
(12) United States Patent
Rothschild

US007257582B2

US 7,257,582 B2
Aug. 14, 2007

(10) Patent No.:
(45) Date of Patent:

(54) LOAD BALANCING WITH SHARED DATA
(75) Inventor: Michael Rothschild, Ramot Hashavim

(IL)
(73) Assignee: Corigin Ltd, Or-Yehuda (IL)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 912 days.

(21) Appl. No.: 10/375,893

(22) Filed: Feb. 27, 2003

(65) Prior Publication Data

US 2003/O177161 A1 Sep. 18, 2003

Related U.S. Application Data
(60) Provisional application No. 60/363,853, filed on Mar.

13, 2002.

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/10; 707/104.1
(58) Field of Classification Search 707/1-10,

707/100 104.1, 200-206: 718/105: 71.9/316;
703/23: 705/35; 711/147.3, 133

See application file for complete search history.

1O

Initiating System
Equivalent
Process

Terminate

(56) References Cited

U.S. PATENT DOCUMENTS

5,357.632 A * 10/1994 Pian et al. T18, 105
5,603,028 A * 2/1997 Kitsuregawa et al........ T18, 105
5,835,755 A * 11/1998 Stellwagen, Jr. 707/3
5,926,833 A * 7/1999 Rasoulian et al. T11 147
6,061,067 A * 5/2000 Silva et al. 345,619
6,275,867 B1 * 8/2001 Bendert et al. T19.316

* cited by examiner

Primary Examiner Yicun Wu
(74) Attorney, Agent, or Firm—Andrew Wilford

(57) ABSTRACT

The input of a computer executable process, is logically
Subdivided, without reading, into a plurality of partitions
which are distributed to a plurality of processors in which
respective subtasks including the reading of those partitions,
are carried out. The method allows distribution of processing
of a large amount of data to a plurality of processors
cooperating in a way that the load imposed on each proces
sor is proportional to its capacity to do the work.

14 Claims, 4 Drawing Sheets

Configuration
File

20
Helping
System 1

U.S. Patent Aug. 14, 2007 Sheet 1 of 4 US 7,257,582 B2

Configuration
File

Helping
System 1

10

Equivalent
Process

Fig. 1

U.S. Patent Aug. 14, 2007 Sheet 2 of 4 US 7,257,582 B2

Helping
System 1

10

Equivalent
101 PrOCeSS

102---|--|- split
103- .
104.

106

U.S. Patent Aug. 14, 2007 Sheet 3 of 4 US 7,257,582 B2

Configuration
File

20
Helping
System 1

10

Equivalent
PrOCeSS

Fig. 3

U.S. Patent Aug. 14, 2007 Sheet 4 of 4 US 7,257,582 B2

US 7,257,582 B2
1.

LOAD BALANCING WITH SHARED DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a nonprovisional application corre
sponding to Ser. No. 60/363,853 filed 13 Mar. 2002.

FIELD OF THE INVENTION

This invention relates to the field of sharing data and
workload between possibly heterogeneous computer sys
temS.
More specifically, it deals with a way to split the perfor

mance of a given task among a plurality of processing units
which can all access, directly or indirectly, the input data and
the devices on which the output data is to be stored.

Sort applications, statistical analysis batch applications
and report writing applications and database queries are
examples of applications that can readily enjoy this inven
tion.

BACKGROUND OF THE INVENTION

With the constant improvement in telecommunication
technology and the increasing tendency to consolidate com
puting resources, many computer sites contain a plurality of
computers.
The load imposed on the various computers in these sites

is normally the result of the activities directed specifically to
these computers and the fact that one of them is especially
loaded while others are relatively idle does not affect the
way work is distributed between them. As a result, in
contemporary environments, much can be gained by the
parallelization of some processes and their distributed
execution across all available computing resources in a way
that both speeds the execution of the whole process and
balances the load the various computers are subjected to.

Recent developments introduced the concepts of Storage
Area Networks (SAN) and Network Attached Storage
(NAS) devices to enable efficient usage of storage resources.
These technologies increase the symmetry of storage access
in a multiple computer environment, increasing the benefits
that can be expected from Such a parallelization.

