­
cussed in the service object introduction section and the 20

directory service object section. This technique spreads
linking intelligence with every communications object 110

120
and so on, they will already be present in the provider
database 11 and can be automatically accessed by the
payment service object 1310. The data exchange method
141 then generates an account data input form (step 4406).
The purpose of this form, as with most data exchange input
forms, is threefold. First, it allows the merchant to confirm
any data exchange rules 140 the merchant may have applied
to the transfer of the merchant's sensitive financial data,
such as bank account numbers or credit references. Second,
it allows the merchant to confirm the accuracy of any other
data to be transferred, such as contact data. Third, it allows
the merchant to enter any specific new data required by the
payment service provider. As explained in the data exchange
control section, such new data can also be saved as elements
in the provider database 11 for future use. When the mer­
chant submits the completed input form, the data exchange
method 141 creates a account order (step 4407). The pay­
ment service object 1310 then calls an authentication
method 141 in an authentication service object 1310 to
encrypt the account order using the payment partner server's
public key, stored in the payment service object 1310 as an
element 143 (step 4408). The authentication method 141
then digitally signs the account order using the merchant's
private key (step 4409). The merchant's private key may be

in a communications object system, making it as easy as
possible for the users to gain access to the services of any
type of partner server 1302.
Payment Service Objects and Partner Servers

25 stored in the authentication service object 1310 as an
encrypted element 143, in which case the authentication
method 141 may first require a password from the merchant
for decryption. Alternatively the merchant's private key may

A payment service object type (842, FIG. 17) is a spe­
cialized data exchange service object that operates in con­
junction with payment partner servers 1302 to provide
secure financial transaction services to providers and con- 30

sumers. A payment service object 1310 may combine the
functions of a data exchange service object 1310 with those

be entered manually in some other way. The data exchange
method 141 now creates a message object 110 containing the
secure account order and the merchant's public key
certificate, stored as an element 143 in the authentication
service object 1310 (step 4410). Optionally this message
object 110 may also contain such data as is necessary to
create a user object 110 representing the merchant at the
payment partner server 1302. The data exchange method
141 transmits this message object 110 to the payment partner
server 1302 (step 4411). The payment partner server 1302
receives the message object 110 and executes a data

of an authentication service object 1310, or it may call the
services of a separate authentication service object 1310.
(The examples in this section will use the latter technique.) 35

Payment service objects allow such common payment ser­
vices as credit card transactions, debit card transactions,
electronic funds transfers, and cybercash transactions to take
place easily, automatically, and securely in a communica­
tions object system. 40 exchange receipt method 141 (step 4412). This data

exchange method 141 calls the same authentication service
object 1310 to decrypt the secure account order using the
payment partner server's private key, stored as an element

The following explains the basic processes involved with
the use of payment service objects 1310 and payment
partner servers 1302. These are broken into several sets as
shown in FIGS. 37, 38, and 39. The steps in the process of
a merchant creating a payment account are illustrated in 45

FIG. 37. The process begins with the merchant obtaining a
copy of the payment service object 1310 if one is not already
present in the provider database 11 (step 4401). When the
merchant is ready to use the payment service object 1310 to
set up a payment account, the merchant activates a data 50

exchange method 141 in the payment service object 1310
(step 4402). This data exchange method 141 first generates
a public/private key pair, either itself or by calling the
services of an authentication service object 1310 (step
4403). Alternatively the data exchange method 141 can use 55

an existing public/private key pair available from the
authentication service object 1310. The private key is stored
as an element 143 of the payment service object 1310 in the
provider database 11 (step 4404). As with an authentication
private key, this key may also be encrypted with a password 60

known only to the user and not stored locally. The data
exchange method 141 then queries the provider database 11
for the elements 143 necessary to create a payment account
(step 4405). This process is explained in the data exchange
control section. Because many of these elements 143 are 65

commonly required items of data, such as the provider's
name, contact data, financial account data, credit references,

143 in the partner server database 1301 (step 4413). Next the
authentication service object 1310 verifies the merchant's
public key certificate signature using the authentication
partner server's public key, stored in the authentication
service object 1310 as an element 143 (step 4414). Finally
the authentication service object 1310 verifies the mer­
chant's signature on the account order using the merchant's
public key (step 4415). Now the data exchange method 141
on the payment partner server 1302 can execute whatever
steps are necessary to use the account order to create a
merchant account (step 4416). In a preferred embodiment,
the merchant account would be represented by a user object
110 in the payment partner server database 1301. When
finished, the data exchange method 141 creates a merchant
account certificate consisting of the merchant's account
number, the merchant's provider UID, and whatever other
data the payment service provider wishes to include in the
certificate, such as a timestamp, account type identifiers,
payment partner server identifiers, and so on (step 4417).
(The merchant account certificate may also be encrypted if
desired using a single key; decryption will only be necessary
at the payment partner server.) The data exchange method
141 then calls an authentication method 141 in the authen-
tication service object 1310 to digitally sign the merchant

US 6,757,710 B2
121 122

payment partner server's public key, stored in the payment
service object as an element 143 (step 4458). The authen­
tication method 141 also digitally signs the purchase order
using the customer account certificate private key (step

account certificate using the payment partner server's pri­
vate key (step 4418). Next the data exchange method 141
creates a message object 110 containing the signed merchant
account certificate (step 4419). The data exchange method
141 transmits this message object 110 back to the payment
service object 1310 in the merchant's provider program 12
(step 4420). There the provider program 12 receives the
message object 110 and executes the original data exchange
method 141 of the payment service object 1310 (step 4421).
This data exchange method 141 first calls an authentication
method 141 in the authentication service object 1310 to
verify the signature of the merchant account certificate using
the payment partner server's public key (step 4422). Then
the data exchange method 141 stores the merchant account
certificate in the provider database 11 as an element 143 of
the payment service object 1310 (step 4423). Lastly the data
exchange method 141 calls any notification methods desired

5 4459). As described above, this key may be stored as an
encrypted element 141 in the payment service object 1310
and require a password from the customer to decrypt.
Alternatively the customer may supply the key manually in
some other way. Next the data exchange method 141 creates

10 a message object 110 containing the secure purchase order
and the customer account certificate (step 4460). The data
exchange method 141 transmits this message object 110 to
the payment partner server 1302 (step 4461). The payment
partner server 1302 receives the message object 110 and

by the merchant for notification of the merchant account
certificate receipt (step 4424). This completes the process of
setting up a secure payment account for the merchant.

15 executes its receipt method 141, which is either the same
data exchange method 141 or another data exchange method
141 residing on the payment partner server 1302 (step 4462).
This data exchange method 141 calls an authentication
method 141 in the authentication service object 1310 to

To begin using this account with customers, the merchant
includes the merchant account certificate and a link compo­
nent object 110 from the payment service object 1310 in any
communications object 110 where the merchant wishes to
use payment services. The payment service object 1310 can
then be called by any data exchange method 141 in the
merchant's communications object 110. The merchant can
indicate the services of such payment service objects 1310

20 verify the customer's signature on the secure purchase order
using the customer account certificate public key (step
4463). Next the authentication method 141 decrypts the
purchase order using the payment partner server's private
key (step 4464). Finally the authentication method 141

25 verifies the merchant's signature on the merchant account
certificate using the payment partner server's private key
(step 4465). Now a data exchange method 141 on the
payment partner server 1302 can carry out the purchase
order transaction using the verified purchase order data, the by using the names or logos of the appropriate credit cards,

debit cards, and so on in a product ordering input form, for
example. When a customer chooses one of these options and
submits a data exchange input form, the payment service
object 1310 is used automatically. The steps in this process
are shown in FIG. 38. First the data exchange method 141
creates a purchase order consisting of the data from the input
form together with the merchant account certificate (step
4441). Next the data exchange method 141 queries to see if
the payment service object 1310 is present in the customer's
consumer database 21 (step 4442). If not, the data exchange
method 141 uses the payment service object's link compo­
nent object 110 to download the payment service object
1310 (step 4443). The payment service object's receipt
method 141 will then initiate the process to create a cus­
tomer account (step 4444). This process is identical to the
merchant payment account creation process shown in FIG. 45

37, except the final result is that the customer is issued a
customer account certificate stored in the consumer database

30 verfied customer account certificate, and the verified mer­
chant account certificate (step 4466). This may involve any
sequence of steps between the payment partner server 1302
and other payment servers or data processing systems, such
as the consumer's bank or credit clearinghouse, a credit card

35 processor, a cybercash server, and so on. When the trans­
action has been completed, the data exchange method 141
creates a unique receipt number stored as an element 143 in
the payment partner server database 1301 (step 4467). This
receipt number can now be used to verify the transaction

40 with both the customer and the merchant.

