
Case3:11-cv-05310-EMC Document78-1 Filed05/23/12 Page2 of 22

(12) United States Patent
Beloussov et al.

(54) SYSTEM AND METHOD FOR USING FILE
SYSTEM SNAPSHOTS FOR ONLINE DATA
BACKUP

(75) Inventors: Serguei Beloussov, South San
Francisco, CA (US); Stanislav
Protassov, Singapore (SG); Alexander
Tormasov, Moscow (RU)

(73) Assignee: Swsoft Holdings, Ltd. (BM)

(*) Notice: Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 364 days.

(21) Appl. No.: 10/624,858

(22)

(51)

(52)
(58)

(56)

Filed: Jul. 22, 2003

Int. Cl.
G06F 12100 (2006.01)
G06F 12116 (2006.01)
G06F 12106 (2006.01)
U.S. Cl. 7111162; 711/133; 707/200
Field of Classification Search None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,410,667 A 411995 Belsan et al.
5,720,026 A * 211998 Uemura et al. 714/6
5,819,292 A 1011998 Hitz et al.
5,832,515 A 1111998 Ledain et al.
5,905,990 A 511999 Inglet
5,996,054 A 1111999 Ledain et al.
6,021,408 A 212000 Ledain et al.
6,038,639 A 3/2000 O'Brien et al.
6,061,770 A 5/2000 Franklin
6,101,585 A 8/2000 Brown et al.

400

111111 111
US007246211 B 1

(10) Patent No.: US 7,246,211 Bl
Jul. 17,2007 (45) Date of Patent:

6,173,377 Bl
6,205,450 Bl
6,289,356 Bl
6,341,341 Bl
6,405,294 Bl *
6,598,134 B2 *
6,738,865 Bl *
6,799,258 Bl

200210032691 Al *
2004/0010668 Al *

* cited by examiner

112001 Yanai et al.
3/2001 Kanome
912001 Hitz et al.
112002 Grummon et al.
6/2002 Hayter 7111162
7/2003 Ofek et al 7111162
5/2004 Burton et al. 7111133
912004 Linde
3/2002 Rabii et al. 707/200
112004 Inagaki et al. 7111162

Primary Examiner-Hyung Sough
Assistant Examiner-Duc T. Doan
(74) Attorney, Agent, or Firm-Bardmesser Law Group

(57) ABSTRACT

A system and method for providing online data backup for
a computer system. In which the computer system includes
an intennediate block data container. The computer system
may utilize the intennediate block data container to manage
data block release during the online data backup process.
When the data storage driver receives a request to write a
block into a data area that has already been copied by the
backup procedure, then the required write is performed
without limitations. If the incoming write request is directed
to an area not yet backed-up, then the write process is
suspended and the current state of the given data area is
copied to the intennediate data storage container. When the
copy procedure is completed, the system will allow the write
procedure to be executed. Thus, the content of the data block
at the moment the backup procedure commenced is stored in
the intermediate block container. The content will be copied
from the intennediate block data container by the backup
procedure when required. The block will then be flagged and
the backup process may continue.

46 Claims, 11 Drawing Sheets

WRITE FILE REQUEST
'----~

__ 410

STORAGE DATA DURING ONLINE STORAGE DEVICE D~ 420

450 BACKUP PROCESS 480 /-;;.::::::::.::. 470 460 495

--........ ALREADY BACKED UP >/ / NOT YET BACKED UP/

~~~G') ~7 IS> 
430 FILE SYSTEM DATA AND METADATA FREE 

3JO 

! 
440 490-.........._ BLOCK DATA CONTAINER 



C
ase3:11-cv-05310-E

M
C

   D
ocum

ent78-1   F
iled05/23/12   P

age3 of 22

e 
• 
7Jl • 

FIG. 1 \0--' ,;'0 ~ 

ROOT INODE 
~ 
~ 

PRIOR ART 
~ = ./20 ~ 

INODE FILE II~ Il·~· . .. 
) 

~ -.......... ~ 

ALL OTHER FILES I I· . ·1 I . . . 1 = :-.... 
,} BLOCK MAP INODE MAP'>. OTHER FILES IN THE FILE SYSTEM 

~-....l 
N 
0 

~ti FILE FILE '30 0 
-....l 

FIG. 2 ./'5 
PRIOR ART 10 rFJ 

ROOT INODE rn / =-('D 
('D ..... .... 

INODE FILE Q ~. 0 .... 
INDIRECT BLOCKS .... 

~O-< 
.... 

INODE FILE 
DATA BLOCKS 

REGULAR FILE 
INDIRECT BLOCKS 1.--1 1.--1 \. r....-...J d 

rJl 
REGULAR FILE OtJ OtJ tJ oDD· -....l 
DATA BLOCKS N 

~ 

BLOCK MAP { INODE MAP RANDOM RANDOM 
0'1 

~5J N 
FILE FILE SMALL FILE LARGE FILE """" """" JO = """" 



C
ase3:11-cv-05310-E

M
C

   D
ocum

ent78-1   F
iled05/23/12   P

age4 of 22

FIG. 3 
PRIOR ART 

FIG. 4 
PRIOR ART 

(A) BEFORE SNAPSHOT 
A r------" '-----.. .... 

ROOT 
INODE 

) 
35 

(A) BEFORE BLOCK UPDATE 
A 

r--~ '-------. .... 
SNAPSHOT ROOT 

~ INODE INODE 
35 rn rn~ 

INODE FILE 
INDIRECT BLOCK 

INODE FILE 
BLOCK 

REGULAR FILE 
INDIRECT BLOCK 

REGULAR FILE 
DATA BLOCK 

15 

(B) AFTER SNAPSHOT 
A r---..;-----..... 

(C) AFTER BLOCK UPDATE 
__ -----..;A-------~ r , 

NEW ROOT NEW ROOT 
SNAPSHOT INODE SNAPSHOT INODE 

~ 
.f 15 

15 

(B) AFTER BLOCK UPDATE 
_---A- ..... 

JAPSHOT ROOT 
INODE INODE 

e 
• 
7Jl • 
~ 
~ 
~ 
~ = ~ 

2-
:-.... 

~-....l 
N 
o 
o 
-....l 

rFJ 

=('D 
('D ..... 
N 

o .... .... .... 

d 
rJl 
-....l 
N 
~ 
0'1 
N 
"""'" 
"""'" = """'" 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page5 of 22

u.s. Patent Jul. 17, 2007 Sheet 3 of 11 US 7,246,211 Bl 

FIG. 5 

1'\ r..... 

100 USER USER 110, as THREAD 
PROCESS PROCESS PROCESS 

'" "- '- "r 

~ 
USER SPAC~ 120 ~ 

as FI LE SYSTEM DRIVER 

KERNEL SPACE 

IJOl OS CACHE 

'\ ~ 105 

OS STORAGE DRIVER 



C
ase3:11-cv-05310-E

M
C

   D
ocum

ent78-1   F
iled05/23/12   P

age6 of 22

FIG. 6 

BLOCK DATA CONTAINER AS A FILE INSIDE FILE SYSTEM } 

~~~~~GE I wa ~<~ (_ > I 200c 
'0

FILE SYSTEM METADATA FILES DATA FREE BLOCK DATA
CONTAINER
AS A FILE

e
•
7Jl •
~
~
~
~ = ~

2-
:-....

~-....l
N
o
o
-....l

rFJ

=('D
('D
.j;o.

o

d
rJl
-....l
N
~
0'1
N
"""'"
"""'" = """'"

C
ase3:11-cv-05310-E

M
C

 D
ocum

ent78-1 F
iled05/23/12 P

age7 of 22

e •
7Jl •

STORAGE DATA BEFORE BACKUP ~

STORAGEI~ 330 ~
BACKUP ~

~
STORAGE FIG. 70 = MEDIA I 7

~

300

310
./FILE SYSTEM DATA AND METADATA FREE~320

2-
:-....

