
c12) United States Patent
Foti et al.

(54) METHOD AND SYSTEM FOR ACCESSING
EXTERNALLY-DEFINED OBJECTS FROM
AN ARRAY-BASED MATHEMATICAL
COMPUTING ENVIRONMENT

(75) Inventors: David A. Foti, Ashland, MA (US);
Charles G. Nylander, Merrimack, NH
(US)

(73) Assignee: The MathWorks, Inc., Natick, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/518,287

(22) Filed: Mar. 3, 2000

(51) Int. Cl.
G06F 9100 (2006.01)

(52) U.S. Cl. 719/328; 719/330
(58) Field of Classification Search 709/315;

(56)

719/320, 330, 328
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,341,478 A * 8/1994 Travis eta!. 709/203

(Continued)

OTHER PUBLICATIONS

David M. Gay, Symlolic-Algebraic Computations in a Mod
eling Language for Mathematical Programming, Nov. 1999,
Schloss Dagstuhl, p. 4-7. *
Hartmut Pohlheim, Genetic and Evolutionary Algorithm
Toolbox for use with MATLAB, Jul. 1997. John W.Eaton, A
High-Level Interactive Language for Numeriacal
Computaions Edition 3 for Octave Verdion 2.1.x, Feb.
1997.*
Nee Corp, Index implementation method for object oriented
database-involves comparing value for structure type

Mathematical Tool
102 __.!\

Technical Computing Environment
108

Signature Selector
112

111111 111
US007051338Bl

(10) Patent No.:
(45) Date of Patent:

US 7,051,338 Bl
May 23,2006

member variable to obtain size related rank for variables,
Oct. 17, 1997.*
Cantin, International Business Machine, Corporation,
Persiten Object-Mapping in an Object-Oriented Environ
ment, Mar. 1, 1996 Venners, Eternal Math, 1996.*
Tieman, "An Efficient Search Algorithm to Find the
Elementary Circuits of a Graph", Comm. of the ACM,
.13:722-726, (1970).
Tarjan, "Depth-First Search and Linear Graph Algorithms",
SIAM J. Camp., 1:146-160, Jun., (1972).
Tarjan, "Enumeration of the Elementary Circuits of a
Directed Graph" Cornell University Technical Report TR
72-145 (1972).
IBM Technical Disclosure Bulletin, Generating Event
Adapters to Facilitate Connections Between Java Beans,
Jan. 1, 1998, p. 1-3.
John Henry Moore, Microsoft's New, Improved Proxy
Server, Dec. 1997, p. 1-3.
Samir B. Gehani, A Java Based Framework for Explicitly
Partitioning, 1997, Section 3.1 Java Beans.

Primary Examiner-William Thomson
Assistant Examiner-LeChi Truong
(74) Attorney, Agent, or Firm-Lahive & Cockfield, LLP

(57) ABSTRACT

A method and apparatus, including a computer program
apparatus, which facilitate invoking methods of objects
defined within an object-oriented environment from an
array-based technical computing environment often used in
conventional mathematical tools. When a method is invoked
from the computing environment, the techniques automati
cally compare the array input parameters with data-types
accepted by methods defined within the object-oriented
environment. Based on this comparison, the invention
selects a method that best accepts the input arrays. The
invention, therefore, allows a user to easily invoke methods
from external objects, such as Java objects, directly from the
technical computing environment of the mathematical tool.

35 Claims, 5 Drawing Sheets

Java Environment
120

11
Java Native lntertace I --- 126

Converter I A~ument I
~ --

114 Selection Support Classes I
124 II Prefe~nce II Conve~ion I Table Table Java Virtual Machine

116 118 122

I Comman1~terpreter I Java Object~
110

I Calculation Workspace I
106

US 7,051,338 Bl
Page 2

U.S. PATENT DOCUMENTS 6,282,699 B1 * 8/2001 Zhang eta!. 717/109

6,061,721 A
6,230,160 B1

5/2000 Ismael et a!. 709/223
5/2001 Chan eta!. 707/103 X

6,289,395 B1 9/2001 Apte eta!. 709/318

* cited by examiner

U.S. Patent May 23,2006 Sheet 1 of 5 US 7,051,338 Bl

Mathematical Tool
102 -·\

Technical Computing Environment
108 Java Environment

Signature. Selector 120
112 Java Native Interface

Argument ,., 126 .-."'
Converter

.,.
~

........
114 Selection Support Classes "> ... 1- 124

Preference Conversion
Table Table Java Virtual Machine
116 118 122

C_avaObjec~ Command Interpreter 110
104

~
Calculation Workspace

106

Fig. I

U.S. Patent May 23,2006 Sheet 2 of 5 US 7,051,338 Bl

200~

Retrieve a list of method ____r-signatures having similar method
203

names to a target method

~ v-For each signature,
205

calculate a fitness ranking:

