
c12) United States Patent
Ohr

(54) DATA RESTORE MECHANISM

(75) Inventor: James Philip Ohr, St. Paul, MN (US)

(73) Assignee: VERITAS Operating Corporation,
Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 327 days.

(21) Appl. No.: 10/623,384

(22) Filed: Jul. 18, 2003

(51) Int. Cl.
G06F 12100 (2006.01)

(52) U.S. Cl. 7111161; 100/154; 100/162
(58) Field of Classification Search 711/100,

(56)

711/154, 161, 162; 709/201, 203; 714/13
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,907,672 A * 5/1999 Matze eta!. 714/8
6,269,431 B1 * 7/2001 Dunham 7111162
6,353,878 B1 * 3/2002 Dunham 7111162
6,366,987 B1 * 4/2002 Tzelnic eta!. 7111162
6,385,707 B1 * 5/2002 Maffezzoni 7111162
6,397,229 B1 * 5/2002 Menon eta!. 707/204
6,424,999 B1 7/2002 Arnon eta!.
6,490,598 B1 12/2002 Taylor
6,715,048 B1 3/2004 Kamvysselis
6,721,766 B1 4/2004 Gillet a!.
6,742,138 B1 5/2004 Gegne eta!.
6,772,198 B1 8/2004 Arnon eta!.
6,820,171 B1 * 1112004 Weber eta!. 7111114
6,865,655 B1 3/2005 Andersen
6,871,271 B1 3/2005 Orhan eta!.
6,871,295 B1 3/2005 Ulrich eta!.

111111 111
US007024527B 1

(10) Patent No.: US 7,024,527 Bl
Apr. 4, 2006 (45) Date of Patent:

6,880,051 B1 *
6,901,493 B1 *

2003/0177149 A1 *
2003/0177324 A1 *
2004/0078637 A1
2004/0078639 A1
2004/0163029 A1
2004/0172577 A1
2004/0193950 A1
2004/0268067 A1
2004/0268178 A1

4/2005 Timpanaro-Perrotta 7111162
5/2005 Maffezzoni 7111162
9/2003 Coombs 707/204
9/2003 Timpanaro-Perrotta 7111162
4/2004 Tellin et a!.
4/2004 Anna et a!.
8/2004 Foley et a!.
9/2004 Tan et a!.
9/2004 Gagne et a!.

12/2004 Kenji
12/2004 Fredin

OTHER PUBLICATIONS

"EMC Data Manager-Console User Guide, Release 5.0.0,"
EMC2 Corporation, Nov. 2002 (20 Pages).

* cited by examiner

Primary Examiner-Tuan V. Thai
(74) Attorney, Agent, or Firm-Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetze!, P.C.

(57) ABSTRACT

System and method for performing restores from backups
while applications are active and accessing the data being
restored. A map correlating destination locations on primary
storage to source locations on backup storage for files to be
restored may be generated. A restore of the files from the
backup storage to the primary storage may be started.
During the restore, one or more blocks of data of a file
needed by an application may be determined. The map may
be accessed to determine if the blocks have been restored. If
the blocks have not been restored, the blocks may be
restored from the backup storage to the primary storage. The
restored blocks of data are accessible by the application
while the restore is in progress. The map may be updated to
indicate blocks of data that have been restored to the primary
storage.

25 Claims, 5 Drawing Sheets

Map
120

Generates.
checks, and

u dates File System
.11Q

Restore
Data

L
r--

Backup
Storage

J..1Q

Primary
Data

Primary
Storage
ill

U.S. Patent

File server 1 02

File system
11.Q

Primary
Storage
ill

Apr. 4, 2006 Sheet 1 of 5

Network
100

FIG. 1

US 7,024,527 Bl

Restore
Application

112

Backup
Storage

.1.1.6.

U.S. Patent Apr. 4, 2006 Sheet 2 of 5

Map
120

Generates,
checks, and

updates

Restore
Data

Backup
Storage

116

Generates,
checks, and

u dates

On-demand
reqeusts

Restore
application

ill

FIG. 2

Responses

Restore
Data

US 7,024,527 Bl

File System
11Q

Primary
Data

Primary
Storage

114

U.S. Patent Apr. 4, 2006 Sheet 3 of 5 US 7,024,527 Bl

Map 120

Primary storage Backup storage
block information - __., block information -

122A 124A

Primary storage Backup storage
block information _.. block information - -

122B 1248

• •

• •

• •

Primary storage Backup storage
block information - ... block information -

122N 124N

FIG~ 3

U.S. Patent Apr. 4, 2006 Sheet 4 of 5

Restore
Data

Backup
Storage

204

Disk Mapping/Block
requests

Media Server
202

FIG. 4

Restore
Data

US 7,024,527 Bl

File Server
200

Primary
Data

Primary
Storage

206

U.S. Patent Apr. 4, 2006 Sheet 5 of 5 US 7,024,527 Bl

Generate a map correlating destination locations on
primary storage to source locations on backup storage

for a set of files to be restored
300

,
Start a restore of the set of files from the backup

storage to the primary storage
302

,
Determine one or more blocks of data of a file in the

set of files needed by an application
304

,,
Access the map to determine if the blocks have been

restored
306

,,
If the blocks have not been restored} immediately

restore the one or more blocks to the primary storage
308

FIG. 5

US 7,024,527 Bl
1

DATA RESTORE MECHANISM

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention is related to the field of computer systems

and, more particularly, to restoring data from backup star-
age.