21 as an element 143 of the payment service object 1310. If
the payment service object 1310 was present in the con­
sumer database 21 in step 4441, the data exchange method 50

141 calls a version monitoring method 141 to see if the
version is current (step 4445). This version monitoring
method 141 compares the version value of the payment
service object 1310 with the version value stored in the link
component object 110 of the merchant's communications 55

object 110. Version monitoring is explained in the data
exchange control section above. If the version is not current,
the data exchange method 141 executes the update method
141 of the payment service object 1310 to download the
current version (step 4456). Once the current version of the 60

payment service object 1310 is present in the consumer
database 21, the data exchange method 141 in the mer­
chant's communications object 110 calls a data exchange
method 141 in the payment service object 1310 to continue
the transaction (step 4457). This data exchange method 141 65

calls an authentication method 141 in an authentication
service object 1310 to encrypt the purchase order using the

From this point the receipt acknowledgment process can
take several paths. The payment partner server 1302 can
return receipt acknowledgments to both the consumer pro­
gram 22 and the provider program 12. Each of these
programs can in turn send receipt acknowledgments to the
other to complete full three-way acknowledgment. Alterna­
tively the payment partner server 1302 can send a receipt
acknowledgment to the customer's consumer program 22,
which can in turn send a receipt acknowledgment to the
merchant's provider program 12, or vice versa. In all cases
the steps in sending secure receipt acknowledgment mes­
sages are similar. The steps in the process of the payment
partner server 1302 sending a receipt acknowledgment mes­
sage to the customer's consumer program 22 are shown in
FIG. 39. First a data exchange method 141 on the payment
partner server 1302 creates a purchase receipt (step 4471).
The purchase receipt includes the unique receipt number
plus any other relevant data, such as timestamp, the payment
partner server UID, bank certification numbers, and so on.
Next the data exchange method 141 calls an authentication
method 141 in an authentication service object 1310 to
encrypt the purchase receipt using the customer account
certificate public key (step 4472). This step is optional if the
purchase receipt does not contain any sensitive information.
The authentication method 141 then signs the purchase
receipt with the payment partner server's private key (step
4473). The data exchange method 141 creates a message

US 6,757,710 B2
123

object 110 containing the purchase receipt (step 4474). The
data exchange method 141 transmits this message object 110
to the payment service object 1310 at the consumer program
22 (step 4475). There the consumer program 12 receives the
message object 110 and executes the original data exchange 5
method 141 of the payment service object 1310 (step 4476).
This data exchange method 141 first calls an authentication
method 141 in the authentication service object 1310 to
verify the signature on the purchase receipt using the pay­
ment partner server's public key (step 4477). If the purchase

10
receipt has been encrypted, the authentication method 141
decrypts it using the customer account certificate private key
(step 4478). Then the data exchange method 141 stores the
purchase receipt in the consumer database 21 as an element
143 of the payment service object 1310 (step 4479). This
makes the purchase receipt available to the payment service 15

object 1310 and the merchant communications object 110
for use in any further transactions or correspondence involv­
ing this transaction, such as a return or exchange. Finally the
data exchange method 141 executes any notification meth­
ods 141 desired by the customer for notification about the 20

receipt acknowledgment (step 4480).
This technique can be generalized to any form of data

exchange requiring secure, verifiable, non-repudiable trans­
actions between multiple parties. This includes stock
trading, electronic data interchange (EDI), credit card 25

systems, banking systems, bartering systems, and so on. The
specific nature of the transaction service is not a limiting
feature of the invention.
Reporting Service Objects and Partner Servers

124
shown in FIG. 40. The process begins when a reporting
service object 1310 first needs to set up an anonymous
reporting relationship with a reporting partner server 1302.
A data exchange method 141 in the reporting service object
1310 uses an anonymous protocol such as HTTP to request
an anonymous reporting key from a reporting partner server
1302 (step 4501). The reporting partner server 1302 returns
an unique anonymous reporting key in the protocol response
(step 4502). The data exchange method 141 then saves the
anonymous reporting key as an element 143 of the reporting
service object 1310 (step 4503). If desired, such an element
143 can also be encrypted using a password or similar key
provided by the user. From this point on the reporting
service object 1310 can supply the anonymous reporting key
together with the report data when submitting reports via the
anonymous protocol to the reporting partner server 1302
(step 4504). In this fashion the reporting partner server 1302
can track the report data submitted from a unique instance of
the reporting service object 1310 without having any knowl­
edge of the user's identity (step 4505).

Reporting partner servers 1302 can aggregate reporting
data by indexing reports by provider UID or consumer UID,
or in the case of anonymous reporting, by unique anony­
mous reporting key. Alternatively reporting partner servers
1302 can use the incremental counter technique. This tech­
nique is explained below in the section on feedback service
objects.

Secure reporting can be accomplished using the functions
of an authentication service object 1310 in conjunction with

30 a reporting service object 1310. Reporting service objects
can also be efficiently coupled with payment service objects
to perform billing and payment for communications object
system services.

A reporting service object type (843, FIG. 17) is another
specialized data exchange service object that operates in
conjunction with reporting partner servers 1302 to provide
statistical reports on the usage of a communications object
system. Since communications objects 110 can include their
own reporting methods 141 as described in the reporting 35

control section above, the primary purpose of reporting
service objects 1310 is to consolidate the reporting methods
required by a group of communications objects 110.

Shared access to the methods 141 of a reporting service
object 1310 is particularly efficient for gathering statistics
and metadata for a large population of communications
objects 110. This is because statistics and metadata for a
large number communications objects 110 from a large
number of providers can accumulated in the databases 11, 21
and then transmitted using a small number of message
objects 110 to one or more reporting partner servers 1302.
The same reporting service object 1310 or a linked reporting
service object 1310 can then be used by the providers to
monitor the aggregated reports at the reporting partner
server 1302. This can be done using data exchange methods
141 running queries against a reporting partner server 1302
in the same fashion as explained in FIGS. 34B and 35 for
classified ad buyers.

Reporting partner servers 1302 can also serve a valuable
function by providing high-volume report processing ser­
vices to communications object providers. Report process­
ing methods 141 on the reporting partner server 1302 can be
triggered automatically by report message objects 110 trans­
mitted from reporting service objects 1310. These report
processing methods 141 can produce any type of statistical
aggregation or analysis offered by the reporting service
provider. Alternatively, communications object providers
can use the reporting service object 1310 to submit their own
stored report queries and report processing methods 141 as
explained in FIG. 35 for classified ad buyers.

Anonymous reporting relationships can be accomplished
using a simple procedure. The steps in this process are

Feedback Service Objects and Partner Servers
A feedback service object type (844, FIG. 17) is another

specialized data exchange service object that works in
conjunction with a feedback partner server 1302 to aggre­
gate and report feedback from users of any communications
object 110 across a communications object system. Feed-

40 back service objects 1310 combine the functions of directory
service objects, data exchange service objects, and reporting
service objects to aggregate feedback from multiple com­
munications object system users across different categories
of communications objects 110. Feedback service objects

45 1310 are another excellent example of a polymorphic ser­
vice object because the same feedback service object 1310
that is used to provide feedback from one communications
object system user (called the "feedback provider") can be
used to access or monitor that feedback by another commu-

50 nications object system user (called the "feedback
consumer").

Feedback service objects 1310 can most easily be under­
stood as an extension to the functionality of category objects
110. Category objects 110 are explained in the directory

55 service object section above and shown in FIG. 29A. In
particular, communications objects 110 listed in a directory
partner server 1302 can include a link component object 110
to each category object 110 with which the communications
object 110 is associated. This allows users of a communi-

60 cations object system to quickly and easily obtain category
objects 110 to check directory partner servers 1302 for other
communications objects 110 associated with the category
object 110. This process extended into a powerful feedback
system with three enhancements. First, feedback attributes

65 and value choices can be added to category objects 110. This
permits users of a communications object 110 can be solic­
ited for feedback specific to that particular category of

US 6,757,710 B2
125 126

the data exchange method 141 creates a message object 110
containing the feedback data from the input form and the
UID of the target communications object 110 (step 4608).
The data exchange method 141 then transmits this message

communications objects 110. Second, report processing
capabilites can be added to directory partner servers 1302.
This permits feedback data to be aggregated into reports of
high value to communications object system users. Third,
the feedback attributes of the category objects 110 can be
used by feedback consumers to create queries to a feedback
partner server 1302. This allows feedback consumers to be
automatically notified of new or changed communications
objects 110 that meet the user's specific interest criteria.

5 object 110 to the feedback partner server 1302 (step 4609).
When received by the feedback partner server 1302, the
message object 110 triggers a corresponding data exchange
method 141 (step 4610). This data exchange method 141 can
aggregate and process the feedback data in the feedback

10 partner server database 1301 as proscribed by the feedback
serve provider (step 4611). Feedback data aggregation and
processing is described below. The data exchange method
141 can also perform any kind of aggregation or statistical
analysis required to produce the reports the feedback service

The steps in these processes are very similar to those
described for classified ad category objects in the data
exchange service object section above and in FIGS. 34A,
34B, and 35. The following explains the basic processes
involved with the use of feedback service objects 1310 and
feedback partner servers 1302. Both the feedback provider
and feedback consumer will be illustrated as users of the
consumer program 22. The steps in the process of a feedback
provider submitting feedback input are illustrated in FIG.
41A. We will assume the feedback provider already has
obtained the communications object 110 upon which the 20

feedback will be given. The process begins with the feed­
back provider executing a feedback link method 141 in the
communications object 110 (step 4601). The presence of a
feedback link method 141 for feedback can be shown by the
use of a feedback hyperlink or hypergraphic on a page 142 25

of the communications object 110. Alternatively, if feedback
services are implemented as a global function of a commu­
nications object system, this feedback link method 141 can

15 provider wishes to offer feedback consumers. The attributes
of these reports must match the feedback report query
attributes of a feedback category object 110 as described
below.

