
c12) United States Patent
Foti

(54) METHOD AND SYSTEM FOR ACCESSING
OBJECTS DEFINED WITHIN AN EXTERNAL
OBJECT-ORIENTED ENVIRONMENT

(75) Inventor: David A. Foti, Ashland, MA (US)

(73) Assignee: The MathWorks, Inc., Natick, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/518,288

(22)

(51)

(52)
(58)

(56)

Filed: Mar. 3, 2000

Int. Cl.
G06F 151163 (2006.01)
U.S. Cl. .. 719/310
Field of Classification Search 709/315;

719/315, 310
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,061,721 A *
6,230,160 B1 *
6,282,699 B1
6,289,395 B1 *
6,578,191 B1 *

5/2000 Ismael et a!. 709/223
5/2001 Chan eta!. 707/103 X
8/2001 Zhang et a!.
9/2001 Apte et a!. 709/318
6/2003 Boehme eta!. 717/107

OTHER PUBLICATIONS

IBM Technical Disclosure Bulletin, Generating Event Adapters to
Facilitate Connections Between Java Beans, Jan. 1, 1998, p. 1-3.*
John Henry Moore, Microsoft's New, Improved Proxy Server, Dec.
1997, p. 1-3.*

12\

Interpretive Computing
Environment

111111 111
US007181745Bl

(10) Patent No.: US 7,181,745 B1
Feb.20,2007 (45) Date of Patent:

Samir B. Gehani, A java based Framework for Explicitly Partition­
ing, 1997, Section 3.1 Java Beans.*
John Henry Moore, Microsoft's New, Improved Proxy zserver, Dec.
1997, p. 1-3.*
Samir. Gehani, A java based Framework for Explicity Partioning,
1997, section 3.1 Java Beans.*
AWT Enhancements, 1996 Sun Microsystem.*
IBM Technical Disclosure Bulletin, Generating Event Adapters to
Facilitate Connections Between Java Beans, Jan. 1, 1998, p. 1-3
John Henry Moore, Microsoft's New, Improved Proxy zserver, Dec.
1997, p. 1-3.*
Samir. Gehani, A java based Framework for Explicitly Partioning,
1997, section 3.1 Java Beans AWT Enhancements, 1996 Sun
Microsystem. *
MA, Master of disguises : Marking JavaBeans look like ActiveX
controls, 1998.*
MacFarklane, A dynamic document environment for system design
support, 1998.*
Tarjan , "Enumeration of the Elementary Circuits of a Directed
Graph", Cornell University Technical Report TR 72-145, 1972.
Tarjan, "Depth-First Search and Linear Graph Algorithms", SIAM
J Comp., 1:146-160, Jun. 1972.

(Continued)

Primary Examiner-William Thomson
Assistant Examiner-LeChi Truong
(74) Attorney, Agent, or Firm-Lahive & Cockfield, LLP

(57) ABSTRACT

A method, system and apparatus, including a computer
program apparatus, implementing techniques for dynami­
cally creating a class and an object in an external computing
environment. The method, system and apparatus allow the
creation of an adapter class, capable of implementing a
listener interface, during runtime.

48 Claims, 6 Drawing Sheets

20 /'
Object-Oriented

Computing Environment 22 /h

ll~ Virtual Machine
f-.

'C Native Interface t fF
24

6H Event Responder

i-1---- Table of Bean Proxies 42
-,

r---H Bean Proxy I

Bean Interface

Adapter Table

~ e

s

34____.11

I Bean _t

I
Class ~ Loader

26 h

f-,

1--.

28

30

32

36 !--:

38 h

US 7,181,745 B1
Page 2

OTHER PUBLICATIONS

Tiernan, "An Efficient Search Algorithm to Find the elementary
Graph", Comm. Of the ACM,. 13:722-726,1970.

Weinblatt, "A New Search Algorithm for Finding Simple Cycles of
a Finite Directed Graph", JACM 19:43-46, Jan. 1972.

David M. Gay, Symbolic-Algebraic Computations in a Modeling
Language for Mathematical Progranuning, Nov. 1999, Schloss
Dagstuhl, p. 4-7.
Hartmut Pohlheim, Genetic and Evolutionary Algorithm Toolbox
for use with MATLAB, Jul. 1997.

* cited by examiner

U.S. Patent Feb.20,2007 Sheet 1 of 6 US 7,181,745 B1

1

1

1

12 \
Interpretive Computing

Environment

4~
4 I)

' H Event Responder
) 6

_
1--- Table of Bean Proxies 42

B,
1'-H Bean Proxy

Fig. 1

r 20

Object-Oriented
Computing Environment / 1--22

Virtual Machine
1--rLI Native Interface

24

Bean Interface
vi-26

Adapter Table
vi-

~---~

Adapter
Listene~
Interface

28

30

Class F- t-32

34__..?1
v 36

1-.J
Bean

Class Ll
1-38

Loader

U.S. Patent Feb.20,2007 Sheet 2 of 6 US 7,181,745 B1

Bean Interface 2

~
6

50

Adapter Generator v
52

ClassFile Java Class v

54

Event Responder

56

Event Queue v

FIG. 2

U.S. Patent Feb.20,2007 Sheet 3 of 6 US 7,181,745 B1

Listener Interface

Adapter Class

Reference to Event Responder

Identification of Listener Object 32

~
34

FIG. 3

U.S. Patent Feb.20,2007 Sheet 4 of 6 US 7,181,745 B1

Caller external to object-oriented 7 0
operating environment requires ~ registration with class object in object-
oriented operating environment

