
(12) United States Patent
Gilpin et al.

(54) RULE BASED CONFIGURATION ENGINE
FOR A DATABASE

(75) Inventors: Kevin E. Gilpin, Austin, TX (US);
Adam R. Stein, Mountain View, CA
(US)

(73) Assignee: Trilogy Development Group, Inc.,
Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 544 days.

(21) Appl. No.: 09/773,101

(22) Filed: Jan. 31, 2001

(51) Int. Cl.7 .. G06N 5/02
(52) U.S. Cl. 706/1; 706/46; 703/19
(58) Field of Search 706/45, 46; 709/317;

703/19

(56) References Cited

U.S. PATENT DOCUMENTS

5,452,239 A * 9/1995 Dai et al. 703/19

I 1111111111111111 11111 111111111111111 IIIII IIIII IIIII IIIII 1111111111 11111111
US006836766Bl

(10) Patent No.: US 6,836,766 Bl
Dec. 28, 2004 (45) Date of Patent:

5,603,031 A * 2/1997 White et al. 709/317

5,809,212 A * 9/1998 Shasha 706/46

* cited by examiner

Primary Examiner-Wilbert L. Starks, Jr.

(74) Attorney, Agent, or Firm-Hamilton & Terrile, LLP;
Kent B. Chambers

(57) ABSTRACT

The invention provides the ability to test rules in a rule­
based system for configuring a product. The configuration
system defines the components of a product using elements
contained in a parts catalog and rules that define relation­
ships between the components of a product. The user
provides test cases that select at least one part to include in
the product configuration, and the configuration tester pro­
cesses the rule to determine whether the at least one part
selected in the test case conflicts with the plurality of parts
previously included in the product configuration.

71 Claims, 7 Drawing Sheets

/130

PROCESSOR
132

HOST BUS

148

GRAPHICS
DEVICE

154
2XAGP

BUS
159

STORAGE DEVICE
CONTROLLER

NETWORK
INTERFACE

HOST-TO-PC/
BRIDGE

160

USB

/DE

PCI-TO-ISA
BRIDGE

162

ISABUS

144

134

PC/SLOTS

158

U.S. Patent Dec. 28, 2004 Sheet 1 of 7

HOST BUS

148

LEVEL TWO
CACHE

150

PROCESSOR
132

, GRAPHICS 2XAGP HOST-TO-PC/
BRIDGE

160
DEVICE

154 BUS
159

138 STORAGE DEVICE

140

CONTROLLER

PC! BUS

NETWORK
INTERFACE

USB

JOE

/SA BUS

PC/-TO-/SA
BRIDGE

146

144 l/0
DEVICES

FIG. 1

142

AUDIO
CONTROLLER

PC/ SLOTS

/SA SLOTS

US 6,836,766 Bl

/130

134

MAIN
MEMORY

136

156 152

158

PARTS
~/JT.IJ/ nr,
vr 1 r r 11-v \.A

MAINTENANCE

/202

/208

PART
RELATIONSHIPS

PRODUCT
DEFINIT/ON(S)

FIG. 2

/200

CONFIGURATION

/204

/212

TI PRODUCT
SPECIFICATION/

V VERIFICATION

d
•
r:JJ.
•
~
~
~ =

~
~

ri
N

~CIO

N
0
0
,i;;..

'JJ.

=-~
~
N
0,
-..J

U.S. Patent Dec.28,2004 Sheet 3 of 7 US 6,836,766 Bl

/300

/302 /306

Configuration
Tester GUI

I----- - - --- Test Cases

l /304

New Rules

1

Configuration Engine.,/"312

Parts Catalog____..206

Parts Relationships-208
Product Definitions -210

Product SpecificationNerification -212

Configuration Tester Modules.,/"31 4

Driver and Listener ___,.,,. 316

Debug Engine - 318
Explainer - 320

FIG. 3

DRIVER & LISTENER
• MAKES SELECTIONS
• RECEIVES STATE CHANGE EVENT

STATE CHANGE EVENTS

DEBUG ENGINE
• PROCESS RULES IN RESPONSE TO

SELECTIONS

EXPLAJNER
-----~ • CONVERTS EVENT --v REPRESENTATION INTO

PART SELECTIONS

HUMAN-READABLE
FORM

• FIRES EVENTS AS STATE CHANGES OCCUR

FIG. 3A

d
•
r:JJ.
•
~
~

CAUSE/EFFECT 1
......

}LEVEL 1
~ =

~

}LEVEL 2

~

ri
N

~CIO

N

CAUSE/EFFECT 3 CAUSE/EFFECT 2 0
0
,i;;..

}LEVEL 3
'JJ.

=-~
~
Ul
0,
-..J

CAUSE/EFFECT 4

FIG. 38

CAUSE/EFFECT 1 CAUSE/EFFECT 2

l l
CAUSE/EFFECT 3 LOOKAHEAD CAUSE/EFFECT 4. 1

! !
LOOKAHEAD CAUSE/EFFECT 4.2 LOOKAHEAD CAUSE/EFFECT 4.3

~ /
LOOKAHEAD CAUSE/EFFECT 4.4

I
LOOKAHEAD CAUSE/EFFECT 4.5

/
CAUSE/EFFECT 5

FIG. 3C

CAUSE/EFFECT 1 CAUSE/EFFECT 2 LOOKAHEAD CAUSE/EFFECT 4. 1

I j l l
LOOKAHEAD CAUSE/EFFECT 4.2 LOOKAHEAD CAUSE/EFFECT 4.3

CAUSE/EFFECT 3

\
LOOKAHEAD CAUSE/EFFECT 4

I ~ /
LOOKAHEAD GAUSE/EFFECT 4.4

CAUSE/EFFECT 5 l
LOOKAHEAD CAUSE/EFFECT 4.5

FIG. 3D

US 6,836,766 Bl
1

RULE BASED CONFIGURATION ENGINE
FOR A DATABASE

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates generally to computerized config­

uring systems. More specifically, this invention relates to a
system and method for testing the compatibility of parts
included in a configuration.

