
c12) United States Patent
Wong

(54) MIRROR FILE SYSTEM

(75) Inventor: John P. Wong, Fremont, CA (US)

(73) Assignee: Twin Peaks Software, Inc., Fremont,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1179 days.

(21) Appl. No.: 09/810,246

(22) Filed: Mar. 19, 2001

(65) Prior Publication Data

US 2001/0051955 Al Dec. 13, 2001

Related U.S. Application Data

(60) Provisional application No. 60/189,979, filed on Mar.
17,2000.

(51) Int. Cl.
G06F 17130 (2006.01)

(52) U.S. Cl. 707/2; 707/100; 707/200;
707/205

(58) Field of Classification Search 707/1,
707/8,204,2,100,200,205

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,435,004 A *
5,544,347 A *
5,603,019 A *
5,764,903 A *
5,764,972 A *
5,778,384 A *

7/1995 Cox eta!. 707/205
8/1996 Yanai eta!. 7111162
211997 Kish 707/205
6/1998 Yu 709/208
6/1998 Crouse eta!. 707/1
7/1998 Provino et al 707/200

111111 111
US007418439B2

(10) Patent No.: US 7,418,439 B2
Aug. 26, 2008 (45) Date of Patent:

5,870,734 A *
5,873,085 A *
5,946,685 A *
6,000,020 A *
6,115,741 A *
6,192,408 B1 *
6,216,140 B1 *
6,298,390 B1 *
6,366,988 B1 *
6,466,978 B1 *
6,625,750 B1 *
6,697,846 B1 *

2/1999 Kao 707/2
2/1999 Enoki eta!. 707/10
8/1999 Cramer eta!. 707/10

12/1999 Chin eta!. 7111162
9/2000 Domenikos et al 709/217
212001 Vahalia eta!. 709/229
4/2001 Kramer 715/511

10/2001 Matena eta!. 719/315
4/2002 Skiba eta!. 7111165

10/2002 Mukherjee et al 709/225
9/2003 Duso eta!. 714/11
2/2004 Soltis 709/217

OTHER PUBLICATIONS

Veritas User Manual, File Replicator™ 3 .0.1 for Solaris®, Jan. 2001,
pp. 1-115.

* cited by examiner

Primary Examiner-Sana Al-Hashemi
(74) Attorney, Agent, or Firm-Buchanan Ingersoll &
Rooney PC

(57) ABSTRACT

A mirror file systems (MFS) is a virtual file system that links
two or more file systems together and mirrors between them
in real time. The file systems linked and mirrored through the
mirror file system can be a local file system connected to a
physical device, or a network file system exported by a remote
system on a network. The mirroring mechanism is established
by linking a file system to another file system on a single
directory through an MFS mounting protocol. User applica­
tions perform normal file system operation and file/directory
operation system calls like open, read, write and close func­
tions from the pathname of either file system. When updates
occur, such as a write operation, the MFS mechanism ensures
that all data updates go to both the file systems in real time.

18 Claims, 10 Drawing Sheets

Mirror File System 203

:'-.,:

!~--.-~;-~-;-~ : :·. ~-~_,.:__-
lr-,b

W~t
I
i ·. _____________ _)

File System A 201 F1le System B 202

U.S. Patent Aug. 26, 2008 Sheet 1 of 10 US 7,418,439 B2

User Applications 10

~
System Call Interface 1 2

File Operation System Calls Other System File System Operation
calls system calls ~

c 1 c c c c
c c c 0 c c c c ::>

~ 0

~
c ~ ~ c c -m -"' ::> 0 c: "0 2

c: (I) '0 '0 -"' = (I) 0 E ~ >-en <II "' u
~

(I) E "' !!! -~ a. 0 -"' § & .Q .!!2 ::> "' 0 u E

4

1 6
Vnode interfaces VFS interfaces v ~ ~

~ U) 1
U) Ill :::. !:::!.. !:::!.. u... U)

l/ IL u...
U) Ill

U) u...
)oC U) U) :c (J a > u... u... u... u... a. :::1 ::I z z

8

!
~

l ! 1 1 20 r

C~j ~~ ~:;J ~;~ 1-;1 8 ../
Removable

Network Optical drive

Fig.1

U.S. Patent Aug. 26, 2008 Sheet 2 of 10

I

l---~-
!

i r·----
'

User AppUcatlcns

System Call Interface

File Operation System Calls Other System Calls

c -- -- -- -- c c c - ~

I ~ c ---o ;:: Si - (ij :>If.
r.. .s en '6 '0 ,::,/. ;I

~-----···---~ ·c:: c. 0 ~ E a I 0 ~ :: 0 Cl E I 0

Vnode interfaces

I J~ /22

I T
! MFS ------------··-··-· - Vnode I VFS Interfaces (/) en I ~

I.L ' X en f a ~ > LL -' ::I ~ ~

i
I
I r.n

I

Cf.l u.. LL
::I z

~

1
...

1 \aa \ab I r

'
LDa~J ~~j CoasJ ~~~

network

Fig. 2

-..... -Ill
LL z

US 7,418,439 B2

Fila System Operation
system calls

VFS interfaces

~~
en II)
LL LL
en u
::t: c.

r ' ' t·-- J9l ~
Optieal drive Removable

12

~

14

~
I
I

'

16

~
' '

I
I
I
I

U.S. Patent Aug. 26, 2008 Sheet 3 of 10 US 7,418,439 B2

: p q
; -.

r·--···-! ., .. \

I _l _ __j I
!

J I
I

L __________________ ~ '------' File System A 201 File System B 202

Fig. 3

U.S. Patent

i'
J:

I; i:_ ·~--~~J~:~ ~l

'
k I

I
. m n

,.
I
L

Aug. 26, 2008

... . ..
'• ..

File System A 201

Sheet 4 of 10 US 7,418,439 B2

Mirror File System 203

231

......... .. .

··.~: 237

.'I
• i
'I

".i- '
.::: ~54
•''
'.'
I •;

Fig.4

File System B 202

U.S. Patent Aug. 26, 2008 Sheet 5 of 10 US 7,418,439 B2

Standalone Mirror system X

Mirror File system X

Local file system A J El ~le System B J

15 16

Fig. 5

U.S. Patent Aug. 26, 2008 Sheet 6 of 10 US 7,418,439 B2

Master Mirror Server X· Slave Mirror Server Y

------·· -·· -·--·. ··--·-----, .-----------------,

46

I L----------------------------
Router Ethernet

Fig. 6

U.S. Patent Aug. 26, 2008 Sheet 7 of 10

Master Mirror Server X

Router

Fig. 7

US 7,418,439 B2

Master Mirror Server Y

.------------------

cBEV 41\ ~~
I Mirror File system y

62~63

U.S. Patent Aug. 26,2008 Sheet 8 of 10 US 7,418,439 B2

Server X 710 ServerY 720

727 708

~722

Router Ethernet

-----,
707 I

705~ E 706

Mirror File system Z J

Client Mirror System Z 700

Fig. 8

U.S. Patent Aug. 26, 2008

Master Mirror SeNer X
650

Sheet 9 of 10

624

US 7,418,439 B2

Master Mirror Server y
660

e:>e:>
620\ _____ }~1 ..

'----M-Irro_r File system Y ,665

1 666 fOiiii1 I
~I

I I_---------§!l~-------------- _I I
I

L--------------------ID~--------------·
--Q-:=i;"!;:N""-

I
Ellmmet

Router .---- ..

~ 608

1"
il

..

r -·-1
[§]

681
I
I

c
i

~ 631 n 632

I

E84,

~~ ~ ~ i
.... -----·----·- ·------ ·- ___ !