v Calculate a fitness value -
207

for each parameter
defined by the signature

~ v-Update the fitness value -based on distance

209

in class hierarchy

~ v Compare dimensions and --
211

update the fitness value

~
l! Calculate the signature fitness

ranking based on the fitness ~

213

values for the parameters

!
l--/ Select one of the signatures

according to the calculated

215

signature fitness ran kings

~
L-1 Invoke method corresponding

217

to the selected signature

Fig. 2

U.S. Patent May 23,2006 Sheet 3 of 5 US 7,051,338 Bl

116

\
Mathematical

Tool Java Data Type

3 10 Data Type Best Fit Worst Fit

l logical boolean

double double float long int short byte boolean

single float double

char String char

array of String
char arrays

array of arrays Object

unsigned byte short int long float double
8-bit int

unsigned short int long float double
16-bit int

unsigned int long float double
32-bit int

signed byte short int long float double
8-bit int

signed short int long float double
16-bit int

signed int long float double
32-bit int

java Object

Fig. 3

U.S. Patent May 23,2006 Sheet 4 of 5 US 7,051,338 Bl

118

\
Java Data

Mathematical Tool Mathematical Tool
Data Type Data Type

Type (for scalar Java types) (for array Java types)

boolean
double precision

boolean floating point

byte
double precision

8-bit signed integer floating point

char char char (16-bit)

short
double precision 16-bit signed integer floating point

int double precision
32-bit signed integer floating point

long
double precision double precision

floating point floating point

float double precision double precision
floating point floating point

double double precision double precision
floating point floating point

java.lang.String
char array char array Object

Java object Reference to Reference to
Java object Java object

Fig. 4

500~

System Memory, 513 Processor

ROM, 514 512

I BIOS, 517,
Bus Controller

519
RAM, 515

Software
Applications, 536 I

Operating Internal Hard Floppy Disk
Systems, 535 Disk, 500 Drive, 521

Device
Drivers, 537

551

g • 5

Video
Adapter, 512

I
Optical Drive Input/Output Network

522 Ports, 528 Interface, 553

~ Y Modem 529
~0

552 542
c:::::::::J

'-- Lc=::=JJD 1\An__,..--

Display
524

Local Area
Network

55•

_/

Remote
!

Computer, 549 .

e
•
00
•
~
~
~
~ = ~

~
~
N
(.H
~

N
0
0
0\

rFJ

=('D
('D
Ul

0
Ul

d
rJl

"'--...1 = u.
""""' w
w
00

= """"'

US 7,051,338 Bl
1

METHOD AND SYSTEM FOR ACCESSING
EXTERNALLY-DEFINED OBJECTS FROM

AN ARRAY-BASED MATHEMATICAL
COMPUTING ENVIRONMENT

TECHNICAL FIELD

The invention relates generally to mathematical computer
programs.

2
When a method is invoked from the computing environ
ment, the techniques automatically compare the input
parameters, which are typically arrays, with data types
accepted by methods defined within the object-oriented
environment. Based on this comparison, the invention auto
matically selects a method that best accepts the input arrays.
The invention, therefore, allows a user to easily invoke
methods from external objects, such as Java objects, directly
from the technical computing environment of the math-

10 ematical tool.
BACKGROUND In one aspect, the invention is directed to a technique for

invoking a method defined within an object-oriented envi
ronment. According to the technique, a list of method
signatures corresponding to a particular class and method

A conventional mathematical tool, such as such as MAT
LAB™ from Math Works™, Inc., of Natick, Mass., provides
a comprehensive technical computing environment for per
forming numerical linear algebraic calculations, solving
ordinary differential equations, analyzing data, and visual
izing solutions to complex mathematical formulas by gen
erating graphs or other images. The computing environment
often provides a high-level programming language that
includes a variety of operators and programming commands.

15 name is retrieved from the object-oriented environment.
Each signature uniquely identifies a corresponding method
and lists the method's name and any data types received by
the method. After the list is retrieved, the method signatures
are ranked by comparing the data types of the signatures

20 with the data types of the input parameters received from the
technical computing environment of the mathematical tool.
Based on the ranking, one of the method signatures is
selected and the corresponding method within the object
oriented environment is invoked unless no suitable method