be available as a system method 141 to all communications
objects 110. In this case feedback services could be initiated 30

through a feedback hyperlink or hypergraphic on the
selected object form (611, FIG. 13), on any selected page
form (612, FIG. 13), or on a global toolbar in the consumer
program 22. Once executed, the feedback link method 141
queries the consumer database 21 for the linked feedback 35

category object 110 (step 4602). If the link method 141 is
linked to more than one feedback category object 110, the
link method 141 can present the feedback provider with an
input form to select the desired feedback category object
110. If the feedback category object 110 is not present, the 40

link method 141 uses link control to download the feedback
category object 110 (step 4603). Next a link method 141 in
the feedback category object 110 queries the consumer
database 21 for the linked feedback service object 1310 (step
4604). If the feedback service object 1310 is not present, the 45

link method 141 uses link control to download the feedback
service object 1310 (step 4605). Now a data exchange
method 141 in the feedback service object 1310 generates a
feedback input form (step 4606). This input form consists of
the category attribute and value choices obtained from the 50

feedback category object 110. This is identical to the input
form process described in step of 1704 of FIG. 34A for
creating a classified ad listing. The feedback attributes and
value choices for any feedback category object 110 are
determined by the feedback service provider. To continue 55

the example used in the classified ad service description, the
feedback input form for a feedback category object 110
representing minivans might include attributes for dealer
satisfaction, fit and finish, gas mileage, maintenance costs,
repurchase plans, and so on. The appropriate value choices 60

for each of these attributes would be displayed as drop-down
lists, radio buttons, and so on. When the feedback provider
submits the completed input form, the data exchange
method 141 first saves the feedback data as a feedback
element 143 of the feedback service object 1310 (step 4607). 65

This permits the feedback provider to easily recall and
modify the feedback data as his/her feedback changes. Next

Feedback data can be aggregated by a feedback partner
server 1302 in several ways. One approach is to save and
index feedback data by the UID of the feedback provider. In
this approach the feedback partner server 1302 maintains
records of the feedback data from each feedback provider.
This allows the feedback partner server 1302 to produce
accurate feedback statistics reports over time. Another
approach is to aggregate feedback using counters. In this
approach the feedback partner server 1302 does not need to
maintain a record from each feedback provider. Instead the
feedback partner server 1302 increments a counter for each
feedback message object 110 received from a feedback
provider. The accuracy of this counter is maintained in the
following manner. The first time a feedback provider uses a
feedback category object 110 to send feedback data, the full
set of feedback data is transmitted in the feedback message
object 110 as described in step 4608 of FIG. 41A. This
feedback data is saved as an element 143 of the feedback
category object 110 the consumer database 21 as described
in step 4607 of FIG. 41A. The steps required for subsequent
changes to the feedback are shown in FIG. 41B. First the
feedback provider executes the feedback link method 141 as
in step 4601 of FIG. 41A (step 4631). Because the feedback
provider has already submitted feedback, the feedback cat­
egory object 110 and feedback service object 1310 are
present in the consumer database 21. Thus the feedback link
method 141 can directly execute a data exchange method
141 of the feedback service object 1310 (step 4632). This
data exchange method 141 reads the saved feedback element
143 of the feedback category object 110 (step 4633). The
data exchange method 141 uses this feedback data to gen­
erate an input form for the feedback provider to edit the
feedback data (step 4634). When this input form is
submitted, the data exchange method 141 saves the new
feedback data as a new version of the feedback element 143
(step 4635). Versions of the feedback data element can be
controlled using data archive control as explained above.
The data exchange method 141 next calculates the differ-
entials between the new feedback data and the old feedback
data (step 4636). For example, a minivan owner originally
rated dealer service at an 8 on a scale of 1 to 10. The minivan
owner subsequently had a poor dealer service experience.
The minivan owner then edits the feedback data to rate the
dealer service at a 2. The data exchange method 141 would
calculate the differential as a minus 6. Now the data
exchange method 141 creates a message object 110 contain-
ing the feedback differential data, the UID of the target
communications object 110, and a "RevisedFlag" element
143 set to TRUE (step 4637). The data exchange method 141

US 6,757,710 B2
127 128

of 1 to 10. A feedback consumer can also ask for feedback
provider ratings to be factored into feedback data reports. An
example would be a report on recommended minivans
where the feedback data from feedback providers with an
expertise rating of 8 or higher on a scale of 1 to 10 was
weighted twice as heavily as feedback data from feedback
providers with a rating lower than 8.

The integrity of such a feedback system can be enforced
by employing feedback rules 140 in the feedback partner
server 1302. For instance, a feedback rule 140 can constrain
the rating a first feedback provider can give a second
feedback provider using the rating of the first feedback
provider. An example would be a expertise rating system for
securities analysts. Every analyst in a securities analysis firm

transmits this message object 110 to the feedback partner
server 1302 (step 4638). When received by the feedback
partner server 1302, the message object 110 triggers a
corresponding data exchange method 141 (step 4639). This
data exchange method 141 uses the value of the RevisedFlag 5

element 143 to process the feedback data as incremental data
and not new data. The data exchange method 141 then uses
the differentials in the feedback data to adjust the feedback
counters (step 4640). Revised feedback data will not incre­
ment a "Total Feedback Providers" counter, so feedback 10

consumers can see an accurate report at of the total aggre­
gated feedback at any point in time and the total number of
feedback providers who have contributed to this feedback
data. Feedback data counters allow the maintenance of
feedback data to be distributed throughout a communica­
tions object system, making it feasible to centrally aggregate
feedback for a large number of communications objects 110
from a large population of feedback providers. Feedback
data counters also make it easy to do anonymous reporting,

15 can be given an initial expertise rating on a scale of 1 to 10
for each feedback category object 110 representing the
industry segments covered by the analysis firm. Thereafter
all analysts can modify the expertise ratings of the other
analysts as new security analysis work is performed. A

as no provider UIDs must be tracked at the reporting partner
server 1302. Alternatively, if feedback data is saved and
indexed at the reporting partner server 1302, anonymous
reporting can be accomplished using the anonymous report­
ing key technique as described in the reporting service
object section above and illustrated in FIG. 40.

The steps in the process of a feedback consumer accessing
and monitoring feedback are identical to those of a classified
ad buyer accessing and monitoring classified ad listings as
explained in the data exchange service object above and
illustrated in FIGS. 34B and 35. As with directory category
objects 110, a feedback consumer can obtain a feedback
category object 110 either directly from a feedback partner
server 1302 or by using a link component object 110 in any
communications object 110 associated with that feedback
category object 110.

The value of feedback data can vary enormously with the
experience and expertise of the feedback provider. This is
particularly true for feedback on topics requiring specialized
knowledge or expertise, such as academics, law, medicine,
technology, and so on. For this reason feedback services can
also be applied to feedback providers. This can be accom­
plished using a feedback partner server 1302 by linking
feedback category objects 110 to user objects 110 represent­
ing each of the feedback providers. The attributes of a
feedback category object 110 representing a feedback pro­
vider might include level of expertise, level of credibility,
level of decision-making ability, and so on. By aggregating
feedback data on feedback providers, a feedback partner
server 1302 is able to offer even more useful feedback
reports to feedback consumers. This is because feedback
queries can select feedback data using on the attributes or
"ratings" of the feedback providers. An example is a feed­
back partner server 1302 which collects feedback data on
communications objects 110 representing automobiles. A
feedback consumer can create a query for only those com­
munications objects 110 representing minivans with a
sticker price of less than $20,000 which also had overall
quality rating of 7 or higher on a scale of 1 to 10 from
feedback providers whose expertise level was rated by other
feedback providers to also 7 or higher on a scale of 1 to 10.
Another example applies to response thread objects (FIG.
29B) in a topic discussion database. Here a feedback con­
sumer can use a topic feedback category object 110 to
monitor the response thread objects 110 contained by a
discussion topic 110. A query can notify the feedback
consumer only of new response thread objects posted by
providers with an expertise rating of 7 or higher on a scale

20 feedback rule 140 can enforce that a first analyst cannot give
a second analyst an expertise rating for a specific feedback
category object 110 more than 1 point higher than the
expertise rating of the first analyst on that same feedback
category object 110. A second feedback rule 140 can specify

25 that no analyst can change the feedback rating of another
analyst more than 1 point in any six month period. These
rules help enforce accurate expertise appraisals.

The integrity of such a feedback system can also be
enforced through the use of authentication services to

30 authenticate the identity of the feedback providers as
described in the authentication service object section above.
Feedback systems may also incorporate payment services as
described in the payment service object section above. An
example would be a commercial product rating service that

35 paid industry experts for feedback input and charged con­
sumers for feedback reports.

As with directory services, feedback services can be
employed for a wide variety of purposes on a communica­
tions object system. This includes product and service rating

40 services, political office ratings, employee performance
feedback, discussion group participation, personal
references, and so on. The particular feedback service is not
a limiting feature of the invention.
Advanced System Architecture

45 Combined Provider, Consumer, and Server Program Opera­
tion

It has been explained how in an embodiment of the
present invention the functions of the provider and consumer
programs 12, 22 and databases 11, 21 can be combined

50 because they use identical database structures and similar
operations. In another embodiment of the present invention,
the functions of either or both the programs 12, 22 and
databases 11, 21 can be combined with a partner server 1302
and a partner server database 1301. This is again because

55 identical database structures and similar operations are used.
All programs can also employ the same HTML and HTTP
interface operations as described above. This means that a
communications object system user may fully access the
capabilities of a provider program 12, a consumer program

60 22, and a partner server 1302 all from a single web server 32
using a single web browser 50.