~-....l

STORAGE DATA DURING BACKUP PROCESS N
0

340 ~ALREADY BACKED UP NOT BACKED YET ~
350 360 1 0

-....l

~~~~GE I :mIL:U 3ili:illiiiL I~ I BACKUP J I FIG. 7b rFJ 

=-('D 

STORAGE ('D ..... 
Ul 

0 

FILE SYSTEM DATA AND METADATA FREE J .... .... .... 
370 
) 

STORAGE DATA AFTER BACKUP PROCESS FINISH 
STORAGE 

~7 
BACKUP 

MEDIA J FIG. 7c d 
STORAGE rJl 

",-.....1 
N 
~ 

FILE SYSTEM DATA AND METADATA FREE 0'1 
N 
"""'" 
"""'" = """'" 



C
ase3:11-cv-05310-E

M
C

   D
ocum

ent78-1   F
iled05/23/12   P

age8 of 22

FIG. 8 

400 

~-__ 410 

STORAGE DATA DURING ONLINE \2TORAGE DEVICE DRIVEV 420 
BACKUP PROCESS 480 -"/?--- 4&!O 

450 "" /-;:~ 470 ./ til 495 
"- ALREADY BACKED UP /' -" / NOT YET BACKED UP 

;' / 
;' / 

~~~~GE) __ JJrrflllljnI 7 I ~ BACKUP 
STORAGE

4JO
FILE SYSTEM DATA AND METADATA FREE ;

440 490~--J BLOCK DATA CONTAI NER

JJO

e
•
7Jl •
~
~
~
~ = ~

2-
:-....

~-....l
N
o
o
-....l

rFJ

=('D
('D
0\

o

d
rJl
-....l
N
~
0'1
N
"""'"
"""'" = """'"

Case3:11-cv-05310-EMC Document78-1 Filed05/23/12 Page9 of 22

u.s. Patent Jul. 17,2007

FIG. 9-1

925

INfORM as ORIVER
THAT BACKUP

COMPLETE

OS DRIVER MAY
RESUME FUNCTIONING

IN NORMAL MODE

930

905

915

Sheet 7 of 11 US 7,246,211 Bl

WRITE DlR1Y PAGES TO STORAGE

INFORM OS DRIVER THAT DATA
IS IN BACKUP STATE

COMPILE LIST Of DAT~ STORA~E
BLOCKS

BEGIN BACKUP PROCEDURE

920

COpy NEXT
BLOCK TO

BACKUP
STORAGE

940

FLAG BLOCK 945
AS COPIED

Case3:11-cv-05310-EMC Document78-1 Filed05/23/12 Page10 of 22

u.s. Patent Jul. 17,2007

FIG. 9-2

950

SUSPEND WRITE
OPERATION

COpy TO
INTERMEDIATE

STORAGE CONTAINER

EXECUTE
WRITE

COpy FROM
CONTAINER TO

BACKUP STORAGE

FlJ\G BLOCK
AS COPIED

NO

960

965

970

975

980

Sheet 8 of 11

YES

US 7,246,211 Bl

PROCEED WITH
WRITE OPERATION

955

C
ase3:11-cv-05310-E

M
C

 D
ocum

ent78-1 F
iled05/23/12 P

age11 of 22

STORAGE DATA DURING ONLINE ~TORAGE DEVICE DRIVE~

STORAGE
MEDIA

430

BACKUP PROCESS 510. >

500 /) /'
ALREADY BACKED UP '>//" / NOT YET BACKED UP

" "

FILE SYSTEM DATA ANn" METADATA FREE
' 7----(' -------.. '

r--\ / BACKUP
V" STORAGE

540~//
,," """"'--

/

" " "

/
/

/

490

520 530 BLOCK DATA CONTAINER

FIG. 10

330

e
•
7Jl •
~
~
~
~ = ~

2-
:-....

~-....l
N
o
o
-....l

rFJ

=('D
('D
\0

o

d
rJl
-....l
N
~
0'1
N
"""'"
"""'" = """'"

