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(57) ABSTRACT 

Inconsistencies between configuration rules represent a sig­
nificant concern when modeling a product using configura­
tion rules. The consistency checking system approaches a 
configuration model from the perspective of a sets of features 
and families. The configuration space of a model represents 
the entire set of all combinations of selections within a con­
figuration model. The consistency checking system operates 
on subsets of the configuration space by consolidating data 
within the configuration space into minimized subsets that 
represent a portion of the configuration space where a par­
ticular consistency error can occur. Thus, the contents of each 
subset vary depending upon which consistency error is being 
checked, and consistency checking is performed on reduced 
subsets determined on an error by error basis rather than on 
the configuration space as a whole. 
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CONFIGURATION MODEL CONSISTENCY 
CHECKING USING FLEXIBLE RULE SPACE 

SUBSETS 

This application is a divisional of application Ser. No. 
10/404,891, filed Mar. 31,2003, now U.S. Pat. No. 7,200,582 
which is incorporated herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

2 
A configuration buildable describes what features can and 

can't exist with other features of a product. The example rule 
above defines a buildable configuration in the following way: 
"the 4.8 liter V8 is buildable (because it is standard) with the 
combination of XL and US." If the combination of features, 
such as of XL and US, is not buildable, the example rule is 
inactive. Consequently, even though the engine is buildable 
with that combination, if the combination is not buildable, the 
three features together are not a buildable configuration. A 

10 rule that would make the example rule inactive is the follow­
ing: 

The present invention relates in general to the field of 
information processing, and more specifically to a system and 
method for checking consistency of configuration models 
against predetermined rules and assumptions using flexible 

15 
rule space subsets. 

Main feature Optionality Constraints Timefrarne 

XL N us September 2002 Rule2 2. Description of the Related Art 

Rule 2 means "the XL trim main feature is not available 
with US from September of2002 onward." Until the XL main 
feature is made available with the US by changing the option­
ality from "N" to one that expresses a positive relationship, 
there will not be a buildable configuration for XL, US, and the 
4.8 L engine. 

A configurable product can be described by a configuration 
model having a set of configuration rules. A configurable 
product can be conceptually broken down into sets of select-

20 
able families and features of families that make up each 
product. A family represents a classification of a particular 
type of feature. Families are typically classified as groups of 
features with the same functional purpose. Example families 
for an automobile are "engines," "tires," "seats," and "exterior 
paint color." Families can be represented in terms of the 
minimum and maximum number of features that must be 
present in a configuration from a family for the configuration 

25 
Thus, a rule defines a buildable configuration between its 

main feature and its constraints only. A rule does NOT define 
a buildable configuration relationship between the members 
of its constraints. A separate rule must define that buildable 
configuration. Consequently, all rules together for a product to be valid. A common family minimum and maximum or 

"(min, max)" is (1, 1). This notation means that exactly one 
feature from the family must be part of a configuration for the 
configuration to be valid. Other common (min, max) settings 
are (0, 1 ), meaning that either no features or a single feature 
from the family must be present in a configuration for it to be 
valid, and (0, -1 ), meaning that zero or any positive number of 
features from the family must be present in a configuration for 
it to be valid. 

A feature represents an option that can be ordered on a 
product. All features are members of a family. Features are 
both assigned optionalities and used to qualifY other features 
and the optionalities assigned to them. An example feature 
from the engine family is a "4.8 liter V8." Features relate to 
each other via ordering codes or optionalities. Example 
optionalities include "S", "0", "M", and "N." which translate 
to standard, optional, mandatory, and not available. A specific 
example would be "the 4.8 liter V8 engine is standard on the 
GS trim." 

A configuration rule includes a main feature, an optional­
ity, one or more constraints, and an applicable timeframe. As 
an example: 

Main feature Optionality 

4.8literV8 s 

Constraints 

XL&US 

Time frame 

May-December Rule 1 
2003 

Rule 1 means "the 4.8liter V8 is standard with the XL trim 
and US market from May to December 2003." The main 
feature represents the feature that is being affected by the rule. 
Optionalities can be positive or negative: positive optionali­
ties state that the main feature can work with the constraints; 
negative optionalities state the main feature cannot work with 
the constraints. Constraints qualifY the rule and can be an 
arbitrary Boolean expression of features such as AND, NOT, 
and OR operators. The timeframe specifies when the other 
rule elements are effective. 

30 
define the complete product buildable configurations. In 
order to determine if the three features in the example rule 
(the main feature and the constraints) are a buildable configu­
ration, the rules written on each of those features (i.e. where 
each feature is the main feature) need to be considered jointly. 

35 
Inactive rules do not define buildable configurations until 
they become active. 

Inconsistencies between rules represent a significant con­
cern when modeling a product using rules. Inconsistencies 
among rules in configuration models result in errors that 

40 
negatively impact the usability of a configuration model. 
Inconsistencies can occur due to modeling mistakes or due to 
multiple parties generating rules for the same configuration 
model. Thus, detecting inconsistency errors through consis­
tency checking plays an important role in developing useable, 

45 
robust configuration models. For example: 

50 

Main feature 

XL 
XL 

Optionality 

N 
s 

Constraints 

us 
us 

Timefrarne 

September 2003 
September 2003 

Rule 3 
Rule4 

Rule 3 and Rule 4 are inconsistent because Rule 3 signifies 
that the feature XL is not available in the U.S. market, and 

55 Rule 4 signifies that the feature XL is standard in the U.S. 
market. As the number of rules grows, the ability to detect 
inconsistencies becomes more challenging. 

FIG.l depicts a set of rules 100 with features Fl-F4 of a 
single family, optionalities, and constraints represented by 

60 families A, B, C, D, E (each having "X" number offeatures). 
FIGS. 2 and3 depict the rules ofFIG.l in respective grids 200 
and 202 and illustrate two conventional ways of detecting 
inconsistencies between rules. In FIG. 2A, each cell in a 
column is compared against every other cell in a colunm. An 

65 inconsistency error exists if two cells with a colunm have 
inconsistent optionalities or other assumptions are violated, 
such as a lack of a standard configuration in a column. Some 
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configurable products have tens of thousands or hundreds of 
thousands of rules defining buildable configurations. As the 
number of rules and, thus, colunms in the grid of FIG. 2A 
grow, column by colunm inconsistency checking becomes 
very computationally time consuming. 