2
a restore operation may restore files in any order, an appli­
cation may have to wait a considerable amount of time for
a particular file to be fully restored. Large databases may
include hundreds of gigabytes or even terabytes of data;
restores of these databases may take hours or even days
before the data reaches a stable state. In many cases,
applications may have to wait until all of the data is restored
before they can access any of the data.

2. Description of the Related Art
In disaster recovery backups, data is physically trans­

ferred from the primary storage media to the backup media.
The backup may be to either disk or tape, though tape has
traditionally dominated this market. With the continuing
reduction in the cost of disk storage more sites are switching

Therefore, it is desirable to provide a restore mechanism
10 that has reduced impact on production applications. It is also

desirable to restore data needed from disk-based disaster
recovery backups in a near instantaneous marmer from the
production application's perspective. It is also desirable to
allow application to be active and accessing data being
restored while the restore is in progress transparent to the
applications.

SUMMARY

to disks as the backup media. In addition to the lower cost, 15

disk storage tends to occupy less space and is faster than
tape. While disk tends to be faster than tape, it should be
noted that disk backups and restores typically result in a
considerable amount of application down time (typically
hours). 20

Embodiments of a system and method for performing
restores from backups while applications are active and
accessing the data being restored are described. Embodi­
ments may provide a restore mechanism that may restore
data in near real-time from a disk-based backup through a

In high-end applications, primary storage disks are typi­
cally high performance (e.g. EMC, Hitachi, or IBM arrays).
Purchasing and maintaining equivalent sets of disk arrays to
perform mirroring can be very expensive. Therefore, many
sites use inexpensive, mediocre-performance solutions for 25

backup storage (e.g. arrays ofiDE disks). Typically, users of
such high-end applications do not use such backup storage
as "mirrors" that can be switched to and run off backup
storage due to the poor performance of the backup storage.
For this and other reasons, mirroring and switching to a 30

backup image to run in a production system may not be a
viable solution for many enterprises.

In addition, disaster recovery backups are typically not
just copies of data like mirrors. A backup application may
include backup-specific information or formatting with the 35

backed-up data. A backup application may write to disk like

coupling of a restore application with a file system and/or
volume manager. Embodiments may allow restoring data
into a file system while one or more applications that may
use the data being restored are active. Embodiments may
allow users to get backup data from backup storage onto
primary storage as rapidly as possible while the restore is
taking place with limited or no impact on the application(s).

To perform restores from backups while applications are
active and accessing the data being restored according to one
embodiment, a map correlating destination locations on
primary storage to source locations on backup storage for a
set of files to be restored may be generated. A restore of the
set of files from the backup storage to the primary storage
may be started. During the restore, it may be determined that
one or more blocks of data of a file in the set of files is

it is writing to tape, e.g. in TAR format. Therefore, the
backed-up data in backup storage may not be in a format that
can be switched to directly to serve as the primary data in a
production system.

needed by an application. The map may be accessed to
40

determine if the blocks have been restored. If the blocks
In general, data moved to or from storage devices is

provided using either block-level or file-level access. File
level access requires some knowledge of the underlying file
system and/or volume management system used to organize
data on the storage devices. This type of information is 45

typically available only at the host level, and thus I/0
operations utilizing file-level access must be performed or at
least managed by software executing on a host computer.
Block-level access uses physical storage device addresses to
access data and thus need not be "assisted" by some entity 50

having file system and/or volume knowledge.
A data restore application may restore data from backup

storage to primary storage using the addresses of the source
and destination devices and blocks. Such address informa­
tion is typically in the form of an extent list having one or
more extents. An extent is typically a contiguous set of
storage blocks allocated for a file portion, a file, or multiple
files. Extents are typically represented by a device address
indication, a starting block address on that device, and a
length (number of contiguous blocks). However, extents can
be defined in a variety of different ways, e.g., a starting
address and an ending address, no device information
explicitly included, etc. Thus, an extent is generally any
information used to locate a desired portion of a storage
resource.

Typically, during restores, an application will have to wait
for a file to be fully restored before accessing the file. Since

have not been restored, the blocks may be restored from the
backup storage to the primary storage. The restored blocks
of data are accessible by the application while the restore is
in progress. The map may be updated to indicate blocks of
data that have been restored to the primary storage.

