
c12) United States Patent
Smith

(54) CONFIGURATION MODEL CONSISTENCY
CHECKING USING FLEXIBLE RULE SPACE
SUBSETS

(75) Inventor: Shawn A. P. Smith, Austin, TX (US)

(73) Assignee: Versata Development Group, Inc.,
Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 11/695,247

(22) Filed: Apr. 2, 2007

Related U.S. Application Data

(62) Division of application No. 10/404,891, filed on Mar.
31, 2003, now Pat. No. 7,200,582.

(51) Int. Cl.
G06F 17100 (2006.01)
G06N 5102 (2006.01)

(52) U.S. Cl. 706/47; 706/46; 706/14
(58) Field of Classification Search 706/47,

706/46, 14
See application file for complete search history.

(56) References Cited

OTHER PUBLICATIONS

Faruk Pol at eta!., UVT: Unification-Based Tool for Knowledge Base
Verification, 1993, IEEE, 69-75.*

I User Input 406

111111 111

I

US007 464064 B 1

(10) Patent No.: US 7,464,064 Bl
(45) Date of Patent: *Dec. 9, 2008

Musa Jafar eta!., Interactive Verification of Knowledge-Based Sys­
tems, 1993, IEEE, 25-32.*
Derek L. Nazareth, Investigating the Applicability of Petri Nets for
Rule-Based System Verification, IEEE, 1993,402-415. *
Timothy J. O'Leary eta!., Validating Expert Systems, 1990, IEEE,
51-58.*
Alun D. Preece et al., VerifYing and Testing Expert System Concep­
tual Models, 1992, IEEE, 922-927.*
Polat, Faruk eta!., "UVT: A Unification-Based Tool for Knowledge
Base Verification, Validation and Verification of Knowledge-Based
Systems," Jun. 1993, IEEE Computer Society Press, pp. 69-75.

* cited by examiner

Primary Examiner-Joseph P Hirl
(74) Attorney, Agent, or Firm-Hamilton & Terrile, LLP;
Kent B. Chambers

(57) ABSTRACT

Inconsistencies between configuration rules represent a sig­
nificant concern when modeling a product using configura­
tion rules. The consistency checking system approaches a
configuration model from the perspective of a sets of features
and families. The configuration space of a model represents
the entire set of all combinations of selections within a con­
figuration model. The consistency checking system operates
on subsets of the configuration space by consolidating data
within the configuration space into minimized subsets that
represent a portion of the configuration space where a par­
ticular consistency error can occur. Thus, the contents of each
subset vary depending upon which consistency error is being
checked, and consistency checking is performed on reduced
subsets determined on an error by error basis rather than on
the configuration space as a whole.

27 Claims, 26 Drawing Sheets

Display/Report
408

l
Consistency Checking System

400

,- -....... ..._ _...,..
Consistency

Configuration Model_... Checking Error
(Configuration Space) Operations

402 404

U.S. Patent Dec. 9, 2008 Sheet 1 of26 US 7,464,064 Bl

RULES
Feature Optionality Constraint
F1 S A1,B1,C1, D1,E1 100

F 1 0 A 1 , B 1 , C 1 , D 1 , E2
F2 M A1,B1,C1,D1,E1
F2 0 A1,B1,C1,D1,E3
F2 0 A1, B1, C1, D2, E1
F2 0 A1, B1, C1, D2, E2
F3 0 A1, B1, C1, D2, E1
F3 0 A1,B1,C1, D2,E2
F4 0 A1, B1, C1, D2, E1
F4 0 A1, B1, C1, D2, E2
• • •
• • •
• • •

Figure 1 (prior art)

A1 A1 A1 A1 A1
B1 B1 B1 B1 B1
C1 C1 C1 C1 C1 • • •

/200
D1 D1 D1 D2 D1
E1 E2 E3 E1 E2

F1 s 0

F2 M 0 0 0

F3 0 0

F4 0 0
L_j L_j L_j L_j L_j • • •

Figure 2A (prior art)

A1 A1 A1 A1 A1
B1 B1 B1 B1 B1
C1 C1 C1 C1 C1 • • •

/202
D1 D1 D1 D2 D2
E1 E2 E3 E1 E2

F1 s 0

F2 M 0 0 0

F3 0 0

F4 0 0

L_j L_j L_j ._I __ _,I ._I ---t•~

Figure 2B (prior art)

U.S. Patent

F1

F2

F3

F4

Dec. 9, 2008 Sheet 2 of26

A1 A1 A1 A1 A1
B1 B1 B1 B1 B1
C1 C1 C1 C1 C1 • •
01 01 01 02 01
E1 E2 E3 E1 E2

s 0

M 0 0 0

0 0

0 0

F1

IF2(a~_I __ F2_(a_) _ ___,II F2(a) ...

I F2(c)l I F2(c) I I F2(c) ...

Figure 3

US 7,464,064 Bl

•

...

U.S. Patent

User Input 406

Dec. 9, 2008

Display/Report
408

Consistency Checking System
400

Consistency
Checking Error

Operations
404

Figure 4

Sheet 3 of26 US 7,464,064 Bl

500

~///

User selects a specific family to consistency
check (which becomes the "main family", or

consistency checking will loop through all
families in the model, selecting each in turn as

the main family.

1
Select consistency

checking error operation

1
Consolidate selected //////504

configuration space data into
feature subsets within a

configuration space based on
particular selected

consistency error operation.

1
Generate data structures l//

for feature subsets.

1
Conduct set math

routines to
determine any

consistency errors.

1
Display/Report

consistency check
results

Figure 5

506

508

510

U.S. Patent

~-----

1
I
I
I
I
I
I
I

Dec. 9, 2008 Sheet 4 of26

Figure 6A

US 7,464,064 Bl

/600

-----1
: Level

l///602

I

I Node
I
I

[/// 604

U.S. Patent Dec. 9, 2008 Sheet 5 of26 US 7,464,064 Bl

/600
606

610

--1

Figure 68

U.S. Patent Dec. 9, 2008 Sheet 6 of26

X1

A1

B1

Figure 7A

Figure 78

US 7,464,064 Bl

/702
/

-----~-----,

B2

~ 704

U.S. Patent Dec. 9, 2008 Sheet 7 of26 US 7,464,064 Bl

0 0 0

A1 A2 A3 A1 A2 A3

0 0 0 0

81 82 83 81 82 83

Figure 7C

U.S. Patent Dec. 9, 2008 Sheet 8 of26 US 7,464,064 Bl

800

802

SOML 804

800

806

Figure 8

U.S. Patent Dec. 9, 2008 Sheet 9 of26

Rules

Feature Optionality Constraint
EN1 0 ALL
EN2 S ALL

TR1
TR2
TR2

AX1
AX2
AX2
AX2
AX3

s
s
0

s
s
0
R
0

EN1
EN2
EN1

EN1
EN1.TR2
EN2.TR2
EN2
TR2.EN2

Figure 9

Main EN1 EN2
Familv

AX1
AX2
AX2
AX3

1002

Main
Famil

AX1
AX2
AX2
AX3

TR1 TR2 TR1 TR2
s s

s 0
R R

0

1004

Figure 10

US 7,464,064 Bl

/1000

1006

/1002

1014

U.S. Patent Dec. 9, 2008 Sheet 10 of 26 US 7,464,064 Bl

/ 11 02 F 1 error

---SOML __ // _________ _

I I I 0 I 0 I I 0 I I I 0 I I 0 I 0 I I I
AX! AX2 AX3 AX! AX2 AX3 AX! AX2 AX3

~ ~ ~
TRI TR2 TRI TR2 TRI TR2

~ ~ ~
EN! EN2 E'll EN2 EN! EN2

1106' / 1108
'~ ALL .B. = :B. /

. / r---:....-----, .----, r----------l

11
1

1
1

1
1

1111°1
1

1°11 11
1

1°1
1

11°1
1

1°11

I 1 1104
I AX! AX2 AX3 I AX! AX2 A.X3 I; I AX! AX2 AX3 AX! AX2 AX3 I

I ~ II ~ I 1 ~ ~ I

I c=r=J II c=r=J I 1 c=r=J c=r=J I

I TRITR II TRITR I I TRITR TRITR I

I I .2 II I .2 I I I .2 I .2 I

I c=r=J II ffi I 1 c=r=J rn I

I EN! EN2 I I EN! El\2 I I EN! EN2 EN! EN2 I

JL J --------
L____ ---

Figure 11A

F1 error

I 0 I I I 0 I ,..------,1 I 1,..------,0 1,.------,1 I I 0 I 1 I 0 I I · I ' I " I . .
'XI AX? 'X3 AX! AX2 ".X1 AX! AX' AX3 AX! A.X2 AX, "' "" m " . " • !

