
c12) United States Patent
Shah et al.

(54) BLOCK-LEVEL AND HASH-BASED
SINGLE-INSTANCE STORAGE

(75) Inventors: Aalop S. Shah, Pune (IN); Ganesh
Varadarajan, Pune (IN); Milind V.
Borate, Pune (IN); Peter Vajgel, Menlo
Park, CA (US)

(73) Assignee: Symantec Operating Corporation,
Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 268 days.

(21) Appl. No.: 11/355,684

(22) Filed: Feb.16,2006

(51) Int. Cl.
G06F 12100 (2006.01)

(52) U.S. Cl. .. 711/216
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,069,413 B1 * 6/2006 Agesen eta!. 7111207

OTHER PUBLICATIONS

Bolosky, William J., et a!., "Single Instance Storage in Windows
2000," Microsoft Research, Balder Technology Group, Inc., Down-

111111 111
US007454592Bl

(10) Patent No.:
(45) Date of Patent:

US 7,454,592 Bl
Nov. 18, 2008

loaded Jan. 13, 2006 from http://research.microsoft.com/sn/Farsite/
WSS2000.pdf, 12 pages.
Quinlan, Sean and Sean Dorward, "Venti: a New approach to archival
storage," USENIX Association, Proceedings of the FAST 2002 Con­
ference on File and Storage Technologies, Monterey, California, Jan.
28-30, 2002, 14 pages.

* cited by examiner

Primary Examiner-Hiep T Nguyen
(74) Attorney, Agent, or Firm--Campbell Stephenson LLP

(57) ABSTRACT

A method for reading data in a block-level single-instance
storage system may involve receiving a first address of a data
block, retrieving a signature corresponding to the first
address, and reading data from a second address correspond­
ing to the signature. A storage system may include a storage
manager and first and second lookup tables. The storage
manager may interface with an application (such as a data­
base system or a file system) that uses a first set of identifiers
for data blocks. The storage manager may use a second set of
identifiers for the data blocks, and translates between the first
and second identifiers using the lookup tables. The first
lookup table indexes data block signatures according to the
first set of identifiers. The second lookup table indexes the
second set of identifiers according to the data block signa­
tures. The second lookup table may be pruned to provide
single instance storage.

25 Claims, 9 Drawing Sheets

r800

810 Receive a read instruction and a logical block ID for
the read.

820 Look up the hash in the HLUT
based on the logical block 10.

830 Look up the physical block ID in the PALUT
based on the hash.

840
Read from the physical block.

U.S. Patent Nov. 18, 2008 Sheet 1 of9 US 7,454,592 Bl

LAN/WAN

1

SAN
125

180

TAPE LIBRARY JBOD DISK ARRAY

100-' FIG. 1

U.S. Patent

210 ---+

220 ---+

230---+

240---+

200 _)

Nov. 18, 2008

Logical Address

0000001

0000002

0000003

0000004

• • •

Sheet 2 of9 US 7,454,592 Bl

Physical Address

003672897529

004289762638

000736825630

000384729284

. . .

FIG. 2 (PRIOR ART)

U.S. Patent Nov. 18, 2008 Sheet 3 of9 US 7,454,592 Bl

Storage

• • • • • •

340 4 000384729284:

• • • • • •
330 4 000736825630: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ...

• • • • • •
310 4 003672897529:

• • • •••

320 4 004289762638: ccccccccccccccccccccccccccc ...

• • • • ••

300 _)

FIG. 3 (PRIOR ART)

U.S. Patent Nov. 18, 2008 Sheet 4 of9 US 7,454,592 Bl

Logical Address Hash

410 __. 0000001 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

420--. 0000002 de9f2c7fd25e1 b3afad3e85a0bd17d9b1 00db4b3

430--. 0000003 a14f6b363524d657c63ad4c24e56b32f35a4a357

440--. 0000004 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

.

400 _} FIG. 4

Hash Physical Address Reference
Count

.
510 __. 2fd4e1 c67a2d28fced849ee1 bb76e7391 b93eb12 003672897529 2

.
530 __. a14f6b363524d657c63ad4c24e56b32f35a4a357 000736825630 1

.
520 __. de9f2c 7fd25e 1 b3afad3e85a0bd 17 d9b 1 00db4b3 004289762638 1

.

500 _}
FIG. 5

U.S. Patent Nov. 18, 2008 Sheet 5 of9 US 7,454,592 Bl

Storage

• • •
630--. 000736825630: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB ...

.
610 __. 003672897529: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ...

• • • • ••
620 __. 004289762638: ccccccccccccccccccccccccccccccc ...

. . .

600 FIG. 6

U.S. Patent Nov. 18, 2008 Sheet 6 of9 US 7,454,592 Bl

r700

710

""
Scan through data storage system

by logical addresses.

720

""
Gather information that connects logical addresses,
physical addresses, and hashes of the stored data.

730

""
Store the logical addresses and hashes in HLUT,

searchable by logical addresses.

740

""
Store the hashes and physical addresses in

PALUT, searchable by hashes.

Eliminate any repeat entries
750

""
for each hash value in the PALUT

Update the reference count for the
single remaining entry for the hash value. FIG. 7

760

""
Eliminate the corresponding repeated blocks

from the data storage system.

U.S. Patent Nov. 18, 2008 Sheet 7 of9 US 7,454,592 Bl

r800

810 Receive a read instruction and a logical block 10 for
the read.

820 Look up the hash in the HLUT
based on the logical block 10.

~,

830 Look up the physical block ID in the PALUT
based on the hash.

1 r

840
" Read from the physical block.

FIG. 8

U.S. Patent Nov. 18, 2008 Sheet 8 of9

910

915

930

940

Receive a write instruction and a logical block 10 for the
write.

Calculate the new block contents and the new hash.

Yes

Look up the old hash in the HLUT based on the logical
block 10.

ref count- for the old hash.
If ref count==O, eliminate the table entries and storage

block associated with the old hash.

