
Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page2 of 21

(12) United States Patent
van Rietschote

(54) DISASTER RECOVERY AND BACKUP
USING VIRTUAL MACHINES

(75) Inventor: Hans F. van Rietschote, Sunnyvale,
CA (US)

(73) Assignee: VERITAS Operating Corporation,
Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 234 days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 101109,186

(22) Filed: Mar. 28, 2002

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 7111161; 714/8; 714/13;
714115; 714116; 714/20

(58) Field of Classification Search 709/104,

(56)

709/106; 711/6,156,161, 165; 714/6,13,
714115, 16,20

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,912,628 A * 311990 Briggs 718/100
4,969,092 A 1111990 Shorter
5,257,386 A 1011993 Saito
5,408,617 A 411995 Yoshida
5,621,912 A 411997 Borruso et al.
5,852,724 A 1211998 Glenn, II et al.
5,872,931 A 211999 Chivaluri
5,944,782 A 811999 Noble et aI.
6,003,065 A 1211999 Yan et al.
6,029,166 A 212000 Mutalik et aI.
6,075,938 A 6/2000 Bugnion et al.
6,151,618 A 1112000 Wahbe et al.
6,230,246 Bl 5/2001 Lee et al.
6,298,390 Bl 1012001 Matena et al.

111111 111
US007093086Bl

(10) Patent No.: US 7,093,086 Bl
* Aug. 15, 2006 (45) Date of Patent:

6,298,428 Bl 10/2001 Munroe et al.
6,324,627 Bl 1112001 Kricheff et aI.
6,341,329 Bl 112002 LeCrone et al.
6,363,462 Bl 3/2002 Bergsten
6,370,646 Bl 4/2002 Goodman et al.
6,397,242 Bl 5/2002 Devine et al.
6,421,739 Bl * 7/2002 Holiday 719/330
6,438,642 Bl 8/2002 Shaath
6,493,811 Bl 12/2002 Blades et aI.
6,496,847 Bl 12/2002 Bugnion et aI.
6,542,909 Bl * 4/2003 Tamer et aI. 707/205

(Continued)

OTHER PUBLICATIONS

Veritas, "Executive Overview," Technical Overview, pp.
1-9.

(Continued)

Primary Examiner---Christian P. Chace
(74) Attorney, Agent, or Firm-Lawrence J. Merkel;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.c.

(57) ABSTRACT

One or more computer systems, a carrier medium, and a
method are provided for backing up virtual machines. The
backup may occur, e.g., to a backup medium or to a disaster
recovery site, in various embodiments. In one embodiment,
an apparatus includes a computer system configured to
execute at least a first virtual machine, wherein the computer
system is configured to: (i) capture a state of the first virtual
machine, the state corresponding to a point in time in the
execution of the first virtual machine; and (ii) copy at least
a portion of the state to a destination separate from a storage
device to which the first virtual machine is suspendable. A
carrier medium may include instructions which, when
executed, cause the above operation on the computer sys­
tem. The method may comprise the above highlighted
operations.

30 Claims, 8 Drawing Sheets

(End: Backup Program)

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page3 of 21

US 7,093,086 Bl
Page 2

u.s. PATENT DOCUMENTS

6,694,346 Bl* 212004 Arnan et al 718/104
6,718,538 Bl * 4/2004 Mathiske 717/129
6,757,778 Bl 6/2004 van Rietschote
6,763,440 Bl 7/2004 Traversat et al.
6,789,103 Bl 912004 Kim et al.
6,802,062 Bl * 1012004 Oyamada et al. 71811

200110016879 Al 8/2001 Sekiguchi et al.
200210049869 Al * 4/2002 Ohmura et al. 710/5
200210099753 Al * 7/2002 Hardin et al. 70911
200210129078 Al * 912002 Plaxton et al. 709/1
2003/0028861 Al * 212003 Wallman et al 717/128
2003/0033431 Al 212003 Shinomiya
2004/0010787 Al * 112004 Traut et al. 718/1

OTHER PUBLICATIONS

Kinshuk Govil, et aI., "Cellular Disco: Resource Manage­
ment Using Virtual Clusters on Shared-Memory Multipro­
cessors," 17th ACM Symposium on Operating Systems
Principles (SOSP'99), Published as Operating Systems
Review 34(5):154-169, Dec. 1999, pp. 154-169.
Edouard Bugnion, et aI., "Disco: Running Commodity
Operating Systems on Scalable Multiprocessors," Computer
Systems Laboratory, Stanford, CA, 33 pages.
"White Paper, GSX Server," VMware, Inc., Dec. 2000, pp.
1-9.
"Vmware GSX Serve, The Server Consolidation Solution,"
VMware, Inc., 2001, 2 pages.
"Manage Multiple Worlds., From Any Desktop," VMware,
Inc., 2000, 2 pages.
"VMware ESX Server, The Server Consolidation Solution
for High-Performance Environments," VMware, Inc., 2001,
2 pages.
Melinda Varian, "VM and the VM Community: Past,
Present, and Future," Operating Systems, Computing and
Information Technology, Princeton Univ., Aug. 1997, pp.
1-67.
Veritas, "Comparison: Microsoft Logical Disk Manager and
VERITAS Volume Manager for Windows," May 2001, 4
pages.
Veritas, " How VERITAS Volume Manager Complements
Hardware Raid in Microsoft Server Environments," May
2001, pp. 1-7.
Veritas, "VERITAS Volume Manager for Windows, Best
Practices," May 2001, pp. 1-7.
Barrie Sosinky, Ph.D., "The Business Value of Virtual
Volume Management, In Microsoft Window NT and Win­
dows 2000 Netowrks," VERITAS, A white paper for admin­
istrators and planners, Oct. 2001, pp. 1-12.
''BladeFram™ System Overview," Egenera, Inc., 2001 2
pages.
White Paper, "The Egenera™ Processing Area Network
(PAN) Architecture," Egenera, Inc., 2002, 20 pages.
White Paper, "Emerging Server Architectures," Egenera,
Inc., 2001, 12 pages.
White Paper, "Improving Data Center Perfromance,"
Egenera, Inc., 2001, 19 pages.
White Paper, "Guidelines for Effective E-Business
Infrastrucure Management," Egenera, Inc., 2001, 11 pages.
White Paper, "The Pros and Cons of Server Clustering in the
ASP Environment," Egenera, Inc., 2001, 10 pages.
Position Paper, "Taking Control of The Data Center,"
Egenera, Inc., 2001, 4 pages.
Position Paper, "The Linux Operating System: How Open
Source Software Makes Better Hardware," Egenera, Inc.,
2001, 2 pages.

