
c12) United States Patent
Arbon et al.

(54) RECOVERY AND OPERATION OF
CAPTURED RUNNING STATES FROM
MULTIPLE COMPUTING SYSTEMS ON A
SINGLE COMPUTING SYSTEM

(75) Inventors: Val Arbon, Orem, UT (US); Daniel H.
Hardman, American Fork, UT (US)

(73) Assignee: Symantec Corporation, Cupertino, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 522 days.

(21) Appl. No.: 11/180,412

(22) Filed: Jul. 13, 2005

(51) Int. Cl.
G06F 11100 (2006.01)

(52) U.S. Cl. 714/13; 714/4; 714/15
(58) Field of Classification Search 714/4,

714/5, ~7, 12, 13,15
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,488,716 A * 111996 Schneider eta!. 714/10
5,805,790 A * 9/1998 Nota eta!. 714/10
5,832,222 A * 1111998 Dziadosz et al 709/216

111111 111
US007480822Bl

(10) Patent No.:
(45) Date of Patent:

6,728,746 B1* 4/2004
6,973,587 B1* 12/2005
7,197,561 B1* 3/2007
7,200,622 B2 * 4/2007

2003/0018927 A1 * 112003
2004/0172574 A1 * 9/2004
2005/0108593 A1 * 5/2005
2005/0172160 A1 * 8/2005
2006/0271575 A1 * 1112006

* cited by examiner

US 7,480,822 Bl
Jan.20,2009

Murase eta!. 718/1
Maity eta!. 714/6
Lovy eta!. 709/224
Nakatani et al 707/202
Gadir eta!. 714/4
Wing eta!. 714/4
Purushothaman et al. 714/4
Taylor et al. 714/4
Harris et al 707/100

Primary Examiner-Joshua A Lohn
(74) Attorney, Agent, or Firm-AdvantEdge Law Group

(57) ABSTRACT

Restoring access to running states of multiple primary com­
puting systems onto a single computing system. The captured
running states each include, or are altered to include, at least
one device driver that is configured to interface with a com­
mon virtualization component that runs on the single com­
puting system. The common virtualization component is con­
figured to at least indirectly interface with hardware on the
single computing system. The hardware potentially operates
using a different interface than the device driver is configured
to interface with. The system identifies a boot order for each
of the primary computing systems, and then starts the running
states for each of the primary computing systems in the appro­
priate boot order in a manner that takes advantage of the
virtual environment exposed by the single computing system.

25 Claims, 7 Drawing Sheets

Device Driver
Insertion

Component
352

Primary Computing
System 310

Primary Computing
System 320

Primary Computing
System 330

I Runn~f1 State I I 1 Runn~~1 State 1 Runn~~1 State 1 T
341

~ l / ¥j
Capture channel

351

/ I ~
/ Recovery Comptting System ;JMi ~

Captured Running
State 312

Captured Running
State 322

Captured Running
State 332

Captured Applications Captured Applications Captured Applications
And Data 313 And Data 323 And Data 333

Captured O.S. 314 Captured O.S. 324 Captured O.S. 334 "\"
342

~
Standard Device Standard Device Standard Device

Driver 315 Driver 325 Driver 335

~ ~ ~
Virtualization Component 361

~ t t t
Recovery C.S. Operating System 362

t t t
Recovery C.S. Hardware 363

Processor(s)
102

Memory
104

Volatile

Non-Volatile

Computing System
100

Communication
Channels

108

Fig. 1

Network
110

~
00
•
~
~
~
~ = ~

~
~

:=
N
~0
N
0
0
\0

rFJ

=­('D
('D
0
-....l

d
rJl
-....l
~
00 = Oo
N
N

= """"'

U.S. Patent Jan.20,2009 Sheet 2 of7 US 7,480,822 Bl

(201 (202 (204

Capture Running Ensure Captured Identify Boot Order
State Of Primary Running State Includes For Primary

Computing Systems Virtual Driver Computing Systems

+
Recovery Computing

v-203 System Accesses
Running State

I
,~

Boot Running States v2os In Identification Boot
Order

t
Emulate Network

v-206 Between Primary
Computing Systems

Fig. 2

U.S. Patent Jan.20,2009 Sheet 3 of7 US 7,480,822 Bl

~ !I Boot
Order
353

I _(

I

~
I

Network
Infra I 354 - :;;;-

I

I

Primary Computing Primary Computing
System 310 System 320

Runn~.p1 State I I
Running State

321

~
I

Device Driver
Insertion

Component
352

Primary Computing
System 330

I Running State
331

~
0 ~

Capture channel

/-- 351

~
/ Recovery Computing System 350 ~ • Captured Running

State 312
Captured Running

State 322
Captured Running

State 332

I

Captured Applications Captured Applications Captured Applications
And Data 313 And Data 323 And Data 333