Client system X 670
Client System Y 660

Fig. 9

U.S. Patent Aug. 26, 2008 Sheet 10 of 10 US 7,418,439 B2

Master Mirror Server X
650

E)~

Master Mirror Server Y
660

EV
620\

! - 6~1\ ____ J=---602----,
655

Mirror File system Y 665
Mirror Ale system X L___._------,,---

:r
I

603'·

R

~
Exported
Mirror File
System X

lt I

'7"'<:c---_J

624

609

~ x
~I

~· I t 609 S66~ I

656
I ___________________________ J

I
~-------------------------------------J

610

Ethernet

626

Ex;;;d)661
Mirror File
System Y

-~w
I
I
I
I
I
I
I

I

- - - ~6 - - - - - - - -I --------------------------~
I 627

703

705~ ~ 706

Mirror Ale system X 701 j

Client system X 670

Fig.10

US 7,418,439 B2
1

MIRROR FILE SYSTEM

This application claims priority under 35 U.S.C. §§ 119
andlor365 to 60/189,979 filed in the United States of America
on 17 Mar. 2000; the entire content of which is hereby incor­
porated by reference.

BACKGROUND OF THE INVENTION

In a computer network environment, hundreds or even 10

thousands of computer systems may be connected by a com­
munication channel. They can all communicate with each
other through many different communication protocols. Each
protocol has a particular way to link the systems together to
transmit data from one to another. To help the systems coop- 15

erate more closely, resource sharing mechanisms have been
developed to allow computer systems to share files across the
computer network. One example of such a mechanism is the
client-server Network File System (NFS) developed by Sun
Micro systems. By sharing the files across the network, every 20

client system on the network can access the shared files as if
the files were local files on the client system, although the files
may be physically located on and managed by a network
server system at a remote location on the network. The file
sharing provided by the NFS enhances the network operation 25

with the following features:
a. Each client system no longer needs to physically keep a

local copy of the files.

2
depend on the network server to store and to retrieve
critical information from the shared files on that storage
device will not function properly. To reduce the risk
from such disasters, a disk array technology known as
RAID (Redundant Array of Independent Disks) was
developed to minimize the damage and more easily
recover from failure due to the above mentioned situa­
tions. The RAID disk array technology can protect the
files on the disk from damage or corruption by using the
techniques of striping, mirroring and parity checking,
etc. But this only protects the storage system, and not the
network server.

4. If the network server goes down for any reason, it cannot
store or retrieve critical information for the network
clients. To deal with the problem caused when a network
server goes down, the following two computer systems
were designed:
a. Fault-tolerant computer systems that require duplicate

copies of every hardware component in the system as
stand-by parts.

b. Clustering systems which have more than one net­
work server physically connected to the same storage
system on which the shared files are located. All these
network servers (or nodes) are running at the same
time, but only one of them actually serves the clients'
requests; the others function as stand-bys. When the
primary server is down, a stand-by server kicks in and
takes over the operation.

With more CPUs on the system, RAID disk arrays, fault-b. Every client system can access the shared files in the
same manner as it accesses its own local files.

c. There is only one copy of files located on and managed
by a network server, so it is always the only version and
always up-to-date.

This file sharing provided by the NFS works well in a small
or middle size network environment. As more client systems
are added to the network, and more subnets are connected to
the network, more routers and switches are needed to inter­
connect many different small networks or sub-networks to
form a large network. A network server that shares its files
across such a network to the client systems faces the follow­
ing problems:

30 tolerant computer systems and clustering network systems,
many of the problems that are associated with sharing files by
means of a server on the network seem to be overcome or
reduced. However, in contrast to these expensive and cum­
bersome hardware solutions, a simpler and better way to

35 achieve the same results is through a software solution.
The root cause of the problems mentioned previously is the

fact that there is only a single copy of shared files stored on the
disk of the network server. The advantage of keeping one
single copy of the shared files on the network is that it is easy

40 to maintain and update the files. However, since there is only
one copy of the shared files on the network, the following
disadvantages result: 1. The network server is loaded heavily by increasing

requests from many client systems on the network. To
alleviate the load problem, the network server can be
upgraded to add more CPUs on the system, and the 45

storage devices which store the shared information can
also be upgraded to provide more bandwidth on their
data channels, so that requests for the information from
client systems on the network can be serviced without
delays. 50

2. The network is congested with the traffic generated by
the client systems' requests from all different directions
and the server's return. To alleviate the congestion prob­
lem, the bandwidth of network communications media
can be increased to accommodate more traffic and faster 55

routers and/or switches can be added to transfer data
packets faster on the network.

By using more CPU s on the system, faster data channels on
the storage media, increased network bandwidth, and adding
faster routers and/or switches, the overloading problem on the 60

network server and the traffic congestion problem on the
network are reduced to some degree. But this single central­
ized network server configuration and topology still faces
other problems:

3. If the storage device that stores the shared files is not 65

available due to a) power outage, b) hardware failure, or
c) scheduled maintenance, then the network clients that

1. All clients systems on the network have to send their
requests through multiple routers and/or switches before
they reach the network server. Consequently, the net­
work server is overloaded and the network becomes
congested.

2. No network can afford to let this single copy of shared
information become unavailable, so a disk array with a
RAID level is needed to protect the sole copy of files on
the disk from becoming unavailable.

3. In addition to using the disk array to protect the shared
information on the disk, a fault-tolerant system or clus­
tering system is also needed as protection against net­
work server failures, which can result from failures in
any of several key components as well as from failure of
the network server itself.

SUMMARY OF THE INVENTION

These disadvantages can be mitigated or eliminated by
using multiple network servers on the network, preferably
one per sub-network. Each network server contains a copy of
the shared files on its disk and shares them across the network.
This arrangement works successfully as long as every copy of
the files is identical and all copies are updated in real time
whenever an update occurs on any copy.

US 7,418,439 B2
3

In accordance with the present invention, this objective is
achieved by means of a mirror file system (MFS). A MFS is a
virtual file system that links two or more file systems together
and mirrors between them in real time. When the MFS
receives updated data from an application, all file systems
linked by the MFS are updated in real time. The file systems
linked and mirrored through the mirror file system can be a
local file system connected to a physical device, or a network
file system exported by a remote system on a network. The
real-time mirroring mechanism provided by the MFS is trans- 10

parent to user applications. The system administrator first sets
up the mirroring mechanism by linking a file system to
another file system on a single directory through an MFS
mounting protocol. These two file systems and their files are

15
linked together and become a mirroring pair. Both copies are
owned by, and under the management of, the MFS. All access
to files or directories in both file systems go through the MFS.
The user applications perform normal file system operation
and file/ directory operation system calls like open, read, write 20

and close functions from the pathname of either file system.
Most of the file operations (such as a read operation) only
need to go to one file system under the MFS to get the data.
Only when updates occur, such as a write operation, the MFS
mechanism ensures that all data updates go to both the file 25

systems. With this mirroring mechanism of the MFS, the
files/directories in one file system are mirrored to their mir­
roring counterparts of another file system in real time. With
the MFS technology, a standalone system is able to make
multiple copies of data available to the application. In the 30

network environment, multiple servers owning the same data
copy can be distributed on the network and mirror the data to
each other in real time to provide more efficient and more
reliable service to their clients.

Hence, the mirror file system links any two regular file
35

systems together and provides data management to make sure
that the two file systems contain identical data and are syn­
chronized with each other in real time. There are several
benefits associated with the use of the mirror file system. A

40
network server with the mirror file system on a sub-network
can mirror its file system to another file system located on
another network server, or on a different sub-network, in real
time. Thus, the mirror file system allows critical information
to be reflected simultaneously on multiple servers at different

45
sub-networks, which synchronize with one another instanta­
neously so that neither time nor information is lost during
updates. With real-time mirroring of critical information over
the larger network, a client system can access the information
on any network server. Although it is preferable to use the

50
closest network server on its sub-network, a client system can
switch seamlessly to an alternate network server on another
sub-network whenever necessary and continue to access the
critical information without interruption.