US 7,454,592 Bl

r900

FIG. 9

No

~------------Yes

970

990

No

Allocate a new physical block.

Perform the write in the new physical block.

Enter the new physical block 10 in the PALUT,
indexed by the new hash.

ref count :=1 for the new hash.

Update the HLUT so that the new hash
is indexed by the logical block 10.

980

ref count++
for the new hash.

U.S. Patent Nov. 18, 2008 Sheet 9 of9 US 7,454,592 Bl

Operating System

(
(

1 000 _____,

Keyboard &
Mouse
1050

SCSI Interface
1052

Network Interface
1054

•
•
•

1022

Applications

J 1024

Database Data

J 1026

Memory 1020

r---1005

Processor
1010

i-- 1007

•
•
•

• •
•

Graphics &
Display
1056

Hard Disk
1058

CD-ROM
1060

•
•
•

FIG. 10

US 7,454,592 Bl
1

BLOCK-LEVEL AND HASH-BASED
SINGLE-INSTANCE STORAGE

FIELD OF THE INVENTION

This invention relates to data storage in general and, more
particularly, to methods and systems for performing single
instance storage.

DESCRIPTION OF THE RELATED ART

Distributed storage systems are an increasingly important
part of research, governmental, and enterprise computing
systems. Among the advantages of such computing systems
are their ability to handle multiple-server environments, high­
volume data retrieval, and various archiving requirements.
Such distributed computing systems typically utilize one or
more storage devices in support of the computing systems
operations performed by one or more processing host com­
puters. These storage devices may be quite numerous and/or
heterogeneous. Various techniques are used to ensure that
storage systems can efficiently use their available storage
capacity.

FIG.1 is a simplified block diagram of a computing system
100. The members of the computing system 100 include hosts
130 and 140. The hosts 130 and 140 may typically be com­
puter systems that include software and hardware compo­
nents well known to those having skill in the art. In various
settings, the hosts may also be referred to as nodes, reflecting
their participation in a networked system. In support of vari­
ous applications and operations, the hosts may exchange data
over, for example, a network 120 such as an enterprise-wide
intranet or other local area network (LAN), or over a wide
area network (WAN) such as the Internet. Additionally, the
network 120 may allow the various client computer systems
110 to communicate with the hosts 130 and 140.

Other elements of computing system 100 may include a
storage area network (SAN) 125 and storage devices such as
a tape library 160 (typically including one or more tape
drives), a group of disk drives 170 (e.g., "just a bunch of
disks" or "JBOD"), and a storage array 180 such as an intel­
ligent disk array. As shown in FIG. 1, the hosts 130 and 140
may be coupled to the SAN 125. The SAN 125 is convention­
ally a high-speed network that allows the establishment of
direct connections between the storage devices 160, 170, and
180 and the hosts 130 and 140. The SAN 125 may also
include one or more SAN-specific devices such as SAN
switches, SAN routers, SAN hubs, or some type of storage
appliance. The SAN 125 may also be coupled to additional
hosts. Thus, the SAN 125 may be shared between the hosts
may and allow for the sharing of storage devices between the
hosts to provide greater availability and reliability of storage.
Although the hosts 130 and 140 are shown connected to the
storage devices 160, 170, and 180 through the SAN 125, this
need not be the case. Shared resources may be directly con­
nected to some or all of the hosts in the computing system, and
the computing system 100 need not include a SAN. Alterna­
tively, the hosts 130 and 140 may be connected to multiple
SANs.

2
(I/0) operations against storage devices such as the storage
array 180. The I/0 operations may be managed through file
systems on the hosts that are configured to handle the com­
munication of data between the hosts and the storage devices.
The hosts may also execute volume manager software that
enables physical storage resources configured in the comput­
ing system to be managed as one or more logical storage
devices. An example of software that performs some or all of
the functions of a volume manager is the VERITAS Volume

10 Manager™ product provided by Symantec Corporation.
A file system executed on a host such as host 130 may be

configured to refer to data on one or more of the storage
devices by a logical address. Depending on the implementa­
tion of the host, the file system may be considered either an

15 application or a component of the operating system on the
host. The logical address for data may generally be different
than the physical address that is used by the storage devices to
refer to that data. For example, a file system may use a set of
logical addresses that identifY data stored on one or more

20 virtual devices implemented on the storage devices. The stor­
age devices, however, may use another form of addressing to
refer to the stored data, such as device block numbers or
cylinder/track numbers. In order to perform translations
between the logical addresses used by a file system and the

25 physical addresses used by storage devices, the host 130 may
use a lookup table.

FIG. 2 illustrates one implementation of an address lookup
table 200. The address lookup table indexes physical
addresses according to logical addresses. The illustrated

30 example shows four entries 210, 220, 230, and 240, each of
which is identified by a logical address. A physical address
that corresponds to the logical address is included in each
entry. The four entries have four different physical
addresses-one for each of the four different logical

35 addresses. Such a table may be used by the host 130 to
translate between the two types of addressing. Thus, if the file
system on the host 130 uses logical addresses for referring to
stored data, and a volume manager on the host 130 uses
physical addresses to access the data, the volume manager

40 may consult the address lookup table 200 to convert a logical
address into a physical address. As illustrated in this example,
the entries in the address looknp table 200 are sorted or
otherwise accessible by the logical addresses. Thus, with this
table 200 the volume manager may readily determine which

45 physical address corresponds to a logical address.
FIG. 3 is a block diagram of one implementation of a

storage system 300. The storage system 300 may correspond
to one or more of the storage devices 160, 170, and 180. This
diagram illustrates the use of physical addresses and data that

50 are stored according to the physical addresses. The illustrated
example shows four data blocks 310, 320, 330, and 340, each
of which is identified by a physical address (corresponding to
the physical addresses indicated in FIG. 2), and each of which
holds data. The physical addresses are illustrated as being

55 numerical values. Depending on the implementation of the
storage system, the physical addresses may be indicative of
physical storage devices, or of network addresses of storage
devices, or of physical locations on media in the physical
storage devices, or combinations thereof.