I 0 I 0 I I I

c6 c6 c6 SOMLA----:8_ t
01 01-- ~ ~.

~ ~ F1aure 118 "l '"'
rn

EN1 EN2

I
I ,...-----,1 I 1,...-----,0 lr---1° I

IAXO AX2 AX3

:cb
I TR1 TR2

:cb
I EN! bN2

I

lK I TR

1 • 2

rn
d; J; - TR I TR

I • 2

rn
EN! EN2 EN! EN2

2 3

I 0 I 0 I 0 I I 0 I 0 I 1 I
m~m m~m

J;J;
E'il EN2 EN! EN2

EN! E"/2 EN! El\2

1110

4 5 6--,
I 0 I 0 I 0 I I 0 I I I 0 I I 0 I 0 I 0 II

AXO AX2 AX31 AXO A.X2 AX3

t
rn

TR I TR

1 • 2

rn
EN! E"/2

AXO AX2 AX3

t
rn

TR I TR

1 • 2

rn
EN! EN2

t I
I rn 1

TR I TR

1 • 2

rn
EN! E"/2

I
I
I
I

_________ j

~
00
•
~
~
~
~ = ~

c
('D

~
~'-CI

N
0
0
QO

rFJ

=­('D
('D
0
N
0\

d
rJl
-....l
~
0'1
~ = 0'1
~

= """"'

• 1112 1114
F1 error

SOML-R fSOML-Rl

I I I 0 I 0 I I 0 I 0 I I I

AXecb"' ''XOcbAX'

J; ct;
EN! EK2 EN! EK2

--,----------~~1

l'f 1~ I o J
\)

AXIl \ A.X2 /AX3

' I /
\~/

w~,~
.1 2\

/ \ .. rn,
\

EN! EN2 \
/ I

--~
1124

[SOML-RJ
I
I

--,

~* c1* 1118 i i /

1116

1 ~
1

1120 ~~

0, rn

J;J;
IK I TR

I ~ 2

rn
EN! EN2 EN! EN2 EN! EN2

* *
I
I
I 1 111122:

rnm
J;ct;

EN! EK2 EN! EN2

L __

*

~
J;

EN! EN2

*

~
rn

TR I TR

I ~ 2

rn
E'll EN2

Figure 11C

~
00
•
~
~
~
~ = ~

c
('D

~
~'-CI

N
0
0
QO

rFJ

=­('D
('D
N
0
N
0\

d
rJl
-....l
~
0'1
~ = 0'1
~

= """"'

F1 error 1124
1130

~s_o_M_L~~J- -L~~ _,
ALL

I -------------,
I I/ 1126 l/128 l t'2: I 1

~ ~~ ~rn
J;- J;J; -J;J;

EN! EN2 EN! El\2 EN! EN2 EN! EN2 EN! EN2

I I ~
L _________________ ~ L-----------------

[F1J = -[SOML-RJ

* Jl ~// 1134

m
J;

EN! EN2

-~

1136

Transmission 1/Engine 2
configuration lacks an axle.

*
Jl;1132

m
TRl TR2

[!]
EN! EN2

Figure 11D

~
00
•
~
~
~
~ = ~

c
('D

~
~'-CI

N
0
0
QO

rFJ

=­('D
('D
.....
(.H

0
N
0\

d
rJl
-....l
~
0'1
~ = 0'1
~

= """"'

F2a error
I 1202 /1204 1206

SML /
__________ ..L_ ____ l ~---!L_,

I 0 I I I 0 I :
-..a

-----1

I 0 I I I 0 I I I I 0 I 0 I I 0 I I I 0 I
A,'(] A,'(2 A,'(3 A,Xl AX2 AX3

cb cb
TR~ TR2 TRI~ TR2

rn rn
EN! EN2 EN! EN2

[SML-R] = [SMIJ1 --. R] --. [SML-R]

------1 ,-----1

* I 1208 I * I
r-;T";I I I I r-;T";I I
L.L.:..J r I L.L.:..J I

TRI I TR2 I I TRI I TR2 I
-t I 1 -t I

I,T";;i l1210 ', 1 ~ I

L.L.:..J I 'i L.L.:..J I
I EN! EN2 I I EN! EN2 I
~-----] ~-----j

Figure 12

AX I 'C I

rn
TR I TR

I .. 2

D
RN FN
I

L ______ _

I I I 0 I I I
AX! AX2 A:X3

cb
=r
rn

EN! EN2

AX! AX2 A:X3

cb
=r
rn

EN! EN2

"1212
Q // 1214 \ [0-R] [0-R]-[SML-R]

I - -- ---- -- -- -- \ . 1216
\ //

I 0 II I 0 I I 0 I 0 II I :--:--1 :--*--:
AX AX AX A,X AX AJ(DIIDI

I f 3 I r 1 : loR l]R I I loR l]R I= [F2a]

t t 1 cfJ2 l1cfJ2 I I 1 I ~~I I I L.L.:..J L.L.:..J I 0 I I 0 I

TRTR TRTR I II I
I I 2 1 I 2 I RNl EN2 I I RNl EN2 I

.. .. ~----J L_ ___ j

~ ~
L.L.:..J L.L.:..J Transmission 2/Engine 2
E~ E~ E~ E~ 1218 // has no standard. L ___________ _

~
00
•
~
~
~
~ = ~

c
('D

~
~'-CI

N
0
0
QO

rFJ

=­('D
('D
.....
.j;o.

0
N
0\

d
rJl
-....l
~
0'1
~ = 0'1
~

= """"'

U.S. Patent Dec. 9, 2008 Sheet 15 of 26 US 7,464,064 Bl

Start

i=O

Create empty tries for
[F2b]0 and [familySML] 0

1302

1304

v1306

N=number of main features

v130B

//1310

[F2b];+1 = [F2b]; U ([familySML]; 1\ [featureSML - R];)

i = i+1

i// 1312

i = N-1

/1314

Yes
1316

No

([familySML];+1 = ([familySML]; U [featureSML- R];)

Figure 13
1318

No

U.S. Patent Dec. 9, 2008 Sheet 16 of 26 US 7,464,064 Bl

[F2b] 1 =

i = 0 .---------------------------

[F2b] 0 U

TRI TR2

1402

----------------------,

([Family SML] 0

TRI TR2

1404

A I [feature SML- featureR])
0

I----r---,------.
I
I L----L......,,.....-1------l

~XI AX2

I
I
I TRI

I
I

AX3

TR2

1407

L EN! EN2 EN! EN2 I ---- -1-~ 140~-
*

1408

TRI TR2

L __________ 3Nl EN2 _____ ~

1410

AX! AX2 AX3

TRI TR2

L ____________ _ EN! EN2 ------------
1412

[F2b] 1
Figure 14A

EN! EN2

U.S. Patent Dec. 9, 2008 Sheet 17 of 26 US 7,464,064 Bl

i = 0

[family SML]
1

1414

= : I [fa~SML~ I u

I I o I

,------1
1 [feature SML- featureR])

0
I

I 1 1 1 I
I I I

I
I I
IAXl AX2 AX3 I

11416

I
I
I

I I I

I
I
I

I 1 o I
I I

I I ENl EN2 I I L_ ____ j
I ENl EN2 I
L_ _____ _

------ -~---------

....--------,

I 1 I

I 1~// 1418 jAXl AX2 AX3

I
I I
I I
I I
I I
I ENl EN2 I
L ____ J

~--i--y1420
Figure 148

I AXl AX AX3
I I
I 1 1 I

[family SML] 1 = I I
I I
I 1 o I
L ____ J

ENl EN2

U.S. Patent Dec. 9, 2008 Sheet 18 of 26 US 7,464,064 Bl

i = 1

~----------~~~------

*

TRI TR2

EN! EN2
L-------------.------------

*

[F2b]
2

Figure 14C
TRI TR2

EN! EN2

U.S. Patent Dec. 9, 2008 Sheet 19 of 26 US 7,464,064 Bl

i = 1
-----------------,

[family SML]
2 = I 1-[family SML] ~ I U

1
1 [feature SML ~eatureR]) ~ I

l1 * I * I I
l1 I I 1
l1 I I I I
II I I I I
l1 I I I I
11 I I I I
l1 I I I I

:~ ____ j ~~_1_~2_ __ ::