"Solution Overview," TrueSAN Networks, Inc., 2002, 7
pages.
"Simics: A Full System Simulation Platform," Reprinted
with permission from Computer, Feb. 2002, © The Institute
of Electrical and Electronics Engieering, Inc., pp. 50-58.
"Introduction to Simics Full-System Simulator without
Equal," Virtutech, Jul. 8, 2002, 29 pages.
"The Technology of Virtual Machines," A Conneectix White
Paper, Connectix Corp., 2001, 13 pages.
"The Technology of Virtual PC," A Connecctix White Paper,
Connectix Corp., 2000, 12 pages.
"About LindowsOS," Lindows.com, http://www.lindows.
comllindows.comllindows_products_lindowsos.php,
2002, 2 pages.
"Savannah: This is a Savannah Admin Documentation,"
Savannah, Free Software Foundation, Inc.© 2000-2002, 31
pages.
"Virtuozzo Basics," Virtuozzo, http://www.sw-soft.comlenl
products/virtuozzo//basics/, © 1994-2002 SWsoft, printed
from web on Dec. 13, 2002, 2 pages.
"What is Virtual Environment(VE)?," SWsoft, http://www.
sw-softlenlproducts/virtuozzo/we/, © 1994-2002 SWsoft,
printed from web on Dec. 13, 2002, 2 pages.
"Products," Netraverse, Inc, 2002, http://www.netraverse.
comlproducts/index.php, printed from web on Dec. 13,
2002, 1 pages.
"NeTraverse Win4Lin 4.0-Workstation Edition,"
Netraverse, Inc, 2002, http://www.netraverse.com/products/
win4Iin40/, printed from web on Dec. 13, 2002, 1 page.
"Win4Lin Desktop 4.0," Netraverse, Inc, 2002, http://www.
netraverse.comlproducts/win4Iin40/benefits.php, printed
from web on Dec. 13, 2002, 1 page.
"Win4Lin Desktop 4.0," Netraverse, Inc, 2002, http://www.
netraverse.coml products/win4Iin40/features.php, printed
from web on Dec. 13, 2002, 2 page.
"Win4Lin Desktop 4.0," Netraverse, Inc, 2002, http://www.
netraverse.coml products/win4Iin40/requirements.php,
printed from web on Dec. 13, 2002, 2 page.
"Win4Lin Terminal Server 2.0," Netraverse, Inc, 2002,
http://www.netraverse.comlproducts/wts.printed from web
on Dec. 13, 2002, 1 page.
"Win4Lin Terminal Server 2.0," Netraverse, Inc, 2002,
http://www.netraverse.comlproducts/wts/benefits.php.
printed from web on Dec. 13, 2002, 1 page.
Win4Lin Terminal Server 2.0, Netraverse, Inc, 2002, http://
www.netraverse.comlproducts/wts/features.php.printed
from web on Dec. 13, 2002, 2 pages.
Win4Lin Terminal Server 2.0, Netraverse, Inc, 2002, http://
www.netraverse.comlproducts/wts/requirements.php.
printed from web on Dec. 13, 2002, 2 pages.
Win4Lin Terminal Server 2.0, Netraverse, Inc, 2002, http://
www.netraverse.comlproducts/wts/technology.php.printed
from web on Dec. 13, 2002, 1 page.
Win4Lin, Netraverse, Inc, 2002, http://www.netraverse.
coml support/docs/Win4Lin-whitepapers.php, printed from
web on Dec. 13, 2002, 5 pages.
"Virtual PC for Windows," Connectix, Version 5.0, 2002, 2
pages.
Dave Gardner, et aI., "WINE FAQ,", © David Gardner
1995-1998, printed from www.winehq.org, 13 pages.
"Winelib User's Guide," Winelib, www.winehq.org, 26
pages.
John R. Sheets, et al. "Wine User Guide," www.winehq.org,
pages 1-53.

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page4 of 21

US 7,093,086 Bl
Page 3

"Wine Developer's Guide," pages, www.winehq.org, 1-104.
VERITAS, "Veritas Volume Manager for Windows NT,"
Version 27, 2001, 4 pages.
VMware, Inc., "VMware Control Center," 2003, 3 pages.
Info World, Robert McMillan, "VMware Launches VMware
Control Center," 2003, 2 pages.
VMware, Inc., "VMware Control Center: Enterprise-class
Software to Manage and Control Your Virtual Machines,"
2003, 2 pages.
John Abbott, Enterprise Software, "VMware Heads Toward
Utility Computing With New Dynamic Management Tools,"
Jul. 1, 2003, 4 pages.
Dejan S. Milogicic, et aI., "Process Migration," Aug. 10,
1999, 49 pages.
Xi an-He Sun, et aI., "A Coordinated Approach for Process
Migration in Heterogeneous Environments," 1999, 12
pages.
Kasidit Chanchio, et aI., "Data Collection and Restoration
for Heterogeneous Process Migration," 1997, 6 pages.
Kasidit Chanchio, et aI., "A Protocol Design of Communi­
cation State Transfer for Distributed Computing," Publica­
tion date unknown, 4 pages.
SourceForge™, "Project: openMosix: Docnment Manager:
Display Document," 14 pages.
OpenMosix, "The openMosix HOWTO: Live FreeO or die
0," May 7, 2003, 3 pages.
OpenMosix, "openMosix Documentation Wiki - don't,"
May 7, 2003, 2 pages.
Sapuntzakis, et aI., "Optimizing the Migration of Virtual
Computers," Proceedings of the Fifth Symposinm on Oper­
ating Systems Design and Implementation, Dec. 2002, 14
pages.
Helfrich, et aI., "Internet Suspend/Resume," ISR Project
Home Page, 2003, 4 pages.

Kozuch, et aI., "Internet Suspend/Resume," IRP-TR-02-01,
Apr. 2002, Accepted to the Fourth IEEE Workshop on
Mobile Computing Systems and Applications, Callicoon,
NY, Jun. 2002, Intel Research, 9 pages.
Kozuch, et aI., "Efficient State Transfer for Internet Suspend/
Resume," IRP-TR-02-03, May 2002, Intel Research, 13
pages.
Tolia, et aI., "Using Content Addressing to Transfer Virtual
Machine State," IRP-TR -02-11, Summer 2002, Intel
Research, 11 pages.
Fliun, et aI., "Data Staging on Untrusted Surrogates," IRP­
TR-03-03, Mar. 2003, Intel Research, To Appear in the
Proceedings of the 2nd USENIX Conference on File and
Storage Technologies, San Francisco, 16 pages.
Tolia, et aI., "Opportunistic Use of Content Addressable
Storage for Distributed File Systems," IRP-TR-03-02, Jun.
2003, Intel Research, To Appear in the Proceedings of the
2003 USENIX Annual Technical Conference, San Antonio,
TX, 16 pages.
The Office Action mailed on Sep. 30, 2004 for U.S. Appl.
No. 10/109,406.
"Office Communication" for U.S. Appl. No. 10/108,882
mialed Jun. 24, 2005 (11 pages).
Office Action from U.S. Appl. No. 10/108,882, mailed Oct.
19, 2005.
Office Action from U.S. Appl. No. 10/109,406, mailed Aug.
19, 2005.
Office Action from U.S. Appl. No. 10/616,437, mailed Oct.
18, 2005.
U.S. Appl. No. 10/791,472.
Office Action from U.S. Appl. No. 10/108,882, mailed Dec.
23,2005.

* cited by examiner

C
ase3:11-cv-05310-E

M
C

 D
ocum

ent74-3 F
iled05/09/12 P

age5 of 21

r--
: Computer System 10

-
Virtual Machine 1 16A

I Application 1 28 I

I O/S 30 ~
Virtual

Machine

I
I
I
I
I
I
I
I
I
I
I
I

r 32
VM2 16B Console 16C

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I L __ _

I CPU

~34 ,36 I APP21
Storage L~

42

1 t
l VM Kernel 18

t

I Hardware 20

t
F-- 22 ~

-
VM1 Backup
Image Program

'\....:...·40 42~J

Fig. 1

Backup
Program

t
l

-"""

.-
r::--

Backup Medium 24

e
•
7Jl
•
~
~
~
~ = ~

~
~
~Ul

N
o
o
0\

rFJ

=­('D
('D
o
QO

d
rJl

",-.....1

= \C
W

-= QO
0'1

= """'"

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page6 of 21

u.s. Patent Aug. 15, 2006 Sheet 2 of 8

r-Yes

Optionally Commit
Changes in COW

files

Start: Backup Program

54

Suspend Virtual
Machine

y
No

Copy Virtual
Machine Image to
Backup Medium

Resume Virtual
Machine

US 7,093,086 Bl

50

52

56

58

Select Next Virtual
Machine

>----No
60

Yes ..
Backup progran0

Fig. 2

C
ase3:11-cv-05310-E

M
C

 D
ocum

ent74-3 F
iled05/09/12 P

age7 of 21

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Computer System lOA

VM1 16A

Application 1
28

t

VM2 J6B

~
_t

VMKemel 18A

Virtual
Machine

Console 16C

Checkpoint
Program 76

_t

~-~~~ -------,

I----------------------------~

: Computer System lOB
I

:--VM-1-16A-:
I I
I I
: Application I I

I 28 I
I - I

I :

Virtual
Machine

Console 16D

Recovery
Program 78

t
VM Kernel 18B

I
I Hardware 2QA Hardware .2.Q.J2
I
I
I

:~
I
I
I
I
I
I
I
I
I
I
I

J
22A

VM1 Image

,-Memory file 1Q. I
I Disk file n I
I COW file 14 I

I
I
L

'----- """'= 40

~

It:heckpoint L Program

76 7

Fig. 3

22B ~

72B I Recovery I
70B Program 78---_L-L_--. 74B -<::; ____ --l.