7 2
Introspection by adapter generator in

~ object-oriented environment discloses
class's listener interfaces and events

7 4
Adapter class created by adapter ~ generator to implement interface

7 6
Adapter class invoked to generate an

~ adapter object that can be used to
register caller

FIG. 4

U.S. Patent

100

FIG. 5

128

End

Feb.20,2007 Sheet 5 of 6

Create ClassFile object

Compose adapter class name

Invoke ClassFile method to set the class name
to the composed adapter class name

Call a Class File method to add the interface
name as a superinterface of the adapter class

Add fields to the adapter using the Class File
object to store EventResponder and listener's

identification number

Add class references to the Class File object for
all classes referenced by the adapter class

Add constructor method to adapter class

Get list of methods which comprise the listener
interface

Consider first interface method

Add method to adapter class that implements
the method in the listener interface

No

Yes

Invoke the Class File object to generate a class
object which will be an executable
representation of the adapter class

US 7,181,745 B1

124

200~

212
SYSTEM MEMORY

ROM 214 - v 213
Processor

I BIOS ~217

219

RAM 215 I
- 216

I Bus Controller
Software ~236

Applications

Operating j35
System

Device ~237 I Drivers Fo 221
I

Internal Hard
Disk

Floppy Disk Drive

~251

FIG. 6

2f

Video
Adapter

~18

~22 ~28 l
Optical Drive

Input I Output Network
Ports Interface

('" 229

~ Modem l

~ =

252 ~D
242 t

240

2~4

EJ
- 202

1253

LOCAL AREA NETWORK ..
I

251

~

244 -1 Remote
Computer

e
•
00
•
~
~
~
~ = ~

""f'j
('D

?'
N
~0

N
0
0
-....l

rFJ

=­('D
('D
0\
0
0\

d
rJl

"'--...1

""""' 00

""""' ~
~
u.

= """"'

US 7,181,745 B1
1

METHOD AND SYSTEM FOR ACCESSING
OBJECTS DEFINED WITHIN AN EXTERNAL

OBJECT-ORIENTED ENVIRONMENT

TECHNICAL FIELD

The invention relates generally to interfacing computing
environments.

BACKGROUND

In general, a computing environment represents the state
of the computer and determines the kinds of programs that
can execute on the computer and how the programs may be
run. To an extent, the computing environment is dependent
upon the computer's operating system, and the operating
system may support different environments. A computer
may support two or more computing environments at the
same time. Each environment is "external" to the other in the
sense that they are logically separate, i.e., programs, classes
and objects defined in one of the environments are not
readily accessible in the other environment.

Either environment may be an interpretive environment or
a compiled environment. An interpretive computing envi­
ronment is one in which a pending high-level instruction is
converted into an intermediate form, which the computer
then converts to machine language and executes before
turning to the next high-level instruction. Another environ­
ment may require compiling, rather than interpreting, the
high-level instructions. Compiling entails translating a col­
lection or group of high-level instructions into a lower-level
language. Some compilers translate the collection of high­
level instructions into machine language, which a computer
may then execute. Other compilers translate the collection of
high-level instructions into an intermediate form. These
instructions in intermediate form may then be executed in
order by an interpreter, or may be compiled as a group again
for execution.

A particular environment need not be strictly interpretive

2
edgment that each command has been carried out. MATLAB
does not need to be recompiled after every command.
Accordingly, a MATLAB user may be said to be operating
in an interpretive computing environment.

Other examples of programs where users may enter
instructions interactively include Visua!Basic™, SmallTalk,
LISP, Mathematica™, and IDL™.

A modem and widely-used computing environment is the
Java environment. The Java environment supports object-

10 oriented programming in which reusable software compo­
nents called "objects" form the building blocks of a com­
puter program.

In the Java environment, programs written in the high­
level Java language (also called the "source code") are

15 compiled by the Java compiler, creating a lower-level ver­
sion of the program in the form of "bytecodes." Bytecodes
represent a formatted string of numbers, corresponding to an
intermediate form of the program between the high-level
Java language understood by people and the low-level

20 machine language understood by computers. Bytecodes are
converted into machine code by a machine code generator
such as a "Java interpreter" or a "JIT Oust-in-time) com­
piler."

25
The bytecodes represent a form of the program recog-

nized by the Java virtual machine. In general, a "virtual
machine" is an abstract computing machine. Computer
programs are essentially lists of instructions used to control
a machine, and the instructions must be converted into the

30
language of that machine before the instructions may be
carried out. In some cases, the instructions control a hard­
ware-based or "real" machine, such as a personal computer.
Instructions to a "real" machine ordinarily conform to the
native language of the hardware itself. In other cases, the

35
instructions control a software-based computer program
called a "virtual machine," which in turn controls a real
machine. Instructions to a virtual machine ordinarily con­
form to the virtual machine language. For the Java virtual
machine, the virtual machine language is in bytecodes.

The Java virtual machine is only one of many virtual
machines. Any interpreted language may be said to employ
a virtual machine. The MATLAB program, for example,
behaves like an interpretive program by conveying the
user's instructions to software written in a high-level lan-

or compiled, but may share attributes of both kinds of 40

environments. In general, compiled programs run faster than
interpreted programs, but are often more difficult to develop
and debug. Interpreted programs are generally easier to
debug and correct, but run more slowly than compiled
programs. 45 guage, rather than to the hardware. An advantage of a virtual

machine is that it is more specialized than the general­
purpose hardware of a "real" machine. This specialization
permits quick transformation from high-level language to
bytecodes, often with fewer demands placed upon the com-

An application written using a high-level computer pro­
gramming language, such as C or C++, ordinarily is com­
piled prior to execution. The application itself, however,
may behave like an interpreter, interactively carrying out
instructions as each instruction is input by a user. The
mathematical application MATLAB™ by Math Works, Inc.

