
c12) United States Patent
Pulsipher et al.

(54) METHOD AND SYSTEM FOR IDENTIFYING
AND PROCESSING CHANGES TO A
NETWORK TOPOLOGY

(75) Inventors: Eric A Pulsipher, Ft Collins, CO (US);
Joseph R Hunt, Loveland, CO (US)

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 961 days.

(21) Appl. No.: 09/703,942

(22) Filed: Oct. 31, 2000

(51) Int. Cl.
H04L 12128 (2006.01)

(52) U.S. Cl. 370/254; 370/403; 370/402;
370/351; 714/717; 709/223; 709/224

(58) Field of Classification Search 370/229,

(56)

370/216,217,221,225,254,255,256,257,
370/258,410,403,402,350,400,252,351;

709/224, 223, 238; 714/717, 4; 340/825.52;
715/735

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,644,532 A *
5,023,873 A *
5,727,157 A *
5,729,685 A *
5,732,086 A *
5,740,346 A *
5,886,643 A
6,108,702 A *
6,160,796 A *
6,295,541 B1 *
6,347,336 B1 *

2/1987 George et al 370/255
6/1991 Stevenson eta!. 714/4
3/1998 Orr et a!. 709/224
3/1998 Chatwani et a!. 709/224
3/1998 Liang eta!. 370/410
4/1998 Wicki et a!. 714/22
3/1999 Diebboll et al.
8/2000 Wood 709/224

12/2000 Zou 370/257
9/2001 Bodnar et a!. 707/203
212002 Song et al 709/223

USER EDITS

EXTERNAL APPLICATION
INPUT

310

111111 111
US007027411Bl

(10) Patent No.: US 7,027,411 B1
Apr. 11, 2006 (45) Date of Patent:

EP
JP
wo

6,405,248 B1 *
6,636,981 B1 *
6,791,948 B1 *
6,885,644 B1 *

6/2002 Wood 709/223
10/2003 Barnett eta!. 714/4
9/2004 Desnoyers et a!. 370/254
4/2005 Knop et a!. 370/254

FOREIGN PATENT DOCUMENTS

830047 A2
2000-76209

W098/44400

3/1998
3/2000

10/1998

* cited by examiner

Primary Examiner-Wellington Chin
Assistant Examiner--Chuang Ho

(57) ABSTRACT

A method and system are disclosed for mapping the topol­
ogy of a network having interconnected nodes by identifying
changes in the network and updating a stored network
topology based on the changes. The nodal connections are
represented by data tuples that store information such as a
host identifier, a connector interface, and a port specification
for each connection. A topology database stores an existing
topology of a network. A topology converter accesses the
topology database and converts the existing topology into a
list of current tuples. A connection calculator calculates
tuples to represent connections in the new topology. The
topology converter receives the new tuples, identifies
changes to the topology, and updates the topology database
using the new tuples. The topology converter identifies
duplicate tuples that appear in both the new tuples and the
existing tuples and marks the duplicate tuples to reflect that
no change has occurred to these connections. The topology
converter attempts to resolve swapped port conditions and
searches for new singly-heard and multi-heard host link
tuples in the list of existing tuples. The topology converter
also searches for new conflict link tuples in the existing
tuples. The topology converter updates the topology data­
base with the new topology.

TOPO LOOKUPS

("LOOK FOR"
REQUfSTS?)

.-'

18 Claims, 26 Drawing Sheets

CREATE, LOOKUP, AND
UPDATE REDUCED
"NEIGHBOR DATA" 340

U.S. Patent Apr. 11, 2006 Sheet 1 of 26 US 7,027,411 B1

(100

(110

(121 (12 2

J£131 I 1'l1 1 I /;II
ID (oooooo) I I I I

I I I I u u
~

140

FIG. 1

U.S. Patent Apr. 11,2006 Sheet 2 of 26 US 7,027,411 B1

132\ 145
121

110

131

140

FIG. 2

U.S. Patent Apr. 11, 2006 Sheet 3 of 26

(301

110

131

140

FIG. 3

121

US 7,027,411 B1

U.S. Patent Apr. 11, 2006 Sheet 4 of 26 US 7,027,411 B1

121

124 123

134 140 133

FIG. 4

U.S. Patent Apr. 11, 2006 Sheet 5 of 26 US 7,027,411 B1

FIG. 5

(121

I 1~;1 1
I

~ 110 (124
r-----.1.---,

(123
r--------"--. 140 J.(131

_ I 11;1 I (llQ U [J (oooooo > [I f llQ ll/1 I
-u----y~.... u

134136_./ t---.135 133

182 ..r 1 10~ r:::-u~ 141
137)_ li

I I _j_l

181 "'---

142
_

rO CJ 1 (oooooo) [

u u

110 125
l--'(

O 0 (oooooo) [

u l..r-1 u vv 110

1}
10

143
~0 ~ ~~

D 0 1 (oooooo) (

u u

126

L

I

110

I ijl (110
144

(110 I li;ll \ ,......,
J 0 1 (oooooo) (.. ...

i39
u

110

\
I t 180

I ,- 121

128 ..J I 1~;1 1 I 1'il
I I

I I

U.S. Patent Apr. 11, 2006 Sheet 6 of 26 US 7,027,411 B1

151

FIG. 6

171

172

173

166

152

USER.EDITS

EXTERNAL APPLICATION
INPUT

310

PROIOCOL-BASED DATA
GATHERING THROUGH

POLLS
TOPO LOOKUPS

~- ("LOOK FOR"
',,, REQUESTS?)

', I

' I

' -.... ,
' ' I ("LOOK FOR" ',,, '',,,

READY?) '-,,, '-,,,

TOPODB

CREATE, LOOKUP, AND
UPDATE REDUCED
"NEIGHBOR DATA" CREATE, LOOKUP, AND ',,, ',,,

UPDATE "NEIGHBOR DATA" ',, '..::----_
(STILL CONTAINS
REDUNDENCIES)

NEIGHBOR DATA
(QUASI-PERMANENT)

340

REDUCED TOPOLOGY
USER ARBITRATION l RELATIONSHIPS

LOOKUPS AT REDUCED
RELATIONSHIPS

FIG. 7
REQUESTS (TRANSIENT)

e
•
00 •
~
~
~
~ = ~

> 'e
:-:
~

N
0
0
0\

rFJ

=­('D
('D
-....l
0
N
0\

d
rJl

"'-...1 = N
-.....1
~

""""'
""""' = """"'

U.S. Patent Apr. 11, 2006 Sheet 8 of 26 US 7,027,411 B1

902 904 906 908
.J .J .) .J

\ \

DATA GATHERING ~ TUPLE BUILDING ~ TUPLE REDUCTION + TOPOLOGY
PHASE PHASE PHASE UPDATING PHASE

FIG. 8

910 922
\

RECEIVE START FIRST WEEDING
SIGNAL PHASE

912 924
,..J ,..J

LOOK UP EXISTING INFRASTRUCTURE
DEVICES IN TOPOLOGY BUIT..DING

DATABASE PHASE

9J4 9~6
\ I

QUERY NODES SECOND WEEDING
PHASE

916 928
.)