C
ase3:11-cv-05310-E

M
C

 D
ocum

ent78-1 F
iled05/23/12 P

age12 of 22

WRITE FILE REQUESTS

STORAGE DATA DURING ONLINE ~TORAGE DEVICE 'DRIVE!9
BACKUP PROCESS - FINAL PART 600. SP>

STORAGE
MEDIA

ALREADY BACKED UP

~~~II~II I ,J\ /BACKUP 
7 ~// STORAGE 

620~// 
/ 

FILE SYSTEM DATA AND METADATA FREE r- (/ 
/' 

.,~]]]// 490 

610 BLOCK DATA CONTAINER 

FIG. /' 1 

JJO 

e 
• 
7Jl • 
~ 
~ 
~ 
~ = ~ 

2-
:-.... 

~-....l 
N 
o 
o 
-....l 

rFJ 

=('D 
('D .... .... 
o 
o ..... .... .... 

d 
rJl 
-....l 
N 
~ 
0'1 
N 
"""'" 
"""'" = """'" 



C
ase3:11-cv-05310-E

M
C

   D
ocum

ent78-1   F
iled05/23/12   P

age13 of 22

WRITE FILE REQUESTS 

STORAGE DATA DURING ONLINE 
BACKUP PROCESS; WRITE TO STORAGE 
BLOCKED UNTIL CONTAINER AVAILABLE 2TORAGE DEVICE DRIVE~ 

_?;J > 

STORAGE 
MEDIA 

700, ........ -;-/-- ___ 
,>/,/ -710 
/' / 

/' / 
/'/' I 

" I / I 

l t/ BACKUP 
7JO"-.,/ STORAGE " " "" ') " , // '" I ....... ',' " <: > / o ..go I "0 "'" , / 

' , 

FILE SYSTEM DATA AND METADATA FREE / 

720 
\I I " I I I I I \I I I " I I I " I I I n 

BLOCK DATA CONTAINER 

'\ 
490 

FIG. 12 

JJO 

e 
• 
7Jl • 
~ 
~ 
~ 
~ = ~ 

2-
:-.... 

~-....l 
N 
o 
o 
-....l 

rFJ 

=('D 
('D ..... .... .... 
o .... .... .... 

d 
rJl 
-....l 
N 
~ 
0'1 
N 
"""'" 
"""'" = """'" 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page14 of 22

US 7,246,211 Bl 
1 

SYSTEM AND METHOD FOR USING FILE 
SYSTEM SNAPSHOTS FOR ONLINE DATA 

BACKUP 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to computer systems and, 

more specifically, to a system and method for providing 
online data backup. 

2. Background and Description of Related Art 
Typically, the operating system of a computer system 

includes a file system to provide users with an interface 
while working with data on the computer system's disk and 
to provide the shared use of files by several users and 
processes. Generally, the term "file system" encompasses 
the totality of all files on the disk and the sets of data 
structures used to manage files, such as, for example, file 
directories, file descriptors, free and used disk space allo
cation tables, and the like. Accordingly, end users generally 
regard the computer file system as being composed of files 
and a number of directories. Each file usually stores data and 
is associated with a symbolic name. Each directory may 
contain subdirectories, files or both. The files and directories 
are typically stored on a disk or similar storage device. File 
systems may provide several functions. As discussed above, 
the most basic task of a file system is provide access to files. 
File systems may also enhance system performance with 
additional functions such as, for example, caching, access 
markers and fault-tolerance. 

Operating systems such as UNIX, Linux and Microsoft 
Windows manage computer file systems by defining a file 
object hierarchy. A file object hierarchy begins with a root 
directory and proceeds down the file tree. The file address is 
then described as an access path, e.g., a succession of 
directories and subdirectories leading to the file. This pro
cess of assigning a file address is called access path analysis 
or path traverse. For instance, the path "/r/alb/file" contains 
the root directory (I), subdirectories "r", "a" and "b" and 
then the file. Typically, the processes within an operating 
system interact with the file system with a regular set of 
functions. For example, these functions usually include 
open, close, write and other system calls. For instance, a file 
may be opened by the open functions and this function 
acquires the file name as a target. 

The file system may also include intermediate data struc
tures containing data associated with the file system to 
facilitate file access. This data is called metadata and may 
include, for example, data corresponding to the memory 
location of the files, e.g., where the file is located in the hard 
drive or other storage medium. For example, in the context 
of a UNIX operating system, these intermediate data struc
tures are called "inodes," i.e., index-node. An inode is a data 
structure that contains information about files in UNIX file 
systems. Each file has an inode and is identified by an inode 
number (e.g., i-number) in the file system where it resides. 
The inodes provide important information on files such as 
user and group ownership, access mode (read, write, execute 
permissions) and type. The inodes are created when a file 
system is created. There are a set number of inodes, which 
corresponds to the maximum number of files the system can 
hold. 

Generally, a file system architecture that provides a recov
erable file system is preferable to conventional file systems 
that lack this feature. In conventional systems, careful write 
and lazy write are the two main approaches to implementing 
input-output support and caching in file systems. Typically, 

2 
careful write is implemented in file systems developed for 
VAX/VMS and other similar closed operating systems. Lazy 
write is generally implemented in the HPFS (High Perfor
mance File System) of the OS/2 operating system and in 
most UNIX file systems. 

In the event of an operating system failure or power 
supply interruption, for example, input-output operations 
performed at that time are immediately interrupted. Depend
ing on what operations were performed and how far the 

10 execution of these operations had advanced, such interrup
tion may affect the integrity of the file system. Violation of 
file system integrity may adversely affect the system's 
ability to locate and access files. For instance, a given file 
name may be present in the directory list, but the file system 

15 may not be able to find this file and access its content. In the 
most serious case, damage to the file system may lead to the 
loss of an entire volume of data. A file system that imple
ments careful write does not necessarily prevent violation of 
file system integrity. Instead, the system implementing care-

20 ful write arranges records so that any system failure, in the 
worst case, may only cause unpredictable, non-critical mis
matches that the file system can eliminate at any time. 

When a file system of any type receives a request for 
renewal of disk content, the file system must perform several 

25 sub-operations before the renewal can be completed. In file 
systems using the strategy of careful write, these sub
operations always write their data onto the disk. When 
allocating disk space, e.g., for a file, the file system first sets 
the appropriate number of bits in its bit card, and then 

30 allocates space for the file. If a power supply interruption 
occurs immediately after those bits have been set, the file 
system with careful write loses access to that part of the disk, 
which was represented with the pre-set bits, but the existent 
data is not destroyed. Sorting write operations also means 

35 that input-output requests are performed in the order of 
arrival. If one process allocates disk space and soon after
wards the other process creates a file, the file system with 
careful write will complete allocation of the disk space 
before starting the creation of the file-otherwise the over-

40 lap of sub-operations from two input-output requests might 
lead to the violation of file system integrity. 

The FAT (file allocation table) file system in MS-DOS 
uses the through-write algorithm, in which renewals are 
performed immediately, e.g., the cache memory is written to 

45 at the same time as main memory. Unlike careful write, this 
method does not demand input operations sorting from the 
file system to prevent a violation of integrity. The main 
advantage of file systems with careful write is that, in case 
of a failure, the disk volume remains intact and can still be 

50 used-an intermediate launch of a volume recovery utility is 
not required. A volume recovery utility is needed for cor
rection of predictable, non-destructive failures of the disk 
integrity that occur as a result of a failure. But this type of 
utility can generally be run at any time, usually when the 

55 system reboots. However, file systems with careful write 
have some disadvantages such as, for example, low perfor
mance, redundant non-optimized accesses to a disk, among 
other drawbacks. 

A file system utilizing the careful write policy generally 
60 sacrifices its performance for reliability. On the other hand, 

a file system with lazy write typically increase performance 
due to the strategy of write-back caching. Write-back cach
ing is a caching method in which modifications to data in the 
cache aren't copied to the cache source until absolutely 

65 necessary. This method of caching using the lazy write 
policy provides several advantages over the careful write 
policy which accordingly increases system performance. 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page15 of 22

US 7,246,211 Bl 
3 

First, the number of write operations to the disk may be 
reduced. Because write operations are immediately per
formed, input operations are not required and the buffer's 
content may change several times before being written onto 
the disk. Second, the speed of servicing application requests 
sharply increases because the file system may return control 
to the calling program without waiting for the write to the 
disk to be completed. Finally, the strategy of lazy write 
ignores intennediate inconsistent states of a volume that 
generally occur when several input-output requests overlap 10 

in time. This policy therefore simplifies the creation of a 
multi-threaded file system, which allows simultaneous 
execution of several input-output operations. 

But one disadvantage of the lazy write method is that, in 
some instances, a volume may acquire such an inconsistent 15 

state that the file system is unable to correct the volume in 
the event of a failure. Therefore, file systems with lazy write 
must always track the volume state. In general, a lazy write 
provides greater perfonnance in comparison to the careful 
write policy but at the price of greater risk and user dis- 20 

comfort in the event of a system failure. 

4 
lazy write policy may have destroyed existing files or even 
made all infonnation on the volume unavailable. 

In contrast, recoverable file systems, such as, for example, 
Windows NTFS, possesses greater reliability in comparison 
with traditional file systems. First, recoverability of NTFS 
guarantees that the structure of the volume will not be 
destroyed because, in case of the system failure, all files will 
remain available. Second, although NTFS does not guaran-
