
(12) United States Patent
Warmus et al.

(54) BOOK ASSEMBLY PROCESS AND
APPARATUS FOR VARIABLE IMAGING
SYSTEM

(75) Inventors: James L. Warmus, LaGrange, IL (US);
Mark G. Dreyer, Aurora, IL (US); J.
Thomas Shively, Hinsdale, IL (US)

(73) Assignee: R.R. Donnelley, Chicago, IL (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/852,581

(22) Filed:

(65)

May 10,2001

Prior Publication Data

US 2001/0051964 A1 Dec. 13, 2001

Related U.S. Application Data

(60) Division of application No. 08/802,337, filed on Feb. 11,
1997, and a continuation-in-part of application No. 08/627,
724, filed on Apr. 2, 1996, now Pat. No. 5,857,209, which is
a continuation-in-part of application No. 08/478,397, filed
on Jun. 7, 1995.

(51) Int. Cl? .. G06F 17/00
(52) U.S. Cl. .. 715/525; 715/530
(58) Field of Search 715/525, 530,

(56)

CA

715/500, 517, 522, 523; 707/500, 517,
522, 523, 530

References Cited

U.S. PATENT DOCUMENTS

3,549,055 A
3,582,621 A
3,608,888 A

12/1970 Gatland 222/182
6/1971 Lawler 235/151.1
9/1971 McCain 270/54

(Continued)

FOREIGN PATENT DOCUMENTS

2 210 405 7/1996 3/12

120 122

111111 111
US006952801B2

(10) Patent No.:
(45) Date of Patent:

US 6,952,801 B2
Oct. 4, 2005

EP
EP
EP
EP
JP
wo
wo
wo

0 119 720
0 602 547
0 703 524 A1
0 703 524 B1

8115178
wo 86/04703
wo 95 07510
wo 96/22573

9/1984
6/1994
3/1996
1!1997
5/1996
8/1986
3/1995
7/1996

OTHER PUBLICATIONS

"Enhanced Technique for Merging Data From a Second
Document" IBM Technical Disclosure Bulletin, vol. 30 No.
5, IBM Corp., pp. 184-188 (10/87).
PODi, "Frequently Asked Questions about PPML The Per
sonalized Markup Language" PPML Frequently Asked
Questions (Dec. 12, 2000) (3 pages).
"Improved Technique for Printing Multi-copy Documents"
IBM Technical Disclosure Bulletin, vol. 29 No. 1, IBM
Corp., pp. 406-407 (6/86).
"Indigo E-Print in 3 places-and in Spindler Speech" Sey
bold San Francisco, p. 34 (Oct. 23, 1995).
"Method for Joining Documents for Printing in a Personal
Computer System" IBM Technical Disclosure Bulletin, vol.
29 No. 7, IBM Corp., pp. 3090-3091 (12/86).
"Xeikon Personalizes with Private-1" Seybold Special
Report, vol. 4 No. 2, p. 3, (Oct. 23, 1995).

(Continued)

Primary Examiner---Sanjiv Shah
(74) Attorney, Agent, or Firm-Hanley,
Zimmerman, LLC

(57) ABSTRACT

Flight &

The present invention is useful for assembling a book. The
inventive method includes the steps of specifying pagination
information including an indication of whether a page is to
be selectively included in the book, determining whether the
page is to be assembled into the book based on the pagina
tion information, and generating page description language
instructions for production of the book in accordance with
the pagination information.

25 Claims, 40 Drawing Sheets

TO
PRINT

SYSTEM
79

- I PRESS I
l~Q ... --f~~L~AND 1---------

US 6,952,801 B2
Page 2

U.S. PATENT DOCUMENTS

3,774,758 A
3,774,901 A
3,809,385 A
3,819,173 A
3,872,460 A
3,891,492 A
3,892,427 A
3,899,165 A
3,932,744 A
3,953,017 A
3,982,744 A
4,022,455 A
4,085,455 A
4,095,780 A
4,117,975 A
4,121,818 A
4,168,776 A
4,168,828 A
4,247,008 A
4,338,768 A
4,345,276 A
4,346,446 A
4,395,031 A
4,413,724 A
4,417,630 A
4,426,072 A
4,482,142 A
4,483,526 A
4,484,733 A
4,495,582 A
4,499,545 A
4,500,083 A
4,516,209 A
4,517,637 A
4,519,598 A
4,520,454 A
4,536,176 A
4,537,342 A
4,552,349 A
4,554,044 A
4,556,595 A
4,567,988 A
4,601,003 A
4,601,394 A
4,616,327 A
4,639,873 A
4,665,555 A
4,672,462 A
4,674,052 A
4,677,571 A
4,710,886 A
4,718,784 A
4,723,209 A
4,727,402 A
4,729,037 A
4,734,865 A
RE32,690 E
4,768,766 A
4,789,147 A
4,800,505 A
4,800,506 A
4,800,510 A
4,827,315 A
4,835,570 A
4,866,628 A
4,887,128 A
4,900,001 A
4,903,139 A
4,908,768 A
4,910,612 A

11/1973 Sternberg 209/111.7
11/1973 McCain et a!. 270/54
5/1974 Rana 270/54
6/1974 Anderson et a!. 270/54
3/1975 Fredrickson et a!. .. 340/324 AD
6/1975 Watson 156/351
7/1975 Kraynak et a!. 281!15 R
8/1975 Abram et a!. 270/54
1!1976 Anderson 250/203
4/1976 Wise 270/54
9/1976 Kraynak et a!. 270/12
5/1977 Newsome et a!. 270/54
4/1978 Okumura 365/112
6/1978 Gaspar et a!. 270/73

10/1978 Gunn 235/494
10/1978 Riley et a!. 270/54
9/1979 Hoeboer 198/797
9/1979 McLear 270/54
1!1981 Dobbs 209/569
7/1982 Ballestrazzi et a!. 53/495
8/1982 Colomb 358/258
8/1982 Erbstein et a!. 364/551
7/1983 Gruber et a!. 270/54

11/1983 Fellner 198/594
11/1983 Weber et a!. 177/1

1!1984 Cole et a!. 270/53
11/1984 McCain et a!. 270/54
11/1984 Bulka et a!. 270/54
11/1984 Loos et a!. 270/54

1!1985 Dessert et a!. 364/469
2/1985 Daniels et a!. 364/464
2/1985 Wong 270/54
5/1985 Scribner 364/466
5/1985 Cassell 364/138
5/1985 McCain et a!. 270/53
5/1985 Dufour et a!. 364/900
8/1985 Gaspar 493/365
8/1985 McCain eta!. 227/78

11/1985 Loos et a!. 270/54
11/1985 Gaspar et a!. 156/510
12/1985 Ochi 428/143

2/1986 Weibel 209/564
7/1986 Yoneyama et a!. 364/518
7/1986 Hutner 209/3.3

10/1986 Rosewarne et a!. 364/518
1!1987 Baggarly et a!. 364/466
5/1987 Alker et a!. 382/41
6/1987 Yamada 358/280
6/1987 Wong et a!. 364/466
6/1987 Riseman et a!. 364/519

12/1987 Heath 364/519
1!1988 Drisko 400/68
2/1988 Hernandez et a!. 364/519
2/1988 Smith 355/14
3/1988 Doelves 358/299
3/1988 Scullion et a!. 364/478
6/1988 Wong 270/54
9/1988 Berger et a!. 270/58

12/1988 Berger et a!. 270/1.1
1!1989 Axelrod et a!. 364/478
1!1989 Axelrod et a!. 364/478
1!1989 Vinberg et a!. 364/521
5/1989 Wolfberg et a!. 346/160
5/1989 Robson 346/160
9/1989 Natarajan 364/468

12/1989 Jamali et a!. 355!202
2/1990 Lapeyre 270/1.1
2/1990 Minter 358/296
3/1990 Gelfer et a!. 364/464.03
3/1990 Yamazaki 358/496

4,928,243 A
4,928,252 A
4,930,077 A
4,933,880 A
4,937,761 A
4,948,109 A
4,949,272 A
4,968,993 A
4,974,171 A
4,984,948 A
5,001,500 A
5,005,124 A
5,021,975 A
5,025,396 A
5,027,279 A
5,028,192 A
5,031,891 A
5,033,009 A
5,039,075 A
5,043,749 A
5,053,955 A
5,054,984 A
5,056,767 A
5,060,165 A
5,067,024 A
5,068,797 A
5,072,397 A
5,072,401 A
5,077,694 A
5,085,470 A
5,098,076 A
5,102,110 A
5,103,490 A
5,105,283 A
5,112,179 A
5,114,128 A
5,114,291 A
5,119,306 A
5,133,051 A
5,134,669 A
5,136,316 A
5,142,482 A
5,142,618 A
5,142,667 A
5,143,362 A
5,144,562 A
5,157,765 A
5,175,679 A
5,177,877 A
5,178,063 A
5,194,899 A
5,200,903 A
5,202,206 A
5,210,824 A
5,220,420 A
5,220,674 A
5,220,770 A
5,229,932 A
5,238,345 A
5,245,701 A
5,257,196 A
5,267,155 A
5,267,821 A
5,271,065 A
5,274,567 A
5,274,757 A
5,280,895 A
5,287,976 A *
5,289,569 A
5,291,243 A
5,293,310 A

5/1990
5/1990
5/1990
6/1990
6/1990
8/1990
8/1990

11/1990
11/1990

1!1991
3/1991
4/1991
6/1991
6/1991
6/1991
7/1991
7/1991
7/1991
8/1991
8/1991

10/1991
10/1991
10/1991
10/1991
11/1991
11/1991
12/1991
12/1991
12/1991

2/1992
3/1992
4/1992
4/1992
4/1992
5/1992
5/1992
5/1992
6/1992
7/1992
7/1992
8/1992
8/1992
8/1992
8/1992
9/1992
9/1992

10/1992
12/1992

1!1993
1!1993
3/1993
4/1993
4/1993
5/1993
6/1993
6/1993
6/1993
7/1993
8/1993
9/1993

10/1993
11/1993
12/1993
12/1993
12/1993
12/1993

1!1994
2/1994
2/1994
3/1994
3/1994

Hodges et a!. 364/519
Gabbe et a!. 364/519
Fan 364/419
Borgendale et a!. 210/187
Hassett 364/518
Petersen . 270/1.1
Vanourek et a!. 364/464.02
Wolfberg et a!. 346/160
Yeh et a!. 364/519
Lindsay et a!. 412/1
Wolfberg et a!. 346/160
Connell et a!. 364/401
Yamanashi 364/519
Parks et a!. 364/518
Gottlieb et a!. 364/478
Lindsay et a!. 412/1
Kobler et a!. 270/54
Dubnoff 364/523
Mayer . 270/1.1
Punater et a!. 346/153.1
Peach et a!. 364/401
Chan et a!. 412/1
Emigh et a!. 270/58
Schumacher et a!. 364/478
Anzai 358/296
Sansone et a!. 364/478
Barns-Slavin et a!. . 364/464.02
Sansone et a!. 364/478
Sansone et a!. 395/600
Peach et a!. 283/58
Kelsey 270/54
Reynolds 270/1.1
McMillin . 382/62
Forest et a!. 358/401
Chan et a!. 412/1
Harris, J r et a!. 270/11
Hefty . 412/8
Mete! its et a!. 364/464.02
Handley 395/148
Keogh et a!. 382/61
Punater et a!. 346/153.1
Sansone 364/478
Fujiwara eta!. 395/146
Dimperio eta!. 395/115
Doane et a!. 270/1.1
Stikkelorum et a!. 364/478
Birk et a!. 395/165
Allen et a!. 364/148
Duchesne et a!. 34/51
Wolfberg et a!. 101/76
Buchanan 355/244
Gilham 364/464.02
Tam 430/41
Putz eta!. 395/145
Roarty et a!. 358/86
Morgan eta!. 395/800
Szewczyk et a!. 53/493
Connell et a!. 364/401
D'Andrea 412/4
Matsumoto 395/129
Sansone 364/464.02
Buchanan eta!. 364/419.14
Bodart et a!. 412/11
Rourke et a!. 382/1
Kallin et a!. 364/478
Miyoshi eta!. 395/146
Meier 270/58
Mayer et a!. 209/547
Taniguchi 395/145
Heckman eta!. 355/201
Carroll et a!. 364/408

5,295,236 A
5,299,310 A
5,301,036 A
5,303,334 A
5,313,564 A
5,313,578 A
5,319,745 A
5,321,604 A
5,326,209 A
5,333,246 A
5,337,246 A
5,337,258 A
5,346,196 A *
5,349,648 A
5,353,222 A
5,353,388 A
5,359,423 A
5,359,432 A
5,377,120 A
5,379,368 A
5,379,373 A
5,381,523 A
5,383,129 A
5,384,886 A
5,390,354 A *
5,396,321 A
5,398,389 A
5,400,263 A
5,412,566 A
5,414,809 A
5,419,541 A
5,422,992 A
5,442,561 A
5,442,737 A
5,444,630 A
5,446,653 A
5,446,667 A
5,455,945 A
5,459,819 A
5,459,826 A
5,461,708 A
5,465,213 A
5,473,741 A
5,483,624 A
5,493,490 A
5,500,928 A
5,502,636 A
5,502,804 A
5,505,697 A
5,506,697 A
5,517,605 A
5,519,624 A
5,523,942 A
5,530,852 A
5,535,677 A *
5,546,517 A
5,552,994 A
5,553,212 A
5,553,258 A
5,555,094 A
5,557,722 A
5,587,799 A
5,592,683 A
5,594,860 A
5,594,910 A
5,625,766 A
5,630,028 A
5,634,091 A
5,669,005 A
5,671,345 A
5,710,635 A

3/1994
3/1994
4/1994
4/1994
5/1994
5/1994
6/1994
6/1994
7/1994
7/1994
8/1994
8/1994
9/1994
9/1994

10/1994
10/1994
10/1994
10/1994
12/1994

1!1995
1!1995
1!1995
1!1995
1!1995
2/1995
3/1995
3/1995
3/1995
5/1995
5/1995
5/1995
6/1995
8/1995
8/1995
8/1995
8/1995
8/1995

10/1995
10/1995
10/1995
10/1995
11/1995
12/1995

1!1996
2/1996
3/1996
3/1996
3/1996
4/1996
4/1996
5/1996
5/1996
6/1996
6/1996
7/1996
8/1996
9/1996
9/1996
9/1996
9/1996
9/1996

12/1996
1!1997
1!1997
1!1997
4/1997
5/1997
5/1997
9/1997
9/1997
1!1998

US 6,952,801 B2
Page 3

Bjorge et a!. 395/134
Motoyama 395/165
Barrett et a!. 358/448
Snyder et a!. 395/109
Kafri et a!. 395/101
Handorf 395/200
Vinsonneau eta!. 395/144
Peach et a!. 364/401
Duke 412/1
Nagasaka 395/133
Carroll et a!. 364/464.02
Dennis 364/551.01
Nussbaum eta!. 270/52.14
Handley 395/148
Takise eta!. 364/419.17
Motoyama 395/117
Loce 358/296
Peltzer et a!. 358/452
Humes et a!. 364/478
Imai et a!. 395/117
Hayashi eta!. 395/148
Hayashi 395/145
Farrell 364/464.01
Rourke 395/147
de Heus et a!. 707/517
McFarland et a!. 355/313
Terada et a!. 382/1
Rohrbaugh et a!. 364/490
Sawa 364/419.14
Hogan et a!. 395/155
Stevens 270/54
Motoyama et a!. 345/437
Yoshizawa et a!. 364/468
Smith 395/135
Dlugos 364/464.02
Miller et a!. 364/401
Oh et a!. 364/464.02
VanderDrift 395/600
Watkins et a!. 395/117
Archibald 395/147
Kahn 395/140
Ross 219/213
Neufelder 707/516
Christopher et a!. 395/117
Johnson 364/401
Cook et a!. 395/133
Clarke 364/401
Butterfield et a!. 395/14 7
McKinnon, Jr. eta!. 604/71
Li et a!. 358/448
Wolf 395/155
Ridding 364/478
Tyler et a!. 364/401
Meske, Jr. eta!. 395/600
Fannin eta!. 101/486
Marks eta!. 395/145
Cannon et a!. 364/468.01
Etoh et a!. 395/140
Godiwala et a!. 395/403
Lefebvre et a!. 358/298
DeRose eta!. 395/148
Kawamura et a!. 358/296
Chen eta!. 395/872
Gauthier 395/501
Filepp et a!. 395/800
Kauffman 395/135
DeMeo 395/110
Sands et a!. 395/117
Curbow eta!. 395/777
Lhotak 395/133
Webster et a!. 358/296

3/1998
4/1998
4/1998
6/1998
6/1998
8/1998
8/1998
9/1998

* 11/1998
11/1998
12/1998

5,729,665 A
5,740,338 A
5,745,121 A
5,760,914 A
5,765,874 A
5,793,946 A
5,796,930 A
5,809,218 A
5,832,531 A
5,833,375 A
5,845,302 A
5,857,209 A
5,870,766 A
5,907,836 A *
5,924,092 A
5,937,153 A
5,960,164 A
5,963,968 A
5,987,461 A
5,995,724 A
6,027,195 A
6,064,397 A
6,088,710 A
6,145,946 A
6,175,846 B1
6,205,452 B1
6,209,010 B1
6,243,172 B1
6,246,993 B1
6,290,406 B1
6,310,695 B1
6,327,599 B1
6,332,149 B1
6,381,028 B1
6,446,100 B1
6,487,568 B1
6,599,325 B2
6,687,016 B2

2002/0122205 A1

1!1999
2/1999
5/1999
7/1999
8/1999
9/1999

10/1999
11/1999
11/1999
2/2000
5!2000
7/2000

11/2000
1!2001
3/2001
3/2001
6/2001
6/2001
9/2001

10/2001
12/2001
12/2001

4/2002
9/2002

11/2002
7/2003
2/2004
9/2002

Gauthier 395/117
Gauthier et a!. 395/116
Politis 345/433
Gauthier et a!. 358/298
Chanenson et a!. 283/67
Gauthier et a!. 395/183.01
Gauthier et a!. 395/116
Kastenholz et a!. 395/115
Ayers 707/500
Gauthier et a!. 400/82
Cyman, Jr. eta!. 707/517
Shively 707/500
Shively 707/500
Sumita et a!. 707/2
Johnson 707/7
Gauthier 395/117
Dorfman eta!. 395/110
Warmus eta!. 707/517
Dreyer et a!. 707/7
Mikkelsen eta!. 395/115
Gauthier eta!. 347/5
Herregods et a!. 345/435
Dreyer et a!. 707/517
Gauthier eta!. 347/5
Shively 707/530
Warmus eta!. 707/500
Gauthier eta!. 707/526
Gauthier et a!. 358/1.18
Dreyer et a!. 705/9
Gauthier et a!. 400/76
Gauthier et a!. 358/1.5
Warmus eta!. 715/517
Warmus eta!. 715/517
Gauthier . 358/1.11
Warmus eta!. 707/517
Gauthier eta!. 707/526
Gauthier et a!. 715/526
Gauthier . 358/1.11
Gauthier 358/1.15

OTHER PUBLICATIONS

"Redefining the Printed Page," Varis Corporation, Mason,
OH, vol. 4 (Oct. 2, 1997).
"Variable Printing with Indigo" Seybold Special Report, vol.
3, No. 8 pp., 63-64, (Apr. 21, 1995).
Kaufeld "Pradox 5 for Windows for Dummies," (1994).
Mizuno et al., "Document Recognition System with Layout
Structure Generator," NEC Research and Development, vol.
32, No. 3, Tokyo, Japan (pp. 430-437) (1991).
Rousseau et al., "Writing Documents for Paper and WWW;
A Strategy based on FrameMarker and WebMaker," Com
puter Networks and ISDN Systems, vol. 27 (pp. 205-214)
(XP 000571730) (1994).
Simoudis, Evangelos "Reality Check for Data Mining,"
IEEE Expert (pp. 26-33) (1996).
ULTIMATE Technographics, Inc. Manual, "Poststrip, "
1989.
G. Dieckmann, "Press Imposition of IBM 4250, General
Information," R.R. Donnelley & Sons Company, Craw
fordsville Manufacturing Division, Department CHT, Feb.
21, 1989.
Alpha Four, New Version 3, "True Relational Database
Power Without Programming, Reference Manual," Alpha
Software Corporation, Lesson 20: Using Sets and Lesson
22: Advanced Sets: One-to-Many Links, 1993.
H. Sharples, "Software Automates Impositions; Prepress
Imaging," vol.65, No.9, p. 67, Graphic Arts Monthly (Sep.,
1993).

US 6,952,801 B2
Page 4

"Linotype-Hell's Herkules: Fast, Versatile Drum Imager to
Head IPEX lineup; Product Announcement," vol. 23, No. 1,
p. 3, The Seybold Report on Publishing Systems (Sep. 1,
1993).

"Aldus to Offer Presswise 2.0 Imposition Software for
Large-Format Presses," PR Newswire (Sep. 7, 1993).
P. Dyson, "Computer to Plate: Now There's a Market;
Direct-to-Plate Production Now Feasible; includes related
article on the Eskofot Escosan 2540 for boards and films,"
vol. 23, No. 4, p. 3, The Seybold Report on Publishing
Systems (Oct. 11, 1993).

"Imposition Cuts Stripping Time; Electronic Imposing Sys
tem; Prepress Imaging," vol. 65, No. 11, p. 84, Graphic Arts
Monthly (Nov. 1993).
S. Edwards et al., "IFRA '93 Review: An Industry Riding
the Crest of a Slump; IFRA European Newspaper Equip
ment Exhibition; includes related article on trade show
rumors," vol. 23, No. 6, p. 3, The Seybold Report on
Publishing Systems (Nov. 8, 1993).

H. Sharples, "Electronic Imposition: Moving Forward," vol.
66, No. 2, p. 53, Graphic Arts Monthly (Feb., 1994).

Barco Graphics brochure, "RIP and Electronic Collation
System for Xeikon DCP-1 Digital Printing Press," Feb. 2,
1994, with Addendum 1.

"Finding the Right Niches for Electronic Printing," The
Seybold Report on Desktop Publishing, Mar. 7, 1994, pp.
12-18.

"Aldus Prepress Division Ships Presswise 2.0 for the Apple
Macintosh," PR Newswire (Mar. 22, 1994).

"Press Imposition Software; Seybold Special Report: Sey
bold Seminars Boston '94, Part I; Product Announcement,"
vol. 23, No. 15, p. S74, The Seybold Report on Publishing
Systems (Apr. 22, 1994).
"High-Resolution Output; includes related articles on how
to obtain a Hyphen print sample and naming a new screening
technology; Seybold Special Report: Seybold Seminars
Boston '94, part I," vol. 23, No. 15, p. S47, The Seybold
Report on Publishing Systems (Apr. 22, 1994).
P. Hilts, "Donnelley's Digital Production Vision; R.R. Don
nelley and Sons invited book publishers to come to Craw
fordsville to see the future of printing," vol. 241, No. 34, p.
24, Publishers Weekly (Aug. 22, 1994).
"Design Your Forms, Power with Room to Grow: Xbasic TM ,"
advertisement, DBMS Magazine (Sep., 1994).
Xeikon announcement, "Xeikon announces new RIP for the
DCP-1 digital color press" (Sep. 13, 1994).

A Karsh, "Scitex's SGAUA Review: Savanna, GTO-DI
Interface, Whisper Upgrade; Scitex Graphic Arts User Asso
ciation, Scitex Savanna Typesetting System, Press Interface
for GTO-DI, Autofiat Image Processing Software, MacCSS
Connection Peripheral Server," vol. 24, No. 2, p. 11, The
Seybold Report on Publishing Systems (Sep. 19, 1994).

"Color Shop Goes Electronic; Color Tech Corp.," vol. 66,
No. 10, p. 90, Graphic Arts Monthly (Oct., 1994).

"Xerox and Scenicsoft Bring New Flexibility to Prepress
Work With Postscript Files," vol. 7, No. 10, Worldwide
Videotex (Oct., 1994).

"High-Resolution Output Devices; Seybold Special Report:
Seybold San Francisco '94, Part 1; Product Announcement,"
vol. 24, No. 3, p. S32, The Seybold Report on Publishing
Systems (Oct. 26, 1994).

"Output Servers; Seybold Special Report: Seybold San
Francisco '94, part 2, Product Announcement," vol. 24, No.
3, p. T13, The Seybold Report on Publishing Systems (Oct.
26, 1994).
"CTP Field Gets a New Entry; Linotype-Hell's Computer
to-Plate System, Gutenborg," vol. 66, No. 11, p. 102,
Graphic Arts Monthly (Nov., 1994).
European Search Report dated Jul. 22, 1999.
Seybold Report on Publishing Systems, vol. 25, No. 22,
ISSN: 0736-7260, Aug. 26, 1996.
"Variable Postscript and the Coming of Age of Electronic
Print-for-Profit," Print on Demand Business, May/Jun.
1996, pp. 64--67.
"Variable-Data Printing Comes of Age: Capabilities &
Market Demand Converge," Seybold Report to Publishing
Systems, vol. 27, No. 2, Sep. 15, 1997, pp. 3-24.
"Indigo Variable Data Solution Evaluation," Interoffice
Memorandum from R.R. Donnelley & Sons Company dated
Jul. 26, 1995 (portions redacted).
AGFA Internet Website: "Chromapress Software" (Oct. 30,
1998), URL: www.agfahome.com/products/printing/soft
ware.html.
AGFA Internet Website: "Digital Color Printing System:
Personalizer-X v2.0, Variable Data Software for Chroma
press" (Oct. 30, 1998), URL: www.agfahome.com/products/
printing/software/personalizerx.html.
Atlas Internet Website: "PrintShop Mail" (Oct. 30, 1998),
URL: www.atlassoftware.nl/products/psmail/psmail.html.
Atlas Internet Website: "Atlas Software Products" (Oct. 30,
1998), URL: www.atlassoftware.n1/products/products.html.
BARCO Graphics Internet Website: "Variable Information
Printing" (Oct. 29, 1998), URL: www.barco.com/graphics/
systems/vip/viphome.htm.
BARCO Graphics Internet Website: "BARCO Graphics VIP
concept gives digital printing its true original dimension,"
URL: www.barco.com/graphics/press/pr178ife.htm (Oct.
29, 1998).
BARCO Graphics Internet Website: "BARCO Graphics
wins Seybold Award for variable data," URL: www.barco.
com/graphics/press/pr162ice.htm (Oct. 29, 1998).
BARCO Graphics Internet Website: "VIPDesigner Techni
cal Specifications" (Oct. 29, 1998), URL: www.barco.com/
graphics/data/vipdesigf.htm.
BITSTREAM Internet Website: "Application Products:
PageFlexTM, (Oct. 29, 1998), URL: www.bitstream.com/
products/application/pagefiex/index.html.
Colorage/Splash Internet Website: "Splash Technology,
About Our Company," URL: www.colorage.com/company/
about.html. (Oct. 30, 1998).
Colorage/Splash Internet Website; "Splash Launches Docu
Press Series of Servers for Xerox Midrange Digital Color
Copiers" (Oct. 30, 1998), URL: www.colorage.com/com
pany /press98/9803Mar2.html.
Document Sciences Corporation Internet Website: "Docu
ment Sciences Corporation", URL: www.xerox.com/alli
ance/psg/docsci.htm (Oct. 31, 1998).
Document Sciences Corporation Internet Website: "Products
and Solutions," URL: www.docscience.com/product.htm
(Oct. 31, 1998).
Document Sciences Corporation Internet Website: "Tomor
row's Technology is Today's Reality," URL: www.docu
science.com/products/compuset.htm (Oct. 31, 1998).

US 6,952,801 B2
Page 5

DPS Internet Website: "DataBase Publishing Software,
About DPS" (Oct. 31, 1998) URL: www.databasepub.com/
about.html.
DPS Internet Website: "Expert Publisher: Intelligent Auto
mation" (Oct. 31, 1998), URL: www.databasepub.com/new
pub.html.
DPS Internet Website, URL: www.databasepub.com/bot
tom.html (Oct. 31, 1998).
DPS Internet Website: "Applications," URL: www.data
basepub.com/left.html (Oct. 31, 1998).
DPS Internet Website: "Catalog Genie Grants Wishes" (Oct.
31, 1998), URL: www.databasepub.com/catsoftware.html.
DPS Internet Website: "DPS Introduces Catalog Genie"
(Oct. 31, 1998), URL: www.databasepubl.com/genie.html.
DPS Internet Website: "DPS Introduces New Release of
Catalog Genie" (Oct. 31, 1998), URL: www.databasepub.
com/genie2.html.
Elixir Internet Website: "Xerox to Distribute and Support
Elixir's Opus (R) Worldwide," URL: www.elixirnt.elixir.
com/nwsevnt. (Oct. 31, 1998).
Elixir Internet Website: "Elixir Products" (Oct. 31, 1998),
URL: www.elixir.com/Products/products.htm.
Elixir Internet Website: "Opus," URL: www.elixir.com/
Products/opus.htm (Oct. 31, 1998).
Elixir Internet Website: "DataMerge," URL: www.elixir.
com/Products/dmerge.htm (Oct. 31, 1998).
Elixir Internet Website: "AppBuilder for AFP," URL:
www.elixir.com/Products/appafp.htm (Oct. 31, 1998).
Elixir Internet Website: "AppBuilder for VIPP" (Oct. 31,
1998), URL:www.elixir.com/Products. appvipp.htm.
Em Software Internet Website: "Welcome to Em Software
on the Web!" (Oct. 31, 1998), URL: www.emsoftware.com/.
Em Software Internet Website: "Em Software-Products"
(Oct. 31, 1998), URL: www.emsoftware.com/products.html.
Group 1 Software Internet Website: "Group 1 Software:
EZ-LETTER" (Oct. 31, 1998), URL:
www.group1software.com/products/ds.asp.
Indigo Internet Website: "Yours Truly Software" (Oct. 29,
1998), URL: www.indigonet.com/yours_truly.htm.
Meadows Information Systems Internet Website: "About
Meadows Information Systems, Inc.", URL: www.mead
owsinfo.com/mishtml/meadows.htm (Oct. 27, 1998).
Meadows Information Systems Internet Website: "Auto
Price XTension to QuarkXPress by Meadows Information
Systems", URL: www.meadowsinfo.com/mishtml/auto
pric.htm (Oct. 27, 1998).
Meadows Information Systems Internet Website: "Data
Merge XTension to QuarkXPress by Meadows Information
Systems", URL: www.meadowsinfo.com/mishtml/data
merg.htm (Oct. 27, 1998).
Meadows Information Systems Internet Website: "Group
Picture XTension to QuarkXPress by Meadows Information
Systems" (Oct. 27, 1998), URL: www.meadowsinfo.com/
mishtml/grouppic.htm.
Scitex Internet Website: "Scitex Darwin Desktop 2.0 is Now
Shipping," URL: www.scitex.com/press/english/
darwin2.htm (Oct. 29, 1998).
T/R Systems Internet Website: "About T/R Systems" (Nov.
2, 1998), URL: www.trsystems.com/tr docs/About.htm.
Varis Corporation Internet Website: "Varis Corporation and
Scitex Digital Printing Announce World Wide Co-Market
ing Agreement for High Speed Variable PostScript Print
ing," URL: www.variscorp.com/ns/ns.sci.html#pr (Nov. 2,
1998).