50 puter hardware than would be made by a fully compiled
language.

of Natick, Mass., for example, is a compiled program that
may behave like an interpreter. MATLAB provides a tech­
nical computing environment that combines nnmeric com­
putation, advanced graphics and visualization, and a high- 55

level programming language. The high-level programming
language provides flow-control constructs and includes a
variety of operators for performing numerical analysis,
string manipulation, and graphical user interface (GUI)
design. A MATLAB program generally executes instructions 60

as each instruction is given by the user. A MATLAB user
may, for example, define a square matrix with a single
command. Once the matrix is defined, the user may manipu­
late the matrix, using one command to find its inverse,
another command to find its transpose, or another command 65

to learn its determinant. Each command is carried out as it
is given, and MATLAB allows users to receive an acknowl-

In an object-oriented computing environment, such as the
Java environment, "objects" are modules of computer code
that specify the data types of a data structure, and also the
kinds of operations (or "methods") that will be permitted to
be applied to the data structure. A "class" may be thought of
as a prototype that defines the data structures and methods
common to all objects of a certain kind; thus, an object may
be of a particular class. "Instantiation" of a class creates an
object of that class. Classes that are in general referred to as
Java "beans" (JavaBeans is a registered trademark of Sun
Microsystems, Inc.), are of particular interest. Java beans are
reusable software modules written in the Java language. To
qualifY as a Java bean, a class is written to follow a specific
convention. Importantly, a Java bean supports "introspec­
tion," meaning that the object-oriented computing environ­
ment may be queried about the bean, its properties, methods

US 7,181,745 B1
3

and events. This determination may take place while the
Java program is executing, i.e., during "runtime."

As used below, a reusable object-oriented class that
supports introspection during runtime may be referred to as
a "bean," even if the class may not strictly qualifY as a Java
bean. The term "bean" will be used below more generally
than the term is used in Java, and will include but not be
limited to Java beans.

Under some circumstances a user may wish to combine
the benefits of both environments. A user working in one
computing environment may wish to take advantage of a
particular module of computer code that operates exclu­
sively in a second, object-oriented, computing environment.

SUMMARY OF THE INVENTION

In general, the invention concerns techniques by which a
computer program operating in one computing environment
may utilize objects in an external object-oriented computing
environment.

One aspect of this invention provides a method by which
classes and objects may be defined during runtime in an
external object-oriented computing environment. The
method comprises calling, from a computer program run­
ning in a first computing environment, a class in a second
external object-oriented computing environment, introspect­
ing the object-oriented computing environment to determine

4
FIG. 6 is a block diagram illustrating a programmable

processing system suitable for implementing and perform­
ing the system and methods of the invention.

DETAILED DESCRIPTION

This application concerns techniques by which a com­
puter program operating in a first computing environment
accesses objects in an external object-oriented computing

10 environment. The computer program in the first environ­
ment and the object in the second environment may be
written in different computer languages. The first computing
environment may be, for example, an interpretive computing
environment, but it is understood that the first computing

15 environment need not be strictly interpretive. Many aspects
of the invention will be described with the computing
environments being an interpretive computing environment,
but this is for ease of illustration; compiled programs may
employ similar methods and may be within the scope of the

20 invention. Because the Java object-oriented computing envi­
ronment is well-understood and well-documented, many
aspects of the invention will be described in terms of Java
and Java-based concepts, but the Java and Java-based con­
cepts are used for ease of explanation. The invention is not

25 limited to interactions with a Java object-oriented computing
environment.

An object-oriented computer program such as a Java bean
an interface supported by the called class, defining an
adapter class to implement the interface of the called class
and instantiating an adapter object as a function of the 30

adapter class.

may offer many advantages to a computer user. A bean is a
reusable component of computer code, that is, it is a module
that has already been created to perform a function. A bean
is generally a class, and by instantiation the bean can be used
and reused in larger applications. Furthermore, a bean is
portable and platform-independent, meaning the bean class
and the instantiated bean objects can operate on virtually any

In another aspect, the invention features a computer
program product, tangibly stored on a computer-readable
medium, for invoking a method defining classes and objects
in an object-oriented computing environment at runtime. 35 computer that can support the Java virtual machine. In

addition, a bean supports "introspection," meaning that the
object-oriented computing environment may be queried
about the bean, its properties and methods.

In another aspect, the invention features a system, com­
prising a first computing environment supported by a com­
puter and a second computing environment supported by a
computer. The second computing environment is external to
the first computing environment, and is an object-oriented 40

computing environment. The system further includes a com­
piled bean class in the second computing environment, a
bean object instantiated from the compiled bean class, a
means for dynamically creating an adapter class in the
second computing environment, the adapter class capable of 45

implementing an interface of the bean class, and an adapter
object instantiated from the adapter class.

Other features and advantages of the invention will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram providing a high-level overview
of a system in which an interpretive computing environment
interacts with an external object-oriented computing envi­
ronment.

FIG. 2 is a block diagram providing a more detailed
overview of a component introduced in FIG. 1.

A bean may define one or more events. An "event" is a
pre-defined action or occurrence that happens in or to the
bean. Examples of an event may include a user's interaction
with a Java-based GUI, or a reading on a remote sensor, or
the expiration of a timer. The bean may send messages, or
"fire the event," to other Java objects that have registered an
interest in that event. A class of Java objects may register an
interest in an event by implementing an interface called a
"listener" interface. The class that implements a listener
interface may then perform one or more functions in reac­
tion to the bean's message, i.e., invoke methods upon

50 occurrence of the event. Multiple listener interfaces may
receive events from a single bean, and different methods of
the interfaces may be invoked in reaction to events.

An computer program running in a first computing envi­
ronment may not be able to take advantage of the features of

55 beans, if the beans exist in a second computing environment
external to the first computing environment. The program in
the first computing environment may not be recognized as a
class or an object in the external object-oriented computing

FIG. 3 is a block diagram providing a more detailed 60

overview of a component introduced in FIG. 1.

environment. In general, only classes of objects that imple­
ment listener interfaces may be registered to listen for an
event. In addition, an interactive program rum1ing inside an

FIG. 4 is a flowchart illustrating a general embodiment of
a method in accordance with an embodiment of the inven-
tion.