Engineers use such mathematical tools for a variety of
applications such as designing complex mechanical and
electrical control systems, solving optimization problems
and performing statistical analysis. In addition, engineers 25

often use mathematical tools in conjunction with a simula
tion tool for defining and simulating complex mathematical
models. For example, manufacturers of mechanical and
electronic systems, e.g., cars and integrated circuits, use
simulation tools to help them design their products. These 30

tools allow designers to build and test mathematical models
of their systems before building a physical prototype. Com
mercial simulation models can be extremely complex and
may include thousands of interconnected functional blocks.
Using a simulation tool, a designer can simulate and observe 35

changes in a model over a period of time, typically repre
sented as a series of discrete instants, called time steps, such
as 1 millisecond, 1 second, 2 hours, etc. Starting from a set
of initial conditions, specified by the designer, the simulation
tool drives the model and determines the state of the model 40

at various time steps.
Most technical computing environments provided by con

ventional mathematical tools are "array-based" such that
data types are primarily represented as two-dimensional
arrays. In other words, these computing environments do not 45

distinguish between a scalar, a vector, or a matrix. As a
result, it is difficult to interface the technical computing
environment to an object-oriented environment, such as
Java. Because the technical computing environment does
not distinguish between scalars, vectors and matrices, it is 50

difficult to invoke methods that have the same name and are
only distinguishable by the data types of their input param
eters. In addition, it is difficult to translate data from the
array-based computing environment of the mathematical
tool to the object-oriented environment. 55

SUMMARY OF THE INVENTION

is found, in which case an error condition is raised.
In another aspect, the invention is directed to a computer

program, such as a mathematical tool, having instructions
suitable for causing a programmable processor to retrieve a
list of method signatures from the object-oriented environ
ment. The computer program ranks the method signatures,
selects one of the method signatures according to the rank-
ing; and invokes the corresponding method within the
object-oriented environment corresponding to the method
signature.

In yet another aspect, the invention is directed to a
computer system having an object-oriented environment and
a mathematical tool executing thereon. The object-oriented
environment includes an interface for identifying methods
provided by objects defined within the object-oriented envi
ronment. The mathematical tool includes a calculation
workspace, a command interpreter, and a signature selector.
When the command interpreter encounters a reference to a
method implemented by an object defined within the object
oriented environment, the command interpreter instructs the
signature selector to access the interface of the object
oriented environment to retrieve and rank a list of signatures
corresponding to methods defined within the object-oriented
environment. The command interpreter invokes one of the
methods as a function of the ranking.

The details of various embodiments of the invention are
set forth in the accompanying drawings and the description
below. Other features and advantages of the invention will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

In general, the invention provides a method and appara
tus, including a computer program apparatus, which facili
tate invoking methods of objects defined within an object
oriented environment from a technical computing
environment provided by a mathematical tool. In particular,
the invention is directed to techniques for invoking methods

FIG. 1 is a block diagram illustrating a system in which
a mathematical tool invokes a method of an object defined

60 within an object-oriented computing environment.

of objects defined in an object-oriented environment, such as 65

a Java environment, from an array-based computing envi
ronment often used in conventional mathematical tools.

FIG. 2 is a flow chart illustrating one embodiment of a
process, suitable for implementation in a computer program,
in which the mathematical tool invokes the method of the
object.

FIG. 3 illustrates one embodiment of a two-dimensional
table that stores data types supported by an object-oriented
environment ordered by preference.

US 7,051,338 Bl
3

FIG. 4 illustrates one embodiment of a conversion table
suitable for converting data types from an object-oriented
environment to an array-based computing environment of a
mathematical tool.

FIG. 5 is a block diagram illustrating a programmable
processing system suitable for implementing and perform
ing the apparatus and methods of the invention.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating a system 100 in
which mathematical tool 102 invokes an object 110 in an
object-oriented environment such as Java environment 120.
Mathematical tool1 02 provides a technical computing en vi
ronment 108 for performing a wide variety of numerical
calculations and data analysis operations. Computing envi
ronment 108 of mathematical tool102 is "array-based" such
that most data types are represented as arrays of at least two
dimensions.

Computing environment 108 of mathematical tool102 is

4
system or hardware and represent any class that virtual
machine 122 can see within its scope of execution.

The invention allows a user to easily invoke methods of
objects 110 from mathematical tool102. This allows the user
to exploit the rich functionality offered by Java environment
120. For example, the user can invoke Java objects 110 in
order to quickly design a graphical user interface (GUI). In
addition, the user can use Java objects 110, such as timers
and events, within calculation workspace 106. For example,

10 the user can define and access Java objects 110 from within
calculation workspace 106 as follows:

jstr=java.lang.String('Hello World');
imFilter.setPixels(5, 5, 100, 100, em, X, 0, 100);
In order for mathematical tool102 to provide a way for

15 users to invoke objects 110 and their corresponding meth
ods, command interpreter 104 invokes signature selector 112
that automatically determines the appropriate signature of
the requested method for invocation. When the user invokes
a method provided by one of the objects 110, command

20 interpreter 105 passes signature selector 112 a name of the
method and any input parameters to pass to the method.
Because the input parameters are defined in native data types
supported by technical computing environment 108, the
parameters are often in the form of an array having any

an interpreted environment that supports a high-level pro
gramming language having a variety of operators and pro
gramming commands. As the user enters instructions, com
mand interpreter 104 interactively interprets and executes
each instruction. Calculation workspace 106 provides a
storage area for variables, input data, and resultant data. The
user can, for example, define a square matrix within calcu
lation workspace 106 using a single command. The user can
directly manipulate the matrix, using one command to find

30
its inverse, another command to find its transpose, or another
command to learn its determinant.