Mem2 I Disk2 I COW2 I

I Mem1 I,--lli~kl--: ,-COW(-:
~ s=70A~~72A-74A-~----

~----------------------------

e
•
7Jl
•
~
~
~
~ = ~

~
~
~Ul

N
o
o
0\

rFJ

=-('D
('D
(.H

0
QO

d
rJl

",-.....1

= \C
W

-= QO
0'1

= """'"

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page8 of 21

u.s. Patent Aug. 15, 2006 Sheet 4 of 8 US 7,093,086 Bl

Start: Checkpoint Program

80

82~1

84

...---yes----<

Optionally Commit
Changes in COW file and

Create New COW file

Yes ,.
Suspend Virtual

Machine

Copy Virtual
Machine Image to

DR System

No

Resume Virtual
Machine

Fig. 4

86

90

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page9 of 21

u.s. Patent Aug. 15,2006 Sheet 5 of 8

Start: Recovery Program

Select Desired
Checkpoint

Commit Any COW
File Changes for

Selected Checkpoint

Resume Virtual
Machine

End: Recovery Program

Fig. 5

US 7,093,086 Bl

-100

-102

~104

C
ase3:11-cv-05310-E

M
C

 D
ocum

ent74-3 F
iled05/09/12 P

age10 of 21

1---1
I Computer System 10 1
1 - 1
1
1
1
I
I
1
1
I
I
1

1
1
1

1

1
1

1

1
1

I
1

1
I
I
1
I
I
1
1
1
I
1
1
I
1
1
1
1
1
1
1
1

re:..

I

I

Virtual 11achine 1 16A

I Applicationl 28 II CPU r- 32

36
Virtual

I OIS 30 I [§ Machine
Console 16C

Storage
Backup

Memory I Memory ~
v- 34

Program
110 COW i'- 112

42---./

t t
VM Kernel 18.

t
Hardware 20

~

t 11,

22 .:::: -.....,
r--

VM1 Image 40 Backup
Backup Medium 24 Memory DiSkJ COW New COW Program

file 70 file]'2 file 74 file 74A 42---./ -

---~

Fig. 6

e
•
7Jl •
~
~
~
~ = ~

~
~
~Ul

N
o
o
0\

rFJ

=­('D
('D
0\

o
QO

d
rJl

",-.....1

= \C
W

-= QO
0'1

= """'"

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page11 of 21

u.s. Patent Aug. 15, 2006 Sheet 7 of 8

Start: Backup Program

Request Image Data
from VM Kernel

NO-------I"'-'

Yes

Yes---<

Optionally Commit
Changes in COW

files No

Copy Virtual
Machine Image to
Backup Medium

Signal Complete to
VMKernel

US 7,093,086 Bl

120

122

52

56

124

Select Next Virtual
Machine

>----No

60
Yes ..

Backup Program)

Fig. 7

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page12 of 21

u.s. Patent Aug. 15, 2006 Sheet 8 of 8

Yes--<

Create New COW
Files for Each
Virtual Disk

140

Start: VM Kernel

No

142

No

144

End: VM Kernel

Fig. 8

US 7,093,086 Bl

130

>----yes

Commit Memory COW
to Memory and Delete

Memory COW

Commit Writes to
Persistent Disks from

New COW Files

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page13 of 21

US 7,093,086 Bl
1

DISASTER RECOVERY AND BACKUP
USING VIRTUAL MACHINES

BACKGROUND OF THE INVENTION

1. Field of the Invention

2
SUMMARY OF THE INVENTION

One or more computer systems, a carrier medium, and a
method are provided for backing up virtual machines. The
backup may occur, e.g., to a backup medium or to a disaster
recovery site, in various embodiments. In one embodiment,
an apparatus includes a computer system configured to
execute at least a first virtual machine, wherein the computer
system is configured to: (i) capture a state of the first virtual

This invention is related to the field of computer systems
and, more particularly, to backup and disaster recovery
mechanisms in computer systems.

2. Description of the Related Art
10 machine, the state corresponding to a point in time in the

execution of the first virtual machine; and (ii) copy at least
a portion of the state to a destination separate from a storage
device to which the first virtual machine is suspendable. A
carrier medium may include instructions which, when

Computer systems, and their components, are subject to
various failures which may result in the loss of data. For
example, a storage device used in or by the computer system
may experience a failure (e.g. mechanical, electrical, mag­
netic, etc.) which may make any data stored on that storage
device unreadable. Erroneous software or hardware opera­
tion may corrupt the data stored on a storage device,
destroying the data stored on an otherwise properly func­
tioning storage device. Any component in the storage chain 20

between (and including) the storage device and the computer
system may experience failure (e.g. the storage device,
connectors (e.g. cables) between the storage device and
other circuitry, the network between the storage device and

15 executed, cause the above operation on the computer sys­
tem. The method may comprise the above highlighted

the accessing computer system (in some cases), etc.). 25

operations.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description makes reference to the
accompanying drawings, which are now briefly described.

FIG. 1 is a block diagram of one embodiment of a
computer system.

FIG. 2 is a flowchart illustrating operation of one embodi­
ment of a backup program shown in FIG. 1.

FIG. 3 is a block diagram of one embodiment of a pair of
computer systems, wherein one of the computer systems is
a disaster recovery site for the other computer system.

FIG. 4 is a flowchart illustrating operation of one embodi­
ment of a checkpoint program shown in FIG. 3

FIG. 5 is a flowchart illustrating operation of one embodi­
ment of a recovery program shown in FIG. 3.

To mitigate the risk oflosing data, computer system users
typically make backup copies of data stored on various
storage devices. Typically, backup software is installed on a
computer system and the backup may be scheduled to occur 30

periodically and automatically. In many cases, an applica­
tion or applications may be in use when the backup is to
occur. The application may have one or more files open,
preventing access by the backup software to such files.

Some backup software may include custom code for each
application (referred to as a "backup agent"). The backup
agent may attempt to communicate with the application or
otherwise cause the application to commit its data to files so
that the files can be backed up. Often, such backup agents
make use of various undocumented features of the applica- 40

tions to successfully backup files. As the corresponding
applications change (e.g. new versions are released), the
backup agents may also require change. Additionally, some
files (such as the Windows registry) are always open and
thus difficult to backup.

FIG. 6 is a block diagram of a second embodiment of a
35 computer system.

FIG. 7 is a flowchart illustrating operation of a second
embodiment of a backup program shown in FIG. 6.

FIG. 8 is a flowchart illustrating operation of a portion of
one embodiment of a VM kernel.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto

45 are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

Disaster recovery configurations are used in some cases to
provide additional protection against loss of data due to
failures, not only in the computer systems themselves but in
the surrounding environment (e.g. loss of electrical power,
acts of nature, fire, etc.). In disaster recovery configurations, 50

the state of data may periodically be checkpointed from a
first computer system to a second computer system. In some
cases, the second computer system may be physically
located distant from the first computer system. If a problem
occurs that causes the first computer system to go down, the 55

data is safely stored on the second computer system. In some
cases, applications previously running on the first computer
system may be restarted on the second computer system to
allow continued access to the preserved data. The disaster
recovery software may experience similar issues as the 60

backup software with regard to applications which are
running when a checkpoint is attempted and the files that the
applications may have open at the time of the checkpoint.
Additionally, replicating all the state needed to restart the
application on the second computer system (e.g. the oper- 65

ating system and its configuration settings, the application
and its configuration settings, etc.) is complicated.

DETAILED DESCRIPTION OF EMBODIMENTS

A computer system executes one or more virtual
machines, each of which may include one or more applica­
tions. To create a backup, the computer system may capture
a state of each virtual machine and backup the state. In one
embodiment, the computer system may capture the state in
cooperation with a virtual machine kernel which controls
execution of the virtual machines, while the virtual
machines continue to execute. The state may include the
information in a virtual machine image created in response
to a suspension of the virtual machine. In another embodi­
ment, the computer system may capture the state by sus­
pending each virtual machine to an image and backing up
the image of the virtual machine. In this manner, the files
used by the application are backed up, even if the application
has the files open while the virtual machine is active in the

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page14 of 21

US 7,093,086 Bl
3

computer system. Furthermore, updates to the files which
are not yet committed (e.g. they are still in memory in the
virtual machine) may be backed up as well. In some cases,
only a portion of the state or image need be backed-up at a
given time (e.g. non-persistent virtual disks may be backed­
up by copying the COW files corresponding to those disks,
if an initial copy of the disk file has been made).

Similarly, for disaster recovery configurations, the com­
puter system may periodically capture the state of the virtual
machines as a checkpoint. The checkpoints may be copied to
a second computer system, which may retain one or more
checkpoints for each virtual machine. In the event of a
"disaster" at the original computer system, the virtual
machines may be resumed from one of the checkpoints on
the second computer system. The loss of data may be limited
to the data created between the selected checkpoint and the
point at which the disaster occurred. The checkpoints may
be created by capturing state while the virtual machines
continue to execute, or by suspending the virtual machines
and copying the suspended image. As mentioned above, in
some cases, only a portion of the state or image may be
copied. Since the virtual machine state includes all of the
state used by the application (operating system and its
configuration settings, the application and its configuration
settings, etc.), restarting the application on the second com­
puter system may occur correctly.