tee safety of user data in case of the system failure because 
some modifications in cache can be lost, applications can use 
the advantages of a write-through policy and NTFS cache 
reset to guarantee that the modifications of any files will be 
written to the disk at the required time. Both write-through 
(e.g., the policy requires an immediate write to the disk) and 
cache reset (e.g., a forced write of the cache content to the 
disk) are quite effective operations. NTFS does not require 
additional input-output to write modifications of several 
various data structures of the file system to the disk, because 
changes in these structures are registered in the journal file 
(e.g., during one write operation). If a failure occurs and the 
cache content is lost, modifications of the file system can be 
recovered using infonnation from the file journal. Moreover, 
NTFS, unlike FAT, guarantees that, after the write-through 
or cache reset operation are completed, user data will stay 

Recoverable file systems, such as, for example, Microsoft 
NTFS (Windows NT File System), may provide greater 
reliability than file systems with careful write, but also 
provide the performance of file systems with lazy write. 
Recoverable file systems guarantee integrity of the volume 

25 safe and will be available even if a system failure occurs 
afterwards. 

Generally, NTFS supports recovery of the file system 
using the concept of an atomic transaction. An atomic 
transaction is an operation in which either all steps in the 

by using a journal of changes to handle transactions. For 
example, a journaled file system (JFS) is a file system in 
which the hard disk maintains data integrity in the event of 
a system crash or if the system is otherwise halted abnor
mally. The journaled file system maintains a log, or journal, 
of what activity has taken place in the main data areas of the 
disk. If a crash occurs, any lost data can be recreated because 
updates to the metadata in directories and bit maps have 
been written to a serial log. The journaled file system not 
only returns the data to the pre-crash configuration but also 
recovers unsaved data and stores it in the location in which 

30 operation succeed, or they all fail, e.g., either all actions of 
the transaction happen or none happen. Atomic transactions 
are commonly used to perfonn data modifications in a data 
store, where either all the data relating to the operation is 
successfully modified, or none of it is modified and the data 

35 remains as it was before the operation started. Accordingly, 
single changes on the disk composing a transaction may be 
perfonned atomically, e.g., during the transaction, all 
required changes are to be moved to disk. If the transaction 
is interrupted by a file system failure, modifications per-it would have been stored if the system had not been 

unexpectedly interrupted. Accordingly, because recoverable 
file systems register all disk write operations in the journal, 
recovery may take only several seconds regardless of the 
volume size. The recovery procedure is generally precise 
and guarantees the return of the volume to the consistent 
state, in contrast to the typically inadequate recovery results 45 

of file systems with the lazy write policy, for example. 

40 formed by the current moment are cancelled. After back-off, 
the database returns to the initial consistent state that it 

But the high reliability of the recoverable file system has 

possessed before the transaction began. 
Note that journaling is not a panacea for this type of 

system failure. For example, a user may open a file and place 
a large volume of data into the file. In the middle of a write 
operation, a failure occurs and the system reboots. And, after 
recovery, the file will typically be empty-all the infonna
tion that the user wrote into the file since the file was open 
has disappeared. Thus, journaling file systems are not 

50 designed for recovery of data at any price, but are instead 
dedicated to provide non-contradiction of file system meta
data at the moment of failure. In particular, this type of 
system typically operates as follows: a user opens a file and 
if it opens successfully, the file system notes opening in its 

its disadvantages. For each transaction that modifies the 
volume structure, the file system must enter one record into 
the journal file for each transaction sub-operation. The 
integration of journal file records into packets may increase 
the efficiency of the file system: for each input-output 
operation, several records may be simultaneously added to 
the journal. Moreover, the recoverable file system may use 
optimization algorithms, such as those used by file systems 
utilizing lazy write. The file system may also increase the 
intervals between writing the cache contents to the disk, 
because the file system can be recovered if a failure occurs 
before the modifications are copied from cache to the disk. 
The utilization of these tactics to improve performance 60 

generally compensates for and may even exceed the perfor
mance losses incurred by protocolling the transactions. 

But, neither careful write nor lazy write can guarantee 
protection of user data. If a system failure occurs at the 
moment an application writes to a file, then the file may be 
lost or destroyed. Moreover, in the case of a lazy write 
policy, the failure may damage the file system because the 

55 journal by recording a transaction. Then the user may start 
writing. But the file system does not record copies of this 
data. Accordingly, after failure recovery is completed, the 
back-off procedure restores the last successful transaction 
that occurred, e.g., the opening of a new empty file. 

Examples of journaled file systems include ReiserFS, 
JFS, XFS (Extended File System), ext3 and NTFS. A 
journaling file system may relocate the journal to another 
independent device to provide asynchronous access for the 
purposes of optimization. For instance, XFS and ReiserFS 

65 may use relocated journals. 
XFS was created by Silicon Graphics (now SGI) for 

multimedia computers with the Irix OS. XFS is oriented to 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page16 of 22

US 7,246,211 Bl 
5 

very large files and file systems. During joumal construc
tion, some metadata of the file system itself are written to the 
joumal such that the entire recovery process is reduced to 
copying these data from the journal into the file system. 
Accordingly, the size of the journal is set when the system 
is created and is generally large, e.g., cannot be less than 32 
Mh. 

JFS was created by IBM for the AIX OS. OS/2 and Linux 
versions of JFS also exist. The journal size is typically about 
40% of the file system size, but not larger than 32 Mh. This 
file system may contain several segments including the 
journal and data, and each of such segments can be mounted 
separately, e.g., "aggregates." 

ReiserFS is an experimental file system designed for 
speed and survivability. The first prototype was called 
TreeFS. Currently, this system exists only for the Linux OS. 
Ext3 is the journaled superstructure for ext2 (Second-Ex
tended File System)-the main and the most reliable file 
system for OS Linux. At present, this system is mainly 
developed by RedHat. One advantage of ext3 is that it does 
not alter the internal structure of ext2. The ext3 file system 
can be created from ext2 by running a journal creation 
program. An ext2 driver and an ext3 driver may be subse
quently used to mount the file system and create the journal. 

The development of file systems demonstrates that fault
tolerance and recoverability of file systems after failures are 
very important design considerations. To provide the maxi
mum reliability, it is necessary to periodically copy all files 
as a immediate copy or cast of the file system, e.g., a 
snapshot. By its functionality, a snapshot is very similar to 
the journal of a recoverable file system, as they can both 
restore the system to the integral state. A snapshot guaran
tees full data recovery, but incurs high expenses in creation 
and storage. 

Snapshot creation generally involves sector by sector 
copying of the whole file system, i.e., service infonnation 
and data. If the file system is currently active, then files may 

6 
version of Unix) with some minor distinctions. After copy
ing each anode, both file-sets (new and old) point to the same 
data block. But the reference to the disk in the original 
'anode' acquires the COW (copy-on-write) flag, such that, 
during block modification, a new data block is created (at 
which point the COW flag is removed). 

Generally, under a COW policy, when the system copies 
a string, the "real" string to be copied (e.g., its content or 
bytes) is not actually copied in memory with the copy 

10 operation. Instead, a new string is created and marked as 
COW, and it points to the original string. When the system 
reads this flagged string, it is redirected to the original string. 
In the event an application wishes to write to the string (e.g., 
modifY it), then the system notes the COW flag and perfonns 

15 the actual copying of bytes. The COW approach saves 
memory, because the system may create as many copies of 
a string as desired without requiring multiple allocations 
(unless they are modified). COW also improves the speed of 
the system, because the system requires less resources to 

20 copy a string under the COW methodology. 
As a result, this file system allows the user to sort in time 

the changes that occur in the file system. This can be 
achieved because all modifications performed in the file 
system (or in any part of it) during a given period of time are 

25 written to a separate tree. These separate trees may be sorted 
in time and represent a full version of the file system 
modifications. Thus, to find the file state at a given moment, 
a user may search sequentially through the required file in 
the tree closest in time, e.g., if the desired file state was not 

30 found there, the user may search in the previous tree, etc. 
Snapshots are also implemented in the WAFL (Write 

Anywhere File Layout) file system. WAFL is designed for 
network file servers. The main purpose ofWAFL algorithms 
and data structures is to support snapshots, which, in this 

35 case, may be "read-only" file system clones. To minimize 
the disk space required by the snapshot, WAFL uses the 
copy-on-write technology. Moreover, WAFL snapshots may 
obviate the necessity of checking the file system integrity be modified during copying-some files can be open for 

writing or locked, for example. In the simplest case, the file 