One of the additional benefits of combining the provider
program 12 with a distribution server 32 is that providers do
not have to transmit new and updated communications

65 objects 110 to a separate distribution server 32 for distribu­
tion via the pull technique. Nor do they require the services
of a distribution service object 1310. Rather pull updating

US 6,757,710 B2
129 130

from a consumer program 22 can take place directly from
the combined provider program 12 and partner server 1302.
This saves time and reduces the potential for transmission
errors. A provider is also able to more easily apply distri­
bution control by specifying distribution control methods 5

141 directly in the combined database 100.

Access control rules 140 can be used to govern editing rights
to shared element preference instances 147. Access control
rules will be discussed below.

In a multiuser database 100, a user object 110 can have a
consumer relationship with a communications object 110 to
which another user object 110 has a provider relationship.
This has several very important benefits. To begin with, no
instance of the recipient class 120 nor the acknowledgement
association 121 is needed. Both can be replaced entirely by

The same benefit applies in reverse to consumers when
the consumer program 22 is combined with a distribution
partner server 32. The consumer program 22 does not need

the relationship associations 111. Secondly, no communica­
tions object distribution routine is necessary. When the user
object 110 representing a provider (called the "provider user
object") and the user object 110 representing a consumer
(called the "consumer user object") are both present in a
multiuser database 100, a communications object 110 can be

to update communications objects 110 stored on the distri- 10

bution partner server 1302 using the pull technique because
those communications objects or object updates 110 can be
pushed directly by the provider program 12 to the combined
consumer program 12 and partner server 1302. This also
eliminates the need for a distribution service object 1310. 15 "pushed" to a consumer simply by the provider creating a

new association between the communications object 110 and
the consumer user object 110. A communications object 110
can be "pulled" by a consumer just by the consumer creating

These benefits are further compounded when both the
provider program 12 and consumer program 22 are com­
bined with any type of distribution server 32. This combi­
nation of yields special benefits for multiuser communica­
tions object system installations in the same way as 20

combining the functionality of the programs 12, 22 yielded
special benefits for a single communications object system
user. These benefits will be further described in the follow-

a new association between the communications object 110
and the consumer user object 110. In both of these cases,
creation of the new association triggers a "new object
reception rule" 140 in the database 100. This rule takes the
place of the new object reception routine in a separate
consumer program 22 and executes steps 703-708 of FIG. ing sections.

Multiuser Operation
The programs 12, 22, and 1302 or any combination

thereof can accommodate multiuser operation. In all cases
this can be accomplished by employing the user object type
(816, FIG. 17). The data structures for user objects 110 are
shown in FIG. 6B. Like all other communications objects
110, user objects 110 have a system ID attribute that
uniquely identifies them within the database 100. The pro­
vider and consumer relationship between user objects 110
and other communications objects 110 uses a relationship
association class 111 of the association 11A. One attribute of
the relationship class 111 is a logical value "Provider Flag".
If a user is a provider of a communications object 110, the
ProviderFlag value is TRUE. If the ProviderFlag value is
FALSE, the user is a consumer of the communications
object 110. The relationship class 111 also has an attribute
NewFlag which is employed in user object indexes as
described above. The relationship class 111 may have other
attributes such as "PrivilegeLevel" that govern access con­
trol to operations such as editing the communications object,
forwarding the communications object, and so on. Access
control will be discussed below.

User objects 110 can represent individual communica­
tions object system users or groups of users. User group
objects 110 function similarly to e-mail aliases in an e-mail
system. Groups can be nested by creating composite user
objects 110 and components user objects 110. User group
objects 110 can also have their own distinct attributes used
to control the communications functions and privileges of
the group.

Multiuser operation is beneficial in the programs 12, 22 or
a program combining their operation because it allows a
single database 100 to be shared by multiple users. A
separate instance of the global preferences class 103 can be
associated with each user object 110. In a multiuser database
100, multiple user objects 110 can have a consumer rela­
tionship association 111 with single instance of communi­
cations object 110. This saves disk space and increases
overall system efficiency. In this case each consumer can
maintain separate preferences using separate element pref­
erences instances 147 associated with the consumer's user
object 110. Users can also share preferences by having an
association to the same element preference instance 147.

25 15. Updates to a communications object 110 by the provider
can also be "transmitted" to all associated consumers via the
operation of the standard update association rule 140 oper­
ating throughout the database 100. This operation of this rule
takes the place of the update object reception routine (FIG.

30 lOB) by executing steps 721-731 of FIG. 15. This rule 140
only applies to consumer relationship associations, i.e.
where the ProviderFlag value is FALSE.

Finally, in a multiuser database 100, multiple user objects
110 can also have a provider relationship with a single

35 communications object 110. This is referred to as multiuser
editing. Multiuser editing of communications objects 110 is
advantageous in a communications object system for the
same reasons multiuser database sharing is advantageous in
many business applications. Just as two or more individuals

40 can need the ability to read or edit same data, two or more
individuals can need to communicate about the same subject
or topic through the same "channel". In many multiuser
database environments, including network file systems,
database access and editing rights are controlled using

45 access control lists. This same principle can be applied to a
communications object system through the use of access
control elements 143, access control methods 141, and
access control rules 143. Collectively these are referred to as
access control components. Access control elements 143 are

50 special elements 143 included in a communications object
110 in order to define the editing rights which the original
communications object provider wishes to grant to other
providers. Access control methods 141 and access control
rules 140 act in conjunction with access control elements

55 143 to enforce these rights. Access control is an extension of
data exchange control, discussed in the data exchange con­
trol section above. Access control components are a unique
advantage of a communications object system because they
can be contained within the communications object 110

60 which they govern. Thus they can be distributed and
enforced throughout a communications object system.
Access control rights can also be governed using user group
objects 110. In this capacity user group objects 110 function
similarly to access control groups used in many computer

65 network environments to govern file and resource access.
As in any multiuser database, simultaneous editing of the

same data field or record by different users can result in

US 6,757,710 B2
131

conflicts. Many multiuser database record locking or data
conflict resolution techniques have been developed to solve
this problem, including rules based on time precedence, user
priority, location priority, data types, and so on. This is
referred to as concurrency control. In a multiuser commu- 5

nications object system database 100, concurrency control
can be applied using concurrency elements 143, concur­
rency methods 141, and concurrency rules 140. Collectively
these are referred to as concurrency control components.
Concurrency control can be applied in one or more com- 10

munications object system databases 100 in the same man­
ner as access control. The specific concurrency control rules
or techniques employed are not a limiting feature of the
invention.

132
This procedure centralizes distribution control at the

original communications object provider. An alternative is
distributed distribution control. In this technique, a distri­
bution control list is included with the communications
object 110 itself. Distribution control lists operate for a
communications object 110 similarly to the recipient list of
an Internet SMTP e-mail message. E-mail recipient lists
allow each message recipient to identify the other recipients
and send message replies to all other recipients. Like access
control lists, distribution control lists can consist of distri­
bution control elements 143, distribution control methods
141, and distribution control rules 140. Collectively these
are referred to as distribution control components. Distribu­
tion control components can be as simple as a set of

15 elements 143 containing the UIDs of each recipient 120. In
this case the receiving program 12, 22 would resolve these
UIDs into the e-mail addresses or other addresses of the
recipients. Alternatively distribution control components

In a communications object system, multiuser editing
applies to three situations. The first is single users operating
different single-user installations of the combined programs
12, 22 on different computers 1, 2. The second is different
users operating the same multiuser installation of the com­
bined program 12, 22. This could be on a single central 20

computer accessible over a local area network, or on a
distributed database available over a wide area network. The
third is a combination of the first two. In the first situation,
multiple users can edit the same communications object 110
through the use of message objects 110. The basic steps
involved with this form of multiuser editing are illustrated in
FIG. 42A. The process begins with the first provider of a
communications object 110 specifying the access control the
provider wishes to apply to a communications object 110
(step 4701). This is done by specifying access control
components and choosing appropriate access control values.
Next the first provider transmits the communications object
110 to a recipient (step 4702). The consumer program 22 of
the recipient receives the communications object 110 and
stores it in his/her consumer database 21 (step 4703). The 35

recipient next performs an editing operation on the commu­
nications object 110 (step 4704). These editing operations
will be constrained by the access control components of the
communications object 110. For example, the provider of a
communications object 110 representing a discussion topic 40

may grant recipients the right to add response thread objects
110 representing responses, such as is shown in FIG. 29B.
However this provider may not grant recipients the right to
edit the name, description, or message in the original topic
object 110. The completion of an editing operation by the 45

recipient triggers a data exchange control rule 140 which
executes a data exchange method 141 of the communica­
tions object 110 (step 4705). In this way the data exchange
control rule 140 serves the same purpose as the update
association rule 140 in a database 100. The data exchange 50

method 141 creates a message object 110 containing the
changes to the communications object 110 (step 4706). The
data exchange method 141 then transmits the message object
110 to the combined program 12, 22 of the first provider
(step 4707). When the message object 110 is received, its 55

receipt method 141 is executed (step 4708). The receipt
method 141 saves the edits to the communications object
110 (step 4709). Conflicts in edits by two or more users are
handled by concurrency control as discussed above. This
save operation results in the same set of operations as an edit 60

operation in the provider program 12 as shown in FIGS. lOA
and lOB. These changes will now be distributed to all
recipients of the communications object 110 using distribu­
tion control as described in the distribution control section
above. Lastly, the receipt method 141 executes any notifi­
cation methods 141 assigned by the first provider (step
4710).

can include instances of recipient objects 120 or user objects
110. In this case the necessary distribution control intelli­
gence is transferred entirely with the communications object
110. Distribution control methods 141 and rules 140 can be
applied at each combined program 12, 22 receiving the
communications object 110. For example, a distribution

25 control rule 140 from the original provider could specify that
no additional recipients may be added to a distribution
control list. Another distribution control rule could specify
that certain edits to the communications object, such as a
change in a notification element, are sent only to the original

30 provider. The original provider can then approve the edit and
distribute the change to the rest of the distribution control
list.