Turning now to FIG. 1, a block diagram is shown illus­
trating one embodiment of a computer system 10 for per­
forming a backup. Other embodiments are possible and
contemplated. The computer system 10 includes one or more
virtual machines (e.g. virtual machines 16A-16C as illus­
trated in FIG. 1). The virtual machines are controlled by a
virtual machine (VM) kernel 18. The virtual machines
16A-16C and the VM kernel 18 may comprise software
and/or data structures. The software may be executed on the
underlying hardware in the computer system 10 (e.g. the
hardware 20). The hardware may include any desired cir­
cuitry. For example, the hardware may include one or more
processors, or central processing units (CPUs), storage, and
input/output (I/O) circuitry. In the embodiment of FIG. 1, the
computer system 10 includes a storage device 22 and a
backup medium 24.

As shown in FIG. 1, each application executing on the
computer system 10 executes within a virtual machine
16A-16C. Generally, a virtual machine comprises any com­
bination of software, one or more data structures in memory,
and/or one or more files stored on a storage device (such as
the storage device 22). The virtual machine mimics the
hardware used during execution of a given application. For
example, in the virtual machine 16A, an application 28 is
shown. The application 28 is designed to execute within the
operating system (O/S) 30. Both the application 28 and the
O/S 30 are coded with instructions executed by the virtual
CPU 32. Additionally, the application 28 and/or the O/S 30
may make use of various virtual storage devices 34 and
virtual I/O devices 36. The virtual storage may include any
type of storage, such as memory, disk storage, tape storage,
etc. The disk storage may be any type of disk (e.g. fixed disk,
removable disk, compact disc read-only memory (CD­
ROM), rewriteable or read/write CD, digital versatile disk
(DVD) ROM, etc.). Each disk storage in the virtual machine
may be mapped to a file on a storage device such as the
storage device 22A. Alternatively, each disk storage may be
mapped directly to a storage device, or a combination of
direct mappings and file mappings may be used. The virtual
I/O devices may include any type of I/O devices, including
modems, audio devices, video devices, network interface

4
cards (NICs), universal serial bus (USB) ports, firewire
(IEEE 1394) ports, serial ports, parallel ports, etc. Generally,
each virtual I/O device may be mapped to a corresponding
I/O device in the underlying hardware or may be emulated
in software if no corresponding I/O device is included in the
underlying hardware.

The virtual machine in which an application is executing
encompasses the entire system state associated with an

10 application. Generally, when a virtual machine is active (i.e.
the application within the virtual machine is executing), the
virtual machine may be stored in the memory of the com­
puter system on which the virtual machine is executing
(although the VM kernel may support a paging system in

15 which various pages of the memory storing the virtual
machine may be paged out to local storage in the computer
system) and in the files which are mapped to the virtual
storage devices in the virtual machine. The VM kernel may
support a command to suspend the virtual machine. In

20 response to the command, the VM kernel may write an
image of the virtual machine to the storage device 22 (e.g.
the image 40 shown in FIG. 1), thus capturing the current
state of the virtual machine and thus implicitly capturing the
current state of the executing application. The image may

25 include one or more files written in response to the suspend
command, capturing the state of the virtual machine that was
in memory in the computer system, as well as the files
representing the virtual storage in the virtual machine. The
state may include not only files written by the application,

30 but uncommitted changes to files which may still be in the
memory within the virtual machine, the state of the hardware
(including the processor 32, the memory in the virtual
machine, etc.) within the virtual machine, etc. Thus, the
image may be a snapshot of the state of the executing

35 application.

A suspended virtual machine may be resumed using a
resume command supported by the VM kernel. In response
to the resume command, the VM kernel may read the image
of the suspended virtual machine from the storage device

40 and may activate the virtual machine in the computer
system.

The computer system 10 may be configured to backup the
virtual machines executing thereon. For example, in the

45 illustrated embodiment, a backup program 42 may execute
in the virtual machine 16C (and may also be stored on the
storage device 22). The virtual machine 16C may be a
console virtual machine as illustrated in FIG. 1 (a virtual
machine which also has direct access to the hardware 20 in

50 the computer system 10). Alternatively, the backup program
42 may execute on a non-console virtual machine or outside
of a virtual machine.

The backup program 42 may suspend the virtual machines
executing on the computer system 10 (e.g. the virtual

55 machines 16A-16B as shown in FIG. 1) and backup the
image of each virtual machine (e.g. the image 40 of the
virtual machine 16A) onto the backup medium 24 (or send
the image files to a backup server, if the backup server is
serving as the backup medium 24). Once the backup has

60 been made, the backup program 42 may resume the virtual
machines to allow their execution to continue.

Since a given virtual machine is suspended during the
backup operation for that virtual machine, the files used by
the application(s) within the virtual machine may be backed

65 up even if the files are in use by the application(s) at the time
the virtual machine is suspended. Each virtual machine may
be suspended and backed up in the same fashion. Thus, the

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page15 of 21

US 7,093,086 Bl
5

backup program 42 may not include any specialized backup
agents for different applications that may be included in the
various virtual machines.

In the embodiment of FIG. 1, the backup medium 24 may
be used to store the images of the virtual machine. Generally,
the backup medium 24 may be any medium capable of
storing data. For example, the backup medium 24 may be
storage device similar to the storage device 22. The backup
medium 24 may be a removable storage device, to allow the
backup medium to be separated from the computer system
10 after the backup is complete. Storing the backup medium
physically separated from the computer system that is
backed up thereon may increase the reliability of the backup,
since an event which causes problems on the computer
system may not affect the backup medium. For example, the
backup medium 24 may comprise a removable disk or disk
drive, a tape backup, writeable compact disk storage, etc.
Alternatively, the backup medium 24 may comprise another
computer system (e.g. a backup server) coupled to receive
the backup data from the computer system 10 (e.g. via a
network coupling the two computer systems), a storage
device attached to a network to which the computer system
is attached (e.g. NAS or SAN technologies), etc.

The virtual hardware in the virtual machine 16A (and
other virtual machines such as the virtual machines
16B-16C) may be similar to the hardware 20 included in the
computer system 10. For example, the virtual CPU 32 may
implement the same instruction set architecture as the pro­
cessor(s) in the hardware 20. In such cases, the virtual CPU
32 may be one or more data structures storing the processor
state for the virtual machine 16A. The application and OIS
software instructions may execute on the CPU(s) in the
hardware 20 when the virtual machine 16A is scheduled for
execution by the VM kernel 18. When the VM kernel 18
schedules another virtual machine for execution (e.g. the
virtual machine 16B), the VM kernel 18 may write the state

6
system. In one embodiment, the VM kernel may be the ESX
product available from VMWare, Inc. (Palo Alto, Calif.).

In the illustrated embodiment, the VM kernel may execute
directly on the underlying hardware (i.e. without an under­
lying operating system). In other embodiments, the VM
kernel may be designed to execute within an operating
system. For example, the GSX product available from
VMWare, Inc. may execute under various versions of
Microsoft's Windows operating system and/or the Linux

10 operating system.
The storage device 22 may be any type of storage device

to which the computer systems 10 may be coupled. For
example, the storage device 22 may comprise one or more
fixed disk drives such as integrated drive electronics (IDE)

15 drives, small computer system interface (SCSI) drives, etc.
The fixed disk drives may be incorporated as peripherals of
the computer systems 10 through a peripheral bus in the
computer systems 10 such as the peripheral component
interconnect (PCI) bus, USB, firewire, etc. Alternatively, the

20 storage device 22 may couple to a network (e.g. network
attached storage (NAS) or storage area network (SAN)
technologies may be used). The storage device 22 may be
included in file servers to which the computer systems 10
have access. The storage device 22 may also be removable

25 disk drives, memory, etc. Generally, a storage device is any
device which is capable of storing data.

It is noted that, while each virtual machine illustrated in
FIG. 1 includes one application, generally a virtual machine
may include one or more applications. For example, in one

30 embodiment a user may execute all applications which
execute on the same underlying OIS 30 in the same virtual
machine.