\ I

CREATE TUPLES NOISE REDUCTION
PHASE

9J8 9JO

STORE TUPLES IN LOOK-FOR
NEIGHBOR DATABASE PHASE

930 9J2
GATHER I

ADDffiONAL DATA
AS REQUESTED

I

CONSOLIDATION
PHASE

FIG. 9 FIG. 10

U.S. Patent Apr. 11, 2006 Sheet 9 of 26 US 7,027,411 B1

FIG. 11

418

NO TUPLE IS A CONN t---------,
TOCONNLINK

TUPLE IS A SINGLY­
HEARD CONFLICT

LINK

NO

NO

TUPLE IS A SHHL

MOVE TUPLES FOR
THIS HOST TO EHL

416

TUPLE IS A MHHL

U.S. Patent Apr. 11, 2006 Sheet 10 of 26 US 7,027,411 B1

TO BLOCK~-----<.
430 OF FIG.I2b

FOR
EACH TUPLE

INEHL

426

428

UPDATE TUPLE
IF NOT COMPLETE

CREATE EHL CONN TO SHHLCONN
TUPLE IN CONN TO CONN LINK

FIG. 12a

U.S. Patent Apr. 11, 2006

FROM BLOCK 420
OFFIG.12a

Sheet 11 of 26

FIG. 12b

TOBLOCK444
OFFIG. 12c

US 7,027,411 B1

NO

NO

CREATE CONN I TO CONN2
TUPLE IN CONN TO CONN

LINKS

U.S. Patent Apr. 11, 2006

FROM BLOCK 430 OF FIG. 12b

LOOK FOR DIFFERENT TUPL
INVOLVING CONNI IN

EHLON
DIFFERENT GROUP/PORT

Sheet 12 of 26

DONE
TOBLOCK456

OF FIG. 12d

US 7,027,411 B1

FIG. 12c

NO

FILL IN MISSING
GROUP/PORT FOR

CONN2

U.S. Patent Apr. 11, 2006 Sheet 13 of 26 US 7,027,411 B1

FROM BLOCK444 OF FIG. 12c

DONE

CONSIDER CONN I
ANDCONN2

OF THIS TUPLE

MOVE TillS TUPLE
TO EXTRA CONN

LINKS

ONE

FIG. 12d

U.S. Patent Apr. 11, 2006 Sheet 14 of 26 US 7,027,411 B1

DONE

CONSIDER CONN 1 AND HOSTl OF SEARCH TUPLE

DONE

FIG. 13

MOVESEARCHTUPLETOSHHL

REMOVE OTHER TUPLES CONTAINING HOSTI FROM SCL

U.S. Patent Apr. 11, 2006 Sheet 15 of 26 US 7,027,411 B1

DONE

DONE

FIG. 14

MOVESEARCHTUPLETOEHL

U.S. Patent Apr. 11, 2006 Sheet 16 of 26 US 7,027,411 B1

FIG. 15

YES

508

CREATE A LIST OF ALL CONNS IN CONN TO
CONN LINKS TUPLES HEARD BY CONN I ON SAME

GROUP/PORT AS HOSTl

DONE

NO

514

ADD CONN I GROUP/PORT "TUPLE COMPONENT" (TUCO)
TO ALREADYDIDLOOKFORS LIST

516

U.S. Patent Apr. 11, 2006 Sheet 17 of 26

DONE

US 7,027,411 B1

FIG. 16a
DONE TO BLOCK

540

NO

YES

OF
FIG. l6b

NO

ADD AN MHL TUPLE FOR CONN2-TO-HOST1 WITH SAME
CONN2 GROUP/PORT AS CONNl-TO-CONN2 IN CURRENT MHS TUPLE

U.S. Patent Apr. 11, 2006 Sheet 18 of 26

FIG. 16b

FROM BLOCK 518
OF

FIG. 16a

CONSIDER CONN AND HOST

CREATE SHS TUPLE

ADD HOST TUCO TO SHS

US 7,027,411 B1

DONE

YES

U.S. Patent Apr. 11,2006 Sheet 19 of 26

FIG. 17

934 _,
\

CONVERT TOPOLOGY
INTO TUPLE

LISTS

936
_..)

,,
\

COMPARE CURRENT LIST WITH
NEW LIST AND DISCARD

INDENTICAL TUPLES

938
.,..)
\

TAKE ACTION ON
CHANGES TO TOPOLGY

US 7,027,411 B1

U.S. Patent Apr. 11, 2006 Sheet 20 of 26 US 7,027,411 B1

562

CREATE A TOPO SHS TUPLE

~--------L-------~sM
ADDTUCOFOR

INTERFACE'S HOST TO TOPO ~
SHS

NO

CREATE A TOPO MHS TUPLE

ADD TUCO FOR HOST TO MHS TUPLE

DONE

NO

YES

NO

YES

FIG. 18a

FROM
BLOCKS
582,590,
598 OF
FIG. 18b

CREATE CONN LINKS TUPLE FOR
CONN I & CONN2

U.S. Patent

TO
BLOCK5.50
OFFIG. 18a

Apr. 11, 2006 Sheet 21 of 26 US 7,027,411 B1

FIG. 18b

NO

590

YES

596

CREATE MHS TUPLE

ADD TUCO FOR NODE TO MHS TUPLE

U.S. Patent Apr. 11, 2006 Sheet 22 of 26

FIG. 19

LOOK FOR EXACf MATCH IN CURRENT TUPLES

604

YES 606

MARK NT AS .. NO CHANGE"

US 7,027,411 B1

NO

DO
610

FIX SWAPPED PORTS
ON CONNECTOR

612

MARK FIXED TUPLES
AS"HANDLED"

FIG. 20a

DONE

FIX SWAPPED PORTS
ON CONNECTOR

618

MARK FIXED TUPLES
AS "HANDLED"

=> .., TO BLOCK620
OF FIG. 20b

e •
00
•
~
~
~
~ = ~

> 'e
:-:
~

N
0
0
0\

rFJ

=­('D
('D
N
(.H

0
N
0\

d
rJl

"'.....J = N
.....J
~

"""" """" = """"

FROM BLOCK614
OF FIG. 20a

CHANGE HOST
CONNECTION

ATTRIBUTE

~ .,. TO BLOCK646
OF FIG. 20c

MOVE HOST
CONNECTION IN

TOPOLOGY

CHANGESEGME
TYPE OF

CONNECTION

FIG. 20b

MOVE HOST
CONNECTION IN

TOPOLOGY

YES f

MOVE HOST INTO
STAR SEGMENT
OF CONNECTOR

640

YES T I

I I

MOVE HOST INTO
STAR SEGMENT
OF CONNECTOR

e •
00
•
~
~
~
~ = ~

> 'e
:-:
......
......
~

N
0
0
0\

rFJ

=-('D
('D
N
.j;o.