25 nnmber of dimensions. As described in detail below, signa
ture selector 112 automatically selects a method from object
oriented environment 120 that is best able receive the data
from the array inputs.

More specifically, signature selector 112 uses a set of
classes within Java environment 120, referred to herein as
selection support classes 124, to interrogate Java environ
ment 120. Signature selector 112 passes selection support
classes 124 a method name and the name of its correspond
ing class. Based on the class name and method name,

In an object-oriented environment, such as Java environ
ment 120, objects 110 are modules of computer code that
specifY the data types of a data structure, and also the kinds
of operations (or "methods") that can be applied to the data
structure. Each object 110 has a corresponding "class" that
may be thought of as a prototype that defines the data
structures and methods common to all objects of a certain
kind. Objects 110 are created at run-time in accordance with
their class definition. Thus, each object 110 is a unique
instance, referred to as an instantiation, of its corresponding
class.

35 selection support classes 124 determine a set of matching
method signatures available within object-oriented environ
ment 120. In order to communicate with selection support
classes 124, signature selector 112 uses Java native interface
(JNI) 126, which is a programming interface, or API, that

40 allows programs written inC or C++ to invoke Java methods
based on a method signature. Signature selector 112 deter
mines and returns the signature of the method available
within object-oriented environment 120 that is best able to
receive the data from the array inputs. If no suitable methods Within a class, each method having the same name must

have a different number of inputs, or one or more inputs
must differ in data type. Each method has a "signature",
which is a unique representation of the method's name and
the nnmber and type of each input and output parameter of
the method. The method signature is used to distinguish
between methods having the same name. For example, in a 50
Java signature, the data types boolean, byte, char, short, int,
long, float, and double, are represented in the signature by a
single letter: Z, B, C, S, I, J, F, and D, respectively. For all
other data types, the signature is an expression of the form
"Lclass-name;" where class-name is the name of the corre- 55
sponding Java class but with dots replaced by the slash
character. A void return data type is indicated as a V. Thus,
the signature for the method:

void sampleMethod(int arg1, double arg2, java
.lang.String arg3)

has a corresponding signature:

(IDLjava/lang/String;)V

At the core of Java environment 120 is virtual machine
122, which provides a self-contained operating environment
that is machine independent. Java objects 110 execute within
virtual machine 122 regardless of the underlying operating

45 are found, signature selector 112 returns a null signature.
Command interpreter 104 uses selected signature 112 to
directly invoke the corresponding object 110 and execute the
desired method.

FIG. 2 is a flow chart illustrating one embodiment of a
process 200, suitable for implementation in a computer
program application, in which mathematical tool102 (FIG.
1) invokes a method of a Java object 110 defined within Java
environment 120. When the user seeks to invoke a method
provided by one of the Java objects 110, command inter-
preter 104 invokes signature selector 112 to automatically
determine the appropriate signature of the requested method.
Selection support classes 124 interrogate java environment
120 and compiles a list of method signatures having names
similar to the requested method and having a matching class

60 name (step 203).
Next, signature selector 112 calculates a "fitness ranking"

for each method signature of the list (step 205). The fitness
ranking indicates how well the input data types of each
method match the input parameters passed from calculation

65 workspace 106, i.e., how well the method is able to receive
the data from the input arrays. In order to calculate a
signature's fitness ranking, signature selector 112 generates

US 7,051,338 Bl
5

a "preference value" for each data type specified by the
signature by comparing each data type with the input
parameters received from workspace 106 (step 207). For
each data type specified by the signature, signature selector
112 references preference table 116, which maps data types
of computing environment 108 to acceptable data types of
Java environment 120 ordered by preference.

6
Fitness_Ranking because, in selection preference table
116, the data type long is third of the data types
preferred for an input data type array of doubles. Next,
signature selector 112 determines that the data type
array of char is in the most preferred data type for an
input data type of array of characters and, therefore,
does not adjust Fitness_Ranking.