One embodiment may generate a map that depicts the file
system after the restore is complete. The map describes the
blocks that will be restored to the file system and their origin
location on the backup disk. By providing the map of the
blocks being restored to the file system, and continuously
updating the map as to which block have been restored, the
file system may determine if a block has already been
restored, and if not to request an immediate restore of any

55
required blocks.

Embodiments may be implemented in Storage Area Net­
work (SAN) environments or other types of network storage
environments. Embodiments may also be implemented in
non-networked storage environments, for example m a

60
single-machine system.

65

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description makes reference to the
accompanying drawings, which are now briefly described.

FIG. 1 illustrates a network environment in which the
restore mechanism may be implemented according to one
embodiment.

US 7,024,527 Bl
3

FIG. 2 illustrates the restore mechanism with a map
correlating source locations to destination locations for data
of a restore according to one embodiment.

FIG. 3 illustrates a map that correlates source locations to
destination locations for data of a restore according to one
embodiment.

FIG. 4 illustrates the restore mechanism in an environ­
ment with a media server according to one embodiment.

4
embodiment, the map may be generated by the file system.
The map describes the blocks that will be restored to the file
system and their origin location on the backup disk. By
providing the map of the blocks being restored to the file
system, and continuously updating the map as to which
block have been restored, the file system may determine if
a block has already been restored, and if not to request an
immediate restore of any required blocks.

Embodiments may be implemented in Storage Area Net-FIG. 5 is a flowchart of a method for performing restores
from backups while applications are active and accessing the
data being restored according to one embodiment.

10 work (SAN) environments or other types of network storage
environments. Embodiments may also be implemented in
non-networked storage environments, even in a single­
machine system.

While the invention is described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should 15

be understood, that the drawings and detailed description
thereto are not intended to limit the invention to the par­
ticular form disclosed, but on the contrary, the intention is to
cover all modifications, equivalents and alternatives falling
within the spirit and scope of the present invention as 20

defined by the appended claims. The headings used herein
are for organizational purposes only and are not meant to be
used to limit the scope of the description or the claims. As
used throughout this application, the word "may" is used in

FIG. 1 illustrates a network environment in which the
restore mechanism may be implemented according to one
embodiment. In one embodiment, the restore mechanism
may map the files to be restored. In one embodiment, file
system 110 and restore application 112 may be on different
servers (e.g. in this illustration, file system 110 is on file
server 102, and restore application 112 may be on another
server such as a media server). In one embodiment, restore

a permissive sense (i.e., meaning having the potential to), 25

rather than the mandatory sense (i.e., meaning must). Simi­
larly, the words "include", "including", and "includes" mean
including, but not limited to.

application 112 may be on file server 102 with file system
110. In one embodiment, part of restore application 112 may
be on file server 102 (e.g. an engine or driver) while the rest
of restore application may be on another server (e.g. a media
server).

In one embodiment, the file system 110 may allocate
blocks for the files on the primary (destination) storage 114;
there may be no application data in the blocks when allo-

DETAILED DESCRIPTION OF EMBODIMENTS 30 cated. The locations on the backup storage 116 where the
data to be restored is located may be determined. In one
embodiment, the restore application 112 may perform the
determination. A correspondence or map of where the data
is coming from on the backup storage and where the data is

Embodiments of a system and method for performing
restores from backups while applications are active and
accessing the data being restored are described. Embodi­
ments may provide a restore mechanism that may restore
data in near real-time from a disk-based backup through a
coupling of the restore application with the file system
and/or volume manager. Using embodiments, a block-level
restore may be performed while the application(s) that
access the data is active. In one embodiment, the file system
and/or volume manager may determine if blocks of data
needed by active applications have been restored. In one
embodiment, if a block has not yet been restored, the file
system and/or volume manager generates a request to the
restore application to have the block immediately restored. 45

In another embodiment, the file system or volume manager
may have direct access to the backup storage, and thus may
directly access and restore the needed block(s) without
going through the restore application. In this embodiment,
the restore application may determine or be notified that the
needed blocks have been restored to avoid overwriting the
blocks. Embodiments of the restore mechanism may allow
blocks of data to be restored to primary storage on demand
and out-of-order from backup storage.

35 going to on the primary storage may be generated. This map
may be a bitmap, linked list, or any other suitable data
structure. This map may pair the source and destination of
blocks to be restored. The map may include indications of
whether particular blocks or extents including blocks have

40 been restored. This map may be located on the file server
102, a media server (not shown), on a server with the restore
application 112, or on any server (or storage system) in the
network environment where it is accessible by both the file
system 110 and the restore application 112.