Varis Corporation Internet Website: "Redefining the
process ... VariScript Software," URL: www.variscorp.
com/pro/text.html (Nov. 2, 1998).
Varis Corporation Internet Website: "Varis Corporation
Unveils Unprecedented Products for Variable Print-On-De
mand Market," URL: www.variscorp.com/ns/
ns.pro.html#pr (Nov. 2, 1998).
BARCO Graphics/IBM brochure: "BARCO VIPDesigner
Software for the IBM InfoColor 70 Printer" (1998).
Colorbus Advertisement: "There's One in Every Family,"
DocuWorld, Issue 1, vol. 2, p. 2 (1998).
DocuWorld Product Watch: "Authoring Tool for Variable
Information Jobs," DocuWorld, Issue 1, vol. 2, p. 72 (1998).
Drennan, Bill, et al., "Xerox offers programming language,"
The Seybold Report on Publishing Systems, vol. 27, No. 7,
p. 9 (Dec. 1997).
Eldad, Gefen, "Getting Personal, Printing your first person
alized job may be easier than you think", Docu World Issue
1, vol. 2, p. 42 (1998).
Group 1 Software Advertisement: "DOC1 Delivers What
You Want, When You Need It," DocuWorld, Issue 1, vol. 2,
p. 23 (1998).
Indigo Brochure: "Indigo Yours Truly Personalization
Profitability" (1997).
Scitex/Xerox Advertisement: "Xerox and Scitex Bring You
the Magic of Professional Color," DocuWorld, Issue 1, vol.
2, p. 39 (1998).
Scitex brochure: "Scitex Xerox Success Stories: CAD
Graphics, Chicago, Illinois" (7/98).
Scitex brochure: "Scitex Xerox Success Stories: DW Graph
ics, Stockton, CA" (7/98).
Xerox brochure: "think color: Xerox DocuColor 70" (1998).
Xerox brochure: "New Generation Fiery Technology for the
Xerox DocuColor 70 Digital Color Press: Fiery ZX-70"
(1998).
Xerox brochure: World-class prepress performance for the
Xerox DocuColor 70 Digital Color Press: Scitex SX3000T
(1998).
Xerox brochure: "Xerox VIPP-the fastest, most reliable
method to reach your customers individually ... all at the
same time" (1998).
Xerox brochure: "BOOM!-The Explosion is in Short-run
Digital Color Printing" (1998).
"Agfa's CR-A RIP varies data," Seybold Special Report,
vol. 3, No. 2 (Oct. 10, 1994).
"Agfa poised to enter short-run color market. (Chromapress
electrophotographic digital press system)," Mac Week, p. 18
(Oct. 31, 1994).
"Agfa Holds Expo, US Launch of ChromaPress Digital
Printing," Newsbytes News Network (Nov. 4, 1994).
"The Latest Word," The Seybold Report on Publishing
Systems, vol. 24, No. 6, (Nov. 30, 1994).
"Agfa Expo: the medium is the message," The Seybold
Report on Publishing Systems, p. 17 (Nov. 30, 1994).
"The Latest Word: Chromapress varies data," The Seybold
Report on Publishing Systems, p. 28 (Mar. 13, 1995).
"The Latest Word," The Seybold Report on Publishing
Systems, vol. 24, No. 13, pp. 26-28 (Mar. 13, 1995).
"Digital Color Printing in Japan: A Report from Early
Users," The Seybold Report on Publishing Systems, vol. 24,
No. 13, pp. 13-19 (Mar. 13, 1995).
"Indigo Expands Digital Press Line to Packaging; Enhances
E-Print 1000," The Seybold Report on Publishing Systems,
vol. 24, No. 13, pp. 3-12 (Mar. 13, 1995).

US 6,952,801 B2
Page 6

"Variable-data and custom printing," Seybold Special
Report, vol. 3, No. 8, pp. 63 and 64 (Apr. 21, 1995).
"Moore announces new digital printing strategy," Seybold
Special Report, vol. 3, No. 8, p. 65 (Apr. 21, 1995).
"Agfa Let RIP with Gemini," M2 Presswire (Apr. 27, 1995).
"Company-by-Company Guide to the Show: Agfa-Gev
aert," The Seybold Report on Publishing Systems, vol. 24,
No. 17, p. 6 (May 1, 1995).
"Digital printers push customization," The Seybold Report
on Publishing Systems, vol. 24, No. 19, pp. 10 and 11 (Jun.
12, 1995).
"Agfa 'distributes and prints,' adds new RIP," The Seybold
Report on Publishing Systems, vol. 24, No. 20, pp. 8-10
(Jun. 26, 1995).
"Indigo System Developments: Indigo varies data, shows
Mobius, Omnius," The Seybold Report on Publishing Sys
tems, vol. 24, No. 20, pp. 12-15 (Jun. 26, 1995).
"Barco features PrintStreamer, TonerSaver," Seybold Spe
cial Report, vol. 24, No. 20, p. 11 (Jun. 26, 1995).
"Short-Run Digital Color Printing," Seybold Special
Report, vol. 4, No. 2, pp. 33 and 34 (Oct. 23, 1995).
"T/R Systems set new price point for digital presses," The
Seybold Report on Publishing Systems, p. 35 (Oct. 23,
1995).
"Color, Here and Now," Printing Impressions, p. 28 (Nov.
11, 1995).
"Digital presses eye the market of one," Graphic Arts
Monthly, p. 42 (Apr. 1, 1996).
"The 'On Demand' Show: Exciting Technology-But Is the
Market Ready?," The Seybold Report on Publishing Sys
tems, vol. 25, No. 16, pp. 3, 5 and 6 (May 17, 1996).
"Indigo," The Seybold Report on Publishing Systems, vol.
25, No. 16, pp. 5 and 6 (May 17, 1996).
"Personalization for Indigo Engines," The Seybold Report
on Publishing Systems, vol. 25, No. 22, pp. 9-13 (Aug. 26,
1996).
"Variable Data on Digital Presses: Making Progress," The
Seybold Report on Publishing Systems, vol. 25, No. 22, pp.
3-8 (Aug. 26, 1996).
How to Convert WordPerfect Merge Data, last reviewed
Dec. 6, 2000, at http://support.microsoft.com/default.aspx?
scid=kb;en-us;211702 (pp. 2-8).
Continuous scanning. Start right here., Kodak digital sci
ence, 1999 (2 pages).
Form 20-F, Scitex SEC Report, 1997 (pp. 1 and 13-16).
Kodak, The Seybold Report on Publishing Systems, Sep. 9,
1996 (p. 26).

Output Devices and Systems, The Seybold Report on Pub
lishing Systems, last modified Apr. 17, 1995, vol. 24:16 (pp.
1-4).
New Desktop Software Provides Ink-Jet Link, Graphic Arts
Monthly, Aug. 1994 (p. 27).
Scitex Digital Printing looks to Quark Xpress: Demand
Printing of Variable Data, The Seybold Report on Publish
ing Systems, Jul. 20, 1994, vol. 23:20 (3 Pages).
Kodak, Gamma-GraphX develop 600-dpi 1392, The Sey
bold Report on Publishing Systems, Feb. 21, 1994 (p. 24).
Bob Neubauer, Ink-jet gets Personal, Print Impress, Jan.
1993 (3 Pages).
Revisions made easy, American Printer, Apr. 1992 (4 Pages).
Kristin Nelson, Merger mania: Wordperfect mail merge,
Pennprintout, Feb. 1992, vol. 8:5 (pp. 1-3).
Kodak shows fast network printers, The Seybold Report on
Publishing Systems, Dec. 6, 1991, vol. 21:7 (pp. 25-26).
Kodak drives 1392 online and from cartridge tape, The
Seybold Report on Publishing Systems, Sep. 5, 1988 (p. 2).
LED v. Laser, Computer Data, Mar. 1987 (1 Page).
LED Printing Bids for a Place in EDP/LED Arrays Chal
lenge Laser Printing, Canadian DataSystems, Dec. 1986 (2
Pages).
B. Lawler, "Some for the Books; Imposition; Hands On:
Desktop Publishing; Tutorial," vol. 10, No. 9, p. 121,
MacUser, Sep., 1994 (pp. 22-28).
Alexander, George A., "Custom Book Publishing and Book
Printing on Demand," The Seybold Report on Publishing
Systems, vol. 21, No. 16, May 11, 1992 (pp. 1 and 3-12).
Appelt, Wolfgang, "Existing Systems for Integrating Text
and Graphics," Computer & Graphics, vol. 11, No. 4,
(1987), (pp. 369-375).
International Search Report dated Apr. 13, 1999 (7 Pages).
"W3C Debuts Draft of RDF," The Bulletin: Seybold News
& Views on Electronic Publishing, vol. 3, No. 1, Oct. 8,
1997 (pp. 1-6).
"Handling Variable Data," The Seybold Report on Publish
ing Systems, vol. 26, No. 20, Jul. 21, 1997 (pp. 1-8).
"Variable-Data Printing," The Seybold Report on Publish
ing Systems, vol. 27, No. 5, Nov. 17, 1997 (pp. 1-4).
"Graphic Arts Vendors," The Seybold Report on Publishing
Systems, vol. 27, No. 17, May 29, 1998 (pp. 1-7).
"Ipex '98 Preview: CTP, Digital Presses, CIP3, Proofing and
More Come to UK," The Seybold Report on Publishing
systems, vol. 28, No. 1, Sep. 14, 1998 (pp. 1-79).

* cited by examiner

U.S. Patent Oct. 4, 2005 Sheet 1 of 40 US 6,952,801 B2

PUBLISH! NG .. v-20

~

PRELIMfNARY - 22

PRE PRESS - t-- 24

~

PRINT 26

BOOK - 28
ASSEMBLY

(CUSTOM1ZATION)

~

-DISTRIBUTE
30

FIG. 1
PRIOR ART

U.S. Patent Oct. 4, 2005 Sheet 2 of 40 US 6,952,801 B2

3 6
PUBLISHiNG -

38 PRE PRESS
40

----- 1----

I ~
-1 /

42_ ' CREATE MASTER
--+ AND VARIABLE

I PAGE. FILE(S) AND

I BOOK TICKET FILE

I
I

,

I COLLATOR

I AND RIP

1

I
OPERATE I DEMAND

l PRI NTER(S)
I
I
r FINISHING
1 , _____ ---

30 DISTRIBUTE

FIG. 2

65

MODEM

64

52 74 -,
~FAXi

CONTROL
PERSONAL UNIT
COMPUTER

/
~MEMORYJ

53 l
CONTROL
AND
MAKE READY
FILES

I -7
;2a GATHERING

DEVICE(S)

I 1 INK JET ~ -1 DP 1 f ..
PRINTER(S)

I y-62b
I DP 2 f -..

LABEL ~

J 1:-::"62c PRINTER(S)
1 DP3 I

OTHER
~ CONTROL

DEVICE(S)

BAD BOOK

/ DETECTOR

50

FIG. 3

_72

v74
-

-76

78

d
•
\Jl
•
~
~
~ =

0
(')

!"""
~,J;;..

N c c
Ul

'JJ.

=~
~
~

0,
,J;;..
c

e
rJ'l

-..a-..
\0
(It
N

Oo
Q
1--"

~
N

U.S. Patent Oct. 4, 2005 Sheet 4 of 40 US 6,952,801 B2

79
I

80 PRESS
CONTROLLER

DEMAND
COLLATOR

PRINTER ---I--
81

RIP

~..........-
1--

82

Fl G. 4

FIG. 5

120 122
106

STRIPPED
TEMPLATE
FILE (S)

I >!MASTER
• PAGE

FILE (5)

POL
MASTER

lf---"!!O!Oo!l PAGE t------------------

108

VARIABLE
INFORMATION
DATABASE

126

STRIPPED
VARIABLE

FI LE (5)

134 ,
PAGE I • ~I
FILE(S)

P4-c

P1-b
P1-c

P4-b

L
132~ i

136

~ESS I 140 . M. MAN D ,_ _______ _,_
LE I ~

TO
PRINT
SYSTEM

79

d •
\Jl •
~
~
~ =

0
(')

!"""
~,J;;..

N c c
Ul

'JJ.

=-~
~
Ul
0,
,J;;..
c

e
rJ'l

-..a-..
\0
(It

J-J
00
Q
1--"

~
N

U.S. Patent Oct. 4, 2005 Sheet 6 of 40 US 6,952,801 B2

102 100a -r
(100a-1 / \

r
I

~ I
100

I 116

112
-f.- I

I
I
I
I
I ...--
I -:-

110

Pi! -- I - P1
I

_/
100 FIG. 6a

100
102 100 b-r

100b-1 \ \ / \
I I I"'

I
100b

I -- I
I
I
I
I
I
I
I
I \

I I }
I I

P2 P3

FIG. Sb

U.S. Patent Oct. 4, 2005 Sheet 7 of 40 US 6,952,801 B2

112
I
\ I

\ I
~ ' I -~

14

I
I
I -1
I

13

I
I
I
I -1 10

P8 ~--
I -
I -:--. P5

FIG. 7a

l

I
I
I
I
I
I
I
I
I
I

P6
1- I --- I r-- P7

FIG. 7b

U.S. Patent Oct. 4, 2005 Sheet 8 of 40 US 6,952,801 B2

I
P13 I P12

I
I
I
I -------,--------
I
I
I

117a I

J I
pg

I

118
FIG. Sa

117b 118

P11
I P14

I
I
I CJ I 119a
I -------,-------
I
I

D
I

P10 P15

119b
Fl G. 8b

U.S. Patent Oct. 4, 2005

START

SELECT OBJECT
IN FILE

INSERT DUMMY

150

Sheet 9 of 40

PLACE
DATABASE

FIELD NAME
AT INSERTION

POINT

US 6,952,801 B2

154

PICTURE 158
FILE WITH
DATABASE

FIELD NAME

SELECT POSITION
OF IMAGE IN BOX t------'

163

FIG. 9

156

162

MORE VARIABLE
INFORMATION IN

DOCUMENT?

y N

FINISH

U.S. Patent Oct. 4, 2005 Sheet 10 of 40 US 6,952,801 B2

176

178

184

190

Select
Next

Image

170 Open Template File

172 FIG. 10a

174
Create Database Field List

Prompt for Section Number, Simplex/Duplex and
Selective Processing Code (if any)

Save Image Box
Location and

Increment MASTER
Image Box Counter

for Page

N

180

~--177

182

186

I
Delete

Image Box

188

192

187

\
Save Image Box

Location and Field
Name and Increment

VARIABLE Image
Box Counter for Page

Select and
">--~ Parse First

Text Box

194

A

U.S. Patent Oct. 4, 2005 Sheet 11 of 40 US 6,952,801 B2

208

\r-----'---,

206

Select Next
Page

No

Yes

Save as
Stripped Master

File

Generate POL
Master Page File

(and INI Files)

I
212

198

i99

\

Delete
Text
Box

Save Text Box
Location and Field

Name and Increment
VARIABLE Text

Box Counter for Page

Yes

210

/
202

214

Reopen Template
File and Delete

All Master Boxes
(Text & Image)

Save Text Box
Location and

Increment MASTER
Text Box Counter for

Page

Select
& Parse

Next
Text
Box

204

216

Save as
t-----=~ Stripped Variable

File

218

FIG. 10b

Create *. VARS
File

(Page/Field Name)

U.S. Patent

FROM
BLOCK
298,

FIG. 10e

c

Oct. 4, 2005 Sheet 12 of 40

MAKE WORKING COPY
OF STRIPPED
VARIABLE Fl LE

SELECT FIRST PAGE
HAVING VARIABLE IN-
FORMATION AND DELE-
TE OTHER PAGES

SELECT FIRST
0 AT ABASE RECORD

READ

250

INSERT IMAGE
IDENTIFIED BY
DATABASE FIELD

242

244

246

248

262

FIG. 10c

e

US 6,952,801 B2

254

FROM
BLOCK

....._ • _. _ ____, 2 9 2 I

FIG.10e

U.S. Patent

c

f

Oct. 4, 2005 Sheet 13 of 40 US 6,952,801 B2

268

264~
SUBNAME

POSITION IMAGE
IN BOX

270

SELECT FIRST
INSERTION PT.

INSERT TEXT
SPECIFIED BY
DATABASE
FIELD

y

RECOMPOSE
TEXT BOX

266

SCALE
IMAGE
TO FIT

e

SELECT NEXT
IMAGE BOX

N

276

278

280

28-4

SELECT
NEXT
INSERTION
PT.

286

h

F I G. 10 d

272

U.S. Patent Oct. 4, 2005 Sheet 14 of 40 US 6,952,801 B2

f h

290

>---+~SELECT NEXT /
TEXT BOX

PROCESSED~ GO TO BLOCK 254
ALL RECORDS FIG. 10c

GENERATE
AND INI

294

298

296
. RETR\~VE COPY OF
STRIPPED VARIABLE
FILE AND SELECT

304

;>-!-'--~NEXT PAGE HAY lNG

300

y

SELECT Fl RST
RECORD IN DATABASE
AND CORRESPONDING
RECORDIN PRESS
COMMAND FILE

VARIABLE INFORMATION
AND DELETE OTHER
PAGES

GO TO
BLOCK
246

FIG. 10c

312

FIND SECTION IN
>----.!PRESS COMMAND

FILE RECORD
(CREATE IF NEEDED)

k

FIG. 10e

U.S. Patent

310

Oct. 4, 2005 Sheet 15 of 40 US 6,952,801 B2

SELECT NEXT
RECORD IN DATABASE
AND CORRESPONDING
RECORD IN PRESS
COMMAND FILE

Fl NISH

SELECT FIRST
PAGE IN SECTION

COPY MASTER
PAGE FILE NAME
AND PG. NUMBER
AND VARIABLE
PAGE FILE NAME
AND PAGE NUMBER
(IF ANY) AS SINGLE
SET PAIRS

COPY MASTER
PAGE FILE NAME
AND PG. NUMBER
AND VARIABLE
PAGE FILE NAME
AND PG. NUMBER
(IF ANY) AS
SINGLE SET
PAIRS

322
SELECT NEXT

~--~PAGE IN ~--~

SECTION

FIG.10f

U.S. Patent Oct. 4, 2005 Sheet 16 of 40 US 6,952,801 B2

PROMPT USER TO SPECIFY INFORIV1ATION 340
TO CREATE PAGINATION FILE: V

-MAX.# PAGES
-LH/RH FILLER PAGE ID

FOR EACH PAGE, SPECIFY:
-FORCE LEFT, FORCE RIGHT OR NO FORCE

-FILLER PAGE I.D. FOR FORCED PAGE
-MASTER, ALWAYS VARIABLE OR SELECTIVELY VARIABLE

FIG. 11

.,

OPEN PRESS COMMAND FILE V342

SELECT DATABASE FILES,
PAGINATION FILE, PLACEHOLDERS V344

FILE AND BARCODE FILES

~ RETRIEVE RECORD IN ./346
PRESS COMMAND FILE

~
DETERMINE WHICH

PAGES SHOULD V348

PRINT
(SEE FIG. 13)

DETERMINE WHETHER 1 r350
PAGES ARE LEFT OR RIGHT V

(SEE FIG. 14)

"PAD" PAGES INTO
MULTIPLES OF "N"

(SEE FIG. 15)

GENERATE POSTSCRIPT® V354
.._ INSTRUCTION SET

U.S. Patent Oct. 4, 2005 Sheet 17 of 40 US 6,952,801 B2

N -.
(!) -

U.S. Patent Oct. 4, 2005

364

CALCUlATE AND
SAVE OFFSETS OF
ALL PAGES IN FILE

YES

Sheet 18 of 40

RETRIEVE PAGE FROM
RECORD IN PRESS

COMMAND FILE

IS PAGE FROM
A NEW FILE TO

BE IMPOSED-ON
THE-FLY WITH

OFF_SETS?

IS PAGE A
MASTER PAGE?

(NO VARIABLE
PLACEHOLDERS?)

US 6,952,801 B2

348
k

360

MARK PAGE
~-----~AS "SHOULD

YES PRINT'

368

YES

FIG. 13

U.S. Patent Oct. 4, 2005 Sheet 19 of 40

INITIALIZE UR
.--------..tCOUNTER TO "RIGHT'

(DEFAULT VALUE)

RETRIEVE PAGE

380

382

US 6,952,801 B2

350

Jl'

THAT IS MARKED 1'4-------------,
.. SHOULD PRINT'

384

HAS USER SPECIFIED
WHETHER PAGE SHOULD

BE FORCED LEFT OR
RIGHT?

388
I

MARK APPROPRIATE FILLER
PAGE AS "SHOULD PRINr'

390

NO

386

FLIP-FLOP
UR

COUNTER

YES

FIG. 14

U.S. Patent Oct. 4, 2005 Sheet 20 of 40 US 6,952,801 B2

352
II

COUNT NUMBER OF PAGES ARE
MARKED "SHOULD PRINT'
(INCLUDING FILLER PAGES)

392

>------4o!

ADD FILLER PAGES TO
MAKE IT A MULTIPLE OF 4

FIG. 15

RETURN TO BLOCK
354 OF FIG. 11 TO

GENERATE
INSTRUCTION SET

U.S. Patent Oct. 4, 2005 Sheet 21 of 40

Enter the page height and width of the imposed page or ''flat". These will be used
as the setpagedevice parameters to the RIP.

Page Width (Inched: Page Height {Inches}: 111
Imposition S1Yie:

Finishing Style: ..__ln_-_u_n_e_Fi_m_is_h_in-'g~--,.....JJ four Pagers: Stitch

Report field: NO SELECTION

US 6,952,801 B2

Bar Code: Bon om of Sheet ... , Page Numbers: Page Numbers Off

Select:

VDF MAC:Oesktop Folder:VDF Jobs:longs Drugs:aloha.mm.vars

Pag PS file

BT Directory

Device Name: joocuprint Queue Name:

Master and Variable Storage Directory:

jtvar/spooVXRXnps/netqreq

IMi\¥ jtlt

Fl G. 16

U.S. Patent Oct. 4, 2005

Open Press
Command File

Sheet 22 of 40

397

FIG. 17

Prompt User to Specify RIP Option:
398

400

Master Only, Variable Only,
Master & Variable

Select First Line In PCF Having
File Name(s)

399

US 6,952,801 B2

Select First File Name IE-----------------.

401

402

File List

Add to
RIP List

RIP Files in
RIP List

to Tiff Format

Select Next
File Name

Select Next
PCF Line

\
409

U.S. Patent Oct. 4, 2005

"GET TIFF"
IMPOSITION

,,

RETRIEVE PAGE
PAIR FROM

INSTRUCTION SET

,,.

Sheet 23 of 40

RETRIEVE
REFERENCE TO [/-412

LEFT HAND PAGE IN
TIFF FORMAT

,,

MOVE OFFSET TO 014
RIGHT SIDE

RETRIEVE
REFERENCE TO ~16

RlGHT HAND PAGE
IN TIFF FORMAT

,
ADD PAGE

NUMBERS AND/OR ~18
- BAR TRACKING

CODE

US 6,952,801 B2

FIG. 18

~22
PDL

MASTER t---
PAGE

FILES

450
_L

MERGED
~POSTSCRIPT

FILES
POL

VARIABLEt
PAGE
FILES

\1371138

PRESS COMMAND
FILE

(INSTRUCTION SET!

"""140

...

PRESS 1 _ 0
CONTROLLER ~--""" 8

COLLATOR

RIP

!---81 452
L

RASTER
~MEMORY

I I ~ 1 1MPOSITION- I

ON-THE-FLY U-454
PROCEDURES

"'-s2

84
/

DEMAND

1---Ji'! PRINTER

PRINT SYSTEM

\79 -~

456-

F I G. 1 9 -""- \

"'-4'54

d
•
\Jl
•
~
~
~ =

0
(')

!"""
~,J;;..

N c c
Ul

'JJ.

=~
~
N
,J;;..

0,
,J;;..
c

e
rJ'l

-..a-..
\0
(It
N

Oo
Q
joooO

~
N

U.S. Patent Oct. 4, 2005

Standard Level 2
SHOWPAGE

Reason Code = 0

Call EndPage
Procedure

NO

Sheet 25 of 40 US 6,952,801 B2

500
/

510

Transmit Contents of
Raster Memory to

Output Device
(For Rendering)

~----~~----~~/
INITGRAPHICS

(Reset Default Matrix
and Clipping Path)

Increment
PageCount

Call BeginPage
Procedure

ERASEPAGE
(Clear Raster Memory)

~508

FIG. 20

U.S. Patent Oct. 4, 2005 Sheet 26 of 40

Redefined
INITCLIP

520

NO--~

YES 524

/
Set P1 = Current Path Description

(Call MakePath Procedure)

526

Save Current [CTM]

528

Set Virtual [CTM]

Create Clipping Path Between
Corners of Virtual Page

Restore Saved [CTM]
and

Current Path (P1)

530

532

US 6,952,801 B2

522

/
Set P1 ::

Empty Path

FIG. 21

U.S. Patent Oct. 4, 2005 Sheet 27 of 40 US 6,952,801 B2

Redefined
TRANSFORM

Save Current [CTM]
on Stack

Calculate [Operations Matrix]=
[Current CTM] [Virtual CTM]~1

Set new [CTM] =

Yes

540
/

/

/

[Operations Matrix] [System Default Matrix]

542

544

Call Standard TRANSFORM Operator /
(Systemdict_ Transform)

Reset Current [CTM]
(Saved by block 538)

546

536

Call Standard TRANSFORM
Operator

(Systemdict_ Transform)

FIG. 22

U.S. Patent Oct. 4, 2005 Sheet 28 of 40 US 6,952,801 B2

ENABLEVIRTUALDEVICE

FIG. 23

554

No Rename Standard
~------+!Level 1 SHOWPAGE

Yes

Load Redefined EndPage
and BeginPage Procedures
Into Current Graphics State

(call setpagedevice)

(Level 1) Operator

556-

558
\

Redefine Level 1
Showpage Operator to

Emulate Level 2
Showpage Operator

(See Fig. 20}

Execute BeginP age Procedure
for First Page

560
,/

Invoke DisablePageDevice Procedure
(See Fig. 24)

Set VirtuaiDeviceEnabled
=True

562

U.S. Patent Oct. 4, 2005 Sheet 29 of 40 US 6,952,801 B2

572

\

YES

Determine Orientation
(Portrait or Landscape)
of PageSize Operand

576

574

FIG. 24

NO (Level1)

NO

NO

580

578

Invoke SetPortrait
Procedure (Fig. 25)

Call Redefined lnitgraphics W::...--------11.----------l
and ErasePage Operators

Redefine Compatibility Operators
to Corrent Page Orientation

582

U.S. Patent Oct. 4, 2005 Sheet 30 of 40 US 6,952,801 B2

FIG. 25

No--~

(Landscape

Convert Corner
Coordinates to

Portrait Orientation

to Portrait)

(Portrait to Yes
Landscape)

Convert Corner
Coordinates to

Landscape Orientation

Translate Origin
in Positive-x

Direction

Rotate 90 degrees
CounterClockwise

Set Virtual [CTM) for
Landscape Orientation

600

/

602

604

606

Translate Origin
in Positive-Y

Direction

Rotate 90 degrees
Clockwise

Set Virtual [CTM] for
Portrait Orientation

622

Exchange Values of
Page Width (PageX)

and Page Height (PageY)

/

624

Reverse Value of Portrait

614

/

616

/

618

/

620

U.S. Patent Oct. 4, 2005

1 s92

OlxJ\y)

y

Sheet 31 of 40 US 6,952,801 B2

X

I.---------, X
Q)
0'1
0
(L

....... >.
X L

w :I

>-(!)

w~
t9
~5 ~

.._ _____ ~
X

>.

Op ! PAGE X----~!llot
r* ''----____.._.f

..J
1~·~---PAGEX----~0

r
>-
w
(9
<(
0...

L
OL

~10

(llxlly)

X

PORTRAIT--> LANDSCAPE

FIG. 26A

608 0
! -o y

(urx ury} X -~
0 - lO

X (!)

w -<
t.')

I

c:
~ '<'

~

t
_. _.
X
'-'

PAGE X J
LANDSCAPE--> PORTRAIT

FIG. 268

(NEW PAGE Y)

PAGE X
(NEW PAGE Y) ~,

.........
-o
0

lO
(J)

-< I _.
~
c

.;>
........

U.S. Patent Oct. 4, 2005 Sheet 32 of 40 US 6,952,801 B2

SETVIRTUALDEVICE

630 632

Invoke
'>--------'::..! EnableVirtuaiDevice

Procedure

633

------------- ------------,/
! Invoke Redefined Save :
I I

Define Virtual Page Size
[PageX PageY]

: Operator :
~-----, (See Figs. 33 & 35) !