FIG. 2B depicts a variation on the colunm-by-colunm con­
sistency checking approach of FIG. 2A. In FIG. 2B colunms 
with identical optionalities are grouped together. Thus, the 
number of consistency checking operations is reduced; how­
ever, this can still result in long periods of computational 
processing. 

SUMMARY OF THE INVENTION 

4 
FIGS. llA, llB, llC, and llD depict a use of trie data 

structures and set routines to determine a missing optionality 
consistency error within a subset of a configuration space. 

FIG.12 depicts a use oftrie data structures and set routines 
to determine a consistency error when a usage rule is present, 
a standard optionality is required, and no standard optionality 
is present. 

FIG. 13 depicts an operational flow chart to determine a 
consistency error indicating the existence of multiple stan-

10 dards for a subset of configuration rules. 
FIGS. 14A, 14B, 14C, 14D, and 14E depict a use of trie 

data structures and set routines to determine a consistency 
error indicating the existence of multiple standards for a 
subset of configuration rules. 

In one embodiment of the present invention, a method of 15 

detecting multiple consistency error types between configu­
ration rules, wherein each consistency error is represented by 

FIG. 15 depicts example configuration rules to illustrate 
consistency checking operations of the consistency checking 
system of FIG. 4 when determining a consistency error that 
occurs when mandatory or legal optionalities conflict with an 
"optional" optionality. 

a set equation, includes, for each consistency error, identifY­
ing one or more sets of feature combinations in accordance 
with the set equation of the consistency error. The method 20 

further includes detecting the consistency error using the one 
FIG. 16 depicts a grid containing the rules of FIG. 15. 
FIGS. 17A, 17B, and 17C depict a use oftrie data struc­

tures and set routines to determine a consistency error that 
occurs when mandatory or legal optionalities conflict with an 
"optional" optionality. 

or more identified sets of feature combinations and the set 
equation associated with the consistency error. 

25 
FIG. 18 depicts a block diagram depicting a network envi-

In another embodiment of the present invention, a consis­
tency checking system for detecting multiple consistency 
error types between configuration rules, wherein each con­
sistency error is represented by a set equation, the system 
including a processor and a memory coupled to the processor. 
The memory having instructions executable by the processor 
that for each consistency error identifies one or more sets of 30 

feature combinations in accordance with the set equation of 
the consistency error and detects the consistency error using 
the one or more identified sets of feature combinations and the 

ronment in which a consistency checking system may be 
practiced. 

FIG. 19 depicts a computer system. 

DETAILED DESCRIPTION 

Although the present invention has been described in 
detail, it should be understood that various changes, substi-

35 tutions and alterations can be made hereto without departing 
from the spirit and scope of the invention as defined by the 
appended claims. 

set equation associated with the consistency error. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention may be better understood, and its 
numerous objects, features and advantages made apparent to 
those skilled in the art by referencing the accompanying 
drawings. The use of the same reference number throughout 
the several figures designates a like or similar element. 

FIG. 1 (prior art) depicts a set of configuration rules having 
features, optionalities, and constraints. 

FIG. 2A (prior art) depicts a colunm-by-colunm approach 
to rule consistency checking. 

FIG. 2B (prior art) depicts a consolidation of identical 
colunms followed by a colunm-by-colunm approach to rule 
consistency checking. 

FIG. 3 depicts a grid with features grouped in accordance 
with particular consistency checking error operations. 

FIG. 4 depicts a consistency checking system. 
FIG. 5 depicts an operational flow chart for the consistency 

checking system of FIG. 4. 

FIG. 6A depicts an example trie data structure. 
FIG. 6B depicts a binary form of the trie data structure of 

FIG. 6A. 
FIGS. 7 A, 7B, and 7C depict trie minimization operations 

applied to the trie data structure of FIGS. 6A and 6B. 
FIG. 8 depicts example configuration rules to illustrate 

consistency checking operations of the consistency checking 
system of FIG. 4. 

FIG. 9 depicts a grid containing the rules of FIG. 8. 

FIG. 10 depicts a configuration space with multiple sub­
sets. 

As stated above, inconsistencies between rules represent a 
significant concern when modeling a product using rules. The 

40 amount of time and processing resources used to perform 
consistency checking also represents a significant concern. 
Long processing times for consistency checks introduce a 
number of problems, such as detrimental postponement of 
consistency checks, reluctance to make changes to a configu-

45 ration model, and work force inefficiencies. Embodiments of 
the consistency checking system described herein improve 
consistency checking performance, especially when per­
forming consistency checks on large configuration models, 
i.e. configuration models having a large number of rules. 

50 The consistency checking system approaches a configura-
tion model from the perspective of sets of features and fami­
lies. The configuration space of a model represents the entire 
set of all combinations of selections within a configuration 
model. The consistency checking system operates on subsets 

55 of the configuration space by consolidating data within the 
configuration space into minimized subsets that represent a 
portion of the configuration space where a particular consis­
tency error can occur. Thus, the contents of each subset vary 
depending upon which consistency error is being checked, 

60 and consistency checking is performed on reduced subsets 
determined on an error by error basis rather than on the 
configuration space as a whole. 

One difficulty that has been overcome by embodiments of 
the consistency checking system described herein is the iden-

65 tification of individual consistency errors and the ability to 
identify the subsets of the configuration space where such 
consistency errors can occur. 
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Following are four examples of consistency error types that 
utilize subsets of the configuration space to efficiently iden­
tify associated consistency errors. The particular subsets and 
example data structure representation and set operations are 
described in more detail below. Arbitrary labels are applied to 
each consistency error type for reference purposes. 

(a) Error "F1" no usage rule of any optionality for a par­
ticular configuration of families and features. 

6 
any consistency errors in the configuration space. Operation 
510 displays or otherwise reports the results of operation 508. 
The consistency checking operations 500 can be repeated as 
often as desired, such as after a configuration model is revised 
or additional consistency error checks are desired. 

The consistency checking system 400 uses a trie data struc­
ture in one embodiment to represent subsets of configuration 
data. An overview of the trie data structure follows to facili­
tate understanding of the set operations conducted by consis-(b) Error "F2 (a)" -a usage rule is present, but a standard 

optionality is required and no standard optionality is 10 tency checking operations 500. 
present. 