Because the parameters are not objects, signature selector
112 does not adjust Fitness_Ranking based on differences in

FIG. 3 illustrates one embodiment of a two-dimensional
preference table 116. Each row of selection preference table
116 corresponds to a unique array type supported by com
puting environment 108. For example, row 310 corresponds
to input parameters of type array of doubles and lists
preferred data types for Java environment 120 as double,
float, long, integer, byte and boolean ordered from best fit to
worst fit. Thus, for input parameters of type array of doubles,
signature selector 112 generates a preference value by
determining the location of the corresponding signature data
type within row 310. If the corresponding data type defined

10 class level. Next, signature selector 112 considers the dimen
sions and determines that the first data type of the signature,
long, is a perfect match dimensionally for a 1x1 array of
doubles. Thus, signature selector 112 does not update Fit
ness_Ranking. However, the two dimensional array of char

15 is one dimension greater than the 15x1 array of characters,
so signature selector 112 adjusts Fitness_Ranking by one,
resulting in a final value for Fitness_Ranking of 17.

After calculating fitness rankings for each potential sig
nature, signature selector 112 selects the signature having by the signature is not found within row 310 then signature

selector 112 rejects the signature from the list.
In calculating the preference value for an input data type

defined by the signature, signature selector 112 also consid-

20 the highest ranking, unless all of the signatures have been
rejected as being unsuitable (step 215). Signature selector
112 returns the selected signature to command interpreter
104. ers whether the data type of the signature and the corre

sponding input parameter received from calculation work
space 106 are both classes. If so, signature selector 112 25

updates the preference value for that signature data type as
a function of how many levels separate the two classes
within a class hierarchy (step 209).

Next, signature selector 112 compares the number of
dimensions of the input array received from calculation 30

workspace 106 against the number of dimensions of the Java
input data type defined by the current signature (step 211).
If the number of dimensions of the input array is larger than
the number of dimensions of the Java data type, the signa
ture is rejected because the input array caunot fit into any 35

Java parameter that can be passed to the Java method. If the
number of dimensions of the Java data type is larger than
that of the input array, the input array is promoted by adding
dimensions of length 1. However, because the match is not
perfect, the corresponding preference value is adjusted in 40

proportion to the degree of difference between the number of
dimensions of the signature data type and the number of
dimensions of the input array. In one implementation, sig
nature selector 112 does not count dimensions of length 1
when determining the number of dimensions. For example, 45

a 5x1 array is considered to have a single dimension.
After calculating a preference value for each data type

specified by the signature, signature selector 112 calculates
the fitness ranking for the signature according to the indi
vidual preference values for the data types defined by the 50

signature (step 213). It should be noted, however, that
signature selector 112 need not explicitly store the calculated
preference value for each parameter of the signature. To the
contrary, signature selector 112 can calculate the fitness
ranking for the signature while iterating over the data types 55

defined by the signature. In one implementation, signature
selector 112 initializes a fitness ranking, Fitness_Ranking, to
a large number, such as 20, and updates the ranking for each
parameter of the current method signature. For example,
consider the following method invoked from within work- 60

space 106:
f=java0bject.example_method(parameter1, parameter2);
Assume parameter! of the method is a 1x1 array of

doubles and parameter2 is a 15x1 array of characters.
Consider a method signature defining a first data type 65

long and a second data type array of char having two
dimensions. Signature selector 112 subtracts two from

Upon receiving a valid signature, command interpreter
104 invokes the corresponding Java method within object
oriented environment 120 (step 217). Invoking the Java
method has two parts: (1) converting input array parameters
from computing environment 108 to input parameters
defined by the signature, and (2) converting parameters
returned by the method into suitable data types defined
within computing environment 108.

In converting an input array to a data type defined by the
signature, argument converter 114 of signature selector 112
generates a Java variable according to the signature and
copies data from the input array to newly created variable.
Signature selector 112 returns the newly created variable to
command interpreter 104 for use when invoking the corre
sponding method.

If the invoked method has a return value, signature
selector 112 examines the signature and determines the
dimensions of the return value. Argument converter 114 of
signature selector 112 then references conversion table 118
and creates a return variable within workspace 106 for
holding the return data. FIG. 4 illustrates one embodiment of
a conversion table 118 suitable for converting data types
from an object-oriented environment, such as Java environ-
ment 120, to array-based computing environment 108 of
mathematical tool102. If the return parameter is scalar, then
the return variable primarily defaults to a 1 x1 array of type
double precision floating point. If the Java return value is a
rectangular multi-dimensional array, signature selector 112
creates an array having the same number of dimensions as
the return value and having the same data type. If, however,
the return value is an array of arrays in which the iuner
arrays have different lengths, then signature selector 112
creates an array of arrays because it carmot create a single,
rectangular array. Similarly, signature selector 112 applies
this technique for return values of having greater dimen
sions. After creating the return variable in workspace 106,
signature selector 112 copies data from the return parameters
directly into the return variable and passes the return vari-
able to command interpreter 104.