The steps involved with multiuser editing using distribu­
tion control components are shown in FIG. 42B. The process
begins with the first provider of a communications object
110 specifying both the access control and the distribution
control the provider wishes to apply to a communications
object 110 (step 4731). This is done by specifying access
control components and values and distribution control
components and values. Next the first provider transmits the
communications object 110 to the recipients on the distri-
bution control list (step 4732). The consumer program 22 of
the recipient receives the communications object 110 and
stores it in his/her consumer database 21 (step 4733). The
recipients next performs an editing operation on the com­
munications object 110 (step 4734). The completion of an
editing operation by a recipient triggers a data exchange
control rule 140 which executes a data exchange method 141
of the communications object 110 (step 4735). The data
exchange method 141 creates a message object 110 contain­
ing the changes to the communications object 110 (step
4736). The data exchange method 141 then transmits the
message object 110 to each of the recipients on the distri­
bution control list (step 4737). When the message object 810
is received by each recipient, its receipt method 141 is
executed (step 4738). The receipt method 141 saves the edits
to the communications object 110 (step 4739). Conflicts in
edits by two or more users are handled by concurrency
control as discussed above. This save operation results in the
same set of operations as an edit operation in the provider
program 12 as shown in FIG. lOA However, because the
changes have already been distributed to the distribution
control list, this is an exception to the update association rule
140 and does not trigger the update association routine

65 shown in FIG. lOB. Lastly, the receipt method 141 executes
any notification methods 141 assigned by each recipient
(step 4740).

US 6,757,710 B2
133

The second multiuser editing situation applies when the
combined programs 12, 22 are operated as a multiuser
system and the providers and consumers involved are all
users of this system. In this case multiuser editing operates

134
program or complex configuration is required. Secondly, this
mailing list object 110 can employ notification control to
allow every member of the list to filter messages on the list.
As shown in FIG. 4 and explained in the notification control

5 section, this is done by including a set of notification
elements 201 representing interest topics. One or more
message elements 211 are associated with one or more
notification elements 201. Each list member can choose the

in the same manner as record sharing in a typical multiuser
database environment. Each communications object 110 is a
record created by the first provider in the database 100, and
the access control components of the communications object
110 act as the access control rights for other users of the
database 100. In a multiuser database 100, access control 10

rights can also be governed by the attributes of a relationship
association (111, FIG. 6B). In this manner a provider can
grant different access control rights to different user objects
110 or user group objects 110 representing other providers.
Distribution control within a multiuser database 100 is not 15

necessary because, as explained above, distribution in a
shared database 100 is accomplished through the operation
of the update association rule 140.

set of interest topics to which they wish to "subscribe".
Thereafter in each communications object update the list
member will receive notification only of the messages
assigned to these topics as described in the notification
control section above. The work of one or more moderators
is still required to create and periodically refine this set of
interest topics, but this small effort produces an very large
benefit to the entire audience. Thirdly, the operation of the
mailing list can be controlled using access control compo­
nents and a distribution control components. A closed list
can be maintained by restricting editing rights to the the

20 provider as list owner. A moderated list can be maintained by
giving all members message editing rights, but keeping
distribution control centralized at the list owner and employ­
ing a moderator rule 140 that each new message 211 must be
confirmed by the list owner. An open list can be created by

The third multiuser editing situation is a combination of
the fist two, i.e. users spread across both single-user instal­
lations and multiuser installations of the programs 12, 22.
This operates as a special case of the first situation. In this
case, distribution control lists can contain special entries
representing multiple users at a multiuser installation. These
special entries can consist of nested elements 143 represent­
ing the UID of the multiuser database 100 and the UIDs of
each individual user object 110. Alternatively they can
contain nested composite and component objects 110 rep­
resenting the multiuser program 12, 22 and the individual
user objects 110. User group objects 110 can also be
employed for this purpose. In this manner only one com­
munications object or communications object update trans­
mission needs to take place to each multiuser database 100.
The receipt method 141 of the communications object 110 or
message object 110 can then create or update the relation- 35

ship associations 111 to each user object 110 in the multiuser
database 100.

A multiuser communications object system can be applied
to solving many longstanding communications problems. A
common example is many-to-many messaging among large
groups. One existing solution to this problem is e-mail list
servers, or "listservs", which are common on the Internet.
Listservs require a great deal of effort to setup, configure,
and maintain. Listservs typically operate in three modes
which must be carefully configured in the listserv program.
The first mode is "closed" or "broadcast only", in which
messages can only be sent out to the list subscribers, usually
by one or more "list owners". The second mode is
"moderated", in which list subscribers can reply to messages
or submit new messages, but all messages pass through one

25 eliminating the moderator rule 140. A fully distributed list,
in which the processor workload for sending out new
messages is distributed equally among all list contributers
rather than centralized at one provider, can be accomplished
using a distribution control list.

30 Multinetwork Communications Control
Because a communications object system permits provid­

ers and consumers to control any type of communications
over any type of communications network 3, it can be
particularly useful for coordinating communications rela­
tionships that take place over multiple communications
networks. A simple example is a Internet-based fax request
system. Such a system allows users to request fax documents
using a web server 50 and have them transmitted to the user
as fax documents via a telephone network. Such a system

40 can easily be automated using communications object sys­
tem. This can be accomplished using data exchange methods
141 included directly in a communications object 110, or it
can be done using a data exchange service object 1310. The
latter permits fax services to easily be shared among many

45 communications objects 110. The steps for automating a fax
request system using a fax service object 1310 are shown in
FIG. 43. The process begins with the consumer obtaining the
communications object 110 offering fax request services
(step 4801). Next the consumer selects the hyperlink or

50 hypergraphic representing a fax request page within the
communications object 110 (step 4802). This executes a link
method 141 which checks to see if the linked fax service
object 1310 is present in the consumer database 21 (step

or more moderators authorized to select those that will be
passed on to the full list. The third mode is "open" or
"unmoderated", in which any member can respond to mes­
sages sent out to the list or submit new messages, and all
messages or replies are sent to all subscribers. The single 55

biggest drawback to any of these modes is the subscriber's
inability to filter the messages on the list for those of
personal relevance. The list is either "on" or "off'' for all
subscribers. The use of closed or moderated listservs offers
some useful filtering capability applicable to all subscribers 60

to the list, but this filtering is not personalized for individual
subscribers. It also takes a great deal of effort on the part of
the moderators.

4803). If not, it uses link control to download the fax service
object 1310 (step 4804). Next a data exchange method 141
in the fax service object 1310 generates an input form (step
4805). This input form allows the consumer to select the fax
documents the consumer would like to receive as well as the
target fax number. Note that the fax service object 1310 can
query the consumer database 21 for elements 143 with a type
definition 144 of "FaxNumber" in order to automatically
present such a list. The fax service object 1310 can also
prompt the user to enter new fax numbers if none are
present. When the consumer submits the input form (step A communications object system overcomes all these

limitations. First, in a communications object system, such
a mailing list can be created simply by creating a commu­
nications object 110 to represent the list. No special server

65 4806), the data exchange method 141 first saves any new fax
number elements 143 as well as the consumer's preferences
about the last-used fax number, the most-used fax number,

US 6,757,710 B2
135

and so on (step 4807). The data exchange method 141 then
creates a message object 110 (step 4808). This message
object 110 contains the indentification data for the requested
fax documents (which could be the UIDs of the fax docu­
ments if they are stored as elements 143 on the fax partner 5

server 1302). The message object 110 also contains the
selected fax number. The data exchange method 141 trans­
mits the message object 110 to the fax partner server 1302
(step 4809). When the message object 110 is received by the
fax partner server 1302, it executes a corresponding data 10

exchange method 141 (step 4810). This data exchange
method 141 uses the fax request IDs and fax number to
transmit the requested fax documents via the telephone
network (step 4811). Note that if the fax partner server 1302
cannot successfully transmit the fax documents, the fax 15

partner server 1302 can also send an acknowledgment
message object 110 back to the consumer via the commu­
nications object system.