system can be suspended for some time and during that time 40 

a snapshot is recorded. Of course, such an approach cannot 

after a failure, which allows the file server to quickly start. 
Typically, WAFL automatically creates and deletes snap-

shots according to a defined schedule and keeps a selected 
number of snapshot copies to provide access to old files. The 
copy-on-write technology is used to prevent doubling of 
disk blocks (in the snapshot and active file system). Only 

be applied to servers where nninterruptible activity of the 
file system is necessary. 

Conventional file systems provide mechanisms to create 
snapshots without interrupting the operation of the file 
system. The following example is based on the Episode file 
system. Episode is designed to utilize the disk bandwidth 
efficiently, and to scale well with improvements in disk 
capacity and speed. Episode utilizes the meta-data logging 

45 when the block in the file system is modified, will the 
snapshot containing this block be committed to disk space. 
Users may access the snapshots via NFS (Network File 
System). An administrator can use snapshots to create 
backup copies independently of the file system operation. 

FIG. 1 illustrates the file system structure of a conven-
tional WAFL system. As illustrated in FIG. 1, WAFL stores 
metadata in files and uses three types of files: (1) an 'node' 
file, containing 'node' for the file system; (2) a block map 
file, which identifies spare blocks and (3) an inode file map, 

55 identifying a spare inode. In this context, the term "map," 
not "bitmap," is used as these files may use more than one 
bit for each record. By storing metadata in files, a WAFL 
system may write blocks of metadata to any place on the 
disk. This design allows the system to use copy-on-write 

to obtain good performance, and to restart quickly after a 50 

crash. Episode uses a layered architecture and a generaliza
tion of files called containers to implement file-sets. A 
file-set is a logical file system representing a connected 
sub-tree, e.g., logical elements representing a linked tree. 
File-sets are the unit of administration, replication, and 
backup in Episode. The design of Episode allows disposal of 
several 'file-sets' on one partition. The process of file-set 
cloning is used to create snapshots. The file-set clone is a 
snapshot, as well as a file-set, that can share data with the 
original file-set due to the copy-on-write techniques. The 
cloned file-set is available for reading only and it is generally 
placed on the same partition as the original file-set (e.g., 
available for reading and writing). Clones may be created 
very quickly and, most importantly, without interrupting 
access to data being copied. Cloning is accomplished by 65 

cloning all 'anodes' to 'file-sets'. In this context, an anode is 
similar to a 'mode' in BSD (the Berkeley Software Design 

60 technology during the creation of snapshots, e.g., the WAFL 
system writes all data, including metadata, to a new place on 
the disk, without re-writing old data. Note that if the WAFL 
system could store data to any fixed place on the disk, this 
process would not be possible. 

As shown on FIG. 1, the structure of a WAFL system may 
be represented as a tree of blocks, shown generally at 10, 
with a root inode 15 pointing to the inode file 20, and with 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page17 of 22

US 7,246,211 Bl 
7 

metadata and files placed below. The root inode 15 is in the 
root of the file tree 10. The root inode 15 is a specific inode 
describing the inode file 20. The inode file 20 contains 
inodes describing other files in the file system, including the 
block map and inode map files, 25 and 30, respectively. The 
data blocks of all files form the "leaves" of the tree. FIG. 2 

8 
formance penalties. Instead, WAFL caches several hundreds 
of modifications before writing. During the write, WAFL 
allocates disk space for all data in cache and performs a disk 
operation. As a result, blocks that are often modified, such 
as indirect blocks or inode file blocks, are written once 
during cache reset instead of each time the data is modified. 

Accordingly, due to the disadvantages associated with 
conventional data backup systems, there is a need for a data 
backup process that is both reliable and efficient. Moreover, 

is a more detailed version of FIG. 1. FIG. 2 illustrates that 
files are composed of separate blocks and large files have 
additional links between modes and real data blocks. Load
ing the WAFL system requires locating the root of the file 
system tree. Accordingly, the block containing the root inode 
15 is an exception to the rule "write to any place." The block 
containing the root inode 15 should be located in a fixed 
place on the disk. 

10 there is a need for an online data backup process that allows 
a computer system to remain online while data is being 
backed-up and also addresses the disadvantages associated 
with conventional back-up systems. 

FIG. 3 illustrates the creation of a snapshot in WAFL. In 15 

order to create a virtual copy of a tree of blocks, WAFL 
simply copies the root inode 15. This process is depicted on 
FIG. 3. FIG. 3a is a simplified version of the original file 
system in which internal nodes of the tree, such as inodes 
and indirect blocks, are omitted for clarity. FIG. 3b shows 20 

the process in which WAFL creates a new snapshot 35 by 
copying the root inode 15. The copied inode 35 becomes the 
root in the tree of blocks and it represents a snapshot of the 
root inode 15 in the same way a root inode 15 represents the 
real file system. When the snapshot's inode 35 is created, it 25 

points to the same disk blocks, shown generally at 40, as the 
root inode 15. Therefore, WAFL does not change a snap
shot's blocks because it copies new data to the new place on 
the disk. Accordingly, a new snapshot does not take addi
tional disk space (excluding the space taken to create the 30 

snapshot's inode). 
FIG. 3c depicts the situation when a user modifies a data 

block 40, e.g., data block D. WAFL writes new data to the 
block D' on the disk and modifies the pointer to point to the 
new block in the active file system. The snapshot 35 35 

continues to point to the old block D, which remains 
unmodified on the disk. As files are modified or deleted in 
the active file system, the snapshot 35 refers to the growing 
amount of blocks, instead of being associated with the active 
file system. Moreover, the snapshot 35 will take more and 40 

more disk space. 
Different file systems have different methods for creating 

snapshots. For example, the manner in which snapshots are 
created in WAFL provides advantages over the correspond
ing process of Episode. In Episode, instead of copying the 45 

root mode, a copy of the whole inode file is created. This 
significantly loads the disk subsystem and consumes a lot of 
disk space. For example, a 10Gb file system with one inode 
per each 4 Kb of disk space will allocate 320 Mb for an 
inode. Accordingly, in this type of file system, creation of a 50 

snapshot through inode file copying will generate 320 Mb of 
disk traffic and take 320 Mb of disk space. Creation of ten 
such snapshots will take nearly one third of the free disk 
space, after taking the modification of blocks into account. 
In contrast, by copying the root inode, WAFL quickly 55 

creates a snapshot without overloading the disk subsystem. 
This advantage is important, because WAFL creates snap
shots every several seconds to implement a mechanism of 
recovery after failures. 

FIG. 4 shows transition from FIGS. 3b to 3c in more 60 

detail. When a disk block is modified, all of its content is 
relocated to a new location. Accordingly, the block's parent 
must also be updated or modified to point to a new location. 
In addition, the parent's parent must also be re-written to a 
new location and so on. 

If the file system performed a write for several blocks at 
each modification, the system would incur substantial per-

65 

SUMMARY OF THE INVENTION 

The present invention relates to a system and method for 
providing online data backup for a computer system. In an 
exemplary embodiment of the present invention, the com
puter system includes an intermediate block data container. 
The computer system may utilize the intermediate block 
data container to manage data block release during the 
online data backup process. When the data storage driver 
receives a request to write a block into a data area that has 
already been copied by the backup procedure, then the 
required write is performed without limitations. But if the 
incoming write request is directed to an area not yet backed
up, then the write process is suspended and the current state 
of the given data area is copied to the intermediate data 
storage container. When the copy procedure is completed, 
the system will allow the write procedure to be executed. 
Thus, the content of the data block at the moment the backup 
procedure commenced is stored in the intermediate block 
container. The content will be copied from the intermediate 
block data container by the backup procedure when 
required. The block will then be flagged and the backup 
process may continue. Thus, the delays that result from 
writing to the main storage are reduced to a minimum and 
the programs running on the computers counected to the 
data storage can continue working substantially without 
pause. 

A more complete understanding of the system and method 
of the present invention will be afforded to those skilled in 
the art, as well as a realization of additional advantages and 
objects thereof, by a consideration of the following detailed 
description of the preferred embodiment. Reference will be 
made to the appended sheets of drawings which will first be 
described briefly. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a prior art WAFL file system; 
FIG. 2 is another illustration of a prior art WAFL file 

system; 
FIG. 3 shows the process of creating a snapshot of a prior 

art WAFL file system; 
FIG. 4 is another illustration of the process of creating a 

snapshot of a prior art WAFL file system; 
FIG. 5 shows an exemplary embodiment of the computer 

system of the present invention; 
FIGS. 6a, 6b and 6c show exemplary embodiments of the 

system storage, including exemplary embodiments of the 
intermediate block data container of the present invention; 

FIGS. 7a, 7b and 7c show the process of data backup; 
FIG. 8 shows an exemplary embodiment of the data 

backup process of the present invention; 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page18 of 22