Various embodiments have been described of a method
and system that facilitates invoking methods of objects
defined within an object-oriented environment from an
array-based technical computing environment often used in
conventional mathematical tools. The invention can be

US 7,051,338 Bl
7

implemented in digital electronic circuitry, or in computer
hardware, firmware, software, or in combinations of them.
Apparatus of the invention can be implemented in a com
puter program product tangibly embodied in a machine
readable storage device for execution by a programmable
processor; and method steps of the invention can be per
formed by a programmable processor executing a program

8
FIG. 5) include track pads, track balls, joysticks, data gloves,
head trackers, and other devices suitable for positioning a
cursor on the video display 524.

As shown in FIG. 5, the system 500 also includes a
modem 529. Although illustrated in FIG. 5 as external to the
system 500, those of ordinary skill in the art will quickly
recognize that the modem 529 may also be internal to the
system 500. The modem 529 is typically used to commu
nicate over wide area networks (not shown), such as the

of instructions to perform functions of the invention by
operating on input data and generating output. The invention
can be implemented advantageously in one or more com
puter programs that are executable within an operating
environment of a programmable system including at least
one programmable processor (computer) coupled to receive
data and instructions from, and to transmit data and instruc
tions to, a data storage system, at least one input device, and
at least one output device.

10 global Internet. Modem 529 may be connected to a network
using either a wired or wireless connection. System 500 is
coupled to remote computer 549 via local area network 550.

Software applications 536 and data are typically stored
via one of the memory storage devices, which may include

An example of one such type of computer is shown in
FIG. 5, which shows a block diagram of a programmable
processing system (system) 500 suitable for implementing

15 the hard disk 520, floppy disk 551, CD-ROM 552 and are
copied to RAM 515 for execution. In one embodiment,
however, software applications 536 are stored in ROM 514
and are copied to RAM 515 for execution or are executed

or performing the apparatus or methods of the invention. As 20

shown in FIG. 5, the system 500 includes a processor 512
that in one embodiment belongs to the PENTIUM® family

directly from ROM 514.
In general, the operating system 535 executes software

applications 536 and carries out instructions issued by the
user. For example, when the user wants to load a software
application 536, the operating system 535 interprets the
instruction and causes the processor 512 to load software

25 application 536 into RAM 515 from either the hard disk 520
or the optical disk 552. Once one of the software applica
tions 536 is loaded into the RAM 515, it can be used by the
processor 512. In case of large software applications 536,
processor 512 loads various portions of program modules

of microprocessors manufactured by the Intel Corporation of
Santa Clara, Calif. However, it should be understood that the
invention can be implemented on computers based upon
other microprocessors, such as the MIPS® family of micro
processors from the Silicon Graphics Corporation, the
POWERPC® family of microprocessors from both the
Motorola Corporation and the IBM Corporation, the PRE
CISION ARCHITECTURE® family of microprocessors
from the Hewlett-Packard Company, the SPARC® family of
microprocessors from the Sun Microsystems Corporation, or
the ALPHA® family of microprocessors from the Compaq
Computer Corporation. System 500 represents any server,
personal computer, laptop or even a battery-powered, 35

pocket-sized, mobile computer known as a hand-held PC or
personal digital assistant (PDA).

30 into RAM 515 as needed.

System 500 includes system memory 513 (including read
only memory (ROM) 514 and random access memory
(RAM) 515, which is connected to the processor 512 by a 40

system data/address bus 516. ROM 514 represents any
device that is primarily read-only including electrically
erasable programmable read-only memory (EEPROM),
flash memory, etc. RAM 515 represents any random access
memory such as Synchronous Dynamic Random Access 45

Memory.
Within the system 500, input/output bus 518 is connected

to the data/address bus 516 via bus controller 519. In one
embodiment, input/output bus 518 is implemented as a
standard Peripheral Component Interconnect (PCI) bus. The 50

bus controller 519 examines all signals from the processor
512 to route the signals to the appropriate bus. Signals
between the processor 512 and the system memory 513 are
merely passed through the bus controller 519. However,
signals from the processor 512 intended for devices other 55

than system memory 513 are routed onto the input/output
bus 518.

Various devices are connected to the input/output bus 518
including hard disk drive 520, floppy drive 521 that is used
to read floppy disk 551, and optical drive 522, such as a 60

CD-ROM drive that is used to read an optical disk 552. The
video display 524 or other kind of display device is con
nected to the input/output bus 518 via a video adapter 525.
Users enter commands and information into the system 500
by using a keyboard 540 and/or pointing device, such as a 65

mouse 542, which are connected to bus 518 via input/output
ports 528. Other types of pointing devices (not shown in

The Basic Input/Output System (BIOS) 517 for the sys
tem 500 is stored in ROM 514 and is loaded into RAM 515
upon booting. Those skilled in the art will recognize that the
BIOS 517 is a set of basic executable routines that have
conventionally helped to transfer information between the
computing resources within the system 500. Operating sys-
tem 535 or other software applications 536 use these low
level service routines. In one embodiment system 500
includes a registry (not shown) that is a system database that
holds configuration information for system 500. For
example, the Windows® operating system by Microsoft
Corporation of Redmond, Wash., maintains the registry in
two hidden files, called USER.DAT and SYSTEM.DAT,
located on a permanent storage device such as an internal
disk.