0
N
0\

d
rJl

"'--...1 = N
-.....1
~

""""'
""""' = """"'

FROM BLOCK620
OF FIG. 20b

~ .., TO BLOCK672
OF FIG. 20d

MOVE HOST
CONNECTION IN

TOPOLOGY

654

GHANGEHOST
~ONNECTION
ATTRIBUTE

FIG. 20c

662

MOVE HOST
CONNECTION IN

TOPOLOGY

MOVE HOST INTO
STAR SEGMENT

OF CONNECTION

666

MOVE HOST
CONNECTION IN

TOPOLOGY

670

e •
00
•
~
~
~
~ = ~

> 'e
:-:
......
......
~

N
0
0
0\

rFJ

=­('D
('D
N
Ul

0
N
0\

d
rJl

"'--...1 = N
--...1
~

"""" """" = """"

FROM BLOCK646
OF FIG. 20c

YES

CREATE NEW POm I­

TO-POINT SEGMENT
FORCONNS

FIG. 20d

DONE

CHANGE CONNECTION
ATTRIBUTES OF
CONNECTION

MOVE HOST
CONNECTION IN

TOPOLOGY

684

CHECK TIMERICONFIG.
TO SEE IF HOST/CONN
SHOULD MOVE INTO
DEFAULT SEGMENT

DONE..,.0

e •
00
•
~
~
~
~ = ~

> 'e
:-:
~

N
0
0
0\

rFJ

=­('D
('D
N
0\

0
N
0\

d
rJl

"'--...1 = N
-.....1
~

""""'
""""' = """"'

US 7,027,411 B1
1

METHOD AND SYSTEM FOR IDENTIFYING
AND PROCESSING CHANGES TO A

NETWORK TOPOLOGY

FIELD OF INVENTION

2
In newer devices, however, it is common for manufacturers
to provide multiple connections between devices to improve
network efficiency and to increase capacity of links between
the devices. The multiple connectivity allows the devices to
maintain connection in case one connection fails. Methods
that do not consider multiple connectivity do not present a
complete and accurate topological map of the network.

Another limitation of existing topology methods is the use

The present invention relates generally to computer net­
works. More particularly, it relates to a method and system
for identifYing changes to a network topology and for acting
upon the network based on the changes.

BACKGROUND

10
of a single reference to identifY a device. Existing methods
use a reference interface or a reference address in a set of
devices to orient all other devices in the same area. These
methods assumed that every working device would be able
to identify, or "hear," this reference and identifY it with a As communications networks, such as the Internet, carry

more and more traffic, efficient use of the bandwidth avail­
able in the network becomes more and more important.
Switching technology was developed in order to reduce
congestion and associated competition for the available
bandwidth. Switching technology works by restricting traf­
fic. Instead of broadcasting a given data packet to all parts 20

of the network, switches are used to control data flow such
that the data packet is sent only along those network
segments necessary to deliver it to the target node. The
smaller volume of traffic on any given segment results in few
packet collisions on that segment and, thus, the smoother 25

and faster delivery of data. A choice between alternative
paths is usually possible and is typically made based upon
current traffic patterns.

15 particular port of the device. With newer devices, however,
it is possible that the same address or reference may be heard
out of multiple ports of the same device. It is also possible
that the address or reference may not be heard from any

The intelligent routing of data packets with resultant
reduction in network congestion can only be effected if the 30

network topology is known. The topology of a network is a
description of the network which includes the location of
and interconnections between nodes on the network. The
word "topology" refers to either the physical or logical
layout of the network, including devices, and their connec- 35

tions in relationship to one another. Information necessary to
create the topology layout can be derived from tables stored
in network devices such as hubs, bridges, and switches. The
information in these tables is in a constant state of flux as
new entries are being added and old entries time out. Many 40

times there simply is not enough information to determine
where to place a particular device.

Switches examine each data packet that they receive, read
the source addresses, and log those addresses into tables
along with the switch ports on which the packets were 45

received. If a packet is received with a target address without

ports, for example, if switching technology is used.

Still another limitation of existing mapping systems is that
they require a complete copy of the topological database to
be stored in memory. In larger networks, the database is so
large that this really is not feasible, because it requires the
computer to be very large and expensive.

Still another difficulty with existing systems is that they
focus on the minutia without considering the larger mapping
considerations. Whenever an individual change in the sys­
tem is detected, existing methods immediately act on that
change, rather than taking a broader view of the change in
the context of other system changes. For example, a device
may be removed from the network temporarily and replaced
with its ports reversed. In existing systems, this swapped
port scenario could require hundreds or thousands of
changes because the reference addresses will have changed
for all interconnected devices.

Still another disadvantage of existing methods is that they
use a continuous polling paradigm. These methods continu­
ously poll network addresses throughout the day and make
decisions based on those continuous polling results. This
creates traffic on the network that slows other processes.

Still another limitation of existing methods is the assump­
tion that network parts of a particular layer would be
physically separated from other parts. Network layer 1 may
represent the physical cabling of the network, layer 2 may
represent the device connectivity, and layer 3 may represent
a higher level of abstraction, such as the groupings of
devices into regions. Existing methods assume that all layer

an entry in the switches table, the switch receiving it
broadcasts that packet to each of its ports. When the switch
receives a reply, it will have identified where the new node
lies. 50 3 region groupings are self-contained, running on the same

unique physical networking. However, in an internet proto­
col (IP) network, multiple IP domains may co-exist on the
same lower layer networking infrastructure. It has become

In a large network with multiple possible paths from the
switch to the target node, this table can become quite large
and may require a significant amount of the switch's
resources to develop and maintain. As an additional com­
plication, the physical layout of devices and their connec- 55

tions are typically in a state of constant change. Devices are
continually being removed from, added to, and moved to
new physical locations on the network. To be effectively
managed, the topology of a network must be accurately and
efficiently ascertained, as well as maintained.

common for a network to employ a virtual local area
network (LAN) to improve security or to simplifY network
maintenance, for example. Using virtual LANs, a system
may have any number of different IP domains sharing the
same physical connectivity. As a result, existing methods

60 create confusion with respect to topological mapping
because networks with multiple IP addresses in different
subnets for the infrastructure devices cannot be properly
represented because they assume the physical separation of

Existing mapping methods have limitations that prevent
them from accurately mapping-topological relationships.
Multiple connectivity problems are one sort of difficulty
encountered by existing methods. For example, connectors
such as routers, switches, and bridges may be interconnected 65

devices in a network. Some existing methods assume that
these devices have only a single connection between them.

connectivity for separate IP domains. Still another limitation
of existing methods is that they do not allow topological
loops, such as port aggregation or trunking, and switch
meshing.

US 7,027,411 B1
3

SUMMARY OF INVENTION

A method and system are disclosed for mapping the
topology of a network having interconnected nodes by
identifying changes in the network and updating a stored
network topology based on the changes. The nodal connec­
tions are represented by data tuples that store information
such as a host identifier, a connector interface, and a port
specification for each connection. A topology database
stores an existing topology of a network. A topology con­
verter accesses the topology database and converts the
existing topology into a list of current tuples. A connection
calculator calculates tuples to represent connections in the
new topology. The topology converter receives the new
tuples, identifies changes to the topology, and updates the
topology database using the new tuples. The topology con­
verter identifies duplicate tuples that appear in both the new
tuples and the existing tuples and marks the duplicate tuples
to reflect that no change has occurred to these connections.
The topology converter attempts to resolve swapped port
conditions and searches for new singly-heard and multi­
heard host link tuples in the list of existing tuples. The
topology converter also searches for new conflict link tuples
in the existing tuples. The topology converter updates the
topology database with the new topology.

SUMMARY OF DRAWINGS

FIG. 1 is a drawing of a typical topological bus segment
for representing the connectivity of nodes on a network.

FIG. 2 is a drawing of a typical topological serial segment
for representing the connectivity of nodes on a network.

FIG. 3 is a drawing of a typical topological star segment
for representing the connectivity of nodes on a network.