Captured O.S. 314 Captured O.S. 324 Captured O.S. 334

Standard Device I Standard Device Standard Device
Driver 315 Driver 325 Driver 335

,, ,,
Virtualization Component 361

Recovery C.S. Operating System 362

Recovery C.S. Hardware 363

Fig. 3

·r
341

.\.
342

I

I

I

U.S. Patent Jan.20,2009 Sheet 4 of7 US 7,480,822 Bl

Primary
Computing

System

310

411

(e.g., Web)

:----Pr~~~---:
1 Computing 1
: System 320 :

1----p-~------
1 nmary
1 Computing
: System 330

I I 14421

J.!t
421 1\ I 422

I I

(e.g., DB)
I

I (e.g., DNS) I
I I I

I I I

hl
I I
I I
I I

I 431 I I 432
I I (e.g., Domain I (e.g., File) I ~ I 14431 Controller) I I

._ ___________ I :444: I I ._ ___________ I
~-----------

Fig. 4

Repeatable
Monitor Initialization Times For Prior r-
lnitializations Of Computing Services

501

!
Estimate Initialization r- 502

Dependencies

!
Derive An Initialization ,--._ 503

Ordering

!
Derive Boot Order Of Primary ,--._ 504

Computing Systems

Fig. 5

U.S. Patent Jan.20,2009 Sheet 5 of7 US 7,480,822 Bl

Monitor Event Logs For
All Computing Systems

601

~

Filter For Initialization Events
For The Computing Services

-- 602

Fig. 6

Estimate Sequential Time-Based -Correlation For A Pair Of 701
Initialization Events

~
Estimate That Computin9 Services

With Higher Sequential T1me-Based -
Correlation Have An Initialization

702

Dependency

Fig. 7

U.S. Patent

~I

Jan.20,2009

~

0
(1).~
ucu
s::::::a..
ra ... us:::
i;Cl)
·- > s::::::w
C') ·-en

Sheet 6 of7 US 7,480,822 Bl

f/) c
C1)

> co w
s:::::: •
C1) _a, C1)

3: u:
C1)

m
C1)

E
c: i=
E

U.S. Patent Jan.20,2009 Sheet 7 of7 US 7,480,822 Bl

Q) -U5
~ 01 ,_0
Oa,
1;
Q)

z

~I 00000 en
c...
0 a 00000 ro

.....J
"0
c
ro

~ en 00000 c...
0 -~ en I Q)

~I DOD
E DOD Q) -en
>-en

0

00000 I
I
I
I --------------------

1-,-------------------~~

iJ~rOOOOO···i

0> DOD c
::;
c...
E
0

0 DOD ~
Q)
>
0
(.)
Q)

DOD 0::

L ____ ---------------1

f
~ ~------------------------_.....J
0>

US 7,480,822 Bl
1

RECOVERY AND OPERATION OF
CAPTURED RUNNING STATES FROM

MULTIPLE COMPUTING SYSTEMS ON A
SINGLE COMPUTING SYSTEM

BACKGROUND OF THE INVENTION

2
single computing system. After capturing the running state
for each of the primary computing systems, the single com­
puting system then accesses and exposes for external use the
captured running states. The captured running states each
include, or are altered to include, at least one device driver
that is configured to interface with a common virtualization
component that runs on the single computing system.

The common virtualization component is configured to at
least indirectly interface with hardware on the single comput-

Computing technology has transformed the way we work
and play. Businesses, residences, and other enterprises have
come to rely on computing systems to manage their key
operational data. Often, the data itself is many times more
valuable to an enterprise than the computing hardware that
stores the data. Accordingly, in this information age, many
enterprises have taken precautions to protect their data.

10 ing system. The hardware potentially operates using a differ­
ent interface than the device driver in the capture running state
is configured to interface with. The system identifies a boot
order for each of the primary computing systems, and then
starts the running states for each of the primary computing

One way of protecting data is to introduce storage redun­
dancy. For example, a primary computing system maintains
and operates upon the active data. Meanwhile, a backup com­
puting system maintains a copy of the data as the active data
existed at a previous instant in time. The backup copy of the
data is periodically updated. More frequent updates tend to
increase the freshness of the data at the backup computing
system. At some point, the data at the primary computing
system may become inaccessible or otherwise lost. When
needed, the data is then transferred back from the backup
computing system to the primary computing system.