In one embodiment, the map generation may be per-
formed by coupling the restore application 112 with the file
system 110. In one embodiment, the generation of the map
may be performed at the file server level. In one embodi­
ment, the file system 110 may generate the map. During the

50 restore operation, the map may be updated to indicate which
blocks or extents have been restored. In one embodiment,
the restore application 112 may maintain the map. In another
embodiment, the file system 110 may maintain the map. In
yet another embodiment, both the file system 110 and the

Embodiments may allow restoring data into a file system
while one or more applications that may use the data being
restored are active. In the prior art, an application may have
to wait for a file to be fully restored before accessing the file,
and in many cases applications may have to wait until all of
the data is restored before they can access the data. Embodi­
ments may allow users to get backup data from backup
storage onto primary storage as rapidly as possible while the
restore is taking place with limited or no impact on the
application(s).

One embodiment may generate a map that depicts the file
system after the restore is complete. In one embodiment, this
map may be generated by the restore application. In another

55 restore application 112 may maintain the map. In other
embodiments, other entities (e.g. a driver or engine on file
server 102 or a volume manager) may maintain the map.

One embodiment may include a media server (not shown)
that may perform block detection (e.g. detecting when

60 blocks are needed by applications running during the
restore), checking of the map to determine if needed blocks
have been restored, and on-demand requesting of non­
restored blocks. When the file system 110 or alternatively a
media server determines that an application needs a block of

65 data in the restore, the file system 110 or media server may
examine the map to determine if the block has been restored.
In one embodiment, during the restore, when an application

US 7,024,527 Bl
5

needs a block that has not been restored from the backup
storage 116 to the primary storage 114 by the restore
application 112, the file system 110 or alternatively a media
server operating in conjunction with the file system sends a
request to the restore application 112 to immediately restore
the block from the backup storage 116 to the primary storage
114. Alternatively, the restore application 112 may provide
the requested block directly to the requestor (e.g. file system
110).

In one embodiment, detection and request for the imme­
diate restore of non-restored blocks occurs within the file
server 102. In this embodiment, detection and request for
blocks is performed at a software level on the file server 102
and not at the storage hardware level. In one embodiment,
detection of needed blocks may be performed by the file
system 110. In this embodiment, the file system 110 deter­
mines that there is a block that is needed that has not yet
been restored by examining the map and makes a request to
the restore application 112 to immediately restore the block.
In one embodiment, a driver on the file server 102, rather
than the file system 110, may perform the detection and
request for non-restored blocks. Alternatively, a media
server between the file server 110 and the primary and
backup storage may perform non-restored block detection
and requests for the immediate restore of non-restored
blocks.

Referring to FIG. 1, in some network storage environ­
ments such as SAN environments, the file server 102 may
have direct access to the backup storage 116. In these
environments, in one embodiment, the file server 102 may
retrieve blocks from the backup storage 116 that it needs and
that have not been restored as indicated by the map. The file
server 102 may then update the map to indicate that the
block has been retrieved and restored. Thus, in this embodi­
ment, the file server 102 may satisfy the on-demand request
on its own without sending a request to the restore applica­
tion 112. In this embodiment, the file server 102 may do the
work that the restore application 112 would otherwise have
to do, preferably reducing the number of messages and other
operations that have to be performed and thus causing less
impact to the overall restore process.

In this embodiment, the file server 102 may coordinate
on-demand restores with the restore application 112, e.g. by
updating the map, to prevent the restore application 112
from overwriting blocks restored to primary storage 114
with potentially older data from the backup storage 116. In
one embodiment, the file server 102 may update the map to
indicate that a retrieved block has been restored, and the
restore application 112 may check the map to determine if
blocks it is about to restore have already been restored and
not restore any blocks that have been restored directly by the
file server 102 to thus avoid overwriting blocks already
retrieved by the file server 102 and possibly modified by
applications. In another embodiment, the file server 102 may
notify the restore application 112 when it directly retrieves
blocks and the restore application 112 may update the map.

One embodiment may include a media server between the
file server 110 and the storage. In one embodiment, the
restore application 112 may run on the media server. In one
embodiment, the media server may handle detection of
blocks, checking of the map, and interacting with the restore
application for the on-demand restore of detected blocks. In
another embodiment, the file server may handle detection of
blocks, checking of the map, and interacting with the restore
application for the on-demand restore of detected blocks. In
one embodiment, a file system on the file server may
perform these tasks. In another embodiment, a driver on the

6
file server may perform these tasks. One embodiment may
not have a separate media server. In one embodiment, the
restore application may run in the file server. One embodi­
ment may be implemented on one server and one storage
network. In one embodiment, the restore application may
have an engine running on the file server that moves the data
and that is coupled with the file system; the map may be
maintained in the file server. The engine may move the data
from backup storage to primary storage. If file system needs

10 some blocks that have not been restored, the file system
notifies the engine to get and restore the indicated blocks.