FIG. 5 is a flowchart illustrating a more detailed embodi- 65

ment of a method in accordance with an embodiment of the
invention.

interpretive computing environment responds to commands
while the program is running, i.e., during runtime. A bean
running inside the object-oriented computing environment
and a class that implements a listener interface are compiled
prior to execution, and are not compiled during runtime. One
method for a program running inside an interpretive com-

US 7,181,745 B1
5

puting environment to interact with a compiled program is,
at each interaction, to stop execution of the compiled pro­
gram, modifY the stopped program, recompile the stopped
program, and execute it anew. This method is extremely
inefficient. Moreover, because of the diversity of listener
interfaces and associated methods, developing classes to
implement all possible interfaces is difficult and impractical.

The invention provides a way for an interactive computer
program running in one computing environment to register
its interest in an event with a bean defined within an external
computing environment, i.e., to associate a resultant action
in the computing environment with an event fired by the
external environment. The invention allows for an interac­
tive program to take advantage of a bean by creating an
adapter class in the object-oriented computing environment
during runtime. The invention includes a class, referred to
herein as ClassFile. Like other Java classes, ClassFile may

6
though the bean proxy 18 is not the bean itself 36. The
interpretative program may consult a table of bean proxies
16 to determine whether the desired bean proxy has already
been generated. If the desired bean proxy has not already
been generated, the interpretative program may generate
one, and may list the generated bean proxy within the table
of bean proxies 16. The table of bean proxies 16 may be in
many forms, such as in the form of a hash table.

When, in the interpretive computing environment 12, a
10 command is first encountered to employ or "call" a bean 36

in the object-oriented computing environment 20, a bean
proxy 18 is generated in the interpretive computing envi­
ronment 12. In addition, an adapter class 32 is created in the
object-oriented computing environment 20 to implement the

15 interface of the bean 36. If the bean 36 employs more than
one interface, additional adapter classes may be created to
implement each interface; for ease of illustration, it will be
assumed that the bean supports only one interface and be instantiated to create an object of class ClassFile. The

object of class ClassFile may then operate to build a new
adapter class. This new adapter class, when instantiated, 20

creates an adapter object.

therefore only one adapter class 32 is created.
To generate the bean proxy 18 and adapter class 32,

information about the interfaces and events supported by the
bean 36 must be obtained. A message 40 may be sent from
the interpretive computing environment 12 to the object­
oriented computing environment 20. The message may

The ClassFile class may be compiled with the rest of the
Java code. The adapter class, by contrast, need not be
compiled with the rest of the Java code, and may in effect be
added into the Java environment at runtime. The invention
avoids compiling the adapter class by building the adapter
class using bytecodes, rather than by building the adapter
class in a high-level source code language. After the byte­
codes are "loaded" (placed into memory) during runtime by
a class loader, the Java interpreter will recognize the byte­
codes. The bytecodes would be indistinguishable from byte­
codes that resulted from compiling, and may thereafter be
executed by a machine code generator. During execution, an
adapter class object may be instantiated. The adapter class
implements a listener interface, and the instantiated adapter
class object may thus be registered to listen to an event that
may be fired by a bean.

25 include the name of the bean 36 being called by the user,
along with an identifier for the bean 36 assigned by the
interpretative program. Ordinarily the object-oriented com­
puting environment 20 receives a message 40 from the
interpretive computing environment 12 through a native

30 interface 24. In the Java virtual machine, the Java native
interface acts as a bridge between Java and other high-level
languages, such as C and C++.

Upon receipt of the message 40 by the native interface 24,
the object-oriented computing environment is interrogated

FIG. 1 is a block diagram providing a high-level overview
of a system 10 in which an interpretive computing environ­
ment 12 interacts with an object-oriented computing envi­
ronment 20. A single computer (not shown in FIG. 1) is
capable of supporting both environments 12, 20 simulta­
neously. The object-oriented environment 20 is represented

35 to determine information about the bean 36. This interroga­
tion is sometimes called "introspection." Introspection will
be used to discover what events the bean 36 supports, what
listener interfaces the bean 36 employs, and how the events
and listener interfaces are related. It may be possible, for

40 example, for a set of several events to trigger a single
particular listener interface. Data obtained by introspection
may then be used to generate an adapter class 32 to imple­
ment a listener interface 30. One adapter class may be

as external to the interpretive computing environment 12.
The interpretive computing environment 12 need not sup- 45

port strictly interpretive programs, and may actually support
object-oriented programs. The object-oriented environment

generated for each listener interface supported by a bean 36.
The introspection may be performed by the bean interface

26, depicted in FIGS. 1 and 2. The data obtained by
introspection may be used by the adapter generator 50. The
adapter generator 50 instantiates an object of the ClassFile
class 52 for each listener interface discovered by introspec-

50 tion. Each object of the class ClassFile employs methods of
the ClassFile class 52 dynamically to create a new adapter
class to implement a particular listener interface. The gen­
eral process for doing so will be described in more detail
below.

20 is external to the interpretive computing environment 12,
however, because the object-oriented environment 20 does
not recognize any objects in the interpretive computing
environment 12. For purposes of illustration, it is assumed
that programs operating in the interpretive environment
behave in an interactive fashion. Furthermore, it is assumed
for purposes of illustration that computer programs operat­
ing in the object-oriented environment 20 ordinarily must be 55

compiled before they can be executed. These assumptions
are only for purposes of illustration and are not necessary to
practice the invention.