A more complex example is the coordination of package
deliveries over a physical communications network such as 20

a postal network. This process uses account certificates as
described in the payment service object section. The steps in
this process are shown in FIG. 44. The process begins with
the consumer obtaining the communications object 110 of
the package recipient (step 4901). Next the consumer selects 25

a hyperlink or hypergraphic representing a physical package
delivery option within the communications object 110 (step
4902). Such an option might be represented by hypergraph-
ics of the logos of common delivery services. This executes
a link method 141 which checks to see if the linked physical 30

delivery service object 1310 is present in the consumer
database 21 (step 4903). If not, it uses link control to
download the physical delivery service object 1310 (step
4904). Next a data exchange method 141 in the physical
delivery service object 1310 generates an input form (step 35

4905). This input form allows the consumer to select the
desired delivery options. This includes the type of delivery
required, whether delivery pickup is needed, payment
options, and so on. Note that the consumer does not need to
enter any information pertaining to the delivery attributes of 40

the recipient. The data exchange method 141 is able to
obtain all such attributes from the account certificate
included in the recipient's communications object 110. If the
consumer also has a account certificate, the data exchange
method 141 can use this data automatically as well. If the 45

consumer does not have an account certificate, the data
exchange method 141 can use the input form to prompt the
consumer for the necessary account information. When the
consumer submits the input form (step 4906), the data
exchange method 141 saves any new account data or pref- 50

erences as elements 143 of the physical delivery service
object 1310 (step 4907). The data exchange method 141 then
creates a message object 110 containing the recipient
account certificate, the sender account certificate, the deliv­
ery options selected, and any other pertinent data, such as a 55

timestamp (step 4908). The data exchange method 141
transmits the message object 110 to the physical delivery
partner server 1302 (step 4909). When received by the
physical delivery partner server 1302, the message object
110 executes a corresponding data exchange method 141 60

(step 4910). This data exchange method 141 processes the
delivery order (step 4911). This can include obtaining a
delivery number, initiating the package delivery pickup by
the physical delivery service provider, and any other steps
necessary to initiate the delivery. When complete, the data 65

exchange method 141 creates a acknowledgment message
object 110 containing the delivery number together with any

136
other acknowledgment data, such as the delivery pickup
confirmation message (step 4912). The data exchange
method 141 transmits this message object 110 to the physi­
cal delivery service object 1310 at the originating consumer
program 22 (step 4913). When received at the consumer
program 22, the message object 110 executes the originating
data exchange method 141 of the physical delivery service
object 1310 (step 4914). The data exchange method 141 first
saves the delivery number and any other pertinent data as
logged event 118 (step 4915). This allows it to be referenced
for any future actions involving this delivery. Next the data
exchange method 141 executes any notification methods 141
assigned by the consumer to delivery acknowledgment
messages (step 4916). The data exchange method 141 then
calls a print method 141 to print a delivery label (step 4917).
The data exchange method 141 tests to see if delivery
monitoring was requested in by the input form submitted in
step 4906 (step 4918). If so, the data exchange method 141
carries out the monitoring process (step 4919). This moni­
toring process is identical to that performed by classified ad
service objects 1310 as shown in FIG. 34B. Alternately, if
the physical delivery partner server 1302 offers monitoring
via a user object index and stored queries, the necessary user
object data and query data can also be contained in the
message object 110 created in step 4910. Monitoring using
stored queries is shown in FIG. 35.

Another example of multinetwork communications con­
trol is the reception of communications objects or object
updates via a broadcast network such as television or cable
systems. Because such networks are broadcast-only, com­
munications resulting from the consumer's communications
object copies back to the provider must occur via a back­
channel such as a telephone network or computer network,
e.g. the Internet. Communications objects represent a unique
advantage in this respect in that the backchannel can be
controlled by the provider in the communications object
110. In addition, multiple backchannels can be controlled by
the same communications object 110 depending on the
communications action involved or the backchannel capa­
bilities of the particular consumer program 22 where the
communications object 110 is stored.
Schedule Control

Schedule coordination among any group is a fundamental
challenge in communications. Scheduled events and sched­
ule changes must be communicated to everyone in the group
or else the group will not function. A communications object
system can solve many widespread scheduling problems
using a special type of communications object called a
schedule object. Schedule objects are shown as class 817 of
FIG. 17. Schedule objects 110 represent real-world events
associated with any other communications object 110. Like
all other communications objects 110, schedule objects 110
can contain schedule elements 143, schedule methods 141,
and schedule rules 140 used to control scheduling opera­
tions. Collectively these are referred to as schedule control
components. These all function as special cases of data
exchange control, discussed above. Schedule objects 110
can also be nested as composite and component objects (811,
182, FIG. 17). This permits a composite schedule object 110
to contain multiple component schedule objects 110. An
example would be a composite schedule object representing
a multi-day conference, with component schedule objects
representing the individual seminars at the conference. Like
any communications object 110, schedule objects 110 can be
distributed via push and pull and contain their own update
methods. This is particularly relevant to schedule coordina­
tion because any changes to a schedule object 110 can be

US 6,757,710 B2
137

transmitted to all consumers associated with that schedule
object 110 object. Using notification control, each user can
also control exactly how he/she is notified of these changes.
Schedule objects 110 can be maintained in any database 100,
whether single-user or multiuser. Schedule objects 110 are
particularly useful for managing group schedules in a mul­
tiuser database 100. This is because schedule objects 110 can
easily be associated with user objects 110 or user group
objects 110 to create and maintain scheduling relationship
associations 111. Alternatively, communications object sys­
tem programs can handle scheduling requests through an
API with an external scheduling program or database. A
communications object system API is discussed further
below.

One of the most effective uses of schedule objects 110 is
to constrain or modify the communications capabilities of
communications object 110 or user objects 110 used to
represent individuals. For example, an individual whose
current schedule object indicates they are at lunch may be
reachable via a cellular phone but not via e-mail. This can be
accomplished using scheduling rules 140 associated with
particular elements 143 and methods 141 in a communica­
tions object 110. For example, a scheduling rule may dictate
that after business hours important phone calls should be
directed to a provider's home phone number. The use of
scheduling objects 110 and schedule control allows com­
munications objects 110 to assume the same functions of
"universal phone numbers", also called "personal numbers",
"lifetime numbers", and "follow me numbers". The differ­
ence is that universal phone numbers apply only to tele­
phone communications and are limited to the capabilities of
a particular telephone network, whereas communications
objects 110 apply to every form of communications and are
not limited to the capabilities of any particular communica­
tions network.

Schedule objects 110 can be employed to solve a wide
variety of common scheduling problems. One example is the
universal problem of "telephone tag". In this example,
schedule objects 110 are employed at a distribution server
32. Any type of distribution server 32 can be used, but in a
preferred embodiment, a combination of the programs 12,
22 and a distribution partner server 1302 is used. This allows
message objects 110 to be transmitted and received directly
from the distribution partner server 1302 using a direct
transmission protocol such as HTTP. This is faster than a
store-and-forward protocol like Internet SMTP e-mail, how­
ever the latter can also be used if the scheduling process is
not time-sensitive. To enable telephone call coordination,
the provider first adds one or more scheduling elements 143,
methods 141, and rules 140 to any communications object
110 in which the provider wishes to offer scheduling control.
The provider can also add schedule control using a sched­
uling component object 110. The provider also maintains
his/her current schedule by adding and maintaining schedule
objects 110 to the provider database 11. Thus the provider's
current set of schedule objects 110 will indicate the present
readiness of the provider to receive a phone call; the current
phone number at which the provider should be reached; the
options for notifying the provider about the call request; and
the options for scheduling a phone call with the provider at
some future time if the provider is not available immedi­
ately.

The steps in the process of a consumer contacting a
provider to request a phone call using the provider's com­
munications object 110 are illustrated in FIG. 45. The
consumer first executes a hyperlink or hypergraphic repre­
senting a voice call request on on a page within the provid-

138
er's communications object 110 (step 5001). This executes
a scheduling method 141 which creates a message object
110 containing the voice call request (step 5002). This
request can include the name and UID of the consumer, the

5 nature of the call, the priority of the call, the estimated length
of the call, and any other parameters the provider has
specified in the scheduling method 141. The scheduling
method 141 then transmits this message object 110 to the
provider's communications object 110 at the provider pro-

10 gram 12 (step 5003). When received by the provider pro­
gram 12, the message object 110 executes a corresponding
scheduling method 141 (step 5004). This scheduling method
141 queries the provider's schedule objects 110 to determine
the provider's current status (step 5005). The scheduling

15 method 141 first tests the result set to see if the provider is
currently available to take the phone calls (step 5006). If not,
the scheduling method 141 next checks the provider's
scheduling rules 140 and/or scheduling preference elements
147 to determine if the provider wishes to schedule the

20 phone call using automatic scheduling (step 5007). If so, the
scheduling method 141 proceeds with autoscheduling as
described below starting at step 5070 of FIG. 46. If the
provider does not wish to use autoscheduling, the scheduling
method 141 checks the provider's scheduling preferences to

25 determine if the provider wishes to have a record of the
phone call request (step 5008). If so, the scheduling method
141 executes the notification method 141 the provider has
assigned to unfulfilled phone call request messages (step
5009). In either case, the scheduling method 141 proceeds to

30 step 5018 below.
If the test in step 5006 determined the provider was

available to take the call, the scheduling method 141 next
checks the provider's scheduling preferences to see if the
provider wishes to confirm phone call requests (step 5010).