One embodiment may be implemented in network envi­
ronments that include a volume manager. A volume manager
typically sits under the file system 110 and is used to

15 aggregate groups of storage devices together to form larger
views of storage (e.g. striped or concatenated). A volume
manager may provide a uniform, singular space in which the
file system 110 may operate. Multiple disks can be made to
appear as one storage system to the file system 110. In this

20 embodiment, the file system 110 may perform the pre­
mapping of the files. The file system 110 may allocate
storage where the data is to be restored, as files may typically
be identified at the file system 110 level and not at the
volume manager level. In one embodiment, detection of

25 blocks, checking of the map, and making on-demand
requests to the restore application for the restore of needed
blocks may be performed at the file system 110 level. In
another embodiment, block detection, map checking, and
on-demand requests to the restore application may be per-

30 formed at the volume manager level.
In embodiments, address spaces may be translated; for

example, the file system 110 addresses at the file level, other
levels may address at the block or extent level, and lower
levels address at the physical level (e.g. using LUNs).

35 Embodiments may include or alternatively access a mapping
mechanism that may be used to map addresses to whatever
layer is necessary to perform the mapping and/or on-demand
restore operations.

FIG. 2 illustrates the restore mechanism with the map
40 according to one embodiment. FIG. 2 illustrates means for

restoring a set of files from a backup storage to a primary
storage, means for determining on a file server that one or
more blocks of data of a file in the set of files needed by an
application have not been restored during the restore, and

45 means for restoring the determined one or more blocks of
data according to one embodiment.

In one embodiment, a set of files may need to be restored.
The restore application 112 may be requested to restore the
set of files. The restore application 112 may communicate

50 with the file system 110 to inform the file system 110 to
pre-allocate the set of files. The restore application 112 may
provide the file names and size of the files, and potentially
other information about the set of files. The file system 110
may pre-allocate space (blocks or extents) for the set of files

55 on primary storage 114 and return to the restore application
112 information describing the set of destination blocks (or
extents) on the primary storage 114 to where the data is to
be restored. The restore application 112 then may pair that
set of destination blocks on the primary storage 114 with the

60 source locations of the blocks on the backup storage 116 to
generate a map 120.

FIG. 3 illustrates a map according to one embodiment. In
FIG. 3, primary storage block information 122 is correlated
with backup storage block information 124 for the N blocks

65 or extents to be restored. Map 120 may be a bitmap, linked
list, or any other suitable data structure. In one embodiment,
for each file in the restore, there may be a map 120 generated

US 7,024,527 Bl
7

for that file that correlates source and destination informa­
tion for the file. In another embodiment, there may be one
map 120 generated that correlates source and destination
information for all files in the restore. Other embodiments
may generate separate maps 120 for each of two or more sets

8
diately restored, the restore may be proceeding as normal;
the restore application 112 may be moving other, non­
requested blocks from the backup storage 116 to the primary
storage 114. The restore may be proceeding normally in the
background while on-demand restores may be occurring if
the file system 110 determines blocks that it needs have not
yet been restored.

While the data is being moved, the map 120 is being
updated so that the map 120 reflects what has been restored

of files. In one embodiment, this mapping of source and
destination information may be performed for all files to be
restored up front, before the restore of the files actually
starts. Therefore, all the blocks for all the files to be restored
may be pre-mapped at the beginning of the restore process.
This pre-allocation and pre-mapping process may, for
example, take seconds to minutes.

10 to the primary storage 116. If the file system 110 checks the
map 120 and sees that a block it needs has not yet been
restored, the file system 110 notifies the restore application
112 to provide the block immediately. Referring again to FIG. 2, in one embodiment, the file

system 110 may maintain the map 120 that it uses to
determine what blocks of the set of files that are being
restored are currently valid in (restored to) the primary
storage 114. The map 120 may be dynamically updated as
the restore is performed, in one embodiment by the file
system 110, in another embodiment by the restore applica­
tion 112, or in yet another embodiment by both. In some 20

embodiments, other entities such as a driver or a media
server may access and/or update the map 120. In one
embodiment, the restore application 112 may keep the map
updated to indicate which blocks have been restored. In
another embodiment, the restore application 112 may send 25

messages to the file system 110 indicating which blocks
have been restored, and the file system 110 may update the
map 120. In one embodiment, both the file system 110 and
the restore application 112 may update the map 120 when
necessary. In some embodiments, other entities such as a 30

media server or a driver on the file server may maintain
and/or update the map 120.