As shown in FIG. 3, a storage system may include repeated
information. In the illustrated example, the data stored at one
address, in data block 310, are the same as the data stored at
another address, in data block 340. Such repetitions may arise
for a variety of reasons. For example, more than one copy of

The hosts 130 and 140 may execute one or more applica- 60

tion programs. Such applications may include, but are not
limited to, database administration systems, file servers,
application servers, file systems, web servers, backnp and
restore software, customer relationship management soft­
ware, and the like. The applications and other software, such 65 a file may be present in the storage system, having been

placed there by one user or by several different users. Simi­
larly, various versions or revisions of a file may be stored on

as operating systems and applications executing on client
computer systems, may initiate or request input or output

US 7,454,592 Bl
3

the storage system, with each version or revision differing
only partially from the others. As a result, the common data in
the various copies, versions, and revisions may result in
repeated sequences of data on the storage system. In this
example, the repeated information appears as two data blocks
310 and 340 that hold the same data as the other.

It may be seen that only one of these data blocks 310 and
340 is needed. The repetition of the data uses additional
storage that could theoretically be released for other data.
This unintended repetition of stored data poses a problem for
the efficiency of data storage systems. If the repeated data
could be eliminated (so that only one copy of the data is
stored, instead of repeated copies), the storage system would

4
FIG. 3 is a block diagram of one implementation of a

storage system.
FIG. 4 illustrates one implementation of a hash lookup

table.
FIG. 5 illustrates one implementation of a physical-address

lookup table.
FIG. 6 is a block diagram of one implementation of a

storage system with single-instance storage.
FIG. 7 is a flow diagram of one implementation of a pro-

10 cedure for eliminating redundant data from a storage system.
FIG. 8 is a flow diagram of one implementation of a pro­

cedure for reading data from a storage system.

be able to hold greater amounts of data, since additional
storage capacity would be freed by deleting the repeated data. 15

FIG. 9 is a flow diagram of one implementation of a pro­
cedure for writing data to a storage system.

FIG. 10 is a block diagram of one implementation of a
computer system.

SUMMARY

Various embodiments of methods and systems for per­
forming data storage are disclosed. One implementation of a
method involves receiving a first address of a data block,
retrieving a signature corresponding to the first address, and
retrieving a second address corresponding to the signature.

A second implementation of a method involves receiving a
first address, identifYing data to be written at the first address,
searching a first lookup table for the first address, generating
a signature corresponding to the data, searching a second
lookup table for the signature, and updating the first lookup
table.

One implementation of a system involves a storage man­
ager, a first lookup table, and a second lookup table. The
storage manager is configured to interface with an application
(such as a database system or a file system, among others).
The application is configured to identify data blocks accord­
ing to a first set of identifiers for the data blocks. The storage
manager is configured to access the data blocks on a storage
medium according to a second set of identifiers for the data
blocks. The first lookup table indexes data block signatures
according to identifiers from the first set of identifiers. The
second lookup table indexes identifiers from the second set of
identifiers according to the data block signatures.

The second lookup table may eliminate redundant infor­
mation by referencing only a single identifier from the second
set of identifiers for each unique data block signature. This
elimination may serve as a pruning of the data blocks refer­
enced by the second set of identifiers, and may be used to
provide single-instance storage.

The foregoing is a summary and thus contains, by neces­
sity, simplifications, generalizations and omissions of detail;
consequently those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any
way limiting. Other aspects, inventive features, and advan­
tages of the present invention, as defined solely by the claims,
will become apparent in the non-limiting detailed description
set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
may be acquired by referring to the following description and
the accompanying drawings, in which like reference numbers
indicate like features.

FIG.1 is a simplified block diagram of one implementation
of a computing system.

FIG. 2 illustrates one implementation of an address lookup
table.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments of the invention
are provided as examples in the drawings and detailed

w d description. It should be understood that the drawings an

25

detailed description are not intended to limit the invention to
the particular form disclosed. Instead, the intention is to cover
all modifications, equivalents and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION

30 One approach to eliminating repeated information on a
storage system is to perform comparisons of files stored on a
storage device to determine if two files are duplicates of each
other. Such file-by file comparisons, however, would not
resolve smaller duplications of data on a storage system. In

35 particular, such systems would not provide single-instance
storage (SIS) at the block level of a storage system.

It would be helpful to have an SIS system that operates at
the block level. For example, various implementations of
such a system may be better able to find instances of repeated

40 data, since they could find smaller occurrences of the repeated
data. Consider the situation where two large files on a storage
system are only slightly different, with 99% of the data in one
file being identical to data in the other file. Since the two files
are not exactly the same, a file-level SIS system would main-

45 tain two separate copies of these large files. However, a block­
level SIS management system may be able to eliminate the
repeated blocks in one of the files, since these blocks may be
the same as the blocks in the other file. The block-level SIS
management system may thus be much more efficient at

50 eliminating data repetition on the storage devices.
Block-level SIS management may also provide an advan­

tage of incorporating SIS management into regular block­
based reads and writes. This aspect may facilitate the integra­
tion of SIS techniques into existing storage systems. Still

55 further, this aspect may facilitate the performance of SIS
operations by combining them with read and write opera­
tions. For example, SIS operations may then be possible
without needing a separate after-the-fact SIS groveller pro­
cedure that examines storage devices after files have been

60 written onto the storage devices.
Conceptually, one approach to implementing SIS at the

block level would be to maintain a list of the contents of the
blocks in a storage system. Such a "contents list" could be
sorted according to the contents of the individual blocks, and

65 any duplicate blocks would be readily identified, since they
would appear adjacent to each other in the sorted contents list.
Once the duplicate blocks are identified, they could be elimi-

US 7,454,592 Bl
5

nated from the storage system, so that the storage system may
maintain at most one copy of each unique block being stored.