2. Description of the Related Art
Many products are comprised of individual parts or

components. Currently, configuring systems, also referred to
as configuration engines, are available that allow a user to
configure a product by interactively selecting components
from among various groups based on availability and com­
patibility of features and options for the product. One known
system is described in U.S. Pat. No. 5,825,651, entitled
"Method and Apparatus For Maintaining and Configuring
Systems," issued Oct. 20, 1998, (hereinafter the "'651
patent"), which is assigned to the same assignee as the
present invention, and is hereby incorporated by reference.

2
SUMMARY

The invention provides in one embodiment the ability to
test rules in a rule-based system for configuring a product.
A configuration system defines the components of a product

5 using elements contained in a parts catalog and rules that
define relationships between the components of a product.
The user provides test cases that select at least one part to
include in the product configuration, and the configuration
tester processes the rule to determine whether the at least one

10 part selected in the test case conflicts with the plurality of
parts previously included in the product configuration.

In one embodiment, the invention provides a method of
testing a product configuration in a system for generating

15
product configurations that include a variety of component
parts. The configuration system includes one or more rules
that define a relationship between at least two parts. The
method includes entering a test case that selects at least one
part to include in the product configuration. The system then

20
processes the rule to determine whether part selected in the
test case conflicts with parts that are already included in the
product configuration, that is, whether the rule conflicts with
other rules.

In one embodiment of a configuration system disclosed in
the '651 patent, a framework for defining a product line 25
includes a set of related components that are selected from

To test new rules, one embodiment of the invention
initializes the configuration system with a part state and
inputs at least one part selection as specified in the test case.

a parts catalog. A product might consist of several hundred
individual parts that are organized into part groups and are
available on one or more of a number of products. A product
is modeled by describing which parts and part groups are 30
available in that product and which choices must be made
from within the part groups, and then by writing additional
rules that describe part-to-part relationships which are not
modeled by the product structure. A compiler converts the
product structure and the rules into four rule types: includes 35
(parts that are included by default), excludes, removes, and
requires choice (a choice among a group of parts that must

A component referred to as a "listener" detects state change
events that result in the system being in the initialized part
state. Another component of the invention generates a cause
that explains the part state in terns of the state change event,
and generates a new part state for each part associated with
the cause. The invention then determines the cause or causes
that explain the new part states in terms of the state change
event.

One feature of an embodiment of the invention generates
a cause tree wherein the root of the cause tree is the initial
part state, and "leaves" of the tree are the user's selections
of parts.

Another component of an embodiment of the invention is
be made to achieve a valid configuration). Parts may also be
classified as optional which signifies that they can be option­
ally included in the configuration.

After compilation, there may be several hundred, several
thousand, or even more of these rules. When the system
loads the model, all parts and products should initially be in

40 an "explainer" which generates an explanation of the part
state wherein the part selections are the root of the expla­
nation and the causes follow from the part selections. The
explanation(s) are based on selection of a part, execution of

a "selectable" state, which means that the client or user is
allowed to choose them. When the client selects a part, that 45
part is put in the "selected" state. Parts that are included by
the selected parts enter the "included" state, and parts that
are excluded by the selected parts enter the "excluded" state.
Parts that were previously included but are removed by a
"removes" rule are in the "deleted" state. Each part must 50
always be in exactly one state. Parts that are selected by a
user or are included are referred to as "selected". Parts that
are excluded or deleted are referred to as "not selectable".

a rule, a part being in two states at the same time, a requires
choice rule that cannot be satisfied, or on a look ahead
process. To provide an explanation of how the system
arrived at a particular part state, the invention sorts the tree
by iteration number, wherein the iteration number of a part
state is determined by measuring the longest distance
between the part state and the cause corresponding to the
part state.

In another embodiment, the invention is distributed as an
article of manufacture, namely a computer usable medium
having computer readable program code embodied therein As product models grow in size and complexity, configu­

ration errors may occur when a rule or series of rules is not
properly defined and produces an undesired effect, such as
the exclusion of a part that should be selectable. Configu­
ration errors may also occur when a series of improperly
defined rules causes a part to be in more than one state at the
same time, such as "included" and "excluded", or "selected"
and "deleted".

55 for testing a product configuration in a system for generating
product configurations. The system includes at least one rule
defining a relationship between at least two parts, and the
product configuration includes a plurality of parts.

For large models, such errors may be difficult to find due
to the large number of rules in the model, the unexpected
effects of some configuration operations, and the complex
interactions between rules. It is therefore desirable to have
an automated testing tool to locate and analyze configuration
errors, so that the rules may be corrected.

The computer readable program code is configured to
60 cause a computer to allow a user to enter a test case, wherein

the test case selects at least one part to include in the product
configuration. The program code then causes a computer to
process the at least one rule to determine whether the at least
one part selected in the test case conflicts with the plurality

65 of parts previously included in the product configuration.
This is accomplished by the computer readable program
code causing a computer to initialize the system with a part

US 6,836,766 Bl
3

state, to input the part selection to the system; and to listen
to state change events in the system to detect when a state
change event occurs that results in the system being in the
initialized part state.

The program code then causes a computer system to
determine the cause or causes that explain the new part states
in terms of the state change event.

One feature of the program code causes a computer to
generate a cause tree wherein the root of the cause tree is the
initial part state, and "leaves" of the tree are the user's
selections of parts.

Another component of the program code causes a com­
puter to execute a component referred to as an "explainer"
which generates an explanation of the part state wherein the
part selections are the root of the explanation and the causes
follow from the part selections. The explanation(s) are based
on selection of a part, execution of a rule, a part being in two
states at the same time, a requires choice rule that cannot be
satisfied, or on a look ahead process. To provide an expla­
nation of how the system arrived at a particular part state, the
invention sorts the tree by iteration number, wherein the
iteration number of a part state is determined by measuring
the longest distance between the part state and the cause
corresponding to the part state.

The foregoing has outlined rather broadly the objects,
features, and technical advantages of the present invention
so that the detailed description of the invention that follows
may be better understood.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system with
which the present invention may be utilized.

4
is loaded into main memory 136. The operating system
manages the resources of computer system 130, such as
CPU 132, audio controller 142, storage device controller
138, network interface 140, 1/0 controllers 146, and host bus

5 134. The operating system reads one or more configuration
files to determine the hardware and software resources
connected to computer system 130.