L--- -- -*- ------- ~

r------,

I * I
I I
I I
I I

[family SML] 2 = I I

I I
I I
I ENl EN2 I
L_ ____ j

Figure 14D

U.S. Patent Dec. 9, 2008 Sheet 20 of 26 US 7,464,064 Bl

[F2b] 3 =

i = 2
r-------------------------­

-------------------1
r----~

I [F2b]2 I u

I I
I * I
I I
I I
I I
I TR TR2 I
I I
I I
I ENl EN2 II
L_ ___ _

------------1

([family SML] 2 A I [feature SML- featureR])
2

I
I I
I I
I AX3 AX1AX2 AX3 I I AXl AX2 I

I I
I I
I TRl T~ I
I
I I

I I ENl EN2 ENl EN2 J ------,-----

*

TRl TR2

ENl EN2

*

TRl T~

L __________ EN1~N2 _____ _

+
*

TRl T~

ENl EN2 L-------------.------------

*
1422

Figure 14E [F2b]
3

= Transmission 2/Enqine 1
has multiple standards. TRl T~

ENl EN2

U.S. Patent Dec. 9, 2008 Sheet 21 of 26

Rules

Feature Optionality Constraint
EN1 0 ALL
EN2 S ALL

TR1
TR2
TR2

AX1
AX1
AX2
AX2
AX2
AX3

s
s
0

s
M
s
0
R
0

EN1
EN2
EN1

EN1
EN2.TR2
EN1.TR2
EN2.TR2
EN2
TR2.EN2

Figure 15

Main EN1 EN2
Family TR1 TR2 TR1

AX1 s s
AX2 s
AX2 R
AX3

Figure 16

TR2
M
0
R
0

US 7,464,064 Bl

""/// 1500

/1600

U.S. Patent Dec. 9, 2008 Sheet 22 of 26

AXl AX2 AX3

ENl EN2 ENl EN2
1....----------

1706

•R I ______________________ } ___ _

AX1AX2 AX3 AXl AX2 AX3

ENl EN2 ENl EN2

~-------------------------

1708

R n ML = ML-R /
-------------~--------

AXl AX2 AX3 AXl AX2 AX3

TRl TR2

ENl EN2 ENl EN2 L ______________________ _

US 7,464,064 Bl

Figure 17A

ML ,//1702

r----------,
n

AXl AX AX3

TRl TR2

ENl EN2

1710

[ML-R] j
r-------- -,

*

TRl TR2

ENl EN2

U.S. Patent Dec. 9, 2008 Sheet 23 of 26 US 7,464,064 Bl

_____ _? __ L~/ 1718
-, R // 1720

---------------~------I
I .------r-~----.
I
I
I L...----'---r-....L-----1

~IAX2
I----+-----.
I
I
I
I
I
I
I
I
I
I

AXI AX2 AX3

L _ g_l'i_l __ E~£ __ _ ENl EN2 ENI EN2 L _____________________ _

1 2 3

O-R ! 1722

---------------------- -,
In3 In2

AXI AX2 AX3 AXl AX2 AX3

TRI TR2

ENI EN2 ENl EN2 L ______________________ _

Figure 178

U.S. Patent

1712
~ [0-R]
r~-------

*

TRI TR2

Dec. 9, 2008 Sheet 24 of 26

[ML-R]

*

TRI TR2

EN! EN2

1716

Transmission 2/Engine 2
has mandatory and/or legal
optionalities conflicting with

an "optional" optionality.

Figure 17C

1710

[F2c] =

US 7,464,064 Bl

1714

_____ / ___ _
*

TRI TR2

EN! EN2

1804(1)

1804(2)

1806(N) 1806(N-1)

Network
1802

1806(9)

Figure 18

~
00
•
~
~
~
~ = ~

c
('D

~
~'-CI

N
0
0
QO

rFJ

=­('D
('D
N
Ul
0
N
0\

d
rJl
-....l
~
0'1
~ = 0'1
~

= """"'

U.S. Patent Dec. 9, 2008

1/0

Processor

Sheet 26 of 26

VIDEO
DRIVER

j/1914

VIDEO
MEMORY

j

,

I /1910

USER INPUT v
DEVICE(S)

Figure 19

/

DISPLAY

MAIN
MEMORY

•

•

US 7,464,064 Bl

. v1909
MASS STORAGE

US 7,464,064 Bl
1

CONFIGURATION MODEL CONSISTENCY
CHECKING USING FLEXIBLE RULE SPACE

SUBSETS

This application is a divisional of application Ser. No.
10/404,891, filed Mar. 31,2003, now U.S. Pat. No. 7,200,582
which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

2
A configuration buildable describes what features can and

can't exist with other features of a product. The example rule
above defines a buildable configuration in the following way:
"the 4.8 liter V8 is buildable (because it is standard) with the
combination of XL and US." If the combination of features,
such as of XL and US, is not buildable, the example rule is
inactive. Consequently, even though the engine is buildable
with that combination, if the combination is not buildable, the
three features together are not a buildable configuration. A

10 rule that would make the example rule inactive is the follow­
ing:

The present invention relates in general to the field of
information processing, and more specifically to a system and
method for checking consistency of configuration models
against predetermined rules and assumptions using flexible

15
rule space subsets.

Main feature Optionality Constraints Timefrarne

XL N us September 2002 Rule2 2. Description of the Related Art

Rule 2 means "the XL trim main feature is not available
with US from September of2002 onward." Until the XL main
feature is made available with the US by changing the option­
ality from "N" to one that expresses a positive relationship,
there will not be a buildable configuration for XL, US, and the
4.8 L engine.

A configurable product can be described by a configuration
model having a set of configuration rules. A configurable
product can be conceptually broken down into sets of select-

20
able families and features of families that make up each
product. A family represents a classification of a particular
type of feature. Families are typically classified as groups of
features with the same functional purpose. Example families
for an automobile are "engines," "tires," "seats," and "exterior
paint color." Families can be represented in terms of the
minimum and maximum number of features that must be
present in a configuration from a family for the configuration

25
Thus, a rule defines a buildable configuration between its

main feature and its constraints only. A rule does NOT define
a buildable configuration relationship between the members
of its constraints. A separate rule must define that buildable
configuration. Consequently, all rules together for a product to be valid. A common family minimum and maximum or

"(min, max)" is (1, 1). This notation means that exactly one
feature from the family must be part of a configuration for the
configuration to be valid. Other common (min, max) settings
are (0, 1), meaning that either no features or a single feature
from the family must be present in a configuration for it to be
valid, and (0, -1), meaning that zero or any positive number of
features from the family must be present in a configuration for
it to be valid.

A feature represents an option that can be ordered on a
product. All features are members of a family. Features are
both assigned optionalities and used to qualifY other features
and the optionalities assigned to them. An example feature
from the engine family is a "4.8 liter V8." Features relate to
each other via ordering codes or optionalities. Example
optionalities include "S", "0", "M", and "N." which translate
to standard, optional, mandatory, and not available. A specific
example would be "the 4.8 liter V8 engine is standard on the
GS trim."

A configuration rule includes a main feature, an optional­
ity, one or more constraints, and an applicable timeframe. As
an example:

Main feature Optionality

4.8literV8 s

Constraints

XL&US

Time frame

May-December Rule 1
2003

Rule 1 means "the 4.8liter V8 is standard with the XL trim
and US market from May to December 2003." The main
feature represents the feature that is being affected by the rule.
Optionalities can be positive or negative: positive optionali­
ties state that the main feature can work with the constraints;
negative optionalities state the main feature cannot work with
the constraints. Constraints qualifY the rule and can be an
arbitrary Boolean expression of features such as AND, NOT,
and OR operators. The timeframe specifies when the other
rule elements are effective.

30
define the complete product buildable configurations. In
order to determine if the three features in the example rule
(the main feature and the constraints) are a buildable configu­
ration, the rules written on each of those features (i.e. where
each feature is the main feature) need to be considered jointly.

35
Inactive rules do not define buildable configurations until
they become active.

Inconsistencies between rules represent a significant con­
cern when modeling a product using rules. Inconsistencies
among rules in configuration models result in errors that

40
negatively impact the usability of a configuration model.
Inconsistencies can occur due to modeling mistakes or due to
multiple parties generating rules for the same configuration
model. Thus, detecting inconsistency errors through consis­
tency checking plays an important role in developing useable,

45
robust configuration models. For example:

50

Main feature

XL
XL

Optionality

N
s

Constraints

us
us

Timefrarne

September 2003
September 2003

Rule 3
Rule4

Rule 3 and Rule 4 are inconsistent because Rule 3 signifies
that the feature XL is not available in the U.S. market, and

55 Rule 4 signifies that the feature XL is standard in the U.S.
market. As the number of rules grows, the ability to detect
inconsistencies becomes more challenging.

FIG.l depicts a set of rules 100 with features Fl-F4 of a
single family, optionalities, and constraints represented by

60 families A, B, C, D, E (each having "X" number offeatures).
FIGS. 2 and3 depict the rules ofFIG.l in respective grids 200
and 202 and illustrate two conventional ways of detecting
inconsistencies between rules. In FIG. 2A, each cell in a
column is compared against every other cell in a colunm. An

65 inconsistency error exists if two cells with a colunm have
inconsistent optionalities or other assumptions are violated,
such as a lack of a standard configuration in a column. Some

US 7,464,064 Bl
3

configurable products have tens of thousands or hundreds of
thousands of rules defining buildable configurations. As the
number of rules and, thus, colunms in the grid of FIG. 2A
grow, column by colunm inconsistency checking becomes
very computationally time consuming.

FIG. 2B depicts a variation on the colunm-by-colunm con­
sistency checking approach of FIG. 2A. In FIG. 2B colunms
with identical optionalities are grouped together. Thus, the
number of consistency checking operations is reduced; how­
ever, this can still result in long periods of computational
processing.

SUMMARY OF THE INVENTION

4
FIGS. llA, llB, llC, and llD depict a use of trie data

structures and set routines to determine a missing optionality
consistency error within a subset of a configuration space.

FIG.12 depicts a use oftrie data structures and set routines
to determine a consistency error when a usage rule is present,
a standard optionality is required, and no standard optionality
is present.

FIG. 13 depicts an operational flow chart to determine a
consistency error indicating the existence of multiple stan-

10 dards for a subset of configuration rules.
FIGS. 14A, 14B, 14C, 14D, and 14E depict a use of trie

data structures and set routines to determine a consistency
error indicating the existence of multiple standards for a
subset of configuration rules.

In one embodiment of the present invention, a method of 15

detecting multiple consistency error types between configu­
ration rules, wherein each consistency error is represented by

FIG. 15 depicts example configuration rules to illustrate
consistency checking operations of the consistency checking
system of FIG. 4 when determining a consistency error that
occurs when mandatory or legal optionalities conflict with an
"optional" optionality.

a set equation, includes, for each consistency error, identifY­
ing one or more sets of feature combinations in accordance
with the set equation of the consistency error. The method 20

further includes detecting the consistency error using the one
FIG. 16 depicts a grid containing the rules of FIG. 15.
FIGS. 17A, 17B, and 17C depict a use oftrie data struc­

tures and set routines to determine a consistency error that
occurs when mandatory or legal optionalities conflict with an
"optional" optionality.

or more identified sets of feature combinations and the set
equation associated with the consistency error.

25
FIG. 18 depicts a block diagram depicting a network envi-

In another embodiment of the present invention, a consis­
tency checking system for detecting multiple consistency
error types between configuration rules, wherein each con­
sistency error is represented by a set equation, the system
including a processor and a memory coupled to the processor.
The memory having instructions executable by the processor
that for each consistency error identifies one or more sets of 30

feature combinations in accordance with the set equation of
the consistency error and detects the consistency error using
the one or more identified sets of feature combinations and the

ronment in which a consistency checking system may be
practiced.

FIG. 19 depicts a computer system.

DETAILED DESCRIPTION

Although the present invention has been described in
detail, it should be understood that various changes, substi-

35 tutions and alterations can be made hereto without departing
from the spirit and scope of the invention as defined by the
appended claims.

set equation associated with the consistency error.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several figures designates a like or similar element.

FIG. 1 (prior art) depicts a set of configuration rules having
features, optionalities, and constraints.

FIG. 2A (prior art) depicts a colunm-by-colunm approach
to rule consistency checking.

FIG. 2B (prior art) depicts a consolidation of identical
colunms followed by a colunm-by-colunm approach to rule
consistency checking.

FIG. 3 depicts a grid with features grouped in accordance
with particular consistency checking error operations.

FIG. 4 depicts a consistency checking system.
FIG. 5 depicts an operational flow chart for the consistency

checking system of FIG. 4.

FIG. 6A depicts an example trie data structure.
FIG. 6B depicts a binary form of the trie data structure of

FIG. 6A.
FIGS. 7 A, 7B, and 7C depict trie minimization operations

applied to the trie data structure of FIGS. 6A and 6B.
FIG. 8 depicts example configuration rules to illustrate

consistency checking operations of the consistency checking
system of FIG. 4.

FIG. 9 depicts a grid containing the rules of FIG. 8.

FIG. 10 depicts a configuration space with multiple sub­
sets.

As stated above, inconsistencies between rules represent a
significant concern when modeling a product using rules. The

40 amount of time and processing resources used to perform
consistency checking also represents a significant concern.
Long processing times for consistency checks introduce a
number of problems, such as detrimental postponement of
consistency checks, reluctance to make changes to a configu-

45 ration model, and work force inefficiencies. Embodiments of
the consistency checking system described herein improve
consistency checking performance, especially when per­
forming consistency checks on large configuration models,
i.e. configuration models having a large number of rules.

50 The consistency checking system approaches a configura-
tion model from the perspective of sets of features and fami­
lies. The configuration space of a model represents the entire
set of all combinations of selections within a configuration
model. The consistency checking system operates on subsets

55 of the configuration space by consolidating data within the
configuration space into minimized subsets that represent a
portion of the configuration space where a particular consis­
tency error can occur. Thus, the contents of each subset vary
depending upon which consistency error is being checked,

60 and consistency checking is performed on reduced subsets
determined on an error by error basis rather than on the
configuration space as a whole.

One difficulty that has been overcome by embodiments of
the consistency checking system described herein is the iden-

65 tification of individual consistency errors and the ability to
identify the subsets of the configuration space where such
consistency errors can occur.

US 7,464,064 Bl
5

Following are four examples of consistency error types that
utilize subsets of the configuration space to efficiently iden­
tify associated consistency errors. The particular subsets and
example data structure representation and set operations are
described in more detail below. Arbitrary labels are applied to
each consistency error type for reference purposes.

(a) Error "F1" no usage rule of any optionality for a par­
ticular configuration of families and features.

6
any consistency errors in the configuration space. Operation
510 displays or otherwise reports the results of operation 508.
The consistency checking operations 500 can be repeated as
often as desired, such as after a configuration model is revised
or additional consistency error checks are desired.

The consistency checking system 400 uses a trie data struc­
ture in one embodiment to represent subsets of configuration
data. An overview of the trie data structure follows to facili­
tate understanding of the set operations conducted by consis-(b) Error "F2 (a)" -a usage rule is present, but a standard

optionality is required and no standard optionality is 10 tency checking operations 500.
present.

(c) Error "F2 (b)"-multiple standards.
(d) Error "F2 (c)"-mandatory and legal optionalities con­

flict with an "optional" optionality.

Referring to FIG. 6A, a trie data structure 600, or trie,
extends the typical ordered binary decision diagram data
structure. The ordered binary decision diagram is a directed
acyclic graph (DAG) data structure with nodes connected by

Another difficulty overcome by the consistency checking
system relates to identifying and refining a data structure to
represent such subsets and determining the 'mathematical set
operations' applied to the data structure in a data processing
system that provide identification of consistency errors. A trie
data structure effectively represents the configuration sub­
sets, and data processing systems can efficiently conduct set
operations on the trie data structures.

15 edges. Nodes are organized into levels, where each level
represents a single binary variable. The levels are ordered in
a known marmer. Each edge that starts at a node in level "i"
ends at a node in level "j" such that "i<j" according to the
ordering of the levels. The outgoing edges from each node are

20 labeled with values that represent the value of the variable at
the originating node (either 1 or 0). Every path through the
DAG ends at one of two special nodes, labeled "0" and "1."
The ordered binary decision tree can be used to evaluate
whether a particular conclusion can be reached based on

FIG. 3 depicts an example grid that reflects the consolida­
tion of features and columns in the grid into subsets. For
example, the F1 consistency error operates on the set of
features having standard, mandatory, optional, and legally
required optionalities less restrictions. The F2(a) consistency
error operates on a first set of features having 'optional'
optionalities and a second set of features having standard,
mandatory, and legally required optionalities. The F2(c) con- 30

sistency error operates on a first of features having mandatory
and legally required optionalities and a second set of features
having 'optional' optionalities. These sets can be further
refined as described below to account for restricted configu­
rations and other contingencies.

25 whether a path through the DAG that matches certain pro­
vided input criteria (typically, one or several of the variables
with an assigned binary value) ends at the special node "0" or
"1 ".

Whereas the ordered binary decision diagram assigns a
binary variable to a level and a binary value to an edge, the trie
data structure 600 assigns a multi-valued variable to a level
and a set of binary values to each node. Whereas the ordered
binary decision diagram explicitly includes special nodes "0"
and "1", the trie data structure 600 does not, and only edges

35 that belong to paths that would end at node "1" are included.
FIG. 4 depicts consistency checking system 400, which

includes a model having the configuration rules that define the
configuration space of one or more products. The consistency
checking system 400 also includes a consistency checking
error operations module 404 that includes consistency error 40

definitions and operations to generate configuration subsets
based on a particular consistency error being checked, asso­
ciated data structure generation, and set operation formulae to
detect consistency errors in configuration model 402. Con­
sistency checking system 400 initiates selected consistency 45

checking operations in accordance with user input 406. User
input 406 represents, for example, user entered requests
through a data entry mechanism and/or preprogrammed
operation instructions for consistency checking system 400.
The consistency checking system 400 generates a display or 50

other type of report of results of the consistency checking
operations performed by consistency checking system 400.

FIG. 5 depicts an operational flow chart of consistency
checking operations 500 for consistency checking system
400. In operation 501 a user selects a specific family to 55

consistency check (which becomes the "main family", or
consistency checking will loop through all families in the
model, selecting each in turn as the main family. In operation
502 a user selects a consistency checking error operation. The
selection could be a manual entry or an automated entry, and 60

can select specific consistency error operations, all consis­
tency error operations, or any combination of consistency
error operations. Operation 504 consolidates selected con­
figuration space data into feature subsets based on particular
selected consistency error operation. Operation 506 popu- 65

lates data structures with the feature subsets in preparation for
conducting set math routines in operation 508 to determine

In one embodiment such as an automotive configuration
space context, the trie has special meaning: each level 602 of
the trie is a family, the nodes 604 of the level are sets of
features within this family, each feature (i.e. member of the
set X1, A1, A2, A3, B1, and B2) can assume a binary value,
and the trie 600 as a whole represents the constraint features
of rules associated via an optionality with a main feature.

The trie data structure 600 represents the value of the
variable at each node through the values of the features in the
set at that node. The value of the variable at each node and
through all levels of the trie 600 communicates the value of
the trie 600. Trie 600 represents the following configurations:

{X1,A1, B1},{X1,A2, B2}, {X1,A3, B2}
These buildable configurations are expressed by the fol­

lowing example configuration rules:

Main feature Optionality Constraints

X1 0 all
A1 0 X1
A2 0 X1
A3 0 X1
B1 0 A1
B2 0 A2
B2 0 A3

Referring to FIGS. 6A, 6B, and 7, in one embodiment, the
binary form of trie 600 uses one bit per feature. A known
family and feature ordering of the bits, a known number of
bits per family, and a value of each bit can completely define
each trie 600. For example, FIG. 6B depicts trie 600 in its

US 7,464,064 Bl
7

binary form. Since family X has only one feature, it is repre­
sented by a single bit, with 1 =present and O=absent. Family A
has 3 features, Al, A2, and A3. Thus, branch 706 is repre­
sented by the binary sequence 1100100, with the most sig­
nificant bit representing the X family, the next 3 most signifi- 5

cant bits representing the A family, and the 3 least significant
bits representing the B family. Accordingly, branch 708 is
represented by the binary sequence 1 01 001 0, and branch 710
is represented by the binary sequence 1001010. It will be
evident to those of ordinary skill in the art that other coding 10

schemes may be used to define a trie.
In one embodiment, through all trie operations (comple­

ment, intersect, union, subtract, etc.), the trie DAGs are kept
minimized using the following rules: (1) multiple identical
leaf nodes are consolidated into a single leaf node with mul- 15

tiple parents, (2) multiple identical interior nodes with iden­
tical sets of child nodes are consolidated into a single interior
node with multiple parents, and (3) sibling nodes (nodes with
the same parent) with identical sets of child nodes are con­
solidated into a single node. Building tries using these rules 20

provides a significant reduction in memory requirements and
computation time.

Applying the minimization process to trie 600, first mini­
mization rule can be applied to B2 nodes, yielding trie 700. In
our example, the independent nodes { A2} and { A3} and 25

paths {A2}-{B2} and {A3}-{B2} became a consolidated
node {A2,A3} 702 and a reduced path {A2,A3}-{B2} 704 as
depicted in FIG. 7A.

In one embodiment the minimization operation compares
corresponding bits in each sub-branch of trie 600's binary 30

form beginning with siblings of the first level and proceeding
downward through the levels until the leaf level is reached.
For example, the first level in trie 600 corresponds to the A
family, thus, the binary forms of the sub-branches of each
feature in the A family are compared. The A1 sub-branch is 35

100, theA2 sub-branch is 010, and theA3 sub-branch is 010.
TheA2 andA3 sub-branches are identical, thusA2 andA3 are
combined as depicted in FIG. 7 A. FIG. 7B depicts the binary
form oftrie 700.

The third trie minimization rule can apply to nodes A2 and 40

A3 which have the same parent (Xl) and the same children
(B2) resulting in trie 712 of FIG. 7C in a minimized form with
associated binary values.

8
Consistency error F2b identifies "multiple standards" by

identifying S, M, L subsets for one feature that over­
laps with S, M, L subsets for another feature in the
same family. Sort the S, M, L rules into groups by their
main feature. For each main feature, create a build­
ability trie "featureSML" with all the S/M/L rules for
that main feature, and create a buildability trie "fea­
tureR" with all the R rules for that main feature. Then
execute the algorithm depicted in FIG. 13. Note a
[NR] trie representing not released rules can be sub­
tracted from [F2b] to refine the resulting consistency
error by excluding any consistency errors associated
with configuration rules that are not required to be
present as of the time of the consistency check.

(d) Error "F2 (c)"-mandatory/legal optionalities conflict
with an "optional" optionality.
Consistency error F2c identifies M, L overlaps with 0.

[F2c]=([ML-Rn0-R]). Note a [NR] trie represent­
ing not released rules can be subtracted from [F2c] to
refine the resulting consistency error by excluding any
consistency errors associated with configuration rules
that are not released as of the time of the consistency
check. The [F2b] trie can also be subtracted from
[F2c] to eliminate replication of consistency errors.

Brackets"[...]"indicate that subset features of the main
family are consolidated into a single subset. "Error [Fl]=­
[SOML-R] is interpreted as follows. "[SOML-R]" repre­
sents the subset of main family rules that contain optionalities
S, 0, M, or L minus the subset of main family rules that
contain an optionality R. A "usage rule" indicates that the
content of a rule includes an optionality. Example optionali­
ties include:

L=legally required;
M=mandatory;
NR =not released;
O=optional;
R =restricted; and
S=standard.
Equations for consistency errors may be modified if spe-

cific types of rules are not present in a system. For example, if
M or L rules are not present, simply remove them from each
of the consistency error equations. IfR rules are not present,
simply remove them from each of the consistency error equa-The consistency checking system 400 can be used to deter­

mine numerous types of consistency errors that can occur
among configuration rules in a configuration model. The four
previously specified consistency errors are repeated below
with an identification of subsets used to determine consis­
tency errors and subset routines used by consistency checking
system 400 to determine consistency errors.

45 tions. Additionally, if rules are added, they can be added to the
equations. For example, if L and R rules are not present,
consistency error Fl, F2a, and F2c equations become:

Fl~-[SOM];

50
F2a~[O}-[SAfj;and

(a) Error "Fl" no usage rule of any optionality for a par­
ticular configuration of families and features.
[Fl]=-[SOML-R]. Note, if "release-not-required"

rules exist, a [NR] trie representing not released rules
can be subtracted from [Fl] to refine the resulting
consistency error by excluding any consistency errors
associated with configuration rules that are not
required to be present as of the time of the consistency
check.

FIG. 8 depicts a visualization of the above consistency
55 error Fl and how sets can be utilized and set routines exer-

(b) Error "F2 (a)" -a usage rule is present, a standard 60

optionality is required, and no standard optionality is
present.
[F2a]=([O-R]-[SML-R]). Note, if "no-standard-re­

quired rules exist" then an [RS] trie containing the
complement of all no standard required rules can be 65

subtracted from [F2a].
(c) Error "F2 (b)"-multiple standards.

cised to determine consistency errors. Configuration space
800 contains a set of all possible feature combinations that
could be a part of product. Subset 802 represents a subset of
feature combinations that contain main features with one or
more S, 0, M, and L optionalities. Subset 804 represents a
subset of feature combinations containing main features with
an R optionality. This grouping of subsets allows consistency
checking system 400 to determine the subtraction subset
SOML-R806.

FIG. 9 depicts example configuration rules 900 to illustrate
consistency checking operations of the consistency checking
system of FIG. 4. Virtually any number of features, option-

US 7,464,064 Bl
9

ali ties, and constraints can be processed for consistency using
consistency checking system 400. Example optionalities
include:

L=legally required;
M=mandatory;
NR=not released;
O=optional;
R=restricted; and
S=standard.
Features EN1 and EN2 represent 2 engines from an engine

family. Features TR1, TR2, and TR3 represent 3 transmis­
sions from a transmission family. Features AX1, AX2, and
AX3 represent 3 axles from an axle family. The rules depicted
in FIG. 9 are interpreted as described above. For conciseness,
all optionalities are not used in the configuration rules 900 and
the examples below, but they can be applied in a data structure
and set routines performed in the same manner as the depicted
optionalities in the below examples.

FIG. 10 depicts grid 1000 containing the rules of FIG. 9
where AX is the "main family.". From the grid representation
to visualize the trie data structures discussed below. Grid
1002 is identical to grid 1000 and illustrates the feature con­
solidation operation described above and indicated with
brackets"[...]".Selections 1008, 1010, 1012, and 1014 are
members of the (SOML-R) set, i.e. '={(AXl.ENl.TR1),
(AXl.ENl.TR2), (AX2.EN1.TR2), (AX3.EN2.TR2)}. Col­
unms 1002, 1004, and 1006 are members of the [SOML-R]
set, i.e. {(EN1.TR1), (EN1.TR2), (EN2.TR2)}.

A description of the four example consistency errors fol­
lows with reference to consistency checking operations 500.
Errors F1, F2a, and F2b are illustrated below using configu­
ration rules 900. Since configuration rules 900 do not contain

10
i.e. theintersectionofSOML trie 1102 with--, R trie 1108

by subtracting each--, R path 1108 from each SOML path
1102. The numbers 1 through 6 illustrate the paths involved in
the subtraction operation and the corresponding resulting trie.

5 The six resulting paths in trie 1110 together represent the
intersection of SOML'--, R.

Referring to FIG. 11 C, the empty paths of tries 1110 can be
discarded, thus reducing trie 1110 to trie 1112. After consoli­
dating the axle level (not shown), two of the three paths oftrie

10 1112 are identical, thus trie 1112 can be reduced to two paths
1114. Furthermore, the main features representing the axles
(indicated by the asterisk"*") are consolidated into a smaller
subset represented by [SOML-R] trie 1114. [SOML-R] trie
1114 is rearranged into trie 1116 so that the root level of each

15 trie has only one feature represented. In one embodiment, this
rearrangement is performed to maintain an invariant required
by one embodiment of the specification of the trie data struc­
ture, i.e. no node is allowed to have immediate children with
overlapping sets. In this case the * node has children 11 and

20 01, which overlap. Tries 1118 and 1120 can be minimized to
form trie 1122, which results in [SOML-R] trie 1124.

As discussed above, subtracting [SOML-R] trie 1124 from
an ALL trie 1126 determines the complement of [SOML-R]
trie 1124. First subtracting path 1128 from ALL trie 1126 and

25 then subtracting path 1132 from the result produces
-[SOML-R], i.e. the complement of [SOML-R]. Subtract­
ing path 1128 from ALL trie 1126 produces paths 1130, and
subtracting path 1132 from paths 1130 produces -[SOML­
R] trie 1134. The -[SOML-R] trie 1134 represents the con-

30 figuration ofTR1 (transmission 1) and EN2 (engine 2). Thus,
consistency checking system 400 correctly determines that
consistency error F1 =-[SO ML-R]113 6 is that the comb ina­
tion ofTransmission 1 and Engine 2 lacks an axle. Operation an NR optionality, operations involving subsets ofNR rules

are not presented below. However, the following examples
can easily be extrapolated to include NR set operations as 35

well as other set operations utilized by consistency error
operations. For example, it will be recognized by those of
ordinary skill in the art that any number of other consistency
error types can be formulated using set equations, and con­
sistency errors can be detected using the consistency check­
ing system and operations described herein.

510 displays/reports the Fl consistency error.
FIG.12 depicts a use oftrie data structures and set routines

by consistency checking system 400 in accordance with con­
sistency checking operations 500 to determine a consistency
error when a usage rule is present, a standard optionality is
required, and no standard optionality is present. Consistency

40 error trie [F2a] is determined by set routine [F2a]=([O-R]­
[SML-R]) pursuant to operation 504. Operation 506 gener­
ates the following trie data structures, operation 508 performs
the set math routines in the marmer discussed with reference
to FIG.11.

The SML trie 1202 represents axle, transmission, and
engine configurations having a standard, mandatory, or
legally required optionality. The R trie 1204 represents axle,
transmission, and engine configurations that are restricted.
The intersection of SML trie and --,R trie 1206 and consoli-

FIGS. 11A, 11B, 11C, and 11D depict a use of trie data
structures and set routines to determine consistency error F1
within a subset of a configuration space. Consistency error
trie [F1] is determined by set routine [F1]=-[SOML-R]. In 45

accordance with operation 504, the consistency checking sys­
tem 400 identifies the subsets SOML and R. The SMOL trie
1102 represents the set of axle, transmission, and engine
feature configurations having a standard, mandatory,
optional, or legally required optionality. The R trie 1104
represents the set of axle, transmission, and engine feature
configurations that are restricted. Pursuant to operation 506,
three binary form trie data structures 1102 represent the
SOML subset using the methodology described above in
conjunction with FIGS. 6 and 7. The main features are listed

50 dation of the main family features (axles) results in [SML-R]
trie 1208. The -[SML-R] trie 1210 represents the comple­
ment of [SML-R] trie 1208. The 0 trie 1212 represents
transmission and engine constraints on the axle family having
an 'optional' optionality. The [O-R] trie 1214 represents the

55 set of transmission and engine constraints on the axle family
having an 'optional' optionality less the set of transmission
and engine constraints on the axle that are restricted. The
[0-R]-[SML-R] trie represents the consistency error trie
[F2a]. The consistency error is correctly identified and

at the root of the SOML trie data structures 1102 followed by
constraints associated with the main features. Trie data struc­
ture 1104 represents the R subset.

To perform a subtraction between trie data structures, con­
sistency checking system 400 determines the complement of
the subtrahend trie and performs an intersection between the
minuend trie and the subtrahend complement trie. The
complement of the subtrahend trieR 1104 is determined by
subtracting R trie 1104 from All trie 1106 (i.e. a trie repre­
senting all configuration combinations). --, R tries 1108 rep­
resents the complement of R (also often referred to as "not
R"). Operation 508 performs the intersection SOML'--,R.

60 reported as the configuration rules that include transmission 2
and engine 2 constraints on the axle family have no standard.

FIG. 13 depicts a flow chart of multiple standard consis­
tency error operation 1300 to determine an F2b consistency
error indicating the existence of multiple standards for a

65 subset of configuration rules. Consistency error operational
flow chart 1300 progresses along each row of main features in
configuration rules 900, identifies a subsets of standards, and

US 7,464,064 Bl
11

compares the subsets of standards for previous identified
standards. An F2b consistency error exists when there are
multiple standards in configuration rules 900.

FIGS. 14A, 14B, 14C, 14D, and 14E (collectively "FIG.
14") depict a use of trie data structures and set routines to 5

determine a consistency error indicating the existence of mul­
tiple standards for a subset of configuration rules. Referring to
FIGS. 13 and 14, operation 1300 begins with operation 1302
and proceeds to set a counter variable, i, to 0. Operation 1306
creates an empty set for tries [F2b]0 1402 and [familySML]0 10

1404. Operation 1308 sets the variable, N, equal to the num­
ber of main features in configuration rules 900, which equals
three in this embodiment, i.e. AX1, AX2, andAX3. In opera­
tion 1310, consistency error trie [F2bL1=[F2b],U ([fam­
ilySML],'[featureSML-featureRL). Trie [featureSML-fea- 15

tureR] 0 is minimized trie 1408 by eliminating the empty set
trie 1407 and consolidating the main feature level. Trie 1500
represents the intersection of tries [familySML]0 1404 and

12
from (0) trie 1718. The [F2c]=[O-RnML-R]1714 trierep­
resents the consistency error trie [F2c], which indicates a
consistency error 1716 with configuration rules 1500. Spe-
cifically, the transmission 2 and engine 2 constraints on the
axle family have conflicting legal and/or mandatory option­
alities with an "optional" optionality.

Thus, consistency checking system 400 determines consis­
tency errors in configuration rules efficiently by operating on
subsets of data that are particularly applicable to the consis­
tency error being checked. Furthermore, specific set opera­
tions and data structures have been identified to perform the
consistency checks.

FIG. 18 is a block diagram depicting one embodiment of a
network environment in which a consistency checking sys­
tem 400 may be practiced. Network 1802 (e.g. a private wide
area network (WAN) or the Internet) includes a number of
networked server computer systems 1804(1)-(N) that are
accessible by client computer systems 1806(1)-(N), where N [featureSML-featureR]

0
1408. The union ("U") oftrie [F2b]0

and trie 1500 produces trie [F2b]r 1502.
Referring to FIGS.13 and 14B, operation 1312 increments

20
is the number of server computer systems connected to the
network. Communication between client computer systems
1806(1)-(N) and server computer systems 1804(1)-(N) typi­
cally occurs over a network, such as a public switched tele­
phone network over asynchronous digital subscriber line

i by 1, and operation 1314 determines whether i=N. Ifi=N,
then operation 1300 stops at operation 1318 with the trie
[F2b] N representing the consistency error. Since at this stage,
i=l, operation 1300 proceeds to operation 1316 to determine 25

([familySML],+1 =([familySML],U[featureSML-featureR]
,). The union of tries [familySML]0 1504 and [featureSML­
featureR]0 1506 produces (familySML) 1 trie 1508, which
becomes trie 1510 with consolidation of the main family
features. Operation 1300 returns to operation 1310 and pro- 30

ceeds as discussed above until i=3. FIGS.14C, 14D, and 14E
depict the resulting tries and trie operation results through
i=3. The [F2b]3 trie represents the multiple standards consis­
tency errortrie [F2a]. The consistency error 1422 is correctly
identified and reported as the transmission 2/engine 1 con- 35

figuration has multiple standards.
FIG. 15 depicts example configuration rules 1500 to illus­

trate consistency checking operations of the consistency
checking system of FIG. 4 when determining a consistency
error that occurs when mandatory or legal optionalities con- 40

flict with an "optional" optionality. Configuration rules 1500
differ from configuration rules 9 by including a configuration
rule {AX1 M EN2.TR2}. FIG. 16 depicts a grid containing
the rules of FIG. 15 where AX is the main family.

FIGS.17A, 17B, and 17C (collectively "FIG.17") depict a 45

use of trie data structures and set routines to determine a
consistency error that occurs when mandatory or legal option­
alities conflict with an "optional" optionality. Consistency
error trie [F2c] is determined by set routine [F2c]=([ML-R]
'[0-R]) pursuant to operation 504. Operation 506 generates 50

the following trie data structures, operation 508 performs the
set math routines in the manner discussed with reference to
FIG.17.

(ADSL) telephone lines or high-bandwidth trunks, for
example communications channels providing Tl or OC3 ser­
vice. Client computer systems 1806(1)-(N) typically access
server computer systems 1804(1)-(N) through a service pro­
vider, e.g., an Internet service provider such as America On-
Line™ and the like, by executing application specific soft­
ware, commonly referred to as a browser, on one of client
computer systems 1806(1)-(N).

Client computer systems 1806(1)-(N) and/or server com­
puter systems 1804(1)-(N) may be, for example, computer
systems of any appropriate design, including a mainframe, a
mini-computer, a personal computer system, or a wireless,
mobile computing device. These computer systems are typi­
cally information handling systems, which are designed to
provide computing power to one or more users, either locally
or remotely. Such a computer system may also include one or
a plurality of input/output ("I/0") devices coupled to the
system processor to perform specialized functions. Mass stor­
age devices such as hard disks, CD-ROM drives and mag­
neto-optical drives may also be provided, either as an inte­
grated or peripheral device. One such example computer
system is shown in detail in FIG. 19.

Embodiments of the consistency checking system 400 can
be implemented on a computer system such as a general­
purpose computer 1900 depicted in FIG. 19. Input user device
(s) 1910, such as a keyboard and/or mouse, are coupled to a
bi-directional system bus 1918. The input user device(s) 1910
are for introducing user input to the computer system and
communicating that user input to processor 1913. The com­
puter system of FIG. 19 also includes a video memory 1914, The ML trie 1702 represents axle, transmission, and engine

configurations having mandatory or legally required option­
alities. The R trie 1704 represents axle, transmission, and
engine configurations that are restricted. The intersection of
ML trie 1702 and --,R trie 1706 results in (ML-R) trie 1708.
The consolidation of the main family features (axles) results
in [ML-R] trie 1710 The [O-R] trie 1712 represents the set of
transmission and engine constraints on the axle family having
an 'optional' optionality less the set of transmission and
engine constraints on the axle that are restricted. (0) Trie
1718 represents the set features in grid with' optional' option­
alities, and trie --,R 1720 includes two paths representing
features in grid 1600 with restriction optionalities. (O-R) trie
1722 represents the subtractionofeach path of(-R) trie 1720

55 main memory 1915 and mass storage 1909, all coupled to
bi-directional system bus 1918 along with input user device
(s) 1910 and processor 1913. The mass storage 1909 may
include both fixed and removable media, such as other avail­
able mass storage technology. Bus 1918 may contain, for

60 example, 32 address lines for addressing video memory 1914
or main memory 1915. The system bus 1918 also includes, for
example, ann-bit DATA bus for transferring DATA between
and among the components, such as CPU 1909, main
memory 1915, video memory 1914 and mass storage 1909,

65 where "n" is, for example, 32 or 64. Alternatively, multiplex
DATA/address lines may be used instead of separate DATA
and address lines.

US 7,464,064 Bl
13

I/0 device(s) 1919 may provide connections to peripheral
devices, such as a printer, and may also provide a direct
connection to remote server computer systems via a tele­
phone link or to the Internet via an internet service provider
(ISP). I/0 device(s) 1919 may also include a network inter­
face device to provide a direct connection to remote server
computer systems via a direct network link to the Internet via
a POP (point of presence). Such connection may be made
using, for example, wireless techniques, including digital
cellular telephone connection, Cellular Digital Packet Data 10

(CDPD) connection, digital satellite data connection or the
like. Examples of I/0 devices include modems, sound and
video devices, and specialized communication devices such
as the aforementioned network interface.

Computer programs and data are generally stored as 15

instructions and data in mass storage 1909 until loaded into
main memory 1915 for execution. Computer programs may
also be in the form of electronic signals modulated in accor­
dance with the computer program and data communication
technology when transferred via a network. The method and 20

functions relating to consistency checking system 400 may be
implemented in a computer program alone or in conjunction
with hardware.

The processor 1913, in one embodiment, is a 32-bit micro­
processor manufactured by Motorola or microprocessor 25

manufactured by Intel, such as the Pentium processor. How­
ever, any other suitable single or multiple microprocessors or
microcomputers may be utilized. Main memory 1915 is com­
prised of dynamic random access memory (DRAM). Video
memory 1914 is a dual-ported video random access memory. 30

One port of the video memory 1914 is coupled to video
amplifier 1918. The video amplifier 1918 is used to drive the
display 1919. Video amplifier 1918 is well known in the art
and may be implemented by any suitable means. This cir­
cuitry converts pixel DATA stored in video memory 1914 to a 35

raster signal suitable for use by display 1919. Display 1919 is
a type of monitor suitable for displaying graphic images.

The computer system described above is for purposes of
example only. The consistency checking system 400 may be
implemented in any type of computer system or program- 40

ming or processing environment. It is contemplated that the
consistency checking system 400 might be run on a stand­
alone computer system, such as the one described above. The
consistency checking system 400 might also be run from a
server computer systems system that can be accessed by a 45

plurality of client computer systems interconnected over an
intranet network. Finally, the consistency checking system
400 may be run from a server computer system that is acces­
sible to clients over the Internet.