In one embodiment, if a file access by an application does
15 not involve a file that is being restored, then the file system

110 may determine that it does not have to check the map to
determine if the file's blocks have been restored. In one
embodiment, the restore application 112 may inform the file

In one embodiment, when the file system 110 needs to
access a block on the primary storage 114, it checks the map
120 to see if the block has been restored. If the block has not 35

been restored, the file system 110 knows that it cannot access
the block directly from the primary storage 114. The file
system 110 then sends a request to the restore application
112 that indicates that the file system 110 needs the block
immediately. The restore application 112 then goes to the 40

backup storage 116 and gets the block. In one embodiment,
the restore application 112 may restore the requested block
to the primary storage 116 and notifY the file system 10 that
the block has been restored. In another embodiment, the
restore application 112 may provide the block directly to the 45

file system 110, which may then write the block to the
primary storage 114. In both embodiments, the map 120 is
updated to indicate that the block has been restored. In one
embodiment, the file system 110 may update the map 120.
In another embodiment, the restore application 112 may 50

update the map 120. Alternatively, the restore application
112 may restore the block to the primary storage 114, update
the map 120, and the file system 110 may check the map 120
to detect if the block has been restored.

system 110 when the restore has completed so that the file
system 110 will know it no longer needs to check the map
120 and the map 120 may be disposed of if desired.

In one embodiment, each file's metadata may include an
indication to mark if the file is to be restored. When the file
system 110 receives a request for a file or a portion of a file,
the file system 110 may check the meta data for the file to
determine if the file is to be restored. If it is to be restored,
then the file system may check the map 120 for that file to
determine if the needed blocks have been restored. If the
needed blocks have not been restored, then the file system
110 may send a request to the restore application 112 to
immediately restore the needed blocks. In one embodiment,
the file system 110 may check the file's metadata to deter­
mine if the file has been restored; if the file has been
restored, then the file system 110 can serve the request
without checking the map 120; otherwise, the file system
110 checks the map 120 and, if the map 120 indicates the
needed blocks have not been restored, notifies the restore
application 112 to restore the needed non-restored blocks.

FIG. 4 illustrates the restore mechanism in an environ­
ment with a media server according to one embodiment.
Primary storage 206 may be, for example, a disk array that
holds the data being accessed by the file server 200 and to
which a restore is being performed. The backup storage 204
may hold the data that was previously stored as part of a
backup operation. In one embodiment, the restore applica­
tion may reside primarily on the Media Server 202. In one
embodiment, some components of the restore application
may reside on the File Server (client) 200. In one embodi­
ment, when a request is made to restore some files, the files
may be pre-allocated and mapped by the restore application
using the capabilities of the file system on file server 200.
The extents pre-allocated by the file server 200 may be
transferred to the Media Server 202, and the restore appli­
cation may correlate the location of the data on the backup

Thus, in embodiments, the restore application 112 may
get the block from the backup storage 116 and make it
available to the file system 110 in response to the file system
110 sending a message to the restore application 112 indi­
cating it needs the block. The map 120 is updated to indicate
the block has been restored. In addition, the map 120 is
updated to indicate non-requested blocks restored to primary
storage 114 by the restore application 112 in the course of
the normal restore process. The file system 10 may thus
provide blocks of files from the backup storage 116 to an
application for access (read or write) while the restore is in
progress. At the same time the file system 110 may be
making on-demand requests for needed blocks to be imme-

55 storage 204 to the extents on the Primary Storage 206. Once
the correlation is completed, the media server 202 may
provide the file system on file serve 200 a map of the blocks
that are in the process of being restored. The file system may
use this map to make a determination if the data on the

60 primary storage 206 is current or is in the process of being
restored. If a data block is required that has not yet been
restored to the primary storage 206, then the file system may
make a request to the restore application for an immediate
restore. The restore application may preferably immediately

65 retrieve requested data blocks and mark the blocks as having
been restored. The file system may then proceed with the
storage request. The restore application may be concurrently

US 7,024,527 Bl
9

restoring data from the backup storage 204 to the primary
storage 206. The map may be updated, for example, but not
necessarily, at regular intervals, to indicate the blocks that
have been restored.

In one embodiment, the backup storage 206 may be
directly accessible to the File Server 200. In this embodi­
ment, the file system may directly read blocks from the
backup storage 204 based on the extent mappings created by
the restore application.

