
Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page2 of 12

(12) United States Patent
Escabi, II et al.

(54) SYNTHESIZED BACKUP SET CATALOG

(75) Inventors: Zeir R. Escabi, II, Lake Mary, FL
(US); Ynn-Pyng A. Tsaur, Oviedo, FL
(US)

(73) Assignee: Veritas Operating Corporation,
Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 537 days.

(21) Appl. No.: 10/834,446

(22) Filed: Apr. 29, 2004

(51) Int. Cl.
G06F 12116 (2006.01)

(52) U.S. Cl. 7111162; 707/204
(58) Field of Classification Search 7111162;

707/204
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,485,606 A 111996 Midgdey et al. 707/10
5,819,296 A 1011998 Anderson et al 707/204
5,926,836 A 711999 Blumenau 7111162
6,185,621 Bl 212001 Romine 7091231
6,353,878 Bl 3/2002 Dunham 7111162
6,434,681 Bl 8/2002 Armangau 7111162
6,477,628 Bl 1112002 Bish et al. 7111162
6,675,257 Bl 112004 Khalid et al. 7111111

200210095537 Al 7/2002 Slater
200210103982 Al 8/2002 Ballad et al.
2004/0030852 Al * 212004 Coombs et al. 7111162
2004/0044830 Al 3/2004 Gibble et al.
2004/0044854 Al 3/2004 Gibble et al.

/30 /
Data

Volume
VE

• • •

111111 111
US007266655B 1

(10) Patent No.: US 7,266,655 Bl
Sep.4,2007 (45) Date of Patent:

OTHER PUBLICATIONS

Hellman, D.J. et aI., "Innovations in Tape Storage Automation at
IBM," Jul. 2003; IBM Journal of Research and Development, vol.
47; No.4; pp. 445-452.
Escabi II, Zier R., Pending U.S. Patent Application entitled "Backup
Set Copy," U.S. Appl. No. 101715,937, filed Nov. 18,2003, includ­
ing Specification: pp. 1-17; Drawings: Figures 1-7 on 7 sheets.
Escabi II, Zier R., Pending U.S. Patent Application entitled "Cata­
log-Driven Backups," U.S. Appl. No. 11/091,301, filed Mar. 28,
2005, including Specification: pp. 1-23; Drawings: Figures 1-6 on
4 sheets.
Escabi II, Zier R., Pending U.S. Patent Application entitled "Method
and Apparatus for Providing Parallel Backup Set Processing for
Creating a Synthetic Backup," U.S. Appl. No. 11/395,040, filed
Mar. 31, 2006, including Specification: pp. 1-24, Drawings: Figures
1-9 on 7 sheets.
Sridharan, Srineet, et aI., Pending U.S. Application entitled "Cata­
log Driven Restore," U.S. Appl. No. 111395,916, filed Mar. 31,
2006, including Specification: pp. 1-25; Drawings: Figures 1-8 on
6 sheets.

* cited by examiner

Primary Examiner-lack A. Lane
(74) Attorney, Agent, or Firm-Campbell Stephenson LLP

(57) ABSTRACT

Synthesized backup set catalogs are created to more effi­
ciently create synthetic full backups of a data volume or to
more efficiently restore a data object of the data volume. In
one embodiment, the synthesized backup set catalog com­
prises n entries corresponding to n data objects, respectively,
of a data volume being backed up. The synthesized backup
set catalog can be created with the creation of an incremental
backup of the data volume. Each entry of the synthesized
backup set catalog may contain a backup identification (ID),
wherein each backup ID identifies at least one of two backup
sets of the data volume .

12 Claims, 4 Drawing Sheets

32(1)

34

32(m)

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page3 of 12

u.s. Patent

l

FIG.

Data
Volume

VE

Sep.4,2007

f

Sheet 1 of 4 US 7,266,655 Bl

/10

?
12

Backup 18
Server

24
14 IBoIIBol 22

IBoIIBol
Isoilsol

32(1)

34

32(m)

FIG. 2

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page4 of 12

u.s. Patent

File File
10 Offset

File 1
File 2
File 3
File4
FileS

• • •

A11
A12
A13
A14
A15

I File nl A1n I
\: 36(1)

Sep.4,2007

File File
10 Offset

File 2 A21
File 3 A22 •••

File 31 A23
Rle40 A24

\. 36(2)

Sheet 2 of 4

File File
10 Offset

File 3 A31
File 12 A32
File 70 A33

\. 36(m)

US 7,266,655 Bl

File File
10 Offset

File 1
File 2
File 3
File 4
FileS

• • •

A41
A42
A43
A44
A4S

FIG. 3

I File n I A4n I
\: 40

54
Sety=m+1

Set y=y-1 56

No

62 Yes
Copy File x from 72

Backup set 1 to tape 34

Create entry x 64
in Catalog 40

FIG. 4

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page5 of 12

u.s. Patent

I

FIG.