35 If so, the schedule object 110 calls the provider's notification
method 141 for confirming phone call requests (step 5011).
Notification control gives a provider rich control over such
requests. Notification processing can take into account all of
the data included in the call request message object 110 plus

40 all of the data present in the combined programs 12, 22. This
includes the consumer's identity, the presence or absence of
the consumer UID in the provider database 21, the priority
of a call, its expected length, and so on. By processing this
data, a notification method 141 can produce any type of

45 notification the provider desires. For purposes of this
example, we will assume that this notification method gen­
erates an input form to obtain the provider's response. This
form displays the data explained above. An option to initiate
a phone call immediately from the provider back to the

50 consumer could also be presented as a hyperlink or hyper­
graphic on this input form. The provider responds by sub­
mitting this input form (step 5012). This executes the
scheduling method 141 which tests the input form data to see
if the provider wishes to take the call immediately (step

55 5013). If not, the scheduling method 141 tests the input form
data to determine if the provider has choosen an alternate
time, for example scheduling the call to take place 10
minutes from now (step 5014). If not, the scheduling method
141 determines if the provider wishes to schedule the phone

60 call using automatic scheduling (step 5015). If so, the
scheduling method 141 proceeds with autoscheduling as
described below starting at step 5070 of FIG. 46. If the
provider has chosen to take the call, either immediately or at
a later time, the scheduling method 141 next creates a

65 schedule object 110 representing the scheduled phone call
(step 5016). The scheduling method 141 saves this schedule
object 110 in the provider database 11 (step 5017), then

US 6,757,710 B2
139

creates a message object 110 containing this schedule object
110 (step 5018). If the phone call request was denied for any
reason, this message object 110 will contain a negative
acknowledgment message. Lastly the scheduling method
141 transmits this message object 110 to the provider's
communications object 110 at the consumer program 22
(step 5019). When received by the consumer program 22,
the message object 110 executes a corresponding scheduling
method 141 (step 5020). This scheduling method 141 first
tests the message object 110 to see if it contains a schedule
object 110, meaning the phone call request was accepted
(step 5021). If so, the scheduling method 141 saves this
schedule object 110 in the consumer database 21 (step
5022). The scheduling method 141 then tests the schedule
object 110 to determine if the phone call should being
immediately (step 5023). If so, the scheduling method 141
tests the consumer's scheduling preferences to see if the
phone call should be autodialed by the consumer program 22
(step 5024). If so, the scheduling method 141 executes a
transmission method 141 to autodial the provider's tele­
phone number included in the schedule object 110 (step
5025). The phone call can take place via a public telephone
network, via a private phone network, via the Internet, or via
any other phone transmission network, as discussed in the
transmission control section. Finally, the scheduling method
141 executes the consumer's notification method 141 for
initiating phone calls (step 5026). If the phone call was not
accepted in step 5021, or the phone call is not to begin
immediately in step 5023, or the phone call is not to be
autodialed in step 5024, then a message to this effect would
be given to the consumer in step 5026.

When either the provider or the consumer are not ready to
proceed with a phone call immediately, schedule objects 110
can automate the process of scheduling a future phone call.
The steps in this process are illustrated in FIG. 46. This
process can be used as an adjunct to the phone call request
process described in FIG. 45, or it can be used without a
prior call request. The process begins with the consumer
executing a hyperlink or hypergraphic representing a voice
call scheduling method 141 on a page within the provider's
communications object 110 (step 5051). The scheduling
method 141 first queries the consumer database 21 to
determine the consumer's own schedule (step 5052). Then
the scheduling method 141 tests consumer's preferences for
voice call scheduling to determine if automatic scheduling
should be used (step 5053). If not, the scheduling method
141 generates an input form (step 5054). This input form
would present the consumer's current schedule, represented
by schedule objects 110, and allow the consumer to choose
a time to schedule the phone call. The consumer responds by
submitting the input form (step 5055). Alternatively, if the
consumer choose autoscheduling in step 5053, the schedul­
ing method 141 uses the consumer's scheduling rules 141
and scheduling preferences 147 to determine an optimal
schedule time or times for the phone call (step 5056). In
either case, once one or more proposed schedule times have
been determined, the scheduling method 141 saves the
corresponding schedule objects 110 in the consumer data­
base 21 (step 5057). These schedule objects 110 may have
a "proposed" attribute to indicate their unconfirmed status.
The scheduling method 141 now creates a message object
110 containing the proposed schedule object or objects 110
(step 5058). The scheduling method 141 transmits this to the
provider's communications object 110 at the provider pro­
gram 12 (step 5059). When received by the provider pro­
gram 12, the message object 110 executes a corresponding
scheduling method 141 (step 5060). This scheduling method

140
141 queries the provider's schedule objects 110 to determine
the provider's schedule (step 5061). The scheduling method
141 first tests the result set to see if there are any matching
schedule time slots between the consumer's proposed sched-

5 ule objects 110 and the provider's schedule objects 110 (step
5062). If so, the scheduling method 141 next tests the
provider's scheduling preferences to determine if the pro­
vider wishes to manually confirm the optimal time match
(step 5063). If not, the scheduling method 141 tests to

10 determine if the provider desires notification of the new
scheduled item (step 5064). If so, the scheduling method 141
executes the notification method 141 the provider has
assigned to new schedule items (step 5065). This notification
action may vary with the UID of the consumer, the type of

15 event, the duration of the event, and/or other scheduling or
notification rules 140 or preferences 147 established by the
provider. If there were no schedule matches in step 5062, the
scheduling method 141 checks the provider's scheduling
preferences to determine if the provider wishes to proceed

20 with automatic scheduling (step 5066). If not, the scheduling
method 141 executes the provider's designated notification
method 141 for unfulfilled call scheduling requests (step
5067). For purposes of this example, we will assume this
notification method 141 generates an input form (step 5068).

25 This input form can present the proposed schedule times, the
provider's conflicts, proposed alternatives, and so on. The
provider responds by selecting one or more proposed sched­
ule times and submitting this input form (step 5069). If the
automatic scheduling alternative was chosen in step 5066,

30 the scheduling method 141 uses the provider's scheduling
rules 141 and/or scheduling preferences 147 to determine an
optimal time or times for the phone call (step 5070). Once
the schedule time or times are determined in step 5062,
5069, or 5070, the scheduling method 141 saves the corre-

35 sponding schedule objects 110 in the provider database 11
(step 5071). These object's status attribute can indicate
whether the schedule time is proposed or confirmed. The
scheduling method 141 then creates a message object 110
containing the schedule object or objects 110 (step 5072).

40 The scheduling method 141 transmits this message object
110 to the provider's communications object 110 at the
consumer program 22 (step 5073). When received by the
consumer program 22, the message object 110 executes a
corresponding scheduling method 141 (step 5074). This

45 scheduling method 141 first queries the consumer's schedule
objects 110 to determine the consumer's current status (step
5075). This step is necessary as the consumer's status may
have changed since the last transmission. The scheduling
method 141 then tests the result set to see if there are any

50 matching schedule time slots between the provider's sched­
ule objects 110 and the consumer's schedule objects 110
(step 5076). If so, the scheduling method 141 next tests the
consumers scheduling preferences to determine if the pro­
vider wishes to manually confirm the optimal time match

55 (step 5077). If not, the scheduling method 141 tests to
determine if the consumer desires notification of the new
scheduled item (step 5078). If so, the scheduling method 141
executes the notification method 141 the consumer has
assigned to new schedule items (step 5079). If there were no

60 schedule matches in step 5076, the scheduling method 141
checks the consumer's scheduling preferences to determine
if the consumer wishes to continue with automatic sched­
uling (step 5080). The consumer may wish to limit
autoscheduling to a specified number of attemps. If not, the

65 scheduling method 141 executes the consumer's designated
notification method 141 for unfulfilled call autoscheduling
requests (step 5081). For purposes of this example, we will

US 6,757,710 B2
141

assume this notification method 141 generates an input form
(step 5082). This input form can present the proposed
schedule times, the consumer's conflicts, proposed
alternatives, and so on. The consumer responds by selecting
one or more proposed schedule times and submitting this
input form (step 5083). If the autoscheduling alternative was
chosen in step 5080, the scheduling method 141 uses the
consumer's scheduling rules 141 and scheduling preferences
147 to determine an optimal schedule time or times for the
phone call (step 5084). Once the schedule time or times are
determined in step 5076, 5083, or 5084, the scheduling
method 141 saves the corresponding schedule objects 110 in
the consumer database 11 (step 5085). The scheduling
method 141 next tests to determine if the scheduling process
is complete (step 5086). If not, the process is repeated
starting with step 5058 (step 5088).

Once a phone call has been scheduled, both the provider
and consumer have copies of the same schedule object 110
in their respective databases 11, 21. Should either need to
reschedule the phone call appointment, they need only edit
the schedule object 110. Any changes will be automatically
transmitted to the other party. Each can assign his/her own
notification methods 141 to the schedule object 110 in order
to receive notification of changes in exactly the manner each
prefers. The schedule object 110 also provides a channel for
communications related to the scheduled phone call. For
example, one party could add a message element (211, FIG.
4) containing an agenda for the phone call, and the other
would receive it automatically. At the time of the phone call,
any elements 143 or other related communications objects or
object components could be recalled automatically by the
respective schedule objects 110. Additionally, the respective
schedule objects 110 can also using event tracking control
and reporting control to log the phone call and prepare call
reports.

This scheduling automation process can be enhanced
through the addition of API functions that allow the pro­
grams 12, 22 to monitor the communications status of the
user. For example, using a telephony API call, the programs
12, 22 could determine if the user was currently on the
telephone or another communications device and therefore
unavailable to directly accept an incoming call. Such API
calls would also allow the programs 12, 22 to contact the
user or forward communications requests via other means,
such as pagers, cellular phones, and so on. Because schedule
objects 110 can carry the elements 143, methods 141, and
rules 140 necessary to communicate with the scheduled user

142
tions objects represent an attractive central repository for
any communications data that must be maintained by the
provider or consumer on their computers 1, 2, or 1302, or on
a local area network to which those computers are con-

s nected. To access the data, metadata, and methods of the
communications objects 110 stored in these databases, an
applications programming interface (API) can be used. An
API defines the methods and method parameters that are
used to request services from another application within a

10 desktop, server, or network operating environment. In a
preferred embodiment, an API for a communications object
system would specify the object services available from a
communications object system program 12, 22, or 1302 in a
format compatible with other industry standards for distrib-

15 uted object system specifications. Examples of such stan­
dards include the DCE and COREA specifications from the
Open Software Foundation and the OLE and DCOM speci­
fications from Microsoft Corporation.