4
ary network server can be deployed on a different sub­
network of a large enterprise network, and can be located
as far away as desired.

2. It provides fast service for mission-critical applications.
With more than one network server deployed on differ­
ent sub-networks, a client can access the closest network
server to get critical information faster; without the need
to traverse many switches or routers on the enterprise
network, which is the case when there is only one net­
work server.

3. It reduces network traffic congestion by serving identical
information on multiple network servers. When a client
can get the critical information from the closest network
server on its sub-network, there is no need to travel
outside the sub-network. This reduces total traffic on the
large enterprise network as well as the cost of purchasing
and maintaining multiple fast switches and routers.

4. It eliminates the problem of overloading a single net­
work server. When a single network server is overloaded
by an increasing number of requests from the clients, IT
professionals can simply add more network servers on
the enterprise's network instead of getting more CPUs
for the single network server. Several small to mid-size
network servers work better than a single centralized
network server in terms of dealing with the RAS prob­
lem, providing fast service, and reducing network traf­
fic.

5. It distributes and balances workload and traffic among
multiple network servers. With multiple network servers
containing the same critical information, IT profession­
als can distribute and balance the workload and traffic on
the enterprise' s sub-network to make overall network
operation considerably faster and smoother.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a conventional file system
framework;

FIG. 2 is a block diagram of a file system incorporating the
present invention;

FIG. 3 is a schematic illustration of mirroring between two
file structures;

FIG. 4 is a schematic illustration of the manner in which the
present invention links and mirrors between two file struc­
tures;

FIG. 5 is an illustration of a first embodiment of the inven­
tion, in which a standalone system mirrors between two local
file systems;

FIG. 6 is an illustration of a second embodiment of the

The mirror file system achieves the following major objec­
tives of network operation:

55
invention, comprising a master mirror server and a slave
mirror server;

FIG. 7 is an illustration of a third embodiment of the
invention, comprising two master mirror servers;

FIG. 8 is an illustration of a fourth embodiment of the
60 invention, in which a client mirrors two imported network file

1. It provides a complete solution to the RAS (Reliability,
Availability, Serviceability) problem on all levels (stor­
age, system, and network). Whenever a disk storage
system, a system connected to it, or any network (or
sub-network) component becomes unavailable due to
power outage, system crash, hardware failure, or sched­
uled maintenance, the critical information remains
available on another network server. All clients that can­
not be served by their primary network server can switch 65

to their secondary network server for virtually continu­
ous access to the same critical information. The second-

systems;

FIG. 9 is an illustration of a fifth embodiment of the inven­
tion, comprising two master mirror servers on a network;

FIG. 10 is an illustration of a sixth embodiment of the
invention, in which a client links two imported mirror file
systems on a network.

US 7,418,439 B2
5

DETAILED DESCRIPTION

A. Overview

To facilitate an understanding of the invention, an overview
will first be provided of a typical example of a file system.
Most operating systems, such as Unix, provide multiple and
different file system types within their operating environ­
ments. Some file systems, e.g. the Unix File System (UFS) or

10
High Sierra File (HSFS) for CD-ROMs, have the physical
storage to hold the actual file data; other file systems, e.g.
Special Device File System (Specfs) or Network File System
(NFS), do not have the physical storage. All these file systems
observe interface conventions defined by the operating sys- 15

tern, so that they can be loaded and plugged into the operating
system easily. An application program can access the file data
or device in these file systems by using the standard system
calls provided by the operating system without the need to
know the idiosyncrasies of each file system. 20

The interfaces can be used:

1. Between the system calls and the underlying file sys­
tems: An application program makes system calls to
access the file system or individual file/directory. The 25
system calls convert those access requests into one or
more file system or file/directory operation requests for
the intended file system through the interface. The file
system then presents those requests to its physical stor­
age and returns the result back to the application pro- 30

gram.

2. Between the file systems: A file system gets the file
system and file/directory operation requests from the
system call through the interface. It can present those
requests to its physical storage, or send the request to 35

another file system through the interface again and let
another file system handle the activities of physical stor­
age.

The interfaces defined by the operating system fall into two 40
categories; one is the interface for the file system itself; the
other is the interfaces for individual files or directories within
the file system. For ease of understanding, the terminology for
interfaces as defined by the UNIX Operating System will be
employed hereinafter. The interface for the file system is 45
called the Virtual File System interface (VFS), and the inter­
face for the individual file or directory is called the Virtual
Node (VNODE) interface.

1. The Virtual File System (VFS) Interface

The VFS interface has seven or eight interfaces/operations 50

for a File System:

1) vfs_mount()
2) vfs_unmount()
3) vfs_root()
4) vfs_statvfs()
5) vfs_sync()
6) vfs_ vget()
7) vfs_mountroot()

mmmts a file system
nnmmmt a file system
find the root for a file system
gets the statistics of a file system
sync the file system
find the vnode that matches a file ID
mount the file system on the root
directory

55

60

All VFS interfaces are intended for the operations on a file
system, such as mounting, unmounting, or synchronizing a
file system. The VFS interface consists of two parts. One is the 65

vfs structure, the other is the MACRO definitions for the vfs
operation of the file system.

6
The vfs structure is as follows:

I*
* Structure per mounted file system. Each mounted file system has
* an array of operations and an instance record.

*
* The file systems are kept on a singly linked list headed by "rootvfs"
* and terminated by NULL. File system implementations should not
* access this list; it's intended for use only in the kernel's vfs layer.
*I

typedefstruct vfs {
struct vfs *vfs_next;

*vfs_op;
I* next VFS in VFS list *I

};

struct vfsops
struct vnode
uint_t
uint_t
int
fsid_t
caddr_t
dev_t
ulong_t
ushort_t
struct vfs
struct vfs
ksema_t

*vfs_ vnodecovered;
vfs_flag;
vfs_bsize;
vfs_fstype;
vfs_fsid;
vfs_data,
vfs_dev,
vfs_bcount;
vfs_nsubmounts;
vfs_list;
*vfs_hash;
vfs_reflock;

I* operations on VFS *I
!* vnode mounted on *I
I* flags *I
!* native block size *I
I* file system type index *I
I* file system id *I
I* private data *I
I* device of mounted VFS *I
I* IIO count (accounting) *I
!*immediate sub-mount count *I
!* sync list pointer *I
I* hash list pointer *I
I* mount/unmountlsync lock *I

Within the vfs structure, there is a vfsops struct containing
file system operations like mount, unmount, sync, etc. that
can be performed on the file system.