The immediate problem with the concept of a contents list

6
identical data. (This illustration recalls the situation in FIGS.
2 and3, where entries 210 and 240 referred to data blocks 310
and 340 that held repeated data.)

is that it would require an inordinate amount of storage to
maintain: the contents list would need roughly as much star- 5

age as the original storage system, since each data block from
the storage system would be copied into the contents list.
Thus, a storage system that includes storage devices 160, 170,
and 180 would effectively require another unit of each of
these devices in order to hold the contents list. This additional 10

The hash lookup table 400 may be used by a host such as
the host 130 to find a hash of a data block based on the logical
address of the data block. Thus, if a file system running on the
host 130 uses logical addresses for referring to stored data and
a volume manager ruuning on the host 130 uses physical
addresses to access the data, the volume manager may consult
the hash lookup table 400 to convert a logical address into a
hash for the data to be accessed. To find the physical address requirement would hinder the purpose of improving storage

efficiency.
An alternative to the conceptual contents list is a list of

signatures. The signatures may be checksums or hashes of the
contents of respective blocks stored on the storage system. In
general, the signatures may serve as fingerprints of the con­
tents of the respective data blocks on the storage system, or
may otherwise be identifiers of portions of data on the storage
system. In general, the signature of a data block may be
significantly smaller than the data block itself. For example, a
data block on a storage device may hold 4 kB of data. In
contrast, a signature such as one generated with the SHA-1
(secure hash algorithm) function may be substantially
smaller, with a length of only 160 bits. With an appropriately
selected signature type, a list of signatures may be used as a
practical substitute for the conceptual list of the contents of
the storage system.

Other functions may be used to generate smaller or larger
signatures, and block sizes may also be smaller or larger. For
example, larger or smaller data blocks may also be used (e.g.,
approximately 512 B, 1 kB, 4 kB, 8 kb, 16 kB, or variable
block sizes), and larger or smaller signatures may also be used
(e.g., approximately 40 bits, 60 bits, 80 bits, 200 bits, or 500
bits, or variable signature lengths). In general, the signature
length may be appropriately chosen so that the signatures are
substantially shorter than the sections of data that they repre­
sent, but are long enough that they can be expected to identify
uniquely the various sections of data on a storage system.

FIGS. 4 and 5 illustrate one implementation of a hash
lookup table 400 and a physical-address lookup table 500.
These two tables may be used by various storage systems to
implement a block-level single-instance storage system.

The hash lookup table 400 indicates the contents of data
stored at various logical addresses in a data system. The
contents stored at each logical address are indicated by a hash
(or other signature) of the contents. The illustrated example
shows four entries 410, 420, 430, and 440. Each entry is
identified by a logical address. A hash value that corresponds
to the data referenced by the logical address is also included
in each entry.

The hashes may generated by a hash function, such as
SHA-1, that receives a string of input data and in response
generates a hash (a relatively short string of data) as a signa­
ture of the input data. The contents stored at each address may

of the data, the volume manager may then turn to the physical­
address lookup table 500.

The physical-address lookup table 500 indicates the physi-
15 cal address of data that has a particular hash. The illustrated

example shows three entries 510, 520, and 530. Each entry is
identified by a hash value. Each entry also indicates a physical
address of data corresponding to the hash. A volume manager
may consult the physical-address lookup table 500 to convert

20 a hash for the data to be accessed into a physical address for
the data. The pair of lookup tables 400 and 500 may thus be
used together, one after the other, to obtain the information
that is present in address look-up tables such as table 200 from
FIG. 2. The pair oflookup tables 400 and 500 may therefore

25 serve to replace table 200.
The illustrated physical-address lookup table 500 shows

only three entries 510, 520, and 530. This is fewer than the
corresponding four entries in the hash lookup table 400. The
reason why the physical-address lookup table 500 may have

30 fewer entries is that the hash lookup table may have repeat
entries. In this example, one of the entries in the hash lookup
table 400 is a repeat entry. Since there are only three unique
hashes shown in the hash lookup table 400, the physical­
address lookup table 500 needs only three corresponding

35 entries. Entries 410 and 440, which held identical hash values
in table 400, are reflected in table 500 as a single entry 510.

This entry 510 serves a dual purpose. As can be seen from
FIGS. 4 and 5, it may be used when a data storage system
needs to access the logical address in entry 410. It is also used

40 when the data storage system needs to access the logical
address in entry 440. These two logical addresses are both
resolved by the hash lookup table 400 to the same hash value.
Accordingly, the one entry 510 in the physical-address
lookup table 500 serves both of these logical addresses. To

45 indicate that this entry is being used by more than one logical
address, the physical-address lookup table 500 may include
an associated reference count. The reference count may be an
indicator of the number oflogical addresses associated with a
particular hash value. In the illustrated example, entry 510

50 includes a reference count of 2, since this entry has two
logical addresses associated with its hash value. The other
entries 520 and 530 include a reference count of 1, since these
entries each have only one logical address associated with
their hash values.

Since the pair of lookup tables 400 and 500 together can
translate logical addresses into physical addresses, they may
serve to replace table 200. However, the pair oflookup tables
400 and 500 also includes additional information: they index
the data stored in the various blocks of the data storage sys-

be entered into the hash function to generate the hash for those 55

contents. The hash function may be chosen to be a one-to-one
function, so that if two signatures generated by the hash
function are different from each other, then the corresponding
two data blocks must also have been different from each
other. The hash function may also be chosen to be collision­
resistant. That is, if any two signatures in the table are iden­
tical, it may be expected that the corresponding data blocks
are also identical.