OBJECTS OF THE INVENTION

The principal object of the present invention is to enable
the decomposition of a certain type of linear processes that
currently use a single computer, into equivalent parallel
processes that can efficiently use any number of potentially
heterogeneous computers, taking the available capacity of
each of these computers into account while optimizing
execution.
A more general object is to improve processing efficiency

of certain processes.
It is also an object to obtain better processor utilization.

SUMMARY OF THE INVENTION

These objects and others which may become apparent
hereinafter are achieved in a method which distributes the
load of a process that normally reads an input file sequen
tially and processes its records one by one between a
plurality of potentially heterogeneous processors through
the logical partition of the input and the activation of a
plurality of Sub tasks in said plurality of processors, each

10

15

25

30

35

40

45

50

55

60

65

2
said Sub task processing the partitions defined by said logical
partition in a first come first serve basis.
The method of effecting a computer-executable process

according to the invention thus comprises the steps of:
(a) automatically determining file allocation and logically

subdividing records of the input file into a plurality of
partitions;

(b) distributing the partitions to a plurality of processors
and activating respective Subtasks of the computer-execut
able process in each of the processors, each Subtask reading
and processing the partitions on a first come first serve basis;
and

(c) generating at least one output reflecting the processing
of the subtasks.
The automatic determination of file allocation and logical

subdivision of records of said input file into said plurality of
partitions in step (a) and the distribution of said partitions in
step (b) can be carried out with at least one processor and the
processors used can include mutually heterogeneous pro
CSSOS.

Each of the Subtasks can produce a Subtask output and the
Subtask outputs can be merged to produce the output of step
(c). The output in step (c) can, however, be a Succession of
outputs from the Subtasks in a one to one correspondence
with the records of the input file. Alternatively, the output in
step (c) can be an accumulation of output records from the
Subtasks in an arbitrary order.
The input file can reside on a directly attached storage or

on a storage area network (SAN) or on a network attached
storage (NAS)and can be derived therefrom. The computer
executable process can be a sort process, a statistical analy
sis process, a report creating process or a database query or
a combination thereof. Without limitation thereto, the one
processor can be part of a mainframe computer and the
plurality of processors can be processors of at least one other
computer or the plurality of processors can all be parts of a
single multiprocessor. The one processor can thus also reside
on a machine which is not a mainframe.

BRIEF DESCRIPTION OF THE DRAWING

The above and other objects, features, and advantages will
become more readily apparent from the following descrip
tion, reference being made to the accompanying drawing in
which:

FIG. 1 is a block diagram describing how a system
according to the invention works;

FIG. 2 is a block diagram which describes the way the
system works when the output file can be shared with no
write coordination mechanism;

FIG. 3 is a block diagram which describes the way the
system works when the output file can be shared with a write
coordination mechanism; and

FIG. 4 is a diagram which illustrates the application of the
invention to a sort process.

SPECIFIC DESCRIPTION

FIG. 1 contains a top-level description of the invention
and its workings. In the initiating system 10, the invocation
of a process has been replaced by an invocation of a
logically equivalent Process 101 that is based on the current
invention, capable of delegating at least some of the load to
the available helping systems. In this figure, only two Such
helping systems are depicted—helping system 1 and helping
system 2 but in general, any positive number of Such
systems can be used.

US 7,257,582 B2
3

The Equivalent Process 101 accepts the same input, or
input with the same semantics, as the original Process. If the
original Process is a sort Process then, in most cases, it is
told by this input, what the file to be sorted is and what parts
of the records in this file constitute the key according to 5
which it is to be sorted. In this case the input also specifies
the data types of the various parts of the key. If the original
Process is one of statistical analysis then the various statis
tics and the data for these statistics are specified by this
input. If the original Process is a report generator then the
definition of the various reports and the data files they should
be extracted from are parts of this input.