US 7,246,211 Bl 
9 

FIGS. 9-1 and 9-2 are a flow chart illustrating the method 
of online data backup of the present invention; 

FIG. 10 shows an exemplary embodiment of the data 
backup process of the present invention; 

FIG. 11 shows an exemplary embodiment of the data 
backup process of the present invention; and 

FIG. 12 shows an exemplary embodiment of the data 
backup process of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

The present invention provides a system and method for 
file system backup without suspending online application 
programs using a file system snapshot. Accordingly, the 
present system and method significantly increase computer 
system availability and allows backing up without interrupt
ing computer services. 

The computer file system is usually located on the block 
data storage and typically interacts with storage at the level 

10 
the data write operation acquires a set of numerical pairs 
(e.g., the data block and number) in order to process the data 
write command. 

FIG. 6 illustrates an exemplary embodiment of the system 
storage device. Storage medium 200 is a file system storage 
data device or location. From the point of view of the file 
system, the blocks of data stored in the block data storage 
medium 200 can be characterized into several different 
classes. Depending on the file system type, the storage 

10 medium 200 can store data specific for the volume, metadata 
of the file system 210, file data 220, or free space 230 not 
currently taken by other data. Generally, a specific data type 
may be allocated to an entire data block and different data 
types cannot be combined in one block. But under specific 

15 circumstances, a file system may combine different data into 
one block (e.g., ReiserFS or Microsoft Windows NTFS). 

Thus, by copying all data blocks that are not free (e.g., all 
blocks except entirely free blocks 230), the system may 
obtain a file system snapshot that serves as a copy of its state 

20 at a current moment of time. Although listing the file system 
blocks is not a requirement, listing may be used to optimize 
the space used by the backup procedure. In the event this 
information carmot be acquired by the system, the block 
fetching procedure may select all of the blocks associated 

of blocks. For example, read and write operations are 
performed in connection with data areas that have sizes that 
are divisible by the size of one block. The sequence of the 
blocks in the storage is ordered and each block has its own 
number. The computer system may include several such 
storages and the file system may take only a portion of one 
such storage, the whole storage, or several such storages or 
their parts. On the disk or storage device, these type of 
storages are usually located in partitions, taking the entire 30 

partition. 

25 with storing any file system data, including free blocks. 
As discussed above, a data backup operation is time 

consuming. Thus, in order to conform backed up data with 
any specific state at a given moment, the data being copied 
must not change before the backup operation is completed. 

Typically, this task is not difficult if the data storage and 
the file system associated with the storage are not connected 
to any active computer or is otherwise blocked from data 
modification. Basically, the risk of nonconforming data is 
reduced if there are no processes able to modifY data. FIG. 

The file systems may be subdivided into several catego
ries, including the housekeeping data of the file system 
volume, file metadata, file data, and free space not occupied 
by the other data. A file system driver embedded into the 
operating system may provide the servicing for the file 
system. FIG. 5 shows an exemplary embodiment of the 
computer system of the present invention, shown generally 
at 105. The computer system 105 includes a data storage 
device 150 that may be accessed by one or more user 
processes 100 or OS thread processes 110. OS user pro
cesses 100 or OS thread processes 110 may request to read 
or write data to the data storage 150 via a file system request. 

This request may be directed to the file system driver 120, 
which defines where in the data storage the relevant data 
blocks are located. The request is then directed to the OS 
cache 130 where the requested data may be currently 
cached. If the requested data is located in the OS cache 130, 
the system may complete the requested operation by allow
ing the user process 100 or OS thread process 110 to read 
and write of the cached data. If the requested data is not 
located in the OS cache 130 or is otherwise unavailable (e.g., 
the space in cache must be freed pursuant to an OS algo
rithm), the request is transmitted for execution to the driver 
OS storage driver 140. The OS storage driver subsequently 
performs the requested operation on the selected data 
located in the data storage 150. 

The data storage driver 140 may interact with the storage 
device 150 in block mode. As discussed above, in the 
context of data management, a block is a group of records 
on a storage device. Blocks are typically manipulated as 
units. For example, a disk drive may read and write data in 
512-byte blocks. Accordingly, the data storage driver 140 
may receive requests for data read and write using blocks of 
the selected block size. Typically, each data block is asso
ciated with a number or label corresponding to the type of 
operation to be performed. Thus, the driver associated with 

35 7 illustrates a conventional consecutive write process of the 
file system data during a typical (e.g., not online) data 
backup procedure. In order to carry out the data backup, the 
data storage medium 300 must be re-written to the backup 
storage 330. FIG. 7a shows the status of the storage data 

40 before the backup process has been initiated. In order to 
optimize the backup process by increasing performance and 
reducing space requirements, the system will only copy the 
occupied areas 310 and not the free blocks 320. During the 
this process, as shown in FIG. 7b, the file system data subject 

45 to backup may be in the two different states: (1) data that is 
already backed up 340 to the storage 360; and (2) data that 
is not yet backed up, but only scheduled for backup 350. 
When backup is completed, as shown in FIG. 7c, all of the 
data is now located in the backup storage 370, and the file 

50 system and main data storage are subsequently ready for 
user operations and access. 

If the file system is connected to an active computer and 
there are file system processes and user applications working 
with data during the backup process (e.g., on-line backup), 

55 then the task becomes more complicated. On-line backup is 
typical for servers with a high level of accessibility and 
therefore cannot be stopped to allow backup to be com
pleted. 

FIG. 8 illustrates an exemplary embodiment of the online 
60 backup process that addresses the shortcomings of offline 

data backup. For the purposes of illustration, the following 
example assumes that the backup process for the data of 
block data storage 430 is launched such that the backup 
process may be performed within the off-line backup pro-

65 cedure. Initially, a user process or file system process 400, 
such as, for example, a disk cache, issues a write request 410 
to the data storage that is received by the storage device 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page19 of 22

US 7,246,211 Bl 
11 12 

able. When the last block is backed-up or the backup 
procedure is canceled, then at step 925, the OS driver 
servicing the data storage is informed that the backup 
procedure is completed and the driver may continue func
tioning in the customary mode at step 930. Note that 
cancellation may be induced by the appearance of fatal 
errors, by the user's decision or by the processes of the 
operating system. 

The OS driver servicing the data storage is preferably able 

driver 420. In response to write request 410, the storage 
device driver 420 transmits modification requests, shown as 
470 and 480, to the appropriate stored data. In this example, 
the modification requests 470 and 480 are directed to data 
that is subject to the backup process 440. Accordingly, the 
modification process may request the data area 450 that has 
already been copied to the backup storage 495 (i.e., request 
470) or data 460 that has not yet been copied or backed-up 
(i.e., request 480). Request 470 can be performed without 
damaging the backed up data, because backup is a one-pass 
process that does not require a return to data areas that have 
already been processed. But, in conventional systems, 
request 480 cannot be performed because the integrity of the 
backed-up data can be adversely affected. For example, a 
modified block that does not belong to the given copy can 15 

penetrate into the backup copy. This can make the correct 
recovery of the file system state impossible because data 
may refer to different points in time. As a result, the integrity 

10 to communicate with system agents ruuning the backup 
procedure. Once the backup procedure is initiated, this 
driver provides the backup procedure with the data block 
numbers that have been requested for write into the data 
storage by the operating system or a user process. 

The backup procedure, depending on the state of its 
internal data, may be responsible for determining whether or 
not each requested block was copied to the backup storage. 
If the block was not copied, then the OS driver suspends the 
block write and waits until the block has been copied and of the data would be compromised. 

To solve this problem, one exemplary embodiment of the 
present invention includes a temporary data storage con
tainer 490 designed to address the situations discussed above 
and utilizes a method of data backing up into a backup 
storage, described below. 

The backup procedure of the present invention operates at 
the level of the underlying file system and may be imple
mented with a file system based on a block storage principle. 
The method of the present invention includes a procedure to 
define the data and metadata of the file system by the number 
of the block to which the subject data belongs. For internal 
purposes, the backup procedure efficiently defines which 
blocks have been copied or are subject to being copied. 

As discussed above, the intermediate data storage con
tainer 490 may be any storage device suitable for storing 
data. For example, intermediate data storage 490 may be a 
temporary buffer based on the block design of the data 