10
accordance with the foregoing description upon a carrier
medium. Generally speaking, a carrier medium may include
storage media or memory media such as magnetic or optical
media, e.g., disk or CD-ROM, volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc. As well as transmission media or
signals such as electrical, electromagnetic, or digital signals,
conveyed via a communication medium such as network
and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth­
ods. The methods may be implemented in software, hard­
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It is intended that the invention embrace

Embodiments may include at least some integration 10

between the file system and the restore application. In one
embodiment, the file system pre-allocates and maps the
restore storage on primary storage 206. In one embodiment,
the file system checks the map (e.g. bitmap, linked list or
other structure) to determine if the current block being 15

accessed has been restored. If a block has not yet been
restored, then the file system requests the block be imme­
diately restored or, alternatively, accesses the backup storage
206 for the specific block. When notified of the block's
availability, the file system may proceed with the I/0 access
(e.g. generated by an application). In one embodiment,
during the restore process with on-demand restores of
blocks, the file system may run in a degraded state; however,
customers may prefer to run in a degraded state than to have
the application down throughout the restore.

all such modifications and changes and, accordingly, the
20 above description to be regarded in an illustrative rather than

25

One embodiment may include a driver under the file
system to monitor the requested blocks and provide the
on-demand requests. This embodiment may be used, for
example, in environments where the restore application
carmot be (fully) integrated with the file system. In this 30

embodiment, pre-allocation and mapping may be performed
by the file system.

FIG. 5 is a flowchart of a method for performing restores
from backups while applications are active and accessing the
data being restored according to one embodiment. As indi- 35

cated at 300, a map correlating destination locations on
primary storage to source locations on backup storage for a
set of files to be restored may be generated. A restore of the
set of files from the backup storage to the primary storage
may be started as indicated at 302. As indicated at 304, 40

during the restore, it may be determined that one or more
blocks of data of a file in the set of files is needed by an
application. As indicated at 306, the map may be accessed to
determine if the blocks have been restored. As indicated at
308, if the blocks have not been restored, the blocks may be 45

restored from the backup storage to the primary storage. The
restored one or more blocks of data are accessible by the
application while the restore is in progress. The map may be
updated to indicate blocks of data that have been restored to
the primary storage. 50

In one embodiment, a restore application performs the
map generation and the restore of the set of files from the
backup storage to the primary storage. In one embodiment,
a file system performs the determining of the one or more
blocks of data needed by the application and accessing the 55

map to determine if the blocks have been restored. In one
embodiment, if it is determined that the blocks have not been
restored, the file system sends a message to the restore
application to instruct the restore application to restore the
blocks. In this embodiment, the restore application restores 60

the blocks of data to the primary storage in response to the
message.

CONCLUSION

Various embodiments may further include rece1vmg,
sending or storing instructions and/or data implemented in

65

a restrictive sense.

What is claimed is:
1. A system, comprising:
a primary storage;
a backup storage;
a restore application configured to restore a set of files

from the backup storage to the primary storage; and
a file server configured to, during said restore:

determine that one or more blocks of data of a file in the
set of files needed by an application have not been
restored; and

direct the restore application to restore the determined
one or more blocks of data in response to said
determination that the one or more blocks of data
have not been restored;

wherein the restored one or more blocks of data are
accessible by the application while said restore is in
progress.

2. The system as recited in claim 1,
wherein the restore application is further configured to,

prior to said restore, generate a map correlating desti­
nation locations on the primary storage to source loca­
tions on the backup storage for the set of files to be
restored; and

wherein, to determine that one or more blocks of data of
a file in the set of files needed by an application have
not been restored, the file server is further configured to
access the map to determine if the one or more blocks
have been restored.

3. The system as recited in claim 2, wherein for at least
one file of the set of files that comprises a plurality of data
blocks, the map comprises a separate correlation of each
block of the plurality of data blocks at the primary storage
to a corresponding block at the secondary storage.

4. The system as recited in claim 1,
wherein, to direct the restore application to restore the

determined one or more blocks of data in response to
said determination that the one or more blocks of data
have not been restored, the file server is configured to
send a message to the restore application, wherein the
message is configured to direct the restore application
to restore the determined one or more blocks of data;
and

wherein the restore application is further configured to
restore the one or more blocks of data to the primary
storage in response to the message.

US 7,024,527 Bl
11

5. The system as recited in claim 1, wherein the file server
comprises a file system configured to perform said determi­
nation that one or more blocks of data of a file in the set of
files needed by an application have not been restored and
said direction of the restore application to restore the deter­
mined one or more blocks of data.

6. The system as recited in claim 1, wherein the file server
comprises a file system and a driver coupled to the file
system, wherein the driver is configured to perform said
determination that one or more blocks of data of a file in the 10

set of files needed by an application have not been restored
and said direction of the restore application to restore the
determined one or more blocks of data on behalf of the file
system.

7. The system as recited in claim 1, wherein the restore 15

application is further configured to update the map to
indicate blocks of data that have been restored to the primary
storage.

8. The system as recited in claim 1, wherein the system is
a Storage Area Network (SAN) system. 20

9. The system as recited in claim 1, wherein, prior to said
determination that the one or more blocks of data have not
been restored, the file server is further configured to:

receive a file access request from the application, wherein
the file access request specifies a portion of the file to 25

be accessed by the application, wherein the file access
request is received while said restore is in progress;

12
response to said determining that the one or more
blocks of data have not been restored; and

the restore application restoring the determined one or
more blocks of data;

wherein the restored one or more blocks of data are
accessible by the application while said restore is in
progress.