An interactive interpretative program may operate in the
interpretive computing environment 12. A user running the 60

interpretative program may command the interpretative pro­
gram to employ an object of a particular class, such as a
bean. The bean class itself 36 resides in the object-oriented
computing environment 20. Upon receipt of a command to
employ a bean, the interpretive computing environment 12 65

employs a bean proxy 18, which serves the function of the
bean in the interpretive computing environment 12, even

FIG. 1 shows an adapter-implementing-interface combi­
nation 34. The combination 34 comprises the created adapter
class 32 and the listener interface 30 implemented by the
created adapter class 32. The adapter-implementing-inter­
face combination 34 may be recorded in an adapter table 28,
such as a hash table. The bean interface 26 may consult the
adapter table 28 to determine whether a desired adapter
exists and may be re-used, or whether an adapter must be
created anew. FIG. 3 shows additional features of adapter­
implementing-interface combination 34. An adapter object
created by instantiation of the adapter class 32 may have the
capability to store data. The stored data may include a
number that identifies the listener interface 62. The stored

US 7,181,745 B1
7

data may also include a reference to an event responder 60.
The reference to event responder 60 will ordinarily refer to
the Event Responder 54 within the bean interface 26.

The newly created adapter class 32 may be loaded into
memory during runtime by a class loader 38. The adapter
class 32 will consist of bytecodes, rather than Java source
code. The Java machine code generator (not shown) may
then execute the bytecodes. During execution, a bean class
object and an adapter class object may be instantiated. The
adapter class implements a listener interface and the instan- 10

tiated adapter class object may thus be registered to listen to
an event that may be fired by the bean object. The bean
object is instantiated when its constructor is invoked by a
command from the interpretive computing environment 12.

8
class (step 76). The adapter object is able to communicate
messages 42 concerning an event to the calling interactive
program.

The adapter object may be instantiated only after the
external application executing within environment 12
requests that a particular action be associated with a par­
ticular event. The adapter object can be unregistered when
there are no longer any actions associated with the event to
be performed.

FIG. 5 is a flow chart showing the steps taken in the
object-oriented computing environment 20 after a caller in
the interpretive environment 12 has requested registration
with bean 36 in the external object-oriented computing
environment 20. Again, for purposes of illustration, many of

Upon the occurrence of an event, the bean object fires the
event, and the object of the adapter class will be notified.
Firing the event causes messages to be sent to objects that
have registered an interest in that event. Because the object

15 the concepts will be presented in terms of Java, but the
concepts are not necessarily limited to the Java environment.

At the start 100, the program running in the interpretive
computing environment 12 has encountered a user command
to call a bean 36 in the object-oriented computing environ-of the adapter class 32 implements the listener interface 30

and the object has registered an interest in the event, the
object of the adapter class 32 will receive a message when
the bean object fires the event.

Upon receipt of a message, the object of the adapter class
32 relays information about the event and the listener
interface to the Event Responder 54. The object of the
adapter class 32 uses the reference data in storage 60 to
determine where to relay the information.

20 ment 20. The program running in the interpretive computing
environment 12 has created a bean proxy 18, has assigned an
identifier to the bean proxy, and has sent a message 40 to the
native interface 24 identifYing the bean 36 and an assigned
identifier for the bean 36. In the object-oriented computing

The Event Responder 54 may place data structures con­
taining information about the event into the Event Queue 56,
shown in FIG. 2. The Event Responder 54 may also send a
message 42 to an Event Responder 14 in the interpretive
computing environment 12. Message 42 may be conveyed
using the underlying message structure of the computer's
operating system.

25 environment 20, the events and listener interfaces supported
by the bean 36 have been found by introspection. For
purposes of illustration, it will be assumed that the adapter
table 28 has been consulted and that no adapter class
implementing a particular interface yet exists. It is further

30 assumed in FIG. 5 that the called bean class has only one
listener interface, although multiple iterations of the steps
shown in FIG. 5 may be performed for beans with multiple
listener interfaces.

Within the adapter generator 50, the ClassFile class 52 is

The Event Responder 14 in the interpretive computing
environment 12 may then respond to the event. The Event
Responder 14 in the interpretive computing environment 12
may, for example, adjust the graphics display or notify the
user that the event in question has taken place. From the
user's point of view, it will appear as though the interactive
program has smoothly used a bean to carry out a desired
function. The Event Responder 14 may also send a query to
the object-oriented computing environment 20 for more
information about the event.

35 instantiated to create an object of the class ClassFile (102).
This object of the class ClassFile may then be used to create
a new adapter class. The new adapter class then may have its
characteristics "filled in" by invoking methods of this Class­
File object. Some self-descriptive methods (written in the

40 Java language) supported by the class ClassFile may
include:

45

FIG. 4 is a flowchart illustrating one embodiment of a
method for implementing the techniques of the invention.
The flowchart assumes a simple case where a single listener
interface adapter, implementing a bean's sole listener inter­
face, is generated dynamically. For purposes of illustration, 50

many of the concepts will be presented in terms of Java, but
the concepts are not necessarily limited to the Java envi­
ronment. The process begins when a program running in the
interpretive environment 12 entails an instruction to register
with an object (such as an object of a bean class 36) in the 55

external object-oriented computing environment 20 (step
70). This results in a call40 to the object-oriented computing
environment 20. The object-oriented computing environ­
ment 20 is queried about the bean class 36, its listener
interfaces and supported events (step 72). In other words, 60

introspection is used to obtain information about the bean
class 36 (the bean object itself may be instantiated at any
convenient point). Using this information, the adapter gen­
erator 50 creates an adapter class 32 dynamically (step 74).
This adapter class 32 implements the listener interface 30. 65

The adapter class 32 can be used to instantiate an adapter
object to be registered as a listener on an object of the bean

void setName(String className)
void addClassReference(String className)
void addFieldReference(String className, String fieldName, String

typeSignatnre)
void addMethodReference(String className, String methodName, String

signatnre)
void addField(String name, String typeSignatnre, int accessFlags)
void addMethod(String name, String signatnre, byte[] byteCodes, int

accessF lags)
void setSuperclass(String superclassName)
void addlmplementedlnterface(String interfaceName)

Class createClass()

As the names of the above methods suggest, the methods
may be used to build an adapter class essentially from
scratch during runtime. The adapter class may be tailored to
support a desired method or to work with desired data.
Importantly, the adapter class is built at the intermediate
bytecode level, not at the high-level Java source code level.
By being built at the intermediate bytecode level, the adapter
class bypasses the compiling process, and may be said to
have been created "dynamically."