Define Corners of Virtual Page
[Ciipllx, Cliplly, Clipurx, Clipury]

Set [CTM] to System Default Matrix
for Current Output Device

(systemdict_initmatrix)

Execute Scale, Translate and
Rotate Procedures

Save Resultant Matrix as the

Virtual [CTM]
(Stored in OefaultMatrix)

636
/

40

642

NO

Set Portrait= True
(Portrait Orientation)

, (Optional Procs. Only) : L _________________________ j

FIG. 27

48

Set Portrait= False
(Landscape Orientation)

650

~

Invoke Redefined INITCLIP
Operator to Set

Clipping Path Around the
Border of the Virtual Page

U.S. Patent Oct. 4, 2005 Sheet 33 of 40

IMPOSEJOB

Invoke
Enable Virtual Device
Procedure (Fig. 23)

652

653

----------------- ----------------, ~
: Execute Redefined Save V

,---~ Operator and Store Saved State :
I 1 I

: : (Optional Procs. Only) :
t L--------------- ----------------~
I
I
I

Retrieve File/List Pair
from Instruction Set

654

56

Invoke IMPOSEFILE
'-- Procedure

(See Fig. 29)

657
I ~--------------- -----------------: /

~ i Execute Redefined Restore : ~
! i Operator to Restore State Saved (------J I

by Block 654 :
: (Optional Procs. Only) :
1 I L---------------- ________________ j

Set lmageDone
=True

658

Execute 662

systemdict_ showpage

US 6,952,801 B2

FIG. 28

664

U.S. Patent Oct. 4, 2005

IMPOSEFILE

PageOffset = CurrentPage
+ PageOffset + 1

Sheet 34 of 40 US 6,952,801 B2

FIG. 29
670

672 S73

..-----~-----;/ /
Retrieve Entry from Entry List

[{user proc} page# {operands}
{user proc})

CurrentPage =
Page # from Entry

Invoke SetVirtuaiDevice
Procedure (See Fig. 27)

YES

Find Last Page
on Flat

NO

Interpret Page Descriptions
(containing SHOWPAGE Operator)
in PostScript File Through Last Page

688

675
~ Execute

User
Procedure 676

Invoke MakeNull Procedure 682
(see Fig_ 30)

For Scaled-Down Virtual Device
(INITCLIP)

/'86

690

-------------~---------1 i
: Get Next File/List Pair : :

Flush File and
Close File

I I I

-----------------:;>; from IMPOSEJOB ~--------_!

: Procedure :
~-------------------------~

U.S. Patent Oct. 4, 2005 Sheet 35 of 40 US 6,952,801 B2

MAKE NULL FIG. 30

'v
Calculate and Save MidPoint

698

v of
Virtual Clipping Path

in Device Space

'v 700

Get Virtual [CTM] v
(Stored in OefaultMatrix)

11/
702

Calculate Sx and Sy
Scale Factors

I If 704

Scale Virtual [CTM]
l//

'" 706

Store Scaled Virtual [CTM] v/
as the New Virtual [CTM)

in DefaultMatrix

'~
Set MidPoint of Scaled Clipping Path 7 v Equal to Original

08

MidPoint Coordinates
(Saved by Block 698)

U.S. Patent Oct. 4, 2005 Sheet 36 of 40 US 6,952,801 B2

Redefined

No

No

714

\ Yes

Increment Currentlndex to Get

FIG. 31

Execute Second
User Procedure

(Offsets)

~----~
\
713

718

720

722

724

Next Entry from Entry List

No

Reset Graphics State to Default
(systemdict_initgraphics)

'-----------~----------~
Retrieve Entry from Entry List
(Operands to setvirtualdevice)

Invoke setvirtualdevice Procedure

CurrentPage = Page Number from
726 Retrieved Entry (Next Page on Flat)

Invoke MakeNull Procedure (Fig. 30) 1----~
(assume next page not on flat)

730
\

'
"" '

Get Value of lmageDone
("True" means flat is complete)

Reset lmageDone to False

Pop User
Procedure

728

\
732

U.S. Patent Oct. 4, 2005

Set Virtual [CTM]
(redefined INITMATRIX)

NO

YES 744

~ /
Get Entry from
Entry/List Pair

Ill 745

Execute User /
Procedure

746

Invoke SetVirtuaiDevice v·
Procedure (See Fig. 27)

748

'" /
Pop Page Number from

Retrieved Entry

Sheet 37 of 40

FIG. 32

752

NO

YES

~ 754
STOP v/

"Done with
Current File"

750

/

US 6,952,801 B2

756

Invoke
Redefined
INITCLIP
Operator

(See Fig. 21)

Blank Out Virtual Page
~ (Erase Any Stray Marks ...

from Non-Selected Pages)

U.S. Patent Oct. 4, 2005

VSAVE

Save Current [CTM]

Set [CTM} =
Identity Matrix

NO

aoo

801

Sheet 38 of 40

FIG. 33

Set P1 = No-op
(Empty) Path

808

US 6,952,801 B2

804
/,810

YES /
,.....---__....._____,

Set P1 =Current Path
(Invoke MakePath

Procedure)

806

FirstOp = Lineto
(Add Segment to

Current Path)

I

~------~----~

FirstOp = Moveto
(Set CurrentPoint)

Create Unlimited
Bounding Box
(SetBigBBox)

812

Invoke FirstOp to Append Page
Size (PageX and PageY)

Components to Current Path

Append Virtual (CTM]
Components to

Current Path

Replace Identity [CTM] with
Previously Saved [CTM]

814

818

820

U.S. Patent Oct. 4, 2005 Sheet 39 of 40 US 6,952,801 B2

830
/

FIG. 34
832

Set [CTM] = Identity Matrix

834

Retrieve Current Path Operands (includes page
size & virtual [CTM] components at time of save)

836

Set ResDefaultMatrix and ResPageSize to [CTM]
and Page Size from Current Path (at time of save)

Yes 856

Remove Page Size and Virtual
[CTM] Components from

Current Path

Restore Current Path

Restore (CTM] to Value
Saved by Block 830

No

838

858

860

852

854

840

Set [CTM] to Value Saved
by Block 830

842

Set P1 = Path at Time of Save
(without PageSize and [CTM))

850

844

846
I

Change Page
Orientation

(Invoke
SetPortrait
Procedure)

Calculate New [CTM]

Execute Correct Clipping Path (C1)
in Virtual [CTM] Coordinate System

Restore Current Path (P1)
in Virtual [CTM) Coordinate System

U.S. Patent Oct. 4, 2005

Redefined
SAVE/GSAVE

Invoke VSAVE
Procedure (Fig. 33)