FIG. 4 is a drawing of another typical topological star
segment for representing the connectivity of nodes on a
network.

FIG. 5 is a drawing of the connectivity of an example
network system.

FIG. 6 is a drawing of the connectivity of another example
network system.

FIG. 7 is a block diagram of the system.
FIG. 8 is a flow chart of the method of the system.
FIG. 9 is a flow chart of the method used by the tuple

manager.
FIG. 10 is a flow chart of the method used by the

connection calculator.
FIG. 11 is a flow chart of the first weeding phase of the

method used by the connection calculator.
FIGS. 12a-d are flow charts of an infrastructure-building

phase of the method used by the connection calculator.
FIG. 13 is a flow chart of a second weeding phase of the

method used by the connection calculator.
FIG. 14 is a flow chart of the noise reduction phase of the

method used by the connection calculator.
FIG. 15 is a flow chart of the look-for phase of the method

used by the connection calculator.
FIGS. 16a-b are flow charts of the consolidation phase of

the method used by the connection calculator.

4
DETAILED DESCRIPTION

The system provides an improved method for creating
topological maps of communication networks based. Con­
nectivity information is retrieved from the network nodes
and stored as "tuples" to track specifically the desired
information necessary to map the topology. These light
weight data structures may store the host identifier, interface
index, and a port. From this tuple information, the topology

10 may be determined. A tuple may be a binary element insofar
as it has two parts representing the two nodes on either end
of a network link or segment. A "tuco" refers to a tuple
component, such as half of a binary tuple.

As used herein, a node is any electronic component, such
15 as a connector or a host, or combination of electronic

components with their interconnections. A connector is any
network device other than a host, including a switching
device. A switching device is one type of connector and
refers to any device that controls the flow of messages on a

20 network. Switching devices include, but are not limited to,
any of the following devices: repeaters, hubs, routers,
bridges, and switches.

As used herein, the term "tuple" refers to any collection
of assorted data. Tuples may be used to track information

25 about network topology by storing data from network nodes.
In one use, tuples may include a host identifier, interface
information, and a port specification for each node. The port
specification (also described as the group/port) may include
a group number and a port number, or just a port number,

30 depending upon the manufacturer's specifications. A binary
tuple may include this information about two nodes as a
means of showing the connectivity between them, whether
the nodes are connected directly or indirectly through other
nodes. A "conn-to-conn" tuple refers to a tuple that has

35 connectivity data about connector nodes. A "conn-to-host"
tuple refers to a tuple that has connectivity data about a
connector node and a host node. In one use, tuples may have
data about more than two nodes; that is, they may be n-ary
tuples, such as those used with respect to shared media

40 connections described herein.
A "singly-heard host" (shh) refers to a host, such as a

workstation, PC, terminal, printer, other device, etc., that is
connected directly to a connector, such as a switching
device. A singly heard host link (shhl) refers to the link, also

45 referred to as a segment, between a connector and an shh. A
"multi-heard host" (mhh) refers to hosts that are heard by a
connector on the same port that other hosts are heard. A
multi-heard host link (mhhl) refers to the link between the
connector and an mhh. A link generally refers to the con-

50 nection between nodes. A segment is a link that may include
a shared media connection.

FIG. 1 is a drawing of a typical topological bus segment
100 for representing the connectivity of nodes on a network
110. In FIG. 1, first and second hosts 121, 122, as well as a

55 first port 131 of a first connector 140 are interconnected via
the network 110. The bus segment 100 comprises the first
and second hosts 121, 122 connected to the first port 131 of
the first connector 140.

FIG. 17 is a flow chart of the method used by the topology 60

FIG. 2 is a drawing of a typical topological serial segment
200 for representing the connectivity of nodes on the net­
work 110. In FIG. 2, the first host 121 comprises a second
port 132 on a second connector 145 which is connected via
the network 110 to the first port 131 on the first connector
140. The serial segment 200 comprises the second port 132

converter.
FIGS. 18a-b are flow charts of the morph topo phase of

the method used by the topology converter.
FIG. 19 is a flow chart of the duplication discard phase of

the method used by the topology converter.
FIGS. 20a-d are flow charts of the identify different

tuples phase of the method used by the topology converter.

65 on the second connector 145 connected to the first port 131
on the first connector 140. FIG. 2 is an example of a
connector-to-connector ("conn-to-conn") relationship.

US 7,027,411 B1
5

FIG. 3 is a drawing of a typical topological star segment
301 for representing the connectivity of nodes on the net­
work 110. In FIG. 3, the first host 121 is connected to the
first port 131 of the first connector 140. The star segment 301
comprises the first host 121 connected to the first port 131
of the first connector 140. FIG. 3 is an example of a
connector-to-host ("conn-to-host") relationship.

6
As explained herein, the system resolves multiple connec­
tivity problems by tracking port information for each con­
nection.

FIG. 6 is a drawing of the connectivity of a portion of a
5 network having three connectors 171, 172, 173. A first host

151 is connected directly to the first port 161 of the first
connector 171 and the second host 152 is connected to a
sixth port 166 of the third connector 173. The second port
162 of the first connector 171 is connected directly to the

FIG. 4 is a drawing of another typical topological star
segment 301 for representing the connectivity of nodes on
the network 110. In addition to the connections described
with respect to FIG. 3, a third host 123 is connected to a third
port 133 of the first connector 140 and a fourth host 124 is
connected to a fourth port 134 of the first connector 140. In
FIG. 4, the star segment 301 comprises the first host 121
connected to the first port 131 of the first connector 140, the 15

third host 123 connected to the third port 133 of the first
connector 140, and the fourth host 124 connected to the
fourth port 134 of the first connector 140. Thus, the star
segment 301 comprises, on a given connector, at least one
port, wherein one and only one host is connected to that port, 20

and that host. In the more general case, the star segment 301
comprises, on a given connector, all ports having one and
only one host connected to each port, and those connected
hosts. Since the segments, or links, drawn using the topo­
logical methods of FIG. 4 resemble a star, they are referred 25

to as star segments.

10 third port 163 of the second, or intermediate, connector 172.
The fourth port 164 of the intermediate connector 172 is
connected directly to the fifth port 165 of the third connector
173.

FIG. 7 shows a block diagram of the system. FIG. 8 shows
a flow chart of the method used by the system to retrieve and
update the topology of the network. A tuple manager 300,
also referred to as a data miner 300, gathers 902 data from
network nodes and builds 904 tuples to update the current
topology. The topology database "topodb" 350 stores the
current topology for use by the system. The "neighbor data"
database 310 stores new tuple data retrieved by the tuple
manager 300. The connection calculator 320 processes the
data in the neighbor data database 310 to determine the new
network topology. The connection calculator 320 reduces
906 the tuple data and sends it to the reduced topology
relationships database 330. The topology converter 340 then

For illustrative purposes, nodes in the figures described
above and in subsequent figures are shown as individual
electronic devices or ports on connectors. Also, in the figures
the nodes are represented as terminals. However, they could 30

also be workstations, personal computers, printers, scanners,

updates 908 the topology database 350 based on the new
tuples sent to the reduced topology relationships database
330 by the connection calculator 320.