One characteristic the new adapter class may require is a
name. Accordingly a name may be composed (104). Com­
posing a name may be done in many ways. In the Java

US 7,181,745 B1
9

environment, one way to compose a name is to take the
listener interface name and concatenate the word "Adapter"
on the end. For example, the adapter class to implement the
interface "MouseListener" may be named "MouseListener­
Adapter." Obtaining the name of the interface by a standard
Java API (application program interface) call may return a
name in an undesirable format for use on the virtual machine

10
generator, and may simply call another constructor, such as
the constructor for java.lang.Object.

In the following steps (118, 120, 122, 124), methods are
invoked to add methods to the new adapter class, one
method in the new adapter class for each method in the
listener interface. A method and its signature (a combination
of the method's name and its parameter types) may be found
by introspection. In Java, the added methods must have the
same name and signature as those found by introspection.

22 (such as including dot (.) characters instead of slash (/)
characters), but the name can be easily converted to a usable
format (such as by converting all dots to slashes). Once the
name is fully composed, a ClassFile method (void setName
(String className)) may be invoked to set the name of the
new adapter class (106).

Another method may be called, by which the new adapter
class will implement the listener interface (108). In other
words, the listener interface is added as a superinterface of
the new adapter class. In Java language, this step is accom­
plished by using the "implements" syntax, such as
"MouseListenerAdapter implements MouseListener"; but
the ClassFile object uses a method, rather than the Java
language, to accomplish this step.

10 Adding a method (120) may involve the adapter generator
providing the ClassFile object with each method's name,
signature and bytecodes. The adapter generator gives each
adapter class method bytecodes that cause the method to
invoke the EventResponder class, and pass down: the lis-

15 tener identifier; the event number; all of the arguments
passed to the listener method, bundled in an array of
java.lang.Object objects; and any additional information
stored in the adapter class. The bytecodes shown below
represent an illustrative, and non-unique, implementation of

20 the invention:

Other methods may be invoked to "fill in" more charac­
teristics of the new adapter class. Fields may be added to the
new adapter class to store information that the new adapter
class will need at a later time, when the listener interface it
implements is invoked (110). One field may store a pointer
or reference to the Event Responder 54 in the object­
oriented computing environment 20. When, at a later time,
the bean fires its event and notifies the adapter of the event,
the adapter will then relay this information to the Event
Responder 54, and the pointer or reference is stored in the
adapter so that the relay may be made. The new adapter class
may therefore include fields for this pointer or reference.

The new adapter class may further include one or more
fields to hold information to identify the event when an event

25

30

35

is fired. A field could hold an identifier identifying which
listener interface of the particular bean was triggered.
Although each adapter class is expected to implement a
single listener interface, this field may be useful if different
beans map the same listener interface in different ways. For 40

example, the listener interface MouseListener may be the
first interface for a first bean, but the very same MouseLis­
tener interface may be the sixth interface for a second bean.
When the adapter class is later instantiated to create an
adapter object, the field may be used to map to the desired 45

interface of the bean. The particular event triggered within
the listener interface may be encoded within the adapter
class's methods, as described below. The particular event is
identified by a constant integer encoded in each of the
adapter's methods that respond to an event. This integer may 50

be passed to the Event Responder 54, along with the value
in the field identifying the listener interface.

Further methods may be invoked to "fill in" more char­
acteristics of the new adapter class. References to classes
may be added for all classes referenced by the adapter class 55

(112). For example, a Java class representation must have
entries in its pool of constants for all classes (such as the
java.lang.Object class or the EventResponder class) refer­
enced by the class. Constants include names of methods,
data types of methods, and so forth. 60

An additional method may be invoked to add an adapter
class constructor method (114). In Java, a constructor is a
special method that initializes the instance variables, when
an instance of a class object is created, and a constructor is
needed for all Java classes. The actual adapter class con- 65

structor method may be written in bytcodes passed into the
ClassFile object by a method executed within the adapter

Bytecode (Hex)

2a
2b

10
XX

b7

XX

XX
b1

Meaning

load tbe object pointer "tbis" onto tbe operand stack
push first parameter onto tbe stack - tbis is tbe event
data object.
push integer byte onto tbe stack.
An integer from 0-255 representing tbe index of tbe
method within the listener interface. This integer
identifies tbe particular event triggered witbin tbe
listener interface.
invoke a class metbod - tbis is tbe metbod which
invokes the Event Responder
Fill in tbis bytecode (and tbe one tbat follows) witb 2
bytes tbat form a 16-bit integer which represents tbe
constant pool index of tbe metbod being invoked at
runtime.

return

Various embodiments have been described of a method
and system by which a computer program operating in a one
computing environment may utilize objects in an external
object-oriented computing environment. The invention can
be implemented in digital electronic circuitry, or in computer
hardware, firmware, software, or in combinations of them.
Apparatus of the invention can be implemented in a com­
puter program product tangibly embodied in a machine­
readable storage device for execution by a programmable
processor; and method steps of the invention can be per­
formed by a programmable processor executing a program
of instructions to perform functions of the invention by
operating on input data and generating output. The invention
can be implemented advantageously in one or more com­
puter programs that are executable within an computing
environment of a computer including at least one program­
mable processor coupled to receive data and instructions
from, and to transmit data and instructions to, a data storage
system, at least one input device, and at least one output
device.