During operation, main memory 136 includes the oper­
ating system, configuration file, and one or more application

10
programs with related program data. Application programs
can run with program data as input, and output their results
as program data in main memory 136 or to one or more mass
storage devices through a memory controller (not shown)
and storage device controller 138. CPU 132 executes one or
more application programs, including one or more programs

15 to establish a connection to a computer network through
network interface 140. The application programs may be
embodied in one executable module or may be a collection
of routines that are executed as required. Operating systems
commonly generate "windows", as well known in the art, to

20 present information about or from an application program,
and/or to allow a user to interact with an application pro­
gram. Each application program typically has its own win­
dow that is generated when the application program is
executing. Each window may be minimized to an icon,

25 maximized to fill the display, overlaid in front of other
windows, and underlaid behind other windows.

Storage device controller 138 allows computer system
130 to retrieve and store data from mass storage devices
such as magnetic disks (hard disks, diskettes), and optical

30 disks (DVD and CD-ROM). The information from the
DASD can be in many forms including application programs
and program data. Data retrieved through storage device
controller 138 is usually placed in main memory 136 where
CPU 132 can process it.

FIG. 2 is a block diagram of an embodiment of a
maintenance and configuration system with which the 35

present invention may be utilized.

One skilled in the art will recognize that the foregoing
components and devices are used as examples for sake of
conceptual clarity and that various configuration modifica­
tions are common. For example, audio controller 142 is
connected to PCI bus 156 in FIG. la, but may be connected

FIG. 3 is a block diagram of a maintenance and configu­
ration tester system according to an embodiment of the
present invention.

FIG. 3a is a block diagram of configuration tester modules
included in an embodiment of the present invention.

FIG. 3b is a diagram of an example of a cause/effect tree.

FIG. 3c is a diagram of an example of a lookahead subtree
embedded within a cause/effect tree.

FIG. 3d is a diagram of an example of a lookahead subtree
collapsed to a single node in the cause/effect tree.

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent
to those skilled in the art by referencing the accompanying
drawings. The use of the same reference symbols in different
drawings indicates similar or identical items.

DETAILED DESCRIPTION

A method and apparatus for testing a system for main­
taining and configuring products is described. The present
invention can be implemented on a general purpose com­
puter system 130 such as illustrated in FIG. 1. Computer
system 130 may be one of many workstations or servers
connected to a network such as a local area network (LAN),
a wide area network (WAN), or a global information net­
work such as the Internet through network interface 140.

CPU 132 can be constructed from one or more micro­
processors and/or integrated circuits. Main memory 136
stores programs and data that CPU 132 may access. When
computer system 130 starts up, an operating system program

40 to the ISA bus 138 or reside on the motherboard (not shown)
in alternative embodiments. As further example, although
computer system 130 is shown to contain only a single main
CPU 132 and a single system bus 134, those skilled in the
art will appreciate that the present invention may be prac-

45 ticed using a computer system that has multiple CPUs 132
and/or multiple busses 134. In addition, the interfaces that
are used in the preferred embodiment may include separate,
fully programmed microprocessors that are used to off-load
computationally intensive processing from CPU 132, or may

50 include input/output (1/0) adapters to perform similar func­
tions. Further, PCI bus 156 is used as all exemplar of any
input-output devices attached to ally 1/0 bus; AGP bus 159
is used as an exemplar of any graphics bus; graphics device
154 is used as an exemplar of any graphics controller; and

55 host-to-PCI bridge 160 and PCI-to-ISA bridge 162 are used
as exemplars of any type of bridge. Consequently, as used
herein the specific exemplars set forth in FIG. 1 are intended
to be representative of their more general classes. In general,
use of any specific exemplar herein is also intended to be

60 representative of its class and the non-inclusion of such
specific devices in the foregoing list should not be taken as
indicating that limitation is desired.

The invention detects and analyzes configuration errors in
a system for configuring products such as described in the

65 '651 patent. A brief description of the '651 patent is pro­
vided in the following paragraphs as background for under­
standing the present invention.

US 6,836,766 Bl
5

Brief Description of the '651 Patent
6

Configuration engine 204 evaluates the current state of a
configuration based on product definitions 210, part rela­
tionships 208, and state information. After receipt of input
from a user, product specification/verification 212 evaluates

5 relationships in both the forward and backward direction.

Referring to FIG. 2, one embodiment of configuration
engine 200 disclosed in the '651 patent is shown Configu­
ration engine 200 is rule-based, and includes maintenance
environment 202 and configuration environment 204. Main­
tenance environment 202 includes zero or more individual
parts, or components, in parts catalog 206. Part relationships
208 defines relationships between a first set of parts and a
second set of parts so that when all of the members of the
first set of parts are selected, the relationship between the

10
two sets is enforced on the parts in the second set. A set of
parts can include multiple parts. The incorporation of parts
in a set can be arbitrary. That is, a multi-part set can contain
parts that are otherwise unrelated. For example, for the
purpose of configuring an automobile, a set can contain parts
such as an engine, sun roof, and a color. These parts seem to 15

be unrelated, but they can be combined into a part relation­
ship 208 for purposes of forming a relationship using an
embodiment of configuration engine 200.

In one embodiment there are four kinds of part relation­
ships 208 between parts: requires choice, includes, 20

excluded, and removes. An included part is included auto­
matically. A part is excluded from the configuration when its
inclusion would result in an invalid configuration. A part
may be removed when another part is added. Thus, when a
first part exists in the configuration and a second part is 25

added, the first part is removed from the configuration if
there is a conflict. The requires choice relationship is used to
allow a set of choices to be made from a group of parts. The
number of parts chosen is limited to a valid bounds speci­
fication. The relations that are created between parts within 30

a product are enforced only on that particular product.
However, if some part relationships 208 are to be enforced
on all products within a product line, then the relations are
generated once and enforced for all products.

One or more product definitions 210 are generated by a 35

population of component parts. Using configuration engine
200, a user can configure a product given product definitions
210 and part relationships 208 associated with product
definitions 210. Configuration environment 204 accepts a
configuration user's input and processes it in product 40

specification/verification 212 to verify the product
configuration, and to update the specification based on the
user's input, or to notify the user that the input is invalid
based on product definitions 210 and user selections.

A graphical user interface (GUI) is used to allow the user 45

to interactively generate product definitions 210. GUI opera­
tions such as drag, drop, and selection operations can be
used to specify product definitions 210.