60 tern, as referenced by the corresponding hashes. This addi­
tional information may provide various advantages. For
example, the pair of lookup tables 400 and 500 may be used
to eliminate repeated data in a storage system, as discussed
below. In the illustrated example, the hash lookup table 400

includes two entries that have the same hash value. Entries 65

410 and 440 hold identical hash values. This repetition of
hash values indicates that these two logical addresses refer to

FIG. 6 is a block diagram of one implementation of a
storage system 600 with single-instance storage. The storage
system 600 may be implemented, for example, in one or more

US 7,454,592 Bl
7

of the storage devices 160, 170, and 180. The illustrated
example shows three data blocks 610, 620, and 630, each of
which is identified by a physical address (corresponding to
the physical addresses indicated in FIG. 5), and each of which
holds a block of data. The storage system 600 uses physical
addresses and holds data that are stored according to the
physical addresses. The physical addresses are illustrated as
being numerical values. Depending on the implementation of
the storage system, the physical addresses may be indicative
of physical storage devices, or of network addresses of star- 10

age devices, or of physical locations on media in the physical
storage devices, or combinations thereof.

8
new storage device may be made accessible to the file system
or other applications without needing the file system (or other
applications) to be internally modified to use the same
addressing system as the storage device. This feature may be
helpful in various situations, such as where the storage device
is configured to support single-instance storage, and may
therefore require an addressing system that is different from
the addressing used by other components in the computing
environment.

FIG. 7 is a flow diagram of one implementation of a pro­
cedure 700 for eliminating redundant data from a storage
system. This procedure may be used to generate the lookup
tables 400 and 500 for the storage system. The procedure 700
may also be used to convert a non-SIS storage system (such as
storage system 300) into an SIS system (such as storage
system 600).

The procedure starts in act 710 by scanning through the
data stored on the disk drives and other storage devices in a
storage system. The scan may be done sequentially according

In contrast with the storage system 300 from FIG. 3, the
storage system 600 does not include repeated data blocks.
One of the repeated data blocks (340) from the storage system 15

300 has been eliminated in the storage system 600. The stor­
age system 600 may therefore be understood as an SIS sys­
tem. With repeated data blocks eliminated, the storage system
600 may be able to hold greater amounts of data than the
storage system 300.

The logical addresses, the physical addresses, and the
hashes in lookup tables 400 and 500 are different types of
identifiers for data stored in a data storage system. The logical
addresses and the physical addresses in lookup tables 400 and
500 are considered to be addresses, since these identifiers are 25

assigned to stored data. These assigned identifiers may indi­
cate the location of the stored data. The hashes in lookup
tables 400 and 500 are considered to be signatures, since these
identifiers are derived from the stored data. These derived
entries may be characteristic of the stored data itself, and may

20 to the logical addresses in the storage system. For each logical
address, the corresponding physical address may be found
from an existing lookup table (such as, for example, the table
200 from FIG. 2). From each physical address, a block of data
may be read. For each block of data, a corresponding hash
may be computed. These three aspects of each data block
(logical address, physical address, and hash) are gathered in
act 720. As the scan proceeds, the procedure may build a
temporary table with three sets of information: logical
addresses, the corresponding physical addresses, and the

be independent of the locations of the stored data.
30 hashes of the data stored at each physical addresses.

The lookup tables 400 and 500 translate one type of
addressing into another type of addressing, using signatures
as an intermediate translation. In the examples ofFIGS. 4 and
5, the two types of addressing are logical addresses and physi­
cal addresses. It will be understood that other types of
addressing may also be translated through the lookup tables
400 and 500. For example, these tables may be adapted to
translate one type of logical address (for example, logical
addresses used by a file system) into another type oflogical 40

address (for example, a different set oflogical addresses, as
used by a data storage device, a data storage server, or a
virtual-device storage system).

From this temporary table, the logical addresses and hashes
may be extracted in act 730 to form the hash lookup table 400
("HLUT''). The temporary table may then be sorted accord­
ing to the hashes, so that is searchable by hashes. In act 740

35 the hashes and physical addresses may then be extracted to
create a preliminary version of the physical-address lookup
table 500 ("PALUT").

The lookup tables 400 and 500 may be used in various
storage environments. For example, these tables may be use- 45

ful in environments where different layers of storage access
use different types of addressing. As one example, one layer
of storage access may refer to addresses on variable custom­
sized logical units or other virtual storage devices, while a
lower layer of storage access may refer to addresses on the 50

underlying fixed-sized volumes on which the logical units are
maintained.

Various alternatives are contemplated for the lookup tables
400 and 500. For example, alternative indexing structures
may be used in the place oflookup tables, such as trees, hash 55

tables, various linked-list structures, and others that may be
used to hold the mapping information between the various
addressing systems and the corresponding collection of
hashes.

The hash lookup table 400 and the preliminary version of
the physical-address lookup table 500 may include more than
one entry for each of the hashes, since they represent a storage
system in which repeated data may be stored at more than one
physical address. The repeated entries are kept in the hash
lookup table. However, in act 750, the preliminary version of
the physical-address lookup table 500 may be pruned to
eliminate repeated entries.

The repeated entries may be easily pruned from prelimi-
nary version of the physical-address lookup table 500, since
the repeat entries will be listed next to each other, sorted by
their signature hashes. Eliminating these repeated entries in
the act 750 may be understood as cleaning out Uillleeded
references to duplicate data blocks on the storage system.
Eliminating these repeated entries creates the working physi­
cal-address lookup table 500.

To track the fact that repeated hash entries have been elimi-
nated, a reference count may be maintained for each hash
entry. In the working physical-address lookup table 500, the
reference count may indicate the number of entries in the
original data set that have a particular hash. The reference

Various implementations of the above techniques may be
used to adapt a system so that two otherwise disparate
addressing systems may be used together. For example, these
techniques may be useful in situations where a storage device
that uses one type of addressing is brought into an environ­
ment where a different type of addressing is used by a file
system (or other applications, such as database software).
Using the two lookup tables as a translation mechanism, the

60 count is shown in FIG. 5 as an additional column of the
physical-address lookup table 500. In other implementations,
the reference count may be stored separately from the physi­
cal-address lookup table 500. The reference count may ini­
tially be set to a value of 1 for each entry in the physical-

65 address lookup table 500. If repeated entries in the physical­
address lookup table 500 are eliminated for a particular hash
value, the reference count is updated in the act 750 for the

US 7,454,592 Bl
9

remaining single entry. The updated reference count indicates
the original number of data blocks that were present for that
hash value.