~

Invoke Renamed
Standard Save/GSave

Operator

It

Set [CTM] =
Identity Matrix

Restore Current Path
{Saved in P1)

~~~ 

872 

I 

87 4 

/ 

67 6 
v/ 

878 

v / 

880 
/ 

Restore [CTM] Saved by v Block 500 of VSAVE 
Procedure (Fig. 33) 

FIG. 35 

902 

Sheet 40 of 40 

Put Values of 
Variables on 

Operand Stack 

Invoke Renamed 
Standard Restore 

Operator 

Set Variables Equal 
to Their Pre-Restore 
Values (saved on 
Operand Stack) 

US 6,952,801 B2 

892 
/ 

/ 
/ 

/894 
/ 

896 

898 
Invoke VRESTORE ~/ 

Procedure 
(See Fig. 34) 

FIG. 36 

Redefined 
GRESTORE/ 

GRESTOREALL 

Invoke Renamed Standard 
Grestore/Grestoreall Operator 

FIG. 37 
904

------- Invoke VRESTORE Procedure 
(See Fig. 34) 



US 6,952,801 B2 
1 

BOOK ASSEMBLY PROCESS AND 
APPARATUS FOR VARIABLE IMAGING 

SYSTEM 

RELATED APPLICATIONS 

This application is a divisional of U.S. application Ser. 
No. 08/802,337, filed Feb. 11, 1997, the disclosure of which 
is hereby incorporated by reference, and which, in turn, is a 
continuation-in-part of U.S. application Ser. No. 08/478, 
397, filed Jun. 7, 1995 and a continuation-in-part of U.S. 
application Ser. No. 08/627,724, filed Apr. 2, 1996, now U.S. 
Pat. No. 5,857,209. 

TECHNICAL FIELD 

The present invention relates generally to reproduction 
methods and systems, and more particularly to a method of 
and system for selectively reproducing images. 

BACKGROUND ART 

Most printing systems in use today utilize printing plates 
or cylinders which are engraved or photochemically pro
cessed to create an image thereon. Ink is then deposited on 
the plate or cylinder and the ink is thereafter transferred to 
a substrate, such as paper. In a conventional printing press, 
a number of pages are printed on a sheet of paper to form a 
signature which is then folded and assembled with other 
signatures. The assembled signatures are then bound, 
trimmed and finished by finishing apparatus to produce 
finished books, such as magazines, catalogs or any other 
printed and bound matter. 

Often, there is a need to produce different versions of 
books and/or customized books within a single press run. 
For example, it may be desirable to produce a number of 
standard books together with a number of books having 
additional and/or different signatures or pages therein. Also, 
it may be necessary or desirable to provide customized 
information in the form of an address label, personalized 
information or the like on the inside or outside of finished 
books. In either case, conventional printing systems are not 
easily adaptable to produce books of these types. 

A printing system which has the ability to produce dif
fering book versions and/or books with customized infor
mation is disclosed in Riley U.S. Pat. No. 4,121,818, 
assigned to the assignee of the instant application. The 
printing system includes a number of packer boxes disposed 
adjacent a binding chain wherein each packer box stores a 
plurality of signatures. A control is included for controlling 
the packer boxes to selectively feed signatures onto chain 
spaces of the binding chain so that books of varying content 
can be produced. Customized information can be printed on 
the signatures by means of an ink jet printer which is 
selectively operated by the control. Other types of customi
zation can be effectuated, such as by inserting or onserting 
cards or the like. 

Other systems for producing customized books are dis
closed in Abrams et al. U.S. Pat. No. 3,899,165, Wong et al. 
U.S. Pat. Nos. 4,500,083 and 4,674,052, Wong U.S. Pat. No. 
Re 32,690 and Berger et al. U.S. Pat. Nos. 4,768,766 and 
4,789,147. 

Image manipulating systems have been developed which 
permit gathering of images in an office or home environ
ment. For example, conventional word processing programs, 
such as Microsoft® Word®, WordPerfect® and the like, 
permit a user to import images into a page and also allow a 
user to command which pages of a document to print. In 

2 
addition, macros (i.e., a sequence of commands) can be 
assembled and executed within these programs which can 
allow printing of particular document pages in a certain 
order. Still further, most word processing programs have 

5 merge capability wherein a customized image is merged 
with other standardized information and printed or dis
played. As one example, customized information in the form 
of addressee and address information may be merged with 
standardized return address information and printed on a 

10 series of envelopes. 
A different image gathering capability provided by CAD 

(computer aided design) software, sometimes referred to as 
"layering," involves the creation and storage of a base page 
and one or more layer pages. A user can issue commands to 

15 display or print the base page and one or more of the layer 
pages simultaneously atop one another to achieve an effect 
similar to the overlay of transparencies so that a composite 
page appearance results. 

While the foregoing image manipulating systems allow 
20 some image gathering capability, none is effective to assist 

in the rapid production of different book versions. Of course, 
CAD systems are primarily designed for line art and not text 
or graphic images, and hence are of only limited use. 
Further, if one were to use word processing software to 

25 produce book versions it would be necessary to issue 
commands to separately print the pages of each book version 
just before such version is to be produced. That is, a user 
would have to create and store pages to be included in a first 
book version and then command the software to print as 

30 many copies of the first version as are needed. Thereafter, 
the user would have to recall the pages of the first version 
from memory, edit and store the pages to create pages to be 
included in a second book version and then command the 
system to print the required number of books of the second 

35 version. Similar steps would have to be undertaken for each 
other book version to be produced. Alternatively, the pages 
of the different book versions could be created and stored 
and thereafter printed together. In either event, where many 
book versions are to be produced, such a process would be 

40 quite time-consuming. In addition, image importation and 
merge routines provided as a part of word processing 
software are adapted for use on a sub-page basis only and 
hence are of only limited usefulness in the book production 
environment. Still further, data manipulated by word pro-

45 cessing software are largely (if not entirely) in symbolic 
format. As a result, data to be displayed or printed must be 
first rasterized by a raster image processor (RIP), which 
utilizes complex and time-consuming computational rou
tines which further increase production time to an economi-

50 cally impractical level. 
Recently, new printing systems have been developed, 

called "demand printers," which are capable of high speed 
printing of images from electronic representations thereof. 
The demand printer produces high quality color (or black 

55 and white) images using a set of fusible toners in an 
electrophotographic process. More particularly, a web of 
paper is passed adjacent a series of drums, each of which has 
been electrostatically charged according to an image pattern 
for a particular color to be applied to the web. The charge is 

60 transferred to the paper and an oppositely charged toner of 
the proper color is brought into contact with the paper. The 
oppositely charged web and toner attract so that the toner is 
held on the paper as other colors are applied thereto. The 
toners and paper are thereafter heated to fuse the toners to 

65 the paper to produce the final image. The web is then cut into 
sheets (or "forms") and the forms are further processed as 
needed to produce a final product. 



US 6,952,801 B2 
3 

Unlike conventional presses which utilize engraved or 
photochemically prepared plates or cylinders, demand print-
ers are capable of rapidly printing high quality images of 
differing content owing to the fact that the images are 
produced by an electrophotographic process. That is, instead 5 

of the need to replate and re-engrave a gravure cylinder 
when a different image is to be printed therewith, it is only 
necessary to change the charge applied to the drums of the 
printer in order to make such change. Thus, different images 
can be printed by the same printer without significant delays. 10 

This advantage makes the demand printer desirable for use 
in certain production environments. 

Warmus et al. U.S. patent application Ser. No. 08/478, 
397, entitled "Variable Imaging Using An Electronic Press" 
discloses an apparatus and method for controlling an elec- 15 

tronic press so that fixed and variable information may be 
printed in a simple and effective manner. More particularly, 
first and second sets of template data representing associated 
first and second template pages, respectively, are developed. 
Each set of template data includes master data representing 20 

fixed information and area data representing an area of a 
page for variable information. A database is also developed 
having a number of entries each of which represents variable 
information. The printer is operated in accordance with the 
sets of template data and the entries in the database such that 25 

the first and second template pages are displayed with 
selected variable information. 

The Warmus et al. apparatus and method generates a page 
definition language representation of each single page and 
thereafter generates a page definition language representa- 30 

tion of each imposed fiat, i.e., each side of a piece of paper 
to be printed with two or more pages. Such a procedure can 

4 
ing instructions for insertion of filler pages in accordance 
with the pagination information. 

Preferably, the inventive method further includes the step 
of delivering the page description language instructions to 
an electronic press to print the book. 

In yet another embodiment, the step of specifying the 
pagination information includes the step of providing a user 
interface for entry of the pagination information. 

Other features and advantages are inherent in the appa
ratus claimed and disclosed or will become apparent to those 
skilled in the art from the following detailed description in 
conjunction with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram illustrating a prior art method 
of producing books; 

FIG. 2 is a block diagram of a method of producing books 
implementing the present invention; 

FIG. 3 is a block diagram illustrating an exemplary 
system for implementing the method of the present inven
tion illustrated in FIG. 2; 

FIG. 4 is a block diagram illustrating one of the demand 
printing systems of FIG. 3 in greater detail; 

FIG. 5 is a generalized diagram of the steps implemented 
by the method of the present invention; 

FIGS. 6a and 6b are elevational views of portions of a 
sample book that may be produced by the present invention; 

FIGS. 7a, 7b and Sa, Sb are elevational views of portions 
of other sample books that may be produced by is the present 
invention; 

be computationally expensive and may limit productivity. 

SUMMARY OF THE INVENTION 

FIG. 9 is a flowchart illustrating programming that may be 
executed by a user on a personal computer to create the 

35 template files 105 of FIG. 5; 
According to one aspect of the present invention, a 

method of assembling a book includes the steps of specify
ing pagination information including an indication of 
whether a page is to be selectively included in the book, 
determining whether the page is to be assembled into the 40 

book based on the pagination information, and generating 
page description language instructions for production of the 
book in accordance with the pagination information. 

Preferably, the determining step includes the step of 
45 

analyzing variable information areas of the page. The inven
tive method may further include the step of analyzing press 
commands directed to production of the book to determine 
whether the page is to be assembled into the book. The 
inventive method may still further include the step of 

50 
generating a pagination file having data representative of the 
pagination information. 

Preferably, the pagination information includes an indi
cation of a maximum number of pages for the book. The 
pagination information may include filler page information. 55 
The pagination information also preferably includes a speci
fication of whether the page should be forced to one of a 
right side and a left side of the book. 

In one embodiment, the inventive method further includes 
the step of specifying page description language instructions 60 

to produce a barcode on the page. The barcode may be 
indicative of tracking information. 

In another embodiment, the step of generating page 
description language instructions includes the step of gen
erating instructions for production of page numbering infor- 65 

mation on the page. The step of generating page description 
language instructions may also include the step of generat-

FIGS. 10a-10f, when joined along similarly-lettered 
lines, together represent programming executed by the con
trol unit 52 of FIG. 3; 

FIG. 11 is a flowchart illustrating the programming imple
mented by the control unit 52 to generate a page description 
language instruction set specifying which pages should be 
printed and how the pages should be positioned (or imposed) 
for printing; 

FIG. 12 is a sample window to prompt a user for the 
information needed to create a pagination file; 

FIG. 13 is a flowchart illustrating in detail the program
ming implemented by the block 348 of FIG. 11 which 
determines which pages should be printed for a particular 
record in the press command file; 

FIG. 14 is a flowchart illustrating in detail the program
ming implemented by the block 350 of FIG. 11 to determine 
whether the pages should be forced to the left or right-hand 
side of the book; 

FIG. 15 is a flowchart illustrating in detail the program
ming implemented by the block 352 of FIG. 11 to pad the 
pages included in the book into a multiple of the number of 
pages to be printed on a sheet; 

FIG. 16 is a sample window to prompt a user to provide 
various information to select imposition and printing styles; 

FIG.17 is a flowchart illustrating the programming imple
mented to RIP page files to Tiff format for use in "Get Tiff" 
imposition in accordance with the present invention; 

FIG. 18 is flowchart illustrating the programming imple
mented to impose pages using "Get Tiff" imposition in 
accordance with the present invention; 



US 6,952,801 B2 
5 

FIG. 19 is a more detailed block diagram of the print 
system 79 (shown in FIG. 4) incorporating the imposition
on-the-fly procedures of the present invention; 

FIG. 20 is a flowchart illustrating the standard operation 
of the Level 2 PostScript® showpage operator; 

FIG. 21 is a flowchart illustrating the program steps 
implemented by the redefined Postscript® initclip operator 
according to the imposition-on-the-fly procedures of the 
present invention; 

FIG. 22 is a flowchart illustrating the program steps 
implemented by the redefined Postscript® transform opera
tors according to the imposition-on-the-fly procedures of the 
present invention; 

FIG. 23 is a flowchart illustrating the program steps 
implemented by the EnableVirtualDevice procedure accord
ing to the imposition-on-the-fly procedures of the present 
invention; 

FIG. 24 is a flowchart illustrating the program steps 
implemented by the DisablePageDevice procedure accord
ing to the imposition-on-the-fly procedures of the present 
invention; 

FIG. 25 is a flowchart illustrating the program steps 
implemented by the SetPortrait procedure according to the 
imposition-on-the-fly procedures of the present invention; 

FIG. 26A is a diagram illustrating the conversion of a 
portrait-oriented page to a landscape-oriented page accord
ing to the SetPortrait procedure of FIG. 24; 

5 

6 
FIG. 37 is a flowchart illustrating the program steps 

implemented by the redefined PostScript® grestore and 
grestoreall operators according to the imposition-on-the-fly 
procedures of the present invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

FIG. 1 illustrates a prior art method of producing books, 
for example, as shown in the above-identified Riley et al. 

10 '818 patent. During a publishing step 20, the contents of one 
or more book versions are determined. Each version may 
comprise, for example, a set of standard or common pages. 
In addition, some of the versions may include one or more 
additional pages or other customized information. 

15 Thereafter, during a preliminary step 22, color correction of 
color images is undertaken together with undercolor 
removal and screening for halftone images. During a pre
press step 24, page imposition is effected and printing 
cylinders or plates are prepared. The plates or cylinders are 

20 then used during a printing step 26 to prepare signatures 
which are loaded into packer boxes (not shown). As noted in 
the Riley et al. '818 patent identified above, the signatures 
are then selectively collected on a gathering chain (not 
shown) during a book assembly step 28 and the gathered 

25 signatures are bound and trimmed to create the books. The 
books are thereafter distributed during a step 30 to users via 
one or more distribution systems, for example, the U.S. 
Postal Service. 

FIG. 26B is a diagram illustrating the conversion of a 
landscape-oriented page to a portrait-oriented page accord- 30 

ing to the SetPortrait procedure of FIG. 24; 

As should be evident from the foregoing, customization 
occurs during the book assembly step 28, inasmuch as the 
choice of particular signatures to be included in a book is 
made at that time. In addition, customized information can 
be printed onto selected signatures using an ink jet printer 
disposed adjacent the gathering chain. Thus, for example, 

FIG. 27 is a flowchart illustrating the program steps 
implemented by the setvirtualdevice procedure according to 
the imposition-on-the-fly procedures of the present inven
tion; 

FIG. 28 is a flowchart illustrating the program steps 
implemented by the Imposejob procedure according to the 
imposition-on-the-fly procedures of the present invention; 

FIG. 29 is a flowchart illustrating the program steps 
implemented by the ImposeFile procedure according to the 
imposition-on-the-fly procedures of the present invention; 

FIG. 30 is a flowchart illustrating the program steps 
implemented by the MakeNull procedure according to the 
imposition-on-the-fly procedures of the present invention; 

FIG. 31 is a flowchart illustrating the program steps 
implemented by the redefined EndPage procedure according 
to the imposition-on-the-fly procedures of the present inven
tion; 

FIG. 32 is a flowchart illustrating the program steps 
implemented by the redefined BeginPage procedure accord
ing to the imposition-on-the-fly procedures of the present 
invention; 

FIG. 33 is a flowchart illustrating the program steps 
implemented by the Vsave procedure according to the 
imposition-on-the-fly procedures of the present invention; 

FIG. 34 is a flowchart illustrating the program steps 
implemented by the Vrestore procedure according to the 
imposition-on-the-fly procedures of the present invention; 

FIG. 35 is a flowchart illustrating the program steps 
implemented by the redefined Postscripts® save operators 
according to the imposition-on-the-fly procedures of the 
present invention; 

FIG. 36 is a flowchart illustrating the program steps 
implemented by the redefined PostScript® restore operator 
according to the imposition-on-the-fly procedures of the 
present invention; and 

35 addressee information can be printed by the ink jet printer on 
assembled books so that preprinted addressee labels need 
not be used. Other types of customization can be effected at 
this time, for example, by inserting or onserting cards into or 
onto a stack of collected signatures, affixing a specialized or 

40 customized cover on a gathered stack of signatures, or the 
like. Customization at this point in the production process is 
simpler and less expensive than, for example, separately 
printing each book version with customized information. 

FIG. 2 illustrates a block diagram of a method 40 accord-
45 ing to the present invention which may be used in place of 

the method of FIG. 1 to produce books. The method 40 
includes a step 42 which utilizes the output of publishing and 
preliminary steps 36, 38 and produces books for distribution 
according to the step 30 of FIG. 1. The step 42 creates one 

50 or more master and variable page files in, for example, a 
page description language (PDL) such as PostScript® 
(PostScript® is a trademark of Adobe Systems, Inc. for its 
page description language) representing pages to be pro
duced. In addition, as noted in greater detail hereinafter, a 

55 press command file (also referred to as a "book ticket" file) 
is developed which specifies the manner in which data 
contained within the master and variable page files are to be 
merged to produce printed pages. The format of the press 
command file may be, for example, of the form specified by 

60 Barco Graphics of Gent, Belgium, which is particularly 
suited for control of a DCP-1 digital color press manufac
tured by Xeikon of Mortsel, Belgium. Alternatively, the 
format of the press command file may be of the form 
specified for control of a DocuPrint printer, manufactured by 

65 Xerox Corporation. Other demand printers include the IBM 
3900 or Siemens 2090 Twin or 2140 Twin. It should be noted 
that the apparatus and method of the present invention are 



US 6,952,801 B2 
7 

not limited to use with a particular type of demand printer or 
a particular system for controlling such a printer, inasmuch 
as the invention can be adapted for use with any type of 
printer or control whether located locally or remotely. 

8 
the case of other remote devices, a modem 65 may be 
operated by the control unit 52 to transmit data representing 
one or more pages to be displaced by a display device at a 

The master and variable page files and the press command 5 

file are converted by a collator and raster image processor 
(RIP) into bitmaps which may be stored in a memory. The 
stored bitmaps are used to control one or more demand 
printers and/or any other type of display device, such as a 
laser printer, a CRT, an LCD display or the like so that the 10 
device displays pages having fixed and variable information 
thereon. Alternatively, the master and variable page files 
may be premerged to create a plurality of combined files 
each representing a page to be reproduced with master and 
variable information. The combined files can be then sent to 15 

remote location over phone lines (land lines and/or cellular) 
or a combination of phone lines and the Internet. Alterna
tively or in addition, the data may be sent to a local or remote 
location at least in part over an intranet or another computer 
network through a direct connection therewith. The com
bined files may be printed or may alternatively be repro
ducible in a different medium and/or may comprise a non
static image or other information, e.g., movies or audio. 

The pages printed by the demand printing system 62 may 
be supplied to a finishing apparatus 66 which includes 
various auxiliary production devices and device interfaces 
for assembling the pages to produce finished books which 
are ready for distribution. The finishing apparatus 66 may any type of printer or other display device, whether local or 

remote. Also, the combined files can be converted to a 
suitable format (e.g., Acrobat® PDF format) and transmitted 
to a remote location using a facsimile machine, e-mail, the 
Internet/worldwide web or other transmission medium, if 
desired. Advantageously, the combined files may be trans
mitted over the Internet or any other networked or linked 
computers, such as a company intranet. In this case, as 
electronic page containing customized data can be sent over 
the Internet/intranet to a user based upon user 
demographic(s), a user search and/or any other identifiable 
user interest(s). For example, a customized Internet page 
could be sent with links to other web pages of interest to a 
user or a customized page may be sent in response to a user 
search for information on a particular subject. Alternatively, 
or in addition, ads could be generated and sent as a web page 
to one or more users based upon user demographics. As a 
further example, personnel information concerning a par
ticular employee may be sent to the employee in response to 
a request for information. 

If the pages are to be displayed by rendering the pages on 
the demand printer, the assembled books may be bound and 
trimmed and, if desired, further customized, during a fin
ishing step. 

FIG. 3 illustrates a system 50 which implements the steps 
36, 38 and 42 in the method 40 of FIG. 2. A control unit 52, 
which may be implemented by a personal computer or 
another type of computer, includes a memory 53 and stores 
therein data representing images to be printed. As noted in 
greater detail hereinafter, the data may be specified by a 
publisher using a personal computer 54 or any other type of 
computer and may comprise one or more template files 
specifying pages to be produced with master or fixed printed 
information (i.e., printed information which does not vary 
from book to book of the same version) and variable printed 
information (which typically varies from book to book). The 
variable information may be stored in a database created by 
the publisher and the template file(s) specify the locations on 
particular pages for variable information stored in the 
database, as noted in greater detail hereinafter. 

If desired, image data may be obtained from any other 
type of device or devices, such as a scanner which scans 
input copy, data supplied over a network or any other source. 
The control unit 52 is further responsive to control and 
makeready files and causes one or more demand printing 
systems 62 to print desired pages. While three demand 
printing systems 62a-62c are illustrated in FIG. 3, it should 
be understood that the control unit 52 may operate a different 
number of demand printing systems, as desired. Also, the 
control unit 52 may operate a fax machine 64 and/or may 
communicate with other remote devices to send properly 
converted combined files, as desired and as noted above. In 

include one or more gathering devices 70 for gathering 
printed pages into books, one or more ink jet printers 72 for 
printing additional customized information, such as 

20 addressee information, on each book, one or more label 
printers 74 for printing address labels and/or other control 
devices 76. In addition, one or more detectors 78 may be 
provided to sense when a defective book is produced. The 
control unit 52 may be responsive to the output of the 

25 detector 78 to reorder a defective book at an appropriate 
point in the production sequence thereof so that advantage 
can be taken of postal discounts, if possible. 

One or more components of the finishing apparatus 66 
may be physically located on the demand printer (i.e. 

30 "online finishing"). Alternatively, the finishing apparatus 66 
may be physically separate from the demand printer (i.e. 
"offline finishing"). 

FIG. 4 illustrates the demand print system 62a of FIG. 3 
in greater detail, it being understood that the systems 62b 

35 and 62c are functionally similar. The system 62a includes a 
print system 79 having a press controller 80, a collator 81 
and a raster image processor (RIP) 82 which are operable in 
response to press commands generated by the control unit 
52. A collator is an electronic device for storing raster image 

40 processor files (i.e., bitmap files) and delivering selected 
files to a digital press in real time, such that the digital press 
can run at full speed while processing and printing unique 
page data for each book produced on the press. The RIP 82 
converts the page files to bitmap format or any other format, 

45 such as a symbolic printer control language. The collator 81 
includes memory in the form of mass storage drives and 
physical memory and collates the bitmap page files. If 
desired, the collator 81 and/or RIP 82 may comprise a part 
of the press controller 80. The controller 80 instructs the 

50 collator 81 to send page files to a demand printer 84. The 
print system 79 may comprise the PrintStreamer system, 
manufactured and marketed by Barco Graphics of Belgium, 
while the demand printer 84 may comprise the Xeikon 
DCP-1 digital color press noted above. Alternatively, the 

55 demand printer 84 may be a DocuPrint printer manufactured 
by Xerox Corporation and the RIP 82 may be a Xerox 
DocuPrint RIP. It should be noted that a different print 
system and/or demand printer may alternatively be used, 
such as the Indigo printer manufactured by Indigo NV, of 

60 Maastricht, Netherlands, if desired. 
FIG. 5 illustrates in diagrammatic generalized form the 

method of the present invention. For the purpose of explain
ing the present invention, as an example, it will be assumed 
that the demand print system 62a will be operated to produce 

65 a number of multiple-page books in the form of a brochure 
in duplex (or "saddle-stitch") format. FIGS. 6a and 6b 
illustrate four pages P1-P4 printed on a single sheet of paper 



US 6,952,801 B2 
9 10 

6a and 6b except that an additional area 113 is provided on 
the page P5 for placement of variable information, in 
addition to the areas 110 and 112. Because of the addition of 

100 and to be included in a brochure. The sheet of paper 100 
includes a first side 100a with printed pages P1, P4 thereon 
and a second side 100b with pages P2, P3 printed thereon. 
(As will become evident hereinafter, the use of designations 
P1-P4 is not meant to imply that such pages will necessarily 
become pages 1, 2, 3 and 4 of the finished book.) In addition, 
pages P1-P4 are imposed such that the page P1 is placed on 

the area 113, the remaining master information appearing in 
5 an area 114 differs from master information appearing in an 

area 116 of the page P1 of FIG. 6a. 

a right-hand portion 100a-r of the side 100a while the page 
The book version incorporating eight pages P9-P16 of 

FIGS. Sa and Sb differs from the book versions incorporat
ing the pages of FIGS. 6a, 6b and 7a, 7b not only in terms 
of content of master and variable information, but also 
number of pages and page size. Specifically, the pages P9, 
P12, P13 and P16 are to be printed on a first side 117a of a 
sheet of paper 11S and the remaining pages P10, P11, P14 
and P15 are to be printed on a second side 117b of the sheet 
11S. In addition, the pages P11-P14 are printed upside down 
relative to the remaining pages so that, when the sheet 11S 
is folded first along a fold line 119a and then along a fold 
line 119b, the resulting pages P9-P16 appear in order. 
Thereafter, the folded sheet 11S is trimmed to separate the 
pages P9-P16. As should be evident, the pages P9-P16 are 
one-half the size of the pages P1-PS, and further include 
different master and variable information thereon. The 
demand printer may also have multiple paper trays to select 
different paper sizes, stocks, colors, etc. or preprinted sheets 

P4 is placed on a left-hand portion 100a-l of the side 100a. 
Further, the page P2 is placed on a left-hand portion 100b--l 10 
of the side 100b while the page P3 is placed on a right-hand 
portion 100b--r of the side 100b. In this fashion, when the 
sheet of paper 100 is folded along a fold line 102 with the 
pages P1 and P4 on the outside, the pages P1-P4 appear in 
sequence. (The format shown in FIGS. 6A and 6B is often 15 
referred to as "saddle stitch" imposition and is commonly 
used in magazines.) Because each book to be produced in 
this example includes multiple sheets of paper (or "forms"), 
each folded once along a fold line, the imposition process 
takes into account shingling effects but not bottling effects. 20 
It should be noted that such effects will generally have to be 
taken into account when more than two pages are to be 
printed on a single side of a sheet of paper and thereafter 
folded multiple times and assembled with other multiple
folded printed sheets of paper to create a book. 

In addition to the foregoing, in the first example, assume 
that the pages P1 and P4 will become the outside front and 
back covers, respectively, of a finished book and include 
variable and fixed information thereon. Further, assume that 
the pages P2 and P3 will become the inside front and back 30 
covers, respectively, (as must be the case if P1 and P4 are the 
outside front covers) and include fixed information only 
thereon. For example, the page P1 may include variable 
information in the form of a personalized message, a vari
able image, or the like in an area 110 whereas the page P4 35 
may include other variable information in an area 112, for 
example, postal information for mailing the brochure to an 
addressee. Corresponding front and back pages of the 
remaining books may include different variable information. 
The remaining printed information on pages P1-P4 may be 40 
identical to the printed information on corresponding pages 

25 to be included in the finished book. 

of remaining books. 
The books to be produced may include the same or 

differing number of forms and may have the same or 
differing numbers of pages. For example, the pages P1-P4 45 

may be assembled with a first number of other forms printed 
with twelve additional pages to produce a first book having 
sixteen pages. Another book to be produced in the same run 
may include some or all of pages P1-P4 and a second 
number of forms printed with twenty other pages, some of 50 

which may or may not be identical to the twelve additional 
pages of the first book. Filler pages may be placed in some 
or all books to cause such book(s) to have a certain number 
of pages. This may be necessary or desirable to result in a 
book length which is evenly divisible by four (in the event 55 

pages are imposed as two-page spreads) and/or to insure that 
particular page(s) appear on the left-hand or right-hand side 
in the finished book. 

Referring again to FIG. 5, one or more template files 106 
are developed by a publisher specifying the content 
(including appearance) of fixed information and the posi
tioning of all information (i.e., fixed and variable) on the 
different books or book versions. A database 10S is also 
developed by the publisher using the personal computer 54 
specifying the content of variable information to be placed 
in variable information areas, for example, the areas 110, 
112 on the pages P1, P4, respectively, of FIGS. 6a and 6b. 
The database 10S further includes control information, as 
noted in greater detail hereinafter. 

The template files 106 include data specifying the position 
and content of fixed information on the pages to be printed. 
Specifically, the template files 106 define template pages 
wherein each template page includes data representing any 
fixed information to be reproduced on corresponding pages 
of the books or book versions and area data representing any 
area(s) on the corresponding pages where variable informa-
tion is to be reproduced. The template files are duplicated to 
create working files. One set of working files is stripped of 
all area data relating to placement of variable information to 
create stripped master page files 120 defining template pages 
having only fixed information thereon. The stripped master 
page files are then converted into PDL master page files 122 
expressed in a page description language, such as Post
script®. 

Optionally, the PDL master page files 122 may be con
verted into two-pages spreads by a page make-up program 
such as QuarkXPress®. Preferably, however, the PDL mas
ter page files 122 are provided to the print system 79 and 
imposed according to the imposition processes of the present 
invention, as explained in detail below. 

A further set of working files is stripped of all fixed In fact, the books to be produced in the same press run 
may be different in terms of page content and/or appearance, 
book length, book size (by changing page imposition 
parameters), book version, etc ... Specifically, for example, 
the pages of FIGS. 7a, 7b and Sa, Sb may be produced and 
assembled in different book versions together with the book 
version incorporating the pages of FIGS. 6a and 6b in the 
same production run or job. Pages P5-PS of FIGS. 7a and 
7b are identical to the pages P1-P4, respectively, of FIGS. 

60 information to create stripped variable page files 126 defin
ing template pages having fixed information removed there
from and further having the area data defining the areas 110, 
112. The data representing template pages having variable 
information thereon are expanded into a set of intermediate 

65 page files. In the example of FIGS. 6a and 6b and under the 
assumption that three books are to be printed, two interme
diate page files 130, 132 are thus produced. The file 130 



US 6,952,801 B2 
11 

includes a file portion P1-a defining the position of variable 
information to be produced on the page P1 for the first book. 
Two other file portions P1-b and P1-c define the position of 
variable information to be produced on the front outside 
covers of the remaining two books. In like fashion, file 
portions P4-a, P4-b and P4-c represent the position of 
variable information to be reproduced on the back outside 
covers of the three books. At this point, data is also con
tained in each of the files 130, 132 identifying the entries in 
the database 108 to be placed in the areas 110, 112 during 
printing. 

The files 130, 132 are then converted into variable page 
files 134, 136. The files 134, 136 are identical to the files 
130, 132, respectively, except that the data in each file 
identifying entries in the database are replaced by the actual 
data stored at such entries. The files 134, 136 are then 
converted into files 137, 138 in a PDL format, for example, 
PostScript®. 

Like the master PDL files 122, the variable PDL files 137, 
138 may be converted into two-page spreads by a page 
make-up program such as QuarkXPress®. Preferably, 
however, the variable PDL files 137, 138 are provided to the 
print system 79 and imposed according to the imposition 
procedures of the present invention, as explained in detail 
below. 

The print system 79 operates in response to the press 
commands in a press command file 140 and merges the PDL 
master page files 122 with the PDL variable files 137, 138 
to create the finished books or book versions. Alternatively, 
the master page files 122 may be premerged with the PDL 
variable files 137, 138 before the files are provided to the 
print system 79. 

FIG. 9 illustrates a flow chart of programming executed 

12 
information (block 156) control returns to the block 150 to 
await selection by the user. If the user then selects an image 
object, a box is defined by the user to contain an image at a 
desired location on a selected page. Control from the block 

5 152 thereafter passes to a block 158 which inserts a dummy 
picture file and an indication of the proper database field 
name in the template file for the page at the location 
indicated by the current cursor position. The user will 
thereafter see the dummy picture file at the insertion point on 

10 
the display of the computer 54 when the page is viewed. The 
dummy picture file will display an indication of which 
database field will be used for insertion on the respective 
pages. 

Following the block 158, a block 160 prompts the user to 

15 
enter an indication of whether the image object is to be 
displayed in one of several display formats. If the image is 