The various parts of the Equivalent Process 101 are
depicted here as consecutive steps in one procedure but
alternative embodiments could replace them by dependent 15
tasks controlled by a job scheduler. In this case, the wait step
104 would be replaced by a dependency of the Merge step
105 on the completion of Sub Task 103, Sub Task 201 and
Sub Task 202. More generally, the Merge step would have
been instructed to start only after all the Sub Task steps have
completed.
The first step of the Equivalent Process 101 is the Split

step 102. This step combines the information contained in
the parameters supplied to the Equivalent Process 101 as a
whole (in the sort case, these parameters include the name
of the file to be sorted 9 and the keys to be used), with the
information contained in the configuration file 0 which
includes the names of the servers available to perform this
task and with information from the operating system about
the size and location of the input file or files 9, to create the
control file 4 specifying a logical partition of the input.

Input files 9 are, thus, logically partitioned into n logical
partitions where n is a number the split step 102 has decided
upon. In FIG. 1, these logical partitions are numbered as 1
to 6.
A logical partition in this context is a well-defined part of

the input or output. A very simple way to define a partition,
which in many cases is the most efficient, would be to define
the partitions as consecutive ranges on the input or output,
ranging from one relative byte address to another relative
byte address or from one relative track address to another.
Of course, as we normally process full records, the

partition boundaries or the way they are interpreted should
take this fact into account. For example, if the beginning of
a range falls within a record, this record can be said to 45
belong to the previous range. Other partition definitions can
be used with no impact on the rest of the embodiment.

Note that the number of input partitions is not necessarily
the number of helping systems. Normally, the number of
logical input partitions will largely exceed the number of 50
helping systems.

Note that the logical partition does not rely on actual
reading of the file. The actual reading of the file is reserved
to the subtasks which read the partitions allocated to them.
A splitting function may be allocating offset 0 to offset 55
100000 to a first partition, offset 100001 to 200000 to the
second partition, offset 200001 to 300000 to the third
partition and 300001 to the end of the file to a fourth
partition.
The split step 102 could rely on additional information 60

that could also be contained in the configuration file 0. It
could, for example, take into account the power of each
available server and the current load of this server.
When the split step terminates, the various Sub Tasks (in

this case: 103, 202.203) can be activated. This activation can 65
be initiated by the split step 102 itself or by an external
scheduler. Each Sub Task finds the subdivision of the input

10

25

30

35

40

4
in the control file 4. Each such Sub Task then repeatedly tries
to allocate for itself and then process, an input partition that
has not been allocated yet. In the embodiment described in
FIG. 1, the output of the various Sub Tasks has to be further
processed to create an output that is equivalent to the one
expected from the original process. This is why each Sub
Task creates its output on dedicated output files. In this case,
Sub Task 201 creates Output1 (301), Sub Task 202 creates
Output2 (302) and Sub Task 103 creates Output3 (303).

Reading, processing and writing, are not necessarily
straight forward since all the input and output files are shared
by the potentially heterogeneous systems and while the Sub
Task itself is also performed in these potentially heteroge
neous systems, the results should look as if they have all
been created by the Initiating System 10.

This is why the various Sub Tasks may have to use
heterogeneous read and write functionality to read and write
their corresponding Input Partitions (see my commonly
owned copending application Ser. No. 10/209,673 filed 31
Jul. 2002, which is hereby incorporated in its entirety by
reference).

This is also why, if the original Process is a sort Process,
depending on the type of the input key, parts of the key’s
data may or may not be converted from the Initiating
System's representation to an equivalent representation on
the Helping Systems and then, after being Sorted, converted
back to the Initiating System's representation.

If continuing with the sort example, the Initiating System
10 is an IBM mainframe and the Helping Systems 20 and 30
are HP-UX machines then character strings should not be
converted from EBCDIC to ASCII since the order we want
to create is the EBCDIC order. In this case, binary numbers
should not be converted either since their representation is
the same on both systems but the mainframe's floating point
numbers should be, converted to HP-UX floating point
numbers and back and packed decimal numbers should be
converted to and from some HP-UX appropriate represen
tation like, depending on the precision, short, long or long
long binary numbers or even character strings.
Once all the Sub Tasks have terminated, the Merge Step

105 can be initiated. To initiate the Merge Step 105 at the
appropriate time, the Wait Step 104 can be used, as depicted
in this figure, to periodically verify the Control file 4 and
detect the completion of all sub tasks and then schedule the
Merge Step 105. Another alternative for the timely activa
tion of the Merge Step would be to use some existing
scheduler, as already mentioned.
Note that although the Merge Step 105 is depicted as

running on the Initiating System 10, this should not neces
sarily be the case.