The invention has been described in terms of particular
embodiments. Other embodiments are within the scope of
the following claims. For example, the steps of the invention
can be performed in a different order and still achieve
desirable results. This application is intended to cover any
adaptation or variation of the present invention. It is
intended that this invention be limited only by the claims and
equivalents thereof.

What is claimed is:
1. A method for invoking a method defined with an

object-oriented computing environment comprising:
retrieving a set of method signatures for a method refer

enced in a requested method invocation, where each
method signature corresponds to a method provided by
an object within an object-oriented environment, and
further wherein each signature includes a method name
and lists any data types of input parameters to be
received by the corresponding method;

comparing the data types of input parameters of each
method represented by the signatures to data types of
input parameters passed by the requested method invo-

US 7,051,338 Bl
9

cation to determine suitability of each method to
receive input parameters passed by the requested
method invocation;

ranking the method signatures based on the determined
suitability of each method represented by the signatures
to receive the input parameters passed by the requested
method invocation;

selecting one of the method signatures according to the
ranking; and

10
converting return values from the method to data types

supported by the computing environment.
13. The method of claim 1, wherein the object-oriented

environment includes a virtual machine, and further wherein
invoking the method includes interpreting the method via
the virtual machine.

14. The method of claim 1, wherein each signature
includes a method name comprising the name of the method
in the requested method invocation, and wherein each
method represented by the signature corresponds to a
method provided by the same object.

invoking, in response to the requested method invocation, 10

the method of the object-oriented computing environ
ment corresponding to the selected method signature;
wherein the request method invocation is requested by

15. A computer program, tangibly stored on a computer
readable medium, for invoking a method defined within an
object-oriented environment, the computer program com-

15 prising instructions operable to cause a programmable pro-
an array-based computing environment provided by a
mathematical tool.

2. The method of claim 1, wherein ranking the method
signatures comprises calculating a fitness ranking for each
signature, the fitness ranking representative of a level of
suitability of the data types of the input parameters of the
method represented by the signature to use the input param- 20

eters passed by the requested method invocation.
3. The method of claim 2, wherein calculating a fitness

ranking for each signature includes generating a preference
value for each data type of the signature and adjusting the
fitness ranking of the corresponding signature as a function 25

of the comparison.
4. The method of claim 2, wherein calculating a fitness

ranking for each signature includes calculating a difference
in a number of dimensions between the signature data type
and the input parameter received from the computing envi- 30

ronment.
5. The method of claim 4, wherein the data structure is a

two-dimensional array storing, along a first dimension, data
types supported by the object-oriented environment ranked
according to preference, and further wherein a second 35

dimension of the array corresponds to data types supported
by the array-based computing environment.

6. The method of claim 5, wherein the virtual machine is
a Java virtual machine.

cessor to:
retrieve a set of method signatures for a method refer

enced in a requested method invocation, where each
method signature corresponds to a method provided by
an object within an object-oriented environment, and
further wherein each signature includes a method name
and a data type for each input parameter received by the
corresponding method;

compare the data types of each input parameter of each
method represented by the signatures to data types of
input parameters passed by the requested method invo
cation to determine suitability of each method to
receive the input parameters passed by the requested
method invocation;

rank the method signatures based on the determined
suitability of each method represented by the signatures
to receive the input parameters passed by the requested
method invocation;

select one of the method signatures according to the
ranking; and

invoke, in response to the requested method invocation,
the method of the object-oriented computing environ
ment corresponding to the selected method signature;
wherein the request method invocation is requested by
an array-based computing environment provided by a
mathematical tool.

16. The computer program of claim 15, wherein the
computer program ranks the method signatures by calculat-

7. The computer program of claim 6, wherein the com- 40

puter program invokes the target method by converting the
input parameters to data types supported by the object
oriented environment and converting return values from the
method to data types supported by the computing environ
ment. 45 ing a fitness ranking for each signature, the fitness ranking

representative of a level of suitability of the data types of the
input parameters of the method represented by the signature
to use the input parameters passed by the requested method
invocation.

8. The computer program of claim 6, wherein the com
puter program invokes the method by interpreting the target
method with a virtual machine.

9. The computer program of claim 8, wherein the virtual
machine is a Java virtual machine. 50

10. The method of claim 1, wherein, for the signature data
types that are superclasses of the data types of the input
parameters received from the computing environment, cal
culating the fitness ranking for each signature includes
calculating a difference in level within a class hierarchy for 55

the signature data type and the data type of the correspond
ing input parameter received from the computing environ
ment.