15 systems in the appropriate boot order.
Accordingly, access to the running state of the primary

computing systems is restored on a single computing system,
and without requiring the primary computing systems' hard­
ware. This can significantly reduce the amount of time needed

20 to restore access to the functionality offered by the primary
computing systems. Furthermore, this process may be used to
test the recovery even if the primary computing systems con­
tinue operation.

Additional embodiments of the invention will be set forth
25 in the description that follows, and in part will be obvious

from the description, or may be learned by the practice of the
invention. The embodiments of the invention may be realized
and obtained by means of the instruments and combinations

For faster recovery, some backup systems perform volume­
based backup in which all of the sectors of a particular volume
are backed up. Such sectors may include application data, but
may also include application programs, operating system(s),
and associated configuration information. This protects 30

against more severe failures in which more than just data is
lost, but perhaps the entire volume has become corrupted. In
that case, the previously backed-up volume is transferred
from the backup computing system to the primary computing
system. Reinstallation and reconfiguration of the operating 35

system and application program is not needed since the
installed and configured executable representations of the
operating system and application programs are already
present in the backed-up volume.

This traditional volume-based backup works well so long 40

as the primary computing system is still available to restore its
running state to. Unfortunately, some failure events may
result in not just lost data or state from a particular volume, but
may also result in a loss of the hardware itself. In that case,
unless there is an identical redundant primary computing 45

system with the same hardware (which itself can be quite
expensive), restoration of the backup volume is postponed
until identical hardware is acquired. This can take substantial
time. The problem is compounded when multiple computing
systems have been lost in the failure event. 50

particularly pointed out in the appended claims. These and
other embodiments of the present invention will become
more fully apparent from the following description and
appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to spe­
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates a computing system that may be used to
implement the principles of the present invention;

FIG. 2 illustrates a flowchart of a method for restoring
access to the running state of multiple primary computing
systems onto a single recovery computing system in accor­
dance with the principles of the present invention;

FIG. 3 illustrates an environment in which the principles of
the present invention may operate, including a recovery com­
puting system, multiple primary computing systems, and a
driver insertion component;

When recovering data access after such a failure, time is
money. Depending on the enterprise size and operation, each
minute without operational data may mean thousands, or
even millions, of dollars in lost revenue. Therefore, what
would be advantageous are mechanisms for efficiently restor- 55

ing access to data and other operational state of multiple
primary computing systems, even if the primary computing
systems are no longer available, and without necessarily
requiring replacement computing systems that have identical
hardware as the lost primary computing systems.

FIG. 4 illustrates an example system that includes multiple
interdependent computing services distributed across mul-

60 tiple primary computing systems;

BRIEF SUMMARY OF THE INVENTION

The foregoing problems with the prior state of the art are
overcome by the principles of the present invention, which 65

are directed towards mechanisms for restoring access to run­
ning states of multiple primary computing systems onto a

FIG. 5 illustrates a flowchart of a method for automatically
deriving an order of dependency between multiple computing
services distributed across multiple primary computing sys­
tems;

FIG. 6 illustrates a flowchart of a method for monitoring
initialization times for prior initializations of computing ser-
vices;

US 7,480,822 Bl
3

FIG. 7 illustrates a flowchart of a method for estimating
initialization dependencies;

FIG. 8 illustrates a weighting function that may be used to
estimate initialization dependencies; and

FIG. 9 illustrates a network site environment in which the
principles of the present invention may be used to quickly
restore an entire complex network site.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The principles of the present invention relate to mecha­
nisms for restoring access to running states of multiple pri­
mary computing systems onto a single recovery computing
system. This permits for rapid recovery of the functionality
provided by the primary computing systems in case the pri­
mary computing systems cease operation. Alternatively, this
allows the recovery to the recovery computing system to be
tested even if the primary computing systems continue opera­
tion.

First, a general computing system will be described with
respect to FIG. 1, as being a suitable computing system that
may be used to practice the principles of the present inven­
tion. Then, general restore operations consistent with the
principles of the present invention will be described in further
detail with respect to FIGS. 2 and 3. A method for deriving a
boot order will then be described with respect to FIGS. 4
through 8. Finally, the application of the principles of the
present invention to quickly restore a complex network site
will be described with respect to FIG. 9.

FIG. 1 shows a schematic diagram of an example comput­
ing system that may be used to implement features of the
present invention. The described computing system is only
one example of such a suitable computing system and is not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the invention be
interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in FIG.
1.

Computing systems are now increasingly taking a wide
variety of forms. Computing systems may, for example, be
handheld devices, appliances, laptop computers, desktop
computers, mainframes, or distributed computing systems. In
this description and in the claims, the term "computing sys­
tem" is defined broadly as including any device or system (or
combination thereof) that includes at least one processor, and
a memory capable of having thereon computer-executable
instructions that may be executed by the processor. The
memory may take any form and may depend on the nature and
form of the computing system. A computing system may be
distributed over a network environment and may include mul­
tiple constituent computing systems.