to be displayed in other than the original size thereof, a block 
162 sets a subname defined for the image to "fit," indicating 
that the image is to be scaled to fit the box. If the image is 
to be displayed in the original size thereof, a block 163 

20 prompts a user to select a position for the image at a 
particular location in the box defined therefor, such as the 
upper left-hand corner, the lower right-hand corner, or the 
like. If the user does not select a position, the image is placed 
in the upper left corner of the image box. Control thereafter 

25 proceeds to the block 156. 
If the block 152 determines that a line object has been 

selected, control returns directly to the block 150, inasmuch 
as variable information cannot be entered into a line object. 
The resulting page template files(s) are stored on a storage 

30 medium, such as an optical disc or other storage device, 
and/or the files(s) are downloaded together with the database 
to the control unit 52. 

by the personal computer 54 for creating the template file(s) 
106 of FIG. 5. The programming may be written as an 
extension of QuarkXPress®, a page make-up program dis- 35 

tributed by Quark, Inc. of Denver, Colo. The QuarkXPress® 
program may be adapted for operation on the Apple® 
Macintosh® operating system or any other operating 
system, such as the Microsoft Windows® operating system. 
Alternatively, a different page make-up program may be 40 

used, if desired. 

At any point during the page make-up process, other 
functional aspects of the QuarkXPress® program may be 
invoked to both master and variable aspects as necessary to 
produce finished pages. 

The database 108 is assembled by creating an ASCII file 
having a plurality of records wherein each record includes 
one or more fields entered into the database in tab-delimited 
format (i.e. the fields are separated from one another in each 
record by tab keystrokes and the records are separated from 
one another by line returns) and wherein the fields are 
arranged under field names of a header. Each field may 
include text to be reproduced on a page or a name of an 
image file stored in the memory 53 and defining an image to 
be reproduced on a page. 

During the make-up process for a document consisting of 
one or more pages, a template file is created for each book 
version to be produced, or, where a book is to include two 
or more parts (referred to as "sections" hereinafter) a tern- 45 

plate file may be created for each section. At a block 150 a 
user may select an area of a page for reproduction of variable 
information therein, at which point a line object, a text object 
or an image object may be selected. A block 152 then checks 
to determine which type of object has been selected. If a text 50 
object has been selected, indicating that variable text is to be 
inserted at a point defined by the current cursor position on 
the computer display, the name of the appropriate field in the 
database 108 is inserted into the template file at the insertion 
point defined by the current cursor position by a block 154. 
If the user wishes to designate more areas for variable 

Address Address Address Address 
Version linel line2 line3 line4 

In addition to the foregoing data, the database 108 may 
include an optional field designating the number of copies of 
each book to be produced, an optional townsort image field, 
a version identification field indicating book version number 
if multiple book versions are to be produced, an optional 
distribution list field, control data and the like. 

A sample database is set out below having a header 
consisting of twelve fields (i.e., "version," "addressline1," 
"addressline2," etc.) and a number of records, nine of which 
are shown, each having twelve fields: 

Address Price Image Price 
lineS 1 1 2 Copies Barcode Townsort 

01 William 123 Elm Chicago Illinois 606248923 $22.95 Shoes $21.95 1606248923! 
Doe 

03 Hugh 56 Maple Chicago Illinois 606248923 $21.95 Shirt $20.95 1606248923! 
Jorgensen 

02 Jay P. 1313 Park Chicago Illinois 606248924 $24.95 Pants $22.95 1606248924! • 
Morgan 



US 6,952,801 B2 
13 

-continued 

Address Address Address Address Address Price 
Version linel line2 line3 line4 lineS 1 

02 Joe Louis 819 Elm LaGrange Illinois 605251093 $19.95 
03 John 926 LaGrange Illinois 605251093 $19.95 

Smith Cos sit 
01 Len 882 LaGrange Illinois 605251093 $19.95 

Johnson Monroe 
02 Janet 916 LaGrange Illinois 605251094 $24.95 

Cizmar Monroe 
03 Jay 88 w. Brookfield Illinois 605241391 $21.95 

Schroeder 77th 
03 Danielle 129 Brookfield Illinois 605241391 $22.95 

Johnston Madison 

In the example of FIGS. 6a and 6b, the field names 
ADDRESSLINEl through ADDRESSLINE5, BARCODE 
and TOWNSORT may appear in the area 112 and one or 
more of the field names PRICEl, !MAGEl AND PRICE2 20 

may appear in the area 110. The COPIES field may be used 
as a control code to select the number of book copies to be 
produced. 

Once the template file(s) 106 and the database 108 are 
assembled, the programming of FIGS. lOa-lOf may be 25 

executed by the control unit 52 to create the master page file 
122, the final variable page files 137 and 138, and the press 
command file 140. Referring first to FIG. lOa, a block 170 
prompts a user to select a template file 106 and a block 172 
opens the database 108. A block 174 then reads and stores 30 

in a list the database field names for later reference and a 

14 

Image Price 
1 2 Copies Barcode Townsort 

Pants $18.95 605251093! 
Shoes $15.25 1605251093! 

Shoes $17.25 1605251093! 

Pants $21.95 1605251094! • 
Shirt $19.95 1605241391! 

Shirt $19.95 1605241391! • 

and control returns to the blocks 182-189. Control remains 
with such blocks until the block 189 determines that all 
images have been processed and control then passes to a 
block 192. Control also passes to the block 192 from the 
block 178 should the latter determine that there are no 
images in the template file. 

The block 192 determines whether any text boxes are 
present in the open template file. If at least one text box is 
present, a block 194 selects and parses a first text box and 
a block 196 (FIG. lOb) checks to determine whether the text 
box includes at least one of the field names of the database 
108. If so, then it has been determined that the text box 
includes variable information and a block 198 deletes the 
text box. A block 199 then stores the text box location, the 
insertion points in the text box at which variable information 
is to be printed and the characteristics of the text box and the 
field names of the database 108 identified in such text box 
in the memory 53. In addition, a variable text box counter is 

block 176 prompts a user to enter information indicating a 
section number and whether pages are to be printed in 
simplex (i.e., single-sided) or duplex (i.e., double-sided) 
format. The section number identifies the order in which 
multiple sections are to be processed for a particular book. 
The user may also be prompted to enter a selective process
ing code identifying a particular book version to process if 
multiple versions are to be produced during a single press 
run. 

35 
incremented representing the number of variable text boxes 
appearing on each page. 

Following the block 176, a block 177 begins the process 
of stripping variable information from the template file 
opened by the block 170 to obtain the stripped master file 
120 of FIG. 5. The block 177 selects a first page for 
processing and a block 178 checks to determine whether 
there are any images in the template file and, if images are 
located, a block 180 selects a first image. 

A block 182 identifies the file name for the image and a 
block 184 checks the field list to determine whether the file 
name is included therein. If the file name for the image is 
included in the field list, then the image comprises variable 
information and a block 186 deletes the image block. A 
block 187 then identifies and saves the image box location 
on the page, the characteristics of the image box, such as the 
size, skew, background color and subname and the like and 
further saves the field name of the image from the database 
108. Also, a counter in the memory 53 which tracks the 
number of variable image boxes on the page is incremented. 

Otherwise, if the block 196 determines that the text box 
does not include any field names from the database, then the 
text box contains only master information. A block 200 
stores the text box location in the memory 53. In addition, 

40 a master text box counter is incremented representing the 
number of master text boxes appearing on each page. 

Control then passes to a block 202, which checks to 
determine whether all text boxes in the template file have 
been processed. If not, a block 204 selects and parses the 

45 next text box in the template file and control returns to the 
blocks 196-202. Control remains with such blocks until all 
text boxes have been processed, whereupon a block 206 
determines whether all pages have been processed. If not, a 
block 208 selects a next page and control returns to the block 

so 178 (FIG. lOa). Otherwise, a block 210 saves the resulting 
file as the stripped master file. 

Alternatively, if a page contains a lot of formatting 
information (i.e. tabs, fonts, etc.), a rich text file (which 
includes such formatting information) may be created offline 

55 from the database. The text box may then open the rich text 
file and read the information from the file. The use of the rich 
text file speeds up the processing time. 

Also, once a placeholder on a page has been "filled in" 
with information from the database field, the program may 
mark the corresponding text or image box as "touched." 
Thus, if the text or image box is "untouched," the program 
can skip processing of that text or image box, also speeding 
up the total processing time. 

Otherwise, if the block 184 determines that the file name 60 

is not in the field list, then the image contains only master 
information. A block 188 then also saves the image box 
location on the page and the characteristics of the image box. 
Also, a counter in the memory 53 which tracks the number Control also bypasses the blocks 194-202 and proceeds 

65 directly from the block 192 to the block 206 if the block 192 
determines that there are no text boxes in the open template 
file. 

of master image boxes on the page is incremented. 
A block 189 then checks to determine whether all images 

have been processed. If not, a block 190 selects a next image 



US 6,952,801 B2 
15 16 

Following the block 210, a block 212 converts the 
stripped master file into the PDL master page file 122 of 
FIG. 5. At the same time, an initialization (or INI) file may 
be created. The format and existence of the INI file depends 
on the type of demand printer utilized. For example, the 5 

DocuPrint demand printer does not require the use of an INI 
file. However, the Barco RIP requires the use of an INI file. 

for the page comes from. For example, the * .VARS file may 
contain the following information: 

8 
9 

10 
11 
11 
13 
14 
15 
15 

7 
43 
44 
45 
46 
47 
50 
52 
50 
51 

The INI file (in ASCII code) for the Barco RIP is created 
according to the following format: 

name: [file path\name] 

psx: [dimension] 

psy: [dimension] 

ssx: [dimension] 

ssy: [dimension] 

posx: [dimension] 

posy: [dimension] 

duplex: [zero or one] 

orientation: [zero or one] 

output: [filename] 
copies: [number] 

Where "psx" and "psy" refer to finished page sizes in x and 
y directions, "ssx" and "ssy" refer to cut sheet size in x and 

10 

15 In the example above, page 1 contains variable data from 
column 7 of the database, page 8 contains variable data from 
column 43 and page 11 contains variable data from column 
46 and 47. Further, the * .VARS file may contain separate 
pairings for images and text. 

20 Control then passes to block 242 (FIG. 10c) which creates 
a working copy of the stripped variable file 126. A first page 
having variable data thereon is selected and data represent
ing the remaining pages in the file are deleted by a block 
244. In the example of FIGS. 6a and 6b, the block 244 

25 
creates a file defining the front cover of a book with all fixed 
information deleted therefrom and an area reserved for y directions, "posx" and "posy" refer to offsets in x and y 

directions specifying placement of each page on a cut sheet, 
"duplex" refers to single or two-sided printing, "orientation" 
refers to portrait or landscape printing, "output" refers to the 
name of the output file and "copies" refers to the number of 
copies to be printed. A sample INI file which specifies 30 

parameters for printing of a file called MYJOB.PS is as 
follows: 

variable information. 
Following the block 244, a block 246 selects a first record 

in the database 108 and a block 248 reads the record. An 
optional block 250 checks to determine whether a selective 
processing code has been entered by the user indicating that 
the page is to undergo selective page processing. As noted 
above, the apparatus and method of the present invention 
may be utilized to produce not only books of a single version 
(i.e., where corresponding pages differ only in terms of the 

Name: C:\jobs\myjob.ps 
psx: 8000 
psy: 11000 
ssx: 11500 
ssy: 9000 
posx: 150 
posy: 150 
duplex: 1 
orientation: 1 
output: myjob.ps 
copies: 1 

In the foregoing example, one copy of the file MYJOB.PS 
is to be printed in duplex and portrait formats at an offset of 
0.15x0.15 inches from a corner of a finished sheet of paper 
8x11 inches cut from a sheet originally having dimensions 
of 9x11.5 inches. 

For the DocuPrint (or any other demand printer which 
does not use an INI file), a queue is created which contains 
the same parameters (and potentially additional parameters 
which may invoke the functionality of an inline finisher, or 
other apparatus) as the INI file. 

Following the block 212, a block 214 then reopens the 
same template file originally opened by the block 170 and 
deletes all the master image and text boxes. A block 216 than 
saves the resulting file as the stripped variable file 126 of 
FIG. 5. 

A block 218 then creates a temporary file containing a 
table of the current page number and a number representing 
the name of the database field placed by the block 154 at the 
insertion point. The file is called, for example, * .VARS 
(where* is a user-selected file name). The *.VARS file thus 
contains pairs of page numbers and database column num
bers that indicate where in the database variable information 

35 variable information stored in the database) but also books 
of different versions. In the latter case, the books of different 
versions have different fixed and variable information. The 
fixed and/or variable information may vary in terms of 
content or appearance (i.e., style, location, rotation, position, 

40 etc.) or both in different versions. 
If the block 250 determines that selective page processing 

is to be undertaken, then a block 252 checks to determine 
whether the database record read by the block 248 is to be 
utilized on the page currently under consideration. The block 

45 252 accomplishes this by checking the version identification 
field in the database to determine if that version is being 
used. If this is not the case, a block 253 checks to determine 
whether the record currently under consideration is the last 
in the database. If so, control passes to a block 294 of FIG. 

50 10e. Otherwise, a block 254 selects a next record in the 
database 108 and control returns to the block 248 where the 
next database record is read. 

If the block 250 determines that selective page processing 
is not to be undertaken, or if the block 252 determines that 

55 the record read by the block 248 is to be used in the page 
currently under consideration, a block 256 duplicates the 
data representing the page remaining after execution by the 
block 244 to initiate development of one of the files 130 or 
132. In the first pass through the program of FIG. 10c, and 

60 in connection with the example of FIGS. 6a and 6b, the 
block 256 creates the file 130 and develops page data 
representing a first version of the page P1-a and adds further 
variable information to such page data during immediately 
succeeding passes through the program. Thereafter, data 

65 representing the remaining pages P1-b, P1-c and P4-a 
through P4-c are created and variable information is added 
to such pages serially during subsequent passes. 



US 6,952,801 B2 
17 

A block 258 checks to determine whether there are any 
image boxes on the page and, if so, a block 260 selects a first 
image box. A block 262 then inserts the image identified by 
the database field into the image box. A block 264, FIG. 10d, 
checks the subname to determine whether the block 162 of 5 
FIG. 9 has indicated that the image should be sized to fit the 
image box. If this is true, a block 266 performs the scaling. 
Otherwise, a block 268 positions the image in the image box 
at the position specified by the user and a block 270 checks 
to determine whether all image boxes have been processed. 

10 
Control also passes from the block 266 directly to the block 
270, thereby skipping the block 268. If not all image boxes 
have been processed, a block 272 selects a next image box 
on the page and control returns to the blocks 262-270 so that 
remaining image boxes are serially processed. 

18 
Following generation of the variable page files 134, 136, 

and 137, 138 control passes to a block 300 which checks to 
determine whether a press command file has already been 
created. If not, a file is created by a block 302 having 
placeholder comments indicating where in the press com
mand file individual press commands are to be placed for 
each book to be produced. The press command file may also 
include data from one or more fields of the database 108 
identifying an intended recipient of each book to be pro
duced to assist in reproducing books found to be defective 
or to produce sample books. At this point, the press com
mand file for the example of FIGS. 6a and 6b may be as 
follows (using data from the sample database set out above): 

;RECORDl 
;:WILLIAM DOE:606248923 

;END RECORD 

;RECORD2 

:HUGH JORGENSEN:606248923 

;END RECORD 

;RECORD3 

;:JAY P. MORGAN:606248924 
;END RECORD 
Following the block 300 (if the press command file 

already exists) or the block 302 a block 304 selects the first 
database record and a corresponding first record in the press 
command file. A block 306 then checks to determine 
whether the template file currently being processed includes 
the selected database record. If not, a block 308 determines 
whether all pages have been processed, and if this is not the 
case, the next record in the database 108 and a correspond
ing record in the press command file are selected. Control 
then returns to the block 306. If the block 306 ascertains that 

Once the block 270 determines that all image boxes have 15 

been processed, or immediately following the block 258 of 
FIG. 10c if no image boxes are found on the page, a block 
274 checks to determine whether there are any text boxes on 
the page and, if so, a pair of blocks 276,278 select a first text 
box and a first insertion point in such box. Blocks 280, 282 20 

and 284 serially insert text data stored in the database 108 at 
the appropriate insertion points in the text box. Once all of 
the variable text data have been inserted into the text box, a 
block 286 recomposes all text in the text box so that the text 
obtains a neat finished appearance. The recomposition pro- 25 

cess is automatically undertaken by the QuarkXPress® 
program once the variable information is inserted into each 
text box. The recomposition process is responsive to the user 
commands as applied to the template file page, such as left, 
right, center, or full justification, hyphenation and the like. 30 

Following the block 286, a block 288, FIG. 10e, checks to 
determine whether there are remaining text boxes to be 
processed on the page and, if so, a block 290 selects the next 
text box on the page and control returns to the blocks 
278-288 to insert text information into such text boxes. 

Once the block 288 determines that all text boxes for the 
page have been processed, the programming required to 
produce one of the pages of the file 134 of FIG. 5 having 
variable information only thereon is complete. A block 292 
then determines whether all records in the database have 
been considered for inclusion in additional variable pages of 
the file 134 to be produced. If not all records have been 
considered, control returns to the block254, FIG.10c, where 
the next database record is identified and read. On the other 
hand, if all pages of the file 134 have been produced by 45 

considering all records in the database 108, a block 294 
converts the file data into Postscript® or another PDL format 

35 the template file includes the selected record, a block 312 
inserts an indication of the section number in the press 
command file at an appropriate point if the section number 
is not already present. If the section number is present 
already, the press command identified by the section number 

40 entered by the user at the block 176 is identified to be 
overwritten at a later point. The press command file now 
appears as follows for the example of FIGS. 6a and 6b: 

to create the variable page file 137 of FIG. 5. Also, anINI 
file is created as before, except that the "duplex" or "twin
plex" parameter is set to command simplex printing only. If 50 

necessary or desirable, should the press run length exceed a 
certain limit, the programming may be modified to create 
more than one variable page file for each variable page of the 
template file. 

Following the block 294, a block 296 checks to determine 55 

whether there are other variable pages in the stripped vari
able page file to be processed. If this is true, a block 298 
retrieves a copy of the stripped variable file, selects the next 
variable page therein and deletes remaining pages there
from. Control then returns to the block 246 of FIG. 10c. In 60 

RECORDl 
;:WILLIAM DOE:606248923 
;SECTION 1 
;ENDSECTION 
;END RECORD 
;RECORD2 
;:HUGH JORGENSEN:6062488923 
;SECTION 1 
;ENDSECTION 
;END RECORD 
RECORD3 
;:JAY P. MORGAN:606248924 
;SECTION 1 
;END SECTION 
;END RECORD 
Following the block 312, a block 314, FIG. 10/, selects a 

first page of the section and a block 316 checks the state of 
a flag stored in the memory 53 to determine whether a 
simplex or duplex job has been requested. If a simplex job 
has been requested, the file name and page number of the 

the example of FIGS. 6a and 6b, the back cover P4 and the 
corresponding pages of the remaining books are now 
selected for processing. In the fashion noted above, a file 
representing the variable portions of such pages is produced 
by developing the file representing the pages P4-a through 
P4-c and inserting the database information into such file to 
obtain the variable page file 136 and the PDL version 138. 

65 master page file and, if variable information is to appear on 
the page, the file name and page number of the variable page 
file for the selected page are stored as a single set pair in the 



US 6,952,801 B2 
19 

memory 53 by a block 318. The determination of whether 
variable information is to appear on the selected page is 
accomplished by summing the contents of the variable 
image box counter and the variable text box counter as 
incremented by the blocks 220 and 234 of FIG. lOb. 

A block 320 checks to determine whether all pages have 
been processed and, if not, the next page is selected by a 
block 322 and control returns to the block 316 for processing 

20 
file names identifying the variable page files 137 and 138, 
respectively. The number following each file name desig
nates a particular page of the file identified by the file name. 
Thus, for example, "file.m"1 designates the first page of the 

5 master file "file.m" and "file.v1"2 designates the second 
page of the variable page file "file.vl." The @sign means to 
associate the pages of the files linked by such sign (i.e. 
overlay the variable pages on the master pages). The vertical 
line in the commands indicates that the page(s) on the left of such page. If all pages have been processed, control 

passes to a block 324 which determines whether all database 10 

and press command records have been processed. Control 
also passes to the block 324 if the block 308 determines that 

side of the vertical line are to be printed on the front side of 
a piece of paper whereas the page(s) on the right side of the 
vertical line are to be printed on the reverse side of the piece 
of paper. In an example of simplex printing, no file name 
would appear to the right of the vertical line in each 

all pages have been processed. If not all records have been 
processed at this point, control returns to the block 310 
where the next records in the database and press command 15 

file are selected. 

command. 
FIG. 11 illustrates the programming implemented by the 

control unit 52 to generate a page description language 
instruction set specifying which pages should be printed and 
how the pages should be positioned (or imposed) for print-

If the block 324 determines that all records for the current 
section have been processed, a block 326 determines 
whether another section is to be processed and, if so, control 
returns to the block 170 of FIG. lOa. If there is not another 20 

section to be processed, the press command file has been 
fully assembled, and hence the process terminates. 

ing. The page description language instruction set may be 
incorporated into the press command file 140 or may be 
provided as a separate file to the print system 79. For 
purposes of illustration, the page description language 
instruction set is written in Postscript® in the format dictated 

If the block 316 determines that a duplex job is to be 
effected, control passes to a block 328 which stores in the 
memory 53 a command identifying the file names and page 25 

numbers of the master page file (as well as corresponding 
information relative to variable page files, if variable infor
mation is to appear) as two-set pairs. Control from the block 
328 then passes to the block 320 described above. 

by the Xerox DocuPrint printer. Further, the instruction set 
is directed to books printed in "saddle stitch" imposition 
format (i.e. 2 pages on each side of sheet) as explained in 
connection with FIGS. 6--8. It is understood, however, that 
the invention could easily be modified for use with a 
different demand printer (i.e. the Xeikon Barco printer) 
and/or imposition format (i.e. 4 pages on each side of sheet). 

The result of the programming of FIGS. lOa-lOf is a press 30 

command file having a sequence of press commands which 
cause printing of pages in a desired order. In order to print 
the sample pages of FIGS. 6a and 6b, the press command file 
would read as follows: 

Referring to FIG. 11, the programming begins at a block 
340 which prompts a user to specify certain information to 
be used to paginate the book. A variable ("MAXPGS") 

BOOK A 

;RECORDl 

;:WILLIAM DOE:606248923 

;SECTION 1 

"file.m"1@"file.v1"1l"file.m"2 

"file.m"3l"file.m"4@"file.v4"1 

;ENDSECTION 

;END RECORD 

;RECORD2 

;:HUGH JORGENSEN:606248923 

;SECTION 1 
"file.m"1@"file.v1"2l"file.m"2 

"file .m"3l"file .m" 4@"file. v4"2 

;ENDSECTION 

;END RECORD 

;RECORD3 

;:JAY P. MORGAN:606248924 

;SECTION 1 

"file.m"1@"file.v1"3l"file.m"2 

"file.m"3l"file.m"4@"file.v4"3 

;ENDSECTION 

;END RECORD 
END BOOK 
PRINTRUN R 
BOOK A 
ENDPRINTRUN 
In the foregoing example, "file.m" is a file name identi

fying the master page file 122 and "file.v1" and "file.v4" are 

35 representing the maximum number of supplied pages that 
may or may not be assembled into a single book during the 
job is specified together with the identification of a filler 
page that may or may not be printed and assembled in a book 
either on a left-hand or a right-hand portion thereof. Also, 

40 the user is prompted to specify for each page whether such 
page will be forced to be on the left side of a book, the right 
side of a book or will not be forced to a particular book side. 
In the event a page is to be forced to a side, the user is 
prompted to specify the page file name and page number for 

45 a filler page to precede the forced page. Still further, the user 
is prompted to specify for each page whether such page is: 

50 

1) A Master Page--contains the same information and is 
included in every book; 

2) An Always Variable Page-contains variable informa
tion and is included in every book; or 

3) A Selectively Variable Page--contains variable infor
mation and is selectively included in selected books. 

In so specifying the foregoing, the user creates a pagina
tion file (called, for example, * .PAG, where * indicates a file 

55 name selected by the user). A sample window generated by 
the block 340 to prompt a user for the information needed to 
create the pagination file is shown in FIG. 12. 

Referring again to FIG. 11, following the block 340, a 
block 342 opens the press command file 140 and a block 344 

60 selects the appropriate database files, including the variable 
information file (* .vars ), the pagination file (* .pag), and 
(optionally) a barcode file. As set forth above, the * .vars file 
is a temporary file of pairs of page numbers and database 
column numbers that indicate where in the database variable 

65 information for the page comes from. 
The barcode file is a page description language file (for 

example, a PostScript® file) which contains instructions for 



US 6,952,801 B2 
21 

printing the sequential page numbers and/or a tracking bar 
code on the pages of the completed book. The barcode file 
will be explained in detail below. 

The programming then proceeds to the loop containing 
blocks 346, 348, 350, 352 and 354. The block 346 takes each 
record (or book) in the press command file 140 in sequential 
order. For each record, the block 348 determines which 
pages should be printed to generate that particular book. 
Next, the block 350 determines whether the pages to be 
printed should be forced to the right hand or left hand side 
of the book and the block 352 "pads" the pages to be printed 
to be a multiples of the number of pages to be printed on a 
sheet (in our example, 4) by adding appropriate filler pages. 
Next, the block 354 generates the PostScript® instruction set 
and the programming returns to the block 346 to retrieve the 
next record in the press command file 140. The loop repeats 
for each record in the press command file 140. 

FIG. 13 illustrates in detail the programming steps imple
mented by the block 348 of FIG. 11, which determines 
which pages should be printed for a particular record in the 
press command file 140. A block 360 first retrieves the first 
page in the record. A decision-making block 362 then 
determines whether the page is from a new file that is to be 
"imposed-on-the-fly with offsets." (Imposition-on-the-fly 
with offsets is one of the imposition formats of the present 
invention, which will be explained in detail below). If yes, 
a block 364 calculates and saves the offsets for all the pages 
in the file. After the block 364 calculates and saves the 
offsets or if the block 362 is false, a decision-making block 
366 then determines whether the page is a master page (i.e. 
does not include any variable information placeholders). If 
the page is a master page, the page should always be printed 
and a block 368 "marks" the page to be printed. The block 
368 may "mark" the page by adding it to a page print array. 
The page print array contains the page number and a marker 
to indicate the disposition of the page. For example, pages 
that should not be printed are designated with a "0"; master 
pages (always printed) are designated with a "1"; and 
variable pages to be printed are designated with a "2". 

22 
right and the program returns to the block 382 to retrieve the 
next "should print" page in the record. 

Alternatively, if the block 384 determines that the user has 
specified that the page should be forced left or right, a block 

5 388 determines whether the user specification matches the 
orientation of the page (i.e. is it the same as the L/R counter). 
If yes, the block 386 flip-flops the L/R counter and returns 
to the block 382 to retrieve the next "should print" page in 
the record. Otherwise, a block 390 marks an appropriate 

10 
filler page (which was identified by the user during creation 
of the pagination file) to be printed and the program returns 
to the block 382 to retrieve the next "should print" page in 
the record. 

FIG. 15 illustrates in detail the programming steps imple
mented by the block 352 of FIG. 11 to "pad" the pages into 

15 a multiple of the number of pages to be printed on a sheet. 
In our example, using "saddle stitch" imposition, four pages 
are printed on a sheet (2 pages per side). Therefore, filler 
pages may need to be added to ensure that the total number 
of pages in the book is a multiple of 4. A block 392 first 

20 counts the number of pages in the record that have been 
marked to print. This includes all the master and variable 
pages that were marked by the block 368 of FIG. 13 as well 
as any filler pages that were marked by the block 390 of FIG. 
14. Next, a block 394 determines whether the total number 

25 of pages is a multiple of 4. If not, a block 396 adds the 
appropriate number of filler pages to make the total number 
of pages a multiple of 4. For example, if the block 392 
determines that 18 pages are marked to print, the block 396 
will add 2 filler pages to make the total number of pages in 

30 
the book equal to 20 (a multiple of four). The program then 
returns to the block 354 of FIG. 11 which generates the 
PostScript® instruction set. 

The PostScript® instruction set specifies how the pages 
marked to print should be positioned (or imposed) for 
printing. In our example, for a "saddle-stitch" imposition 

35 format, and assuming a 12 page book, the block 354 
generates an instruction specifying that the pages should be 
positioned as shown in the following table: 

If the block 366 determines that the page is not a master 
page (i.e. it's a variable page), a decision-making block 370 
determines whether the variable page should be printed at all 
times. (This was designated by the user at the block 340 in 
FIG. 11 during creation of the pagination file). If yes, the 
block 368 marks the page to be printed. If no, a decision
making block 372 determines whether the page has any 
variable placeholders with valid data. In other words, the 
block 372 determines whether there is any variable infor
mation from the database to be printed on the page. If yes, 
the block 368 marks the page for printing. The program then 50 

returns to the block 360 to retrieve the next page from the 
record until all the appropriate pages have been marked for 
printing. 

40 

45 

Sheet No. Side No. Left Side Right Side 

Page 12 Page 1 
2 Page 2 Page 11 

2 Page 10 Page 3 
2 2 Page 4 Page 9 
3 Page 8 Page 5 
3 2 Page 6 Page 7 

It is understood that a different instruction set could be 
generated (by an imposition program) to impose and print 
the pages in a different format (i.e. four pages per side) or 
alternatively, a different number of total pages. 

After the block 354 generates the imposition instruction 
set, the pages are imposed and printed according to an 
imposition procedure of the present invention. The first 
imposition procedure of the present invention utilizes an 
artificial PostScript® operator called "GetTIFF", which is 
recognized by the Xerox DocuPrint RIP, wherein page files 
are preprocessed to TIFF ("tagged image file format") 
format before being provided to the RIP. The second impo
sition procedure of the present invention (referred to as 
"imposition-on-the-fly") involves downloading imposition 
programs to the RIP which redefine various PostScript® 
operators to automatically position pages while each page is 
being interpreted. 

FIG. 14 illustrates in detail the programming steps imple
mented by the block350 ofFIG.11 to determine whether the 55 

pages should be forced to the left or right hand side of the 
book. A block 380 first initializes a left/right (L!R) counter 
variable to its default value of right because it is assumed 
that the first page of the book will be one the right side. Next, 
a block 382 retrieves the first page from the record that is 60 

marked "should print" and a block 384 determines whether 
the user has specified whether the page should be forced to 
the left or right side. (This was designated by the user during 
creation of the pagination file at block 340 of FIG. 11 ). If the 
user has not specified that the page should be forced, a block 65 

386 flip-flops the L/R counter such that if it was set to right 
it is changed to left and if it was set to left, it is changed to 

A user is prompted to specify various information needed 
for imposition and printing, including the sheet size (i.e. 



US 6,952,801 B2 
23 

llx17), imposition style (imposition-on-the-fly or 
GetTIFF), finishing style (online or offline), the output 
device (i.e. Xerox DocuPrint or Barco Xeikon) and the name 
of the directory where the master and variable page files are 
stored. A sample window to prompt a user to provide this 5 

information is shown in FIG. 16. 
GetTIFF Imposition 

A TIFF (tagged image file format) file is a bitmap repre
sentation of a page in the same screen format as the print 
engine. Several commercially available RIPs (such as Image 10 

Alchemy or TranverterPro) process pages represented in a 
page description language format to TIFF format. The Xerox 
DocuPrint RIP recognizes an artificial Postscript® operator 
called "GetTIFFII" which retrieves a specified TIFF file and 
quickly processes the file for rendering by the DocuPrint 15 

demand printer. (Other demand printer RIPs, including the 
Barco Xeikon, may also be modified to recognize a 
GetTIFF-type operator). 

In a preferred embodiment of the present invention, the 
master page PDL files 122 and the variable page PDL files 20 

137, 138 are preprocessed to TIFF format. Because the 
Xerox DocuPrint system allows for only one input data 
stream (as opposed to the Barco Xeikon system which 
allows two data streams-master and variable), the master 
page PDL files 122 and the variable page PDL files 137, 138 25 

may be premerged. This may be accomplished by forcing all 

24 
of the file has been reached, a block 409 causes the RIP 82 
(or another RIP) to convert the files identified in the RIP list 
into TIFF format. 

The programming of FIG. 17 thus facilitates conversion 
of files to TIFF format as required by the print system 79. 

Referring to FIG. 18, if the user specified GetTIFF 
imposition and after the page files have been RIPped to TIFF 
format by the programming of FIG. 17, a block 410 retrieves 
the first page pairing from the instruction set (in our 
example, page 12 as the left hand page and page 1 as the 
right hand page). A block 412 then retrieves a reference to 
the page description of the left hand page in TIFF format 
from the page file and provides it to the RIP 82. Assuming 
the default offset is positioned at the left side of the sheet, the 
left hand page is positioned on the left side of the sheet. 

A block 414 then moves the offset to position the next 
page onto the right side of the sheet. A block 416 retrieves 
the reference to the page description in TIFF format of the 
right hand page from the page file and provides it to the RIP 
82. Next, a block 418 may add page numbers and/or a bar 
tracking code to the sheet, as explained below. The program 