While the physical-address lookup table 500 is being
pruned, the data storage system may also be converted to an
SIS system by eliminating the corresponding repeated data
blocks in act 760. As repeated hash entries are eliminated
from the physical-address lookup table 500, the repeated
blocks may also be erased or otherwise ignored from the
corresponding physical addresses on the physical storage 10

devices. Erasing or ignoring the repeated information on the
physical storage devices may make storage capacity available
for further use, thereby improving the efficiency of the stor­
age system. When each of the repeated data blocks have been
eliminated from the data storage system, the data storage 15

system may be considered an SIS system.
The storage system 600 may be generated by applying the

procedure 700 to a non-SIS storage system, such as the stor­
age system 300 from FIG. 3. For example, the acts 710-750
may be used to create the lookup tables in FIGS. 4 and 5 from 20

the lookup table and the storage system in FIGS. 2 and 3.
Similarly, the act 760 may eliminate the repeated data blocks
from the non-SIS system in FIG. 3 to create the SIS system
illustrated in FIG. 6.

10
FIG. 9 is a flow diagram of one implementation of a pro­

cedure for writing data to a storage system. The write proce­
dure 900 may be executed, for example, by a volume manager
software on a host such as the host 130. The write procedure
900 commences in act 910 by receiving a write instruction.
The write instruction may be received from a file system or
some other I/0 management tool in the host. The write
instruction indicates changes that are to be made to one or
more blocks identified by one or more logical addresses. The
logical addresses may be, for example, logical block identi­
fiers. The following discussion describes a write operation
that writes to one logical address. It is also contemplated that
a write operation may be carried out on one or more addresses
or data blocks.

In act 915, the procedure then determines the new contents
of the data block that will result from the write operation, and
calculates the new hash value for the new contents. The new
contents may be specified in the write instruction that was
received in the act 910. For example, if the write instruction
included the entire contents of a block of data to be written,
then those contents will be the new contents, and the new hash
may be calculated directly from them.

Once a block-level SIS system has been created, subse­
quent reads and writes may be performed in a manner that
preserves the single-instance features of the storage system.
FIGS. 8 and 9 illustrate examples procedures that maintain
the lookup tables 400 and 500 while performing SIS read and
write operations on a storage system.

More generally, however, the write instruction may indi­
cate that only a potion of an existing data block is being

25 overwritten, or perhaps that various logical functions are to be
performed on one or more bits of the data block. In such
situations, the existing data in the data block must be read in
order to determine the contents that will result from the write
operation. The act 915 may therefore read the existing (old)

30 block contents in these situations. The old block contents may
be obtained, for example, by performing the read procedure
400 (discussed above with reference to FIG. 8) on the logical
address that was received in the act 910. These old block

FIG. 8 is a flow diagram of one implementation of a pro­
cedure 800 for reading data from a storage system. The read
procedure 800 may be executed, for example, by a volume
manager software on a host such as the host 130. The read
procedure 800 commences in act 810 by receiving a read 35

instruction. The read instruction may be received from a file
system or some other I/0 management tool in the host. The
read instruction indicates which data are to be read by pro­
viding one or more logical addresses for the data. The follow­
ing discussion describes a read operation that reads from one 40

logical address. It is also contemplated that a read operation
may be carried out on one or more addresses or data blocks. In
block-based storage systems, the logical address may typi­
cally be a logical block identifier, which indicates an address
for a block of data in a logical address space, such as on one 45

or more virtual storage devices.
In act 820, a hash lookup table is consulted to determine the

hash value of the data to be read. The hash lookup table may
have one entry for each valid logical address (or one entry for
each in-use logical address) in the storage system. Each entry 50

in the hash lookup table includes a hash value for the data
stored at the logical address. The act 820 uses the hash lookup
table to obtain a hash value that corresponds to the logical
address received with the read instruction in the act 810.

contents may then be stored in a temporary buffer memory.
The write instruction may then be performed on the old block
contents in the buffer memory, resulting in the new block
contents being stored in the buffer memory. The new hash
may then be calculated from the new contents in the buffer
memory.

The write procedure 900 then advances to a test 920. The
test 920 is the first of two decision points illustrated in the
write procedure 900. The test 920 determines if the logical
address to be written already exists in a hash lookup table. If
the logical address to be written is not already listed in an
entry in the hash lookup table, then this logical address is one
that was not currently in use, and a new entry needs to be
created in the hash lookup table. In this case, the write pro­
cedure 900 advances to a test 960.

The test 960 is the second decision point in the write
procedure 900. The test 960 determines if the new hash value
already exists in a physical-address lookup table. If the hash
value is not already listed in an entry in the physical-address
lookup table, then the write instruction may be understood as

In act 83 0, the procedure uses the hash value retrieved from
the hash lookup table to consult a physical-address lookup
table. The physical-address lookup table may have one entry
for each hash value that is being used in the storage system.
Each entry in the physical-address lookup table includes a
physical address for the data having the hash value. In block­
based storage systems, the physical address may typically be
a physical block identifier, which indicates an address for a
block of data on a storage device. The act 830 uses the physi­
cal-address lookup table to obtain a physical address that
corresponds to the hash value retrieved in the act 820.

55 creating a data block with new data that did not currently exist
in the data storage system. In this case, the write procedure
900 advances to act 970. In the act 970, the procedure allo­
cates a new data block on the data storage system, and per­
forms the write in the new data block. This write may be

The read procedure 800 concludes in act 840 by reading
data from the physical address obtained in the act 830.

60 performed, for example, by copying the contents of the tem­
porary buffer memory (from the act 915) into the new data
block.