I*

The vfsops structure looks like the following:

* Operations supported on virtual file system.
*I

typedefstruct vfsops {
int (*vfs_mount) (struct vfs *, struct vnode *, struct mmmta *,

struct cred *);
int (*vfs_unmount) (struct vfs *, int, struct cred *);
int (*vfs_root) (struct vfs *, struct vnode **);
int (*vfs_statvfs) (struct vfs *, struct statvfs64 *);
int (*vfs_sync) (struct ifs *,short, struct cred *);
int (*vfs_vget) (struct vfs *, struct vnode **, struct fid *);
int (*vfs_mountroot,) (struct vfs *, enwn whymountroot,);
int (*vfs_swapvp) (struct vfs *, struct vnode **,char*);
void (*vfs_freevfs) (struct vfs *),

} vfsops_t,

All of the functions in the vfsops structure are invoked
through VFS MACROs, which are defined as follows:

#define VFS_MOUNT(vfsp, mvp, uap, cr) I
(*(vfsp) -> vfs_op-> vfs_mount)(vfsp, mvp, uap, cr)

#define VFS_UNMOUNT(vfsp, flag, cr) I
(*(vfsp-> vfs_op-> vfs_unmount)(vfsp, flag, cr)

#define VFS_ROOT(vfsp, vpp) I
(*(vfsp)-> vfs_op-> vfs_root)(vfsp, vpp)

#define VFS_STATVFS(vfsp, sp) I
(*(vfsp-> vfs_op-> vfs_statvfs)(vfsp, sp)

#define VFS_SYNC(vfsp, flag, cr) I
(*(vfsp-> vfs_op-> vfs_sync)(vfsp, flag, cr)

#define VFS_ VGET(vfsp, vpp, fidp) I
(*(vfsp)-> vfs_op->vfs_vget)(vfsp, vpp, fidp)

#define VFS_MOUNTROOT(vfsp, init) I
(*(vfsp)-> vfs_op-> vfs_mountroot)(vfsp, init)

#define VFS_SWAPVP(vfsp, vpp, nm) I
(*(vfsp-> vfs_op-> vfs_swapvp)(vfsp, vpp, nm)

#define VFS_FREEVFS(vfsp) I
(*(vfsp)-> vfs_op-> vfs_freevfs)(vfsp)

US 7,418,439 B2
7

In the Unix operating system, every file system is allocated
a vfs structure. When the operating system kernel receives a
system call from an application program that intends to per­
form a file system operation on a file system, it uses the above
MACROS with the vfs structure pointed to by the vfsp input
parameter to invoke the file system operation on the file
system. The MACROS are defined in a file-system-indepen­
dent manner. With the input vfsp parameter, the kernel
invokes the desired file system operation of a file system.

2. The Virtual Node Interface
The Vnode interface has about 30 to 40 interfaces/opera­

tions for a file/directory:

1. vop_access()
2. vop_close()
3. vop_create()
4. vop_getattr()
5. vop_link()
6. vop_lookup()
7. vop_mkdir()
8. vop_open()
9. vop_read()

Checks access to a file
closes a file
creates a file
gets the attributes for a file
creates a link for a file
looks up a path name for a file
makes a directory
opens a file
reads the data from a file

10

15

20

8

-continued

int (*vop_write) (struct vnode *vp, struct uio *uiop, int ioflag,
struct cred *cr);

int (*vop_ioctl) (struct vnode *vp, int cmd, intptr_t arg, int flag,
struct cred *cr, int *rvalp);

int (*vop_setfl) (struct vnode *vp, int oflags, int nflags,
struct cred *cr);

int (*vop_getattr) (struct vnode *vp, struct vattr *vap, int flags,
struct cred *cr);

int (*vop_setattr) (struct vnode *vp, struct vattr *vap, int flags,
int (*vop_access) (struct vnode *vp, int mode, int flags,

struct cred *cr);
int (*vop_lockup) (struct vnode *dvp, char *nm, struct vnode

**vpp, struct pathnarne *pnp, int flags, struct vnode
*rdir, struct cred *);

int (*vop_create) (struct vnode *dvp, char *name, struct vattr
*vap, vcexcl_t excl, int mode, struct vnode **vpp,

struct cred *cr, int flag);

int (*vop_mkdir) (struct vnode *dvp, char *dirname,
struct vattr *vap, struct vnode * *vpp, struct

cred *cr);
} vnodeops_t,

32. vop_setattr()
35. vop_write()

sets the attribute for a file
writes the data to a file

The functions in the vnodeops structure are invoked

25 through the vnode operations MACROs. The MACROS defi­
nitions ofvnode operations are the following:

All V node interfaces are intended for operation on an indi­
vidual file or directory within a file system. Like the file
system operations in the VFS interface, the Vnode Interface
also consists of two parts, one part is the vnode structure, the 30
other is the MACRO definitions for the vnode operations of
the file/ directory.

#define VOP _ACCESS(vp, mode, f, cr) I
(*(vp-> v_op-> vop_access)(vp, mode, f, cr)

#define VOP _CLOSE(vp, f, c, o, cr)
(*(vp)-> v_op-> vop_close)(vp, f, c, o, cr)

The following is the vnode structure:

typedefstruct vnode {
kmutex_t
ushort_t

nnint_t
struct vfs
struct vnodeops
struct vfs
struct stdata
struct page
enum vtype
dev_t
caddr_t
struct filock
struct shrlocklist
kcondvar_t
void

} vnode_t;

v_lock;
v_flag;
v_count;
*v _ vfsmountedhere;
*v_op;
*v_vfsp;
*v_stream;
*v_pages;
v_type;
v_rdev;
v_data;
*v_filocks;
*v _shrlocks;
v_cv;
*v _locality,.

I* protects vnode fields *I
I* vnode flags (see below) *I
I* reference count *I
I* ptr to vfs mounted here *I
I* vnode operations * 1
I* ptr to containing VFS *I
I* associated stream *I
I* vnode pages list *I

I* vnode type *I
I* device (VCHR, VBLK) *1
I* private data for fs * 1
I* ptr to filock list *I
I* ptr to shrlock list *I
I* synchronize locking *I
I* hook for locality info *I

Within the vnode structure, there is a vnodeops struct con­
taining the file/directory operations such as vop_access(),
vop_open(), vop_creat() and vop_write(), etc. that can be 55

-continued

#define VOP _CREATE(dvp, p, vap, ex, mode, vpp, cr, flag) I
(*(dvp)-> v_op-> vop_create)(dvp, p. vap, ex, I
mode, vpp, cr, flag)

performed on the associated vnode of a file/directory.

The vnodeops structure looks like the following:

typedef struct vnodeops {
int (*vop_open) (struct vnode **vpp, int flag, struct cred *cr);

int (*vop_close) (struct vnode *vp, int flag, int count,
offset_t offset, struct cred *cr);

int (*vop_read) (struct vnode *vp, struct uio *uiop, int ioflag,

struct cred *cr);

#define VOP _GETATTR(vp, vap, f, cr) I
(*(vp)-> v_op-> vop_getattr)(vp, vap, f, cr)

60
#define VOP _LINK(tdvp, fvp, p, cr) I

(*(tdvp)-> v_op-> vop_link)(tdvp, fvp, p, cr)
#define VOP _LOOKUP (vp, cp, vpp, pnp, f, rdir, cr) I

(*(vp)-> v_op-> vop_lookup)(vp, cp, vpp, pnp,
f, rdir, cr)

#define VOP _MKDIR(dp, p. vap, vpp, cr) I
(*(dp)-> v_op-> vop_mkdir)(dp, p, vap, vpp, cr)

65 #define VOP _OPEN(vpp, mode, cr) I
(*(*(vpp))-> v_op-> vop_open)(vpp, mode, cr)

US 7,418,439 B2
9

-continued

#define VOP _READ(vp, uiop, iof, cr) I
(*(vp)-> v_op-> vop_read)(vp, uiop, iof, cr)

#define VOP _ WRITE(vp, uiop, iof, cr) I
(*(vp)-> v_op-> vop_write)(vp, uiop, iof, cr)

#define VOP _SETATTR(vp, vap, f, cr) I
(*(vp-> v _op-> vop_setattr)(vp, vap, f, cr)

Every file or directory in the file system is allocated a vnode
structure that holds all information about that file or directory,

10

When the operating system kernel receives a file or direc­
tory operation system call from an application program that

15
intends to perform an operation on a file or directory, it uses
the foregoing macros with the information in the vnode struc­
ture pointed to by the vp input parameter to invoke the desired
vnode operation on the file or directory,