then returns to the block 410 to retrieve the next page pair 
from the instruction set and the program repeats until all 
pages and all books have been processed. 

After all pages have been processed, they are RIPped and 
printed by the demand printer 84 in accordance with the 
initialization (INI) file, which was created by the block 212 
(FIG. lOb). 

of the master data onto the variable template files. After the 
master and variable pages are merged, the instruction set and 
GetTIFF operator are used to quickly impose and process 
the pages for printing. 

Alternatively, the master and variable data streams may be 
overlaid by first processing the master pages and then 
overlaying the variable pages onto the master pages. 

If, for example, the demand printer is a DocuPrint (i.e., no 

30 
INI file was created), the pages are submitted to the queue 
(which contains the same parameters as the INI file) for 
RIPping and printing. 

FIG. 17 illustrates programming which may be executed 
to facilitate conversion of the page files into TIFF format. 35 

The programming begins at a block 397 which opens the 
press command file stored in the memory 53. A block 398 
then prompts a user to specify options which are available. 
The options include the ability to convert only master page 
files, only variable page files or both master and variable 40 

page files into bitmap format. A block 399 then selects the 
first line in the press command file having at least one file 
name therein. Thereafter, a block 400 selects a first file name 
and a block 401 checks a file list stored in the memory 53 
to see if the file name has been previously placed in the list. 45 

If this is not the case, then this is the first time the file name 
has been encountered in the programming of FIG. 17. Thus, 
a block 402 adds the file name to the file list and a block 403 
checks the user-specified options set by the block 398 to 
determine whether the file should be converted into TIFF 50 

format. If so, a RIP list stored in the memory 53 is updated 
by adding the file name thereto (block 404) and control 
passes to a block 405. Control also passes to the block 405 
from the block 403 (bypassing the block 404) if the file is not 
to be converted into TIFF format, and from the block 401 if 55 

the file name currently under consideration is already in the 
file list. 

The block 405 checks to determine whether the end of the 
current line in the press command file has been reached. If 
not, a block 406 selects the next file name in the line and 60 

control returns to the block 401. 

A partial Postscript® instruction set for printing the 
12-twelve page brochure in accordance with the table above 
implementing the GetTIFF imposition according to FIG. 18 
is set forth below: 

<< 
/PageSize [1224 792] 
>> setpagedevice 
(VERON12.V01_dir/ % get left page 

VERON12. V01.00000002.tiff) 
612 0 translate 
(VERONOl.VOl_dir/ % get right page 

VERON01. V01.00000002.tiff) 
showpage 
(VERON02.M_dir/ % get left page 

VERON02.M.00000002.tiff) 
612 0 translate 
(VERON11.V01_dir/ %get right page 

VERON11.V01.00000002.tiff) 
showpage 

(VERON06.M_dir/ % get left page 
VERON06.M.00000004.tiff) 

612 0 translate 
(VERON07.V03_dir/ % get right page 

VERON07. V03.00000003.tiff) 
showpage 

% set sheet size 
% (11 X 17) 

GetTIFF 
% move to right 

GetTIFF 

GetTIFF 
% move to right 

GetTIFF 

GetTiff 
% move to right 

GetTiff 
% reset to left 

In the instruction set, the "VERON*.* _dir/VERON*. *" 
indicates the directory and filename where the page descrip
tions are located. The suffix ".M" indicates a master page 
and the suffix ".V _" indicates a variable page (with the 
version number of the variable page to be printed). The 

If the block 405 determines that the end of the current line 
in the press command file has been reached, a block 407 
checks to determine whether the end of the press command 
file has been reached. If not, a block 408 selects the next line 
in the press command file having at least one file name and 
control returns to the block 400. On the other hand, if the end 

65 suffix "_.tiff'' is the file name created by the RIP which 
converted the page files to TIFF files and indicates that the 
files are in TIFF format. The artificial Postscript® "Get-



US 6,952,801 B2 
25 26 

RIP 82 to process the instruction set and the page descrip
tions contained in the merged PostScript® files 450 to 
efficiently transmit pages for rendering by the demand 
printer 84. (For ease in illustration, it is assumed the master 

TIFF" operator interprets the TIFF files. The "612 0 trans
late" command moves the offset to the right hand side of the 
sheet (block 414) and the PostScript® showpage operator 
transmits the page to the demand printer 84 for rendering, 
prepares for interpreting the next page description and resets 
the offset to the lefthand side. 

5 and variable page files were premerged into merged file 450. 
It is understood, however, that the master and variable page 
files could also be overlaid.) 
PostScript® Background 

In order to facilitate the explanation of imposition-on-the-

Optionally, the block 418 may print page numbers and/or 
a bar tracking code onto the sheets printed by the demand 
printer 84. This may be accomplished by adding the follow
ing additional PostScript® code before the showpage opera
tor in the instruction set shown above: 

/C39P24Dm 24 selectfont % add bar code info 
% position on 

% side of sheet 

10 fly procedures of the present invention, some background 
regarding the PostScript® language is provided. Further 
background details may be found in the PostScript® Lan
guage Reference Manual, Second Edition (1990), from 
Adobe Systems, Inc., which was previously incorporated by 

30 4.5 sub 18 translate 90 rotate 15 reference. 
0 0 moveto 
(1.12) show % indicates sheet 1 of 12 

% 

The RIP 82 manages four different stacks, which are 
"-last-in-first-out" (LIFO) data structures. These stacks 
include: 

/Helvetica 12 selectfont 
320 780 moveto 
(12) show 
-320 780 moveto 
(1) show 

% add page numbers 
% center in middle of left page 
% print page "12" 
% center in middle of right page 
% print page "1" 

(1) an Operands Stack which holds (i) the input operands 

20 to various PostScript® operators, and (ii) the results of the 
operations; 

The first section of code provides the command for printing 

(2) an Execution Stack which is controlled by the RIP 82 
and which holds executable objects (i.e. procedures and 
files) that are in stages of execution; 

(3) a Dictionary Stack which includes (i) a read only 
dictionary ("systemdict") which defines the implementation 
of the various PostScript® operators, (ii) a writable dictio
nary ("userdict") which stores all other definitions, and (iii) 
specialized dictionaries created by the user (e.g., an impo-

a bar code (indicating for example, the page number and the 25 

total number of pages in the book). The second section of the 
code prints page numbers centered at the bottom of each 
page. A similar technique could be used to do any "post 
page" modifications, such as watermarking samples or QC 
books, adding variable printers marks or the like. 
Imposition-on-the-Fly 

30 sition dictionary); and 

The user may also specify that the pages be imposed and 
printed using the imposition-on-the-fly technique of the 
present invention. This technique positions the pages while 
the pages are being interpreted by the RIP. FIG. 19 is a more 35 

detailed block diagram of the print system 79 shown in FIG. 
4. The PDL master page files 122 and the PDL variable page 
files 137, 138 may be combined into merged PDL files (such 
as merged PostScript file(s) 450), which are then provided to 
the print system 79, comprised of RIP 82, collator 81, press 40 

controller 80 and demand printer 84. The press command 
file 140, which includes the instruction set for specifying 
how pages should be imposed, is also provided to the print 
system 79. 

Alternatively, as described above, the master page files 45 

122 and the variable page files 137, 138 may be provided 
separately to the print system 79 and overlaid. 

The print system 79 may also include a raster memory 452 
associated with the RIP 82 and the demand printer 84. The 
RIP 82 generates a raster description of the "current page" 50 

being interpreted, which may be stored in the raster memory 
452 or provided to the demand printer 84 for rendering. The 
demand printer 84 physically renders pages 454 from the 
merged PostScript® file 450 onto a "fiat" (or other medium) 
456. 55 

( 4) a Graphics State Stack which is used to store graphics 
information, such as the parameters of the demand printer 
84. 

The PostScript® language is device independent such that 
the page descriptions contained in the merged PostScript® 
file 450 are specified in a coordinate system (called "user 
space") that is independent of the particular demand printer 
84. The coordinate system (called "device space") used by 
the demand printer 84 varies depending on the particular 
demand printer 84 (the "current device") which is specified 
for rendering the current page. In order to render the pages 
described in the merged Postscript® file 450, the page 
descriptions (specified in user space) may be transformed to 
the current device space by a Current Transformation Matrix 
([CTM]). 

The PostScript® language uses the Current Transforma
tion Matrix ([ CTM]) to describe scaling, rotation, and trans
lation of the page from user space to device space. For 
mapping the point (x, y) in user space to the point (x', y') in 
device space: 

(FileName) 
{ user procedure 1 } 
page# { operands to setvirtualdevice } 
{ FileObject ~ setfileposition } 

{ user procedure 1 } 
page# { operands to setvirtualdevice } 
{ user procedure 2 - barcodes, watermarks, etc. } 

For purposes of illustration, it is assumed that the RIP 82 
interprets the widely used PostScript® PDL language. 
(PostScript® is a registered trademark of Adobe Systems, 
Inc.) The PostScript® language is fully described in the 
PostScript® Language Reference Manual, Second Edition 60 

(1990), from Adobe Systems, Inc., which is incorporated 
herein by reference. Certain imposition-on-the-fly proce
dures 454 according to the present invention are downloaded where a, b, c, and d determine the extent of scaling and 

rotation and where tx and tY determine the extent of trans-
65 lation. 

to the RIP 82. (The procedures 454 include, for example, 
ImposeJob, ImposeFile and various redefined PostScript® 
operators which are described in detail below). The 
imposition-on-the-fly procedures 454 will be used by the 

The RIP 82 also maintains a data structure, called the 
"graphics state," that holds various graphics control 



US 6,952,801 B2 
27 

parameters, including the [CTM]. The graphics state also 
includes (i) a clipping path, which defines the rendering area 
in the raster memory 452 for the current page; (ii) font and 
line definitions; (iii) a color space (such as DeviceGray, 
RGB, CMYK or CIE); and (iv) other graphics control 5 

parameters. 
The PostScript® language includes several operators for 

setting up the current demand printer 84 to fulfill the 
processing requirements of the page descriptions contained 
in the merged PostScript® file 450. The current device setup 10 

includes establishing the Current Transformation Matrix 
([CTM]) for the current demand printer 84. The default 
transformation from user space to device space for the 
current device is specified by a "system default matrix." The 
system default matrix may be generated by the PostScript® 15 

language, for example, by a defaultmatrix operator. The 
[ CTM] may be considered an alteration of the system default 
matrix. 

28 
returns a boolean result that specifies the disposition of the 
current page in the raster memory 452. During normal 
operation, the EndPage procedure returns true during execu-
tion of the showpage or copypage operators (causing a 
physical page to be produced) and returns false during 
device deactivation. A decision-making block 504 deter-
mines whether the result returned from the EndPage proce
dure is true or false. 

If the EndPage procedure returns "true", a block 506 
transmits the contents of the raster memory 452 to the 
demand printer 84 for rendering. A block 508 then clears the 
raster memory 452 by executing a procedure similar to a 
Postscript® erasepage operator. Under normal operation, the 
EndPage procedure returns true if it is called by the show-
page or copypage operator. Thus, the showpage and copy
page operators cause the contents of the raster memory 452 
to be transmitted to the demand printer 84 for rendering. 

If the EndPage procedure returns a "false", the showpage 
operator does not perform either of the functions of the Once the current demand printer 84 has been set up, the 

RIP 82 can begin to interpret the page descriptions in the 
merged PostScript® file 450. For each page in turn, every
thing that is to appear on that page (including text, graphics, 
and images) is "painted" into the raster memory 452 and 
stored and/or rendered by the demand printer 84. 

20 blocks 506 and 508 (i.e., no page is rendered), but skips to 
a block 510. The block 510 executes a procedure similar to 
a PostScript® initgraphics operator which resets the [CTM], 
the clipping path, and other graphics parameters to the 
default values for the current demand printer 84, thus setting 

In the merged PostScript® file 450, each description of a 
page to be rendered includes a PostScript® showpage opera
tor. The showpage operator, which is generally included at 
the end of each page description, is used to transmit the 
raster description of the current page (saved in the raster 
memory 452) to the demand printer 84 for physical render
ing of the current page. In general, the showpage operator 
transmits the contents of the raster memory 452 to the 
demand printer 84, then erases the current page from the 
raster memory 452 and partially resets the graphics state in 
preparation for interpreting the next page description in the 
merged Postscript® file 450. 

In level 2 PostScript® implementations, the function of 
the showpage operator is controlled by an EndPage proce
dure and a BeginPage procedure that are defined according 
to the current demand printer 84. In general, the EndPage 
procedure specifies the disposition of the current page in the 
raster memory 452 and the BeginPage procedure sets up and 
marks the beginning of the next page description to be 
interpreted. These procedures may be defined, for example, 
by a level 2 setpagedevice operator which sets up the 
graphics state for the current demand printer 84 (the "current 
graphics state"). 

During normal operation, the level 2 showpage operator 
provides two operands to the EndPage procedure: a reason 
code and Pagecount. The reason code operand specifies 
whether the EndPage procedure is being called by the 
showpage operator, by a copypage operator, or during a 
device deactivation. When the EndPage procedure is called 

25 up the graphics state for composing the next page. The 
clipping path defines the rendering area for the current page 
stored in the raster memory 452. 

A block 512 then increments the Pagecount operand by 
one and a block 514 calls the BeginPage procedure with 

30 Pagecount as an operand. The BeginPage procedure marks 
the beginning of the next page in the merged PostScript® 
file 450 to be interpreted by the RIP 82. 

The standard operation of the level 2 showpage operator 
illustrated in FIG. 20 may be represented by the following 

35 PostScript® pseudo code: 

/showpage { 
/reason 0 def % reason = 0 for 

40 % showpage 
pagecount reason EndPage % call EndPage 

%procedure 
transmit contents of %\ do these lines 
raster memory to % I only 
demand printer % I if Endpage 

45 erasepage } if %! returns true 
initgraphics % set default graphics 

%state 
/pagecount pagecount 1 add def %increment 

% pagecount 
pagecount BeginPage % call BeginPage 

50 %procedure 
} def 

The Imposition-On-The-Fly Procedures 
by the showpage operator, the reason operand is set to 0. The 
Pagecount operand is the number of executions of the 55 

showpage operator that have occurred since the current 
device was activated, not including the present execution. 
Thus, Pagecount is equal to the number of pages that have 
been rendered prior to the current page. After the EndPage 
procedure is executed, Pagecount is incremented by one and 60 

is provided as an operand to the BeginPage procedure. 

The imposition-on-the-fly procedures of the present 
invention create a layer on top of the demand printer, called 
a "virtual device." The desired position (scale, orientation 
and size) of a page to be printed by the demand printer is 
specified by a procedure (called "setvirtualdevice") which 
establishes the virtual device for that page. Thus, from the 
standpoint of the Postscript® program, the [CTM] is the 
same as the system default matrix and every page begins 

The operation of the level 2 showpage operator is illus
trated in the flowchart of FIG. 20. A block 500 first sets the 
reason code operand equal to zero to specify that the 
EndPage procedure is being called by the showpage opera
tor. A block 502 then calls the EndPage procedure, which 
consumes the reason code and PageCount operands and 

with a [CTM] mapping user space coordinates to the lower 
left corner of the output device. The [ CTM] can be explicitly 
manipulated as if each Postscript® page were imaged on a 

65 distinct, but identical, physical page. 
Thus, when imposing and rendering a selected page from 

the merged PostScript® file 450, the current output device 



US 6,952,801 B2 
29 

(i.e. the demand printer 84) is defined as the virtual device. 
In general, the virtual device for a selected page is the same 
size as the page and is positioned at the place on the fiat 456 
where the page is to be rendered. 

The virtual device is established by setting the current 5 
transformation matrix ([CTM]) to properly position the 
page. A clipping path, which defines the rendering area in the 
raster memory 452, is then created around the border of the 
page. Thus, the RIP 82 "sees" the position where the page is 

30 
The corner coordinates are listed as follows: [ClipllX 
ClipllY ClipurX ClipurY]; and 

iii) the size (width and length) of the page to be rendered 
on the fiat. The page size is listed as follows: [PageX 
Page Y]. (The page size is not necessarily equivalent to 
the clipping path defining the rendering area of the 
page, as many demand printers are unable to place 
marks at the extreme edges of the page). 

4) A second user procedure ("offsets"): Like the first user 
to be rendered as the current output device. 

For pages in the merged PostScript® file 450 that will not 
10 

procedure, the second user procedure may contain 
comments, printer's marks (barcodes, watermarks, etc.) or 
other information or may be null. In a preferred 
embodiment, however, for the first page on the fiat, the 
second user procedure is used to "offset" the program to the 

be rendered on the current fiat 456 (i.e. are not included in 
the current book), the current output device (the demand 
printer 84) is defined as a scaled-down virtual device for the 
next page to be imposed and rendered on the fiat. The 15 
scaled-down virtual device allows any intervening pages not 
to be imposed on the fiat to be quickly interpreted by the RIP 
82. 

next page to be rendered on the fiat. 
For example, the merged Postscript® file generally con

tains many, many pages because it includes separate page 
descriptions for each variable page. Assume a simple four 
page book with three master pages and only one variable 
page. The book may be sent to 1,000 different people, with The imposition-on-the fly procedures include the setvir

tualdevice procedure, which establishes the virtual device 
for the next page to rendered on the fiat 456 and an 
Enable VirtualDevice procedure which sets up the showpage 
operator to support virtual devices. The EndPage and 
BeginPage procedures that are invoked by the showpage 
operator are also redefined. These procedures will be 
described in detail below. 

20 different variable information for each person. Thus, the 
merged Postscript® file contains 1,003 page descriptions-3 
master pages and 1,000 variable pages. Imposition-on-the
fly with offsets allows for quick printing of the books 
because it "skips over" (i.e. does not RIP) the 999 variable 

25 pages that will not be included in each book. 

The Imposition-on-the-Fly Instruction Set: 
For imposition-on-the-fly with offsets, the second user 

procedure for the first entry in the instruction set contains a 
file object, an offset position and the PostScript® setfilepo
sition operator. The offset position points to the next page 

Preferably, the instruction set for implementing 
imposition-on-the-fly by creating the virtual device for 
pages to be rendered on the fiat are input to the RIP 82 in the 
below-described format. However, the present invention 
may be modified to properly impose different instruction set 
formats. 

30 description in the file that is to be included on the fiat. (The 
offset positions were calculated and saved by the block 364 
of FIG. 13.) The setfileposition operator reopens the current 
merged PostScript® file 450 to that offset position. 

The imposition-on-the-fly instruction set contains the 
name(s) of the merged PostScript® file(s) 450 that will be 
interpreted by the RIP 82 and rendered by the demand 
printer 84. These file names are associated with entry lists 
(stored in arrays) containing one or more entries, wherein 
each entry contains the following information: 

Thus, the PostScript® instruction set format for 

35 imposition-on-the-fly imposition of the present invention is 
as follows: 

1) A first user procedure-The user procedure may con- 40 
tain various instructions, including comments, printer's 
marks (such as barcodes or watermarks) or other informa
tion. (The user procedure may also be null and is not 
essential to the imposition-on-the-fly procedures of the 
present invention). 45 

2) A page number-The page number is the sequential 
number of the page description in the merged Postscript® 
file 450 of the page to be rendered on the fiat 456. The 
merged PostScript® file 450 is assumed to contain page 
descriptions in sequential order, wherein the first page 50 
description is page "0." 

3) Operands to the setvirtualdevice procedure-As 
explained in detail below, the setvirtualdevice procedure 
establishes the appropriate virtual device as the current 
output device for a particular page. The setvirtualdevice 55 
procedure requires the following three operands, which are 
included in each entry in the entry list: 

i) the scaling, translation and rotation factors which will 
be used to generate a "virtual [CTM]" which will 
properly position the selected page on the fiat 456. 60 

These factors are listed as follows: [scale_x scale_y 
translate_x translate_y rotate]; 

ii) the user space coordinates of the lower-left and upper
right corners of the actual rendering area of the next 
page to be rendered on the fiat 456. These corner 65 

coordinates will be used to generate a clipping path 
around the border of the page in the raster memory 452. 

(FileName) 
[ { user procedure 1 } 

page# { operands to setvirtualdevice } 
{ FileObject ~ setfileposition } 

{ user procedure 1 } 
page# { operands to setvirtualdevice } 
{ user procedure 2 - barcodes, watermarks, etc. } 

A sample imposition-on-the-fly with offsets instruction 
set is attached as Appendix I. The Appendix I instruction set 
also includes code in certain second user procedures to print 
a barcode. 
Explanation of Variables: 

The variables used by the imposition-on-the-fly proce
dures may be conveniently defined and stored in a user 
dictionary (called, for example, "impositiondict"). These 
variables include: 

1) Page Offset-the cumulative number of pages from any 
previous Postscript® files that have been interpreted in 
accordance with the imposition-on-the-fly procedures of the 
present invention. Initially, PageOffset is set to -1 (no 
previous files (or pages) have been interpreted). 

2) CurrentPage-the number of the next page in the 
current merged PostScript® file 450 that is to be rendered on 
the current fiat 456. CurrentPage is initially set to 0. 

3) LastPage-the number of the last page in the current 
merged PostScript® file 450 that is to be rendered on the 



US 6,952,801 B2 
31 

current fiat, which is equal to the page number in the last 
entry of the entry list. LastPage is initially set to 1 and is 
used to determine how many page descriptions in the 
merged Postscript® file must be interpreted in order to 
properly render all of the selected pages on the current fiat. 5 

4) PageCount-the number of times that the showpage 
operator has been executed (initially 0). In level 2 Post
Script® implementations, PageCount is stored and incre
mented internally by the RIP 82 through the showpage 
operator. However, in level1 PostScript® implementations, 10 

the PageCount variable must be explicitly defined and 
incremented to emulate the operation of the level 2 show
page operator. 

5) PageList-the list of entries (page numbers and impo-
sition procedures) contained in the entry list. 15 

6) Currentlndex-an index into the PageList. 
7) Lastlndex-the number of entries in the entry list. 
8) DefaultMatrix-used to store the value of the [CTM] 

describing the virtual device (the "virtual [CTM]"). The 
scaling, translation and rotation components of the virtual 20 

[CTM] are supplied as operands to the setvirtualdevice 
procedure. 

9) PageX and PageY-the width and height respectively 
of the page to be rendered on the fiat 456. The values of 
Page X and Page Yare provided in each entry of the entry list 25 

as operands to the setvirtualdevice procedure. 
10) DefaultPageX and DefaultPage Y -the default values 

of the page width and height, respectively. Their values are 
initially set to 8'12" ( 612) and 11" (792), respectively. 

11) ClipllX, ClipllY, ClipurX and ClipurY-the user 30 

space coordinates of the lower-left and upper-right corners, 
respectively, of the clipping path defining the border of the 
virtual device. The values of these variables are also 
included as operands to the setvirtualdevice procedure. 

12) Portrait-a boolean variable used to describe the page 35 

orientation of the current page. If Portrait is true, the current 
page has a portrait orientation (page width<page height). If 
Portrait is false, the current page has a landscape orientation 
(page width>page height). 

13) DefaultPortrait-the default value for the page 40 

32 

-continued 

/DefaultPortrait true def % assume page orient ~ 
%portrait 

/RageOffset -1 def % first file - no previous 
%pages 

/CurrentPage 0 def % initial value of page to 
%impose 

/Currentlndex 0 def % initial value of page to 
%impose 

/LastPage 2147483647 def % initial value is highest 
%number 

/PageCount 0 def % used in level 1 only 
/DefaultMatrix matrix % the "default" matrix for the 

currentmatrix def % current virtual device 
/VirtualDeviceEnabled false def % allow normal 

/lmageDone false def 

/Portrait DefaultPortrait def 

/PageX DefaultPagex def 
/Page Y DefaultPage Y def 
/ClipllX 0 def 
/ClipllY 0 def 
/ClipurX DefaultPageX def 
/ClipurY DefaultPage Y def 

%operation 
% not done with current media 
% Set initial job defaults 

% default to portrait 
%mode 

% initial page size 
% 
% initial lower left 
% and upper right 

% corners of 
% clipping path 

The Redefined PostScript® Operators: 
Also, before executing the imposition-on-the-fly proce

dures of the present invention, several PostScript® operators 
must be redefined for compatibility with the Enable Virtu
alDevice and setvirtualdevice procedures, which will be 
described in detail below. The virtual device, in effect, 
"shields" the PostScript® program and RIP from where the 
pages are being painted into the raster memory 452 through 
the [CTM]. Thus, in general, the PostScript® operators that 
affect the [CTM] must be redefined to also "shield" the 
PostScript® program and RIP from the final mapping of the 
page description from user space to device space coordi
nates. The PostScript® operators which must be redefined 
include: 

orientation, which is initially set to true (portrait ------------------------
orientation). initmatrix transform 

initclip itransform 14) VirtualDeviceEnabled-a boolean variable used to setmatrix dtransform 

determine whether a procedure called, for example, currentmatrix idtransform 

"Enable VirtualDevice," has been executed. As explained in 45 erasepage nulldevice 

detail below, the Enable VirtualDevice procedure sets up the initgraphics copypage 

standard Postscript® showpage operator to support virtual 
devices. 

15) Image Done-a boolean variable used to specify when 
the current fiat 456 has been completed. ImageDone is 50 

initially and normally set to false, indicating that the current 
fiat 456 has not been completed. 

A further description of the variables used is included in 
the following PostScript® code, which creates the imposi-
tiondict dictionary and initializes the variables: 55 

/impositiondict 200 diet def % create dictionary 

The standard operation of these, and all other PostScript® 
operators, is fully described in the PostScript® Language 
Reference Manual, Second Edition (1990), from Adobe 
Systems, Inc., which was previously incorporated by refer
ence. 

The first step in redefining the above-listed PostScript® 
operators is to rename the standard operator, for example, 
"systemdict_operator," because its definition is stored in the 
systemdict dictionary. This may be implemented by the 
following code: 

/Identity matrix def 
/Matrix matrix def 
/Matrix2 matrix def 
/Matrix3 matrix def 
/Matrix4 matrix def 
/DefaultPageX 612 def 
/DefaultPage Y 792 def 

% impositiondict begin 
% used as input to setmatrix 

60 ---------------------------------------
% dummy matrix for temp storage 
% dummy matrix for temp storage 
% dummy matrix for temp storage 
% dummy matrix for temp storage 
% default page width (X) and 
% page length (Y) (8 Yz" x 
% 11") 

65 

/systemdict_initmatrix systemdict 
/systemdict_initclip systemdict 
/systemdict_setmatrix systemdict 
/systemdict_erasepage systemdict 
/systemdict_initgraphics systemdict 
/systemdict_currentmatrix systemdict 
/systemdict_transform systemdict 

/initmatrix get def 
/initclip get def 
/setmatrix get def 
/erasepage get def 
/initgraphics get def 
/currentmatrix get def 
/transform get clef 



US 6,952,801 B2 
33 

-continued 

/systemdict_itransform systemdict 
/systemdict_dtransform systemdict 
/systemdict_idtransform systemdict 

/itransform get def 
/dtransform get def 
/idtransform get def 5 

As explained below, the standard nulldevice and copypage 
operators are not renamed because their standard operation 
will never be used in connection with the present invention. 
The new definitions of the operators, described below, are 10 

then loaded into the userdict dictionary. 
The Redefined Initmatrix Operator: 

The standard PostScript® initmatrix operator sets the 
[C1M] to the system default matrix for the current device. 
The initmatrix operator is redefined to set the [C1M] equal 15 

to the virtual [CTM] which defines the virtual device. 
The virtual [CTM] may be stored in the variable Default
Matrix. 

The PostScript® initmatrix operator may be redefined by 
the following code: 20 

/initmatrix { 

34 
The Postscript® initclip operator may be redefined by the 

following code: 

/initclip 
impositiondict begin 

{ currentpoint } stopped 
{/pl { } def} 
{ pop pop /p1 MakePath def} 

% p1 ~ empty path 
% p1 ~ current 
%path 

if else 
matrix systemdict_currentmatrix 
initmatrix 
systemdict_initclip 
newpath 
ClipllX ClipllY moveto 
ClipurX ClipllY lineto 
ClipurX ClipurY lineto 
ClipllX ClipurY lineto 
closepath 
clip 
newpath 
systemdict_setmatrix 
p1 

end 
} bind def 

% create clippath 

% restore current 
%path 

impositiondict begin 
DefaultMatrix 
systemdict_setmatrix 
end 

25 The Redefined Setmatrix Operator: 

} bind def 

The Redefined Initclip Operator: 
The clipping path normally corresponds to the boundary 

The standard PostScript® setmatrix operator replaces the 
current [CTM] in the graphics state with a matrix that is 
supplied on the Operands stack. The matrix supplied on the 
Operands stack ("the operand matrix") can be considered the 
result of the concatenation of the system default matrix with 

30 an operations matrix. 
The setmatrix operator is redefined to calculate the opera

tions matrix by concatenating the operand matrix with the 
inverse of the system default matrix. Thus, 

[operand matrix]=[ operations matrix] [system default 
matrix], and 

[operations matrix]=[ operand matrix] [system default 
matrixr1

. 

of the maximum imageable area for the current output 
device (the demand printer 84). The standard Postscript® 
initclip operator replaces the current clipping path in the 
graphics state with the default clipping path for the current 

35 
demand printer. The initclip operator is redefined to replace 
the current clipping path in the graphics state with a clipping 
path defining the border of the virtual device page. 

Once the operations matrix is calculated, it is concatenated 
with the virtual [C1M] (stored in DefaultMatrix) and saved 

40 as the new [ CTM]. Thus, 

The flowchart of FIG. 21 illustrates the program a steps 
implemented by the redefined initclip operator. A decision
making block 520 determines whether a current path exists 
by checking for the existence of a currentpoint. If no 
currentpoint is defined, a block 522 stores an empty path in 
a variable called, for example, "pl." Alternatively, if a 
currentpoint is defined, a block 524 invokes a previously 

45 
defined utility routine called, for example, "MakePath," that 
creates a path description from the current path. The block 
524 then saves the current path description in the variable 
pl. The MakePath procedure, which may be stored in the 
impositiondict dictionary, is similar to the level 2 Post-

50 
Script® upath operator and may be implemented by the 
following code: 

/MakePath { 
[ {/moveto cvx} {/line to cvx} {/curveto cvx} 

{/closepath cvx} pathforall ] cvx 
} bind def 

55 

new [ C1M]=[ operations matrix] [virtual CTM]. 
The PostScript® setmatrix operator may be redefined by 

the following code: 

/setmatrix { 
impositiondict begin 
Matrix defaultmatrix 
Matrix2 invertmatrix 
Matrix3 concatmatrix 
DefaultMatrix 
Matrix4 concatmatrix 
systemdict_setmatrix 
end 

} bind def 

The Redefined Currentmatrix Operator: 
The standard currentmatrix operator replaces the matrix 

supplied on the Operands stack with the current [CTM] in 
the graphics state. 

The current [CTM] can be considered the result of con-
catenating the virtual [CTM] (saved in DefaultMatrix) with 
an operations matrix. The redefined currentmatrix operator 
calculates the operations matrix by concatenating the current 
[ CTM] with the inverse of the virtual [ CTM] as set forth 

Next, a block 526 saves the current [CTM] and a block 60 

528 sets the [CTM] to the virtual [CTM]. A block 530 then 
creates a clipping path between the corners of the virtual 
device, which were specified by the values of the ClipllX, 
ClipllY, ClipurX and ClipurY variables provided as oper
ands to the setvirtualdevice procedure. A block 532 then 
restores the [CTM] which was saved by the block 526 and 
the current path saved in the variable pl. 

65 below: 
[current CTM]=[ operations matrix] [virtual CTM], and 
[operations matrix]=[ current CTM] [virtual CTMr1

. 



US 6,952,801 B2 
35 

The [operations matrix] is then concatenated with the system 
default matrix and the resultant matrix is stored in the matrix 
on the Operands stack. 

The PostScript® currentmatrix operator may be redefined 
by the following code: 

/currentmatrix { 
impositiondict begin 
Matrix systemdict_currentmatrix 
DefaultMatrix 
Matrix2 invertmatrix 
Matrix3 concatmatrix 
Matrix4 detaultmatrix 
3 -1 roll 
concatmatrix 
end 

} bind def 

The Redefined Erasepage Operator: 
The standard erasepage operator erases the entire current 

page stored in raster memory by painting the page white. 
The erasepage operator is redefined to erase only the virtual 
device page, which is the area defined by the next page to be 
rendered on the current fiat. 

36 
calls the redefined initmatrix and initclip operators, which 
were described above. Thus, the redefined initgraphics 
operator resets the [CTM] and the clipping path to their 
default values for the virtual device. 

5 The PostScript® initgraphics operator may be redefined 
by the following code: 

/initgraphics { 
10 initmatrix newpath initclip 

1 setlinewidth 0 setlinecap 0 setlinej oin 
[] 0 setdash 0 setgray 10 setmiterlimit 

} bind def 

15 The Redefined "Transform" Operators: 
The standard PostScript® transform operator transforms a 

supplied user space coordinate (x,y) to the corresponding 
device space coordinate (x',y') as specified by the [CTM]. 
Since the [CTM] is altered during the imposition process, 

20 
the transform operator is redefined to perform the transfor
mation as if the [CTM] had not been altered. 

The erasepage operator is redefined by calling the rede
fined initclip operator, described above, which establishes a 
clipping path around the border of the virtual device page. 
The area inside the clipping path is then painted white. The 
standard Postscript® gsave operator (described in detail in 
connection with the optional imposition-on-the-fly proce- 30 

dures of the invention ) is called immediately before the 
redefined initclip operator to save the current graphics state, 
including the current clipping path, gray level, etc. Also, 
after the virtual device page has been painted white, the 
standard PostScript® grestore operator (also described in 35 

detail in connection with the optional procedures) is called 

If a matrix operand is supplied to the standard transform 
operator, the transformation from user to device space is 
performed according to the supplied matrix. Thus, if a 
matrix operand is supplied, the transform operator is also 

25 redefined to perform the transformation according to the 
supplied matrix. 

The PostScript® language includes three other "trans
form" operators (dtransform, itransform and idtransform) 
which are redefined in the same manner as the transform 
operator. 

The standard PostScript® dtransform operator specifies a 
"distance" transformation of a coordinate from user to 
device space according to the [CTM] or a supplied matrix 
operand. In a distance transformation, the translation com
ponents (tx and ty) of the [CTM] are not used. 

The standard PostScript® itransform operator specifies a 
transformation of a coordinate in device space (x',y') to user 
space (x,y) according to the inverse of the [CTM] or a 
supplied matrix operand. The standard idtransform operator 

to restore the current graphics state. 
The PostScript® erasepage operator may be redefined by 

the following code: 

/erasepage { 
impositiondict begin 
gsave % systemdict_gsave for optional procs 
initclip 
clippath 1 setgray fill 
grestore % systemdict_grestore for optional 

% procs 
end 

} bind def 

(In the optional imposition-on-the-fly procedures, the stan
dard PostScript® gsave and grestore operators are redefined. 
Thus, in the optional procedures, the erasepage operator is 
redefined by calling the systemdict_gsave and systemdict_ 
grestore operators, as specified above.) 
The Redefined Initgraphics Operator: 

40 specifies a distance transformation from device space to user 
space according to the inverse of the [CTM] or a supplied 
matrix operand. 

FIG. 22 illustrates the program steps implemented by the 
redefined transform operator. The other transform operators 