The act 970 also creates a new entry in the physical-address
lookup table, so that the physical address of the new block of

65 data is indexed by the hash value of the newly written data.
The act 970 also creates a reference counter for this hash
value, and sets the reference counter to an appropriate value

US 7,454,592 Bl
11

(e.g., ref count:=!) that indicates that only one logical address
on the data storage system refers to the new data correspond­
ing to this hash value.

The procedure terminates in act 990 by updating the hash
lookup table with the hash value calculated in the act 915 and
with the logical address received in the act 910.

It is possible that the test 920 may determine that the logical
address to be written is already listed in an entry in the hash
lookup table. In this case, the write procedure 900 advances to
acts 930 and 940 before reaching the test 960. In the act 930,
the hash lookup table is consulted to determine the old hash
value that was previously associated with the logical address.
Since data are being written to this logical address, the old
hash value will no longer be appropriate for this logical
address. Accordingly, the reference count for this old hash
value is decremented in the act 940 to indicate that the old
hash value is now associated with one fewer logical
addresses.

If the decremented reference count in the act 940 indicates
that the old hash value is no longer associated with any logical
addresses (e.g., ref count==O), then the old hash value may be
deemed to be no longer relevant. In this case, the associated
entries in the hash lookup table and the physical-address
lookup table may be deleted or otherwise eliminated. Also,
the corresponding data block on the storage system may be
erased and/or de-allocated, so that it is available for writing.
(This old data block may then be used in a future occurrence
of act 970, in which it may be re-allocated for the storage of
a new data block.) The procedure 900 may then advance to the
test 960.

It is also possible that the test 960 may determine that a new
hash value already exists in the physical-address lookup
table. If the hash value is already listed in an entry in the
physical-address lookup table, then the write instruction is
writing data that already exists in one of the data blocks on the
data storage system. In this case, the write procedure 900 does
not need to perform a physical write of the data, since a copy
of the data is already present on the data storage system.
Additionally, the write procedure 900 does not need to create
an entry in the physical-address lookup table, since the exist­
ing entry already associates the new hash value with an appro­
priate data block. In this case, the write procedure 900
advances to act 980 (instead of act 970).

The act 980 increments the reference count for the new
hash value. That is, if the reference count for this hash value
previously indicated that four logical address were previously
associated with this hash value (e.g., ref count==4), then the
reference count is modified to indicate that five logical
address are now associated with this hash value after the write
procedure (e.g., ref count:=5). The procedure then terminates
in the act 990 by updating the hash lookup table.

The procedures 700, 800, and 900 may be adapted in vari­
ous ways. For example, the above discussions do not include
protection against hash collisions. A hash collision is an error
that could occur if a hash function produces two identical
hash values for two different data blocks. In this case, the
above procedures would incorrectly assume that the two data
blocks are identical. This error is considered unlikely, since
the probability of any two data blocks having the same hash
value is small. (For example, if a flat hash function is used to
generate 160-bit hashes, then the probability of two given
data blocks having a hash collision is 2-160

. In a storage
system holding 240 blocks of data, the probability of a hash
collision occurring would be less than (240

)
2 x2- 160 f2,., 1 o-24

.)

Nonetheless, it is envisioned that the above-described proce­
dures may be augmented to include collision-avoidance mea­
sures. For example, in acts that detect that two hash values are

12
the same, a subsequent full or partial bitwise check may be
made on the corresponding data blocks to verify that they are
also the same before proceeding further.

As discussed above, a variety of block sizes and hash
lengths may be used in various implementations of the pro­
cedures and systems described herein. Such selections may
be made by a designer based on various factors such as block
architecture, maximum amount of storage to be supported,
available computation speed, desired read/write access

10 speed, and desired resistance to hash collisions. It also con­
templated that a variety of types of hash functions may be
used, with the selection of a hash function being made by a
designer based on similar considerations. Further, it is con­
templated that more than one hash function and/or more than

15 one hash length may be used in a system, either in general or
on a case-by case basis for various entries in the hash lookup
table. Such an implementation may provide, for example,
enhanced collision resistance. Various other methods ofhard­
ening the hash-functions may also be used to reduce the

20 chances of collisions.
FIG. 10 is a block diagram of one implementation of a

computer system that may be used for or more of the tech­
niques described herein. For example, the computer system
1000 may be an implementation of one of the previously

25 described hosts 130 or 140, or storage devices 160, 170, or
180. The computer system 1000 may include a processor
1010 and a memory 1020 coupled together by a communica­
tions bus 1005. The processor 1010 may be a single processor
or a number of individual processors working together. The

30 memory 1020 is typically random access memory (RAM), or
some other dynamic storage device. Alternatively, or in addi­
tion, the memory 1020 may include other forms of removable
or fixed media (such as hard disks, tapes, or other magnetic
media; CD-ROM, DVD-RW, or other optical media; or flash

35 memory or other nonvolatile (or volatile) semiconductor
memory; among others). The memory 1020 may also be
capable of storing instructions to be executed by the proces­
sor, e.g., operating system 1022, and applications 1024, as
well as database data 1026. The database data 1026 may

40 include lookup tables. The applications 1024 may include
single-host or distributed applications, data backup applica­
tions, data protection systems for distributed applications, file
systems, and others. Memory 1020 may also be used for
storing temporary variables or other intermediate information

45 during the execution of instructions by the processor 1010.
The computer system 1000 may also include devices such

as a keyboard & mouse 1050, a SCSI interface 1052, a net­
work interface 1054, a graphics & display 1056, a hard disk
1058, and a CD-ROM 1060, all of which are coupled to the

50 processor 1010 by a communications bus 1007. It will be
apparent to those having ordinary skill in the art that the
computer system 1000 may also include numerous elements
not shown in the figure, such as additional storage devices,
communications devices, input devices, and output devices,

55 as illustrated by the ellipsis shown.
The flow charts of FIGS. 7-9 illustrate some of the many

operational examples of the techniques disclosed in the
present application. Those having ordinary skill in the art will
readily recognize that certain steps or operations illustrated in

60 FIGS. 7-9 may be eliminated or taken in an alternate order.
Moreover, the methods described in FIGS. 7-9 are typically
implemented as one or more software programs for a com­
puter system and are encoded in a computer readable medium
as instructions executable on one or more processors. The

65 computer readable medium may include an electronic storage
medium, a magnetic storage medium, or an optical storage
medium, or combinations thereof. The software programs

US 7,454,592 Bl
13

may also be carried in a communications medium conveying
signals encoding the instructions. Separate instances of these
programs may be executed on separate computer systems.
Thus, although certain steps have been described as being
performed by certain devices, software programs, processes,
or entities, this need not be the case and a variety of alternative
implementations will be understood by those having ordinary
skill in the art.