Referring to FIG. 1, in its most basic configuration, a
computing system 100 typically includes at least one process­
ing unit 102 and memory 104. The memory 104 may be
volatile, non-volatile, or some combination of the two. An
example of volatile memory includes Random Access
Memory (RAM). Examples of non-volatile memory include
Read Only Memory (ROM), flash memory, or the like. The
term "memory" may also be used herein to refer to non­
volatile mass storage. Such storage may be removable or
non-removable, and may include (but is not limited to) PCM­
CIA cards, magnetic and optical disks, magnetic tape, and the
like.

As used herein, the term "module" or "component" can
refer to software objects or routines that execute on the com­
puting system. The different components, modules, engines,

4
and services described herein may be implemented as objects
or processes that execute on the computing system (e.g., as
separate threads). While the systems and methods described
herein may be implemented in software, implementations in
hardware, and in combinations of software and hardware are
also possible and contemplated.

In the description that follows, embodiments of the inven­
tion are described with reference to acts that are performed by
one or more computing systems. If such acts are implemented

10 in software, one or more processors of the associated com­
puting system that performs the act direct the operation of the
computing system in response to having executed computer­
executable instructions. An example of such an operation
involves the manipulation of data. The computer-executable

15 instructions (and the manipulated data) may be stored in the
memory 104 of the computing system 100.

Computing system 100 may also contain communication
channels 108 that allow the computing system 100 to com­
municate with other computing systems over, for example,

20 network 110. Communication channels 108 are examples of
communications media. Communications media typically
embody computer-readable instructions, data structures, pro­
gram modules, or other data in a modulated data signal such
as a carrier wave or other transport mechanism and include

25 any information-delivery media. By way of example, and not
limitation, communications media include wired media, such
as wired networks and direct-wired connections, and wireless
media such as acoustic, radio, infrared, and other wireless
media. The term computer-readable media as used herein

30 includes both storage media and communications media.
FIG. 2 illustrates a flowchart of a method 200 for restoring

access to running states of multiple primary computing sys­
tems onto a single recovery computing system. FIG. 3 illus­
trates an environment 300 in which the running states of

35 multiple primary computing systems are recovered to a single
recovery computing system. The recovery computing system
may then provide the functionality offered by all of the pri­
mary computing systems by operating upon the running state.
As the method 200 of FIG. 2 may be performed in the envi-

40 ronment 300 ofFIG. 3, the method 200 will now be described
with frequent reference to the environment 300.

The method 200 includes capturing the running states of
each of the primary computing systems (act 201). Referring
to FIG. 3, the example environment 300 includes three illus-

45 trated primary computing systems 310, 320 and 330, amongst
potentially many more as represented by the ellipses 341. The
primary computing systems 310, 320 and 330 may, but need
not, be structured as described above for the computing sys­
tem 100 of FIG. 1. Although three primary computing sys-

50 terns are illustrated in the environment 300, the principles of
the present invention may be applied to recover the running
state of any number of multiple primary computing systems.

Each primary computing system has an associated running
state. For instance, primary computing systems 310, 320 and

55 330 have corresponding running states 311, 321 and 331,
respectively. The running state may be an entire volume or set
of volumes that includes application data, the executable
instructions for application programs, the executable instruc­
tions for the operating system, and configuration information

60 for the application programs and the operating system. The
running state may also include compressed or encrypted
forms of the volume. The running state may also include just
a portion of the volume, just specific files or folders, or trans­
formations of instructions or data on the volume. For

65 instance, computer-executable instructions that conform to
one instruction set, may be transformed to computer-execut­
able instructions that conform to another instruction set.

US 7,480,822 Bl
5

Each of the running states is captured via the use of capture
channel 351. The capture channel 351 includes the mecha­
nisms used to acquire the running state from the respective
primary computing systems, and provide the running state to
the recovery computing system 350. Such a capture channel
need not contain communications media only, but also may
include storage in which the captured running state may be
stored for a period of time prior to being provided to the
recovery computing system 350. For instance, the capture
channel 350 may include a Storage Area Network (SAN). 10

6
cation programs and data 333 and the captured operating
system 334 that operated upon the primary computing system
330.