17. The computer program of claim 16, wherein the
computer program calculates a fitness ranking for each
signature by generating a preference value for each data type
of the signature and adjusting the fitness ranking of the
corresponding signature as a function of the comparison.

18. The computer program of claim 15, for the signature
data types that are superclasses of the data types of the input
parameters received from the computing environment, the
computer program calculates the fitness ranking for each
signature by calculating a difference in level within a class 11. The method of claim 1, wherein comparing each data

type of the signature to the data type of the corresponding
input parameter includes accessing a data structure storing
data types of the object-oriented environment ordered by
preference.

60 hierarchy for the signature data type and the data type of the
corresponding input parameter received from the computing

12. The method of claim 1, wherein invoking the method
includes:

converting the input parameters to data types supported
by the object-oriented environment; and

environment.
19. The computer program of claim 15, wherein the

computer program calculates a fitness-ranking for each
65 signature by calculating a difference in a number of dimen

sions between the signature data type and the input param
eter received from the computing environment.

US 7,051,338 Bl
11

20. The computer program of claim 15, wherein the
computer program compares each data type of the signature
to the data type of the corresponding input parameter
includes by accessing a data structure storing data types of
the object-oriented environment ordered by preference.

12
26. The system of claim 25, wherein the signature selector

calculates a fitness ranking for each signature by:
comparing each data type of an input parameter listed by

the signature to a data type of a corresponding input
parameter received from the requested method invoca
tion; and

adjusting the fitness ranking of the corresponding signa
ture as a function of the comparison.

27. The system of claim 23, wherein for at least one

21. The computer program of claim 20, wherein the data
structure is a two-dimensional array storing, along a first
dimension, data types supported by the object-oriented
environment ranked according to preference, and further
wherein a second dimension corresponds to data types
supported by the array-based computing environment.

10 method signature, the signature selector ranks the method
signature by calculating a difference in level within a class
hierarchy for the signature data type and the data type of
corresponding input parameter received from the computing

22. The computer program of claim 15, wherein each
signature includes a method name comprising the name of
the method in the requested method invocation, and wherein
each method represented by the signature corresponds to a 15

method provided by the same object.
23. A system comprising:
an object-oriented environment operating within a com

puter, wherein the object-oriented environment
includes an interface for identifYing methods provided 20

by objects within the object-oriented environment; and
a technical computing environment comprising: a calcu

lation workspace; a command interpreter; and
a signature selector, wherein when the command inter

preter encounters within the calculation workspace a 25

requested method invocation comprising a reference to
a method implemented by an object defined within the
object-oriented environment, the command interpreter
instructs the signature selector to access the interface of
the object-oriented environment to retrieve and rank a 30

list of signatures corresponding to the method refer
enced in the requested method invocation, wherein the
command interpreter ranks the method signatures
based on suitability of data types of input parameters of
each method represented by the signatures to receive 35

data types of input parameters passed by the requested
method invocation and invokes in the object-oriented
environment one of the methods represented by one of
the signatures selected according to the ranking;
wherein the request method invocation is requested by 40

an array-based computing environment provided by a
mathematical tool.

24. The system of claim 23, wherein the technical com
puting environment is provided by a mathematical tool
executing on the computer.

25. The system of claim 23, wherein the signature selector
ranks the method signatures by calculating a fitness ranking
for each signature, the fitness ranking representative of a
level of suitability of the data types of the input parameters

45

of the method represented by the signature to use the input so
parameters passed by the requested method invocation.

environment.
28. The system of claim 23, wherein the signature selector

determines a preference value for each data type included in
the method signatures; and further wherein the computer
program calculates the preference value of each signature
according to the preference values for the data types
included in the signature.

29. The system of claim 23, wherein the signature selector
includes a two-dimensional array, wherein along a first
dimension the array stores data types supported by the first
operating environment ranked according to preference, and
further wherein a second dimension corresponds to data
types supported by the computing environment.

30. The system of claim 23, wherein the signature selector
includes conversion tables to convert the input parameters to
data types supported by the object-oriented environment and
to convert return values from the method to data types
supported by the computing environment.

31. The system of claim 23, wherein the object-oriented
environment includes a virtual machine for interpreting the
invoked method.

32. The system of claim 31, wherein the virtual machine
is a Java virtual machine.

33. The system of claim 23, wherein the interface is a Java
Native Interface (JNI).

34. The system of claim 23, wherein for at least one
method signature, the signature selector ranks the method
signature by calculating a difference in a number of dimen
sions between the signature data type and the input param
eter received from the computing environment.

35. The system of claim 23, wherein each signature
includes a method name comprising the name of the method
in the requested method invocation, and wherein each
method represented by the signature corresponds to a
method provided by the same object.

* * * * *