Forward and backward evaluations can result in the addition
or deletion of elements from the product configuration.

During configuration, information is stored in tables and
vectors. Configuration engine 200 represents elements in a
configuration (e.g., product, part, and group) as bits in a bit
vector. Thus, for example, a vector includes a number of bits
is equal to the total number of elements. An element's bit can
be set or reset to specify the state of the element in the
current configuration. For example, a user vector can be
used that specifies for each element whether the element has
been selected by the user during the configuration. In
addition, excluded and removed vectors identify whether an
element is excluded or removed (respectively) from a con­
figuration. Vectors can be used to identify whether an
element 1) has been selected (by the user or the configura­
tion system), 2) is selectable, and 3) not selectable.

Tables contain element relationships. A table is used to
represent the includes, excludes, removes, and requires
choice relationships, for example. Each table has a left-hand
side and a right-hand side that corresponds to the left-hand
and right-hand sides of a relationship. In each case, the
left-hand side is a bit vector that contains bits corresponding
to elements. The includes, excludes and removes tables
contain a bit vector in the right-hand side that represents
configuration elements. The right-hand side of the requires
choice table is a pointer that points to an entry in a group
table. The group table entry is a bit vector that identifies the
elements that are contained in the group from which a choice
is to be made. The right-hand side of a requires choice table
entry further includes minimum and maximum designations.
Minimum and maximum values identify the minimum and
maximum number of group members that are to be selected
to satisfy a requires group relationship.

The bit vector implementation of relationships and inter­
nal runtime state allows for fast and efficient computation of
relationship-based configuration. A comparison of bits can
be performed in one machine instruction in most cases.

There are many ways that errors can be introduced into a
configuration, however, the effects of these errors can be
categorized in 2 groups:

1) A part is put in a state which was not intended by the
user (state error), or

2) A part is put in more than one state at the same time
(exception error).

Errors may be caused by a single rule, or by a chain of
rules. Complex errors are often caused by a "look ahead"
process included in product specification/verification 212
that test-selects each product (if more than one product is
selectable) to make sure that it is in fact selectable. The

Relationships associated with items contained in product
definitions 210 are evaluated when user input is received. 50

Configuration engine 200 determines which relationships
are active and inactive given the user input. A relationship is
active when all the items in a product's product definition
210 are selected. A relationship is inactive until all of the
parts in a product's product definition 210 are selected.

Configuration engine 200 is used to configure a product
using a definition created by the maintenance environment
202. Configuration environment 204 ensures that the current
configuration state is always valid. The user can select and
unselect parts in any order. When user input is received, 60

product specification/verification 212 validates the input
based on the current state of the configuration. In addition,
the product specification/verification 212 identifies selec­
tions that could cause a valid configuration to become
invalid. Product specification/verification 212 removes these 65

selections from the set of possible selections so that the user
does not make an invalid selection.

55 look-ahead process helps insure that the state of a product is
not reported as selectable when selection of that product
would lead to a rule conflict. The look-ahead process also
determines the sets of parts that are excluded or deleted by
every selectable product.

Further errors may arise with requires choice rules, which
typically require that between some minimum (min) and
maximum (max) number of choices must be made from a set
of parts. For example, there is always an implicit requires
choice rule that specifies that at least exactly one (min/max=
1/1) part must be selected for a product. Requires choice
rules are complex to evaluate because they may cause many
kinds of inferences. In general, there is no way to determine

US 6,836,766 Bl
7

whether a selectable part is actually selectable without
selecting it and checking to see whether it causes a conflict.
In order to ensure that each selectable part is not going to
cause such a conflict, configuration engine 200 would have
to select a selectable part after each user selection, which is
too computationally expensive. The following examples of
each type of error illustrate the problem.
State Errors

8
product definitions 310. For example, test cases 306 may
describe the selection of a product and several parts. It may
then ensure that some other set of parts is excluded, and a
third set is included. An example of a test case in test cases

5 306 is:

Select ProductA

Select PartA

The simplest types of state errors are caused when a rule
has been accidentally omitted or written. For example, the 10

user may select PartA and PartB, and then note that 'PartC'

Ensure that (PartB, PartC) are excluded

Ensure that (PartD) is included

Once test cases 306 are written, configuration tester
modules 314 run each test case 306 and verify that the tested
parts are in the right state. If a test fails, configuration tester
modules 314 determine why a part is in a certain state and

is excluded rather than selectable. In the simplest case, this
may be due to the following rule in the model:

PartA Excludes PartC
Or, there may be a rule:

PartA Requires Choice (min/max=l/1) {PartB, PartC}
Here, selecting PartAimplies that either PartB or PartC must
be selected. Selecting PartB causes configuration engine 200
to infer that PartC must be Excluded. Alternatively, multiple
rules may cause a state change, for example:

PartA Includes PartX PartX Excludes PartC
Here, selecting PartA causes PartX to be included, which
then causes PartC to be excluded.

State errors can also be caused by the look-ahead process.
Suppose the following rules are written:

ProductA Excludes PartA
ProductB Includes PartB
ProductB, PartB Excludes PartA
ProductC RequiresChoice (min/max=l/1) PartA, PartC
ProductC Includes PartC

Even if the user has not made any selections, PartA will be
excluded by the look ahead process for each of products A,
B, and C. Detecting state changes that are caused by the
look-ahead process is particularly difficult because for each
product there may be a different rule chain or exception error
that causes the state error.
Exception Errors

Sometimes, rules may be inadvertently written that cause
a conflicting state exception. The simplest case can be
summed up by the rules:

PartA includes PartB
PartB excludes PartA

If PartA is selected, then PartB will be Included. But then the
second rule causes PartA to be excluded. This conflicting
state cannot be reconciled, and an exception is raised.

Most exception conditions are more complex than this
one. For example, selecting a part that is in a requires choice
rule may cause the requires choice rule to be unsatisfiable as
follows:

PartA requires choice (min/max=l/1) {PartB, Part C}
PartB includes PartC

In the preceding rules, if PartA is selected, selecting PartB
will cause an exception error because the requires choice
rule will not be satisfiable.
Configuration Testing

FIG. 3 shows an embodiment of the present invention for
configuration tester system 300 that includes several com­
ponents for detecting and analyzing configuration errors.
One component is configuration tester graphical user inter­
face (CTGUI) 302 that enables users to enter new rules 304
and define test cases 306 that describe the expected behavior
of their models to test the configuration. New rules 304 are
input to parts relationships 308 and product definitions 310

15 explain the state as described below. The database of pre­
existing rules can then be modified to correct errors found by
configuration tester modules 314.