FIG. 9 shows a flow chart of one operation of the tuple
manager 300, as described generally by the data gathering
902 and tuple building 904 steps of the method shown in
FIG. 8. The tuple manager 300 receives 910 a signal to
gather tuple data. The tuple manager 300 then retrieves 912

or any other electronic device that can be connected to
networks 110.

FIG. 5 is a drawing of the connectivity of an example
network system. In FIG. 5, first, third, and fourth hosts 121,
123, 124 are connected via the network 110 to first, third,
and fourth ports 131, 133, 134 respectively, wherein the first,
third, and fourth ports 131, 133, 134 are located on the first
connector 140.

The first, third and fourth hosts 121, 123, 124 are singly­
heard hosts connected to separate ports 131, 133, 134 of a
common connector 140-the first connector 140. The fifth
and sixth hosts 125, 126 are singly-heard hosts connected to
the third and fourth connectors 142, 143. The seventh and
eighth hosts 127, 128 are multi-heard hosts connected to the
same port 139 of the fifth connector 144. The multi-heard
hosts 127, 128 illustrate a shared media segment 180, also
referred to as a bus 180.

35 node information of the current topology stored in the
topology database 350. This information tells the tuple
manager 300 which devices or nodes are believed to exist in
the system based on the nodes that were detected during a
previous query. The tuple manager 300 then queries 914 the

40 known nodes to gather the desired information. For
example, the connectors may maintain forwarding tables
that store connectivity data used to perform the connectors'
ordinary functions, such as switching. Other devices may
allow the system to perform queries to gather information

45 about the flow of network traffic. This data identifies the
devices heard by a connector and the port on which the
device was heard. The tuple manager 300 gathers this data
by accessing forwarding tables and other information
sources for the nodes to determine such information as their
physical address, interface information, and the port from
which they "hear" other devices. Based on this information,
the tuple manager 300 builds 916 tuples and stores 918 them
in the "neighbor data" database 310. Some nodes may have
incomplete information. In this case, the partial information

The second, third, fourth, and fifth connectors 141, 142, 50
143, 144 are interconnected and illustrate a switch mesh
181. Each of the connectors in the switch mesh 181 is
connected to each other, either directly or indirectly, to
create a fully meshed connection. In the mesh, traffic may be
dynamically routed to create an efficient flow. 55 is assembled into a tuple and may be used as a "hint" to

determine its connectivity later, based on other connections.
The tuple manager 300 may also gather 920 additional
information about the network or about particular nodes as
needed. For example, the connection calculator 320 may

FIG. 5 also shows an example of a port aggregation 182,
also referred to as trunking 182. The first connector 140 is
connected via the network 110 to the second connector 141
by two direct links, each of which is connected to different
ports on the connectors. One link is connected to the sixth
port 136 of the first connector 140 and to the seventh port of
the second connector 13 7. The other link is connected to fifth
port 135 of the first connector 140 and to the eighth port 138
of the second connector 141. In this example, two connec­
tors illustrate the multiple connectivity between nodes.
Depending upon the device specifications, devices such as
connectors may be connected via any number of connectors.

60 require additional node information and may signal the tuple
manager 300 to gather that information.

After the data is gathered and the tuples are stored in the
neighbor database 310, the connection calculator 320 pro­
cesses the tuples to reduce them to relationships in the

65 topology. FIG. 10 shows a flow chart of the process of the
connection calculator 320, as shown generally in the reduc­
tion step 906 of the method shown in FIG. 8. The connection

US 7,027,411 B1
7

calculator 320 performs a first weeding phase 922 to identify
singly-heard hosts to distinguish them from multi-heard
hosts. Singly-heard hosts refer to host devices connected
directly to a connector. The connection calculator 320 then
performs an infrastructure-building phase 924 to remove
redundant connector-to-connector links and to complete the
details for partial tuples that are missing information. Then,
the connection calculator 320 performs a second weeding
phase 926 to resolve conflicting reports of singly-heard
hosts. The connection calculator 320 then performs a noise 10

reduction phase 928 to remove redundant neighbor infor­
mation for connector-to-host links. If clarification of device
connectivity is required, the connection calculator 320 per­
forms a "look for" phase 930 to ask the tuple manager 300

8
that the moved host is connected. When all tuples have been
processed 402 to identifY singly-heard host links, the first
weeding phase 922 is complete.

FIGS. 12a-d show a flow chart of the infrastructure
building phase 924 of the connection calculator 320. The
purpose of the infrastructure building phase 924 is to deter­
mine how the connectors are set up in the network. The first
part of the infrastructure building phase 924 manufactures
tuples based on the list of singly-heard host link tuples
identified in the first weeding phase 922. The purpose is to
identify the relationship between the connectors in the extra
host links tuples and the connectors directly connected to the
singly-heard hosts. For each singly-heard host link 420, the
connection calculator 320 processes 422 each extra host link

to gather additional data. The tuple data is then consolidated
932 into segment and network containment relationships.
The connection calculator 320 may also tag redundant tuples
to indicate their relevance to actual connectivity. These
redundant tuples may still provide hints to connectivity of
other tuples. As part of the consolidation phase 932, the
connection calculator 320 creates new n-ary tuples (tuples
having references to three or more tucos) for shared media
segments.

15 that refers to the host. In the illustration of FIG. 6, a
conn-to-conn link tuple would represent the connection
between the first connector 171 and the intermediate con­
nector 172. An extra host link tuple would represent the
indirect connection between the intermediate connector 172

20 and the first host 151. The conn-to-conn link tuple between
the first connector 171 and the intermediate connector 172 is
an example of an eh!Conn-to-shhlConn tuple. If a conn-to­
conn link tuple exists 424 for the extra host link connector
to the singly-heard host link connector (ehlConn-to-shhl-FIG. 11 is a flow chart of the connection calculator's first

weeding process 922 for distinguishing singly-heard hosts.
The purpose of the first weeding process 922 is to identify
the direct connections between connectors and hosts; that is,
those tuples having a first tuco that is a connector and a
second tuco that is a host. The connection calculator 320
looks through the tuple list in the neighbor database 310, and 30

for each tuple 402, the connection calculator 320 determines
404 whether the tuple is a connector-to-host (conn-to-host)
link tuple. If it is not a conn-to-host link, the connection
calculator 320 concludes 418 that it is a conn-to-conn link
and processes 402 the next tuple. If the tuple is a conn-to­
host link tuple, then the connection calculator 320 deter­
mines 406 whether the connector hears only this particular
host on the port identified in the tuple. If the connector hears
other hosts on this port, then the tuple is classified 416 as a
multi-heard host link (mhhl) tuple.

25 Conn), then the connection calculator 320 updates 428 the
tuple if it is incomplete. It is possible that the tuple data may
be incomplete and a conn-to-conn link may not exist. In that
case, a conn-to-conn tuple does not exist for the ehlConn-
to-shh!Conn, then such a tuple is created 426.