FIG, 1 shows the layout of several file systems and the VFS,
20

Vnode interfaces in the operating system,
The operation and data flow proceed as follows:
a, A user application 10 makes a file system operation or

file operation system call into the operating system 12,
b, The system call generates one or more VFS and Vnode 25

operation calls 14,
c, The VFS and Vnode operation calls then go through the

VFS and Vnode interface layer 16 to switch to the
intended file system 18,

d, The intended file system sends the VFS and Vnode 30
operation to its physical storage 20 and gets the result

e, The intended file system returns the result back to the
application program 10,

3, The mirror file system interface
The mirror file system of the present invention, like other 35

file systems, also follows the VFS and Vnode interfaces, so it
can be loaded and plugged into the operating system, The
application 10 uses the same system calls to access the file
system and individual file/directory within the mirror file
system, The mirror file system does not have physical storage; 40

instead it has two or more file systems under it, Each of the file
systems under the mirror file system has a local physical
storage 18a, e,g, UFS, or a remote physical storage 18b on
another system, e,g, NFS, The UFS or NFS under the mirror
file system has the same VFS and Vnode interfaces as it 45

normally would, The mirror file system use these standard
interfaces to perform the operations on the UFS/NFS file
systems and their individual files or directories,

FIG, 2 shows several file systems and the mirror file system
in an operating system, The mirror file system 22 is loaded on 50

top of a Unix File System (UFS) and a Network File System
(NFS), Other UFS and NFS file systems can co-exist in par­
allel with MFS as shown in the figure, When the MFS is
loaded into the system, it links the two file systems, UFS and
NFS, together through its mount protocoL After the mount 55

operation, the UFS and NFS are under the management of
MFS, All system calls for file system operations and indi­
vidual file/directory operations from the application are
directed to the MFS first via the same VFS and Vnode inter-

10
1) The application does not need to re-compile or tore-link,

The path name for a file or directory accessed by the
application remains intact, No new directory or sym­
bolic links are created or needed for the application to
function properly with the MFS mounted, Conse­
quently, the application need not be aware of the exist­
ence of the MFS in the system, The application can
access the mirror file system and its file/directory in the
same manner as it did before the MFS was loaded into
the system,

2) The UFS and NFS do not need any changes, They can a)
co-exist in parallel with the MFS as a standalone file
system like UFS(1) and NFS(1), or b) be linked and
managed by the MFS as a sub-file system like UFS(2)
and NFS(2) in FIG, 2, In the first case, the UFS or NFS
receives the VFS and Vnode operations from the system
call originated by the application and sends the opera­
tions to its physical storage; in the second case the UFS
and NFS receive VFS and Vnode operations from the
MFS, and then send the operations to their physical
storage,

3) It is a building block approach, The MFS is built on top
of existing UFS and NFS, Another file system can also
be built on top of the MFS and other file system jointly
or independently, and be plugged into the operating sys­
tem,

B, Exemplary Embodiment

A more detailed description of the mirror file system of the
present invention is presented hereinafter,

1, The MFS Mount Protocol
In the Unix operating system, every file system mounted by

the system has a virtual file system data structure named vfs
that contains information about the file system and its opera­
tions as described before, Normally only one file system can
be mounted on a directory, When a new file system is mounted
on a directory, the directory's previous contents are hidden
and cannot be accessed until the new file system is unmounted
from the directory, Hence, the application can only see the
contents of the new file system when accessing the directory,
In contrast, when the MFS links file systems together and
forms a mirroring pair, the MFS mount protocol mounts two
file systems on a single directory, This protocol provides a
new approach for mounting a file system on a directory,

a, The MFS mount protocol allows either an entire file
system of part of a file system (represented by a direc­
tory) to be mounted on a directory,

b, When the MFS mounts a directory with a file system or
a part of a file system, the previous contents of the
mounted directory are not hidden,

c, The MFS inherits all of the contents of the mounted
directory into its mfs_vfs virtual file system data struc­
ture, The inherited content is a copy of a mirroring pair,
The new file system mounted on the directory is the
other copy of the mirroring pair, all its contents are also
inherited by MFS and put into the MFS file system data
sture mfs_vfs,

d, The application still sees the previous contents of the
mounted directory through its previous path name, The
application also sees the contents of the newly mounted
file system through its previous path name,

faces, When it receives the VFS or Vnode operation from the 60

system calls originated by the application, the MFS first per­
forms some housekeeping tasks on the operations, and then
sends the operations to UFS and NFS via the VFS and V node
interface again, By keeping the same VFS and Vnode inter­
face between the system call and MFS, and between the MFS
and the underlying UFS and NFS, the MFS achieves the
following goals:

The mfs_vfs file system is a virtual file system that holds
the information for itself and two other file systems, one of

65 which is inherited from the mounted directory, and the other
of which is the new file system that was mounted, Hence, the
mfs_ vfs structure contains three vfs data structures, one is the

US 7,418,439 B2
11

MFS itself, the other two vfs structures are for the two file
systems linked by the MFS. The super mfs_ vfs data structure
looks like the following:

Struct mfs_ vfs {
Struct vfs
Struct vfs
int

};

Struct vfs
int
Other fields

*mfs;
*X_vfs;
X_ vfs_state;
*Y_vfs;
Y _ vfs_state;

!* mirror file system vfs *I
I* first file systems vfs *I
I* state ofX_vfs file system *I
I* second file system vfs *I
I* state ofY_vfs file system *I

After a file system represented by a directory is mounted on

10

15

another directory by the MFS mount protocol, these two file
systems are linked together and become a mirroring pair
under the management of MFS operation. FIG. 2 shows that
the UFS(2) and NFS(2) are linked together by the MFS mount

20
protocol and become a mirroring pair. The MFS can mirror
the entire file systems or a portion of the file systems between
a mirroring pair.

FIGS. 3 and 4 illustrate how the File System A 201 and the
File System B 202 link and mirror each other. In FIG. 3, the 25
structure B 220 under directory b 211 of the File System A
201 is to be linked to structure Y 221 of the File System B 202
and mirror each other. The file system mount operation of
MFS is the key for linking up these two file structures 220 and
221, so the two file structures become a mirroring pair. The 30
file system mount operation is described in detail below.

To link up these two file structures and make them a mir­
roring pair, the MFS can do the one of the following two
things:

a. Mount the directory y 221 of the File System B 202 onto 35

the directory b 211 of the File System A 201.
b. Mount the directoryb 211 of the File SystemA201 onto

the directory y 221 of the File System B 202.

12
System A and B, so the structures in the two file systems
are synchronized with each other after the MFS mount
operation.

5) If there is a file or directory that exists on both file
systems, then the timestamp of the file or directory is
used to decide which copy is to be preserved.

6) An application can access the root directory b/y ofMFS
by using the path name from either file system, I Alb or
!XIy, and get to the root node of the newly created MFS.
All file system operations, as well as individual file or
directory operations, are handled by the MFS for all the
files and directories under the root directory b/y of the
newly created MFS.

2. The MFS Unmount Protocol

To break the mirroring setup, the mirror file system
unmounts directory y of File System B 202 from the directory
b of the File System A 201. Then all relationships are reverted
back to their original state. The two file systems that were
linked and mirrored to each other by the MFS are independent
of one another again.

FIG. 1 shows the original file systems layout after MFS
umounting ufs(2) and nfs(2) from FIG. 2.

3. File/Directory Operations

After two file systems are linked and mounted on a direc­
tory by the MFS mount protocol, the individual files and
directories within the two file systems are ready to accept
operations from the MFS and the application.

Every element of a file system, file or directory, has a vnode
data structure containing information and the operations can
be performed on this file or directory.