It is noted that the term "program", as used herein, refers
to a set of instructions which, when executed, perform the

35 function described for that program. The instructions may be
machine level instructions executed by a CPU, or may be
higher level instructions defined in a given higher level
language (e.g. shell scripts, interpretive languages, etc.). The of the processor into the virtual CPU 32 data structure.

Alternatively, the virtual CPU 32 may be different from the
CPU(s) in the hardware 20. For example, the virtual CPU 32 40

may comprise software coded using instructions from the
instruction set supported by the underlying CPU to emulate
instruction execution according to the instruction set archi­
tecture of the virtual CPU 32. Alternatively, the VM kernel

term "software" may be synonymous with "program".
Turning next to FIG. 2, a flowchart is shown illustrating

operation of one embodiment of the backup program 42.
Other embodiments are possible and contemplated. The
blocks shown in FIG. 2 may represent the operation of
instructions forming the backup program 42, when executed.

18 may emulate the operation of the hardware in the virtual 45

machine. Similarly, any virtual hardware in a virtual
machine may be emulated in software ifthere is no matching
hardware in the hardware 20.

The backup program 42 suspends a virtual machine
(block 50). As mentioned above, the VM kernel supports a
suspend command. The backup program 42 transmits the
send command to the VM kernel to suspend the virtual
machine. The command may include a virtual machine Different virtual machines which execute on the same

computer system 10 may differ. For example, the OIS 30
included in each virtual machine may differ. Different virtual
machines may employ different versions of the same OIS
(e.g. Microsoft Windows NT with different service packs
installed), different versions of the same OIS family (e.g.
Microsoft Windows NT and Microsoft Windows2000), or
different OISs (e.g. Microsoft Windows NT, Linux, Sun
Solaris, etc.).

Generally, the VM kernel may be responsible for man­
aging the virtual machines on a given computer system. The
VM kernel may schedule virtual machines for execution on
the underlying hardware, using any scheduling scheme. For
example, a time division multiplexed scheme may be used
to assign time slots to each virtual machine. Additionally, the
VM kernel may handle the suspending and resuming of
virtual machines responsive to suspend and resume com­
mands. The commands may be received from a virtual
machine, or may be communicated from another computer

50 "name" assigned by the VM kernel or the user which
uniquely identifies the virtual machine to the VM kernel.

The virtual machines may have one or more virtual disks
which are defined to be "non-persistent". Generally, a non­
persistent virtual disk is one in which writes to the virtual

55 disk are not committed until a separate "commit" command
is executed for the virtual disk. By way of contrast, writes to
a "persistent" virtual disk are committed at the time of the
individual writes. In one embodiment, the non-persistent
disks may be implemented as two files: a virtual disk file and

60 a copy-on-write (COW) file for each disk. In embodiments
using the ESX/GSX products from VMWare, Inc., the COW
file may be the file with the extension ".REDO". The virtual
disk file may be a file the size of the virtual disk. The virtual
disk file may be organized as a set of disk blocks, in a

65 fashion similar to physical disk drives. The COW file stores
updated copies of disk blocks in a log form. Thus, the virtual
disk file may contain the disk blocks prior to any uncom-

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page16 of 21

US 7,093,086 Bl
7 8

mitted updates being made. If more than one write has been
made to a given block, the COW file may store multiple
copies of the block, one for each write that has occurred. To
commit the writes, the blocks from the COW file may be
written to the corresponding block locations in the virtual 5

disk file, beginning at the start of the COW file and pro­
ceeding, in order, to the end. Both the virtual disk files and
the corresponding COW files may be included in the virtual
machine image 40.

may be the COW file for a non-persistent virtual disk. A
COW file 74 may be provided for each non-persistent virtual
disk in the virtual machine.

A checkpoint program 76 may be executing in the virtual
machine 16C (and may be stored on the storage device 22A
as shown in FIG. 3). Similar to FIG. 1, the virtual machine
16C may be a console virtual machine. Alternatively, the
checkpoint program 76 may execute on a non-console
virtual machine or outside of a virtual machine. Generally,

If the suspended virtual machine includes one or more
non-persistent virtual disks (decision block 52), the backup
program 42 may commit the changes in the COW files to the
corresponding virtual disks prior to making the backup
(block 54). Alternatively, the backup program 42 may
backup the virtual disk and COW files. In such an embodi­
ment, the backup program 42 may optionally commit the
changes after copying the virtual machine image to the
backup medium, if desired. In yet another alternative, only
the COW files may be copied for non-persistent virtual disks
after an initial copy of the virtual disk file is made.

The backup program 42 copies the virtual machine image
40 to the backup medium 24 (block 56) and resumes the
virtual machine on the computer system 10 (block 58). If
additional virtual machines remain to be backed-up (deci­
sion block 60), the backup program 42 selects the next
virtual machine (block 62) and repeats blocks 50-60 for that
virtual machine.

While the flowchart shown in FIG. 2 illustrates backing
up one virtual machine at a time, other embodiments may
suspend all the virtual machines, copy the images to the
backup medium 24, and resume all the virtual machines.

It is noted that, while the present embodiment may
include non-persistent virtual disks with COW files, other
embodiments may have only persistent virtual disks and the
disks files may be backed up as a whole each time a backup
occurs.

Turning next to FIG. 3, a block diagram illustrating a pair
of computer systems lOA and lOB arranged in a disaster
recover configuration is shown. Other embodiments are
possible and contemplated. In the embodiment of FIG. 3, the
computer system lOA may be the primary system (e.g. the
one located at the user's site) and the computer system lOB
may be the disaster recovery system (e.g. the one located
physically remote from the user's site). The computer sys­
tems lOA and lOB maybe coupled via a network 12. Similar

10 the checkpoint program 76 may periodically suspend the
virtual machines which are to be replicated on the disaster
recovery system, thus creating virtual machine images that
may serve as checkpoints of the virtual machines on the
disaster recovery system. The checkpoint program 76 copies

15 the images to the computer system lOB over the network 12,
and then resumes the virtual machines on the computer
system lOA.

If a disaster event occurs (e.g. the computer system lOA
crashes, is corrupted, or the environment the computer

20 system lOA is executing in experiences a problem such as a
loss of power, an act of God, etc.), the computer system lOB
may recover the virtual machine or machines from any of the
checkpoints that have been provided by the computer system
lOA. For example, in FIG. 3, the recovery program 78

25 (executing in the virtual machine 16D and also stored on the
storage device 22B) may be used to recover from one of the
checkpoints. While the virtual machine 16D in which the
recovery program 78 is executing is the console virtual
machine, other embodiments may execute the recovery

30 program 78 in a non-console virtual machine or outside of
a virtual machine.

In FIG. 3, two checkpoints are shown stored on the
storage device 22B (although in general any number of
checkpoints may be stored). The first checkpoint includes

35 the memory file 70A, the disk file 72A, and the COW file
74A. The second checkpoint (made later in time than the first
checkpoint) includes the memory file 70B, the disk file 72B,
and the COW file 74B. Either checkpoint may be used to
recover the virtual machine 16A on the computer system

40 lOB. To recover, the recovery program 78 resumes the
virtual machine using one of the checkpoints. Thus, the
virtual machine 16A is shown (in dashed lines) executing on
the computer system lOB. The resumed virtual machine 16A
would have the same state as the original virtual machine

45 16A on the computer system lOA at the time the checkpoint
was made.

to the computer system 10 shown in FIG. 1, the computer
system lOA may include a VM kernel 18A, hardware 20A,
and a storage device 22A. Similarly, the computer system
lOB may include a VM kernel 18B, hardware 20B, and a 50

storage device 22B. The computer system lOA is shown
executing the virtual machines 16A-16C. Each virtual
machine may include one or more applications, O/S, virtual
storage, virtual CPU, virtual I/O, etc. (not shown in FIG. 3),
similar to the illustration of the virtual machine 16A in FIG. 55

The virtual disk file 72A and the COW file 74A are shown
in dotted lines in FIG. 3. These files may actually be deleted,
in some embodiments, when the second checkpoint (com­
prising the memory file 70B, the virtual disk file 72B, and
the COW file 74B) is written to the storage device 22B. In
such embodiments, the virtual disk file 72B may be the same
as the combination of the virtual disk file 72A and the COW
file 74A. That is, in such embodiments, the checkpoint
program 76 may commit the changes in the COW file 74 to
the virtual disk file 72 after copying the image 40 to the 1. The computer system lOB is shown executing the virtual

machine 16D (and may execute the virtual machine 16A, if
a "disaster" event occurs with the computer system lOA).