After processing extra host links for singly-heard host
links, the connection calculator 320 considers 430 each
connector (referred to as conn!) in the tuples to determine
the relationship between connectors. As illustrated in FIG. 6,
a single connector may be connected directly and indirectly

35 to multiple other connectors. In FIG. 6, the first connector
151 is connected to the intermediate connector 171 directly
and also to the third connector 173 indirectly. The third
connector 173 hears the first host 151 on the same part 165
that it hears the first connector 171 and the intermediate

40 connector 172. The infrastructure building phase 924 tries to
determine the relationship between other connectors heard
on the same port of conn!. In a series of interconnected
connectors, the connector on one end may not hear a
connector on another end, but it may hear intermediate

If the connector hears only the one host on the port-that
is, if the host is a singly-heard host-then the connection
calculator 320 determines 408 whether the host is heard
singly by any other connectors. If no other connectors hear
the host as a singly-heard host, then the tuple is classified as
a singly-heard host link (shhl) tuple 412 and other tuples for
this host are classified 414 as extra host links (ehl). Another
tuple for this host may be, for example, an intermediate
connector connected indirectly to a host. For example, FIG.

45 connectors, that in turn hear their own intermediate connec­
tors. Tuples are created to represent the interconnection of
conn-to-conn relationships. Based on this data, the connec­
tion calculator 320 can make inferences regarding the over­
all connection between connectors.

For every conn!, the connection calculator 320 considers
432 every other connector (conn2) to determine whether a
connl-to-conn2 tuple exists. If connl-to-conn2 does not
exist, then the connection calculator 320 considers 436
every other conn-to-conn tuple containing conn2. The other

6 shows three connectors 171, 172, 173 the first connector 50

is connected directly to the first host 151. This connection
therefore forms an shhl tuple. The intermediate connector
172 is indirectly connected to the first host 151. The tuple
data indicates that the intermediate connector 172 is indi­
rectly connected to the host and hears the host from a
particular port. An extra host links tuple is created so that
this data may be used later in conjunction with other extra
host links tuples from devices across the network, to verify
connectivity by providing hints about connections.

55 connector on this tuple may be referred to as conn3. If conn2
hears conn3 on a unique port 438 and if conn! also hears
conn3 440, then the connection calculator 320 creates 442 a
tuple for connl-to-conn2 in the connector-to-connector links

The first weeding process also attempts to identify con- 60

flicts. If other connectors hear the host as a singly-heard
host, then a conflict arises and the tuple is classified 410 as

tuple list.
After processing all of the conn! tuples, the connection

calculator 320 processes 444 each connl-to-conn2 links
tuple to ensure that they have complete port data. For each
incomplete tuple 446, the connection calculator 320 looks
448 for a different tuple involving conn! in the extra host

a singly-heard conflict link (shcl) tuple to be resolved later.
This conflict may arise, for example, if a host has been
moved within the network, in which case the forwarding
table data may no longer be valid. Certain connectors
previously connected directly to the host may still indicate

65 links tupleson a different port. If a different tuple is found
450, then the connection calculator 320 determines 452
whether conn2 also hears the host. If conn2 does hear the

US 7,027,411 B1
9

host, then the connection calculator 320 completes the
missing port data for conn2. If conn2 does not also hear the
host 452, then the connection calculator 320 continues
looking 448 through different tuples involving conn! in
extra host links on different ports.

After attempting to complete the missing data in each of
the conn-to-conn links tuples, the connection calculator 320
processes 456 each conn-to-conn links tuple. The purpose of
this sub-phase is to attempt to disprove invalid conn-to-conn
links. The connection calculator 320 considers 458 conn!
and conn2 of each conn-to-conn links tuple. Every other
connector in conn-to-conn links may be referred to as
testconn. For each testconn 460, the connection calculator
320 determines 462 whether the testconn hears conn! and
conn2 on different groups/ports. Iftestconn hears conn! and
conn2 on different ports, then the tuple is moved to extra­
connlinks (eel) 464. Otherwise, the connection calculator
320 continues processing 460 the remaining testconns.

FIG. 13 shows a flow chart of the second weeding phase
926. The purpose of the second weeding phase 926 is to
attempt to resolve conflicts involving singly-heard hosts
identified in the first weeding phase 922. In the situation
described herein in which more than one connector reports
that a host is singly-heard, the second weeding phase 926
reviews the tuples created during the infrastructure-building
phase 924 involving the connector and host in question and
attempts to disprove the reported conflict. The connection
calculator 320 processes 466 each singleConflictLinks (sci)
tuple (sometimes referred to as the search tuple) and con­
siders 468 conn! and host! of the tuple. For each extra host
links tuple containing host! 470, the connection calculator
320 considers 472 conn2 of the tuple. If there is a tuple in
conn-to-conn links for conn2 and conn! 474, and if there is
a conn2-to-connl tuple in the extra host links tuples 476, and
if the port is the same for conn2 hearing conn! and host!
478, then the search tuple is moved 480 into the singly heard
host links and other tuples containing host! are removed 482
from the singleConflictLinks.

10
host! tuple in extraHostLinks 494, and if the group/port for
conn2 hearing conn! and host! is different 496, then the
search tuple is moved 498 to extraHostLinks.

FIG. 15 shows a flow chart for the "look for" phase 930.
The purpose of this phase is to complete missing data for
mhhl tuples. There may exist connections on the network
that have incomplete tuple data. For example, the network
may simply have no traffic between certain nodes, in which
case data might not be stored in forwarding tables. In

10 another example, a forwarding table may not have sufficient
room to store all of the required information and might
delete data on a FIFO basis. In the look for phase 930, the
connection calculator 320 instructs the tuple manager 300 to
query specific nodes to retrieve the missing data. Data that

15 was not stored in a forwarding table on the first interrogation
may be present on a subsequent query. For each mhhl tuple
500, the connection calculator 320 considers 502 conn! and
host!. If the conn! group/port is already in an "alreadyDid­
Lookfors" list, then a list is created 508 for all connectors in

20 conn-to-conn links that are heard by conn! on the same
group/port as host!. For each connector (conn2) in the list
510, the connection calculator 320 determines 512 whether
there is a conn2-to-hostl tuple in the mhhl tuples. If there is
not such a tuple, then the connection calculator 320 initiates

25 a look-for for conn2-to-hostl via the tuple manager 300.
When each connector in the list has been processed 510, the
conn! group/port tuco is added 516 to an alreadyDidLook­
fors list. As an additional portion of the look for phase 930
(not shown in figures) the system may ask a user to verifY

30 or clarifY information about connectivity. For example, the
system may show the user the perceived connectivity or the
unresolved connectivity issues and request the user to add
information as appropriate.

The connection calculator 330 process described above
35 collects the tuple information from the tuple manager 300,

builds tuples new tuples and removes redundant or unnec­
essary tuples to produce the new topology. This topology
may have incomplete tuples possibly resulting from extra­
neous information that the connection calculator 330 could FIG. 14 shows a flow chart of the noise reduction phase

928. The purpose of the noise reduction phase 928 is to 40

handle those connections in which a connector is not directly
connected to a host or to another connector. For example,
networking technology may employ shared media connec­
tions between connectors, rather than dedicated media con­
nectors. With a shared media connection, the entries in the 45

forwarding tables for connectors attached to the shared
media connection will include every node accessing the
shared media connection and may not present a useful or
accurate representation of the nodal connection. For
example, if the network configuration in FIG. 6 used a 50

shared media connection between the first connector 171

not disprove. To refine the new topology, the connection
calculator 330 can request the tuple manager 300 to obtain
additional information about particular nodes or it may also
request a user to refine the topology by adding or removing
tuples. Using the process of the connection calculator 330,
tuples marked as non-essential may be removed from the
new topology to save space and to simply the topology. The
connection calculator 330 is not confused by multiple con­
nectivity situations such as port aggregation 182 or switch
meshing 181 as shown in FIG. 5, because the tuples repre­
sent point-to-point, or neighbor-to-neighbor, connectivity
showing each connection in the network. This point-to-point

and the intermediate connector 172, then the first connector connectivity concept also helps enable the system to avoid
difficulties that occur in systems that track higher levels of
abstraction, such as layer 3 connectivity. Also, the tuples