storage 330. Intermediate data storage container 490 may be 
a memory located that is external to the backed up data 
storage space 330. Alternatively, or in addition, intermediate 
data storage container 490 may be placed in a dedicated part 
of the data storage space 330, which can represent a separate 
partition of the storage (shown as block data container 240 
in FIG. 6b) or as a file within the file system (shown as block 
data container 250 in FIG. 6c) that has been reserved for the 
purpose of providing a temporary data storage container. 

FIG. 9 shows an exemplary embodiment of the online 
backup procedure of the present invention. The on-line 
backup procedure of the present invention may begin with 
the step of informing the operating system driver responsible 
for servicing the data storage that the data is in the backup 
state, shown at step 905. In an alternative embodiment, the 
system may call an operating system cache reset procedure 

20 subsequently released. 
In one exemplary embodiment, the requested block may 

be released by continuing the backup procedure (e.g., when 
the requested block is next block in the backup sequence). 
But, the request processing time can be very long and 

25 usually this type of mode is unacceptable for online systems. 
In another exemplary embodiment, the block release may 

be performed in connection with a specific container used as 
an intermediate data storage. FIG. 10 shows an exemplary 
embodiment of the present invention in which the system 

30 utilizes a block data container to manage the block release 
process. When the data storage driver receives a request to 
write a block into the area already copied by the backup 
procedure 510, the required write is performed without 
limitations (as shown at step 955 in FIG. 9). But, if the 

35 incoming write request (shown as 500 in FIG. 10) is directed 
to an area not yet backed-up, then the write process is 
suspended and the current state of the given data area is 
copied to the intermediate data storage container 490, as 
shown at 520 in FIG. 10 (and shown as steps 960 and 965 

40 in FIG. 9). When the copy procedure is completed, the 
system will allow the write procedure 500 to be executed (as 
shown at step 970 in FIG. 9). Thus, the content of the data 
block, shown as 530, at the moment the backup procedure 
commenced is stored in intermediate block container 490. 

45 The content 530 will be copied from container 490 by the 
backup procedure when required, as shown at 540 (and at 
step 975 in FIG. 9). The block will be flagged (as shown at 
step 980 in FIG. 9) and the backup process will continue. 
Note that the write procedure (shown at step 970) may be 

50 executed in parallel with the process of copying data from 
the intermediate block container to the backup storage 
device (shown at step 975). Accordingly, the system need 
not wait until the original write operation is complete to 
initiate the backup copy operation. Moreover, the step of 

to write "dirty" pages into the data storage before informing 
the operating system driver about the initiation of the backup 
process, as shown at step 900. This procedure increases the 
actuality of the data stored in the snapshot. After the system 
has informed the operating system driver, the system then 
compiles the list of data storage blocks at step 910. This list 
contains the file system data of different types that should be 
backed-up during the backup process. Once the list has been 60 

generated, the backup procedure may begin at step 915. 
Until the system reaches the end of the list (see step 920) or 
receives a write request (see step 935), the system goes 
down the list and copies the blocks into the backup storage 

55 writing the content of the intermediate block container 490 
into the backup storage device 330 may be performed in a 
substantially asynchronous manner (e.g., it is not necessary 
to wait until the intermediate block container 490 is flushed 
to process the next incoming block write request if the 
container 490 has not overflowed). Thus, the delays that 
result from writing to the main storage are reduced to a 
minimum and the programs running on the computers 
connected to the data storage can continue working substan
tially without pause. 

at step 940. On completion of each block backup the block 65 

is flagged or marked as backed-up, as shown at step 945. 
During the backup process, blocks preferably remain invari-

Data from the intermediate storage container can be 
re-written to the backup storage when the write procedure of 
data located in the main storage has been completed or at 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page20 of 22

US 7,246,211 Bl 
13 

any other appropriate time. FIG. 11 illustrates an exemplary 
embodiment of the process for copying data from the block 
data container 490 to the backup storage device 330. In this 
situation, although the backup process of the main storage is 
completed and write requests 600 directed to any regions of 
the data storage are performed by the driver immediately, the 
system must still write the data 610 that is temporarily stored 
in the data container 490 to the backup storage 330, shown 
as 620. Thus, an additional write process 620 and routine 
computer activity may both occur in the concurrent mode 10 

depending on the backup data storage. 
FIG. 12 illustrates an exemplary embodiment of the 

present invention to handle an overflow of the block data 
container. If, during the write process to the intermediate 
block data container 490, the intermediate block data con- 15 

tainer 490 overflows, then the data write processes, shown as 
700, to the unsaved area of the main storage device 430 
should be stopped. In addition, the temporary data, shown as 
720, in intermediate block data container 490 should be 
written, shown as 730, to the backup storage 330 in order to 20 

free space for further storage. But, if the pending write 
requests 710 are directed to the data in the main data storage 
430 that have already been copied, then the execution of 
these write requests 710 should preferably not be stopped. 
Note that it is not necessary to flush the container 490 25 

completely into the backup storage 330. Generally, it is 
sufficient to partially free the container 490 to allow a 
suspended process to be resumed as soon as possible. 

14 
compiling a list of data storage blocks located in the 

storage device that are subject to the data backup 
process; 

copying a data storage block to the backup storage 
device pursuant to the list of data storage blocks; and 

suspending a write command that is directed to a data 
storage block that is subject to the data backup process 
but has not yet been copied, copying the data storage 
block that is the subject of a write command to the 
intermediate storage device, executing the write com
mand and copying the data storage block from the 
intermediate storage device to the backup storage 
device, 

wherein the computer system suspends a write command 
to the storage device during the data backup process if 
the intermediate block data container has reached a 
selected data capacity; and copies a selected amount of 
data from the intermediate block data container to the 
backup storage device. 

2. The computer system of claim 1, wherein the interme
diate block data container is located in the storage device. 

3. The computer system of claim 2, wherein the interme
diate block data container is a separate partition of the 
storage device. 

4. The computer system of claim 1, wherein the interme
diate block data container is a file within a file system of the 
computer system. 

5. The computer system of claim 4, wherein the file 
system further writes dirty pages to the storage device before 
initiating a data backup process. 

6. The computer system of claim 1, further comprising: 
a file system driver that transmits a write request to write 

to the storage device; and 
a storage device driver program that reads from the 

storage device in block mode in response to the read 
request and writes to the storage device in block mode 
in response to the write request. 

This invention provides numerous advantages over con
ventional backup procedures. The present invention differs 30 

from file systems such as Episode and WAFL in that the 
system and method of the present invention operates at the 
level of data storage blocks and not at the level of inodes or 
files. As a result, the present invention is able to provide a 
faster and more efficient backup process. Moreover, the 35 

present invention utilizes a specific container as a means of 
intermediate data storage for the data that is subject to 
backup until this data is stored in the backup storage. As a 
result, the present invention is able to provide an efficient 
online backup process. 

7. The computer system of claim 6, wherein the file 
system driver translates a write request addressed to a file 

40 located in the storage device received from a user process 
into one or more block write operations. Having thus described a preferred embodiment of the 

computer network system of the present invention, it should 
be apparent to those skilled in the art that certain advantages 
of the within system have been achieved. It should also be 
appreciated that various modifications, adaptations, and 45 

alternative embodiments thereof may be made within the 
scope and spirit of the present invention. The invention is 
further defined by the following claims. 

What is claimed is: 
1. A computer system providing backup copying of data 50 

without suspending an application program accessing the 
data, comprising: 

a storage device storing block data; 
a backup storage device storing block backup data and 

restoring the storage device multiple times and to any 55 

prior stable consistent state of the storage device stored 
as the block backup data; and 

an intermediate block data container storing block backup 
data, wherein the computer system copies a data block 
from the storage device into the intermediate block data 60 

container and copies a data block from the intermediate 
block data container into the backup storage device 
during an online data backup process, and wherein the 
intermediate block data container is protected from data 
overwrite during the online backup process; and 65 

wherein the computer system manages the online data 
backup process by: 

8. The computer system of claim 6, wherein the file 
system driver transmits a write request received from an 
operating system process. 

9. The computer system of claim 6, wherein the file 