As previously mentioned, each of the captured running
states includes standard device driver(s) (e.g., 315, 325 and
335) that are configured to interface with the common virtu­
alization component 361 that runs on the recovery computing
system 350. The virtualization component 361 contains
executable instructions that, when executed by one or more
processors of the recovery computing system 350, causes the
recovery computing system 350 to at least indirectly interface
with hardware 363 of the recovery computing system 350. If
the recovery computing system is represented by the comput­
ing system 100 of FIG. 1, the execution of such instructions

Referring back to FIG. 2, the method 200 includes ensuring
that each of the captured running states includes device
driver(s) that are configured to interface with a common vir­
tualization component (act 202). Referring to FIG. 3, the
device driver insertion component 352 inserts device drivers
into the running state. For instance, standard device driver(s)
315 is inserted into running state 311, standard device
driver(s) 325 is inserted into running state 321, and standard
driver(s) 335 is inserted into running state 331.

15 by processor(s) 102 may instantiate the common virtualiza­
tion component 361.

In the illustrated embodiment, the virtualization compo­
nent 361 interfaces with the recovery computing system hard­
ware 363 using the recovery computing system's operating

These standard drivers may be inserted at any point. For
instance, the standard drivers may be inserted into the running
state while the running state is still on the primary computing
system 310, 320 or 330, while the running state is in the
capture channel 351, or after the running state is restored to
the recovery computing system 350. The standard device
drivers comprise computer-executable instructions that inter­
face correctly with a common virtualization component such

20 system 362. An example of the virtualization component is
VMWARE®, although other similar product may do as well.
The standard device driver(s) may include one driver for
interfacing with a network interface, and one driver for inter­
facing with a disk driver, and other drivers as desired. The

25 device drivers may be standardized across all running states.

as virtualization component 361. 30

Thus, each captured running state will include a common
Network Interface Card (NIC) device driver, a common disk
drive device driver, and a common driver for other classes of
hardware as desired.

Whatever the interface used by such device drivers, the
virtualization component 361 receives communications from
the standard device drivers, and provides appropriate equiva­
lent commands through the operating system 362 to the
recovery system hardware 363. Likewise, communications

35 received from the recovery system hardware 363 or operating
system 362 are translated into appropriate commands for
communication to the standard device drivers. While it is
most convenient if the standard device drivers be the same for

Returning to FIG. 2, after capturing the running state for
each primary computing system (act 201), the method 200
restores the capture running state to the single recovery com­
puting system (act 203). Referring to the example of FIG. 3,
the running state 311 is restored to the recovery computing
system 350 in the form of captured running state 312. Simi­
larly, the running states 321 and 331 from the other primary
computing systems are restored in the form of captured run­
ning states 322 and 332, respectively. If there were more
primary computing systems as represented by ellipses 341, 40
then the associated captured running states may be restored to
the recovery computing system 350 as represented by ellipses
342. The recovery computing system 350 may, but need not,

all captured running state, this is not a requirement if the
virtualization component is capable of more flexibility in the
types of standard device drivers the virtualization component
will communicate with.

Returning to FIG. 2, a suitable boot order for the primary
computing systems is also identified (act 204). This may be
done at any time. This determination may done by monitoring
prior boots for the primary computing systems, and identifY-
ing the boot order based on those prior boots. For instance, if
the primary computing systems are booted in a particular
order seventy percent of the time, that boot order may be
identified as suitable in act 204. Also, one could use a table of
the various well known services like DNS, DHCP, AD, etc
and their dependencies among each other to generate an
approximate boot order. A much more complex example of
how a boot order may be derived is described below with

be structured as described above for computing system 100,
and may be distributed over a network. Furthermore, 45
although there is much discussion herein about multiple run­
ning states being restored to a single recovery computing
system, that does not imply that there cannot be other recov­
ery computing systems in any particular network that also
have one or more running states restored to them. For 50
instance, there may be one hundred running states that are
restored to ten different recovery computing systems. Never­
theless, looking at a single one of those recovery computing
systems, there may be multiple running states restored to that
single recovery computing system. 55 respect to FIGS. 4 through 8. The boot order derivation

method described below with respect to FIGS. 4 through 8
takes into account the various interdependencies of the com­
puting services provided across the various computing sys­
tems. Whether the boot order is calculated by monitoring

Each of the captured running states includes computer­
executable instructions that, when executed by one or more
processors of the recovery computing system, cause the
applications and operating systems for the associated primary
computing system to become operational. For instance, cap­
tured running state 312 includes captured application pro­
grams and data 313 and the captured operating system 314
that operated upon the primary computing system 310. Simi­
larly, captured running state 322 includes captured applica­
tion programs and data 323 and the captured operating system
324 that operated upon the primary computing system 320.
Finally, captured running state 332 includes captured appli-

60 prior boots, or by performing the method described with
respect to FIGS. 4 through 8, or whether the boot order is
calculated in some other way, will depend on the environment
and sensitivity to obtaining a correct boot order. The example
boot order calculation method of FIGS. 4 through 8 will be

65 described upon completing the description of FIGS. 2 and 3.
In the illustrated embodiment, the boot order 353 is provided
to the virtualization component 361.