Configuration tester modules 314 include driver and lis­
tener module 316, debug engine 318, and explainer 320.

20 FIG. 3a shows interrelationships of configuration tester
modules 314 including types of data communicated between
driver and listener 316, debug engine 318, and explainer
320, during operation. Driver and listener 316 selects parts
from test cases 306 and sends the part selections to debug

25 engine 318.
Debug engine 318 processes new rules 304 using the part

selections, and sends state change events to driver and
listener 316 as state changes result from the rules executing,
exceptions occurring, and execution of the look ahead

30 process. In the '651 patent, configuration engine 200 (FIG.
2) is optimized for very high performance. In one
embodiment, configuration tester system 300 includes com­
ponents of configuration engine 200 such as parts catalog
206, parts relationships 208, product definitions 210, and

35 product specification/verification 210. Configuration tester
system 300 can run in test mode or normal mode so that no
performance penalties are imposed when operating configu­
ration tester system 300 in normal mode. This is accom­
plished by executing all features and components of con-

40 figuration tester system 300 from debug engine 318, which
is only used in test mode.

The application program interface (API) to debug engine
318 includes program instructions to include new rules 304

45
with existing rules in parts relationships 208 and product
definitions 210, and to run test cases 306 through product
specification/verification 210. Debug engine 318 presents
the same API as the normal mode of configuration engine
200 for selecting parts. CTGUI 302 is used to specify which

50
test cases to run. Whenever a condition occurs that causes a
part state change, debug engine 318 detects this condition
and transmits an appropriate notice to driver and listener 316
for the listener portion to handle and interpret the events.

Driver and listener 316 listens to the state change events

55 and constructs a tree of the rule chains that are executing in
debug engine 318 and resulting states. When a state error
occurs, driver and listener 316 executes a driver to recreate
the error condition for the part for which the state error
occurred, along with all the part selections that caused the

60 error to occur. The combination of the part and its state is
represented by a part state.

in configuration engine 312. Test cases 306 describe one or
more sets of selections that should be made, and sets of parts 65

and their expected states based on new rules 304, as well as
rules previously included in parts relationships 308 and

In one embodiment, the part-state includes an identifier
for the part, the state of the part, the selections which have
been made (which are always a subset of the total user
selections), and, optionally, the product for which lookahead
is currently being run. For example, a part-state may repre­
sent:

US 6,836,766 Bl
9 10

Part A is included after selecting Part X and Part Y,

or

Part B is excluded with no selections during lookahead on
Product X.

Each part-state also has a Cause, which is initially null.
Configuration tester system 300 determines the Cause of the
part state (a rule firing, an exception, a user selection, etc)
and sets the Cause of the part-state.

5

PartState
Part:A
State: Included

Cause
Type: Rule
Rule: X, Y Includes A

PartState
Part:X
State: UserSelected

Cause
Type:
UserSelection

PartState
Part:Y
State: UserSelected

Cause
Type:
UserSelection

Driver and listener 316 interfaces with debug engine 318. 10

The driver portion of driver and listener 316 starts submit­
ting the part selections that led to the error until a state
change event occurs that recreates the error condition. The
listener portion of driver and listener 316 is responsible for
handling the state change events. It may happen as a result

15 Each PartState points to its Cause. If the Cause is a
RuleCause, the Cause points to the parts that caused the
rules to fire and their state is in turn explained with Cause
objects.

of any of the following:

1) A user selection

2) A rule executing

3) A rule conflict (exception error)

4) Operation of the look ahead process
In each case, the driver generates a cause, which repre­

sents the event and the state change that resulted from it.
Then, based on this new information, further analysis to
explain the part state may be required to explain the error in
accordance with the following summary:

Cause

User Selection
Rule Executing

Explanation
Complete?

Yes
No

Conflicting State Exception No
(part is in 2 states at the
same time)
Unsatisfiable requires
choice exception

Look ahead process

No

No

Next steps

Determine why the rule
executed
Explain each of the conflict­
ing states

Determine why the requires
choice rule executed, and
explain the state of the parts
that caused it to be
unsatisfiable
Explain the state of the part in
each selectable product

Driver and listener 316, and debug engine 318, are
recursive. The driver portion of driver and listener 316 is
initialized with a single part state, along with a set of user

Explainer 320 converts the tree into a format that readily
20 allows the user to visualize the rules that are causing an

erroneous result in the configured product. The root of the
tree is the initial goal part state, and the leaves of the tree are
the user's selections of parts. It is more intuitive to the user,
however, to see the part selections as the root of the

25 explanation, and then the chain of causes that follow from
these selections. Accordingly, explainer 320 accepts the tree
as input, and generates a description of the sequence of
events by modeling the logical operation of configuration
engine 312, not the literal sequence of actions. This is

30 because converting the tree requires more than post-order
traversal, which only provides a trace of the state of con­
figuration engine 312. Logically, configuration engine 312
operates in a series of cause-and-effects iterations. In each
iteration, configuration engine 312 first determines which

35 rules should execute, and then applies the results of those
rules to the current state of the configuration. The process
then repeats until the internal state of the configuration is no
longer changing with each iteration. At this point, equilib­
rium is reached, and configuration engine 312 is ready to

40 once again receive another selection of a part as input.
Explainer 320 determines the stem for each cause in a

given iteration from part states in previous iterations, and
determines the cause for each part state in the same iteration.
This provides a mechanism for grouping and sorting the tree

45 by iteration. In the simple case, the iteration number of a
given part state is determined by measuring the longest
distance between a part state and a leaf cause. For any given
node in the cause/effect tree, the distances between that node

selections. The user selections are specified in the test case.
50

The driver inputs each user selection one by one, until the

and all the leaves of the tree that connect to that node can be
counted. The maximum of this set of values is the maximum
depth of the node, which is also the iteration number for that
cause/effect. FIG. 3b shows an example of a cause/effect tree
where the maximum depth of cause/effect 4 is two (2) (level

listener gets a state change event that explains the part state.
Then the listener generates a cause that explains the part
state in terms of the event. The listener also generates a new
part state for each part associated with the cause. Then driver 55

and listener 316 start over to find the causes that explain the
new part states. Eventually, all part states can be explained
in terms of a user selection. The explanation of the original
part state is thus represented by a tree of causes and part
states. The original part state is the root of the tree. The 60

second level of the tree, i.e., the leaves, consist of the causes
that caused the root part state. The next level is the part states
that caused the causes, and so on.