55 may contain only selected information to minimize the
storage space required for the topology.

is not really connected directly to the intermediate connector
because other devices (not shown in FIG. 6) may also use the
shared media connection. These other devices may include
web servers, other connectors, other subnetworks, etc.
Tuples will be created for the connectors 171, 172 on
opposing ends of the shared media. In this situation, it is
inefficient to maintain point-to-point binary tuples for every
connection. The noise reduction phase 928 disproves invalid 60

tuples created by the shared media connections.
For each multi -heard host links (mhhl) tuple, also referred

to as multiHeardLinks (mhl) tuples (sometimes referred to
as the search tuple) 484, conn! and host! are considered
486. For each extra host links tuple containing host! 488, 65

conn2 is considered 490. If there is a tuple in conn-to-conn
links for conn2 and conn! 492, and if there is a conn2-to-

FIGS. 16a-b show a flow chart of the consolidation phase
932. The purpose of this phase is to consolidate the tuples
that involve shared media connections. After the noise
reduction phase 928, a considerable number of tuples
involving shared media may remain. Rather than maintain a
binary tuple for each of the connections, an n-ary tuple is
created for the link using a tuco for each connector and each
host connected thereto. For each mhhl tuple 518, conn! and
host! are considered 520. If there are more conn! group/port
tuples in multiHeardLinks, and if are not any n-ary multi-
HeardSegments (mhs) tuples 524, then an mhs tuple is

US 7,027,411 B1
11

created 526. If hostl is not already in this particular mhs
tuple 528, then conn2 of the tuple is considered 534. If there

12

is a connl-to-conn2 conn-to-connLinks tuple on the same
port as connl-to-hostl 536, then all multiHeardLinks tuples
for conn2-to-hostl with the same conn2 group/port as the 5

conn l-to-conn2 are added 538 to the current mhs tuple.

If the node is not in a star segment, then the topology
converter 340 knows that it is in the bus segment. If there is
not already an mhs tuple for the node, 594, then the topology
converter 340 creates 596 an mhs tuple. The tuco for the
node is then added 598 to the mhs tuple, and the topology
converter proceeds to the next node 550.

After processing each mhhl tuple 518, each singly-heard
host links (shhl) tuple, also referred to as a singlyHeardLinks
(shl) tuple, is considered 540. For each shhl tuple, the
connector and host are considered 542. If there is no existing 10

singlyHeardSegments (shs) tuple for the connector 544, then

FIG. 19 shows a flow chart for the discard duplicates
phase 936 of the topology converter 340. For each tuple in
the new tuples (nt) 600, the topology converter looks for 602
an exact match in the current tuples stored in the topodb. If
an exact match is found 604, then the new tuple is marked

an shs tuple is created 546. The host tuco is then added to the
shs 548.

FIG. 17 shows a flow chart of the method used by the
topology converter 340, as described generally by the topol­
ogy update step 908 of the method shown in FIG. 8. The
topology converter 340 converts 934 the topology into tuple
lists, also referred to as the "morph topo" phase 934. It then
compares 936 the list from the topology currently stored in
the topology database 350 with the new list generated by the
connection calculator 320 and discards 936 identical tuples
in what is also referred to as the "discard duplicates" phase
936. It then takes action 938 on the changes in the topology
as determined by the changes in the tuple lists, in what is
also referred to as the "identifY different tuples" phase 938.

FIG. 18a shows a flow chart for the "morph topo" phase
934. For each node in the topology 550, the topology
converter 340 determines 552 whether the node is a con­
nector. If the node is a connector, then for each connected
interface (conniface) of the connector (conn!) 554, the
topology converter 340 determines 556 whether the carmi­
face is connected to a star segment. If it is connected to a star
segment, then for every other interface in the segment 558,
the topology converter 340 determines 560 whether there is
an existing shs tuple, referred to as the "topo tuple" for the
segment. If there is no such tuple, then the topology con­
verter 340 creates 562 a topo shs tuple. The tuco for the
interface's host-to-topo shs is then added 564 to the topo shs
tuple.

If the connector node is not connected to a star segment
556 and is connected to a bus segment 566, the topology
converter 340 determines 568 whether there is an existing
mhs tuple for conn!. If there is not an existing mhs tuple for
conn!, then a topo mhs tuple is created 570. A tuco is added
572 for the host to the mhs tuple.

If the connector node is not connected to either a star
segment 556 or to a bus segment 566, then the topology
converter knows that it is connected to another connector
(conn2). If such a connector does not already have an
existing connLinks tuple for conn! and conn2 576, then a
connLinks tuple is created 578. After processing the bus
segment, star segment, and conn-to-conn segment, for each
conniface 554, the topology converter 340 proceeds to the
next node 550.

606 as "no change" indicating that this is an identical tuple.
FIGS. 20a-d show a flow chart for the identifY different

tuples phase 938. The system looks through each tuple in the
15 new SinglyHeardSegments (newSHS) tuple list 608 and

tries to identify and fix 610 swapped ports on connectors.
Swapped ports are identified by considering those segment
tuples in both the new topology and the existing topology
that differ only by the port specification in the tuco. Each

20 tuple that is fixed as a swapped port is marked 612 as
"handled." The system also looks through each tuple in the
new multiHeardSegments tuple list (newMHS) 614 and tries
to identifY and fix 616 swapped ports on connectors. Each
tuple that is fixed as a swapped port is marked 618 as

25 "handled."
The system then processes 620 each unmarked tuple in

the newSHL tuples. Four cases are possible for the host of
the newSHL tuples. The host of the newSHL can be found
in the current singlyHeardLinks (curSHL) 622, the current

30 multiHeardLinks (curMHL) 630, the current connlinks
(curCL) 638, or the currentUnheardOfLinks (curUOL) 642.
If the host of a newSHL tuple is found 622 in the current
SinglyHeardLinks (curSHL) tuples, then the system deter­
mines 624 if there is a matching connector tuco between the

35 newSHL tuples and the curSHL tuples. If there is a matching
tuco, then the system changes 626 the host connection
attribute. If there is not a matching tuco, then the host
connection is moved 628 in the topology.

If the host is fonnd in the curMHL tuples 630, then the
40 system determines 632 whether there is a matching connec­

tor tuco between the newSHL tuples and the curSHL tuples.
If there is a matching connector, then the segment type of
connection is changed 634. If there is not a matching
connector, then the host connection is moved 636 in the

45 topology. If the host is fonnd in the curCL tuples 638, then
the host is moved 640 into a star segment of the connector.
If it is fonnd in the curUOL 642, then the host is moved 644
into the star segment of the connector.