US 7,480,822 Bl
7 8

server, an example of the computing service 431 is a file
server, and an example of the computing service 432 is a
domain controller.

In this example, the Web server typically relies on the
database server (as represented by dependency arrow 441) to
populate Web pages with dynamic data. While the Web server
may operate without the database server, its operation will not
be optimal if it is unable to populate Web pages with dynamic
data. The Web server may also rely on the file server (as

The method 200 then boots the captured running states for
each of the primary computing systems in the identified boot
order (act 205). For instance, upon identifying the first pri­
mary computing system that is to be booted, the virtualization
component 361 causes the recovery computing system to
execute the BIOS of the recovery computing system. Com­
munications to the operating system are caused to pass to the
captured operating system for that associated running state.
This process is repeated for subsequent running states in the
boot order, until all running states are operational.

Returning to FIG. 2, the common virtualization component
emulates the network between at least two of the primary
computing systems when the captured running states of the at
least two primary computing systems attempt to communi­
cate over the network (act 206). Network infrastructure
instructions 354 instruct the virtualization component 361 on
the network infrastructure that existed with the primary com­
puting system. For instance, the instructions may specify the
address ranges used by each primary computing system. The
virtualization component 361 may virtualize network com­
munications between primary computing systems by receiv­
ing the network communication from the source running state
(using the standard NIC device driver for the source running
state), interpreting the destination address in light of the net­
work infrastructure instructions 354, and then providing the
network communication (using the standard NIC device
driver for the destination running state) to the destination
running state.

10 represented by dependency arrow 443) for some of the
resources (e.g., images, video, sounds, executable controls)
that it exposes.

The Web server may authenticate to the file server using
credentials which are validated by the domain controller.

15 Thus, the file server cannot provide full services to the Web
server until the domain controller is operational (as repre­
sented by dependency arrow 444).

The Web server finds the database server using data sup­
plied by the DNS server. Thus, the database server cannot

20 provide full services to the database server until the DNS
server is operational (as represented by dependency arrow
442).

This initialization order for this example system may likely
be easy to manually determine for an experienced Informa-

25 tion Technology (IT) professional. However, the example has
been kept quite simple in order not to obscure the principles of
boot order determination. Ordinary production environments
are commonly much more complex. It would be a laborious or
practically impossible task for even an experienced IT pro-

Accordingly, the principles of the present invention permit
the running states for multiple primary computing systems to

30 fessional to manually identifY all of the particular dependen­
cies in such a complex network, and to update such a model
accurately as the fabric evolves over time. be restored to a single recovery computing system. The run­

ning states may be made operational on the recovery comput­
ing system, and so the functionality of the primary computing
systems is recovered prior to the physical hardware associ- 35

ated with the primary computing systems being restored. This
permits for faster recovery, thereby reducing downtime. In
addition, the principles of the present invention may be prac­
ticed even if the primary computing systems continue opera­
tion. In that case, the operation of the running states on the 40

recovery computing system allows for testing of the recovery
operation without ever losing functionality of the primary
computing systems.

Having described the principles of the present invention
45

with respect to FIGS. 2 and 3, the description now turns to a
method for identifYing the boot order for the primary com­
puting systems. This method is one of many methods that may
be used to generate the boot order information 353, and will

FIG. 5 illustrate a flowchart of a method 500 for automati­
cally deriving an initialization ordering for a number of com­
puting services distributed over multiple primary computing
systems. As the method 500 of FIG. 5 may be performed on
the example system 400 of FIG. 4, the method 500 will be
described with frequent reference to the example system 400.
However, the principles of the boot order calculation may be
applied to any number of primary computing systems. In one
example embodiment referred to herein as the "physical boot
embodiment", the computing service is a physical boatable
machine, and the initialization of the computing service is the
booting of the physical machine.