45 are redefined in the same way. A decision-making block 534 
first determines whether a matrix operand was supplied to 
the transform operator. If a matrix operand was supplied, a 
block 536 simply calls the standard transform operator (now 
renamed "systemdict_transform") to perform the transfor-

50 mation according to the supplied matrix. (For the other 
transform operators, the block 536 calls systemdict_ 
dtransform, systemdict_itransform or systemdict_ 
idtransform ). 

Alternatively, if the block 534 determines that a matrix 
55 operand was not supplied, a block 538 first saves a copy of 

the current [CTM] in the graphics state on the Operands 
Stack. The standard Postscript® initgraphics operator resets sev

eral values in the graphics state, including the [CTM], the 
current path and the clipping path, to their default values. 
The standard initgraphics operator is equivalent to the 60 

following PostScript® language sequence: 

As explained previously, the current [CTM] can be con
sidered the result of the concatenating the virtual [CTM] 
(saved in DefaultMatrix) with an operations matrix. A block 
540 thus calculates the operations matrix by concatenating 
the current [CTM] with the inverse of the virtual [CTM]. 

initmatrix newpath initclip 

1 setlinewidth 0 setlinecap 0 setlinejoin 

[ ] 0 setdash 0 setgray 10 setmiterlimit 
The initgraphics operator is redefined to perform the 

above listed sequence. However, the redefined initgraphics 

Next, a block 542 sets a new [CTM] equal to the opera
tions matrix concatenated with the system default matrix. 

65 The new [CTM] is now equal to what the [CTM] would have 
been if the setvirtualdevice and imposition procedures were 
not implemented. 



US 6,952,801 B2 
37 

A block 544 then calls the standard transform operator to 
perform the transformation from user to device space 
according to the new [CTM]. (Again, for the other transform 
operators, the block 544 calls the standard dtransform, 
itransform, or idtransform operator). 

Lastly, a block 546 resets the [CTM] equal to the current 
[CTM] saved on the Operands Stack by the block 538. 

The PostScript® transform operators may be redefined by 
the following code: 

/transform { 
impositiondict begin 
dup type /arraytype eq { 

systemdict_transform 

}{ 

% or systmdict_dtransform 
%or 
% systemdict_itransform 

% or systemdict_idtransform 

Matrix systemdict_currentmatrix 
dup 4 1 roll 

end 
} bind def 

DefaultMatrix 
Matrix2 invertmatrix 
Matrix3 concatmatrix 
Matrix2 defaultmatrix 
Matrix4 concatmatrix 
systemdict_setmatrix 
systemdict_transform % or 

% systemdict_dtransform 
% or systemdict_itransform 
% or systemdict_idtransform 

3 -1 roll systemdict_setmatrix 
} ifelse 

The Redefined Nulldevice Operator: 

38 
BeginPage procedures are redefined so that the copypage 
operator has no affect. The EndPage and BeginPage proce
dures could be redefined to check for the copypage operator 
(by comparing the reason code to one). Alternatively, the 

5 operation of the copypage operator can simply be nulled by 
the following code: 

/copypage { } def 
The Enable VirtualDevice Procedure: 

The Enable VirtualDevice procedure, which is called by 
10 the ImposeJob procedure at the end of the instruction set, 

sets up the showpage operator to support virtual devices. 
FIG. 23 is a flowchart illustrating the program steps imple
mented by the Enable VirtualDevice procedure. A block 550 
first determines whether the RIP 82 implements level 1 or 

15 level 2 PostScript® by determining whether the PostScript® 
setpagedevice operator is defined in the systemdict dictio
nary. If the RIP 82 implements the level 2 Postscript® 
language, a block 552 loads the redefined EndPage and 
BeginPage procedures into the current graphics state for the 

20 demand printer 84 by calling the setpagedevice operator. As 
described in detail below, the EndPage and BeginPage 
procedures are redefined to define the current output device 
as a virtual device for pages to be rendered or as a scaled
down virtual device for non-rendered pages. 

25 The blocks 550 and 552 of the Enable VirtualDevice 

30 

procedure may be implemented by the following code: 

/Enable VirtualDevice { 
/setpagedevice where { 

pop 
2 diet begin 

% level2 

The standard PostScripts® nulldevice operator installs a 
"null device" as the current output device. The standard 35 

Postscript® nulldevice operator produces no physical output 
and has no associated raster memory. However, any graphics 

/EndPage impositiondict /EndPage get def 
/BeginPage impositiondict /BeginPage get 
def 
currentdict end 
setpagedevice 
} 

or font operations executed will be saved in the current 
graphics state. The postScript® nulldevice operator also sets 
the [CTM] to an identity matrix ([1 0 0 1 0 0]) and 40 

establishes the clipping path as a single point at the origin. 
The standard PostScript® nulldevice operator, however, 

is not suitable for use with this invention because is not a 
page device operator and, therefore, has no EndPage and 
BeginPage procedures associated with it. Thus, the nullde- 45 

vice operator is redefined to set the [ CTM] to the identity 
matrix and establish a one point clipping path without 
altering the current page device. 

The PostScript® nulldevice operator may be redefined by 
the following code: 

/nulldevice { 
impositiondict /Identity get 
systemdict_setmatrix 
newpath 
clip 

} bind def 

50 

55 

The Redefined Copypage Operator: 60 

Under normal operation, the standard Postscript® copy
page operator transmits one copy of the current page to the 
demand printer without erasing the current page or changing 
the graphics state. Like the showpage operator, the operation 
of the copypage operator depends on the EndPage and 65 

BeginPage procedures, which are redefined by the present 
invention. In the present invention, the EndPage and 

Alternatively, if the block 550 determines that the RIP 82 
implements level 1 PostScript®, a block 554 renames the 
standard level 1 showpage operator and a block 556 rede
fines the showpage operator to emulate the operation of the 
level 2 showpage operator as illustrated in FIG. 20. Next, a 
block 558 executes the BeginPage procedure for the first 
page (page "0") in the merged PostScript® file 450. (This 
was done automatically in the level 2 implementation by the 
block 552 by calling the setpagedevice operator). 

The blocks 554-558 may be implemented by the follow
ing code: 

impositiondict /systemdict_showpage 
systemdict /showpage get put 
/showpage { 

impositiondict begin 
PageCount 0 EndPage 
systemdict_showpage 
} if 
systemdict_initgraphics 
/PageCount PageCount 1 add def 
PageCount /BeginPage load end exec 
} def 

0 impositiondict /BeginPage get exec 
} ifelse 

%rename 
% showpage 
%emulate 
% level2 

Next, a block 560 invokes a procedure (called, for 
example, "DisablePageDevice") which was previously 
stored in the impositiondict dictionary. The DisablePageDe-



US 6,952,801 B2 
39 

vice procedure redefines the PostScript® setpagedevice 
operator and all other compatibility operators that call the 
setpagedevice operator. Disabling these operators ensures 
that the raster memory 452 (which may contain the raster 
descriptions of previously processed pages to be rendered on 5 
the fiat 456) is not erased by the setpagedevice operator. The 
DisablePageDevice procedure is described in detail below in 
connection with FIG. 24. 

After the block 560 invokes the DisablePageDevice pro-

~~f:~a~=~c~~~r~u:~~~~i:e~:a~~e~~,Zt~e::u~h~o bi~~~:~e vt~!~ 10 

the procedure has been completed and the showpage opera
tor is set up to support virtual devices. 

The blocks 560 and 562 of the Enable VirtualDevice 
procedure may be implemented by the following code: 

impositiondict /DisablePageDevice get exec 
impositiondict /VirtualDeviceEnabled true put 
} bind def 

The DisablePageDevice Procedure: 

15 

FIG. 24 is a flowchart illustrating the program steps 
implemented by the DisablePageDevice procedure, which is 20 

invoked by the block 560 of the Enable VirtualDevice pro
cedure. Because setpagedevice is a level 2 operator, a block 
570 determines whether the RIP 82 implements the level 1 
or the level 2 PostScript® language by determining whether 
the setpagedevice operator is defined in the systemdict 25 

dictionary. If the RIP 82 implements the level 2 Postscript® 
language, blocks 572-580 redefine the setpagedevice opera-
tor to correct the page orientation of the output device, if 
necessary. 

40 
The blocks 570-580 of the DisablePageDevice procedure 

may be implemented by the following code: 

/DisablePageDeviee 
/setpagedeviee where { 

pop 
userdict 
/setpagedeviee { 

dup /PageSize known { 
/PageSize get 
impositiondict begin 
aload pop 
lt Portrait ne { 

SetPortrait 
} if 

end 
}{ 
pop 
} ifelse 
initgrap hies 
erasepage 

} put 
} if 

After the block 580 calls the redefined initgraphics and 
erasepage operators, or if the block 570 determines that the 
RIP 82 implements level 1 PostScript®, a block 582 rede
fines the compatibility operators, which are defined in either 
the statusdict dictionary or the userdict dictionary, which call 
the setpagedevice operator or perform similar level1 opera
tions. 

For compatibility operators that change the page 
orientation, the block 582 redefines the operator to set the 
orientation of the virtual device equal to the orientation of 
the page specified by the operator and to initialize the virtual 
device. These operators may be redefined by a utility routine 

During normal level 2 operation, a dictionary operand 30 

containing input media selection entries is provided to the 
PostScript® setpagedevice operator and the setpagedevice 
operator establishes the current output device according to 
the information contained in the current graphics state and 
the dictionary operand. The dictionary operand may contain, 35 called, for example, "SetPageSize," which is similar to the 

blocks 576-580 described above. The SetPageSize routine 
may be implemented by the following code: 

for example, an entry for PageSize, which is an array of two 
numbers indicating the width and height of the current page. 
Thus, a call to the setpagedevice operator may alter the page 
size, which is critical in setting up the virtual device. 

The block 572 of the redefined setpagedevice operator 40 

first determines whether an entry for PageSize was included 
in the dictionary operand to the setpagedevice operator. If 
so, the block 574 then determines whether the PageSize 
specified in the entry is portrait or landscape orientation by 
comparing the page width to the page height supplied in the 45 

PageSize entry. (As explained above, for purposes of the 
invention, if the page width is less than the page height, the 
orientation is referred to as portrait and the variable Portrait 
is set to true. If the page width is greater than the page 
height, the orientation is referred to as landscape and the 50 

variable Portrait is set to false). 
A block 576 then compares the page orientation of the 

PageSize entry (determined by block 574) to the page 
orientation of the virtual device (stored in the variable 
Portrait). If they are not the same, a block 578 invokes a 55 

procedure called, for example, "SetPortrait," which changes 
the orientation of the virtual device from portrait to 
landscape, or vice versa. (The SetPortrait Procedure is 
described in detail below). Next, for consistency with the 
normal operation of the setpagedevice operator, a block 580 60 

calls the redefined initgraphics and erasepage operators. 
Alternatively, if the block 576 determines that the page 
orientation of the PageSize entry is the same as the virtual 
device, or if the block 572 determines that PageSize was not 
included in the dictionary operand to the setpagedevice 65 

operator, the program skips directly to the block 580, which 
completes the redefinition of the setpagedevice operator. 

/SetPageSize { 
lt Portrait ne { 

SetPortrait 
} if 

initgrap hies 
erasepage 

} bind def 

% correct orientation of virtual 
% device, if necessary 

% initialize virtual device 
% (emulate setpagedeviee) 

For compatibility operators that do not affect the page 
orientation, the block 582 simply disables or nulls the 
operators. The block 582 of the DisablePageDevice 
procedure, which redefines or disables the compatibility 
operators, may be implemented by the following code: 

statusdict begin % operators in statusdict 
/a3tray {impositiondiet begin 842 792 SetPageSize end} 
def 
/a4tray (impositiondiet begin 595 842 SetPageSize end} 
def 
/ledgertray (impositiondiet begin 1224 792 SetPageSize 
end} def 
/setpage (pop pop pop} def 
/setpagestaekorder {pop} def 
/settumble {pop} def 
/11 x 17tray {impositiondiet begin 792 1224 SetPageSize 
end} def 
/b5tray {impositiondiet begin 516 729 SetPageSize end} 
def 



US 6,952,801 B2 
41 

-continued 

42 
positive x-direction and then rotate the portrait coordinate 
system 90 degrees counterclockwise about the origin OP. A 
block 606 then concatenates the matrices with the current 
virtual [C1M] to create the new virtual [CTM], which /legaltray {impositiondict begin 612 1008 SetPageSize 

end} def 
/setdefaulttimeouts {pop} def 
/setduplexmode {pop} def 
/setmargins {pop pop} def 
/setpagemargin {pop} def 

5 
specifies the device in landscape orientation. 

The blocks 590 and 600-606 of the SetPortrait procedure 
may be implemented by the following code: 

/lettertray {impositiondict begin 612 792 SetPageSize 
end} def 
/setmirrorprint {pop} def 
/setpageparams {pop pop pop pop} def 
/setresolution {pop} def 
end 

% operators in userdict 
/a3 {impositiondict begin 842 1191 SetPageSize end} def 
/b5 {impositiondict begin 516 729 SetPageSize end} def 
/letter {impositiondict begin 612 792 SetPageSize end} 
def 
/lettersmall {impositiondict begin 612 792 SetPageSize 
end} def 
/legal {impositiondict begin 612 1008 SetPageSize end} 
def 
/ledger {impositiondict begin 1224 792 SetPageSize end} 
def 
/11 x 17 {impositiondict begin 792 1224 SetPageSize end} 
def 

10 

15 

20 

/SetPortrait { 
Portrait { 

/tmp ClipllX det 
/ClipllY PageX ClipurX sub def 
/ClipurX ClipurY def 
/ClipurY PageX tmp sub def 
90 Matrix rotate 

PageX 0 Matrix2 translate 
DefaultMatrix 
Matrix3 concatmatrix 
DefaultMatrix concatmatrix 
pop 
} 

If the block 590 determines that the variable Portrait is 
false, the orientation of the device must be converted from 
landscape to portrait. Referring also to FIG. 26B, a 
landscape-oriented page 608 is specified in a Cartesian /a4 {impositiondict begin 595 842 SetPageSize end} def 

/a4small {impositiondict begin 595 842 SetPageSize end} 
def 
/note { } def 

The SetPortrait Procedure: 

25 
coordinate system with an origin OL. The rendered area on 
the page 608 is bordered by a clipping path 610 defined by 
the coordinates of its lower-left and upper-right corners. The 
landscape-oriented page 608 is converted to a portrait
oriented page 612 by translating the origin OLin the positive 
y-direction and then rotating the coordinate system 90 The SetPortrait procedure, which is invoked by the block 

578 of the DisablePageDevice procedure, changes the ori
entation of the virtual device from portrait to landscape or 
vice versa. FIG. 25 illustrates the program steps imple
mented by the SetPortrait procedure. A block 590 first 
determines whether the variable Portrait is true (indicating 
the page is portrait) or false (indicating the page is 35 
landscape). 

30 degrees clockwise about the origin OL. This generates a 
portrait-oriented coordinate system with an origin Op. 

If Portrait is true, the orientation of the device must be 
converted from portrait to landscape. As illustrated in FIG. 
26A, a portrait-orientated page 592 is represented in a 
Cartesian coordinate system with an origin at point Op. The 
portrait-orientated page 592 has a width PageX and a height 40 

Page Y. The rendering area on the page 592 is bordered by a 
clipping path 594, which may be defined by the coordinates 
of its lower-left corner (llx, lly) and the coordinates of its 
upper-right corner (urx, ury). 

The portrait-oriented page 592 is converted to a 45 
landscape-oriented page 596 by translating the origin Op of 
the page 592 in the positive x-direction and then rotating the 
coordinate system 90 degrees counterclockwise, resulting in 
the landscape-orientated coordinate system of the page 596 
with an origin OL. Although the device space coordinates of 
the clipping path 594 are unchanged, the clipping path 594 50 

must be redefined with respect to the new landscape coor
dinate system. 

Referring again to FIG. 25, after the block 590 determines 
that the orientation of the device must be converted from 
portrait to landscape, a block 600 redefines the corner 55 

coordinate variables as follows: 

Portrait Coordinate 

ClipllX 
ClipllY 
ClipurX 
ClipurY 

Landscape Coordinate 

ClipllY 
PageX - ClipurX 

ClipurY 
PageX - ClipllY 

Next, blocks 602 and 604 create matrices which will 
translate the origin Op by the page width (PageX) in the 

60 

65 

Similar to the above-described portrait to landscape 
procedure, a block 614 first redefines the corner coordinates 
of the clipping path as follows: 

Landscape Coordinate Portrait Coordinate 

ClipllY 
ClipllX 
ClipurY 
ClipurX 

ClipllX 
PageY- ClipurY 

ClipurX 
PageY- ClipllY 

Next, blocks 616 and 618 create matrices to translate the 
origin OL in the positive y-direction and then rotate the 
origin OL 90 degrees clockwise. A block 620 then concat
enates the matrices with the current virtual [CTM] to gen
erate the new virtual [CTM], which specifies the device in 
a portrait coordinate system. 

The blocks 614-620 of the SetPortrait procedure, which 
convert from landscape to portrait orientation, may be 
implemented by the following code: 

/tmp ClipllY def 
/ClipllY ClipllX def 
/ClipllX PageY ClipurY sub def 
/ClipurY ClipurX def 
/ClipurX Page Y tmp sub def 
-90 Matrix rotate 
0 Page Y Matrix2 translate 
DefaultMatrix 
Matrix3 concatmatrix 
DefaultMatrix concatmatrix 
pop 
} ifelse 

After the clipping path corners are redefined and the new 
virtual [CTM] is generated, a block 622 exchanges the 



US 6,952,801 B2 
43 

values of Page X and Page Y. Thus, for example, when 
converting from portrait to landscape, the portrait page 
width becomes the landscape page height and the portrait 
page height becomes the landscape page width. Lastly, a 
block 624 changes the value of the variable Portrait. Thus, 
if Portrait was initially true (indicating portrait orientation), 
it is set to false to indicate that the device is now in landscape 
orientation. Conversely, if Portrait was initially false 
(indicating landscape orientation), it is set to true to indicate 
that the device is now in portrait orientation. 

The blocks 622-624 may be implemented by the follow
ing code: 

/tmp PageX def 
/PageX Page Y def 
/Page Y tmp def 
/Portrait Portrait not def 

} bind def 

The SetPortrait procedure described above comprises an 
optional part of the present invention and is not necessary for 
use with PostScript® applications which do not alter the 
page orientation. 
The Setvirtualdevice Procedure: 

The setvirtualdevice procedure establishes the current 
transformation matrix ([CTM]), the clipping path, and the 
page size such that the current output device is specified as 
a virtual device. The virtual device is defined to be the size 

44 
rotate operators with the operands to the setvirtualdevice 
procedure. These scale, translate and rotate operations alter 
the system default matrix to specify the virtual [CTM]. A 
block 642 saves the resultant virtual [CTM] in the variable 

5 DefaultMatrix. The virtual [CTM] specifies that the origin of 
the virtual device is at the position on the fiat where the next 
page is to be rendered on the fiat 456. 

A decision-making block 644 then compares the page 
width (PageX) to the page height (Page Y). If PageX is less 

10 
than Page Y, a block 646 sets the variable Portrait to true 
(indicating portrait orientation). Alternatively, if PageX is 
greater than Page Y, a block 648 sets the variable Portrait to 
false (indicating landscape orientation). 

Next, a block 650 calls the redefined initclip operator to 
set the clipping path around the border of the virtual page. 

15 (See FIG. 21). 

20 

25 

The setvirtualdevice procedure may be implemented by 
the following code: 

/setvirtualdevice { 
impositiondict begin 
VirtualDeviceEnabled not { Enable VirtualDevice } if 
aload pop 
/Page Y exch def % set page size 
/PageX exch def 
aload pop pop 
/ClipurY exch def % set clipping path corners 
/ClipurX exch def 
/ClipllY exch def 
/ClipllX exch def 

of the next page to be rendered, with the origin and page 30 
boundary at the position on the fiat 456 where the page is to 

systemdict_initmatrix 
aload pop 
5 -2 roll scale % execute scale, translate 

be rendered. 
The setvirtualdevice procedure requires the following 

three "operands," which are provided in the instruction set 
list: 

1) the imposition procedure, which includes the scaling, 
translation and rotation factors-{ scale_x scale_y 
translate_x translate_y rotate]; 

35 

2) the user space coordinates of the lower-left and upper
right corners of the rendering area of the page to be 40 

imposed, which will be used to generate a clipping path 
around the border of the virtual page in the raster 
memory 22--{ clip_ll_x clip_ll_y clip_ur_x clip_ 
ur_y]; and 

3) the page width and page length-[page_size_x page_ 45 

size_y]. 

3 -2 roll translate % and rotate 
rotate 
DefaultMatrix systemdict_currentmatrix pop %set 

%[CfM] 
/Portrait PageX Page Y lt def 
initclip 
end 

} bind def 

The Imposejob Procedure: 

% set clipping path 

The ImposeJob procedure is invoked after references to 
the merged PostScript® files 450 and the instruction set have 
been placed on the Operands stack. Further, the above
described procedures and variables have been loaded into 
the impositiondict dictionary. 

FIG. 28 is a flowchart illustrating the program steps 
implemented by the ImposeJob procedure according to the 
imposition-on-the-fly procedures of the present invention. A 
block 652 invokes the Enable VirtualDevice procedure, 
described above in connection with FIG. 23, to set up the 
showpage operator to support virtual devices. 

A block 654 then retrieves the first file/list pair 
(containing the name of the merged Postscript® file and the 
corresponding entry list with the user procedures, page 

FIG. 27 illustrates the program steps implemented by the 
setvirtualdevice procedure. A block 630 first determines 
whether the variable VirtualDeviceEnabled is set to true, 
indicating that the Enable VirtualDevice procedure has been 50 

executed and the showpage operator is set up to support 
virtual devices. If the block 630 determines that VirtualDe
viceEnabled is false, a block 633 invokes the Enable Virtu
alDevice procedure. (A block 6333, which is implemented 
only in connection with the optional imposition-on-the-fly
procedures, will be described below.) 

55 numbers and operands for the setvirtualdevice procedures 
for the current fiat 456) from the instruction set. The file/list 
pair is stored in an array that was placed on the Operands 
Stack prior to calling the ImposeJob procedure. 

Next, a block 634 defines the variables PageX and Page Y 
as the width and height of the virtual device, respectively. 
Similarly, a block 636 defines the variables ClipllX and 
ClipllY as the x andy coordinates of the lower-left corner of 
the virtual device and the variables ClipurX and ClipurY as 
the x and y coordinates of the upper-right corner of the 
virtual device. 

A block 638 then calls the standard Postscript® initmatrix 
operator (renamed "systemdict_initmatrix"), which sets the 
[CTM] to the system default matrix for the current output 
device. A block 640 then executes the scale, translate and 

For each file/list pair, a block 656 invokes the ImposeFile 
60 procedure, described below, which retrieves each entry from 

the entry list and determines which pages described in the 
merged PostScript® file 450 should be rendered on the fiat 
456. Assuming more than one file/list pair is contained in the 
array, the blocks 654 and 656 are implemented in a loop 

65 which individually retrieves each file/list pair from the array 
and invokes the ImposeFile procedure to process each 
file/list pair. 



US 6,952,801 B2 
45 

After every file/list pair from the instruction set has been 
processed by the ImposeFile procedure, a block 658 sets the 
boolean variable ImageDone to true. ImageDone will be 
used to instruct the RIP 82 that the imposition job is 
complete and the fiat 456 can be ejected. The value of 5 

ImageDone at this point could be determined by a global 
variable. ImageDone could also be set to true in the user 
procedure in the last entry of the last instruction set list. 

Next, a block 660 determines whether the showpage 
operator was redefined to emulate level2. If so, a block 662 10 

executes the standard level 1 showpage operator (renamed 
"systemdict_showpage") in order to transmit the contents of 
the raster memory 452 to the demand printer 84 for physical 
rendering of the fiat 456. In the level 2 implementation, the 
fiat 456 is automatically rendered by the showpage operator 15 

when the redefined EndPage procedure returns a "true." (See 
FIG. 20). If the showpage operator was not redefined, a 
block 664 ends the program. 

The blocks 652-662 of the ImposeJob procedure may be 
implemented by the following code: 20 

/lmposeJob % Impose pages from each input file 

46 
CurrentPage now specifies the number of the first page in the 
current merged Postscript® file that should be rendered on 
the fiat. 

Next, a decision-making block 674 determines whether 
the first page in the current PostScript® file (page number 0) 
should be rendered on the fiat by comparing CurrentPage to 
0. If CurrentPage is equal to 0, the first page in the merged 
PostScript® file 450 should be imposed and rendered on the 
fiat, and a block 675 executes the first user procedure 
contained in the current entry retrieved by the block 672. 
Alternatively, if the block 674 determines that the first page 
is not on the fiat, a block 676 pops the first user procedure 
from the retrieved entry from the stack. 

After the block 675 has executed the user procedure or 
after the block 676 pops the user procedures a block 678 
executes the setvirtualdevice procedure, which was 
described in detail above in connection with FIG. 25. The 
setvirtualdevice procedure sets the virtual [CTM] and the 
clipping path according to the operands included in the 
retrieved entry. 

The blocks 670-678 of the Impose File procedure may be 
implemented by the following code: 

{ 
impositiondict /Enable VirtualDevice get exec 
{ % Call ImposeFile for 

25 /lmposeFile { 
impositiondict begin 

aload pop pop % each file in instruction 
%set 

impositiondict /lmposeFile get 
exec 

} forall 
impositiondict /lmageDone true put 
impositiondict /systemdict_showpage 
known { % Did we redefine showpage 

impositiondict /systemdict_showpage 
get exec %If yes, execute it. 
} if 

} def 

30 

35 

(Blocks 653 and 657 of the ImposeJob procedure, which are 
implemented only in connection with the optional 
imposition-on-the-fly of the invention, will be described 40 

below.) 
The ImposeFile Procedure: 

FIG. 29 illustrates the program steps implemented by the 
ImposeFile procedure of the imposition-on-the-fly proce
dures of the invention. When the ImposeFile procedure is 45 

invoked, the Imposejob procedure has placed a file/list pair 
from the instruction set on the Operands stack. The file/list 
pair contains a list of entries (the "PageList"), wherein each 
entry specifies: 

/PageOffset CurrentPage PageOffset add 1 add def 
/PageList exch def 
/Currentlndex 0 def 
PageList Currentlndex get 
aload pop pop 
5 -2 roll dup 
/CurrentPage exch def 

0 eq { 
exec 
}{ 
pop 

} ifelse 
setvirtualdevice 

%get entry 

% get page number for 1st 
%page 
% if 1st page is on flat 
% execute user procedure 

% if 1st page is not on 
%flat 
% pop user procedure 
% call setvirtualdevice 

Next, a decision-making block 680 determines whether 
the first page in the current PostScript® file (page number 0) 
should be rendered on the fiat by comparing CurrentPage to 
0. If CurrentPage is not equal to zero (i.e. the first page 
should not be rendered on the fiat), a block 682 invokes a 
procedure called, for example, "MakeNull." The MakeNull 
procedure, which is described in detail below in connection 
with FIG. 30, creates a scaled-down version of the virtual 
device for the next page to be rendered on the fiat. The 
MakeNull procedure will be used to quickly interpret pages 

1) a first user procedure; 
2) the number of the page to rendered on the fiat 456; 
3) the operands to the setvirtualdevice procedure (which 

generates the virtual [CTM] for properly positioning the 
page on the fiat 456); and 

50 included in the merged PostScript® file 450 that will not be 
rendered on the current fiat 456. The block 682 also calls the 
redefined initclip operator (see FIG. 21). 

After the block 682 executes the MakeNull procedure, or, 
alternatively, if the block 680 determines that CurrentPage is 

4) a second user procedure (specifying offsets). 
A block 670 sets the variable PageOffset=CurrentPage+ 

PageOffset+l. CurrentPage (representing the number of the 
next page in the current merged PostScripts file 450 that is 

55 equal to zero (i.e. the first page should be rendered on the 
fiat), a block 684 sets the variable LastPage equal to the page 
number of the last page in the Postscript® file to be rendered 
on the fiat. The last page is determined by defining Lastlndex 
as the number of entries in the instruction set minus one. The to be rendered on the fiat 456) is initially 0 and PageOffset 

(representing the cumulative number of pages from previous 60 

files processed) is initially -1. Therefore, on the first pass of 
the ImposeFile procedure, PageOffset is equal to 0 
(indicating that no previous files have been processed). A 
block 672 then uses the pointer Currentlndex to retrieve the 
first entry from the entry list received from the ImposeJob 65 

procedure. A block 673 then retrieves the page number from 
the entry and sets CurrentPage equal to its value. Thus, 

entries are indexed starting with zero (i.e., 0, 1, 2, 3,) such 
that the last of four entries will be entry number 3). Lastln
dex is then used to retrieve the page number from the last 
entry in the entry list, which is stored in the variable 
LastPage. The block 684 thus determines the number of 
page descriptions in the current merged PostScript® file 450 
that need to be interpreted in order to properly render all of 
the selected pages on the fiat 456. 



US 6,952,801 B2 
47 

The blocks 680--684 of the Impose File procedure may be 
implemented by the following code: 

/CurrentPage 0 ne { 
Make Null 

5 

48 
transformation of the coordinates (x, y) in user space to the 
coordinates (x', y') in device space as follows: 

x'=ax+cy+tx 

initclip 
} if 

% if page is not on flat 
% execute MakeNull 

%procedure 

/Lastlndex PageList length 1 sub def 
/LastPage PageList Lastlndex get 1 get def 

The Postscript® language includes a scale operator which 
creates a temporary matrix from supplied x and y scale 
factors and concatenates the temporary matrix with the 

10 current [CTM]. The scale operator then replaces the current 
[CTM] with the resultant matrix. 

Invoking the PostScript® scale operator with x and y 
scale factors (sx and sy) as operands, the scaled [CTM]=[sxa 
sxb syc syd tx tY]. Thus, the new transformation from user to 

15 device space specified by the scaled [CTM] is given by: 

A block 686 then opens the current merged PostScript® 
file 450, if necessary, and defines a file object (i.e. 
"TheFile") to access the current merged PostScript® file 
450. The block 686 then interprets the current merged 
PostScript® file 450, which contains various page 
descriptions, including the selected pages to be rendered on 
the current fiat 456. Each page description includes the 
showpage operator, which will invoke the redefined 20 

EndPage and BeginPage procedures of the present inven-
tion. 

(1) 

(2) 

Preferably, the block 686 executes the merged Post
Script® file 450 in stopped mode, which dictates that the 
execution will stop once the last page that needs to be 
processed for the fiat 456 is executed (determined by the 
value of LastPage ). Once execution is complete, a block 688 
flushes and closes the current PostScript® file and a block 
690 returns to the block 654 of the ImposeJob procedure 
(FIG. 26) to retrieve the next file/list pair from the instruc
tion set. 

The exact scale factors sx and sY may vary according to the 
type of PostScript® RIP 82 used. However, a 1 to 1 ratio 
between user and device space coordinates leads to signifi
cantly faster processing of pages over normal processing on 
a high resolution device. Also, the PostScript® nulldevice 

25 operator installs a [ CTM] with a 1 to 1 ratio of user to device 
coordinates. Therefore, although the scale factors could be 
tuned for optimal performance on a given Postscript® RIP 
82, it is assumed that a 1 to 1 ratio between user and device 
space coordinates will run with reasonable efficiency on any 

30 Postscript® RIP 82. Thus, the scale factors sx and sY used by 
the Make Null procedure are preferably calculated to achieve 
a 1 to 1 ratio between user and device space as follows. The blocks 686-690 of the Impose File procedure may be 

implemented by the following code: 

dup type 1 string type eq { (r) file } if 
dup (fheFile exch def 

To achieve a 1 to 1 ratio between user and device space 
coordinates with only the scale factors, the unit vector in 

35 user space from coordinate points (0,0) to (1,0) and from 
(0,0) to (0,1) must have unit length in device space. 
Therefore, 

cvx 
end 
stopped { count 0 eq dup not 

{ pop dup (done with current file) ne } if 
{ stop }{ pop } ifelse 

impositiondict (fheFile get dup flushfile 
closefile 

} bind def 

The MakeNull Procedure: 

40 

45 

The MakeNull Procedure is invoked by the block 682 of 
the ImposeFile procedure before processing pages that will 
not be rendered on the current fiat 456. The MakeNull 50 
Procedure creates a low resolution (scaled-down) replica of 
the virtual device for the next page to be rendered on the fiat. 
This low resolution virtual device allows for fast processing 
of the non-rendered pages. The non-rendered pages are 
processed using a low resolution replica of the virtual device 55 
for the next page to be rendered on the fiat to ensure that any 
marks generated by the processing do not overwrite a 
portion of the fiat 456 that is already imaged. 

The MakeNull procedure creates a low resolution replica 

l(x'(1,0), y'(1,0))-(x'(O,O), y'(O,O))I~1 

and 

l(x'(0,1), y'(0,1))-(x'(O,O), y'(O,O))I~1. 

From equations (1) and (3), 

Thus, sx=1/(a2 +b2
)

112
. 

Similarly, sy=1/(c2 +d2
)

112
. 

(3) 

(4) 

FIG. 30 illustrates the program steps implemented by the 
MakeNull procedure. A block 698 first determines and saves 
the device space coordinates of the midpoint of the virtual 
clipping path. The midpoint (mpx, mpy) is determined by 
first retrieving the corner coordinates of the virtual clipping 
path, which are stored in the variables ClipllX, ClipurX, 
ClipllY, and ClipurY. The x-axis midpoint (mpx) is calcu
lated by adding the lower left and upper right x-axis corner 
coordinates (ClipllX and ClipurX) and dividing by two. 
Similarly, the y-axis midpoint (mpy) is calculated by adding 
the y-axis corner coordinates (ClipllY and ClipurY) and 
dividing by two. After the midpoint is calculated, the stan-

of the virtual device by scaling the components of the virtual 60 

[CTM]. Further, the MakeNull procedure positions the 
scaled-down virtual device in the middle of the original 
virtual device. This ensures that the scaled-down virtual 
device will be completely contained within the clipping path 
defining the original virtual device. 65 dard PostScript® transform operator (renamed 

"systemdict_transform") is executed to convert the user 
space coordinates to device space coordinates. 

As explained earlier, by definition, the virtual [CTM] 
contains the components [a b c d tx ty] and specifies a 



US 6,952,801 B2 
49 

Next, a block 700 gets the virtual [CTM] which is stored 
in the variable DefaultMatrix. A block 702 then calculates 
the scale factors, sx and sY, as specified above and a block 
704 applies the scale factors to the virtual [CTM]. A block 
706 then saves the scaled virtual [CTM] as the new virtual 5 
[CTM] in the variable DefaultMatrix. 

A block 708 then sets the midpoint of the scaled clipping 
path (specified by the new virtual [CTM]) to correspond 
with the coordinates of the midpoint of the original clipping 
path (saved by the block 698). The block 708 determines the 

10 
difference between the saved midpoint coordinates and the 
new midpoint coordinates and then translates the new coor
dinates by that difference. 

The MakeNull procedure may be implemented by the 

50 
procedure contains offset instructions, the PostScript® file 
will be repositioned to the start of the next page to be 
included in the book, thereby skipping processing of any 
irrelevant pages. If the second user procedure contains other 
instructions (such as barcodes, watermarks, etc.), they will 
also be executed. 

Next, a block 714 increments the pointer Currentlndex, 
which will be used to retrieve the next entry from the entry 
list (PageList). The decision-making block 716 then deter
mines whether there is another entry in the instruction set by 
comparing Currentlndex to Lastlndex. 

If Currentlndex is less than or equal to Lastlndex, a block 
718 resets the graphics state to its system default value by 
calling the standard PostScript® initgraphics operator (now 

following code: 

/MakeNull { 
impositiondict begin 

15 renamed "systemdict_initgraphics"). A block 720 then uses 
Currentlndex to retrieve the next entry in the entry list to 
place the operands for the setvirtualdevice procedure on the 
Operands stack and a block 722 invokes the setvirtualdevice 

end 

ClipllX ClipurX add 2 div ClillY ClipurY add 2 div 
systemdict_transform 

/mpy exch def 
/mpx exch def 
DefaultMatrix 
dup 
dup dup 
dup 0 get dup mul 
exch 1 get dup mul 
add 1 exch div sqrt dup 1.0 gt 

{ pop 1.0 } if exch 
dup 2 get dup mul 
exch 3 get dup mul 
add 1 exch div sqrt dup 1.0 gt 

{ pop 1.0 } if 
Matrix scale 
exch Matrix2 concatmatrix 
systemdict_setmatrix 

%calculate 
%midpoint 

%compute a2 

%compute b2 

%compute sx 

%compute c2 

%compute d2 

%compute sy 

% scale matrix 
% save as the new 
% virtual default 
%matrix 

ClipllX ClipurX add 2 div ClipllY ClipurY add 2 div 
systemdict_transform 
/mpy exch mpy sub neg def % translate 
/mpx exch mpx sub neg def % midpoint 
mpx mpy systemdict idtransform translate 
systemdict_currentmatrix pop 

} bind def 

The Redefined EndPage Procedure: 
The page descriptions contained in the merged Post

script® file 450 all include the showpage operator, which 
will invoke the redefined EndPage and BeginPage proce
dures. 

The redefined EndPage procedure updates the Cur
rentPage variable, which represents the number of the next 
page in the merged PostScript® file 450 that should be 
imposed and rendered on the fiat. The redefined EndPage 
procedure also calls the setvirtualdevice and MakeNull 
procedures for the pages to be interpreted. 

20 

25 

procedure. 
A block 724 then sets CurrentPage equal to the number of 

the page from the retrieved entry. CurrentPage is now 
updated to contain the number of the next page from the 
merged Postscript® file 450 that should be imposed and 
rendered on the fiat 456. 