For example, in one embodiment, suppose the task is: 65

Explain why A is Included if X and Y are UserSelected. The
tree might look like this:

3 minus level 1).
Consider, for example, the following set of rules:

1) A includes X

2) B excludes Y
3) A,C,X require Y,Z
And the following sequence of events:

1) User picks A
2) Rule 1 brings in part X

3) User picks B

4) Rule 2 excludes Y

5) User picks C

6) Rule 3 includes Z

US 6,836,766 Bl
11 12

and analog communications links, as well as media storage
and distribution systems developed in the future.

Additionally, the foregoing detailed description has set
forth various embodiments of the present invention via the

There are several things to notice in this example. First,
the order of user selections is irrelevant with regard to the
logical operation of configuration engine 312 is concerned.
Also, the order of execution of rules 1 and 2 is irrelevant.
These details are abstracted away when the sequence of
events is broken into logical rounds:

Round 1: User selects A, B, C
Round 2: Rule 1 includes X Rule 2 excludes Y
Round 3: Rule 3 includes Z

5 use of block diagrams, flowcharts, and examples. It will be
understood by those within the art that each block diagram
component, flowchart step, and operations and/or compo­
nents illustrated by the use of examples can be implemented,

The latter description eases understanding the logical flow 10

of configuration engine 312, and better highlights the depen­
dencies between user actions and rules. This is especially
true in situations involving more complex series of rules. For
the preceding example, the latter representation makes it
immediately clear that the activations of rules 1 and 2 are not 15

causally linked events, whereas the first representation
leaves open the possibility that rule 2 executes as a conse­
quence of rule 1.
Complications Caused By Look Ahead

In the look ahead process, configuration engine 312 20

makes a series of selections to determine what would happen
if the user chose particular parts. Many rules can execute
within a particular look ahead scenario, but eventually all of
these rule executions are retracted, and the results of the look
ahead process are applied to the current product being 25

configured. Therefore, an entire look ahead event happens
within an individual round of configuration engine 312
activity, even though the look ahead event itself may contain
many rounds of executing rules. The recursive aspect of the
causes and part states tree is taken into account to invert the 30

causes and part states tree with explainer 320. Essentially,
explainer 320 regards look ahead events as branches within
the main tree, and collapses them down to single nodes when
calculating the proper round in which to place a given cause
or part state. An example of what happens during look ahead 35

is: given two products, Pl and P2, and the rules 'Pl excludes
N, 'P2 excludes N, Lookahead internally selects each
selectable product in turn, and determines whether there are
any parts which are excluded by all products. In this
example, A would be excluded by lookahead. To the 40

explainer, this can be summarized as 'A is excluded by
Lookahead', but within each product, the rules provide a
further cause.

FIGS. 3c and 3d show how lookahead nodes are collapsed
to a single node of the main cause/effect tree. Specifically, 45

FIG. 3c shows lookahead nodes 4.1 though 4.5 expanded
within the main cause/effect tree 322, while FIG. 3d shows
lookahead subtree 324 collapsed into lookahead cause/effect
4 in main cause/effect tree 326.

In one embodiment, Explainer 320 is designed in an 50

object-oriented fashion that allows key elements of the
process to be overridden to provide specialized behavior.
For example, some configuration models are generated
automatically from known product data descriptions or other
sources. Explainer 320 can be overridden to trace explana- 55

tions all the way back to these original rule sources.
Explainer 320 can also be overridden to integrate data from
historical logs or databases, as well as data input by the user.

The present invention has been described in the context of
a fully functional computer system, however those skilled in 60

the art will appreciate that the present invention is capable
of being distributed as a program product in a variety of
forms, and that the present invention applies equally regard­
less of the particular type of signal bearing media used to
actually carry out the distribution. Examples of signal bear- 65

ing media include: recordable type media such as floppy
disks and CD-ROM, transmission type media such as digital

individually and/or collectively, by a wide range of
hardware, software, firmware, or any combination thereof.
In one embodiment, the present invention may be imple-
mented via Application Specific Integrated Circuits
(ASICs). However, those skilled in the art will recognize
that the embodiments disclosed herein, in whole or in part,
can be equivalently implemented in standard integrated
circuits, as a computer program running on a computer, as
firmware, or as virtually any combination thereof and that
designing the circuitry and/or writing the code for the
software or firmware would be well within the skill of one
of ordinary skill in the art in light of this disclosure.

While the invention has been described with respect to the
embodiments and variations set forth above, these embodi­
ments and variations are illustrative and the invention is not
to be considered limited in scope to these embodiments and
variations. Accordingly, various other embodiments and
modifications and improvements not described herein may
be within the spirit and scope of the present invention, as
defined by the following claims.

What is claimed is:
1. A method of using a computer system to test a product

configuration for configuration errors, wherein the product
configuration is stored as electronic data in a computer
system for generating product configurations, the computer
system including at least one rule defining a relationship
between at least two parts, the product configuration includ­
ing a plurality of parts, the method comprising:

entering a test case into the computer system to detect
configuration errors in the product configuration,
wherein the test case includes data to change the
product configuration;

processing the test case with the computer system in
accordance with the at least one rule to detect whether
the change in the product configuration, as a result of
processing the test case in accordance with the at least
one rule, produced a configuration error in the product
configuration; and

generating explanation data with the computer system to
provide an explanation of any detected configuration
error in the product configuration.

2. The method, as set forth in claim 1, wherein processing
the test case, further includes:

initializing the computer system with a part state;

inputting at least one part selection to change the product
configuration; and

listening to state change events in the system to detect
when a state change event occurs that results in the
computer system being in the initialized part state.

3. The method, as set forth in claim 2, wherein generating
explanation data, further includes:

generating explanation data that explains the part state in
terms of the state change event.