The method 500 includes monitoring initialization times-
tamps for the computing services for one or more prior ini­
tializations of the computing services (act 501). If is it desired
to derive a current initialization ordering, the most recent
initializations may be monitored. If it is desired to determine

be described in detail with respect to FIGS. 4 through 8.
50 an acceptable initialization ordering for a prior instant in time,

the initializations proximate to that prior instant in time may
be evaluated. If it is desired to determine an initialization
ordering for a future point in time, then the schedule for

FIG. 4 illustrates an example 400 of the several computing
services that may be present on the primary computing sys­
tems 310, 320 and 330. Specifically, in this example, primary
computing system 310 operates computing service 411, pri­
mary computing system 320 operates computing services 421 55
and 431, and primary computing system 330 operates com­
puting services 422 and 432. The computing services 411,
421, 422, 431 and 432 are shown to illustrate an example of
computing services that have dependencies as represented by
arrows 441 through 444. Of course, this is just an example. 60
The primary computing systems may operate any different
kinds of computing services having various dependencies.

To illustrate the kind of dependencies that may occur in a
real life situation, an example of the computing service 411 is
illustrated as being a Web service, an example of the comput- 65

ing service 421 is a database (DB) server, an example of the
computing service 422 is a Domain Name Server (DNS)

computing service initializations proximate that future point
in time may be monitored. In the case of FIG. 3, for example,
it is desirable to identifY a good boot order that existed at the
time the primary computing systems had their running state
captured. In that case, the initializations proximate to that
capture operation may be evaluated in act 501. In the case of
the physical boot embodiment, the physical primary comput­
ing systems 310, 320 and 330 are themselves the computing
services. Accordingly, in the physical boot embodiment, such
initialization times may be boot times of the various primary
computing systems 310, 320 and 330.

Regardless of whether the time is the current time, some
prior point in time, of some future point in time, the evalua­
tions may give greater weight for initializations that are closer

US 7,480,822 Bl
9

to the point of time of interest. For instance, initialization that
occurred five minutes prior to the capture may be given
greater weight than initializations ten hours prior to the cap­
ture.

FIG. 6 is a flowchart of an example method 600 for moni­
toring initialization times and represents just one example of
a suitable method for performing the monitoring act of act
501. For instance, the boot order derivation may involve
monitoring one or more initialization event logs for each of
the boatable computing systems (act 601) that operates a
computing service in the system. For instance, the Microsoft
WINDOWS® operating system contains event logs with
readable entries. Linux and Unix and many mainframe oper­
ating systems have log files. The event logs may contain more
than just initialization information.

The boot order derivation may then filter the one or more
initialization event logs for events related to initialization of
the computing services under evaluation (act 602). This may

10
the technical names for the service to the more human-read­
able form of the service name. Minor differences in service
identification could also optionally be collapsed by such a
mapping, if greater ability to generalize from the data is
desired. This might be helpful if a service name is modified
slightly as part of an upgrade, for example.

Returning to FIG. 5, initialization dependencies for pairs of
the computing services in the system are then automatically
estimated based on the initialization events (act 502). In the

10 physical boot embodiment, these initialization dependencies
are really boot dependencies between pairs of computing
systems. FIG. 7 illustrates a flowchart of a method 700 for
estimating initialization dependencies and serves as an
example of one of many methods that may be used to perform

15 act 502. For multiple event pairs of the initializations of the
computing services, the boot order calculation may estimate
a sequential time-based correlation for the initializations of
each pair of computing services (act 701). In this description
and in the claims, a sequential time-based correlation is a be done by reading all entries in the log file that contain

initialization timestamps for the computing services in the
system under evaluation. Entries that do not relate to the
initialization of the computing services may be ignored. For
instance, an entry in a Microsoft WINDOWS® operating
system event log that shows a firewall starting is not particu­
larly relevant to a machine's role as a file or database server. 25

However, entries that show low-level internal failures are
useful to the extent that they may indicate high-level flawed
initialization. Such internal failures may be used to devalue
the weight given to that particular initialization attempt for
the computing services.

20 value that is a function of which initialization came first in the
pair of computing services, as well as the time difference
between the initializations.

For example, for each pair of initialization events, there
might be two sequential time-based correlation values for
computing services abstractly named A and B. TheA after B
value may be, for example, 0.8 on a scale of zero to one,
indicating that the initialization of A often follows the initial­
ization ofB in a time frame that suggests A is dependent on B.
The B after A value may be, for example, 0.1 on a scale of zero

30 to one, indicating that the initialization of B does not often
follow the initialization of B in a time frame that suggest B is
dependent on A. Alternatively, as in Table 2 below, a negative
or positive polarity may represent which initialization comes
first.

The boot order derivation may guarantee comparability of
timestamps across these multiple primary computing sys­
tems. This can be done by performing conventional server
time synchronization. Alternatively, each machine may be
queried for their current time reckoning, and then compensa- 35

tion factors may be calculated and applied to account for time
reckoning differences across the computing systems, thereby
creating synchronized equivalent time entries.