An example of one such type of computer is shown in
FIG. 6, which shows a block diagram of a programmable
processing system (system) 200 suitable for implementing
or performing the apparatus or methods of the invention. As
shown in FIG. 6, the system 200 includes a processor 212
that in one implementation belongs to the PENTIUM®
family of microprocessors manufactured by the Intel Cor­
poration of Santa Clara, Calif. However, it should be under-

US 7,181,745 B1
11

stood that the invention can be implemented on computers
based upon other microprocessors, such as the MIPS®
family of microprocessors from the Silicon Graphics Cor­
poration, the POWERPC® family of microprocessors from
both the Motorola Corporation and the IBM Corporation,
the PRECISION ARCHITECTURE® family of micropro­
cessors from the Hewlett-Packard Company, the SPARC®
family of microprocessors from the Sun Micro systems Cor­
poration, or the ALPHA® family of microprocessors from
the Compaq Computer Corporation. System 200 represents 10

any server, personal computer, laptop or even a battery­
powered, pocket-sized, mobile computer known as a hand­
held PC or personal digital assistant (PDA).

System 200 includes system memory 213 including read
only memory (ROM) 214 and random access memory 15

(RAM) 215, which is connected to the processor 212 by a
system data/address bus 216. ROM 214 represents any
device that is primarily read-only including electrically
erasable progrmable read-only memory (EEPROM),
flash memory, etc. RAM 215 represents any random access 20

memory such as Synchronous Dynamic Random Access
Memory.

Within the system 200, input/output bus 218 is connected

12
or the optical disk 252. Once one of the software applica­
tions 236 is loaded into the RAM 215, it can be used by the
processor 212. In case of large software applications 236,
processor 212 loads various portions of program modules
into RAM 215 as needed.

The Basic Input/Output System (BIOS) 217 for the sys­
tem 200 is stored in ROM 214 and is loaded into RAM 215
upon booting. Those skilled in the art will recognize that the
BIOS 217 is a set of basic executable routines that have
conventionally helped to transfer information between the
computing resources within the system 200. Operating sys­
tem 235 or other software applications 236 use these low­
level service routines. In one implementation system 200
includes a registry (not shown) that is a system database that
holds configuration information for system 200. For
example, the Windows® operating system by Microsoft
Corporation of Redmond, Wash., maintains the registry in
two hidden files, called USER.DAT and SYSTEM.DAT,
located on a permanent storage device such as an internal
disk.

The invention has been described in terms of particular
embodiments. Other embodiments are within the scope of
the following claims. This application is intended to cover
any adaptation or variation of the present invention. It is

25 intended that this invention be limited only by the claims and
equivalents thereof.

to the data/address bus 216 via bus controller 219. In one
implementation, input/output bus 218 is implemented as a
standard Peripheral Component Interconnect (PCI) bus. The
bus controller 219 examines all signals from the processor
212 to route the signals to the appropriate bus. Signals
between the processor 212 and the system memory 213 are
merely passed through the bus controller 219. However, 30

signals from the processor 212 intended for devices other
than system memory 213 are routed onto the input/output
bus 218.

Various devices are connected to the input/output bus 218
including hard disk drive 220, floppy drive 221 that is used 35

to read floppy disk 251, and optical drive 222, such as a
CD-ROM drive that is used to read an optical disk 252. The
video display 224 or other kind of display device is con­
nected to the input/output bus 218 via a video adapter 225.

Users enter commands and information into the system 40

200 by using a keyboard 240 and/or pointing device, such as
a mouse 242, which are connected to bus 218 via input/
output ports 228. Other types of pointing devices (not shown
in FIG. 6) include track pads, track balls, joysticks, data
gloves, head trackers, and other devices suitable for posi- 45

tioning a cursor on the video display 224.
As shown in FIG. 6, the system 200 also includes a

modem 229. Although illustrated in FIG. 6 as external to the
system 200, those of ordinary skill in the art will quickly
recognize that the modem 229 may also be internal to the 50

system 200. The modem 229 is typically used to commu­
nicate over wide area networks (not shown), such as the
global Internet. Modem 229 may be connected to a network
using either a wired or wireless connection.

Software applications 236 and data are typically stored 55

via one of the memory storage devices, which may include
the hard disk 220, floppy disk 251, CD-ROM 252 and are
copied to RAM 215 for execution. In one implementation,
however, software applications 236 are stored in ROM 214
and are copied to RAM 215 for execution or are executed 60

directly from ROM 214.
In general, the operating system 235 executes software

applications 236 and carries out instructions issued by the
user. For example, when the user wants to load a software
application 236, the operating system 235 interprets the 65

instruction and causes the processor 212 to load software
application 236 into RAM 215 from either the hard disk 220

What is claimed is:
1. A computer implemented method for defining classes

and objects in an external object-oriented computing envi­
ronment at runtime, comprising the steps of:

identifYing, from a computer program running in a first
computing environment, an object in a second external
object-oriented computing environment, said object in
said second external object-oriented computing envi­
ronment being written in a language different than the
language used to write said computer program running
in said first computing environment;

examining the object-oriented computing environment to
determine an interface supported by the object;

without compiling source code, defining an adapter class
to implement the interface of the called object;

instantiating an adapter object as a function of the adapter
class in said second external object-oriented environ­
ment;

receiving a message concerning an event by the adapter
object as a result of implementation of the interface;
and

sending a message concerning the event to the first
computing environment to respond to the event.