The image 40 of the virtual machine 16A is illustrated in
greater detail in FIG. 3 for one embodiment. In the illus­
trated embodiment, the image 40 includes a memory file 70,
a disk file 72, and a COW file 74. The memory file 70 may
include the state of the memory in the virtual machine 16A
as well as any virtual hardware state that may be saved (e.g.
the state of the virtual CPU 32, etc.). The disk file 72 may
be the virtual disk file. A disk file 72 may be provided for
each virtual disk in the virtual machine. The COW file 74

computer system lOB, and may create a new COW file to
collect updates which occur after the checkpoint is made.
Thus, the virtual disk file 72B at the next checkpoint may be

60 the combination of the preceding virtual disk file 72A and
the preceding COW file 74A. In other embodiments, the
virtual disk file 72A and the COW file 74A may be retained
even after subsequent checkpoints are made.

The network 12 may comprise any network technology in
65 various embodiments. The network 12 may be a local area

network, wide area network, intranet network, Internet net­
work, or any other type of network. The network 12 may be

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page17 of 21

US 7,093,086 Bl
9

designed to be continuously available (although network
outages may occur), or may be intennittent (e.g. a modem
connection made between a computer system in a user's
home and a computer system in a user's workplace). Any
network protocol may be used. For example, the network 12
may be an Ethemet network. Altematively, the network may
be a token ring network, etc. The network 12 may also
represent shared storage between the computer systems
lOA-lOB.

10
application executing on the computer system lOA). Alter­
natively, the updates may be committed prior to copying the
virtual machine image 40 to the computer system lOB.
Finally, the checkpoint program 76 resumes the virtual
machine on the computer system lOA (block 90).

It is noted that, while FIG. 4 illustrated copying the virtual
machine image 40 to the DR computer system, only a
portion of the image 40 may be copied in other embodi­
ments. For example, embodiments which employ non-per-

While FIG. 3 illustrates checkpointing the virtual machine
16A, other embodiments may also checkpoint the virtual
machine 16B. In some embodiments, all virtual machines on

10 sistent virtual disks may copy only the corresponding COW
files if a copy of the disk files was previously transmitted to
the DR computer system.

If multiple virtual machines are replicated to the disaster
recovery computer system, the blocks 82-90 may be

a given computer system may be checkpointed. In other
embodiments, a subset of the virtual machines (e.g. those
executing so-called "mission critical" applications) may be
checkpointed and other virtual machines executing less
critical applications may not be checkpointed.

Tuming now to FIG. 4, a flowchart is shown illustrating
operation of one embodiment of the checkpoint program 76.
Other embodiments are possible and contemplated. The
blocks shown in FIG. 4 may represent the operation of
instructions fonning the checkpoint program 76, when
executed.

15 repeated for each virtual machine. Alternatively, all the
virtual machines may be suspended, the images copied, the
COW file updates optionally committed, and the virtual
machines resumed.

Turning next to FIG. 5, a flowchart is shown illustrating
20 operation of one embodiment of the recovery program 78.

The checkpoint program 76 may wait for the checkpoint
interval to expire (decision block 80). The operation of 25

decision block 80 may represent the checkpoint program 76
being scheduled for execution (e.g. by the VM kernel 18A)

Other embodiments are possible and contemplated. The
blocks shown in FIG. 5 may represent the operation of
instructions fonning the checkpoint program 78, when
executed.

The recovery program 78 may be activated if a disaster
event occurs for the computer system lOA. The recovery
program 78 may be manually activated, or may be activated
by the computer system lOB in response to detecting that the
computer system lOA has possibly experienced a disaster

30 event. For example, the computer system lOA may attempt
to signal the computer system lOB that a disaster event has
occurred, or the computer system lOB may monitor the
computer system lOA periodically and may assume a disas­
ter event has occurred if contact cannot be established with

at the expiration of the checkpoint interval, or may represent
the checkpoint program 76 itself maintaining the interval.
The checkpoint interval may be selected to be any desired
interval between consecutive checkpoints. For example, a
checkpoint interval of about 10 minutes may be used. A
checkpoint interval in the range of, for example, 5 to 15
minutes may be used. Alternatively, the interval may be 30
minutes, one hour, or any other desired interval. The shorter 35

the checkpoint interval, the more network bandwidth may be
used to transfer the image 40 to the computer system lOB
and the more frequently the applications executing in the
virtual machines may be interrupted. The longer the check­
point interval, the higher the risk of data loss may be (e.g. 40

up to 10 minutes worth of data may be lost if the checkpoint
interval is 10 minutes, while up to one hour worth of data
may be lost if the checkpoint interval is one hour). The
checkpoint interval may also be defined based on a quantity
other than time. For example, the checkpoint interval may be 45

based on the amount of activity occurring in a virtual
machine. The number offile accesses, file writes, etc. could

the computer system lOA. The disaster event may be
detected by a high-availability cluster server such as the
Veritas Cluster Server™ available from Veritas Software
Corporation (Mountain View, Calif.). The Veritas Cluster
Server™ or other cluster server software may execute on the
computer systems lOA-lOB, which may be operating as a
cluster.

The recovery program 78 may select the desired check-
point (block 100). The desired checkpoint may be passed to
the recovery program 78 as an operand, or may be selected
by the recovery program 78. Typically, the desired check­
point may be the most recent checkpoint, unless that check-
point appears to be corrupted.

The recovery program 78 may commit any changes from
the COW file(s) in the desired checkpoint to the correspond­
ing virtual disk files in the desired checkpoint (block 102).
The committing of the changes may be optional, in one
embodiment. The recovery program 78 resumes the virtual
machine (block 104).

It is noted that, while the embodiment of FIGS. 3-5

be counted to gauge the activity level, for instance. As
another example, the return of an application to a certain
point of execution may trigger a checkpoint. In yet another 50

alternative, a checkpoint may be triggered when the COW
files (in embodiments that make use of non-persistent virtual
disks) exceed a threshold size. Any mechanism for causing
checkpoints may be used, including combinations of the
above.

If the checkpoint interval has expired, the checkpoint
program 76 suspends the virtual machine to be checkpointed
(block 82). The checkpoint program 76 copies the virtual
machine image 40 to the disaster recovery (DR) computer
system (e.g. the computer system lOB in the embodiment of 60

FIG. 3) (block 84). If the virtual machine includes non­
persistent virtual disks (decision block 86), the checkpoint
program 86 may optionally commit the changes in the COW
file 74 to the virtual disk file and establish a new COW file

55 illustrates the computer system lOB being the disaster
recovery system for the computer system lOA, in other
embodiments the computer system lOA may also serve as
the disaster recovery system for the computer system lOB.

74 to accumulate changes which occur after the checkpoint
(block 88). Such a commit may be made, for example, for
performance reasons (e.g. to improve the performance of the

Additionally, multiple computer systems may be used as
disaster recovery systems for the computer system lOA. In
such an embodiment, the image 40 may be copied from the
computer system lOA to each of the multiple computer
systems. It is noted that, in one embodiment, a virtual
machine may be dedicated to network address translation

65 (NAT) services for handling network addresses such as
TCP/IP addresses. In this manner, the addresses used by the
other virtual machines may be the same on the disaster

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page18 of 21

US 7,093,086 Bl
11 12

recovery system as on the original system, assuming that the 110, if the VM kernel 18 provides the addresses locating the
NAT virtual machine is checkpointed and recovered as well. memory 11 0 within the computer system 10 to the backup

As mentioned previously, while some embodiments may program 42.
suspend the virtual machines to make copies of the images The backup program 42 may copy the virtual machine
(on a backup medium, or on another computer system in a 5 image data thus generated, (i.e. not in response to a suspend
disaster recovery configuration), other embodiments may of the virtual machine 16A but by collecting the state of the
cause the state of the virtual machines to be generated for virtual machine 16A at a given point in time) while the
copying without suspending the virtual machines. FIGS. 6-8 virtual machine 16A is allowed to continue executing (using
illustrate an embodiment for backing up virtual machines the new COW files 74A and the memory COW 112 for
using such a mechanism. A disaster recovery embodiment is 10 updates and reading the disk file 72, the COW file 74, and
also contemplated, in which the state of the virtual machines the memory 110 to obtain information which has not been
is periodically generated and copied to the disaster recovery updated since the image data was generated).
computer system. The backup program 42 may indicate to the VM kernel 18