FIG. 20c shows another stage of the processing under-
50 taken during the identify different tuples phase 938. For each

unmarked tuple in the new multiHeardLinks tuples (new­
MHL) 946, four cases are possible for the host of the
newMHL. The host of the newMHL may be found in the
curSHL 648, the curMHL 656, the curCL 664, or the

55 curUOL 668. If the host is found in the curSHL 648, then the
system determines 650 whether there is a matching connec­
tor tuco between the newMHL and the curMHL. If there is
a matching tuco, then the segment type of connection is

FIG. 18b shows a continuation of the flow chart of FIG.
18a showing the steps of the method when the topology
converter 340 determines that the node is not a connector
552. If the node is in the default segment, then an "unheard­
OfLinks" tuple is created 582 and the topology converter 60

proceeds to the next node 550. If the node is not in the
default segment 580, then the topology converter 340 deter­
mines whether the node is in a star segment 584. If the node

changed 652. If there is not a matching tuco, then the host
connection is moved 654 in the topology.

If the host is fonnd in the curMHL tuples 656, then the
system determines 658 whether there is a matching connec­
tor tuco in both the curMHL tuples and the newMHL tuples.

is in a star segment, then if there is not already an shs tuple,
the topology converter 340 creates 588 an shs tuple. The 65

tuco for the node is then added 590 to the shs tuple, and the
topology converter 340 proceeds to the next node 550.

If there is a matching connector tuco, then the host connec­
tion attribute is changed 660. If there is not a matching tuco,
then the host connection is moved 662 in the topology. If the
host is found in the curCL tuples 664, then the host is moved

US 7,027,411 B1
13

into a bus segment of a connector. If the host is found in the
curUOL tuples 668, then the host connection is moved 670
in the topology.

14
appear both in the list of existing tuples and in the new
tuples, and maintaining a current status of the topology for
these tuples.

5. The method of claim 1, wherein the step of creating a
new list of tuples comprises identifYing a swapped port
condition on a connector.

FIG. 20d shows another portion of the identify different
tuples phase 938. For each urnnarked tuple in the newCL
tuples 672, there are three possibilities for the connector. The
connector of the unmarked tuple in newCL can be found in
the curSHL or curMHL 674, in the curCL 678, or in the
curUOL 682. If each connector is found in the curSHL or
curMHL list 674, then the system creates 676 a new point­
to-point segment for the connectors. If the connectors are
found in the curCL 678, then the connection attributes of the
connectors are changed 680. If each connector is found in
the curUOL tuples 682, then the host connection is moved
684 in the topology.

6. The method of claim 1, wherein the step of creating a
new list of tuples comprises searching for a host of a new

10 singly-heard host link tuple or a new multi-heard host link
tuple in the list of existing tuples.

7. A system for mapping a network topology by identi­
fYing changes between an existing topology and a new
topology, based on changes to data tuples that represent

15 nodal connections comprising:
Another part of the identifY different tuples phase 938 is

shown in blocks 686 and 688 of FIG. 20d. For each
unmarked tuple in the newUOL tuples 686, the system
checks 688 the timer/configuration to determine whether the
host/conn should move into the default segment from its 20

current segment.
An advantage of the system is that it may be schedulable.

The system may map network topology continuously, as
done by existing systems, or it may be scheduled to run only
at certain intervals, as desired by the user. A further advan- 25

tage of the system is that it is capable of processing multiple
connections between the same devices and of processing
connection meshes, because it tracks each nodal connection
independently, without limitations on the types of connec­
tions that are permitted to exist. 30

Although the present invention has been described with
respect to particular embodiments thereof, variations are
possible. The present invention may be embodied in specific
forms without departing from the essential spirit or attributes
thereof. It is desired that the embodiments described herein 35

be considered in all respects illustrative and not restrictive
and that reference be made to the appended claims for
determining the scope of the invention.

What is claimed is: 40

a topology database that stores an existing topology of a
network using tuples, wherein each tuple includes a
host identifier, interface information, and a port speci­
fication for a node in the network from the existing
topology representing nodal connections of the net­
work at a prior time; and

a topology converter connected to the topology database
the receives new tuples that represent new nodal con­
nections for a topology of the network at a current time,
compares the new tuples with the existing tuples to
identifY changes in the network by comparing the host
identifiers, the interface information, and the port speci­
fications, and determines differences between the new
tuples with the existing tuples representing nodal con­
nections of the network at the prior time,

wherein the topology converter creates the new tuples for
the topology of the network.

8. The system of claim 7, wherein the topology converter
updates the topology database with a new topology based on
the new tuples.

9. The system of claim 7, wherein the topology converter
attempts to identifY swapped ports on connectors.

10. The system of claim 7, wherein the topology converter
identifies duplicate tuples that appear both in the list of
existing tuples and in the new tuples, and maintains a current
status of the topology for these tuples.

1. In a network having interconnected nodes with data
tuples that represent nodal connections, a method for map­
ping a network topology by identifYing changes between an
existing topology and a new topology, the method compris­
ing:

creating a list of existing tuples from an existing topology
representing nodal connections of a network at a prior
time;

11. The system of claim 7, wherein the topology converter
45 searches for a host of a new singly-heard host link tuple or

a new multi-heard host link tuple in the list of existing
tuples.

creating a new list of a plurality of tuples for a topology
of the network at a current time, wherein the new list
of tuples represent nodal connections of the network at
the current time, and wherein each of the tuples com­
prises a host identifier, interface information, and a port

12. The system of claim 7, wherein the topology converter
searches for a connector of a new conflict links tuple in the

50 list of existing tuples.

specification;
55

receiving new tuples list that represent new nodal con­
nections; and

comparing the list of existing tuples with the new tuples
list to identifY changes to the topology.

2. The method of claim 1, further comprising updating a 60
topology database with a new topology corresponding to the
list of existing tuples modified by the changes to the topol­
ogy.

3. The method of claim 1, further comprising taking
action on the changes to the topology.

4. The method of claim 1, wherein the step of creating a
new list of tuples comprises identifying duplicate tuples that

65

13. A computer-readable medium having computer-ex­
ecutable instructions for performing a method for mapping
a network topology by identifYing changes between an
existing topology and a new topology in a network having
a interconnected nodes, the method comprising:

creating a list of existing tuples from an existing topology
representing nodal connections of a network at a prior
time;

creating a new list of a plurality of tuples for a topology
of the network at a current time, wherein the new list
of tuples represent nodal connections of the network at
the current time and wherein each of the tuples com­
prises a host identifier, interface information, and a port
specification;

receiving new tuples list that represent new nodal con­
nections;

US 7,027,411 B1
15

comparing the list of existing tuples with the new tuples
list to identifY changes to the topology; and

updating a topology database with a new topology based
on the comparing.

14. The medium of claim 13, wherein a topology con- 5

verter receives the new tuples list from a connection calcu­
lator that calculates connections between nodes.

16
16. The medium of claim 13, wherein the step of creating

the new tuples list comprises identifying a swapped port
condition on a connector.

17. The medium of claim 13, wherein the step of creating
the new tuples list comprises searching for a host of a new
singly-heard host link tuple or a new multi-heard link tuple
in the list of existing tuples.

15. The medium of claim 13, wherein the step of creating
the new tuples list comprises identifYing duplicate tuples
that appear both in the list of existing tuples and in the new
tuples list, and maintaining a current status of the topology
for these duplicate tuples.

18. The medium of claim 13, wherein the steps of creating
the new tuples list comprises searching for a connector of a

10 new conflict links tuple in the list of existing tuples.

* * * * *

	Untitled