When the provider and consumer programs 12, 22 include
20 an API, other computer applications can be relieved of the

burden of storing, indexing, and maintaining communica­
tions data. For instance, the consumer does not need separate
address books for a personal information manager, a net­
work directory, and an e-mail program. Other applications

25 can also use the API to automate communications operations
using the methods 141 and rules 140 stored in the databases
11, 21, and 1301. A specific example of API usage is the
word processing file transfer process explained in the encod­
ing control section and illustrated in FIG. 21.

30 Object-Oriented Graphical User Interface
As explained above, the programs 12, 22, 1302 in a

communications object system may also employ a user
interface native to the operating system on which the pro­
gram is run. Many computer operating systems, such as

35 Microsoft Windows from Microsoft Corporation, Apple
Macintosh from Apple Computer Corporation, and UNIX
Motif from the Open Software Foundation, provide for
graphical user interfaces. The use of graphical user inter­
faces for computer programs is discussed generally in Alan

40 Cooper, About Face (1994), which is incorporated herein by
reference. A graphical user interface is advantageous to a
communications object system because it allows a user of
the programs 12, 22, 1302 to easily and intuitively manipu­
late visual screen objects in order to create, edit, or delete the

45 underlying communications objects and object associations
in the databases 11, 21, 1301. When used in conjunction with
a communications object system, this represents a uniquely
powerful new interface technique for initiating and control-at any point in time, the programs 12, 22 and any supporting

servers 1310 can take the place of "universal number"
telephone processing systems as described above. Such so
services are further enhanced by the fact that call routing can
place locally at the calling computer 1, 2 instead of at a
remote phone switch or phone server.

ling communications.
User interface structures for an object-oriented graphical

user interface for the combined programs 12, 22 are illus­
trated in FIG. 47. The computer screen 5101 includes one or
more toolbars 5111 together with one or more operating
windows 5121, 5131,5141. The toolbar 5111 uses tool icons This technique for using schedule objects 110 can be

generalized to many forms of scheduling. This includes
business meetings; professional appointments; teleconfer­
ences or videoconferences; television, cable, or video
shows; public seminars; and so on. The specific type of
scheduling use is not a limiting feature of the invention.
Applications Programming Interface (API)

ss 5112 to graphically represent frequently used commands or
editting functions of the programs 12, 22. Similar toolbars
are employed by most popular graphical software programs,
including Microsoft Word from Microsoft Corporation,
Visio from Visio Corporation, and Eudora from Qualcomm

60 Corporation. Examples of functions that can be controlled
by tool icons 5112 include deleting an object (323, FIG. 9),
publishing an object (326, FIG. 9), viewing or editing the
properties of an object (322, FIG. 9), and creating associa-

Communications objects 110 encapsulate communica­
tions data, metadata, and instructions in order to create an
automated communications relationship between the pro­
vider and consumer. Additionally, these sets of data,
metadata, and instructions are automatically maintained by 65

the communications system of the present invention.
Therefore, the databases 11, 21, and 1301 of communica-

tions between selected objects (312, 322, FIG. 9).
The author palette window 5121 allows the user to

visually select different graphical icons for the purpose of
creating or editing different types of communications objects

US 6,757,710 B2
143

or communications object components. Examples shown
include a personal communications icon 5122, representing

144
users can easily share the same workspace. In this case
changes to one user's workspace 5141 would be reflected in
the workspaces of all other users who were consumers of
this workspace 5141. This same technique can be applied to

an individual user communications object 110; a group
communications icon 5123, representing a user group com­
munications object 110; a telephone number icon 5124,
representing a telephone number element 143; a news topic
icon 5125, representing a notification element (201, FIG. 4);

5 object palettes 5121 and user palettes 5131.

an open discussion icon 5126, representing a composite
topic object (1451, FIG. 29B) with a distribution list com­
ponent to which additional recipients 120 can be added; a 10

closed discussion icon 5127, representing a composite topic
object (1451, FIG. 29B) to which additional recipients 120
cannot be added; a response icon 5128, representing a
component response thread object (1461, FIG. 29B) for
adding a response in a discussion group; and a meeting icon 15

5129, representing a schedule object 110 for setting up a
meeting.

Besides drag-and-drop, other features of object-oriented
graphical user interfaces can be advantageous to a commu­
nications object system. This includes the ability to edit the
properties of an object or initiate an action on that object by
using a special button or a special clicking action with a
pointing device. A second feature is the use of graphical
dialog boxes for streamlining user input. Graphical dialog
boxes could be used to replace many of the input forms
required by data exchange methods 141 as described herein.
A third feature is graphical selection-action techniques.
These allow a pointing device to be used to select one or
more screen objects for action by a program command.
Multiple screen objects can be selected by using the pointing

20 device to draw a visual box around them. All of these

The user palette window 5131 allows the user to choose
different screen icons representing other communications
object system users in the databases 11, 21, or 1301. A user
palette allows the user to quickly and easily create recipient
associations (121, FIG. 3) or relationship associations (111,
FIG. 6B) or to take actions on other user objects. Examples
shown include three individual user icons Alice 5132, Bob
5133, and Trent 5134; and three user group icons Marketing 25

5135, Sales 5136, and Development 5137.
The author palette 5121 and user palette 5131 are just

examples of the types of object icon palettes that could be
used. The user may also create his/her own custom palettes.
The specific type of palette used is not a limiting feature of 30

the invention.

techniques are employed by Visio from Visio Corporation,
Visual Basic from Microsoft Corporation, and other object­
oriented editing systems designed for graphical user inter-
faces. All of these techniques could be employed to improve
an object-oriented graphical user interface for a communi­
cations object system.

Having thus described one particular embodiment of the
invention, various alterations, modifications, and improve­
ments will readily occur to those skilled in the art: Such
alterations, modifications, and improvements are intended to
be part of this disclosure, and are intended to be within the
spirit and scope of the invention. Accordingly, the foregoing
description is by way of example only and is not intended as

The workspace window 5141 represents a screen area into
which author objects and consumer objects can be copied
using a mouse or other pointing device in order to manage

35
limiting. The invention is limited only as defined in the
following claims and the equivalents thereto.

a specific set of communications relationships. This
technique, often called "drag-and-drop", is employed in
most operating systems using graphical user interfaces,
including those mentioned above. The technique is specifi­
cally employed in software programs that employ object­
based visual editing for drawing or forms creation, such as 40

Visio from Visio Corporation and Visual Basic from
Microsoft Corporation. In a communications object system
user interface, drag-and-drop operations can be used for
creating, editing, associating, dessociating, or deleting com­
munications objects and communications object campo- 45

nents. For example, a user could create a new open discus­
sion topic 110 by dragging the open discussion icon 5126
into a workspace window 5141. The dragging action would
result in a dialog box prompting the user for the new
properties of the discussion topic object (1451, FIG. 29B). 50

The resulting icon 1542 would then be ready for use. The
user could then add other communications object system
users to this discussion, such as Mary 5146 and Trent 5147,
by dragging by dragging their icons from the user palette
5131 and dropping them on top of the discussion group icon 55

5126. The other examples shown in the workspace 5141
include a closed discussion 5143, two scheduled meetings
5144 and 5145, and a user group 5148 that has been added
to one of the discussions 1542, 1543.

What is claimed is:
1. A computer implemented method comprising:

providing a customer data storing information for a cus-
tomer usable to automatically complete an on-line
purchase of an item from a seller;

providing the customer with information from the seller
with respect to an item;

receiving from the customer an indication to initiate a
purchase transaction for purchasing the item including
metadata associating said customer data with said
transaction;

in response to the received indication, automatically com­
pleting the purchase of an item from the seller by by
processing said metadata associating said customer
data so as to complete the purchase transaction.

2. The computer implemented method of claim 1, wherein
the customer data is maintained as an object.

3. The method of claim 1 processing said metadata
includes processing said metadata to retrieve at least a
portion of said customer data from an associated data store
for use in completing the transaction.

4. The method of claim 1 wherein the customer data is

60 retrieved from a computer of the customer. The user can maintain multiple workspace windows 5141
pertaining to each of the user's areas of communications
interests. For example, a user could organize workspaces by
projects, by departments, by priority, and so on. Workspace
windows 5141 can be represented in the databases 11, 21,
1301 by folders (115, FIG. 3) or another separate workspace 65

object class. Workspace windows 5141 can also be repre­
sented by communications objects 110 in order that multiple

5. The method of claim 1 wherein the customer data is
retrieved from a computer of the seller.

6. The method of claim 1 wherein the customer data is
retrieved from a third party's computer.

7. A computer implemented method comprising:

providing an information provider data storing informa­
tion for an information provider usable to automatically

US 6,757,710 B2
145

complete a proposed on-line transaction, including
metadata associating said information with said trans­
action;

providing the information provider with information from

146
retrieve the information and process the retrieved infor­
mation by processing said metadata associating said
information with the proposed transaction so as to
complete the proposed transaction.

an information consumer with respect to a proposed 5 8. The method of claim 7 wherein the information pro­
vider data is stored in a computer of the information con­
sumer.

transaction;

receiving from the information provider an indication to
complete the proposed transaction;

in response to the received indication, automatically com­
pleting the purchase of an item from the information
consumer by accessing the information provider data to

9. The computer implemented method of claim 7, wherein

10
the information provider data is maintained as an object.

* * * * *