FIG. 6 is a block diagram of a second embodiment of the that the backup is complete. In response, the VM kernel 18
computer system 10 shown in FIG. 1. In the embodiment of 15 may commit any changes recorded in the memory COW 112
FIG. 6, the virtual storage 34 is illustrated as including a to the memory 110 and delete the memory COW 112
memory 110 and, during certain periods of time, a memory (allowing subsequent updates to be performed to the
COW 112. Additionally, in this embodiment, the virtual memory 110). Additionally, any updates to persistent virtual
machine image 40 is illustrated in more detail (similar to the disks that are recorded in the new COW files 74A may be
embodiment of FIG. 3). The storage device 22 is also shown 20 committed to the persistent virtual disk files. The new COW
as storing a "new" COW file or files 74A. Other portions of files 74A may then be used as the COW file 74 for non-
the computer system shown in FIG. 6 may be similar to the persistent virtual disks (or may be merged into the COW
corresponding portions shown in FIG. 1. files 74, if the COW files 74 has not been committed to the

The memory 110 may be the portion of the computer corresponding non-persistent virtual disk).
system 10's main memory which is allocated to the virtual 25 The VM kernel 18 may use any mechanism to generate

the memory COW 112. For example, in one embodiment, machine 16A for use as the memory of the virtual machine
16A. Thus, the memory 110 may store various data struc- the VM kernel 18 may control the page tables used in the

CPU's address translation mechanism. In response to the
tures created by the application 28, files (or portions thereof)
accessed by the application 28, and the application 28 itself image data request, the VM kernel 18 may search the page
(or portions thereof). 30 tables and change the translations for the pages within the

memory 110 to be read-only. Thus, any subsequent attempts
In the embodiment of FIG. 6, the backup program 42 (in to update a page within the memory 110 (e.g. by the

cooperation with the VM kernel 18) may be configured to application 28) may result in a page fault. In response to the
backup virtual machines without suspending the virtual page fault, the VM kernel 18 may map a page in the memory
machines. The backup program 42 may communicate an 35 COW 112 to the page to be updated (and may make the
image data request to the VM kernel 18, indicating that the newly-mapped page writeable). The VM kernel 18 may
image data of a virtual machine (e.g. the virtual machine copy the contents of the page from the memory 11 0 to the
16A in FIG. 6) is desired. That is, the image data request is page in the memory COW 112. The VM kernel 18 may then
a request for the current state of the virtual machine, as disable the translation for the page in the memory 110, and
would be provided if the virtual machine were suspended, 40 thus subsequent accesses may occur from the newly mapped
without actually suspending the virtual machine. page in the memory COW 112. To commit changes in the

In response to the image data request, the VM kernel 18 memory COW 112, each page in the memory COW 112 may
may create the "new" COW file 74A for each virtual disk be copied back to the corresponding page in the memory
(whether persistent or non-persistent) in the virtual machine. 110. The translation to each page in the memory COW 112
The new COW file 74Amay be used for subsequent updates 45 may be disabled, and the translations to the pages in the
to the corresponding virtual disk. In this manner, the state of memory 110 may be enabled and may be set to read/write.
the COW files 74 (which contain the updates prior to the A checkpoint for the DR computer system (similar to the
image data request, back to at least the previous image data embodiment of FIGS. 3-5) may also be generated in a
request or suspension of the virtual machine) and the virtual similar fashion. For example, the checkpoint program 76
disk files 72 may remain constant even if the virtual machine 50 may generate an image data request to the VM kernel 18
16A continues to execute, since subsequent updates are instead of the suspend command, may wait for the image
directed to the new COW files 74A. In other words, the data to be available, and may inform the VM kernel 18 when
COW files 74 and the virtual disk files 72 may be read-only copying of the checkpoint to the DR computer system is
by the virtual machine 16Aafterthe new COW files 74Aare complete.
created. Therefore, the COW files 74 and the virtual disk 55 Turning now to FIG. 7, a flowchart is shown illustrating
files 72 may be backed up by the backup program 42 without operation of a second embodiment of the backup program 42
the files being changed during the backup. for use in the computer system 10 shown in FIG. 6. Other

Additionally, the VM kernel 18 may create the memory embodiments are possible and contemplated. The blocks
COW 112 to record subsequent updates to the memory 110 shown in FIG. 7 may represent the operation of instructions
in response to the image data request. Therefore, the state of 60 forming the backup program 42, when executed.
the memory 110 may remain constant even if the virtual In this embodiment, the backup program 42 may com-
machine 16A continues executing. The VM kernel 18 may municate the image data request to the VM kernel 18,
copy the contents of the memory 110 to the memory file 70 indicating that the virtual machine image data is desired
(while allowing the virtual machine 16A to continue execu- (block 120). The image data request may be a message
tion), thereby creating a copy of the memory 110 that may 65 passed from the backup program 42, for example. The
be backed up by the backup program 42. Alternatively, the message may include an identification of the virtual machine
backup program 42 may copy the contents of the memory for which the state is to be provided. Any communication

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page19 of 21

US 7,093,086 Bl
13

mechanism may be used to communicate the image data
request (e.g. a memory location, a call to a procedure in the
VM kernel 18, etc.). In response, as noted above and shown
in FIG. 8 (described below), the VM kernel 18 may generate
a virtual machine image 40 without suspending the virtual
machine. The backup program 42 may wait until the image
data (the virtual machine image 40) is available for the
backup program 42 (decision block 122). The decision block
122 may represent the backup program 42 waiting for a
message from the VM kernel 18. Alternatively, the decision 10

block 122 may represent the backup program 42 terminating
and being activated by the VM kernel 18 when the image
data is available. In yet another alternative, a memory
location may be used to communicate the availability of the
state. Any mechanism for communicating to the backup 15

program 42 that the image data is available may be used.
Similar to the embodiment of FIG. 2, the backup program

42 may optionally commit changes in the COW files 74
(within the image 40, not including the new COW file 74A)
to the non-persistent virtual disks (blocks 52 and 54). The 20

backup program 42 may copy the virtual machine image 40

14
disks which are recorded in the new COW files 74A (block
144). The remaining writes may be retained in the new COW
file 74A, which may become the COW files in the image 40
(or may be merged into the COW files 74, if the COW files
74 were not committed to the corresponding non-persistent
virtual disks).

Various operations have been assigned to the backup
program 42, the checkpoint program 76 and the recovery
program 78, in the above description. However, in other
embodiments, various ones of these operations may be
performed manually by a user. Furthermore, the backup
program 42, the checkpoint program 76, and/or the recovery
program 78 (or portions thereof) may be implemented as
part of the VM kernel, in some embodiments. Specifically,
some embodiments of the VM kernel may support the
checkpointing of virtual machines. Thus, the checkpoint
program 76 may copy the checkpoints to the disaster recov­
ery system in such an embodiment.

It is noted that, in various embodiments shown above, the
backup program 42, the checkpoint program 76, the recov­
ery program 78, and/or the image 40 of the virtual machine
16A are shown stored on various storage devices. Generally,
anyone or more of the above (and/or the VM kernel 18A,
the OIS 30, the application 28, etc.) may be carried on a

(or a portion thereof, e.g. only the COW files for the
non-persistent virtual disks, if a previous copy of the non­
persistent virtual disks resides on the backup medium 24)
(block 56). 25 carrier medium. Generally speaking, a carrier medium may

include storage media such as magnetic or optical media,
e.g., disk or CD-ROM, volatile or non-volatile memory
media such as RAM (e.g. SDRAM, RDRAM, SRAM, etc.),

The backup program 124 may signal the VM kernel 18
that the backup operation is complete (e.g. using another
message to the VM kernel 18 or any other communication
mechanism) (block 124). The backup program 42 may
continue to backup other virtual machines, as desired (deci - 30

sion block 60 and block 62), similar to the embodiment of
FIG. 2.

Turning now to FIG. 8, a flowchart illustrating operation

ROM, etc. Any of the previous media and/or any other
physical media readable by a computer may comprise com­
puter readable media. A carrier medium may further com-
prise transmission media or signals such as electrical, elec­
tromagnetic, or digital signals, conveyed via a
communication medium such as a network and/or a wireless of one embodiment of a portion of the VM kernel 18 is

shown. The portion shown in FIG. 8 is for interacting with
the backup program 42. Other portions, not shown, may
perform other operations implemented by the VM kernel 18.
Other embodiments are possible and contemplated. The
blocks shown in FIG. 8 may represent the operation of
instructions forming the VM kernel 18, when executed.