15. The method as recited in claim 14, further comprising:
prior to said restore, generating a map correlating desti­

nation locations on the primary storage to source loca­
tions on the backup storage for the set of files to be
restored; and

wherein said determining that one or more blocks of data
of a file in the set of files needed by an application have
not been restored comprises accessing the map to
determine if the one or more blocks have been restored.

16. The method as recited in claim 14,
wherein said directing the restore application to restore

the determined one or more blocks of data comprises
sending a message to the restore application, wherein
the message is configured to direct the restore applica­
tion to restore the determined one or more blocks of
data; and

wherein the restore application restores the determined
one or more blocks of data in response to the message.

identifY a set of blocks of data of the file corresponding to
the portion of the file, wherein the set of blocks
comprises the one or more blocks.

10. The system as recited in claim 9, wherein the file
access request specifies the portion of the file using file level
addressing, wherein said identifYing the set of blocks com­
prises translating a file level address to a block-level address.

17. The method as recited in claim 14, wherein the file
server comprises a file system, wherein the file system
performs said determining that one or more blocks of data of
a file in the set of files needed by an application have not

30 been restored and said directing the restore application to
restore the determined one or more blocks of data.

11. The system as recited in claim 9, wherein the file 35

server is further configured to:
identifY, from among the set of blocks of data correspond­

ing to the portion of the file, a particular block that does
not have to be restored from the backup storage; and

provide access to the particular block of data to the 40

application from the primary storage.
12. The system as recited in claim 1, wherein the restore

application is further configured to restore blocks of one or
more other files of the set as a background task while
restoring the one or more blocks in response to said directing 45

by the file server.
13. A system, comprising:
means for restoring a set of files from a backup storage to

a primary storage;
means for determining on a file server that one or more 50

blocks of data of a file in the set of files needed by an
application have not been restored during said restore;
and

means for restoring the determined one or more blocks of
data; 55

wherein the restored one or more blocks of data are
accessible by the application while said restore is in
progress.

14. A method, comprising:
a restore application starting a restore of a set of files from 60

a backup storage to a primary storage;
during said restore:

a file server determining that one or more blocks of data
of a file in the set of files needed by an application
have not been restored; and 65

the file server directing the restore application to restore
the determined one or more blocks of data in

18. The method as recited in claim 14, wherein the file
server comprises a file system and a driver coupled to the file
system, wherein the driver performs said determining that
one or more blocks of data of a file in the set of files needed
by an application have not been restored and said directing
the restore application to restore the determined one or more
blocks of data on behalf of the file system.

19. The method as recited in claim 14, further comprising
updating the map to indicate blocks of data that have been
restored to the primary storage.

20. A computer-accessible medium comprising program
instructions, wherein the program instructions are config­
ured to implement:

a restore application starting a restore of a set of files from
a backup storage to a primary storage;

during said restore:
a file server determining that one or more blocks of data

of a file in the set of files needed by an application
have not been restored; and

the file server directing the restore application to restore
the determined one or more blocks of data in
response to said determining that the one or more
blocks of data have not been restored; and

the restore application restoring the determined one or
more blocks of data;

wherein the restored one or more blocks of data are
accessible by the application while said restore is in
progress.

21. The computer-accessible medium as recited in claim
20, wherein the program instructions are further configured
to implement:

prior to said restore, generating a map correlating desti­
nation locations on the primary storage to source loca­
tions on the backup storage for the set of files to be
restored; and

US 7,024,527 Bl
13

wherein said determining that one or more blocks of data
of a file in the set of files needed by an application have
not been restored comprises accessing the map to
determine if the one or more blocks have been restored.

22. The computer-accessible medium as recited in claim
20,

wherein, in said directing the restore application to restore
the determined one or more blocks of data, the program
instructions are further configured to implement send­
ing a message to the restore application, wherein the
message is configured to direct the restore application
to restore the determined one or more blocks of data;
and

wherein the restore application restores the determined
one or more blocks of data in response to the message.

23. The computer-accessible medium as recited in claim
20, wherein the file server comprises a file system, wherein
the file system performs said determining that one or more

14
blocks of data of a file in the set of files needed by an
application have not been restored and said directing the
restore application to restore the determined one or more
blocks of data.

24. The computer-accessible medium as recited in claim
20, wherein the file server comprises a file system and a
driver coupled to the file system, wherein the driver per­
forms said determining that one or more blocks of data of a
file in the set of files needed by an application have not been

10 restored and said directing the restore application to restore
the determined one or more blocks of data on behalf of the
file system.

25. The computer-accessible medium as recited in claim
20, wherein the program instructions are further configured

15 to implement updating the map to indicate blocks of data
that have been restored to the primary storage.

* * * * *