Data
Volume

V

Sep.4,2007

5

Sheet 3 of 4 US 7,266,655 Bl

/80

l
82

Backup 88
Server

94
84 laollaol 92

laollaol
laollaol

114

112(m)

FIG. 6

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page6 of 12

u.s. Patent Sep.4,2007 Sheet 4 of 4 US 7,266,655 Bl

Entry File File Backup Entry File File Backup Entry File File Back~p Entry File File Backup
10 Offset Set 10 10 Offset Set 10 ID Offset Set 10 10 Offset Set ID
111 1 Rle 1 A11 1 File 1 A11 1 File 1 A31 3
222 2 File 2 A12 ' 1 File 2 A21 2 File 2 A21 2
3
4

File 3
File 4

A13
A14
• • •

1
1

3
4

File 3
File 4

A13
A14
• • •

1
1

3
4

File 3
File 4

A13
Am1
• • •

1
m

3
4

File 1 811 S
File 2 B12 S
File 3 813 S
File 4 B14 S

• • •
n IFilenl A1n I 1 I

\0 116(1)

n IFilenl A1n I 1 I
\0 116(2)

n IFilenl A1n I 1 I
\0 116(m)

n I File nl B1n I s I
\0 120

FIG. 7

130
Set x=O

132
Setx=x+1

copr file identified in entry 134
x 0 catalog 116(m) from
media confaining backup
set identified in entry x

No

FIG. 8

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page7 of 12

US 7,266,655 Bl
1

SYNTHESIZED BACKUP SET CATALOG

BACKGROUND OF THE INVENTION

Businesses and other entities store data objects (e.g.,
image files, text files, computer software, database data,
directories and the like) on memory devices such as hard
disks. But hard disks fail at the worst times and take all the
data objects stored on them with them when they go. Thus
was bom the concept of creating backups of the data objects
on separate recording media (e.g. magnetic tapes). For
purposes of description only, the term "data objects" will be
understood to mean files, it being understood that the term
should not be limited thereto. The following description will
be made with reference to backing up a data volume
consisting of n files, it being understood that the present
invention should not be limited thereto.

Backups protect against hardware failures, software fail­
ures, and user errors. Hardware failures can range from the
failure of a single hard disk to the destruction of an entire
data center, making some or all files of the data volume
unrecoverable. Software failures are bugs or procedural
errors in, for example, a server application that corrupts the
contents of data files. User errors include errors such as
inadvertent deletion or overwriting of files that are later
required. In these cases, destroyed files generally impact the
ability of a user or set of users to function.

2
erable at backup time since, in most cases, the number of
files of the data volume that change between backups is very
small compared to the number of files in the entire data
volume and since the backup window is small. If backups
are done daily or even more frequently, it is not uncommon
for less than 1% of files to change between backups. An
incremental backup in this case copies 1 % of the data that a
full backup would copy and uses 1 % of the input/output (10)
resources. Incremental backup appears to be the preferred

10 mode to guarding data. And so it is, until a full restore of all
the files of the data volume is required. A full restore from
incremental backups entails starting with the restore of the
newest full backup copy, followed by restores of all newer
incremental backups. That can require a lot of media han-

15 dling-time performed by, for example, an automated robotic
handler. Thus, restore from full backups is generally simpler
and more reliable than restore from combinations of full and
incremental backups. For recovering from individual user
errors, the situation is just the opposite. Users tend to work

20 with one small set of files for a period of days or weeks and
then work with a different set. Accordingly, there is a high
probability that a file destroyed by a user will have been used
recently and therefore will be copied in one of the incre­
mental backup operations. Since incremental backups con-

25 tain a smaller fraction of data than a full backup, they can
usually be searched much faster if a restore is required. The
ideal from the individual user's standpoint is therefore many
small incremental backups. Some backup systems offer a
compromise: the ability to consolidate a baseline full backup

Mirroring and replication technology can be configured to
provide good protection against hardware failures. But these
technologies will also write data corrupted by application
errors every bit as reliably as they write correct data, and
they faithfiilly record the file system or database metadata
updates that result from a user's mistaken deletion of an
important file on all mirrors or replicas. Because they are
optimized to serve different purposes, mirroring and repli- 35

cation technologies have different goals than backup. Mir­
roring and replication attempt to preserve the bit-for-bit state

30 and several incremental backups into a new, more up to data
full backup, which becomes the baseline for further incre­
mental backups. While costly in terms of the time needed to
create them, these synthetic full backups simplify a resto-
ration process.

FIG. 1 illustrates in block diagram form, relevant com­
ponents of a data processing system 10 which employs an
exemplary backup and restore technology. FIG. 1 shows an
application server 12 coupled to a data storage subsystem 14
via storage interconnect 16. Data storage subsystem 14 may
include several physical storage devices. For purposes of
explanation, the physical storage devices of storage sub-

of files as they change, while backup attempts to preserve
the state of the files as of some past point-in-time at which
the files of the data volume were kuown to be consistent. 40

Mirrors or replicas keep the contents of all replicated
devices or files identical to each other. Backup however,
does something quite different: it captures an image of the
data volume at an instant in the past, so that if need be,
everything that has happened to the data volume since that
instant can be forgotten, and the state of operations can be
restored to that instant.

system 14 will take form in hard disks, it being understood
that the term "physical storage device" should not be limited
to hard disks. Further, for purposes of explanation, data

45 storage subsystem 14 will take form in a disk array, it being
understood that the term "data storage subsystem" should
not be limited thereto. As will be more fully described
below, disk array 14 contains an exemplary data volume VE Backups are typically created during late hours of the

night. "Backup windows" are time intervals during which a
computer is unoccupied by other tasks and therefore avail- 50

able for making backups of the data volume. Backup win­
dows have been shrinking to accommodate increasing reli­
ance on computers. With round-the-clock transaction
processing (so credit cards will be honored at late night
diners), the windows continue to shrink to essentially noth­
ing.

of n files (file I-file n).
FIG. 1 further includes a backup server coupled to data

storage subsystem 22 via storage interconnect 24. For pur­
poses of explanation, data storage subsystem 22 will take
form in a robotic tape handler having access to several
magnetic tapes. Lastly, application server 12 and backup

55 server 18 are coupled to each other via local area network
(LAN) 26. LAN 26 transmits backup data from its source
(e.g., disk array 14) to its target (e.g., robotic tape handler
22), or LAN 26 transmits the restoration data from its source
(e.g. robotic tape handler 22) to its target (e.g., disk array

Backup operations create backup sets (i.e., copies of one
or more files of the data volume) that may be either full or
incremental. A full backup set means that all of the files in
the data volume are copied, regardless of how recently they
have been modified or whether a previous backup set exists.
An incremental backup means that only files of the data
volume that have changed since some previous event (e.g.,
a prior full backup or incremental backup) are copied. The
backup window for a full backup tends to be much larger
when compared to the backup window for an incremental
backup. For most applications, incremental backup is pref-

60 14).
FIGS. 2 and 3 illustrate relevant aspects of creating full,

incremental and synthetic full backup sets of exemplary data
volume VE. FIG. 2 represents disks and tapes that store data
volume VE and backup sets thereof. More particularly, FIG.

65 2 shows data volume VE stored within a disk 30. It is noted
that disk 30 may be implemented as a virtual disk or, in other
words, a logical aggregation of physical hard disks within

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page8 of 12

US 7,266,655 Bl
3

disk array 14. Backup server 18 creates a full backup data set
1 of volume VE on tape 32(1) while incremental backup sets
2-m are created on tapes 32(2)-32(m), respectively. A syn­
thetic full backup set is created on tape 34 from files copied
from some or all of the backup sets 1-m. All tapes 32(1)- 5

32(m) and 34 are accessible by robotic tape handler 22.
FIG. 3 shows backup catalogs 36(1)-36(m) and 40. Cata­

logs 36(1)-36(m) and 40 are created by backup server 18
with the creation of backup sets 1-m and the synthetic full
backup set, respectively. Catalogs 36(1)-36(m) and 40 iden- 10

tify the files copied to the backup sets 1-m and the synthetic
full backup set, respectively. Additionally, catalogs 36(1)-
36(m) and 40 directly or indirectly identify locations in tapes
32(1)-32(m) and 34, respectively, where backed up files can
be found. All catalogs are stored in cache memory (not 15

shown) of backup server 18. The backup sets and their
respective catalogs including their uses are more fully
described below.

The full backup set 1 is created by copying each file of
data volume VE to tape 32(1) during a backup window. 20

When the backup server 18 creates the full backup set 1,
backup server 18 also creates catalog 36(1) listing the files
copied to tape 32(1). As shown in FIG. 3, catalog 36(1)
includes n entries corresponding to the n files, respectively,
of volume VE. Each entry contains a file identification (file 25

ID) and a file offset. The file ID, as its name implies,
identifies a file backed up to tape 32(1), and the file offset
identifies an offset from a starting address in tape 32(1)
where the corresponding file can be found.

With the next scheduled backup window, backup server 30

18 creates incremental backup set 2 of data volume VE.
More particularly, backup server 18 stores on tape 32(2), a
copy of all files within data volume VE that were modified
(e.g., written) since the creation of full backup set 1. There
are many ways to identify files that have been modified since 35

the creation of the full backup set 1. For example, each file

4
in multiple prior backup sets into a backup set (i.e., the
synthetic backup set) that contains the most recent version of
each file of volume VE. Tape 34 shown in FIG. 2 is
configured to store the synthetic full backup set created by
backup server 18. It is noted that in an alternative embodi­
ment, the full backup set and synthetic full backup set may
be preferably created on disks (not shown) coupled to
backup server 18. Disks are preferable since read access to
hard disks is quicker during a restoration operation than read
access to tape contained within robotic tape handler 22. For
purposes of explanation, it will be presumed that backup sets
are stored on magnetic tape media, it being understood that
the present invention should not be limited thereto.

The contents of the catalogs 36(1)-36(m) determine which
files of the backup sets 1-m are to be combined to create the
synthetic full backup. Once the necessary files are identified,
their location, with regard to which tapes 32(1)-32(m), must
determined by processing the catalogs 36(1)-36(m). It is
noted that during the creation of the full or incremental
backup sets, one or more files of data volume VE may have
been deleted or added. However, for sake of description
simplicity, it will be presumed that no files are added to or
deleted from volume VE during the backup processes
described above.

FIG. 4 illustrates relevant operational aspects of one
embodiment for creating a synthetic full backup set using
catalogs 36(1)-36(m) and backup sets 1-m. A file (file x) of
volume VE to be backed up is identified. The backup server
then sets variable y to m+1 and decrements y by I as shown
in steps 54 and 56. Backup server 18 then begins a search for
the most recent version of file x contained within backup sets
1-m. More particularly, backup server 18 accesses catalog
36(y) to determine whether file x is contained within incre-
mental backup set y. It is noted that backup server 18 starts
with catalog 36(y=m) because it corresponds to the most
recently created incremental backup. If catalog 36(y) indi­
cates that file x is contained within incremental backup set
y, then the process proceeds to 62 where backup server 18

of volume VE may have an associated meta data field that
indicates the time when the file was last written or modified.
During the incremental backup, these meta data time fields
are traversed and the time stamps in them are compared to
the time when the last backup was performed. If the time
stamp in the meta data field is later than the time when the
last backup was performed, the corresponding file is deemed
modified and subject to backup.

40 copies file x from tape 32(y) to tape 34. The physical address
in tape 32(y) of file x is calculated as a function of the file
offset contained in catalog 36(y).

In addition to creating the incremental backup set 2 on 45

tape 32(2), backup server 18 creates catalog 36(2) shown
within FIG. 3. Catalog 36(2) identifies only the files con­
tained within the incremental backup set 2. Indeed, all
catalogs associated with the incremental backup sets contain
only information on files contained within the respective 50

incremental backup sets. Catalog 36(2) includes an entry for
each file copied to tape 32(2). Like catalog 36(1), each entry
of catalog 36(2) identifies a respective file and its corre­
sponding offset from a starting address within tape 32(2).
Using the offset and the starting address, the physical 55

address of each file backed up to tape 32(2) can be calcu­
lated.

Backup server 18 may create m-I incremental backup
sets of data volume VE. FIG. 2 illustrates the last incremen-
tal backup set m created by backup server 18 on tape 32(m) 60

before creation of the synthetic full backup. FIG. 3 shows
catalog 36(m) associated with incremental backup set m.
The entries for catalog 36(m) are similar in format to those
of catalogs 36(1)-36(m-1).

Backup server 18 can create the synthetic full backup of 65

volume VE using one or more of the backup sets 1-m. The
synthetic full backup is created by combining files residing

If, however, in step 60, catalog 36(y) indicates that file x
is not contained in incremental backup set y then the process
proceeds to step 70 where backup server 18 determines
whether incremental backup set y is the first incremental
created after full backup set 1. If it is, then file x contained
in full backup set 1 is copied from tape 32(1) to tape 34 as
shown in step 72. Backup server 18 can determine whether
incremental backup set y is the first incremental created after
full backup set 1 by comparing the current state of variable
y to 2. Ify equals 2, then incremental backup set y is the first
incremental created after full backup set 1 and the process
proceeds to step 72. Ify does not equal 2, then incremental
backup set y is not the first incremental created after full
backup set 1, and the process proceeds to steps 56 and 60
where y is decremented and catalog 36(y) is checked for file
x. Eventually, the most recent version of file x is found and
copied to tape 34 in step 62 or 72.

In creating the synthetic full backup set 34, backup server
18 also creates a corresponding catalog 40 shown within
FIG. 3. Like catalogs 36(1)-36(m), catalog 40 includes
entries, each of which identifies a respective file and its
corresponding offset from a starting address within tape 34.
In step 64, backup server 18 creates entry x in catalog 40
corresponding to the file x copied in step 62 or step 72.
Thereafter, steps 54-64 are repeated for the next file of the

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page9 of 12

US 7,266,655 Bl
5

data volume VE. After all of the most recent versions of files
I-n have been copied to tape 34, the process has completed.

FIG. 4 shows that at a substantial amount of processing is
needed for backup server 18 to create the synthetic full
backup set on tape 34. It can also be seen that a substantial
amount of backup server 18 processing time may be needed
to identify the location within backup sets I-m of the most
recent version of any particular file when that particular file
needs to be restored to volume VE.

SUMMARY OF THE INVENTION

Synthesized backup set catalogs are created to more
efficiently create synthetic full backups of a data volume or
to more efficiently restore a data object of the data volume.
In one embodiment, the synthesized backup set catalog
comprises n entries corresponding to n data objects, respec­
tively, of a data volume being backed up. The synthesized
backup set catalog can be created with the creation of an
incremental backup of the data volume. Each entry of the
synthesized backup set catalog may contain a backup iden­
tification (ID), wherein each backup ID identifies at least one
of two backup sets of the data volume.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent
to those skilled in the art by referencing the accompanying
drawings.

FIG. 1 illustrates a data processing system;
FIG. 2 illustrates relevant aspects of creating backup sets

of a data volume stored in the data processing system of FIG.
1;

FIG. 3 illustrates catalogs that list the contents of backup
sets in FIG. 2;

FIG. 4 illustrates relevant aspects creating a synthetic full
backup set using the catalogs shown in FIG. 3;

FIG. 5 illustrates a data processing system employing one
embodiment of the present invention;

FIG. 6 illustrates relevant aspects of creating backup sets
of a data volume stored in the data processing system of FIG.
5;

FIG. 7 illustrates one embodiment of catalogs created by
the backup server shown in FIG. 5;

FIG. 8 illustrates relevant aspects creating a synthetic full
backup set using a catalog shown in FIG. 7.

The use of the same reference symbols in different draw­
ings indicates similar or identical items.

DETAILED DESCRIPTION

The present invention relates to the creation and/or use of
synthetic backup catalogs (hereinafter synthetic catalogs).
These synthetic catalogs can be used to more efficiently
create synthetic full backup sets when compared to the
method described in the background section above. More­
over, synthetic catalogs can be used to more efficiently
restore a file of a data volume.

FIG. 5 illustrates in block diagram form, a relevant
components of a data processing system 80 employing one
embodiment of the present invention. It should be clearly
understood that the present invention should not be limited
to use within the data processing system 80 shown in FIG.
5. Rather, the present invention can be employed in many

6
different types of data processing systems including those
that are more or less complex than that shown within FIG.
5.

FIG. 5 shows an application server 82 coupled to a data
storage subsystem 84 via storage interconnect 86. Data
storage subsystem 84 may include several physical storage
devices. For purposes of explanation, the physical storage
devices of storage subsystem 84 will take form in hard disks.
Further, for purposes of explanation, data storage subsystem

10 84 will take form in a disk array. As will be more fully
described below, disk array 84 stores an exemplary data
volume V of n files (file I-file n).

Application server 82 executes an application which
generates transactions to read or write data to files of volume

15 V in accordance with requests received from client computer
systems (not shown) coupled thereto. 10 transactions are
transmitted by application server 82 to disk array 84 via
storage interconnect 86. Data read from files of volume V is
transmitted by storage interconnect 86 from disk array 84 to

20 application server 82.
FIG. 5 further includes a backup server 88 coupled to data

storage subsystem 92 via storage interconnect 94. Backup
server 88 executes a backup/restore system for backing up or
restoring files of volume V. For purposes of explanation,

25 data storage subsystem 92 will take form in a robotic tape
handler having access to several magnetic tapes for storing
full, incremental, and synthetic full backup data sets. In an
alternative embodiment, full, incremental or synthetic full
backup sets may be created on one or more hard disks (not

30 shown) coupled to backup server 88. However, for purposes
of explanation, it will be presumed that all backup sets are
created on tapes accessible by tape handler 92. Lastly,
application server 82 and backup server 88 are coupled to
each other via local area network (LAN) 96. LAN 96

35 transmits backup data from its source (e.g., disk array 84) to
its target (e.g., robotic tape handler 92), or LAN 96 transmits
restoration data from its source (e.g. robotic tape handler 92)
to its target (e.g., disk array 84).

Backup server 88 can create full, incremental, or synthetic
40 full backup sets of data volume V. The present invention will

be described with the creation of one full backup set, m-I
incremental backup sets, and a synthetic full backup set, it
being understood that the present invention should not be
limited thereto. Two or more backup sets may be created and

45 stored on a single tape accessible by robotic handler, or one
backup set can be stored on two or more tapes accessible by
robotic tape handler. For purposes of explanation only, each
backup set, regardless of whether it is a full, incremental, or
synthetic full backup, is created and stored on a separate tape

50 accessible by robotic tape handler 92. Backup server 88 may
also create a synthesized catalog for each of the backup sets.
In one alternative embodiment backup server 88 may create
synthesized catalogs only for the incremental backup sets,
however, the present invention will be described with server

55 88 creating a synthesized catalog for each backup set.
FIGS. 6 and 7 illustrate relevant aspects of creating full,

incremental and synthetic full backup sets of data volume V
and corresponding synthesized catalogs. FIG. 6 illustrates a
disk and several tapes that store data volume V and backup

60 sets thereof. More particularly, FIG. 6 shows a disk 110 that
stores a data volume V. It is noted that disk 110 may be
implemented as a virtual disk or, in other words, a logical
aggregation of physical hard disks within disk array 84.
Backup server 88 creates a full backup data set 1 of volume

65 V on tape 112(1), incremental backup sets 2-m on tapes
112(2)-112(m), respectively, and a synthetic full backup data
set on tape 114. A synthetic full backup set can be created on

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page10 of 12

US 7,266,655 Bl
7

tape 114 from files backed up to some or all of the backup
sets 1-m. All tapes 112(1)-112(m) and 114 are accessible by
robotic tape handler 92.

FIG. 7 illustrates synthesized catalogs created by backup
server 88 for the backup sets shown within FIG. 6 according 5

to one embodiment. More particularly, FIG. 7 shows syn­
thesized catalog 116(1) corresponding to the full backup set
1 created on tape 112(1), synthesized catalog 116(2) corre­
sponding to the incremental backup set 2 created on tape
112(2), synthesized catalog 116(m) corresponding to incre- 10

mental backup set m created on tape 112(m), and synthe­
sized catalog 120 corresponding to the synthetic full backup
set created on tape 114. These synthesized catalogs can be
stored and accessed in a cache memory (not shown) in
backup server 88. Additionally, each synthesized catalog can 15

be stored on tape with the catalog's associated backup set.
In the illustrated embodiment, each of the synthesized

catalogs 116(1)-116(m) and 120 includes n entries corre­
sponding to the n files of data volume V. This detailed
description presumes that no files are added to or deleted 20

from volume V subsequent to creation of the full backup set
copy on tape 112(1), it being understood that the present
invention should not be limited thereto. Indeed, the present
invention can be easily implemented by one of ordinary skill
in the art to accommodate the addition or deletion of files 25

from data volume V after creation of any backup set.

8
2 can be found within backup set 2 on tape 112(2). This entry
also A21 the offset from a starting address on tape 112(2)
where corresponding file 2 can be found. The remaining
entries of catalog 116(2) identifY that backup set 1 contains
the most recent version of the remaining files (e.g., file1 and
files 3-n) of volume V. As an aside, if files such as file 1 and
2 are accidentally deleted from volume V by user error
before creation of incremental backup set 3, only synthe­
sized catalog 116(2) need be accessed to determine where
the most recent version of files 1 and 2 can be found. Thus,
catalog 116(2) indicates that the most recent copy of file 1
can be found within the backup set 1 in tape 112(1) at offset
All, and that the most copy of file 2 can be found within the
backup set 2 in tape 112(2) at offset A21.

Subsequent incremental backup sets of volume V may be
created after creation of incremental backup set 2. For
purposes of explanation, m -1 incremental backup sets are
created after creation of incremental backup set 2. As noted,
a synthesized catalog is created for each of the subsequent
incremental backup sets. Thus, when incremental backup set
m is created on tape 112(m), synthesized catalog 116(m) is
created. In creating synthesized catalog 116(m), backup
server 88 copies the contents of previously created synthe­
sized catalog 116(m-l) (not shown) and overwrites all
entries except for those corresponding to files of volume V
which have not been modified since the creation of incre­
mental backup set m-1. In other words, backup server 88
overwrites entries in synthesized catalog 116(m) corre­
sponding to those files of volume V which have been
modified since creation of the prior incremental backup set
m-l and which have been backed up to tape 112(m). In the
illustrated example, only file 4 of volume V has been
modified since creation of the prior incremental backup set
m-1. Accordingly, the entries of catalog 116(m) are identical
to respective entries of catalog 116(m-1) except for entry 4
which indicates that the most recent version of file 4 can be
found within backup set m on tape 112(m) at offset Am1.

Backup server 118 may create a synthetic full backup

As noted, each synthesized catalog contains n entries
corresponding to the n files, respectively of volume V. Each
entry within the exemplary synthesized catalogs shown
within FIG. 7 includes three items: a file ID identifying one 30

of the files of volume V, a file offset, and a backup set ID.
The file offset and backup set ID can be used to generate the
physical address where the file, identified by the file ID, is
backed up on tape. More particularly, file x identified by the
file ID of an entry is stored on a tape y as part of the backup 35

set z identified by the backup set ID. In one embodiment, a
lookup table can be used to map the backup set z to tape y.
The physical address of file x on tape y can be calculated by
adding the offset Aqn of the entry to a starting address of the
tape y.