14
identifYing one or more sets of feature combinations in

accordance with the set equation of the consistency error
type in which a particular type of consistency error can
occur;

if a consistency error of the consistency error type exists in
the one or more sets of feature combinations, detecting
the consistency error using the one or more identified
sets of feature combinations and the set equation asso-
ciated with the consistency error type; and

providing data, to a computer system for display by a
display device, wherein the data indicates any detected
consistency error.

2. The method of claim 1 wherein the configuration rules
includes features, optionalities, and constraints, and each set
equation includes sets offeatures grouped by selected option­
alities.

3. The configuration method of claim 2 wherein optionali­
ties include mandatory, standard, optional, and restricted.

4. The method of claim 1 wherein detecting the consistency
error using the one or more identified sets of feature combi­
nations and the set equation associated with the consistency
error type further comprises:

performing set math routines in accordance with the set
equation associated with the consistency error type on
the identified one or more sets of feature combinations to
detect any consistency error in the one or more sets of
feature combinations.

5. The method of claim 1 further comprising:
generating a trie data structure having levels and nodes to

represent the features in the configuration rules, wherein
each family is represented in a distinct level of the trie
data structure and each respective feature representation
is represented by a single node.

6. The method of claim 1 wherein the set equation includes
a representation of an inclusion of subsets of features of a
family of features associated with a first one or more option­
alities and removal of subsets of features of the family of
features associated with a second one or more optionalities.

7. The method of claim 1 wherein a configuration space
represents a plurality of feature combinations and identifying
one or more sets of feature combinations in accordance with
the set equation of the consistency error type further com­
prises:

determining a portion of feature combinations of the con­
figuration space in which a consistency error can occur.

8. The method of claim 1 wherein identifying one or more
sets of feature combinations in accordance with the set equa­
tion of the consistency error type further comprises:

consolidating the feature combinations into minimized
subsets that represent the portion of the configuration
space where the consistency error can occur.

Many embodiments of the present invention have applica- so
tion to a wide range of industries including the following:
computer hardware and software manufacturing and sales,
professional services, financial services, automotive sales
and manufacturing, telecommunications sales and manufac­
turing, medical and pharmaceutical sales and manufacturing,
and construction industries.

9. A consistency checking system for detecting consistency
errors for multiple consistency error types between configu-

55 ration rules, the system comprising:

Although the present invention has been described in
detail, it should be understood that various changes, substi­
tutions and alterations can be made hereto without departing
from the spirit and scope of the invention as defined by the 60

appended claims.
What is claimed is:
1. A method of detecting consistency errors for multiple

consistency error types between configuration rules, the
method comprising:

for each consistency error type, wherein each consistency
error type is represented by a 'set' equation:

65

a processor;
a memory, coupled to the processor, having instructions

executable by the processor for:
for each consistency error type, wherein each consis­

tency error type is represented by a 'set' equation:
identifYing one or more sets of feature combinations in

accordance with the set equation of the consistency
error type in which a particular type of consistency
error can occur;

if a consistency error of the consistency error type exists
in the one or more sets of feature combinations,
detecting the consistency error using the one or more

US 7,464,064 Bl
15

identified sets of feature combinations and the set
equation associated with the consistency error type;

providing data, to a computer system for display by a
display device, wherein the data indicates any
detected consistency error.

10. The configuration consistency checking system of
claim 9 further comprising:

a trie data structure having levels and nodes to represent the
feature combinations in the configuration rules, wherein
each family is represented in a distinct level of the trie 10

data structure and each respective feature representation
is represented by a single node.

11. The consistency checking system of claim 9 wherein
the configuration rules includes features, optionalities, and
constraints, and each set equation includes sets of features 15

grouped by selected optionalities.
12. The consistency checking system of claim 11 wherein

optionalities include mandatory, standard, optional, and
restricted.

13. The consistency checking system of claim 9 wherein 20

the instructions for detecting the consistency error using the
one or more identified sets of feature combinations and the set
equation associated with the consistency error type further
comprise instructions for:

performing set math routines in accordance with the set 25

equation associated with the consistency error type on
the identified one or more sets of feature combinations to
detect any consistency error in the one or more sets of
feature combinations.

14. The consistency checking system of claim 9 wherein 30

the memory further comprises instructions executable by the
processor for:

generating a trie data structure having levels and nodes to
represent the features in the configuration rules, wherein
each family is represented in a distinct level of the trie 35

data structure and each respective feature representation
is represented by a single node.

15. The consistency checking system of claim 9 wherein a
configuration space represents a plurality of feature combi-

40
nations and the instructions for identifYing one or more sets of
feature combinations in accordance with the set equation of
the consistency error type further comprise instructions for:

determining a portion of feature combinations of the con­
figuration space in which a consistency error can occur.

45
16. The consistency checking system of claim 9 wherein

the instructions for identifying one or more sets of feature
combinations in accordance with the set equation of the con­
sistency error type further comprise instructions for:

consolidating the feature combinations into minimized
50

subsets that represent the portion of the configuration
space where the consistency error can occur.

17. A computer readable medium having code stored
therein to detect consistency errors for multiple consistency
error types between configuration rules, wherein the code is 55
executable by a processor for:

for each consistency error type, wherein each consistency
error type is represented by a 'set' equation:

identifYing one or more sets of feature combinations in
accordance with the set equation of the consistency error 60

type in which a particular type of consistency error can
occur;

if a consistency error of the consistency error type exists in
the one or more sets of feature combinations, detecting
the consistency error using the one or more identified 65

sets of feature combinations and the set equation asso­
ciated with the consistency error type; and

16
providing data, to a computer system for display by a

display device, wherein the data indicates any detected
consistency error.

18. The readable medium product of claim 17 further com­
prising code stored therein and executable by the processor
for:

organizing the one or more sets of feature combinations
into a trie data structure having levels and nodes to
represent the features in the configuration rules, wherein
each family is represented in a distinct level of the trie
data structure and each respective feature representation
is represented by a single node.

19. The computer readable medium of claim 17 wherein
the configuration rules includes features, optionalities, and
constraints, and each set equation includes sets of features
grouped by selected optionalities.

20. The computer readable medium of claim 19 wherein
optionalities include mandatory, standard, optional, and
restricted.

21. The computer readable medium of claim 17 wherein
the code for detecting the consistency error using the one or
more identified sets of feature combinations and the set equa­
tion associated with the consistency error type further com­
prises code for:

performing set math routines in accordance with the set
equation associated with the consistency error type on
the identified one or more sets of feature combinations to
detect any consistency error in the one or more sets of
feature combinations.

22. The computer readable medium of claim 17 further
comprising code stored therein and executable by the proces­
sor for:

organizing the one or more sets of feature combinations
into a trie data structure having levels and nodes to
represent the features in the configuration rules, wherein
each family is represented in a distinct level of the trie
data structure and each respective feature representation
is represented by a single node.

23. The computer readable medium of claim 17 wherein a
configuration space represents a plurality of feature combi­
nations and the code for identifYing one or more sets of
feature combinations in accordance with the set equation of
the consistency error type further comprises code for:

determining a portion of feature combinations of the con­
figuration space in which a consistency error can occur.

24. The computer readable medium of claim 17 wherein
the code for identifYing one or more sets offeature combina­
tions in accordance with the set equation of the consistency
error type further comprises code for:

consolidating the feature combinations into minimized
subsets that represent the portion of the configuration
space where the consistency error can occur.

25. A computer implemented method for detecting one or
more consistency errors for a consistency error type between
configuration rules, wherein a configuration space represents
a set of combinations of feature selections allowed by the
configuration rules, the method comprising:

consolidating a portion of the feature combinations within
the configuration space into one or more minimized
subsets of feature combinations that represent a portion
of the configuration space where a particular type of
consistency error can occur;

performing set routines on the one or minimized subset of
feature combinations in accordance with a 'set' equation
associated with the particular type of consistency error;

if a consistency error of the consistency error type exists in
the one or more sets of feature combinations, detecting

US 7,464,064 Bl
17

the consistency error in the one or more minimized
subsets of feature combinations using the set equation
associated with the consistency error; and

providing data indicating any detected consistency error.

26. The method of claim 25 further comprising:

generating a trie data structure having levels and nodes to
represent the feature combinations in the configuration
rules, wherein each family is represented in a distinct
level of the trie data structure and each respective feature
representation is represented by a single node.

18
27. The method of claim 25 wherein detecting the consis­

tency error using the one or more identified sets of feature
combinations and the set equation associated with the con­
sistency error type further comprises:

performing set math routines in accordance with the set
equation associated with the consistency error type on
the identified one or more sets of feature combinations to
detect any consistency error in the one or more sets of
feature combinations.

* * * * *