4. The method, as set forth in claim 3, wherein processing
the test case, further includes:

generating a new part state for each part associated with
the chance in the product configuration.

US 6,836,766 Bl
13

5. The method, as set forth in claim 4 wherein processing
the test case further includes:

determining causes that explain the new part states in
terms of the state change event.

6. The method, as set forth in claim 5 wherein generating 5

explanation data further comprises:

generating a cause tree wherein the root of the cause tree
is the initial part state and leaves of the tree are the
user's selections of parts.

7. The method, as set forth in claim 6 wherein generating 10

explanation data comprises further comprises:

generating an explanation of the part state wherein the
part selections are the root of the explanation data and
the causes follow from the part selections.

15
8. The method, as set forth in claim 7, further comprising:

sorting the tree by iteration number, wherein the iteration
number of a part state is determined by measuring the
longest distance between the part state and the cause
corresponding to the part state. 20

9. The method, as set forth in claim 1, wherein the
explanation data is based on selection of a part.

10. The method, as set forth in claim 1, wherein the
explanation data is based on execution of a rule.

11. The method, as set forth in claim 1, wherein the 25
explanation data is based on a part being in two states at the
same time.

12. The method, as set forth in claim 1, wherein the
explanation data is based on a requires choice rule that
cannot be satisfied.

13. The method, as set forth in claim 1, wherein the
explanation data is based on a look ahead process.

14. The method as set forth in claim 1 wherein the test
case further comprises data to:

select a product;
select at least one part; and
generate a part state of the selected part based on one or

more rules.

30

35

14
relationship between at least two parts, the product configu­
ration including a plurality of parts, the code comprising:

computer readable program code configured to cause the
computer system to allow a user to enter a test case into
the computer system to detect configuration errors in
the product configuration, wherein the test case
includes data to change the product configuration;

computer readable program code configured to cause the
computer system to process the test case with the
computer system in accordance with the at least one
rule to detect whether the change in the product
configuration, as a result of processing the test case in
accordance with the at least one rule, produced a
configuration error; and

computer readable program code configured to cause the
computer system to generate explanation data with the
computer system to provide an explanation of any
detected configuration error in the product configura­
tion.

21. The article of manufacture, as set forth in claim 20,
further including:

computer readable program code configured to cause the
computer system to initialize the computer system with
a part state;

computer readable program code configured to cause the
computer system to input at least one part selection to
change the product configuration; and

computer readable program code configured to cause the
computer system to listen to state change events in the
system to detect when a state change event occurs that
results in the system being in the initialized part state.

22. The article of manufacture, as set forth in claim 21,
further including:

computer readable program code configured to cause the
computer system to generate explanation data that
explains the part state in terms of the state change
event.

15. The method as set forth in claim 14, further compris­
ing:

23. The article of manufacture, as set forth in claim 22,
40 further including:

determining whether the product is selectable.
16. The method as set forth in claim 14, further compris-

ing:
reporting the state of the product as not selectable when

45
selection of the product would conflict with the rule.

17. The method as set forth in claim 14, further compris-
ing:

determining sets of parts that are excluded or deleted
based on the product.

18. The method as set forth in claim 14, further compris­
ing:

detecting when a state change event occurs that results in
the computer system being in the initialized part state.

50

19. The method, as set forth in claim 1, wherein the test 55

case further includes data to select at least one part to include
in the product configuration and processing test case further
comprises:

processing the at least one rule to determine whether the
at least one part selected in the test case conflicts with 60

the plurality of parts previously included in the product
configuration.

20. A computer program product having code embodi­
ment therein to cause a processor to test a product configu­
ration for configuration errors, wherein the product configu- 65

ration is stored as electronic data in a computer system, the
computer system including at least one rule defining a

computer readable program code configured to cause the
computer system to generate a new part state for each
part associated with the change in the product configu­
ration.

24. The article of manufacture, as set forth in claim 23,
further including:

computer readable program code configured to cause the
computer system to determine causes that explain the
new part states in terms of the state change event.

25. The article of manufacture, as set forth in claim 24,
further comprising:

computer readable program code configured to cause the
computer system to generate a cause tree wherein the
root of the cause tree is the initial part state, and leaves
of the tree are the user's selections of parts.

26. The article of manufacture, as set forth in claim 25,
further comprising:

computer readable program code configured to cause the
computer system to generate an explanation of the part
state wherein the part selections are the root of the
explanation and the causes follow from the part selec­
tions.

27. The article of manufacture, as set forth in claim 26,
further comprising:

computer readable program code configured to cause the
computer system to sort the tree by iteration number,

US 6,836,766 Bl
15

wherein the iteration number of a part state is deter­
mined by measuring the longest distance between the
part state and the cause corresponding to the part state.

16
generate an explanation of the part state wherein the part

selections are the root of the explanation and the causes
follow from the part selections.

28. The article of manufacture, as set forth in claim 20,
wherein the explanation data is based on selection of a part.

29. The article of manufacture, as set forth in claim 20,
wherein the explanation data is based on execution of a rule.

30. The article of manufacture, as set forth in claim 20,
wherein the explanation data is based on a part being in two
states at the same time.

40. The apparatus, as set forth in claim 37, wherein the
5 processor is further operable to:

sort the tree by iteration number, wherein the iteration
number of a part state is determined by measuring the
longest distance between the part state and the cause
corresponding to the part state.

10 41. The apparatus, as set forth in claim 34, wherein the
31. The article of manufacture, as set forth in claim 20,

wherein the explanation data is based on a requires a choice
rule that cannot be satisfied.

32. The article of manufacture, as set forth in claim 20,
wherein the explanation data is based on a look ahead 15

process.
33. The computer program product, as set forth in claim

20, wherein the test case further includes data to select at
least one part to include in the product configuration and the
computer readable program code configured to cause the 20

computer system to process the test case further comprises:

explanation data is based on execution of a rule.
42. The apparatus, as set forth in claim 34, wherein the

explanation data is based on a part being in two states at the
same time.

43. The apparatus, as set forth in claim 34, wherein the
explanation data is based on a requires a choice rule that
cannot be satisfied.