It can be the task of the Split Step 102 to decide where the
Merge Step 105 should run or the processor that was the
fastest in processing the last input partition it processed can
be automatically selected for this purpose.
The Merge Step 105, as the Sub Tasks preceding it, may

have to use the heterogeneous read and write functionality
and the appropriate type conversions of parts of the data.
What the Merge step 105 does is, of course, to merge the
outputs of the various Sub Tasks into the result output file or
files, represented in this figure by Output 4. Once the Merge
Step 105 has completed, the whole Equivalent Process 101
is complete. The Merge step 105 only needs to be performed
in cases where there are more than one Sub Task. Otherwise
it is not needed.

If the original Process is a sort Process then there are some
additional cases, beyond the simple sort of an input file for

US 7,257,582 B2
5

the creation of an output file where the same technology)can
be used to at least some extent.
A typical case is when the sort to be replaced uses exits

like the input and output exits Supported by all conventional
IBM mainframe sort utilities, termed, in this environment
E15 and E35.

Such exits could be handled in any of the following ways
or a combination thereof:

Provide equivalent exit routines in all the relevant Help
ing System. This requires some work and is not always
possible but when implemented, it is the most efficient
solution. Note that the input exit only needs to be imple
mented where Sub Tasks are performing and the output exit
only needs to be implemented where the Merge Process or
the only Sub Task is being performed.

Use communication, either over telecommunication lines,
or through the disk controller, to communicate between an
exit running on one system and a Sub Task or Merge Process
running on another. This alternative is not as efficient as the
other ones, but it could be the only available one.
Run the Merge Process on the Initiating System 10 just to

avoid the need to perform the output exit elsewhere.
Run on the initiating System 10 Pre Sort and Post Sort

conversion steps with the Sole purpose of running the exits.
FIG. 2 depicts an embodiment that can improve perfor

mance in Some very special cases.
The special cases where this embodiment would be pref

erable are those where there is a one to one correspondence
between the input records and the output records, the size of
the output generated for a given input partition can be
predicted and there is no harm in placing the output records
in the same order as their corresponding input records
appeared in the input file.

In Such cases, output partitions are logically allocated on
an output file in a one to one correspondence with the input
partitions and the Sub Tasks write the output resulting from
processing a specific input partition to the corresponding
output partition. The Merge step can then be obviated.

In the specific example of FIG. 2, the output created from
processing input1 1 is placed in output1 401, the output
created for input2 2 is placed on output2 402 etc.
The Terminate step 106 is only there to signal the termi

nation of the equivalent processes. In an environment where
process scheduling is performed by a scheduler, this step can
be obviated.

In this embodiment, as well as in that of FIG. 1, there is
a simple way to reduce the risk of failure resulting from one
of the systems becoming inoperative.

All that is needed is some mechanism to detect the failure
of a system (based, for example, on Some heartbeat mecha
nism) and return the partitions for which the failing system
was responsible to the general pool where the remaining
systems will then take care of them.

FIG. 3 depicts yet another special embodiment that is
preferable in applications where the output created by the
various Sub Tasks is small when compared to their input,
where the order of the resulting records is immaterial and
where a mechanism exists for simultaneous writes on a
single file.

Note that in the embodiment of FIG. 2 there where
simultaneous write operations directed at the same file as
well but since the various parts of the output file were
preallocated and no two Sub Tasks wrote to the same logical
partition of the output, there was no need for a special
mechanism to coordinate these simultaneous writes. This is
not the case in this figure. Here, the output records are
written to the output file 408 at an arbitrary order and there

10

15

25

30

35

40

45

50

55

60

65

6
is no prior knowledge of their quantity and size. Therefore,
the write operations must be coordinated and it is the
assumption of this embodiment that they are.
A special case where such an embodiment might be

interesting is that of a query that selects rows from a
database table without requiring any special ordering of the
output. In this case, there might be a process that first scans
the index to detect interesting row identifiers and puts them
on the input file 9 that serves as an input for the whole
process depicted in this figure. Both this input file 9 and the
output file 408 can be virtual. The input file may be a
memory resident list and the output file may be the screen of
a terminal.