Next, a block 726 invokes the MakeNull procedure to set 
up the low resolution virtual device for processing of 
non-rendered pages. The MakeNull procedure is called 
because it is assumed that the next page in the merged 
PostScript® file 450 will not be rendered on the fiat 456. (If 

30 the next page should be rendered on the fiat, the redefined 
BeginPage procedure, described in detail below, will estab
lish the virtual device for that page). A block 728 then 
removes the user procedure (which is contained in the 
retrieved entry) from the Operands Stack. 

35 If any of the blocks 710, 712 or 716 are false, or after the 
block 728 pops the user procedure, a block 730 places the 
value of the variable Image Done on the stack. If Image Done 
has the value of true, indicating that the fiat is completed, the 
calling of the EndPage procedure (i.e., by the showpage 

40 operator or for new device activation) will automatically 
transfer the contents of the raster memory 452 to the demand 
printer 84 to physically render the selected pages on the fiat 
456. (See FIG. 19). 

45 
A block 732 then resets ImageDone to false to specify that 

the fiat is not completed and the contents of the raster 
memory 452 will not yet be transferred to the demand printer 
84 for physical rendering. 

The redefined EndPage procedure may be implemented 

50 
by the following code: 

FIG. 31 is a flowchart illustrating the program steps 
implemented by the redefined EndPage procedure. A block 55 

710 determines whether the EndPage procedure was called 

/Endpage { 
impositiondict begin 
0 eq 
exch 
CurrentPage PageOffset add eq 
and { by the showpage operator by determining whether the 

reason code is 0. A block 712 compares CurrentPage plus 
PageOffset to PageCount to determine whether the current 
page in the PostScript® file should be imposed and rendered 60 

on the fiat 456. 
Assuming both of the blocks 710 and 7122 are true, a 

block 713 set ups the default environment by calling the 
standard initgraphics operator (now renamed "systemdict_ 
initgraphics"). The block 713 then retrieves and executes the 65 

second user procedure (containing, for example, the offset 
instructions) from the current entry. If the second user 

systemdict_initgraphics 
PageList Currentlndex get 
5 get exec 
/Currentlndex Currentlndex 1 add def 
Currentlndex Lastlndex 1e { 

systemdict_initgraphics 
PageList Currentlndex get 
aload pop 
setvirtualdevice 
/CurrentPage exch def 
Make Null 



US 6,952,801 B2 

pop 
} if 

} if 
Image Done 
/lmageDone false def 
end 

} bind def 

51 

-continued 

The Redefined BeginPage Procedure: 

5 

10 

FIG. 32 is a flowchart illustrating the program steps 
implemented by the redefined BeginPage procedure. A block 
740 first calls the redefined initmatrix operator to set the 
virtual [CTM]. 15 

Referring also to FIG. 20, the BeginPage procedure 
receives PageCount as an operand from the showpage 
operator. A decision-making block 742 compares Cur
rentPage (which was updated by the block 724 of the 20 

redefined EndPage procedure of FIG. 31) to PageCount. 
CurrentPage contains the number of the next page in the 
PostScript® file to be rendered on the fiat 456. Thus, if 
CurrentPage and PageCount are equal, the current page in 
the merged Postscript® file 450 should be imposed and 25 

rendered on the fiat 456 and a block 744 retrieves the next 
entry (containing the user procedures, page number and 
setvirtualdevice operands) from the entry list. 

/BeginPage { 
initmatrix 
impositiondict begin 
dup 

52 

CurrentPage PageOffset add eq { 
pop 
PageList Currentlndex get 
aload pop 
5 -1 roll 
exec 
setvirtualdevice 
pop 
clippath 1 setgray fill 

0 setgray newpath 
} bind { 

LastPage PageOff set add gt { 

%page on flat 
% pop PageCount 
%get entry 

% execute user procedure 

% pop the page number 
% blank out virtual 
%page 

%page not on 
%flat 

end (done with current file) stop } if 
initclip 
} ifelse 

end 
} bind def 

The ImageDone Variable: 
As explained earlier, the variable Image Done is a boolean 

variable used to indicate when all the pages for the current 
fiat 456 have been interpreted and painted into the raster 
memory 452 such that the fiat 456 can be physically ren
dered by the demand printer 84. ImageDone is initially and 

A block 745 then executes the user procedure from the 
retrieved entry and a block 746 invokes the setvirtualdevice 
procedure to set up the virtual [CTM] and clipping path for 
the virtual device (see FIG. 27). A block 748 then pops the 
page number from the retrieved entry. 

30 
normally set to false, indicating that the current fiat 456 has 
not yet been completed. However, referring to FIG. 26, after 
all the file/list pairs from the instruction set have been 
processed by the Imposejob procedure, the block 658 sets 
ImageDone to true to indicate that the fiat is completed. 

Next, a block 750 "blanks out" the virtual page by 
coloring the area inside of the clipping path white. This is 
necessary to erase any stray marks that may have been 
placed on the page when the non-rendered pages were 
processed using the MakeNull procedure. 

35 
Also, the user procedure contained in the last entry in a 
file/list pair in the instruction set could include an instruction 
to set ImageDone to true to specify that the current fiat is 
completed. 

The ImageDone variable is used by the redefined 

40 
EndPage procedure. Referring to FIGS. 20 and 31, the block 
730 of the redefined EndPage procedure returns the value of 
ImageDone to the block 502 of the showpage operator. If 
ImageDone is true, the block 504 transmits the contents of 
the raster memory to the demand printer to render the current 

Alternatively, if the block 742 determines that the next 
page in the merged Postscript® file 450 should not be 
rendered on the fiat (i.e. CurrentPage is not equal to 
PageCount), a decision-making block 752 compares Page
Count to LastPage plus PageOffset. If PageCount is greater 
than LastPage plus Pageoffset, subsequent pages in the 
PostScript® file do not need to be interpreted because they 
are beyond the last page that should be rendered on the fiat 
456. Thus, a block 754 stops the execution of the merged 
PostScript® file 450. As explained earlier, the ImposeFile 

50 
procedure executes the merged PostScript® file 450 in 
stopped context. In order to distinguish between the 
expected stop in the block 754 and an unexpected stop 
caused, for example, by a PostScript® error, the string "done 
with current file" is generated by the block 754 of the 

55 
redefined BeginPage procedure. Referring also to FIG. 27, 
the block 386 of the ImposeFile procedure checks for the 
"done with current file" string to determine when to proceed 

45 fiat. 
The ImageDone variable may be utilized to allow for 

multiple fiats to be rendered by a single file/list pair in the 
instruction set (see Appendix I sample instruction set). 
The Showdevice Procedure: 

to the block 688 to flush and close the merged PostScript® 
file 450. 

Alternatively, if the block 752 determines that Page Count 
is less than or equal to LastPage plus PageOffset (i.e. the 
current page is before the last page to be rendered on the 
fiat), a block 756 calls the redefined initclip operator to reset 

60 

the virtual clipping path. (See FIG. 20). 65 

The redefined BeginPage procedure may be implemented 
by the following code: 

The imposition-on-the-fly procedures may include an 
additional procedure, called, for example, "showdevice," 
which uses the Image Done variable to allow a user to render 
the fiat at any time. The showdevice procedure sets Image
Done to true and then calls the showpage operator, which 
will invoke the redefined EndPage procedure and render the 
current fiat, as described above. 

The showdevice procedure may be implemented by the 
following code: 

/showdevice { 

} def 

impositiondict /lmageDone true put 
showpage 

The showdevice procedure will normally be used when a 
user implements the setvirtualdevice (and related) proce-



US 6,952,801 B2 
53 54 

current path to avoid any round off errors that may occur in 
this conversion from user space to device space. 

A decision-making block 802 then determines whether a 
currentpoint is defined. If a currentpoint is defined, a block 

dures in a non-imposition application in which the Impose
Job and ImposeFile procedures are eliminated. For example, 
the showdevice procedure could be implemented to render 
any selected page(s) contained in the merged PostScript® 
file 450. 
Optional Imposition-on-the-Fly Procedures: 

Optionally, additional procedures may be included in the 
imposition-on-the-fly procedures which will allow the 
proper imposition of page descriptions using the Post
Script® save and restore operators. 

5 804 sets the variable p1 equal to the current path. This may 
be accomplished by invoking the previously defined Make
Path procedure, which creates a description of the current 
path in the current coordinate system. (The MakePath pro
cedure was described above in connection with the block 

10 524 of the redefined initclip operator of FIG. 20). 
A block 806 then defines a variable called, for example, 

"firstop" to be the PostScript® line to operator. By definition, 
the PostScript® lineto operator adds a straight line segment 
to the current path by connecting the previous current point 

The PostScript® save operator takes a "snapshot" of the 
state of virtual memory, which stores all values of composite 
objects, such as strings and arrays. Many of the variables 
used by the imposition-on-the-fly procedures of the present 
invention are stored in virtual memory. The save operator 
also saves the current graphics state by pushing a copy of the 
current graphics state onto the Graphics State Stack. The 
PostScript® restore operator restores the virtual memory 
and the current graphics state to the state at the time the 
corresponding save operator was executed. 

15 to the new one. 

20 

Alternatively, if the block 802 determines that no current
point exists, a block 808 sets p1 equal to an empty path. A 
block 810 then defines firstop to be the PostScript® moveto 
operator, which establishes a new currentpoint. 

After firs top is defined by either the block 806 or the block 
810, a block 812 creates an "unlimited" bounding box for 
the current path. A bounding box, which is normally estab
lished by the Postscript® setbbox operator, defines the area 
in which the current path coordinates must fall. The oper-

The PostScript® gsave operator pushes a copy of the 
current graphics state onto the Graphics State Stack and the 
PostScript® grestore operator pops the saved graphics state 
from the Graphics State Stack and restores it as the current 
graphics state. The PostScript® grestoreall operator restores 
either the bottom-most graphics state stored on the Graphics 
State Stack or the first graphics state that was stored by the 
save operator (as opposed to the gsave operator). The 
elements of the current graphics state affected by these 
operators includes the current [CTM], clipping path and, 
current path. However, they do not affect the contents of the 
raster memory 452. 

25 ands to the setbbox operator are the user space coordinates 
of the lower-left and upper-right corners of the bounding 
box. Since the page size and [CTM] components will be 
added to the current path during the Vsave procedure, the 
bounding box must be set large enough to encompass the 
"points" defined by those components. Thus, a previously 

30 defined procedure called, for example, "SetBigBBox," may 
be invoked to set the bounding box to be the largest possible. 
The SetBigBBox procedure may be implemented by the 
following code: The PostScript® save and restore operators may 

adversely affect the imposition-on-the-fly procedures of the 
present invention, as well as on other imposition methods. 35 

The problem arises if a page description in the merged 
PostScript® file 450 invokes a save operator, which will 
save the [CTM] that specifies the desired position for that 
page on the device. If a subsequent page description invokes 
a restore operator, the [CTM] for the prior page will replace 40 

the [CTM] for the subsequent page. Thus, the subsequent 
page will be incorrectly positioned on the fiat 456. 

To overcome this problem, two new procedures (Vsave 
and Vrestore) are used in connection with the above
described procedures. The Vsave and Vrestore procedures 45 

will be used to redefine the PostScript® save and restore 
operators such that they do not interfere with the other 
imposition-on-the-fly procedures of the present invention. 
The Vsave Procedure: 

Generally, the Vsave procedure appends the page size 
components (Page X and Page Y) and the virtual [ CTM] 
components (which define the virtual device) to the current 
path, which will be saved by the PostScript® save operator. 
Later, the Vrestore procedure will retrieve these 
components, remove them from the current path, and use 
them to generate the correct clipping path, page orientation 
and [CTM] for the restored page. 

50 

55 

FIG. 33 is a flowchart illustrating the program steps 
implemented by the optional Vsave procedure. A block 800 
saves a copy of the current [CTM] and then a block 801 sets 60 

the [CTM] equal to an identity matrix ([1 0 0 1 0 0]). 
The identity matrix is used because all points used to 

describe the current path are specified in user space coor
dinates. However, at the time a PostScript® program enters 
a point into the current path, each coordinate is transformed 65 

into device space according to the [CTM]. Thus, the identity 
matrix will be used when adding the components to the 

/SetBigBBox /setbbox where { 
pop { 

-2147483648 -2147483648 2147483648 2147483648 
setbbox 
} bind def 

}{ 
{ 
} def 

} ifelse 

After the large bounding box is set, a block 814 invokes 
the firstop operator (defined by the block 806 or the block 
810) to append the page size components (PageX and 
Page Y) to the current path. Next, a block 818 appends the 
virtual [CTM] components (stored in the variable 
DefaultMatrix) to the current path. A block 820 then replaces 
the identity [CTM] with the [CTM] that was saved by the 
block 800. 

The Vsave procedure may be implemented by the fol
lowing code: 

/Vsave { 
Matrix systemdict_currentmatrix 
dup 
Identity systemdict_setmatrix % [CTM] ~ 

{ currentpoint } stopped { 

/p1 { } def 

/firstop { moveto } def 
}{ 

%identity 
%no current 
%point 
% define empty 
%path 

% current point 



US 6,952,801 B2 
55 

-continued 

56 
operator was called during interpretation of one page and the 
restore operator was called during interpretation of another 
page. A block 840 then sets the [CTM] back to the value 
saved by the block 830. Next, a block 842 calls pl, which pop pop % create real 

%path 
/p1 MakePath def 
/firstop { lineto } def 
} ifelse 

SetBigBBox 

5 contains the current path at the time the save operator was 
called. The block 842 then removes the page size and [ CTM] 
components that were added to the current path and sets pl 
equal to the remaining path elements. 

PageX Page Y firs top % append page 
%size 

DefaultMatrix 
aload pop 

The blocks 830-842 of the Vrestore procedure may be 

10 
implemented by the following code: 

lineto %append [CfM] 
line to 
line to 
systemdict_setmatrix 

} bind def 15 

The Vrestore Procedure: 
The Vrestore procedure retrieves the page size and virtual 

[CTM] components (which defined the virtual device) 
appended to the current path by the Vsave procedure and 20 
uses them to generate the correct clipping path, page orien
tation and virtual [CTM] for the restored page. 

FIG. 34 is a flowchart illustrating the program steps 
implemented by the Vrestore procedure. A block 830 saves 
the current [CTM] and a block 832 then sets the [CTM] to 

25 
an identity matrix. As in the Vsave procedure, the use of the 
identity [CTM] will avoid any round off errors when trans
forming coordinates from user space to device space in the 
current path. 

A block 834 then retrieves the elements of the current path 
by calling the Postscript® pathforall operator, which pushes 30 

the user space coordinates of each path element onto the 
Operands stack. The retrieved elements will include the page 
size and virtual [CTM] components that were appended to 
the path by the Vsave procedure. A block 836 then performs 
various stack manipulation operations to place the page size 35 

and virtual [CTM] components on top of the stack. The 
block 836 then stores the components in variables called, for 
example, "ResDefaultMatrix," "ResPageX" and 
"ResPage Y," which represent the page size and virtual 
[CTM] at the time that the PostScript® save operator was 40 
called. 

/Vrestore { 
Matrix systemdict_currentmatrix 
Identity systemdict_setmatrix 
mark 
{ } { } { } { } pathforall 
6 2 roll 
4 2 roll 
mark 7 1 roll 
] /ResDefaultMatrix exch def 
/ResPaqe Y exch def 
/ResPageX exch def 
cleartomark 
DefaultMatrix ResDefaultMatrix EqualMatrix not 
{ 

systemdict_setmatrix 
/p1 mark 
MakePath aload pop 
pop pop pop 
pop pop pop 
pop pop pop 
pop pop pop 
] cvx def 

Next, a decision-making block 844 determines the orien
tation of the restored page by comparing ResPageX to 
ResPage Y. If ResPageX is greater than ResPage Y, a variable 
called ResPortrait is set to false to indicate a landscape 
orientation. Alternatively, if ResPageX is less than 
ResPage Y, the variable ResPortrait is set to true to indicate 
a portrait orientation. The block 844 then compares ResPor-
trait (the restored page orientation) to Portrait (the saved 
page orientation). If the page orientation has changed 
(ResPortrait and Portrait are not equal), a block 846 calls the 
SetPortrait procedure to change the orientation of the device. 
(See FIGS. 25 and 26A&B). 

Next, a decision-making block 838 compares the ResDe
faultMatrix (at time of save) to the current virtual [ CTM] (at 
time of restore), which is saved in the variable DefaultMa
trix. The equivalency of the matrices may be easily deter
mined by using a previously defined utility routine, called, 
for example, "EqualMatrix," which performs a component
by-component comparison of the two matrices, allowing for 

The blocks 844 and 846 of the Vrestore procedure may be 
45 implemented by the following code: 

a slight floating point round-off error. If the two matrices are 
equivalent, the EqualMatrix routine returns a true on the 
stack; if they are not equivalent, the EqualMatrix routine 50 

returns a false. The EqualMatrix routine may be imple
mented by the following code: 

ResPageX ResPage Y gt { 
/ResPortrait false def 
}{ 
/ResPortrait true def 
} ifelse 

/EqualMatrix { 
true 
impositiondict begin 
/Count 0 def 
6 { 1 index Count get 3 index Count get 

eq 
sub abs .0001 lt and 
/Count Count 1 add def } repeat 

3 1 roll pop pop 
end 

} bind def 

If the block 838 determines that the restored [CTM] and 
current [CTM] are not equivalent, it is assumed that the save 

55 

ResPortrait Portrait ne { 
SetPortrait 
} if 

If the block 844 determines that the orientation is the 
same, or after the block 846 corrects the orientation, a block 
848 saves the procedures for generating the current clipping 

60 path in a variable called, for example, "cl," by calling the 
MakePath procedure. 

A block 850 then calculates the new [CTM] by determin
ing the accumulation of operations applied on the restored 
virtual [CTM] and applying those operations on the current 

65 virtual [CTM]. The block 850 calculates the new [CTM] by 
first getting the current [CTM], which may be considered the 
result of the restored virtual [CTM] (i.e., the virtual [CTM] 



US 6,952,801 B2 
57 

restored from the save operator) concatenated with an opera
tions matrix. The block 850 then calculates the operations 
matrix by concatenating the current [CTM] with the inverse 

58 

of the restored virtual [CTM]. The operations matrix is then 
concatenated with the current virtual [CTM] to generate the 5 

new [CTM]. Thus, the block 850 assumes that: 

The PostScript® save and gsave operators are then rede
fined. FIG. 35 is a flowchart illustrating the program steps 
implemented to redefine to PostScript® save operators. A 
block 872 first invokes the Vsave procedure, which was 
described above in connection with FIG. 33. The Vsave 
procedure saves the current path in pl and then appends the 
page size and virtual [CTM] components to the current path. 

[current CTM]=[ operations] [restored virtual CTM]. 
Further, the block 850 performs the following operations: 

[operations]=[ current CTM] [restored virtual CTMr1
; 

and 

[new CTM]=[ operations] [current virtual CTM]. 
The blocks 848 and 850 of the Vrestore procedure may be 

implemented by the following code: 

clippath % generate clip path procedures 
/c1 MakePath def 
Matrix systemdict_currentmatrix 
ResDefaultMatrix 
Matrix2 invertmatrix 
Matrix3 concatmatrix 
DefaultMatrix Matrix4 concatmatrix 

systemdict_setmatrix 

% calculate new 
%[CfM] 

A block 874 then invokes the standard Postscript® save 
(or gsave) operator (now renamed "systemdict_save" or 

10 
"systemdict_gsave"). The save operator performs its stan
dard function of saving the current state of virtual memory 
and the current graphics state, including the current path 
(which now includes the page size and virtual [CTM] 
components). The gsave operator performs its standard 

15 
function of saving the current graphics state. 

Next, a block 876 sets the [CTM] to an identity matrix. As 
before, this will eliminate any round off errors in the current 
path. A block 878 then restores the current path to the path 
stored in pl (the path without the added page size and virtual 
[CTM] components) and a block 880 restores the [CTM] 

20 
back to the virtual [CTM]. 

The blocks 870-880 for redefining the Postscript® save 
operator may be implemented by the following code: 

A block 852 then regenerates the clipping path (saved in 25 

cl) and a block 854 regenerates the current path (saved in 
pl) in the new coordinate system specified by the new 
[CTM]. The blocks 852 and 854 may be implemented by the 
following code: 

/save { 
impositiondict begin 
Vsave 
systemdict_save 
Identity systemdict_setmatrix 
newpath systemdict_initclip 

newpath 

cl 

clip newpath 

pl} 
Alternatively, if the block 838 determines that the restored 

virtual [CTM] is equivalent to the current virtual [CTM] 
(i.e., the save and restore operators were called on the same 
page), a block 856 simply removes the page size and virtual 

30 

35 

p1 
exch systemdict_setmatrix 
end 

} bind def 

Similarly, the PostScript® gsave operator may be rede
fined by implementing the following code: 

[ CTM] components from the current path. A block 858 then 40 
restores the current path and a block 860 sets the [CTM] 
back to the value saved by the block 830. 

/gsave { 
impositiondict begin 
Vsave 
systemdict_gsave The blocks 856-860 may be implemented by the follow

ing code: 

/p1 mark 
MakePath aload pop 
pop pop pop 
pop pop pop 
pop pop pop 
pop pop pop 
] cvx def 
newpath 
p1 
Systemdict_setmatrix 
} ifelse 

} bind def 

The Redefined PostScript® Save Operators: 
The PostScript® save operators (which include save and 

gsave) are redefined to invoke the Vsave procedure. Before 
the operators are redefined, however, they are renamed 
("systemdict_operator," for example) because their normal 
operation is defined in the systemdict dictionary. The save 
operators may be renamed by the following code: 

/systemdict_save systemdict /save get def 
/systemdict_gsave systemdict /gsave get def 

45 

Identity systemdict_setmatrix 
newpath 
p1 
systemdict_setmatrix 
end 

} bind def 

50 The Redefined PostScript® Restore Operators: 

55 

The PostScript® restore operator must also be renamed 
and redefined to invoke the Vrestore procedure. Like the 
save operators, the restore operator is renamed, for example, 
"systemdict_restore," by the following code: 

/systemdict restore_systemdict /restore get def 
Because the Postscript® save and restore operators affect 

the contents of virtual memory and the graphics state, the 
values of many variables used during the imposition and 
setvirtualdevice procedures may be inadvertently altered by 

60 the use of these operators. However, simple values stored on 
the Operands Stack are not affected. Therefore, the Post
script® restore operator is redefined to protect the values of 
the variables stored in virtual memory by saving them on the 
Operands Stack before calling the standard PostScript® 

65 restore operator. 
FIG. 36 is a flowchart illustrating the program steps 

implemented by the redefined restore operator. A block 892 



US 6,952,801 B2 
59 

places the values of all the imposition variables stored in 
virtual memory on the Operands stack so their values are not 
overwritten by the restore operator. Then, a block 894 calls 
the standard restore operator (now renamed "systemdict_ 
restore"). A block 896 then puts the values of the variables 5 

on the Operands stack back to their pre-restore values. 
Lastly, a block 898 invokes the Vrestore procedure. 

The blocks 892-898 of the redefined restore operator may 
be implemented by the following code: 

/restore { 
impositiondict begin 
Image Done % put variables on stack 

10 

60 
Similarly, the grestoreall operator may be redefined by 

implementing by the following code: 

/grestoreall { 
impositiondict begin 
systemdict_grestoreall 
Vrestore 
end 

} bind def 

The Postscript® Level 2 Gstate Operators: 

Level 2 PostScript® implementations support the follow-
Current Index 
CurrentPage 
Page Count 
Portrait 
PageX 
PageY 
ClipllX 
ClipllY 

15 ing three additional operators that affect the current graphics 
state (and therefore the [CTM]) and that may interfere with 
the imposition procedures of the present invention: gstate, 
currentgstate and setgstate. The PostScript® gstate operator 
creates a new graphics state object (whose initial value is the 

ClipurX 20 current graphic state) and pushes it on the Operand stack. 
ClipurY 
mark DefaultMatrix 
aload Pop 
19 -1 roll 
systemdict_restore 

l 
/DefaultMatrix exch def 
/ClipurY exch def 
/ClipurX exch def 
/ClipllY exch def 
/ClipllX exch def 

%put [CTM] components on 
% stack 

% call standard restore operator 

% replace variables with 
%pre-restore values 

25 

30 

The Postscript® currentgstate operator replaces the value of 
the gstate object with the current graphics state. The Post
Script® setgstate operator replaces the current graphics state 
with the value of the gstate object. 

Similarly to the gsave and grestore operators described 
above, the gstate operators are renamed and redefined to 
invoke the Vsave the Vrestore procedures. The gstate opera
tors may be renamed by the following code: 

/gstate where { % is this level 2? 
pop 
/systemdict_gstate systemdict /gstate get def 

/Page Y exch def 
/PageX exch def 
/Portrait exch def 
/PageCount exch def 
/CurrentPage exch def 
/Currentlndex exch def 
/ImageDone exch def 
Vrestore 

35 /systemdict_setgstate systemdict /setgstate get 
% invoke Vrestore procedure 

end 
} bind def 

The Redefined PostScript® Grestore Operators: 
40 

def 

} if 

/systemdict_currentgstate systemdict 
/currentgstate get def 

Similar to the redefined gsave operator described above in 
connection with FIG. 35, the gstate and currentgstate opera
tors are redefined to first invoke the Vsave procedure and 
then to call the renamed standard gstate or currentgstate 

The standard PostScript® grestore or grestoreall 
operators, are renamed, for example, "systemdict_ 
operator." This may be implemented by the following code: 

/systemdict_grestore systemdict /grestore get def 
/systemdict_grestoreall systemdict /grestoreall get def 
Because the PostScript® grestore and grestoreall opera-

tors affect only the graphics state, it is not necessary to 
protect the values of any variable stored in virtual memory. 
Thus, the grestore or grestoreall operators are more simply 
redefined. 

45 operator. The redefined operators then restore the current 
path without the page size and [CTM] components and reset 
the virtual [ CTM]. 

FIG. 37 is a flowchart illustrating the program steps 
50 

implemented by the redefined PostScript® grestore and 
grestoreall operators. A block 902 invokes the renamed 
standard grestore or grestoreall operator and then a block 
904 invokes the Vrestore procedure, which will calculate the 
correct [CTM] and correct the page orientation and clipping 55 

path. 
The blocks 902-904 for redefining the PostScript® gre

store operator may be implemented by the following code: 

/grestore { 
impositiondict begin 
systemdict_grestore 
Vrestore 
end 

} bind def 

60 

65 

Also, like the redefined grestore operator described above 
in connection with FIG. 37, the setgstate operator is rede
fined to first call the renamed setgstate operator and then to 
invoke the Vrestore procedure. 

The PostScript® level2 gstate operators may be redefined 
by the following code: 

/gstate where { 
pop 

% is this level 2? 

/gstate { % redefine gstate operator 
impositiondict begin % (like gsave operator) 
Vsave 
s ys temdict_gs tate 
Identity systemdict_setmatrix 
newpath 
p1 
exch systemdict_setmatrix 
end 
} bind def 



US 6,952,801 B2 
61 

-continued 

/currentgstate { % redefine currengstate operator 

62 
example, "SavedState." The blocks 654 and 656 then 
retrieve a file/list pair from the instruction set and invoke the 
ImposeFile procedure to process the file/list pair, as 
described above. However, after the ImposeFile procedure 

impositiondict begin % (like gsave 
%operator) 

Vsave 
systemdict_currentgstate 
Identity systemdict_setmatrix 
newpath 
p1 

5 finishes processing each entry in the file/list pair, the block 
657 retrieves the saved state stored in the variable Saved
State and executes the redefined restore operator to restore 
that state. The block 657 thus initializes the virtual memory 
before the block 654 retrieves the next file/list pair from the 

exch systemdict_setmatrix 
end 

10 instruction set. 

} bind def 
/setgstate { % redefine setgstate operator 

} if 

impositiondict begin % (like grestore 
%operator) 

systemdict_setgstate 
Vrestore 
end 
} bind def 

15 

These optional procedures are used when it is anticipated 20 

that the page descriptions in the merged PostScript® file 450 
may include a save operator in one page description and a 
restore operator in a subsequent page description. If the 
optional procedures are used, a slight modification should be 
made to the setvirtualdevice procedure, described above in 25 

connection with FIG. 27. Referring to FIG. 27, an additional 
block 633 invokes the redefined save operator and then pops 
the save object from the Operands Stack after the block 6322 
invokes the Enable VirtualDevice procedure. This is neces
sary because the grestore and grestoreall operators can be 30 

called without a corresponding save or gsave operator. If 
grestore is called without a gsave operator, it restores the 
graphics state from the top of the graphics state stack. If 
grestoreall is called without a gsave or save operator, it 
restores either the graphics state from the bottom of the 35 

graphics state stack or the graphics state saved by the last 
save operator. If the topmost save object was created prior 

The blocks 650-662 of the ImposeJob procedure incor
porating the blocks 653 and 657 may be implemented by the 
following code: 

/ImposeJob % Impose pages from each input 
%file 

impositiondict /Enable VirtualDevice get exec 
{ 

aload pop pop 
impositiondict /SavedState 

save put % save state 
impositiondict /ImposeFile 
get % call ImposeFile for each 
exec % file in instruction set 

% cleardictstack 
clear 
impositiondict /SavedState get 

restore % restore saved state 
} forall 
impositiondict /ImageDone true put 
impositiondict /systemdict_showpage 
known { % Did we redefine showpage 

impositiondict /systemdict_showpage 
get exec % If yes, execute it. 
} if 

} def 

Further, as explained earlier, for compatibility with the 
optional procedures, the PostScript® erasepage operator is 
redefined by calling the systemdict_gsave and grestore 
operators. All of the remaining imposition-on-the-fly proce
dures are compatible with the optional procedures. 

Numerous modifications and alternative embodiments of 
the invention will be apparent to those skilled in the art in 
view of the foregoing description. Accordingly, this descrip-

to the redefinition of the save operator, the saved current 
path will not include the additions of the page size and 
[C1M] components and, therefore, will not operate properly 40 

with the redefined grestore and grestorall operators. Thus, 
invoking the redefined save operator at the block 633 of the 
setvirtualdevice procedure ensures that the grestore and 
grestoreall operators will always restore a saved graphics 
state compatible with the present invention. 

45 tion is to be construed as illustrative only and is for the 
purpose of teaching those skilled in the art the best mode of 
carrying out the invention. The details may be varied sub
stantially without departing from the spirit of the invention, 
and the exclusive use of all modifications which are within 

The blocks 630-633 of the setvirtualdevice procedure for 
the third embodiment of the invention may be implemented 
by the following code: 
VirtualDeviceEnabled not {Enable VirtualDevice save pop} 
if 50 

the scope of the appended claims is reserved. 
What is claimed is: 

Also, in some PostScript® applications, interpreting dif
ferent Postscript® files consecutively may interfere with the 
operation of the invention. For example, two different Post
Script® files may use the same name for variables with 
different definitions. If the second PostScript® file inter- 55 

preted does not explicitly initialize the variable, the defini
tion of the variable from the first PostScript® file will be 
used, interfering with proper interpretation of the second 
PostScript® file. To overcome this problem, the Imposejob 
procedure (FIG. 28) may be altered. 60 

Referring to FIG. 28, blocks 653 and 657 are added to the 
ImposeJob procedure to save the state of virtual memory 
(which includes many variable definitions) before retrieving 
a file/list pair from the instruction set and restoring that 
saved state before retrieving the next file/list pair. 65 

Specifically, the block 653 executes the redefined save 
operator and stores the saved state in a variable called, for 

1. A method of assembling first and second different 
books, the method comprising the steps of: 

(A) storing a first number of pages; 
(B) specifying a first set of pagination information includ

ing an indication of whether a stored page is to be 
selectively included in the first book; 

(C) specifying a second set of pagination information 
including an indication of whether a stored page is to be 
selectively included in the second book; 

(D) determining whether a stored page is to be assembled 
into the first book based on the first set of pagination 
information wherein a second number of stored pages 
to be assembled into the first book is less than the first 
number; 

(E) determining whether a stored page is to be assembled 
into the second book based on the second set of 



US 6,952,801 B2 
63 

pagination information wherein a third number of 
stored pages to be assembled into the second book is 
different than the second number and no greater than 
the first number; 

64 
13. The method of claim 1, wherein the step of specifying 

the first set of pagination information comprises the step of 
providing a user interface for entry of the pagination infor
mation. 

(F) generating page description language instructions for 5 

production of the first and second books in accordance 
with the first and second sets of pagination information; 
and 

14. The method of claim 1, wherein the step of determin
ing whether a stored page is to be assembled into the second 
book comprises the step of analyzing variable information 
areas of the page. 

(G) producing the first and second books in a single press 
run. 

2. The method of claim 1, wherein the step of determining 
whether a stored page is to be assembled into the first book 
comprises the step of analyzing variable information areas 
of the page. 

3. The method of claim 1, further comprising the step of 
analyzing press commands directed to production of the first 
book to determine whether the page is to be assembled into 
the first book. 

4. The method of claim 1, further comprising the step of 
generating a pagination file having data representative of the 
first set of pagination information. 

10 
15. The method of claim 1, further comprising the step of 

analyzing press commands directed to production of the 
second book to determine whether the page is to be 
assembled into the second book. 

16. The method of claim 1, further comprising the step of 
generating a pagination file having data representative of the 

15 second set of pagination information. 
17. The method of claim 1, further comprising the step of 

deriving a maximum number of pages for the second book 
based on the pagination information. 

18. The method of claim 1, wherein the pagination 
20 information includes filler page information. 

19. The method of claim 1, wherein the pagination 
information includes a specification of whether the page 
should be forced to one of a right side and a left side of the 
second book. 

5. The method of claim 1, further comprising the step of 
deriving a maximum number of pages for the first book 
based on the pagination information. 

6. The method of claim 1, wherein the pagination infor- 25 

mation includes filler page information. 
20. The method of claim 1, further comprising the step of 

specifying page description language instructions to produce 
a barcode on the page of the second book. 7. The method of claim 1, wherein the pagination infor

mation includes a specification of whether the page should 
be forced to one of a right side and a left side of the first 
book. 

8. The method of claim 1, further comprising the step of 
specifying page description language instructions to produce 
a barcode on the page of the first book. 

9. The method of claim 8, wherein the barcode is indica
tive of tracking information. 

10. The method of claim 1, wherein the step of generating 
page description language instructions comprises the step of 
generating instructions for production of page numbering 
information on the page of the first book. 

11. The method of claim 1, wherein the step of generating 
page description language instructions comprises the step of 
generating instructions for insertion of filler pages in accor
dance with the pagination information of the first book. 

21. The method of claim 20, wherein the barcode is 
indicative of tracking information. 

30 22. The method of claim 1, wherein the step of generating 
page description language instructions comprises the step of 
generating instructions for production of page numbering 
information on the page of the second book. 

23. The method of claim 1, wherein the step of generating 
35 page description language instructions comprises the step of 

generating instructions for insertion of filler pages in accor
dance with the pagination information of the second book. 

24. The method of claim 1, further comprising the step of 
delivering page description language instructions to an elec-

40 tronic press to print the second book. 

12. The method of claim 1, further comprising the step of 
delivering page description language instructions to an elec- 45 

tronic press to print the first book. 

25. The method of claim 1, wherein the step of specifying 
the second set of pagination information comprises the step 
of providing a user interface for entry of the pagination 
information. 

* * * * * 