35 link.
Numerous variations and modifications will become

apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all such variations and modifica-

40 tions.
In response to the image data request from the backup

program 42 (decision block 130), the VM kernel 18 may
capture the current state of a virtual machine. More particu­
larly, the VM kernel 18 may create new COW files 74A for
each virtual disk (including both persistent and non-persis- 45

tent virtual disks) (block 132). Additionally, the VM kernel
18 may create the memory COW 112 (block 134). After the
new COW files 74A and the memory COW 112 have been
created, the memory 110, the disk files 72, and the COW
files 74 comprise a static state of the virtual machine. At this 50

point, the VM kernel 18 may allow the virtual machine for
which state is being captured to continue executing, if
desired.

The VM kernel 18 may copy the memory 110 to the
memory file 70, to complete the image data (block 136). 55

Subsequent to copying the memory 110 to the memory file
70, the VM kernel 18 may indicate to the backup program
42 that the image data is available (block 138). Blocks 136
and 138 are shown in dotted form to indicate that they may
be performed as the corresponding virtual machine contin- 60

ues operation.
In response to receiving a complete indication from the

backup program 42 (decision block 140), the VM kernel 18
commits the changes recorded in the memory COW 112
(block 142) and deletes the memory COW 112. Subsequent 65

memory updates may be performed to the memory 110.
Additionally, the VM kernel 18 commits writes to persistent

What is claimed is:
1. A computer readable medium storing a plurality of

instructions comprising instructions which, when executed:
(i) capture a state of a first virtual machine executing on

a first computer system, the state of the first virtual
machine corresponding to a point in time in the execu­
tion of the first virtual machine, wherein the first virtual
machine comprises at least one virtual disk storing at
least one file used by at least one application executing
in the first virtual machine, and wherein the state of the
first virtual machine comprises the at least one file; and

(ii) copy at least a portion of the state to a destination
separate from a storage device to which the first virtual
machine is suspendable, wherein suspending the first
virtual machine is performed responsive to a suspend
command.

2. The computer readable medium as recited in claim 1
wherein the destination is a backup medium coupled to the
first computer system and used to backup data from the first
computer system.

3. The computer readable medium as recited in claim 2
wherein the at least one virtual disk comprises at least a first
virtual disk which is non-persistent, and wherein the instruc­
tions, when executed, commit any changes to the first virtual
disk prior to copying the state to the destination.

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page20 of 21

US 7,093,086 Bl
15

4. The computer readable medium as recited in claim 2
wherein the backup medium comprises a first storage device
accessible by the first computer system.

5. The computer readable medium as recited in claim 2
wherein the backup medium comprises a second computer
system coupled to communicate with the first computer
system.

6. The computer readable medium as recited in claim 1
wherein the instructions, when executed, repeat (i) and (ii)
periodically, thus generating a plurality of states of the first
virtual machine corresponding to different points in time.

16
15. The apparatus as recited in claim 13 wherein the

backup medium comprises a first storage device accessible
by the first computer system.

16. The apparatus as recited in claim 13 wherein the
backup medium comprises a second computer system
coupled to communicate with the first computer system.

17. The apparatus as recited in claim 12 wherein the first
computer system is configured to repeat (i) and (ii) periodi-

10 cally, thus generating a plurality of states of the first virtual
machine corresponding to different points in time.

7. The computer readable medium as recited in claim 6
wherein the destination comprises a second computer sys­
tem, the second computer system storing at least a portion of 15

the plurality of states.

18. The apparatus as recited in claim 17 wherein the
destination comprises a second computer system, the second
computer system storing at least a portion of the plurality of
states.

19. The apparatus as recited in claim 18 wherein the
second computer system is configured to resume the first
virtual machine from a first state of the plurality of states.

8. The computer readable medium as recited in claim 7
further comprising second instructions which, when
executed, resume the first virtual machine on the second
computer system from a first state of the plurality of states. 20

20. The apparatus as recited in claim 19 wherein the at
least one virtual disk comprises at least a first virtual disk
that is non-persistent, and wherein the first state includes the
first virtual disk and a corresponding log of uncommitted

9. The computer readable medium as recited in claim 8
wherein the at least one virtual disk comprises at least a first
virtual disk that is non-persistent, and wherein the first state
includes the first virtual disk and a corresponding log of
uncommitted updates to the first virtual disk, and wherein
the second instructions, when executed, commit the uncom­
mitted updates to the first virtual disk prior to resuming the
first virtual machine.

10. The computer readable medium as recited in claim 1
wherein (i) comprises suspending the first virtual machine,
and wherein the instructions, when executed, resume the
first virtual machine on the first computer system subsequent
to (ii).

11. The computer readable medium as recited in claim 1
wherein (i) comprises creating a new log of uncommitted
updates for each virtual disk in the first virtual machine and
creating a memory area to capture writes to a memory of the
first virtual machine, such that the first virtual machine can
continue executing during (ii).

12. An apparatus comprising:

a first computer system configured to execute at least a
first virtual machine, wherein the first computer system
is configured to:

updates to the first virtual disk, and wherein the second
computer system is configured to commit the uncommitted

25 updates to the first virtual disk prior to resuming the first
virtual machine.

21. The apparatus as recited in claim 12 wherein (i)
comprises suspending the first virtual machine, and wherein
the instructions, when executed, resume the first virtual

30 machine on the first computer system subsequent to (ii).

22. The apparatus as recited in claim 12 wherein (i)
comprises creating a new log of uncommitted updates for
each virtual disk in the first virtual machine and creating a

35 memory area to capture writes to a memory of the first
virtual machine, such that the first virtual machine can
continue executing during (ii).

40

23. A method comprising:

capturing a state of a first virtual machine executing on a
first computer system, the state corresponding to a
point in time in the execution of the first virtual
machine, wherein the first virtual machine comprises at
least one virtual disk storing at least one file used by at
least one application executing in the first virtual

(i) capture a state of the first virtual machine, the state 45

corresponding to a point in time in the execution of
the first virtual machine, wherein the first virtual
machine comprises at least one virtual disk storing at
least one file used by at least one application execut­
ing in the first virtual machine, and wherein the state 50

of the first virtual machine comprises the at least one
file; and

machine, and wherein the state of the first virtual
machine comprises the at least one file; and

copying at least a portion of the state to a destination
separate from a storage device to which the first virtual
machine is suspendable, wherein suspending the first
virtual machine is performed responsive to a suspend
command.

24. The method as recited in claim 23 wherein the
destination is a backup medium coupled to the first computer
system and used to backup data from the first computer
system.

(ii) copy at least a portion of the state to a destination
separate from a storage device to which the first 55

virtual machine is suspendable, wherein suspending
the first virtual machine is performed responsive to a
suspend command.

25. The method as recited in claim 24 wherein the at least
one virtual disk comprises at least a first virtual disk which
is non-persistent, the method further comprising committing

60 any changes to the first virtual disk prior to copying the state
to the destination.

13. The apparatus as recited in claim 12 wherein the
destination is a backup medium coupled to the first computer
system and used to backup data from the first computer
system.

14. The apparatus as recited in claim 13 wherein the at
least one virtual disk comprises at least a first virtual disk
which is non-persistent, and wherein the first computer
system is configured to commit any changes to the first
virtual disk prior to copying the state to the destination.

26. The method as recited in claim 23 further comprising
repeating the suspending, the copying, and the resuming
periodically, thus generating a plurality of states of the first

65 virtual machine corresponding to different points in time.

27. The method as recited in claim 26 wherein the
destination comprises a second computer system, and

Case3:11-cv-05310-EMC Document74-3 Filed05/09/12 Page21 of 21

US 7,093,086 Bl
17

wherein the method further resuming the first virtual
machine on the second computer system from a first state of
the plurality of states.

28. The method as recited in claim 27 wherein the at least
one virtual disk comprises at least a first virtual disk that is
non-persistent, and wherein the first state includes the first
virtual disk and a corresponding log of uncommitted updates
to the first virtual disk, and wherein the method further
comprises committing the uncommitted updates to the first
virtual disk prior to resuming the first virtual machine.

18
29. The method as recited III claim 26 wherein the

capturing comprises suspending the first virtual machine, the
method further comprising resuming the first virtual
machine on the first computer system.

30. The computer readable medium as recited in claim 1
wherein the computer readable medium comprises a
memory in a computer system.

* * * * *