(c) Error "F2 (b)"-multiple standards. 
(d) Error "F2 ( c )"-mandatory and legal optionalities con­

flict with an "optional" optionality. 

Referring to FIG. 6A, a trie data structure 600, or trie, 
extends the typical ordered binary decision diagram data 
structure. The ordered binary decision diagram is a directed 
acyclic graph (DAG) data structure with nodes connected by 

Another difficulty overcome by the consistency checking 
system relates to identifying and refining a data structure to 
represent such subsets and determining the 'mathematical set 
operations' applied to the data structure in a data processing 
system that provide identification of consistency errors. A trie 
data structure effectively represents the configuration sub­
sets, and data processing systems can efficiently conduct set 
operations on the trie data structures. 

15 edges. Nodes are organized into levels, where each level 
represents a single binary variable. The levels are ordered in 
a known marmer. Each edge that starts at a node in level "i" 
ends at a node in level "j" such that "i<j" according to the 
ordering of the levels. The outgoing edges from each node are 

20 labeled with values that represent the value of the variable at 
the originating node (either 1 or 0). Every path through the 
DAG ends at one of two special nodes, labeled "0" and "1." 
The ordered binary decision tree can be used to evaluate 
whether a particular conclusion can be reached based on 

FIG. 3 depicts an example grid that reflects the consolida­
tion of features and columns in the grid into subsets. For 
example, the F1 consistency error operates on the set of 
features having standard, mandatory, optional, and legally 
required optionalities less restrictions. The F2( a) consistency 
error operates on a first set of features having 'optional' 
optionalities and a second set of features having standard, 
mandatory, and legally required optionalities. The F2( c) con- 30 

sistency error operates on a first of features having mandatory 
and legally required optionalities and a second set of features 
having 'optional' optionalities. These sets can be further 
refined as described below to account for restricted configu­
rations and other contingencies. 

25 whether a path through the DAG that matches certain pro­
vided input criteria (typically, one or several of the variables 
with an assigned binary value) ends at the special node "0" or 
"1 ". 

Whereas the ordered binary decision diagram assigns a 
binary variable to a level and a binary value to an edge, the trie 
data structure 600 assigns a multi-valued variable to a level 
and a set of binary values to each node. Whereas the ordered 
binary decision diagram explicitly includes special nodes "0" 
and "1", the trie data structure 600 does not, and only edges 

35 that belong to paths that would end at node "1" are included. 
FIG. 4 depicts consistency checking system 400, which 

includes a model having the configuration rules that define the 
configuration space of one or more products. The consistency 
checking system 400 also includes a consistency checking 
error operations module 404 that includes consistency error 40 

definitions and operations to generate configuration subsets 
based on a particular consistency error being checked, asso­
ciated data structure generation, and set operation formulae to 
detect consistency errors in configuration model 402. Con­
sistency checking system 400 initiates selected consistency 45 

checking operations in accordance with user input 406. User 
input 406 represents, for example, user entered requests 
through a data entry mechanism and/or preprogrammed 
operation instructions for consistency checking system 400. 
The consistency checking system 400 generates a display or 50 

other type of report of results of the consistency checking 
operations performed by consistency checking system 400. 

FIG. 5 depicts an operational flow chart of consistency 
checking operations 500 for consistency checking system 
400. In operation 501 a user selects a specific family to 55 

consistency check (which becomes the "main family", or 
consistency checking will loop through all families in the 
model, selecting each in turn as the main family. In operation 
502 a user selects a consistency checking error operation. The 
selection could be a manual entry or an automated entry, and 60 

can select specific consistency error operations, all consis­
tency error operations, or any combination of consistency 
error operations. Operation 504 consolidates selected con­
figuration space data into feature subsets based on particular 
selected consistency error operation. Operation 506 popu- 65 

lates data structures with the feature subsets in preparation for 
conducting set math routines in operation 508 to determine 

In one embodiment such as an automotive configuration 
space context, the trie has special meaning: each level 602 of 
the trie is a family, the nodes 604 of the level are sets of 
features within this family, each feature (i.e. member of the 
set X1, A1, A2, A3, B1, and B2) can assume a binary value, 
and the trie 600 as a whole represents the constraint features 
of rules associated via an optionality with a main feature. 

The trie data structure 600 represents the value of the 
variable at each node through the values of the features in the 
set at that node. The value of the variable at each node and 
through all levels of the trie 600 communicates the value of 
the trie 600. Trie 600 represents the following configurations: 

{X1,A1, B1},{X1,A2, B2}, {X1,A3, B2} 
These buildable configurations are expressed by the fol­

lowing example configuration rules: 

Main feature Optionality Constraints 

X1 0 all 
A1 0 X1 
A2 0 X1 
A3 0 X1 
B1 0 A1 
B2 0 A2 
B2 0 A3 

Referring to FIGS. 6A, 6B, and 7, in one embodiment, the 
binary form of trie 600 uses one bit per feature. A known 
family and feature ordering of the bits, a known number of 
bits per family, and a value of each bit can completely define 
each trie 600. For example, FIG. 6B depicts trie 600 in its 
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binary form. Since family X has only one feature, it is repre­
sented by a single bit, with 1 =present and O=absent. Family A 
has 3 features, Al, A2, and A3. Thus, branch 706 is repre­
sented by the binary sequence 1100100, with the most sig­
nificant bit representing the X family, the next 3 most signifi- 5 

cant bits representing the A family, and the 3 least significant 
bits representing the B family. Accordingly, branch 708 is 
represented by the binary sequence 1 01 001 0, and branch 710 
is represented by the binary sequence 1001010. It will be 
evident to those of ordinary skill in the art that other coding 10 

schemes may be used to define a trie. 
In one embodiment, through all trie operations ( comple­

ment, intersect, union, subtract, etc.), the trie DAGs are kept 
minimized using the following rules: (1) multiple identical 
leaf nodes are consolidated into a single leaf node with mul- 15 

tiple parents, (2) multiple identical interior nodes with iden­
tical sets of child nodes are consolidated into a single interior 
node with multiple parents, and (3) sibling nodes (nodes with 
the same parent) with identical sets of child nodes are con­
solidated into a single node. Building tries using these rules 20 

provides a significant reduction in memory requirements and 
computation time. 

Applying the minimization process to trie 600, first mini­
mization rule can be applied to B2 nodes, yielding trie 700. In 
our example, the independent nodes { A2} and { A3} and 25 

paths {A2}-{B2} and {A3}-{B2} became a consolidated 
node {A2,A3} 702 and a reduced path {A2,A3}-{B2} 704 as 
depicted in FIG. 7A. 

In one embodiment the minimization operation compares 
corresponding bits in each sub-branch of trie 600's binary 30 

form beginning with siblings of the first level and proceeding 
downward through the levels until the leaf level is reached. 
For example, the first level in trie 600 corresponds to the A 
family, thus, the binary forms of the sub-branches of each 
feature in the A family are compared. The A1 sub-branch is 35 

100, theA2 sub-branch is 010, and theA3 sub-branch is 010. 
TheA2 andA3 sub-branches are identical, thusA2 andA3 are 
combined as depicted in FIG. 7 A. FIG. 7B depicts the binary 
form oftrie 700. 

The third trie minimization rule can apply to nodes A2 and 40 

A3 which have the same parent (Xl) and the same children 
(B2) resulting in trie 712 of FIG. 7C in a minimized form with 
associated binary values. 

8 
Consistency error F2b identifies "multiple standards" by 

identifying S, M, L subsets for one feature that over­
laps with S, M, L subsets for another feature in the 
same family. Sort the S, M, L rules into groups by their 
main feature. For each main feature, create a build­
ability trie "featureSML" with all the S/M/L rules for 
that main feature, and create a buildability trie "fea­
tureR" with all the R rules for that main feature. Then 
execute the algorithm depicted in FIG. 13. Note a 
[NR] trie representing not released rules can be sub­
tracted from [F2b] to refine the resulting consistency 
error by excluding any consistency errors associated 
with configuration rules that are not required to be 
present as of the time of the consistency check. 

(d) Error "F2 (c)"-mandatory/legal optionalities conflict 
with an "optional" optionality. 
Consistency error F2c identifies M, L overlaps with 0. 

[F2c]=([ML-Rn0-R]). Note a [NR] trie represent­
ing not released rules can be subtracted from [F2c] to 
refine the resulting consistency error by excluding any 
consistency errors associated with configuration rules 
that are not released as of the time of the consistency 
check. The [F2b] trie can also be subtracted from 
[F2c] to eliminate replication of consistency errors. 

Brackets"[ ... ]"indicate that subset features of the main 
family are consolidated into a single subset. "Error [Fl]=­
[SOML-R] is interpreted as follows. "[SOML-R]" repre­
sents the subset of main family rules that contain optionalities 
S, 0, M, or L minus the subset of main family rules that 
contain an optionality R. A "usage rule" indicates that the 
content of a rule includes an optionality. Example optionali­
ties include: 

L=legally required; 
M=mandatory; 
NR =not released; 
O=optional; 
R =restricted; and 
S=standard. 
Equations for consistency errors may be modified if spe-

cific types of rules are not present in a system. For example, if 
M or L rules are not present, simply remove them from each 
of the consistency error equations. IfR rules are not present, 
simply remove them from each of the consistency error equa-The consistency checking system 400 can be used to deter­

mine numerous types of consistency errors that can occur 
among configuration rules in a configuration model. The four 
previously specified consistency errors are repeated below 
with an identification of subsets used to determine consis­
tency errors and subset routines used by consistency checking 
system 400 to determine consistency errors. 

45 tions. Additionally, if rules are added, they can be added to the 
equations. For example, if L and R rules are not present, 
consistency error Fl, F2a, and F2c equations become: 

Fl~-[SOM]; 

50 
F2a~[O}-[SAfj;and 

(a) Error "Fl" no usage rule of any optionality for a par­
ticular configuration of families and features. 
[Fl]=-[SOML-R]. Note, if "release-not-required" 

rules exist, a [NR] trie representing not released rules 
can be subtracted from [Fl] to refine the resulting 
consistency error by excluding any consistency errors 
associated with configuration rules that are not 
required to be present as of the time of the consistency 
check. 

FIG. 8 depicts a visualization of the above consistency 
55 error Fl and how sets can be utilized and set routines exer-

(b) Error "F2 (a)" -a usage rule is present, a standard 60 

optionality is required, and no standard optionality is 
present. 
[F2a]=([O-R]-[SML-R]). Note, if "no-standard-re­

quired rules exist" then an [RS] trie containing the 
complement of all no standard required rules can be 65 

subtracted from [F2a]. 
(c) Error "F2 (b)"-multiple standards. 

cised to determine consistency errors. Configuration space 
800 contains a set of all possible feature combinations that 
could be a part of product. Subset 802 represents a subset of 
feature combinations that contain main features with one or 
more S, 0, M, and L optionalities. Subset 804 represents a 
subset of feature combinations containing main features with 
an R optionality. This grouping of subsets allows consistency 
checking system 400 to determine the subtraction subset 
SOML-R806. 

FIG. 9 depicts example configuration rules 900 to illustrate 
consistency checking operations of the consistency checking 
system of FIG. 4. Virtually any number of features, option-
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ali ties, and constraints can be processed for consistency using 
consistency checking system 400. Example optionalities 
include: 

L=legally required; 
M=mandatory; 
NR=not released; 
O=optional; 
R=restricted; and 
S=standard. 
Features EN1 and EN2 represent 2 engines from an engine 

family. Features TR1, TR2, and TR3 represent 3 transmis­
sions from a transmission family. Features AX1, AX2, and 
AX3 represent 3 axles from an axle family. The rules depicted 
in FIG. 9 are interpreted as described above. For conciseness, 
all optionalities are not used in the configuration rules 900 and 
the examples below, but they can be applied in a data structure 
and set routines performed in the same manner as the depicted 
optionalities in the below examples. 

FIG. 10 depicts grid 1000 containing the rules of FIG. 9 
where AX is the "main family.". From the grid representation 
to visualize the trie data structures discussed below. Grid 
1002 is identical to grid 1000 and illustrates the feature con­
solidation operation described above and indicated with 
brackets"[ ... ]".Selections 1008, 1010, 1012, and 1014 are 
members of the (SOML-R) set, i.e. '={(AXl.ENl.TR1), 
(AXl.ENl.TR2), (AX2.EN1.TR2), (AX3.EN2.TR2)}. Col­
unms 1002, 1004, and 1006 are members of the [SOML-R] 
set, i.e. {(EN1.TR1), (EN1.TR2), (EN2.TR2)}. 

A description of the four example consistency errors fol­
lows with reference to consistency checking operations 500. 
Errors F1, F2a, and F2b are illustrated below using configu­
ration rules 900. Since configuration rules 900 do not contain 

10 
i.e. theintersectionofSOML trie 1102 with--, R trie 1108 

by subtracting each--, R path 1108 from each SOML path 
1102. The numbers 1 through 6 illustrate the paths involved in 
the subtraction operation and the corresponding resulting trie. 

5 The six resulting paths in trie 1110 together represent the 
intersection of SOML'--, R. 

Referring to FIG. 11 C, the empty paths of tries 1110 can be 
discarded, thus reducing trie 1110 to trie 1112. After consoli­
dating the axle level (not shown), two of the three paths oftrie 

10 1112 are identical, thus trie 1112 can be reduced to two paths 
1114. Furthermore, the main features representing the axles 
(indicated by the asterisk"*") are consolidated into a smaller 
subset represented by [SOML-R] trie 1114. [SOML-R] trie 
1114 is rearranged into trie 1116 so that the root level of each 

15 trie has only one feature represented. In one embodiment, this 
rearrangement is performed to maintain an invariant required 
by one embodiment of the specification of the trie data struc­
ture, i.e. no node is allowed to have immediate children with 
overlapping sets. In this case the * node has children 11 and 

20 01, which overlap. Tries 1118 and 1120 can be minimized to 
form trie 1122, which results in [SOML-R] trie 1124. 

As discussed above, subtracting [SOML-R] trie 1124 from 
an ALL trie 1126 determines the complement of [SOML-R] 
trie 1124. First subtracting path 1128 from ALL trie 1126 and 

25 then subtracting path 1132 from the result produces 
-[SOML-R], i.e. the complement of [SOML-R]. Subtract­
ing path 1128 from ALL trie 1126 produces paths 1130, and 
subtracting path 1132 from paths 1130 produces -[SOML­
R] trie 1134. The -[SOML-R] trie 1134 represents the con-

30 figuration ofTR1 (transmission 1) and EN2 (engine 2). Thus, 
consistency checking system 400 correctly determines that 
consistency error F1 =-[SO ML-R ]113 6 is that the comb ina­
tion ofTransmission 1 and Engine 2 lacks an axle. Operation an NR optionality, operations involving subsets ofNR rules 

are not presented below. However, the following examples 
can easily be extrapolated to include NR set operations as 35 

well as other set operations utilized by consistency error 
operations. For example, it will be recognized by those of 
ordinary skill in the art that any number of other consistency 
error types can be formulated using set equations, and con­
sistency errors can be detected using the consistency check­
ing system and operations described herein. 

510 displays/reports the Fl consistency error. 
FIG.12 depicts a use oftrie data structures and set routines 

by consistency checking system 400 in accordance with con­
sistency checking operations 500 to determine a consistency 
error when a usage rule is present, a standard optionality is 
required, and no standard optionality is present. Consistency 

40 error trie [F2a] is determined by set routine [F2a]=([O-R]­
[SML-R]) pursuant to operation 504. Operation 506 gener­
ates the following trie data structures, operation 508 performs 
the set math routines in the marmer discussed with reference 
to FIG.11. 

The SML trie 1202 represents axle, transmission, and 
engine configurations having a standard, mandatory, or 
legally required optionality. The R trie 1204 represents axle, 
transmission, and engine configurations that are restricted. 
The intersection of SML trie and --,R trie 1206 and consoli-

FIGS. 11A, 11B, 11C, and 11D depict a use of trie data 
structures and set routines to determine consistency error F1 
within a subset of a configuration space. Consistency error 
trie [F1] is determined by set routine [F1]=-[SOML-R]. In 45 

accordance with operation 504, the consistency checking sys­
tem 400 identifies the subsets SOML and R. The SMOL trie 
1102 represents the set of axle, transmission, and engine 
feature configurations having a standard, mandatory, 
optional, or legally required optionality. The R trie 1104 
represents the set of axle, transmission, and engine feature 
configurations that are restricted. Pursuant to operation 506, 
three binary form trie data structures 1102 represent the 
SOML subset using the methodology described above in 
conjunction with FIGS. 6 and 7. The main features are listed 

50 dation of the main family features (axles) results in [SML-R] 
trie 1208. The -[SML-R] trie 1210 represents the comple­
ment of [SML-R] trie 1208. The 0 trie 1212 represents 
transmission and engine constraints on the axle family having 
an 'optional' optionality. The [O-R] trie 1214 represents the 

55 set of transmission and engine constraints on the axle family 
having an 'optional' optionality less the set of transmission 
and engine constraints on the axle that are restricted. The 
[0-R]-[SML-R] trie represents the consistency error trie 
[F2a]. The consistency error is correctly identified and 

at the root of the SOML trie data structures 1102 followed by 
constraints associated with the main features. Trie data struc­
ture 1104 represents the R subset. 

To perform a subtraction between trie data structures, con­
sistency checking system 400 determines the complement of 
the subtrahend trie and performs an intersection between the 
minuend trie and the subtrahend complement trie. The 
complement of the subtrahend trieR 1104 is determined by 
subtracting R trie 1104 from All trie 1106 (i.e. a trie repre­
senting all configuration combinations). --, R tries 1108 rep­
resents the complement of R (also often referred to as "not 
R"). Operation 508 performs the intersection SOML'--,R. 

60 reported as the configuration rules that include transmission 2 
and engine 2 constraints on the axle family have no standard. 

FIG. 13 depicts a flow chart of multiple standard consis­
tency error operation 1300 to determine an F2b consistency 
error indicating the existence of multiple standards for a 

65 subset of configuration rules. Consistency error operational 
flow chart 1300 progresses along each row of main features in 
configuration rules 900, identifies a subsets of standards, and 
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compares the subsets of standards for previous identified 
standards. An F2b consistency error exists when there are 
multiple standards in configuration rules 900. 

FIGS. 14A, 14B, 14C, 14D, and 14E (collectively "FIG. 
14") depict a use of trie data structures and set routines to 5 

determine a consistency error indicating the existence of mul­
tiple standards for a subset of configuration rules. Referring to 
FIGS. 13 and 14, operation 1300 begins with operation 1302 
and proceeds to set a counter variable, i, to 0. Operation 1306 
creates an empty set for tries [F2b]0 1402 and [familySML]0 10 

1404. Operation 1308 sets the variable, N, equal to the num­
ber of main features in configuration rules 900, which equals 
three in this embodiment, i.e. AX1, AX2, andAX3. In opera­
tion 1310, consistency error trie [F2bL1=[F2b],U ([fam­
ilySML],'[featureSML-featureRL). Trie [featureSML-fea- 15 

tureR] 0 is minimized trie 1408 by eliminating the empty set 
trie 1407 and consolidating the main feature level. Trie 1500 
represents the intersection of tries [familySML]0 1404 and 

12 
from (0) trie 1718. The [F2c]=[O-RnML-R]1714 trierep­
resents the consistency error trie [F2c], which indicates a 
consistency error 1716 with configuration rules 1500. Spe-
cifically, the transmission 2 and engine 2 constraints on the 
axle family have conflicting legal and/or mandatory option­
alities with an "optional" optionality. 

Thus, consistency checking system 400 determines consis­
tency errors in configuration rules efficiently by operating on 
subsets of data that are particularly applicable to the consis­
tency error being checked. Furthermore, specific set opera­
tions and data structures have been identified to perform the 
consistency checks. 

FIG. 18 is a block diagram depicting one embodiment of a 
network environment in which a consistency checking sys­
tem 400 may be practiced. Network 1802 (e.g. a private wide 
area network (WAN) or the Internet) includes a number of 
networked server computer systems 1804(1)-(N) that are 
accessible by client computer systems 1806(1)-(N), where N [ featureSML-featureR]

0 
1408. The union ("U") oftrie [F2b]0 

and trie 1500 produces trie [F2b]r 1502. 
Referring to FIGS.13 and 14B, operation 1312 increments 

20 
is the number of server computer systems connected to the 
network. Communication between client computer systems 
1806(1)-(N) and server computer systems 1804(1)-(N) typi­
cally occurs over a network, such as a public switched tele­
phone network over asynchronous digital subscriber line 

i by 1, and operation 1314 determines whether i=N. Ifi=N, 
then operation 1300 stops at operation 1318 with the trie 
[F2b] N representing the consistency error. Since at this stage, 
i=l, operation 1300 proceeds to operation 1316 to determine 25 

([ familySML ],+1 =([ familySML ],U[ featureSML-featureR] 
,). The union of tries [familySML]0 1504 and [featureSML­
featureR]0 1506 produces (familySML) 1 trie 1508, which 
becomes trie 1510 with consolidation of the main family 
features. Operation 1300 returns to operation 1310 and pro- 30 

ceeds as discussed above until i=3. FIGS.14C, 14D, and 14E 
depict the resulting tries and trie operation results through 
i=3. The [F2b ]3 trie represents the multiple standards consis­
tency errortrie [F2a]. The consistency error 1422 is correctly 
identified and reported as the transmission 2/engine 1 con- 35 

figuration has multiple standards. 
FIG. 15 depicts example configuration rules 1500 to illus­

trate consistency checking operations of the consistency 
checking system of FIG. 4 when determining a consistency 
error that occurs when mandatory or legal optionalities con- 40 

flict with an "optional" optionality. Configuration rules 1500 
differ from configuration rules 9 by including a configuration 
rule {AX1 M EN2.TR2}. FIG. 16 depicts a grid containing 
the rules of FIG. 15 where AX is the main family. 

FIGS.17A, 17B, and 17C (collectively "FIG.17") depict a 45 

use of trie data structures and set routines to determine a 
consistency error that occurs when mandatory or legal option­
alities conflict with an "optional" optionality. Consistency 
error trie [F2c] is determined by set routine [F2c ]=([ML-R] 
'[0-R]) pursuant to operation 504. Operation 506 generates 50 

the following trie data structures, operation 508 performs the 
set math routines in the manner discussed with reference to 
FIG.17. 

(ADSL) telephone lines or high-bandwidth trunks, for 
example communications channels providing Tl or OC3 ser­
vice. Client computer systems 1806(1)-(N) typically access 
server computer systems 1804(1)-(N) through a service pro­
vider, e.g., an Internet service provider such as America On-
Line™ and the like, by executing application specific soft­
ware, commonly referred to as a browser, on one of client 
computer systems 1806(1)-(N). 

Client computer systems 1806(1)-(N) and/or server com­
puter systems 1804(1)-(N) may be, for example, computer 
systems of any appropriate design, including a mainframe, a 
mini-computer, a personal computer system, or a wireless, 
mobile computing device. These computer systems are typi­
cally information handling systems, which are designed to 
provide computing power to one or more users, either locally 
or remotely. Such a computer system may also include one or 
a plurality of input/output ("I/0") devices coupled to the 
system processor to perform specialized functions. Mass stor­
age devices such as hard disks, CD-ROM drives and mag­
neto-optical drives may also be provided, either as an inte­
grated or peripheral device. One such example computer 
system is shown in detail in FIG. 19. 

Embodiments of the consistency checking system 400 can 
be implemented on a computer system such as a general­
purpose computer 1900 depicted in FIG. 19. Input user device 
(s) 1910, such as a keyboard and/or mouse, are coupled to a 
bi-directional system bus 1918. The input user device(s) 1910 
are for introducing user input to the computer system and 
communicating that user input to processor 1913. The com­
puter system of FIG. 19 also includes a video memory 1914, The ML trie 1702 represents axle, transmission, and engine 

configurations having mandatory or legally required option­
alities. The R trie 1704 represents axle, transmission, and 
engine configurations that are restricted. The intersection of 
ML trie 1702 and --,R trie 1706 results in (ML-R) trie 1708. 
The consolidation of the main family features (axles) results 
in [ML-R] trie 1710 The [O-R] trie 1712 represents the set of 
transmission and engine constraints on the axle family having 
an 'optional' optionality less the set of transmission and 
engine constraints on the axle that are restricted. (0) Trie 
1718 represents the set features in grid with' optional' option­
alities, and trie --,R 1720 includes two paths representing 
features in grid 1600 with restriction optionalities. (O-R) trie 
1722 represents the subtractionofeach path of( -R) trie 1720 

55 main memory 1915 and mass storage 1909, all coupled to 
bi-directional system bus 1918 along with input user device 
(s) 1910 and processor 1913. The mass storage 1909 may 
include both fixed and removable media, such as other avail­
able mass storage technology. Bus 1918 may contain, for 

60 example, 32 address lines for addressing video memory 1914 
or main memory 1915. The system bus 1918 also includes, for 
example, ann-bit DATA bus for transferring DATA between 
and among the components, such as CPU 1909, main 
memory 1915, video memory 1914 and mass storage 1909, 

65 where "n" is, for example, 32 or 64. Alternatively, multiplex 
DATA/address lines may be used instead of separate DATA 
and address lines. 
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I/0 device(s) 1919 may provide connections to peripheral 
devices, such as a printer, and may also provide a direct 
connection to remote server computer systems via a tele­
phone link or to the Internet via an internet service provider 
(ISP). I/0 device(s) 1919 may also include a network inter­
face device to provide a direct connection to remote server 
computer systems via a direct network link to the Internet via 
a POP (point of presence). Such connection may be made 
using, for example, wireless techniques, including digital 
cellular telephone connection, Cellular Digital Packet Data 10 

(CDPD) connection, digital satellite data connection or the 
like. Examples of I/0 devices include modems, sound and 
video devices, and specialized communication devices such 
as the aforementioned network interface. 

Computer programs and data are generally stored as 15 

instructions and data in mass storage 1909 until loaded into 
main memory 1915 for execution. Computer programs may 
also be in the form of electronic signals modulated in accor­
dance with the computer program and data communication 
technology when transferred via a network. The method and 20 

functions relating to consistency checking system 400 may be 
implemented in a computer program alone or in conjunction 
with hardware. 

The processor 1913, in one embodiment, is a 32-bit micro­
processor manufactured by Motorola or microprocessor 25 

manufactured by Intel, such as the Pentium processor. How­
ever, any other suitable single or multiple microprocessors or 
microcomputers may be utilized. Main memory 1915 is com­
prised of dynamic random access memory (DRAM). Video 
memory 1914 is a dual-ported video random access memory. 30 

One port of the video memory 1914 is coupled to video 
amplifier 1918. The video amplifier 1918 is used to drive the 
display 1919. Video amplifier 1918 is well known in the art 
and may be implemented by any suitable means. This cir­
cuitry converts pixel DATA stored in video memory 1914 to a 35 

raster signal suitable for use by display 1919. Display 1919 is 
a type of monitor suitable for displaying graphic images. 

The computer system described above is for purposes of 
example only. The consistency checking system 400 may be 
implemented in any type of computer system or program- 40 

ming or processing environment. It is contemplated that the 
consistency checking system 400 might be run on a stand­
alone computer system, such as the one described above. The 
consistency checking system 400 might also be run from a 
server computer systems system that can be accessed by a 45 

plurality of client computer systems interconnected over an 
intranet network. Finally, the consistency checking system 
400 may be run from a server computer system that is acces­
sible to clients over the Internet. 

14 
identifYing one or more sets of feature combinations in 

accordance with the set equation of the consistency error 
type in which a particular type of consistency error can 
occur; 

if a consistency error of the consistency error type exists in 
the one or more sets of feature combinations, detecting 
the consistency error using the one or more identified 
sets of feature combinations and the set equation asso-
ciated with the consistency error type; and 

providing data, to a computer system for display by a 
display device, wherein the data indicates any detected 
consistency error. 

2. The method of claim 1 wherein the configuration rules 
includes features, optionalities, and constraints, and each set 
equation includes sets offeatures grouped by selected option­
alities. 

3. The configuration method of claim 2 wherein optionali­
ties include mandatory, standard, optional, and restricted. 

4. The method of claim 1 wherein detecting the consistency 
error using the one or more identified sets of feature combi­
nations and the set equation associated with the consistency 
error type further comprises: 

performing set math routines in accordance with the set 
equation associated with the consistency error type on 
the identified one or more sets of feature combinations to 
detect any consistency error in the one or more sets of 
feature combinations. 

5. The method of claim 1 further comprising: 
generating a trie data structure having levels and nodes to 

represent the features in the configuration rules, wherein 
each family is represented in a distinct level of the trie 
data structure and each respective feature representation 
is represented by a single node. 

6. The method of claim 1 wherein the set equation includes 
a representation of an inclusion of subsets of features of a 
family of features associated with a first one or more option­
alities and removal of subsets of features of the family of 
features associated with a second one or more optionalities. 

7. The method of claim 1 wherein a configuration space 
represents a plurality of feature combinations and identifying 
one or more sets of feature combinations in accordance with 
the set equation of the consistency error type further com­
prises: 

determining a portion of feature combinations of the con­
figuration space in which a consistency error can occur. 

8. The method of claim 1 wherein identifying one or more 
sets of feature combinations in accordance with the set equa­
tion of the consistency error type further comprises: 

consolidating the feature combinations into minimized 
subsets that represent the portion of the configuration 
space where the consistency error can occur. 

Many embodiments of the present invention have applica- so 
tion to a wide range of industries including the following: 
computer hardware and software manufacturing and sales, 
professional services, financial services, automotive sales 
and manufacturing, telecommunications sales and manufac­
turing, medical and pharmaceutical sales and manufacturing, 
and construction industries. 

9. A consistency checking system for detecting consistency 
errors for multiple consistency error types between configu-

55 ration rules, the system comprising: 

Although the present invention has been described in 
detail, it should be understood that various changes, substi­
tutions and alterations can be made hereto without departing 
from the spirit and scope of the invention as defined by the 60 

appended claims. 
What is claimed is: 
1. A method of detecting consistency errors for multiple 

consistency error types between configuration rules, the 
method comprising: 

for each consistency error type, wherein each consistency 
error type is represented by a 'set' equation: 

65 

a processor; 
a memory, coupled to the processor, having instructions 

executable by the processor for: 
for each consistency error type, wherein each consis­

tency error type is represented by a 'set' equation: 
identifYing one or more sets of feature combinations in 

accordance with the set equation of the consistency 
error type in which a particular type of consistency 
error can occur; 

if a consistency error of the consistency error type exists 
in the one or more sets of feature combinations, 
detecting the consistency error using the one or more 
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identified sets of feature combinations and the set 
equation associated with the consistency error type; 

providing data, to a computer system for display by a 
display device, wherein the data indicates any 
detected consistency error. 

10. The configuration consistency checking system of 
claim 9 further comprising: 

a trie data structure having levels and nodes to represent the 
feature combinations in the configuration rules, wherein 
each family is represented in a distinct level of the trie 10 

data structure and each respective feature representation 
is represented by a single node. 

11. The consistency checking system of claim 9 wherein 
the configuration rules includes features, optionalities, and 
constraints, and each set equation includes sets of features 15 

grouped by selected optionalities. 
12. The consistency checking system of claim 11 wherein 

optionalities include mandatory, standard, optional, and 
restricted. 

13. The consistency checking system of claim 9 wherein 20 

the instructions for detecting the consistency error using the 
one or more identified sets of feature combinations and the set 
equation associated with the consistency error type further 
comprise instructions for: 

performing set math routines in accordance with the set 25 

equation associated with the consistency error type on 
the identified one or more sets of feature combinations to 
detect any consistency error in the one or more sets of 
feature combinations. 

14. The consistency checking system of claim 9 wherein 30 

the memory further comprises instructions executable by the 
processor for: 

generating a trie data structure having levels and nodes to 
represent the features in the configuration rules, wherein 
each family is represented in a distinct level of the trie 35 

data structure and each respective feature representation 
is represented by a single node. 

15. The consistency checking system of claim 9 wherein a 
configuration space represents a plurality of feature combi-

40 
nations and the instructions for identifYing one or more sets of 
feature combinations in accordance with the set equation of 
the consistency error type further comprise instructions for: 

determining a portion of feature combinations of the con­
figuration space in which a consistency error can occur. 

45 
16. The consistency checking system of claim 9 wherein 

the instructions for identifying one or more sets of feature 
combinations in accordance with the set equation of the con­
sistency error type further comprise instructions for: 

consolidating the feature combinations into minimized 
50 

subsets that represent the portion of the configuration 
space where the consistency error can occur. 

17. A computer readable medium having code stored 
therein to detect consistency errors for multiple consistency 
error types between configuration rules, wherein the code is 55 
executable by a processor for: 

for each consistency error type, wherein each consistency 
error type is represented by a 'set' equation: 

identifYing one or more sets of feature combinations in 
accordance with the set equation of the consistency error 60 

type in which a particular type of consistency error can 
occur; 

if a consistency error of the consistency error type exists in 
the one or more sets of feature combinations, detecting 
the consistency error using the one or more identified 65 

sets of feature combinations and the set equation asso­
ciated with the consistency error type; and 

16 
providing data, to a computer system for display by a 

display device, wherein the data indicates any detected 
consistency error. 

18. The readable medium product of claim 17 further com­
prising code stored therein and executable by the processor 
for: 

organizing the one or more sets of feature combinations 
into a trie data structure having levels and nodes to 
represent the features in the configuration rules, wherein 
each family is represented in a distinct level of the trie 
data structure and each respective feature representation 
is represented by a single node. 

19. The computer readable medium of claim 17 wherein 
the configuration rules includes features, optionalities, and 
constraints, and each set equation includes sets of features 
grouped by selected optionalities. 

20. The computer readable medium of claim 19 wherein 
optionalities include mandatory, standard, optional, and 
restricted. 

21. The computer readable medium of claim 17 wherein 
the code for detecting the consistency error using the one or 
more identified sets of feature combinations and the set equa­
tion associated with the consistency error type further com­
prises code for: 

performing set math routines in accordance with the set 
equation associated with the consistency error type on 
the identified one or more sets of feature combinations to 
detect any consistency error in the one or more sets of 
feature combinations. 

22. The computer readable medium of claim 17 further 
comprising code stored therein and executable by the proces­
sor for: 

organizing the one or more sets of feature combinations 
into a trie data structure having levels and nodes to 
represent the features in the configuration rules, wherein 
each family is represented in a distinct level of the trie 
data structure and each respective feature representation 
is represented by a single node. 

23. The computer readable medium of claim 17 wherein a 
configuration space represents a plurality of feature combi­
nations and the code for identifYing one or more sets of 
feature combinations in accordance with the set equation of 
the consistency error type further comprises code for: 

determining a portion of feature combinations of the con­
figuration space in which a consistency error can occur. 

24. The computer readable medium of claim 17 wherein 
the code for identifYing one or more sets offeature combina­
tions in accordance with the set equation of the consistency 
error type further comprises code for: 

consolidating the feature combinations into minimized 
subsets that represent the portion of the configuration 
space where the consistency error can occur. 

25. A computer implemented method for detecting one or 
more consistency errors for a consistency error type between 
configuration rules, wherein a configuration space represents 
a set of combinations of feature selections allowed by the 
configuration rules, the method comprising: 

consolidating a portion of the feature combinations within 
the configuration space into one or more minimized 
subsets of feature combinations that represent a portion 
of the configuration space where a particular type of 
consistency error can occur; 

performing set routines on the one or minimized subset of 
feature combinations in accordance with a 'set' equation 
associated with the particular type of consistency error; 

if a consistency error of the consistency error type exists in 
the one or more sets of feature combinations, detecting 
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the consistency error in the one or more minimized 
subsets of feature combinations using the set equation 
associated with the consistency error; and 

providing data indicating any detected consistency error. 

26. The method of claim 25 further comprising: 

generating a trie data structure having levels and nodes to 
represent the feature combinations in the configuration 
rules, wherein each family is represented in a distinct 
level of the trie data structure and each respective feature 
representation is represented by a single node. 

18 
27. The method of claim 25 wherein detecting the consis­

tency error using the one or more identified sets of feature 
combinations and the set equation associated with the con­
sistency error type further comprises: 

performing set math routines in accordance with the set 
equation associated with the consistency error type on 
the identified one or more sets of feature combinations to 
detect any consistency error in the one or more sets of 
feature combinations. 

* * * * * 