system driver provides a data block number associated with 
a block in response to a write command directed to the data 
block during the online data backup process. 

10. A method for providing an online data backup process 
for backing up data stored on a storage device associated 
with a computer system to a backup storage device, com
prising: 

providing an intermediate data container; 
informing an operating system driver that the data is in a 

backup state; 
compiling a list of data blocks located in the storage 

device that are subject to the online data backup 
process; 

receiving a write operation directed to a listed data block 
subject to the online data backup process; 

determining if the listed data block has been copied; 
executing the write operation if the listed data block has 

been copied; and 
suspending the write operation if the listed data block has 

not been copied, copying the listed data block to the 
intermediate block data container, and executing the 
write operation, 



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page21 of 22

US 7,246,211 Bl 
15 

wherein the backup storage device restores the storage 
device multiple times and to any prior stable consistent 
state of the storage device stored as the block backup 
data, and wherein the intermediate data container is 
protected from data overwrite during the online backup 
process; and 

upon receiving an indication that the intermediate block 
data container is close to overload, the initiating a 
temporary slowdown of write operations by slowing 
down processes whose activity results in write opera- 10 

tions into a non-backed-up area. 
11. The method of claim 10, further comprising the step 

of copying the listed data block from the intennediate block 
data container to a backup storage device. 

12. The method of claim 10, further comprising flagging 15 

a data block once the data block has been copied to the 
backup storage device. 

13. The method of claim 10, further comprising the step 
of infonning the operating system driver that all of the data 
blocks subject to the online data backup process have been 20 

copied to the backup storage device. 
14. The method of claim 10, further comprising the step 

of receiving a data block number associated with the listed 
data block upon receiving a write operation directed to a 
listed data block. 

15. The method of claim 10, further comprising the step 
of writing a dirty page to the storage device before infonning 

25 

16 
wherein the system, upon receiving an indication that the 

intennediate block data container is close to overload, 
initiates a temporary slowdown of write operations by 
slowing down processes whose activity results in write 
operations into a non-backed-up area. 

22. The system of claim 21, wherein the intermediate 
storage device is located in the storage device. 

23. The system of claim 22, wherein the intermediate 
storage device is a separate partition of the storage device. 

24. The system of claim 21, wherein the intermediate 
storage device is a file within a file system. 

25. The system of claim 24, wherein the file system writes 
dirty pages to the storage device before initiating a data 
backup process. 

26. The system of claim 21, further comprising: 
a file system driver for transmitting the write command to 

the storage device; and 
a storage device driver program for reading from the 

storage device and writing to the storage device in 
block mode in response to the write command. 

27. The system of claim 26, wherein the file system driver 
translates the write command received from a user process 
and addressed to a file located in the storage device into one 
or more block write operations. 

28. The system of claim 26, wherein the file system driver 
transmits the write command received from an operating 
system process. 

an operating system driver that the data is in a backup state. 
16. The method of claim 10, wherein the step of providing 

the intennediate block data container further comprises the 
step of providing a storage device external to the computer 
system. 

29. The system of claim 26, wherein the file system driver 
provides a data block number associated with a block in 

30 response to the write command directed to the data block 
during an online backup. 

17. The method of claim 10, wherein the step of providing 
the intennediate block data container further comprises the 
step of providing a selected section of the storage device. 

18. The method of claim 10, wherein the step of providing 
the intennediate block data container further comprises the 
step of providing a selected file located in a file system 
associated with the computer system. 

30. The system of claim 21, further comprising means for 
slowing down processes whose activity results in write 
operations into a nonbacked-up area, in response to an 

35 indication that the intennediate storage device is close to 
overload. 

19. The method of claim 10, wherein the step of suspend
ing the write operation if the listed data block has not been 
copied, further comprises the steps of: 

31. The system of claim 21, wherein data blocks in the 
storage device that are subject to the online data backup 
process includes all blocks of an underlying storage device 

40 used by file system data and does not include free space 
blocks. 

detennining whether the intermediate block data storage 
has reached a selected capacity: and 

copying a selected portion of the intennediate block data 45 

storage to the backup storage device if the intermediate 
block data storage has reached the selected capacity. 

20. The method of claim 10, wherein a list of data blocks 
located in the storage device that are subject to the online 
data backup process includes all blocks of an underlying 50 

storage device used by file system data and does not don't 
include free space blocks. 

21. A system for data backup, comprising: 
a storage device; 
a backup storage device restoring the storage device 55 

multiple times and to any prior stable consistent state of 
the storage device stored as the block backup data; and 

an intermediate storage device protected from data over-
write during an online backup process, 

wherein, when a write command is directed to a data 60 

storage block identified for backup that has not yet been 
backed up, the identified data storage block is copied 
from the storage device to the intennediate storage 
device, the write command is executed on the data 
storage block in the intennediate storage device, and 65 

the data storage block is copied from the intermediate 
storage device to the backup storage device, and 

32. The system of claim 21, wherein backed up data 
blocks are restored on the fly to a different storage device. 

33. The system of claim 21, wherein an order in which 
data blocks are scheduled for backup is changed based on 
information received from an external source. 

34. A method for providing an online data backup, com
prising: 

providing an intermediate storage; 
infonning an operating system driver that data in a storage 

device is in a backup state; 
identifYing data blocks in the storage device that are 

subject to the online data backup; 
receiving a write command directed to an identified data 

block; 
detennining if the identified data block has been copied; 
proceeding with a write operation if the identified data 

block has been copied; 
suspending the write operation if the identified data block 

has not been copied, copying the identified data block 
to the intennediate storage, and executing the write 
operation on the data block in the intennediate storage; 

copying the identified data block from the intermediate 
storage to a backup storage device, 

wherein the storage device is restored multiple times and 
to any prior stable consistent state of the storage device 
stored as block backup data, and wherein the interme-



Case3:11-cv-05310-EMC   Document78-1   Filed05/23/12   Page22 of 22

US 7,246,211 Bl 
17 

diate storage is protected from data overwrite during 
the online data backup; and 

upon receiving an indication that the intermediate block 
data container is close to overload, the initiating a 
temporary slowdown of write operations by slowing 
down processes whose activity results in write opera
tions into a non-backed-up area. 

35. The method of claim 34, further comprising flagging 
a data block once the data block has been copied to the 
backup storage device. 

36. The method of claim 34, further comprising informing 
an operating system driver that all the identified data blocks 
have been copied to the backup storage device. 

37. The method of claim 34, further comprising receiving 

18 
41. The method of claim 34, wherein the step of providing 

the intermediate storage further comprises the step of pro
viding a selected file located in a file system associated with 
the computer system. 

42. The method of claim 34, further comprising, upon 
receiving an indication that the intermediate data storage is 
close to overload, the initiating a temporary slowdown of 
write operations by slowing down processes whose activity 

10 results in write operations into a non-backed-up area. 

a data block number associated with the identified data block 15 

43. The method of claim 34, wherein a list of data blocks 
located in the storage device that are subject to the online 
data backup includes all blocks of an underlying storage 
device used by file system data and does not include free 
space blocks. 

upon receiving the write operation directed to the identified 
data block. 

38. The method of claim 34, further comprising writing a 
dirty page to the storage device before informing an oper
ating system driver that the data is in the backup state. 

39. The method of claim 34, wherein the step of copying 
comprises copying the identified data block to intermediate 
storage, wherein the intermediate storage comprises an 
external storage device. 

40. The method of claim 34, wherein providing the 
intermediate storage further comprises providing a selected 
partition of the storage device. 

44. The method of claim 34, further comprising informing 
an operating system driver that data in the storage device is 
in a backup state. 

20 45. The method of claim 34, wherein backed up data 
blocks are restored on the fly to a different storage device. 

46. The method of claim 34, wherein an order in which 
data blocks are scheduled for the online data backup is 
changed based on information received from an external 

25 source. 

* * * * * 


	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract



