
111
US007366859B2

(12) United States Patent
Per et al.

(10) Patent No.:
(45) Date of Patent:

US 7,366,859 B2
Apr. 29, 2008

(54) FAST INCREMENTAL BACKUP METHOD
AND SYSTEM

2005/0193235 Al *
2006/0123249 Al *
2006/0123250 Al *

9/2005 Sandorfi et al. 714/6
6/2006 Maheshwari et 31 713/193
6/2006 Maheshwari et 31 713/193

(73) Assignee: Acronis Inc., Tortola (VG)
ABSTRACT(57)

20 Claims, 4 Drawing Sheets

A method of incremental backup of a storage device
includes reading descriptors of logical storage units of the
storage device; comparing the descriptors of the logical
storage units of the storage device with descriptors of
archived logical storage units; for logical storage units ofthe
storage device whose descriptors are not identical to the
descriptors of the archived logical storage units, backing up
contents of physical storage units that correspond to those
logical storage units of the storage device; and, for logical
storage units of the storage device whose descriptors are
identical, perfonning a comparison step to check if these
logical storage units need to be backed up. The logical
storage units can be files. The comparison step can be, e.g.,
(1) bit-wise comparison of the logical blocks, (2) comparing
control sums of the logical blocks, and (3) comparing log
files relating to the logical storage units The physical storage
units can be blocks. The descriptors can be, e.g., MFT
entries, hash function values, timestamps, checksums, and
file metadata. The descriptors can be compared on a physical
storage unit basis. The method further can optionally include
generating a bitmap of the physical storage units of the
storage device; marking, in the bitmap, those physical
storage units that correspond to logical storage units with
different descriptors; and archiving content of the physical
storage units marked in the bitmap. The method can further
optionally include archiving logical storage units of the
storage device having the same name as corresponding
archived logical storage units of the storage device, but
different time stamps.

* cited by examiner

Primary Examiner-Kevin Verbrugge
(74) Attorney, Agent, or Firm-Bardmesser Law Group

Apr. 12, 2007

7/1997 Ohran et al.
6/1998 Cane et 31 707/204

11/1998 Ohran
5/1999 Inglett

11/1999 Williams 341/51
9/2003 Menage

12/2003 Goldstein et 31.
12/2006 Maheshwari et 31 713/193
4/2007 Bono 707/203
6/2005 Bono 707/205
6/2005 Bono 709/231

Prior Publication Data

Oct. 6, 2005

US 2007/0083722 Al

5,649,152 A
5,765,173 A *
5,835,953 A
5,905,990 A
5,990,810 A *
6,618,736 Bl
6,665,815 Bl
7,152,165 Bl *
7,206,795 B2 *

2005/0138091 Al *
2005/0138195 Al *

Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 300 days.

(21) Appl. No.: 111244,298

(51) Int. Cl.
G06F 12/16 (2006.01)

(52) U.S. Cl. 7111162; 714/6
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

(*) Notice:

(22) Filed:

(65)

(75) Inventors: Yuri S. Per, Moscow (RU); Maxim V.
Tsypliaev, Moscow (RU); Maxim V.
Lyadvinsky, Moscow (RU); Alexander
G. Tormasov, Moscow (RU); Serguei
M. Beloussov, Singapore (SG)

406

Previous
Incremental

backup
(oplional)

Snapshol

u.s. Patent Apr. 29, 2008 Sheet 1 of 4

102

US 7,366,859 B2

Start

" 104

Suspend storage l.-J
writes

,.
106

l.-J
Create bitmap of

used storage units

" 110
Update bitmap l-/
(unmark some
storage units)

,
11

Archive marked units as an l.-J
increment (may be executed

simultaneously with 110)

,
114

Permit storage l.-J
writes

, 116

Finish

FIG. 1

2

u.s. Patent Apr. 29, 2008

Start Bitmap
Updating

Set Record Pointer
(e.g. record's

physical address)

Read Pointed
Record from the

Disk

Read Pointed
Record from the

snapshot

Sheet 2 of 4

202

210

220

225

Set Next
Record Pointer

US 7,366,859 B2

250

Unmark blocks
corresponding to the

file in the bitmap

Finish Bitmap
Updating

FIG. 2

No

235

Yes

u.s. Patent Apr. 29, 2008 Sheet 3 of 4 US 7,366,859 B2

)~
Processor 301 I\

~ Main Memory 308 I

Secondary Memory 310

c<O
Hard Disk Drive

.Qg 312
-Q)rl '-._ :::J
C -:::J U

JL---l\ES
E (J) v----v Removable Storageo ~ -()'C Drive 314-

Interface 320 -

328

J1 1\ Network ~_2__
/

~----

\ Interface 324
\J v

FIG. 3

Removable
Storage Unit 318

Removable
Storage Unit 322

Communications Path 326

Incremental
backup under
consideration

e
•
7J).
•

rFJ

=­('D
('D.....
,j;o,.

o....
,j;o,.

~
~
~

~=~

d
rJl
......:J
W
0'1
0'1
00
tit
\C

=N

>'t:l
:-:
N
~1J:i

N
o
o
QO

FIG. 4

406

Backup
storage area

B
Snapshot

Previous
Incremental

backup
(optional)

Contents of marked
blocks

404

File descriptors

1/0 application

414

(/J
::J!
(J
a
:0
"'0
0)
(/J
::J

'0
0­
ro
E-iii

....
a
0...;::
(J
(/J
0)

"'C

I ,.0)

u.
MAIN

STORAGE

US 7,366,859 B2
2

BRIEF DESCRIPTION OF THE ATTACHED
FIGURES

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are incor­
porated in and constitute a part ofthis specification, illustrate
embodiments of the invention and together with the descrip­
tion serve to explain the principles of the invention.

In the drawings:
FIG. 1 illustrates one general exemplary method of the

present invention.
FIG. 2 illustrates identification of physical storage units

that should not be subject of incremental backup.
FIG. 3 is a schematic diagram of an exemplary computer

or server that can be used in the invention.
FIG. 4 is a schematic diagram of storage structures

55 treatment according to one embodiment of the invention.

10

logical storage units of the selected area; (c) comparing the
descriptors of the logical storage units of the selected area
with descriptors ofalready archived logical storage units; (d)
for physical storage units of logical storage units of the
selected area whose descriptors are not identical to the
descriptors of the archived logical storage units, checking if
these physical storage units need to be backed up; and (e)
backing up contents of physical storage units identified in
step (d).

The logical storage units can be files. The comparison step
can be, e.g., (1) bit-wise comparison of the logical blocks,
(2) comparing control sums of the logical blocks, and (3)
comparing log files relating to the logical storage units. The
physical storage units can be blocks. The descriptors can be,

15 e.g., MFT entries, hash function values, timestamps, check­
sums, and file metadata. The descriptors can be compared on
a physical storage unit basis. The method can optionally
include generating a bitmap of the physical storage units of
the storage device; marking, in the bitmap, those physical

20 storage units that correspond to logical storage units with
different descriptors; and archiving content of the physical
storage units marked in the bitmap. The method can option­
ally include archiving logical storage units of the storage
device having the same name as corresponding archived

25 logical storage units of the storage device, but different time
stamps.

Additional features and advantages of the invention will
be set forth in the description that follows, and in part will
be apparent from the description, or may be learned by

30 practice of the invention. The advantages of the invention
will be realized and attained by the structure particularly
pointed out in the written description and claims hereof as
well as the appended drawings.

It is to be understood that both the foregoing general
35 description and the following detailed description are exem­

plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BACKGROUND OF THE INVENTION

1
FAST INCREMENTAL BACKUP METHOD

AND SYSTEM

1. Field of the Invention
The present invention relates to archiving and copying of

data, and more particularly, to archiving of hard disk drive
(HDD) data at various predetermined points in time.

2. Description of the Related Art
Currently, there are a number of conventional methods

that relate to organization of data archiving. One of these is
a backup of the entire hard drive, which typically involves
copying of the hard drive content onto some other medium,
such as another hard disk drive, a DVD ROM, a DVD RAM,
a flash disk, etc. The primary disadvantage of such a method
is the need to backup what is frequently a very large amount
of data, which, on the one hand, results in a relatively
lengthy process of archiving, and, on the other hand, fre­
quently requires relatively large available space for the
archived data. This ultimately results in a relatively high cost
of archiving per unit of archived data.

Another approach is often referred to as "incremental
backup," which generally decreases the amount of space
required for the archiving. With the incremental backup,
typically the contents of the hard disk drive is archived, or
stored somewhere once. After that, only that data that has
been changed, or added, since the previous backup, or since
the pervious incremental backup, is actually archived.
Recovery of data from the archive typically involves merg­
ing of the original backup and the various incremental
backups.

There are generally two conventional approaches to
implementing the incremental backup. One approach is to
archive data in the form of logical structures, such as files.
The second approach is to preserve the physical structures as
they are represented on a storage medium. In other words, in
the second case, sectors, clusters, and other physical data
blocks are archived.

Despite the fact that incremental backup on a logical level 40

makes it easier to identify data that is subject to archiving,
in a number of situations, this approach is unacceptable. For
example, backup on a physical level provides an ability to
restore the functionality of the computing system, since it is
possible to restore hidden and otherwise unmovable data 45

blocks, for example, hidden and system areas of the disk,
including boot areas.

At the same time, incremental backup on a physical level
requires identifying the blocks that are subject to archiving,
in other words, identifying blocks whose content did not 50

change since the prior archiving operation. When data block
level comparison level is used, this task requires a consid­
erable time and CPU resources, both for data block com­
parison and for extraction ofpreviously archived data blocks
from the archive.

Accordingly, there is a need in the art for an effective and
efficient method of identifying data blocks that are not
subject to archiving, which minimal time and effort.

SUMMARY OF THE INVENTION

Accordingly, the present invention is related to a fast
incremental backup method and system that substantially
obviates one or more of the disadvantages of the related art.

In one aspect, there is provided a method of incremental
backup of a storage device, including (a) selecting an area of
the storage device for backup; (b) reading descriptors of

60 Reference will now be made in detail to the embodiments
ofthe present invention, examples ofwhich are illustrated in
the accompanying drawings.

In order to make the archiving process more efficient, it is
proposed to form a backup on a physical level, and in

65 addition, to use information that characterizes the logical
structure of the data storage device, such as a hard disk
drive.

US 7,366,859 B2
3

It should be noted that this approach, in some cases, does
not always identifY every single data block that is not subject
to archiving. However, the proposed method, with a minimal
expenditure oftime and resources, provides for a guaranteed
exclusion of a substantial majority of the blocks from
archiving of those blocks that do not need to be archived.
Subsequently, for those blocks were not excluded from
archiving, and are therefore subject to archiving, it is pos­
sible to use traditional methods and other suggested mecha­
nisms to further reduce the number of data blocks that are
actually subject to archiving.

In order to implement the proposed methods, the follow­
ing steps are utilized:

First, on a physical level, a complete (or partial) snapshot
of the storage medium is fonned, and a time stamp of the
snapshot is recorded (although it is also possible to work
without a time stamp, by using other descriptors, such as
hash functions, discussed below, file metadata, file names,
MFT contents, etc.). When a second archiving operation is
performed, a bitmap of the data blocks of the hard disk drive
is fonned. For example, this can be a bitmap of data blocks
that are subject to archiving, or a bitmap of used data blocks
of the hard disk drive (i.e., blocks of the hard disk drive that
contain useful data, rather than "empty" blocks, or free
blocks).

During subsequent archiving of the hard disk drive, a
comparison of the description of the logical structures of the
drives is performed. This comparison characterizes the dis­
tribution ofthe data of the logical structures into data blocks.
If the logical structures (including the addresses of the
blocks) correspond to each other, the data blocks that are
occupied by the corresponding logical structures are iden­
tified, and for these blocks, the corresponding bit in the
bitmap is cleared.

At the same time, it is also possible to retain, in the
incremental snapshots, those blocks that were previously
archived. However, a substantial increase in the speed of
identifying the blocks that do not need to be archived
compensates for this. If it is necessary to reduce the down­
time of the computing system or server, the advantages of
the above approach are fairly substantial. In other words,
comparing the time needed for a full backup with the time
necessary for a bit-wise comparison of the data block's
content (given the necessity of unarchiving of the contents
of one or more copies of the data, and the time necessary to
implement a single backup in the proposed approach), the
advantages of the proposed approach are self-evident.

Note that logs or change journal entries can be used to at
least partially exclude various logical structures from the
analysis. In other words, the fact that journal entries exist in
the logs means that some changes have been made to the
data in the blocks or files, and, therefore, they do need to be
backed up without further checks. In such a way those
physical storage units may be excluded from the selected
area, or may be included in the selected area if only some
blocks of those files may be modified

A file system such as NTFS creates an MFT and associ­
ated log file that records file transaction infonnation and
implements file system recoverability. Because the log file is
a system file, it can be found early in the boot process and
used to recover the disk volume, if necessary. When a user
updates a file, the Log File Service records all metadata redo
and undo information for the transaction. For recoverability,
"redo" infonnation in the log file allows NTFS to roll the
transaction forward (repeat the transaction ifnecessary), and
"undo" allows NTFS to roll the transaction back, if an error
occurs.

4
The infinite log file: the log file is a circularly reused file.

When a new record is added, it is appended to the end of the
file. When the log file reaches its capacity, the Log File
Service waits for writes to occur and frees space for new
entries.

As may be seen from the above, the log file retains a
description of only the latest transactions, which means that
it can only be used as an auxiliary source of information,
since it does not provide a guarantee of a consistent backup.

10 Following that logic, by using the bitmap, it is possible to
archive the marked blocks, in addition to a previously
created archive.

Due to the fact that the final description is also subject to
archiving, the modification of the bitmap and the archiving

15 can take place simultaneously. For example, it is possible to
archive MFT blocks simultaneously with verification of
identity of the file structures of the archive blocks. Identical
blocks of the original MFT and the current MFT are not
archived. At the same time, in some cases, the identity ofthe

20 blocks frequently is due to the identity of the corresponding
files, although it is not a guarantee of that.

For files with distributed blocks, for example, in logical
structures described by FAT16 and FAT32, the proposed
method of backup organization also pennits to considerably

25 shorten the time necessary for checking of data blocks ofthe
files. This is due to the fact that some of the files are
excluded from this process, without any further need for
subsequent checking of data block identity. In some cases,
when the data block address is changed (for example, due to

30 defragmentation process), it is possible to also change the
address of the original cluster, as well as subsequent clusters.
If this is done, no subsequent checking of the data blocks
needs to be perfonned, which reduces the volume of com­
putation necessary for the archiving, compared to a block by

35 block comparison of the contents of the hard disk drive.
In some cases, it is possible to use a comparison of used

blocks bitmap with current and previously stored states of
the hard disk drive. In this case, blocks that were previously
free are excluded from consideration, and are archived

40 without any further examination of the contents of the data
blocks.

In another case, the description of the logical structures
can be compared not directly, but through a creation of
additional data structures, and subsequent comparison of

45 such data structures. For example, when forming a snapshot
of logical structure descriptions, it is possible to convert
them by, for example, using various transfonning functions,
such as hash functions. Hash functions are one example of
algorithms that transfonn a string of bytes into a usually

50 shorter value of a fixed length, that represents the original
string. This is called a hash value. When hashing a data
block, or a file, the contents is converted into a short bit
string-a hash value-and it impossible to recover the
original message from the hash value. A hash value is unique

55 in the sense that two different files cannot result in the same
bit. Therefore, only the values of the hash functions need to
be preserved, and can be stored together with, or added to,
the snapshot.

In order to determine the identity of the logical structures,
60 the hash functions of the descriptors can be compared, as

well as the hash functions of the descriptors of the current
state of the hard disk drive. Also, in one embodiment,
bit-wise comparison of the hash functions can be perfonned.

Depending on the length of the key that is generated by
65 the hash operation, some other mechanisms may be added to

verify blocks that should or should not be subject to
archiving.

US 7,366,859 B2
5 6

An archiving program according to the invention can begin
execution in these multi-threaded environments, and then
can pass control to a code that runs in DOS or Linux mode
and thus provides exclusive disk access. Some operating
systems also provide locks that ensure exclusive disk access.

Also, when practicing the method described above, the
freezing, or suspension, of disk access can be replaced with
other mechanisms for preserving the contents of the hard
disk drive at the moment when the backup process begins.
For example, it is possible to create an additional data
structure that includes the contents of the data blocks as
described in co-pending application Ser. No. 11/016,727,
entitled System and Method for Incremental Backup of
Local Drive Data, filed on Dec. 21, 2004, which is incor­
porated herein by reference in its entirety. Subsequently, this
structure can be used as part of the incremental backup, or,
alternatively, the contents of the data blocks can be moved
into an incremental backup after checking it for necessity of
archiving these blocks.

As yet another alternative, data that is subject to being
written to the hard disk drive can be stored in some tempo­
rary data storage, with subsequent copying to the hard disk
drive, once the formation of the incremental snapshot is
completed.

From the perspective of the method described above, it is
not critical exactly how files are organized into a logical
structure, since the primary concern is how the file is
described, rather than its location in the logical hierarchy. In
other words, to establish identity of descriptions, it is
possible to merely compare relevant file attributes. For
instance, it is possible to compare the dates of changes to file
contents, and ignore the dates of renaming of files, if the
operating system permits this. Also, for files stored on a disk,
it is possible to examine hash value functions of the file
contents (e.g., MD 5 and SHA-I, which are two commonly
used hash functions) and in the future, these values can be
used for a preliminary analysis after identity is established
based on file hashes and file descriptions. A more detailed
comparison can then be made.

Note that the method described above is particularly
applicable to file systems with contiguously arranged data
blocks, for example, NTFS.

Since the file descriptions are used in formation of the
45 backup, upon user request, some of the files can be excluded

from the archiving process. Examples of data that may not
be subject to backup include various swap and paging
structures, temporary files, and various other files, as iden­
tified by the user. If identity is not determined it is possible
to perform an additional check as to the reasons for why
identity is not established. For example, if the file contains
additional characteristics or metadata, which leads not to a
change but to addition of other blocks to the file or, more
commonly, to the file descriptor, (for example, the appear-
ance ofnew data streams), the bitmap needs only to reset the
bits that correspond to newer blocks of the file.

As another example, additions can be performed, and if
no identity of the contents exists, the corresponding blocks
are always archived.

Additionally, to avoid the necessity of copying of iden­
tical data blocks into the incremental backup, it is possible
to have a second step in the verification of identity of the
blocks. In this secondary verification, the contents of the
blocks that were previously identified as not subject to
archiving is compared. At the same time, the contents of the
blocks that were identified in a log file need not be checked
for whether they need to be archived.

In fact, relatively short hash values may be generated and
compared fairly rapidly. If hash values being compared are
different, it shows that the hashed contents are different too.
However, using a short hash key results in a non-zero
probability that different contents may have the same hash
function value. For example, if maximum hash function
value is less then number of different data blocks (here,
groups of physical storage units), different data blocks can
have the same hash function. Therefore, when a possibility
of omitting data required for archiving needs to be reduced 10

to zero value, additional operation of comparing blocks with
the same hash function values may be implemented to prove
that the data blocks at issue really are the same.

If the hash key length is relatively long, this gives an
acceptable guarantee that the data block with the same hash 15

values are in fact the same, e.g., the MD5 function gives
about 1037 different keys, and no additional comparing of
data blocks with the same hash values required. In this case,
however, physical storage units from data blocks with
different hash values may be compared to exclude additional 20

storage units from archiving, e.g., for saving archiving
storage space.

The advantage of using hash value comparison is in that,
first, it speeds up the comparison process, since the value of
the hash function is much less in size than the data itself, 25

and, second it permits simplification of comparison of
fragmented data. In disk drive terminology, "structure(s)"
may be used that emulates a tree structure with a set of
linked nodes. Each node has zero or more child nodes, which
are below it in the tree. A node that has a child is called the 30

child's parent node. A child has at most one parent; a node
without a parent is called the root node (or "root"). Usually
a placeholder for storing root information concerning the file
is fixed in length. In such cases, when the file descriptor has
more bytes than the placeholder can hold, links or pointers 35

to blocks that contain additional information are used. Such
structures (leaf nodes) may be physically stored away from
the root node, may be fragmented or may be changed
without modifying the contents of the file, e.g., while
changing long file name only. For example, descriptors of 40

files, e.g., inodes, which can have links to indirect blocks
and remote inodes in this case, the inodes are hashed,
together with the indirect blocks, which permits a rapid
comparison of the hash function values and also permits
grouping of fragmented data sets.

In one example, for structures described in FATI6 and
FAT32 with a possibility of file fragmentation, a significant
characteristic oftheir logical structure description is not only
the file length and the address of the first data block, but also
the location ofall the blocks of the file. This information can 50

be extracted sequentially for all the blocks of the file, and
hashed together with the hashing of the FAT. This approach
can also be used in NTFS, to verifY B-trees.

To implement the method, it is possible to use various
approaches that suspend disk operations during the time that 55

the archive is being formed. Single threaded run mode or
single threaded disk access can be used. This can be accom­
plished by an operating system that maintains a single­
threaded enviroument or by one that provides file system
locking, and hence allows exclusive access. For example, 60

the MS-DOS operating system provides exclusive file access
because it is a single-threaded environment, at least from an
application program's perspective. A Linux (or another
UNIX-like) operating system can be used, utilizing system
locks to provide exclusive access. While the Windows 65

operating systems are multi-threaded, they can defer to
MS-DOS, Linux or another single-threaded environment.

US 7,366,859 B2
7 8

partially (for example, only file names, time stamps of file
modification and physical addresses of files' clusters may be
compared). In another embodiment, a procedure for com­
paring descriptors or portions of descriptors part may be
implemented by calculating hash values for descriptors or
their parts and comparing calculated hash values. If the
answer is yes, i.e. descriptors are coincident, then in step 235
physical storage units of the logical storage units are
unmarked in the bitmap, and further do not considered as a

10 subject of incremental backup. If the answer is no, i.e.
descriptor oflogical storage unit was changed since previous
backup, then corresponding physical storage units may be
subject of the incremental backup. Then the process goes to
step 235 to check if there are logical storage units being

15 unexamined. If there are unexamined logical storage units,
the next record pointer is set in step 250, and the process
then proceeds back to step 220. If all the logical storage units
from the selected area are examined, bit map updating is
finished (step 240).

Some physical storage units outside the selected area may
be archived without additional checking. Such units may be
blocks or clusters of the MFT, blocks with partition infor­
mation, blocks of files indicated in the log file described
above, etc.

Additionally, it should be noted that after a defragmen-
tation of the hard drive (or some other movement or relo­
cation of the data blocks that does not affect their contents),
the descriptors are changed to ensure that the new location
of the data block is properly reflected in the corresponding

30 descriptors and/or the bitmap. Therefore, movement of
blocks may be properly analyzed during the update of the
bitmap even if content of the file itself does not change.

An example of the computer 102 is illustrated in FIG. 3.
The computer 102 includes one or more processors, such as

35 processor 301. The processor 301 is connected to a com­
munication infrastructure 306, such as a bus or network).
Various software implementations are described in terms of
this exemplary computer system. After reading this descrip­
tion, it will become apparent to a person skilled in the

40 relevant art how to implement the invention using other
computer systems and/or computer architectures.

Computer 102 also includes a main memory 308, prefer­
ably random access memory (RAM), and may also include
a secondary memory 310. The secondary memory 310 may

45 include, for example, a hard disk drive 312 and/or a remov­
able storage drive 314, representing a magnetic tape drive,
an optical disk drive, etc. The removable storage drive 314
reads from and/or writes to a removable storage unit 318 in
a well kuown marmer. Removable storage unit 318 repre-

50 sents a magnetic tape, optical disk, or other storage medium
that is read by and written to by removable storage drive
314. As will be appreciated, the removable storage unit 318
can include a computer usable storage medium having
stored therein computer software and/or data.

In alternative implementations, secondary memory 310
may include other means for allowing computer programs or
other instructions to be loaded into computer 102. Such
means may include, for example, a removable storage unit
322 and an interface 320. An example of such means may

60 include a removable memory chip (such as an EPROM, or
PROM) and associated socket, or other removable storage
units 322 and interfaces 320 which allow software and data
to be transferred from the removable storage unit 322 to
computer 102.

Computer 102 may also include one or more communi­
cations interfaces, such as communications interface 324.
Communications interface 324 allows software and data to

In the case of the second step discussed above, blocks
and/or clusters are grouped in some predetermined manner,
and for these grouped blocks, hashes are generated, which
are then compared. If the hashes are identical, the corre­
sponding blocks are marked as not subject to archiving. If
the hashes are not identical, additional verification checks of
some of the blocks can be performed, for example, on a
cluster by cluster basis.

The proposed method can also be used with generic file
systems, such as ReiserFS, ext3, XFS, JFS and XenFS.

When a file is being moved form one folder to another,
which only affects the entry in the MFT, the backup need not
be made of the data, but only the MFT needs to be backed
up, and the corresponding entries and descriptors of the file.

Since the MFT is approximately 10% of the hard disk
drive or a partition, the volume of the data that is being
compared or restored from a prior snapshot is significantly
less compared to the entire drive. Only those blocks whose
data has not been changed are not backed up. Therefore,
some of the blocks in the incremental backup may be 20

"extra."
FIG. 1 illustrates one exemplary method of the present

invention. As shown in FIG. 1, after starting the archiving
process (step 102), storage writes are suspended (step 104).
A bitmap of used storage units (i.e., blocks or clusters or 25

sectors) is created (step 106). In step 110, the bitmap is
updated by umnarking some of the storage units that are not
subject of incremental backup. Such storage units are, for
example, physical blocks or clusters of storage device
related to logical storage units with coincident descriptors.
Also, other mechanisms of identifying physical storage units
that should not be subject of archiving may be implemented,
as discussed below. In step 112, units that are marked are
archived as part of the incremental backup. This step may be
executed simultaneously with step 110. In step 114, storage
writes are again permitted, and the process finishes in step
116.

FIG. 2 illustrates identification of physical storage units
that should not be subject of incremental backup being
described in a particular implementation of bitmap updating
algorithm shown in FIG. 1 as step 110. In step 202, the
bitmap updating process begins. It should be noted that the
steps in FIG. 2 are described using records as examples.
Such records store information that characterizes logical
storage units. Examples of records may be physical storage
blocks, or parts of MFT file that contains descriptors of files,
or inodes, or other similar data objects. Commonly, descrip­
tors of files are stored in the designated disk area, and logical
descriptors are stored in the same blocks, if the descriptor is
not changed. In this a case, the simplest way of comparing
descriptors is comparing records, represented by the physi­
cal storage blocks of the designated area. The task of
counting records involves, for example, consecutively incre­
menting designated block addresses and comparing contents
of blocks with the same addresses that have been read from 55

the storage device vs. those extracted from the previous
backup structure. A direct comparison of corresponding
blocks' content may be replaced with comparing hash
function values, calculated for those blocks, or by any other
appropriate method.

In step 210, the record pointer (e.g., address of an initial
storage block) is set, in other words, the records physical
address is identified. In step 220, the record to which the
pointer points to is read from the disk. In step 225, the record
to which the pointer points to is read from the snapshot. In 65

step 230, comparing of descriptors of logical storage units is
provided. Note then descriptors may be compared entirely or

US 7,366,859 B2
9 10

(d) comparing hash function values of the descriptors of
the logical storage units of the selected area with hash
function values of descriptors of already archived logi­
cal storage units;

(e) for physical storage units related to logical storage
units of the selected area whose descriptors are not
identical to the descriptors of the archived logical
storage units, based on step (d), checking if these
physical storage units need to be backed up and
unmarking, in the bitmap, those physical storage units
that correspond to the archived logical storage units
with coincident descriptors; and

(f) backing up contents of physical storage units identified
as marked in the bitmap in step (e).

2. The method of claim 1, further comprising backing up
contents of physical storage units of the storage device
outside the selected area.

3. The method of claim 1, wherein the logical storage
units are files.

4. The method of claim 1, wherein the physical storage
units are blocks or clusters.

5. The method of claim 1, wherein the descriptors are
MFT entries.

6. The method of claim 1, wherein, step (e) further
comprises generating hash function values for physical
storage units and comparing the hash function values of the
physical storage units for physical storage units of the
storage device and already archived physical storage units,

30 having the same addresses.
7. The method ofclaim 6, wherein the hash function value

is generated for group of physical storage units.
8. The method of claim 6, wherein hash function gener­

ates relatively short hash function value, further comprising
35 comparing blocks having identical hash function values.

9. The method of claim 6, wherein a control sum is used
as a hash function value.

10. The method of claim 6, wherein hash function gen­
erates a long hash function value, further comprising step of

40 comparing blocks from group with different hash function
values.

11. The method of claim 1, wherein the descriptors
include timestamps.

12. The method of claim 1, wherein the descriptors
45 include checksums.

13. The method of claim 1, wherein the descriptors
include file metadata.

14. The method of claim 1, wherein descriptors being
50 content of some physical storage units, further comprising

comparing the descriptors on a physical storage unit basis.
15. The method of claim 1, further comprising backing up

content of at least some used physical storage units of the
storage device lying outside the selected area.

16. The method of claim 15, wherein used physical
storage units relate to the logical storage units of the storage
device having the same name as corresponding archived
logical storage units, but different time stamps.

17. The method of claim 1, further comprising archiving
60 physical storage units of the logical storage units of the

storage device having names that are not present the storage
device wherein the archived physical storage units are not
included to the selected area.

18. The method of claim 1, wherein step (d) comprises
65 bit-wise comparison of the content physical storage units.

19. A system for incremental backup of a storage device,
comprising:

be transferred between computer 102 and extemal devices.
Examples of communications interface 324 may include a
modem, a network interface (such as an Ethemet card), a
communications port, a PCMCIA slot and card, etc. Soft­
ware and data transferred via communications interface 324
are in the form of signals 328 which may be electronic,
electromagnetic, optical or other signals capable of being
received by communications interface 324. These signals
328 are provided to communications interface 324 via a
communications path (i.e., channel) 326. This channel 326 10

carries signals 328 and may be implemented using wire or
cable, fiber optics, an RF link and other communications
channels. In an embodiment of the invention, signals 328
comprise data packets sent to processor 301. Information
representing processed packets can also be sent in the form 15

of signals 328 from processor 301 through communications
path 326.

The terms "computer program medium" and "computer
usable medium" are used to generally refer to media such as
removable storage units 318 and 322, a hard disk installed 20

in hard disk drive 312, and signals 328, which provide
software to the computer 102.

Computer programs are stored in main memory 308
and/or secondary memory 310. Computer programs may
also be received via communications interface 324. Such 25

computer programs, when executed, enable the computer
102 to implement the present invention as discussed herein.
In particular, the computer programs, when executed, enable
the processor 301 to implement the present invention. Where
the invention is implemented using software, the software
may be stored in a computer program product and loaded
into computer 102 using removable storage drive 314, hard
drive 312 or communications interface 324.

FIG. 4 illustrates a system block diagram of one embodi­
ment of the invention. As shown in FIG. 4, a main storage
402 interfaces with an I/O application 414 for the purpose of
backing up file data. The I/O application 404 maintains a
bitmap 414, as discussed above, which keeps track of
selected area of the disk, e.g. used blocks (i.e., blocks that
contain useful data), or blocks of logical units that area not
reflected in a log of changes. The latter may stay out of
consideration, since it should be backed up in any way. A
backed up data storage area 406 consists of at least a
snapshot 412, a previous incremental backup 410, and the
backup currently under consideration (408), based on the
contents of the marked blocks. At time t1 the bitmap is
maintained based on the state of the main storage 402 then,
at time t2 the descriptors are compared (416) and after
updating bitmap, at time t3 content of marked physical
storage units is transferred to incremental backup storage
408.

Having thus described a preferred embodiment, it should
be apparent to those skilled in the art that certain advantages
of the described method and apparatus have been achieved.
It should also be appreciated that various modifications, 55

adaptations, and alternative embodiments thereof may be
made within the scope and spirit of the present invention.
The invention is further defined by the following claims.

What is claimed is:
1. A method of incremental backup of a storage device,

comprising:
(a) generating a bitmap of selected physical storage units

of a storage device, with all selected physical storage
units marked;

(b) selecting an area of the storage device for backup;
(c) reading descriptors of logical storage units of the

selected area;

US 7,366,859 B2
11

(a) means for generating a bitmap of the selected physical
storage units of the storage device, with all selected
physical storage units marked;

(b) means for selecting an area of the storage device for
backup;

(c) means for reading descriptors of logical storage units
of the selected area;

(d) means for comparing hash function values of the
descriptors of the logical storage units of the selected
area with hash function values of the descriptors of 10

already archived logical storage units;
(e) for physical storage units related to logical storage

units of the selected area whose descriptors are not
identical to the descriptors of the archived logical
storage units, based on the comparison in (d), means for 15

checking if these physical storage units need to be
backed up and for unmarking, in the bitmap, those
physical storage units that correspond to the archived
logical storage units with coincident descriptors; and

(f) means for backing up contents of physical storage 20

units identified in (e) as marked in the bitmap.

12
20. A system for incremental backup, comprising:
a main storage that includes physical storage units and

logical storage units;
a bitmap of the selected physical storage units of the

storage device, with all selected physical storage units
marked;

an archive of a previous state of the main storage; and
a plurality of descriptors corresponding to the logical

storage units,
wherein, for those logical storage units for those logical

storage units whose hash function values of their
descriptors are the same as hash function values of
descriptors of archived logical storage units, are
unmarked in the bitmap, and for those logical storage
units whose hash function values of descriptors are not
the same as hash function values of descriptors of
archived logical storage units, an incremental backup is
performed of corresponding physical storage units that
are marked in the bitmap.

* * * * *