Additionally, those having ordinary skill in the art will
readily recognize that the techniques described above may be 10

utilized with a variety of different storage devices and com­
puting systems with variations in, for example, the number of
servers and the types of operation of the computing system,
e.g., various forms of storage virtualization, I/0 operations,
and addressing techniques. 15

Those having ordinary skill in the art will readily recognize
that the techniques and methods discussed above may be
implemented in software using a variety of computer lan­
guages, including, for example, traditional computer lan­
guages such as assembly language, Pascal, and C; object 20

oriented languages such as C++, C#, and Java; and scripting
languages such as Perl and Tcl/Tk. Additionally, the software
1024 may be provided to the computer system via a variety of
computer readable media including electronic media (e.g.,
flash memory), magnetic storage media (e.g., the hard disk 25

1058, a floppy disk, etc.), optical storage media (e.g., the
CD-ROM 1060), and communications media conveying sig­
nals encoding the instructions (e.g., via a network coupled to
the network interface 1054).

Although the present invention has been described in con- 30

nection with several implementations, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably included
within the scope of the invention as defined by the appended 35

claims.

What is claimed is:
1. A method comprising:
receiving a first address of a data block;
retrieving a signature corresponding to the first address,

wherein the signature is derived from at least a portion of
contents of the data block;

retrieving a second address corresponding to the signature.

40

2. The method of claim 1, where the first address is received 45

from an application by a storage manager, and the retrieving
the signature is performed by the storage manager.

11. A method comprising:
receiving a first address;

14

identifYing data to be written at the first address;
searching a first lookup table for the first address;
generating a signature based at least in part on the data;
searching a second lookup table for the signature; and
updating the first lookup table with the first address and the

signature.
12. The method of claim 11, further comprising:
updating a reference count for the signature if the searching

the second lookup table indicates that the signature is in
the second lookup table; and

updating a reference count for a previous signature if the
searching the first lookup table indicates that the first
address is in the first lookup table.

13. The method of claim 11, further comprising:
writing the data if the searching the second lookup table

indicates that the signature is not in the second lookup
table.

14. The method of claim 13, where the writing the data
comprises:

writing the data at a second address; and
updating the second lookup table with the second address.
15. The method of claim 14, where the first address is a

logical block address and the second address is a physical
block address.

16. The method of claim 11, where the first lookup table
indexes signatures by first addresses, and where the second
lookup table indexes second addresses by signatures.

17. A system comprising:
a storage manager configured to interface with an applica­

tion, where the application is configured to identify data
blocks according to a first set of identifiers for the data
blocks, and where the storage manager is configured to
access the data blocks on a storage medium according to
a second set of identifiers for the data blocks;

a first lookup table that indexes data block signatures
according to identifiers from the first set of identifiers,
wherein each of the data block signatures is derived from
at least a portion of contents of a corresponding data
block;

a second lookup table that indexes identifiers from the
second set of identifiers according to the data block
signatures.

18. The system of claim 17, where the first set of identifiers
for the data blocks comprises logical block addresses, and
where the second set of identifiers for the data blocks com­
prises physical block addresses. 3. The method of claim 2, where the storage manager is a

volume manager and the application is a file system.
4. The method of claim 1, where the first address is a logical

block address and the second address is a physical block
address.

19. The system of claim 17, where the data block signatures
50 are hashes of data in corresponding data blocks.

5. The method of claim 1, where the signature is a hash of
the data block.

6. The method of claim 1, further comprising:
retrieving the data block from the second address.
7. The method of claim 1, further comprising:
writing data to the data block at the second address.

20. The system of claim 17, where the storage manager
implements single-instance storage.

21. A computer readable storage medium having encoded
thereon program instructions executable on one or more pro-

55 cessors, the computer readable storage medium being at least
one of an electronic storage medium, a magnetic storage
medium, or an optical storage medium, where the program
instructions are executable to implement each of:

8. The method of claim 7, where the writing is performed as
60

necessary for single-instance storage.

receiving a first address of a data block;
retrieving a signature corresponding to the first address,

wherein the signature is derived from at least a portion of
contents of the data block; 9. The method of claim 1, further comprising:

deleting the signature, if the data block becomes an unused
data block.

10. The method of claim 1, further comprising:
deleting the data block, if the data block becomes an

unused data block.

retrieving a second address corresponding to the signature.
22. The computer readable storage medium of claim 21,

65 where the first address is a logical block address and the
second address is a physical block address, and where the
signature is a hash of the data block.

US 7,454,592 Bl
15

23. A computer readable storage medium having encoded
thereon program instructions executable on one or more pro­
cessors, the computer readable storage medium being at least
one of an electronic storage medium, a magnetic storage
medium, or an optical storage medium, where the program
instructions are executable to implement each of:

receiving a first address;
identifYing data to be written at the first address;
searching a first lookup table for the first address;
generating a signature based at least in part on the data;
searching a second lookup table for the signature;
updating the first lookup table with the first address and the

signature.

16
24. The computer readable storage medium of claim 23,

where the program instructions are further executable to
implement:

writing the data at a second address if the searching the
second lookup table indicates that the signature is not in
the second lookup table.

25. The computer readable storage medium of claim 24,
where the first address is a logical block address, where the

10 second address is a physical block address, and where the
signature is a hash of the data block.

* * * * *