FIG. 4 describes a sort process. In the example depicted
in FIG. 4, two subtasks—Sub Task 1 and Sub Task 2, are
invoked to perform a sort.
The input file 0 is (logically) partitioned into six parti

tions.
Sub Task 2 is, for some reason, faster than Sub Task 1 (it

may be running on a faster processor or on one on which the
current load is lower). This is why Sub Task 2 manages to
do a larger part of the job.

First, Sub Task 2 updates the control file to take respon
sibility of Input 1.
Then Sub Task 1 starts processing Input 1. While this is

happening, Sub Task 2 takes responsibility (using the control
file) for Input 2 and starts processing it.

While Sub Task 1 processes Input 2. Sub Task 2 finishes
the processing of Input 1, takes responsibility for Input 3 and
processes it, then it takes responsibility for Input 4 and starts
processing it.

While Sub Task 2 processes Input 4, Sub Task 1 finishes
processing Input 2, takes responsibility for Input 5 and starts
processing it.

While Sub Task 1 processes Input 5. Sub Task 2 finishes
processing Input 4, takes responsibility for Input 6, and
processes it.
When both Sub Tasks terminate the processing of their

last input partition they put the sorted output on their
respective output files.
Then the merge step is initiated and merges the two output

files into one merged output file.
I claim:
1. A method of effecting on a preexisting input file a

computer-executable process comprised of a plurality of
Subtasks, the method comprising the steps of

(a) automatically determining file allocation and logically
subdividing records of said input file into a plurality of
partitions;

(b) distributing descriptions of all of said partitions to
each of a plurality of Subtask processors

c) simultaneously executing at least a respective one of
the Subtasks of the computer-executable process in
each of at least Some of said processors on a respective
one of the partitions with each Subtask reading and
processing the respective partition so as to process the
respective partition and produce respective Subtask
output and;

d) thereafter repeating step (c) in at least some of the
Subtask processors each with another unprocessed par
tition on a first-come/first-served basis; and

(e) generating at least one output combining all of the
Subtask outputs and reflecting the processing of all of
said Subtasks.

2. The method defined in claim 1 wherein the automatic
determination of file allocation and logical subdivision of
records of said input file into said plurality of partitions in

US 7,257,582 B2
7

step (a) and the distribution of the description of all of said
partitions in step (b) is carried out with at least one further
processor in addition to the Subtask processors.

3. The method defined in claim 1, further comprising the
step of merging said Subtask outputs in step (e).

4. The method defined in claim 1 wherein the output in
step (e) is a Succession of outputs from said Subtasks in a
one-to-one correspondence with said records of said input
file.

5. The method defined in claim 1 wherein the output in
step (e) is an accumulation of output records from said
Subtasks in an arbitrary order.

6. The method defined in claim 1 wherein said input file
resides on a storage area network and is derived therefrom.

7. The method defined in claim 1 wherein said input file
resides on a network-attached storage and is derived there
from.

8. The method defined in claim 1 wherein said computer
executable process is a sort process.

9. The method defined in claim 1 wherein said computer
executable process is a statistical analysis process.

10

15

8
10. The method defined in claim 1 wherein said computer

executable process is a report-creating process.
11. The method defined in claim 1 wherein said computer

executable process includes a database query.
12. The method defined in claim 2 wherein said one

processor is part of a mainframe computer and the other
processors are processors of at least one other computer.

13. The method defined in claim 1 wherein said plurality
of processors are all parts of a single multiprocessor.

14. The method defined in claim 1 wherein the automatic
determination of file allocation and logical subdivision of
records of said input file into said plurality of partitions in
step (a) and the distribution of the descriptions of all of said
partitions in step (b) is carried out with at least one proces
Sor, and said one processor and said plurality of processors
are all parts of a single multiprocessor not including said one
processor.