2. The method of claim 1, wherein the second external
object-oriented computing environment is a Java-based
environment.

3. The method of claim 2, wherein the identified object is
an object instantiated from a Java bean.

4. The method of claim 1, wherein the first computing
environment is an interpretive computing environment.

5. The method of claim 1, wherein the first computing
environment is a C-based environment.

6. The method of claim 1, wherein the first computing
environment is a MATLAB-based environment.

7. The method of claim 1, wherein the first computing
environment and the second external object-oriented com­
puting environment are supported by a single computer.

8. The method of claim 1, further comprising the steps of:
introspecting the second external object-oriented comput­

ing environment to determine the number of event
interfaces supported by the identified object; and

US 7,181,745 B1
13

repeating the defining and instantiating steps for each
interface.

9. The method of claim 1, wherein sending the message
includes relaying the message through an event responder in
the external object-oriented computing environment.

14
26. The medium of claim 21, wherein said method further

comprises the steps of:
introspecting the second external object-oriented comput­

ing environment to determine the number of event
interfaces supported by the called object; and

repeating the defining and instantiating steps for each
interface.

10. The method of claim 1, wherein sending the message
includes relaying the message through the messaging system
of a computer's operating system.

11. The method of claim 1 wherein the message concern­
ing the event includes an identification of the implemented
interface.

27. The medium of claim 21, wherein sending themes­
sage includes relaying the message through an event

10 responder in the external object-oriented computing envi-

12. The method of claim 1, further comprising the step of:
receiving the message in the first computing environment.
13. The method of claim 12, wherein the message is

received by an event responder in the first computing 15

environment.
14. The method of claim 12, further comprising:
sending a query for more information concerning the

event-from the first computing environment to the
external object-oriented computing environment.

15. The method of claim 1, wherein the adapter class is
recorded in a table.

20

ronment.
28. The medium of claim 21, wherein sending the mes­

sage includes relaying the message through the messaging
system of a computer's operating system.

29. The medium of claim 21, wherein the message con­
cerning the event includes an identification of the imple­
mented interface.

30. The medium of claim 21 wherein said method further
comprises the step of:

receiving the message in the first computing environment.
31. The medium of claim 30, wherein the message is

received by an event responder in the first computing
environment. 16. The method of claim 15, wherein the table is a hash

table.
17. The method of claim 1, wherein the adapter object is

instantiated and registered when the user associates an
action to be performed in the first environment to handle an
event fired in the second environment.

32. The medium of claim 30, wherein said method further
25 comprises the step of:

sending a query, from the first computing environment to
the external object-oriented computing environment for
more information concerning the event.

18. The method of claim 1, further comprising:
creating, in the first computing environment, a proxy for

the object.

33. The medium of claim 21, wherein the adapter class is
30 recorded in a table.

34. The medium of claim 33 wherein the table is a hash
table. 19. The method of claim 18, wherein the proxy is

recorded in a table.
20. The method of claim 19, wherein the table is a hash

table.
21. In an object-oriented computing environment, a

medium holding computer-executable steps for a method
defining classes and objects in an object-oriented computing
environment at runtime said method comprising the steps of:

35. The medium of claim 21 wherein the adapter object is
instantiated and registered when the user associates an

35 action to be performed in the first environment to handle an
event fired in the second environment.

identifYing from a computer program running in a first 40

computing environment, an object in a second external
object-oriented computing environment, said object in
said second external object-oriented computing envi­
ronment being written in a language different than the
language used to write said computer program running 45

in said first computing environment;
examining the object-oriented computing environment to

determine an interface supported by the object;
without compiling source code, defining an adapter class

to implement the interface of the identified object;
instantiating an adapter object as a function of the adapter

class in said second external object-oriented computing
environment;

50

receiving a message concerning an event by the adapter
object as a result of implementation of the interface; 55

and
sending a message concerning the event to the first

computing environment to respond to the event.
22. The medium of claim 21, wherein the second external

object-oriented computing environment is a Java-based 60

environment.
23. The medium of claim 21, wherein the first computing

environment is an interpretive computing environment.
24. The medium of claim 21, wherein the first computing

environment is a C-based environment.
25. The medium of claim 21, wherein the first computing

environment is a MATLAB-based environment.

65

36. The medium of claim 21, wherein said method further
comprises the step of:

creating a proxy for the object in the first computing
environment.

37. The medium of claim 36, wherein the proxy is
recorded in a table.

38. The medium of claim 36, wherein the table is a hash
table.

39. A computer system comprising:
a first computing environment supported by a computer

executing processes written in a non-Java program­
ming language;

a second computing environment supported by a com­
puter, external to the first computing environment,
wherein the second computing environment is a Java­
based object-oriented computing environment;

a compiled bean class in the second computing environ­
ment;

a bean object instantiated from the compiled bean class;
means for dynamically creating bytecode or machine code

for an adapter class in the second computing environ­
ment, the adapter class capable of implementing an
interface of the bean class; and

an adapter object instantiated from the adapter class;
receiving a message concerning an event by the adapter

object as a result of implementation of the interface;
and

sending a message concerning the event to the first
computing environment to respond to the event.

40. The system of claim 39, wherein the adapter class is
recorded in a table.

US 7,181,745 B1
15

41. The system of claim 40, wherein the table is a hash
table.

42. The system of claim 39, further comprising
a native interface in the second computing environment,

said native interface capable of receiving instructions
and data from the first computing environment.

43. The system of claim 39, further comprising means for
instantiating the compiled class to create the bean object.

44. The system of claim 39, further comprising means for
instantiating the adapter class to create the adapter object.

16
45. The system of claim 39, further comprising means for

generating a bean proxy in the first computing environment.
46. The system of claim 39, further comprising a bean

interface in the second computing environment.
47. The system of claim 46, further comprising an event

responder in the bean interface.
48. The system of claim 46, further comprising an event

queue in the bean interface.

* * * * *