In Unix and other operating systems, normally only one
vnode data structure is allocated per file or directory. Since
the MFS has two file systems under its management, each file
or directory in the MFS has two files or directories under its
management, one for each of the two file systems. Every file
or directory ofMFS will have a super vnode structure called
nmode. This nmode contains a vnode structure and two vnode It is not significant which directory of which file system is

to be the mount point for other file system. Since the file
systems are a mirroring pair, they all have same privileges by
default.

40 pointers. The vnode named m_ vnode is the vnode for the file
or directory within MFS, the two vnode pointers, *m_Xvp
and *m_ Yvp, point to the real vnode of the file or directory
within the two file systems. The nmode data structure ofMFS
File System looks like the following: The MFS mount operation sets up the data structure mfs_

vfs to contain the vfs data structures for these two file system
structures. After the mount operation, the following struc- 45

tures and relationships are created as depicted in FIG. 4:
1) A new virtual file system mirror file system 203 is

created. The new mirror file system 203 is a layered
virtual file system on top of File System A 201 and File

50
System B 202. It has a data structure containing the file
system and file operation information of File System
201 and File System 202.

I*
* The mnode is the "vnode" mirror files. It contains
* all the information necessary to handle two real vnodes it links
*I

typedefstruct mnode {
struct vnode
struct mnode
struct vnode
struct vnode

m_ vnode; /* vnode for mirror file system *I
*m_next; /*link for hash chain*/
*m_Xvp; /*pointer to X vnode *I
*m_ Yvp; /*pointer toY vnode *I 2) The newly created mirror file system 203 has all the

elements ofboth the Structure B 220 (FIG. 3) of the File
System A 201 and Structure Y 221 of the File System B
202. It has directories b/y 231, c 232, d 233, z 238 and f
235, files e 234, g 236, h 237 andy 239. Each element is
either a file or a directory.

55
int

}mnode_t;
state; /*state of the mnode *I

3) The directory b/y 231 of the mirror file system 203 60
becomes the root directory of mirror file system 203.

4) All elements of structure B 220 (FIG. 3) of File System
A 201 are mirrored to directory y of File System B 202.
All elements of structure Y 221 ofFile System B 202 are
also mirrored to directory b of File System A 201. In 65

other words, all of the elements of structure B and struc­
ture Y are copied to a physical storage device of File

FIG. 4 shows a detailed picture of what the MFS looks like
and its relationship with two underlying file systems. The
directory b/y 231 is a newly created directory, the root of new
mirror file system 203. The directory b/y 231 of mirror file
system 203 is a virtual directory, there is no physical storage
for any file or directory within the mirror file system. But the
directory b/y 231 of mirror file system 203 has a mnode data
structure allocated by the MFS. Within its nmode, it has two
pointers; one pointer named m_Xvp points to the b directory
of File System A 201; the other pointer named m_ Yvp points

US 7,418,439 B2
13

to y directory of File System B 202. These two directories
pointed to by two pointers of nmode reside in the physical
storage devices.

When an application program 10 accesses either 1) the b
directory of File System A 201 by using the path name of I Alb
from the File System A, or 2) they directory ofFile System B
202 by using the path name IX/y from the File System B 202

14
b. For a Read operation, the mirror file system only needs to

invoke the operation that goes to one copy to obtain the
requested data. Which copy a file operation goes to is
configurable during the MFS mount operation.

c. For Write file operations, the mirror file system will
invoke the operations that go to both X andY copies.

5. Configuration of Master and Slave
The preceding section describes how the MFS mount pro­

tocol sets up a mirroring pair and how the file operations
10 operate on the mirroring pair. The privileges of the pairs are

equal, that is, either one can mirror its contents to its coun­
terpart in real time. The user can also configure the pairs into
a Master and Slave relationship. One file system is the Master;

as it did before the MFS is mounted, the system detects that
the directory b or directory y has the mirror file system 203
mounted on it (by checking the v _ vfsmountedhere field of the
vnode), and it becomes the root directory b/y 231 of mirror
file system 203. All file access requests (open, read, write,
seek, close, etc.) are directed to the vnode operation (struct
vnodeops *v _op) ofvnode for the virtual directory b 231 of
mirror file system 203. When the vnode operation (for 15

example, the vop_open() operation for an open request from
the application) of directory b 231 gets the open request, it
will first get the nmode from private data field v _data of its
vnode. From the nmode, the vop_open() operation finds both
the vnodes of directory b of File System A 201 and the vnode 20

of directory y of File System B 202. The open request is then
sent to vop_open() operations of both vnodes. The codes for
vop_open() in mirror file system look like the following:

static int
mfs_open(register vnode_t **vpp,

int flag,
struct cred * cr)

struct nmode
vnode_t
vnode_t
vnode_t

*mp;
vp ~ vpp;
*X_vp;
*Y_vp;

I* rnnode for MFS *I
I* vnode for MFS *I
I* vnode of X copy *I
I* vnode ofY copy *I

int
I*

X_error = -1, Y_error = -1;

process open for X vnode
*I
mp = vp- > v_data;
X_vp ~ mp- > X_vp;
I*

I* get the rnnode *I
I* get X vnode *I

send the request to vop_open() of X vnode
*I
X_error ~ VOP _OPEN(&X_vp, flag, cr);
I*
* process open for Y vnode
*I
Y_vp ~ mp- > Y_vp; I* getYvnode *I
I*

send the request to vop_open() ofY vnode
*I
Y_error ~ VOP_OPEN(&Y_vp, flag, cr);

return (X_ error I Y _error),

All other vnode operations like mfs_read(), mfs_ write(),
mfs_setattr(), mfs_close(), etc., follow the same procedure

the other one is the Slave. The Master can mirror its contents
to its Slave, but not the other way. The Master-Slave configu­
ration may be desirable when one of the mirroring pair is a
Network File System that has the physical storage on the
remote host.

6. Data Coherency and Consistency
As discussed previously, the write operation will go to both

copies. To make surethatthetwo copies will be identical at all
times, the write operation on both copies should be atomic; in
other words, during the data writing to both copies, no other
operations (read and/or write) should be allowed on the two

25 copies. To achieve this, a locking mechanism is needed. The
MFSs' vop_write() operation acquires the locks by calling
the vop_rwlock() operation of the first vnode, then acquires
the lock for second vnode. Both locks of vnode have to be
secured before the writing can proceed. If only one lock is

30 granted, and the other one is held by another process, the MFS
releases the first lock it is holding to avoid a deadlock in the
case that another process that held the second lock also is
trying to hold the first lock. After releasing the lock of the first
vnode, the vop_ write() operation uses a backoff algorithm to

35 wait for a period of time before trying to acquire the locks on
both vnodes again.

7. MFS Fail over and Recover Operations
Most of the file operation requests from the application can

be executed on the X copy 204 and get all correct data. The X
40 copy 204 may become unavailable due to:

45

a. Maintenance work on the physical device of the X copy,
or

b. Hardware failure on the controller or disk, or the network
is down and the Network File System under MFS caunot
be reached.

When this occurs, the mirror file system 203 switches the file
operations to theY copy to get the correct information.

The recover or re-sync operation of MFS after the fail over
50 is the following:

as described in mfs_open() to perform the same identical
operations with the same parameters on both copies of the 55

mirroring pair. This is how the mirror file system achieves the
real-time mirroring effect between the mirroring pair.

1) In case a, the MFS is signaled by an application that
issues IOCTL calls to tell the MFS that the X copy will
be taken down. When the MFS receives the call, it flags
the state of X copy in the mfs_vfs structure to be an
unavailable state.

2) In case b, the MFS flags the state ofX copy after retrying
the operation a pre-defined number of times without

4. One Read and Two Write Operations
Since both X andY copies contain identical information, 60

not every operation needs to be performed on both X andY
copies. For example, the read operation can get all informa­
tion from either the X or Y copy.

success.