Full backup set 1 is created by copying each file of data
volume V to tape 112(1) during a backup window. Backup
server 88 also creates synthetic catalog 116(1). As shown in
FIG. 7, catalog 116(1) includes n entries corresponding to
the n files, respectively, of volume V copied to tape 112(1). 45

Each entry contains a file ID, a file offset, and a backup set
ID. The file ID, as its name implies, identifies a file backed

40 copy of volume V from the full backup set 1 and/or one or
more of the incremental backup sets 2-m. FIG. 8 illustrates
relevant operational aspects performed by backup server 88
in creating the incremental full backup set according to one

up to tape 112(1), and the file offset identifies an offset from
a starting address in tape 112(1) where the corresponding file
can be found. Given that catalog 116(1) corresponds to the 50

initial full backup set 1 of data volume V, all backup set IDs
of this catalog are set to 1 thus indicating that the most recent
copies of files 1-n existing at that time, reside within backup
set 1 contained within tape 112(1).

embodiment. More particularly, the process shown in FIG.
8 begins with steps 130 and 132 where backup server 88 sets
variable x to 0 and subsequently increments variable x by 1.
Thereafter, in step 134 backup server 88 accesses the most
recently created synthesized catalog (i.e., synthesized cata­
log 116(m)) to identify the location of the file identified in
entry x. In one embodiment, the most recently created
synthesized catalog is stored in an easily accessible cache
memory of backup server 88. In step 134 backup server 88
accesses the tape which contains the backup set identified by
the backup set ID of entry x of synthesized catalog 116(m)
and copies the contents of this file to tape 114. The file
identified in entry x is accessed at a physical address in the
tape that contains the backup set identified by the backup set
ID of entry x, and the physical address is calculated from the
starting address of the tape and the offset address identified

Backup server 88 creates synthetic catalog 116(2) when 55

incremental backup set 2 is created on tape 112(2). For
purposes of explanation, it will be presumed that only file 2
was modified since the creation of the full backup set 1.
Accordingly, only file 2 is copied from data volume V to
tape 112(2) to create incremental backup set 2. 60 by entry x of synthesized catalog 116(m). This process is

repeated for each of the files of volume V. In step 136, x is
compared to n, and if x equals n then all files have been
copied to tape 114. If x does not equal n, then the process

Information from a previously created synthesized cata­
log is carried forward or copied to create the newest syn­
thesized catalog. For example, synthetic catalog 116(2) may
be created by copying the contents of synthetic catalog
116(1) and then overwriting entry 2 with the new entry 2 65

shown in catalog 116(2). This new entry 2 has a backup set
ID equal to 2 thereby indicating that the latest version of file

repeats beginning with step 136 where x is incremented. It
is noted that in contrast to that described in the background,
the process of FIG. 8 accesses only one synthesized catalog
to learn the location within the backup sets of all files needed

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page11 of 12

US 7,266,655 Bl
9

to create the synthetic full backup. This reduces the pro­
cessing requirements on backup server 88 when creating a
synthetic full backup.

As shown above, the synthetic full backup is created by
copying the most recent backup copies of volume V files
from the full backup set 1 and/or one or more of the
incremental backup sets 2-m to tape 114. Synthetic catalog
112(m) is the last synthetic catalog created before creation of
the synthetic full backup. The entries of catalog 112(m) 10

includes the backup sets (and indirectly their respective
tapes) that store the most recent copies of files 1-n. The
entries of catalog 112(m) also include the offsets from the
starting address in the tapes where the most recent copies of
files 1-n can be found. In the process shown in FIG. 8, there 15

is no need to access a synthesized catalog other than catalog
112(m) when creating the synthetic full backup. The syn­
thetic catalogs should not be limited to that shown in FIG.
7.

In an alternative embodiment, synthetic catalogs can be 20

created with one or more entries that include a file ID, a file
offset, and a backup set ID, and with one or more entries that
include a file ID and an entry number for a previous catalog
that contains a file offset and a backup set ID. Backup server 25

88 can use these alternative synthetic catalogs and the
process shown in FIG. 8 to create a synthetic full backup.
The process in FIG. 8 begins with steps 130 and 132 where
backup server 88 sets variable x to 0 and subsequently
increments variable x by 1. Thereafter, in step 134 backup 30

server 88 accesses entry x in the most recently created
alternative synthetic catalog to identifY the location of the
file identified therein. If entry x contains a file offset and a
backup set ID, then in step 134 backup server 88 accesses
the tape which contains the backup set identified by the 35

backup set ID of entry x and copies the file identified by
entry x to tape 114. The file identified in entry x is accessed
at a physical address calculated from the starting address of
the tape and the offset address identified by entry x of the
synthesized catalog. On the other hand, if entry x contains an 40

entry number ce for a previously created synthetic catalog,
then backup server accesses the previously created synthetic
catalog at entry ceo Entry ce will contain a file offset and
backup set ID for the file identified by entry X. Backup server
88 accesses the tape which contains the backup set identified 45

by the backup set ID of entry ce and copies the file sought
to tape 114. The file identified in entry ce is accessed at a
physical address calculated from the starting address of the
tape and the offset address identified by entry ce of the
previously created synthesized catalog. This process is 50

repeated for each of the files of volume V. In step 136, x is
compared to n, and if x equals n then all files have been
copied to tape 114. If x does not equal n, then the process
repeats beginning with step 136 where x is incremented. It
is noted that in contrast to process described for creating a 55

synthetic fill backup using synthetic catalog 112(m), the
process for creating the synthetic full backup using the
alternative synthetic catalogs, uses two or more alternative
catalogs. However, like the synthetic catalogs shown in FIG.