44. The apparatus, as set forth in claim 34, wherein the
explanation data is based on a look ahead process.

45. The apparatus as set forth in claim 34, wherein the test
case further includes a product selection.

computer readable code to process the at least one rule to
determine whether the at least one part selected in the
test case conflicts with the plurality of parts previously
included in the product configuration.

46. The apparatus as set forth in claim 34 wherein the
product configuration comprises at least one vector, wherein
said vector comprises a bit field, further wherein the bit field

25 comprises bits that represent elements in a configuration.
34. An apparatus for testing a product configuration for

configuration errors generated by a product configuration
system, comprising:

a memory having stored therein at least one rule defining
a relationship between at least two parts in the product 30

configuration;
a test case to detect configuration errors in the product

configuration, wherein the test case includes data to
change the product configuration; and

a processor coupled to the memory to (a) process the at 35

least one rule and the test case, (b) detect whether the
change in the product configuration, as a result of
processing the test case in accordance with the at least
one rule, produced a configuration error and (c) gen­
erate explanation data to provide an explanation of any 40

detected configuration error in the product configura-
tion.

35. The apparatus, as set forth in claim 24, wherein the
processor is further operable to:

initialize the configuration system with a part state; 45

47. The apparatus as set forth in claim 46, wherein the
number of bits in the bit field is equal to the total number of
elements and an element's bit can be set or reset to specify
that state of the element in the configuration.

48. The apparatus as set forth in claim 46, wherein the
vector specifies whether an element has been selected by the
user during the configuration.

49. The apparatus as set forth in claim 46, wherein
excluded vectors identify whether an element is excluded
from a configuration.

50. The apparatus as set forth in claim 46, wherein
removed vectors identify whether an element is removed
from a configuration.

51. The apparatus as set forth in claim 46, wherein the
vector identifies whether an element is selectable.

52. The apparatus as set forth in claim 46 further com­
prising:

a database having at least one table, wherein said table
represents relationships between elements in a configu­
ration and having at least one modified rule, wherein
the rule is modified based on results of testing a product
selection.

to input the at least one part selection to change the
product configuration;

to listen to state change events in the system; and
to detect when a state change event occurs that results in

the configuration system being in the initialized part
state.

53. The apparatus as set forth in claim 52, wherein said
table represents "includes" relationships between elements

50 in a configuration.

36. The apparatus, as set forth in claim 35, wherein the
processor is further operable to:

generate explanation data that explains the part state in
terms of the state change event.

37. The apparatus, as set forth in claim 36, wherein the
processor is further operable to:

generate a new part state for each part associated with the
change in the product configuration.

38. The apparatus, as set forth in claim 37, wherein the
processor is further operable to:

generate a cause tree wherein the root of the cause tree is
the initial part state, and leaves of the tree are the user's
selections of parts.

39. The apparatus, as set forth in claim 37, wherein the
processor is further operable to:

54. The apparatus as set forth in claim 52, wherein said
table represents "excludes" relationships between elements
in a configuration.

55. The apparatus as set forth in claim 52, wherein said
55 table represents "removes" relationships between elements

in a configuration.

60

65

56. The apparatus as set forth in claim 52, wherein said
table represents "requires choice" relationships between
elements in a configuration.

57. The apparatus as set forth in claim 56, wherein the
representation of "requires choice" relationships includes a
pointer to a group table that includes a bit vector that
identifies the elements that are contained in the group from
which a choice is to be made.

58. The apparatus as set forth in claim 56, wherein the
representation of "requires choice" relationships includes
minimum and maximum designations to identify the mini-

US 6,836,766 Bl
17

mum and maximum number of group members that are to be
selected to satisfy the "requires choice" relationship.

59. The apparatus as set forth in claim 52, wherein said
table includes a left-hand side and a right-hand side.

60. The apparatus as set forth in claim 59, wherein the 5

left-hand side includes a bit vector that contains bits corre­
sponding to elements.

61. The apparatus as set forth in claim 59, wherein the
right-hand side includes one or more bit vectors that repre-
sent configuration elements. 10

62. The apparatus as set forth in claim 34 wherein the test
case further comprises data representing:

a product selection;

at least one part selection; and
15

an expected state of the selected part based on one or more
rules.

63. The apparatus, as set forth in claim 34, wherein the
test case further pertains to including at least one part in the
product configuration and the processor is further operable

20
to:

determine whether the at least one part in the test case
conflicts with the plurality of parts previously included
in the product configuration according to the at least
one rule.

64. An apparatus for testing a product configuration for
configuration errors generated by a computer implemented
product configuration system, comprising:

means for defining a relationship between at least two
parts in the product configuration;

means for defining a test case to detect configuration
errors in the product configuration, wherein the test
case includes data to change the product configuration;

25

30

means for processing the test case with the product
configuration system in accordance with the at least one 35

rule to detect whether the chance in the product
configuration, as a result of processing the test case in
accordance with the relationship between at least two
parts in the product configuration, produced a configu-
ration error in the product configuration; and 40

means for generating explanation data with the product
configuration system to provide an explanation of any
detected configuration error in the product configura­
tion.

18
65. The apparatus, as set forth m claim 64, further

comprising:

means for initializing the configuration system with a part
state;

means for detecting a state change event in the configu­
ration system; and

means for detecting when a state change event occurs that
results in the configuration system being in the initial­
ized part state.

66. The apparatus, as set forth in claim 65, further
comprising:

means for generating a cause that explains the part state
in terms of the state change event.

67. The apparatus, as set forth in claim 66, further
comprising:

means for generating a new part state for each part
associated with the cause.

68. The apparatus, as set forth in claim 67, further
comprising:

means for generating a cause tree, wherein the root of the
cause tree is the initial part state, and leaves of the tree
are the user's selections of parts.

69. The apparatus, as set forth in claim 67, further
comprising:

means for generating an explanation of the part state,
wherein the part selections are the root of the expla­
nation and the causes follow from the part selections.

70. The apparatus, as set forth in claim 64, further
comprising:

means for modifying the at least one rule when the test
case conflicts with the plurality of parts previously
included in the product configuration.

71. The apparatus, as set forth in claim 64, wherein the
test case is further defined to include at least one part in the
product configuration and the means for processing the test
case includes:

means for determining whether the at least one part in the
test case conflicts with the plurality of parts previously
included in the product configuration according to the
at least one rule.

* * * * *