From that point on the state of X copy is changed and the MFS
does not invoke any file operation of X copy, and keeps a log
of what vnode (file or directory) has been updated on theY
copy. When the X copy comes back on line again, the appli­
cation issues another call to signal MFS that the X copy is The mirror file system basically applies the following rules

in deciding which operation goes to which copy:
a. For Open and Create operations, the mirror file system

will invoke the operations that go to both X andY copies.

65 back on line again. The MFS then changes the state ofX copy
in the mfs_vfs structure to the available state. The MFS then
syncs the X copy with the vnodes that were updated in the

US 7,418,439 B2
15

meantime, as stored in the log, and changes the state of the X
copy in the mfs_ vfs structure to be the available state.

If the down time of the X copy becomes too long, so that the
log entry of vnodes overflows, then the MFS re-syncs the
entire X copy with the contents of Y copy, similar to the
re-sync operation of MFS mount protocol, when it receives
the signal from the application.

8. Sharing the Mirror File System on the Network

16
In this configuration, the Master Mirror Server X acts as a

Master mirror system and the Slave Mirror Server Y acts as a
Slave mirror system. The following two scenarios illustrate
the Master-Slave relationship:

Once the two file system are linked by the MFS and set up
10

on a network server, the mirror file system can be exported
and shared by all clients on the network using the NFS share
command and protocol. The clients can mount the mirror file
system from the network server across the network and access

a. When the Master Mirror Server X updates one of the
MFS pair-the local file system A or Imported Network
File System B, the physical storage Data A will get
updated and the Physical storage Data B of Imported
Network File System B on the Slave Mirror Server Y
will also get updated via the NFS protocol.

b. When the Slave Mirror Server Y updates its physical
storage B through its local file system B, the updates will
not go to physical storage Data A of Master Mirror
Server X because the Slave Mirror Server Y does not
have the MFS to carry out the mirroring. In that regard,

it as if it were a local file system. All the mirroring is carried
15

out on the network server. The command that shares or
exports the mirror file system is the same command that is
used to share any other file system; there is no additional file
or database required to do the sharing or exporting. For the
client to import or to mount the shared mirror file system on

20
its system, it uses the same command as that which is used for
importing or mounting other shared file systems.

the system is only a mirror slave system. It can receive
the update from the Master Mirror Server X, but it can­
not mirror its contents to the Master Mirror system.

For a mirror server to be a master mirror server on the
network, it needs an imported network file system that is
exported or shared by and has a physical storage on a network
server. In the above example, the Master Mirror Server X can
be a master mirror server due to the fact that it has an Imported C. Configuration and Application

The preceding sections describe how the mirror file system
links and mirrors between file systems within a computer
system. This section discusses how the mirror file system can
be configured in the following system environments:

a. Standalone system

b. A server system in a network environment

c. A client system using the mirror file system

1. Mirror Between Two Local File Systems

25 Network File System B that it can link together with its local
file system A through MFS.

FIG. 7 shows how the Slave Mirror Server Yin FIG. 6 can
be turned into a Master Mirror Server Y. To do that, as shown
in FIG. 7, the Mirror Server X needs to export 60 its local file

30 system A as the exported local file system A to the Master
Mirror Server Y via network file system protocol 61 over the
network, e.g. via Ethernet. The Master Mirror Server Y then
links the Imported Network File System A and its local file

FIG. 5 illustrates how a standalone mirror system X uses 35
mirror file system X linking and mirroring between a local file
system A and a local file system B. The local file system A has

system B together with the mirror file system Y.

When that is done, two master mirror servers reside on the
network. These two master mirror servers mirror and backup
each other on the network. An application can run on either
master mirror server and get all needed information. its data stored on a physical device Disk A; the local file

system B has its data stored on Disk B. The two local file
systems are linked and become a mirroring pair by the MFS 40
mount protocol.

3. Mirror Between Two Imported Network File Systems

FIG. 8 illustrates how the Client Mirror System Z uses
mirror file system Z linking and mirroring between imported
Network File system A and imported Network File System B.
In this configuration, the two imported network file systems

When Application 1 sends a file operation request 11 to
mirror file system X, the mirror file system X will:

a. Invoke the file operation 13 on local file system A. The
local file system A then sends the request 15 to the
physical device Data A;

b. Then the mirror file system X invokes the file operation
14 on the local file system B. The local file system B then
sends the request 16 to the physical device Data B.

In the case of a read file operation, MFS only needs to
invoke the operation in local file system A. The manner in
which MFS links and mirrors between these two file systems
is described in the preceding sections.

2. Mirror Between One Local File System and One Net­
work File System

FIG. 6 illustrates how a network server Master Mirror
Server X uses mirror file system X to link and mirror between
a local file system A and an Imported Network File system B.
The local file system A has a physical device Data A on the
Master Mirror Server X system, the Imported Network File
system B is a Network File System (NFS) exported from a
Slave Mirror Server Y on the network. Its physical storage is
the Data B on the Slave Mirror Server Y. The mounting
protocol, file system and file operations are the same as the
two local file systems mirroring configuration described pre­
viously.

45
are the network file systems imported from remote systems on
the network. The physical devices of the imported network
file systems are on the remote computer systems on the net­
work.

These two imported network file system are mounted on a

50 single directory by MFS, preferably the same directory that
the applications have accessed. Since there are two file sys­
tems to be mounted, the mount protocol provides a new
argument to indicate that the previous contents of the
mounted directory should be hidden after the MFS mount

55 operation. The contents of the two imported file systems are
inherited into mfs_vfs structure, as described previously.

In this configuration, the Client Mirror System Z is a client
to access file systems on two servers, one is designated the
primary server, and the other is designated a secondary server.

60 The primary server may be deployed on the clients' sub­
network; the secondary server can be deployed on a different
subnet and be far away physically. When the primary server
becomes unavailable, the client can switch to the secondary
server. For most file system or file operations, especially the

65 read-related operations, the client only needs to access the
primary server. The client only needs to access the secondary
server when doing the write-related operations.

US 7,418,439 B2
17

4. Sharing Mirror File System on the Network
FIG. 9 depicts how two Master Mirror Servers on the

network can serve their users better by mirroring and backing
up each other. One can make this configuration even better by
sharing the Mirroring File Systems across the network to let
the clients access them as the local file system. Every client
can choose the closest Master Mirror Server on the network as
its primary Mirror Server and the other one as its secondary
Mirror Server. Ideally, the Master Mirror Server will be on the
same subnet as all its clients to save much of the traffic from 10

going through network routers and switches. If the primary
Mirror Server becomes unavailable, the clients can switch to
the secondary Mirror Server.

With reference to FIG. 9, the following is a scenario
describing how the data flows between the Client and Mirror 15

Servers:
1) Server exports the mirror file system. To share its mirror

file system X 655 with client systems on the network, the
Master Mirror Server X 650 needs to export 603 its
mirror file system X 655 as the Exported mirror file 20

system X 651 using the Network File System Protocol
606 to its Client System X 670 on the network, ideally on
the same subnet.

2) Client imports the mirror file system. The Client System
X 670 on the network imports the Exported mirror file 25

system X 651 from the Master Mirror Server X 650 as its
Imported mirror file system X 671 by using the Network
File System protocol 606.

18
client's request, the client will failover to the Passive File
System and continue its operation.

In this configuration, the client system X 670 imports and
links two Mirror File systems, one from Master Mirror Server
X and the other from Master Mirror Server Y. Since these two
imported Mirror file systems mirror each other on their own
Master Mirror Servers X andY, the Client system X 670 does
not need to do any mirroring between these two imported
Mirror file systems, all the mirroring is done on the Master
Mirror Server X andY. The configuration is different from the
configuration of FIG. 8 in the following respects:

1. The client does not have to do the mirroring between the
two imported mirror file systems.

2. The client uses one imported mirror file system as its
active file system, the other one as the passive file sys­
tem.