10
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

We claim:
1. A method comprising:
creating a first backup of a data volume, wherein the data

volume comprises first and second data objects;
modifying the first and second data objects in the data

volume subsequent to the creation of the first backup;
creating a second backup of the data volume after the

modification of the second data object but before the
modification of the first data object;

creating a catalog after the modification of the second data
object but before the modification of the first data
object, wherein the catalog contains information indi­
cating that backup copies of the first and second data
objects are contained in the first and second backups,
respectively.

2. The method of claim 1:
wherein the catalog contains a first entry indicating that a

most recent backup copy of the first data object existing
at the time the second backup was created, is contained
in the first backup;

wherein the catalog contains a second entry indicating
that a most recent backup copy of the second data
object existing at the time the second backup was
created, is contained in the second backup.

3. The method of claim 2 further comprising:
storing the first catalog on a storage device that stores the

first backup set;
storing the second catalog on a storage device that stores

the second backup set.
4. A method comprising:
creating a full backup set and an incremental backup set

of a data volume, wherein the data volume comprises
n data objects;

creating first and second backup catalogs corresponding
to the full and incremental backup sets, respectively,
wherein each of the first and second backup catalogs
comprises n entries corresponding to the n data objects,
respectively.

5. The method of claim 4 wherein each entry of the second
backup catalog contains a backup identification (ID) iden­
tifYing the full backup set or the incremental backup set,
wherein first and second backup IDs of first and second
entries, respectively, of the second backup catalog each
backup identify the full and incremental backup sets, respec­
tively.

6. A method comprising:
creating a full backup of a data volume, wherein the data

volume comprises n data objects;
creating an incremental backup of the data volume after

modification of one of the data objects in the data
volume;

creating a first backup catalog corresponding to the full
backup;

creating a second backup catalog corresponding to the
incremental backup, wherein the incremental backup
catalog is created as a function of the full backup
catalog.

7, one or more entries are carried forward from one catalog 60

to its successor. For example, an entry that contains file ID
and an entry to a previously created synthetic catalog, is
copied to a subsequently created synthetic catalog.

7. A computer readable medium storing instructions
executable by a computer system, wherein the computer
system implements a method in response to executing the

65 instructions, the method comprising:
Although the present invention has been described in

connection with several embodiments, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,

creating a first backup of a data volume, wherein the data
volume comprises first and second data objects;

Case3:11-cv-05310-EMC Document74-2 Filed05/09/12 Page12 of 12

US 7,266,655 Bl
11

creating a second backup of the data volume after modi­
fication of the second data object but before modifica­
tion of the first data object;

12
creating first and second backup catalogs corresponding

to the full and incremental backup sets, respectively,
wherein each of the first and second backup catalogs
comprises n entries corresponding to the n data objects,
respectively.

11. The computer readable medium of claim 10 wherein
each entry of the second backup catalog contains a backup
identification (ID) identifYing the full backup set or the

creating a catalog after modification of the second data
object but before modification of the first data object,
wherein the catalog contains information indicating
that backup copies of the first and second data objects
are contained in the first and second backups, respec­
tively.

8. The computer readable medium of claim 7
wherein the catalog contains a first entry indicating that a

most recent backup copy of the first data object existing
at the time the second backup was created, is contained

10 incremental backup set, wherein first and second backup IDs
of first and second entries, respectively, of the second
backup catalog each backup identify the full and incremental
backup sets, respectively.

in the first backup;
wherein the catalog contains a second entry indicating 15

that a most recent backup copy of the second data
object existing at the time the second backup was
created, is contained in the second backup.

9. The computer readable medium of claim 7 wherein the
method further comprises:

storing the first catalog on a storage device that stores the
first backup set;

storing the second catalog on a storage device that stores
the second backup set.

20

10. A computer readable medium storing instructions 25

executable by a computer system, wherein the computer
system implements a method in response to executing the
instructions, the method comprising:

creating a full backup set and an incremental backup set
of a data volume, wherein the data volume comprises 30

n data objects;

12. A computer readable medium storing instructions
executable by a computer system, wherein the computer
system implements a method in response to executing the
instructions, the method comprising:

creating a full backup of a data volume, wherein the data
volume comprises n data objects;

creating an incremental backup of the data volume after
modification of one of the data objects in the data
volume;

creating a first backup catalog corresponding to the full
backup;

creating a second backup catalog corresponding to the
incremental backup, wherein the incremental backup
catalog is created as a function of the full backup
catalog.

* * * * *