3. The client only needs to access the active file system to
get all needed information at any given time, this
includes read and write operations. When the client does
a write operation on the active file system, the Master
Mirror Server X will carry out the mirroring to the file
system on the Master Mirror Server Y.

4. If the active file system becomes unavailable, the client
can fail over to the passive file system and continue its
operation seamlessly.

5. When the active file system is back on line again, all
recovery and re-sync are done on the master mirror
server, not on the client.

3) Applications on the client access shared mirror file sys­
tem. When an Application 6 on the Client System X 670
makes an update 632 on the Imported mirror file system

30 This configuration can provide clients a very smooth, reliable
and efficient network operation.

What is claimed is:
X 671, the update is sent 606 by using the Network File
System Protocol to the Exported mirror file system X
651 on the Master Mirror Server X 650.

4) The mirror file system X updates two file systems under
its management. When the mirror file system X 655 of
Master Mirror Server X 650 receives 603 the update
through its Exported mirror file system X 651, it does the
following:

35
1. A virtual file system which provides mirroring and link-

ing of two file systems, comprising:

a. Send 604 the update to the local file system A 652 first.
The local file system A 652 then sends 607 the update
to its physical device Data A 656.

40

b. Send 605 the update to its Imported Network File
System B 654. The Imported Network File System 45

654 then sends 609 the update via a Network File
System protocol to the Exported Network File system
664 on the Master Mirror Server Y 660.

C. The local file system B 663 of Master Mirror Server
Y660 receives 625 the update from its Exported Net- 50

work File System B 664 and sends it 624 to the physi-
cal device Data B 666.

means for mounting components of each of said two file
systems on a single mount point constituting a single
root directory for the components of both of said two file
systems such that each mounted component of one of
said two file systems is linked together with and
becomes a mirroring pair with a corresponding mounted
component in the other one of said two file systems, each
of said two file systems having an application interface
data structure constituting a progrming interface for
management thereof and access thereto; and

a virtual file system configured to manage the linking and
mirroring of the corresponding mounted components of
each of said two file systems, and including a super
application interface data structure containing an appli­
cation interface data structure of said virtual file system,
and said application interface data structures of each of
said two file systems.

2. The virtual file system of claim 1, wherein said super After the above steps are done, a copy of the update is stored
in Data A 656 of Master Mirror Server X 650, and another
copy is stored in Data B 666 of Master Mirror Server Y 660.

5. A Client Links Two Imported Mirror File Systems

55 application interface data structure of said virtual file system
contains said application interface data structure of said vir­
tual file system for managing said virtual file system as a
whole, and said application interface data structures of each
of said mounted file systems for management of said mounted

FIG. 10 shows a client that links two imported Mirror
Master Servers. The configuration is the combination of con­
figurations illustrated in FIGS. 8 and 9. In this configuration,
the MFS mount protocol allows a file system like the
Imported mirror file system 702 to be designated as the Active
File System and the other File System, the Imported mirror
file system 703, to be designated as the Passive File System
during the MFS mount. The client only accesses the Active 65

File System until the Active File System becomes unavail­
able. When the Active File System is not responding to the

60 file systems as a whole, respectively, and
wherein said super application interface data structure of

said virtual file system is configured to serve as a fun­
damental interface frame structure to link said mounted
file systems together as a mirroring pair.

3. The virtual file system of claim 1, wherein said compo­
nents are one of a file system and a sub-structure of a file
system that comprises directories and files.

US 7,418,439 B2
19

4. A method for mirroring files and directories between file
systems on a computer system or on two computer systems
connected to each other via a network, comprising the steps
of:

mounting components of each of two file systems on a
single mount point constituting a single root directory to
create a virtual file system in which each mounted com­
ponent of one of said two file systems is linked together
with a corresponding component in the other one of said

10
two file systems, each of said mounted components
being one of a directory and a file;

configuring said virtual file system so that each component
of said virtual file system has a super application inter­
face data structure containing an application interface 15
data structure of said component in said virtual file sys­
tem, an application interface data structure of a linked
component in said one of said two file systems, and an
application interface data structure of said correspond­
ing linked component in said other one of said two file 20
systems, said application interface data structure of said
component in said virtual file system providing a mecha­
nism for managing said component within said virtual
file system and the corresponding linked components
within said two file systems; 25

20
a second server having a second local file system and a

second physical storage device associated therewith;
and

a client device having a virtual file system which mounts an
imported file system from said first server and an
imported file system from said second server on a single
mount point constituting a single root directory to pro­
vide a single point of access for mounted components
stored in each of said first and second local file systems,
such that each mounted component in one of said first
and second local file systems has a corresponding copy
in the other one of said first and second local file sys­
tems.

12. The mirrored file system of claim 11, wherein said first
local file system and said second local file system are each
imported into said client device, and said virtual file system
mounts components of each of said two imported file systems
to a single directory via said single mount point.

13. The mirrored file system of claim 12 wherein said
virtual file system contains a super application interface data
structure including an application interface data structure of
said virtual file system, an application interface data structure
of said first local file system, and an application interface data
structure of said second local file system, and

wherein said virtual file system is configured to access said
application interface data structures of said first and
second local file systems to manage said first and second
local file systems mounted on said single mount point.

14. The mirrored file system of claim 11 wherein each of

upon receiving a request to perform a write operation on
one of said mounted components, using said application
interface data structure of said component in said virtual
file system to perform the write operation on said linked
component in said one of said two file systems and on the
corresponding linked component in said other one of
said two file systems in real time in response to said
request.

30 said first and second servers includes a virtual file system that
mounts components of said server's local file system and
components of the other server's local file system in a single
directory on said single mount point.

5. The method of claim 4 wherein said request designates
said one component, on which the write operation is to be
performed, by means of a path name that is common to both
of said file systems.

6. The method of claim 4 wherein the step of performing
said write operation includes the steps of acquiring a lock for
each of said one component and said corresponding compo­
nent of said one component, and inhibiting said write opera­
tion until both locks can be acquired.

15. The mirrored file system of claim 14 wherein the file
35 systems that are imported into said client device comprise the

virtual file systems of said first and second servers.
16. The mirrored file system of claim 14 wherein the virtual

file system in each server contains a super application inter­
face data structure including an application interface data

40 structure of said virtual file system, an application interface
data structure of said first local file system, and an application
interface data structure of said second local file system, and

7. The virtual file system of claim 1, wherein said mounting
means mounts a directory of one of said file systems to a

45
directory of the other file system via said single mount point.

wherein said virtual file system in each server is configured
to access said application interface data structures of
said first and second local file systems to manage said
first and second local file systems mounted on said

8. The virtual file system of claim 1 wherein said single
mount point constituting the single directory functions as a
single mount point for access to the components of both of
said two file systems.

9. The virtual file system of claim 1 wherein the mounted
components of each file system are replicated in the other file
system.

10. The method of claim 4 wherein said mounting step
comprises mounting a directory of one of said file systems to
a directory of the other file system via said single mount point.

11. A mirrored file system, comprising:

a first server having a first local file system and a first
physical storage device associated therewith;

single mount point.
17. The method of claim 4, wherein said virtual file system

causes the write operation performed on said one component
50 stored in one of said two file systems to be replicated in the

corresponding component of said one component stored in
the other one of said two file systems in real time.

18. The mirrored file system of claim 11, wherein said
virtual file system is configured to cause an operation per-

55 formed on a component stored in one of said first and second
local file systems to be replicated in the corresponding copy
of said component stored in the other one of said first and
second local file systems in real time.

* * * * *