The boot order derivation may then estimate that the pairs
of initialization events with higher sequential time-based cor­
relation have an initialization dependency (act 702). For
instance, in the above example, if the threshold value for
determining dependency is 0.7, A is determined to depend on
B, but B is not determined to depend on A. This threshold
value may be adjusted as desired depending on the sample

The following Table 1 represents example relevant time
entries that may be acquired using the method 600 of FIG. 6 40

when applied to the example system 400 of FIG. 4.

TABLE 1

Event Order Initialization Time Machine Service

12:03:21 am 330 Domain Controller
2 12:05:19 am 320 File Server

04:27:01 am 330 DNS Server
4 04:43:32 pm 330 DNS Server

05:11:45 pm 320 Database Server
05:47:59 pm 310 Web Server

In actual implementation, this table may be considerably
more complex. Events covering many days and hundreds of
computing systems could appear. The same service may show
up several times in the list, and multiple services could map to
the same physical machine. However, Table 1 has the follow­
ing characteristics:

1) It captures an absolute ordering of events;
2) The events are computing service initializations;
3) The services are tied to the computing system that hosts

the service; and
4) More than one service can be tied to the same computing

system.
When evaluating the event logs, the technical names for the

services may be quite different from the human-readable
forms represented above. There could thus be a mapping of

45

50

size for each sequential pair of computing services.
In one embodiment, the sequential time-based correlation

is weighted with a single-peak time dependency function so
that the correlation tends to be lower if the period of time
between initializations of the pair of computing services is
within a time period that is less than a time period associated
with a maximum suggested correlation, and also tends the
correlation to be lower if the period of time between the
initializations of the pair of computing services is longer than
the time period associated with the maximum suggested cor-
relation. FIG. 8 represents an example 800 of such a function.

Referring to FIG. 8, if the time difference between initial­
izations is short (or even simultaneous), this would indicate

55 that the initialization of A was not dependent on B. Referring
to FIG. 8, there is no weight given to a dependency correlation
in which computing service A is initialized within a minute of
computing service B. This is based on the assumption that one
minute is not sufficient time for computing service A to rec-

60 ognize the presence of computing service B, and thus the
close initialization times is more likely the result of a coinci­
dence than a real functional dependency. On the other hand, if
the time between initializations is too long (in the example,
more than 60 minutes), this would suggest that the service

65 that was initialized later does not depend on the service that
was initialized earlier. Otherwise, the later-initialized service
would have tried to initialize earlier. Between these two

US 7,480,822 Bl
11

extremes, there are time differences that suggest varying pos­
sibilities for the existence of a dependency.

In one example, suppose that there were five instances of
the initialization of A being after the initialization of B. Sup­
pose that in one of those events, out of coincidence, the
initialization of A occurred simultaneous to the initialization
of B. This would result in no increase in the dependency
factor for that one sample. However, suppose that the other
four initializations of A occurred 10 minutes after a corre­
sponding initialization of B. This would result in a heavy 10

weighting ofthese events in the dependency factor since 10
minutes suggests the maximum possibility of a dependency
between the two using the function of FIG. 8.

Of course, the function illustrated in FIG. 8 is completely
arbitrary. The precise form of the function may be altered over 15

time as the characteristics of a particular system become
better known. The function may also be improved upon
through experimentation to see how much predictive behav-
ior the function provides. Alternatively or in addition, the
function may be selected by a user, and/or tuned using other 20

measures. In one embodiment, the function is skewed using,
for example, a gamma or lognormal distribution.

The following Table 2 illustrates an example matrix that
may be constructed using act 701 of FIG. 7 for the initializa­
tions often different computing services abstractly referred to 25

as A through J.

TABLE2

12
FIG. 5, the primary computing system 330 would be booted
first, followed by primary computing system 320, followed
by the primary computing system 310.

Having described a mechanism for deriving the boot order,
an application of the principles of the present invention to the
recovery of many primary computing systems to a single
recovery computing system will be described with respect to
the more complex network site environment 900 illustrated in
FIG. 9. The environment 900 may be, for example, a web site
that is constantly operational. Such web sites rely on custom­
ers having reliable access to the services provided by the web
site. Depending on the nature and size of the web site, down­
time can result in significant lost revenue. Accordingly, such
web sites would benefit by having contingency plans whereby
services may be restored as quickly as possible even in the
event of a catastrophic failure in which the primary comput­
ing systems are no longer physically available. In that case,
the recovery computing system may be located some safe
distance from the primary computing systems.

Referring to FIG. 9, the network site 900 includes multiple
servers 910 that are connected to a network 930. These serv­
ers may include, for example, an Active Directory (AD)
server, a Domain Name Server (DNS) server, an e-mail
server, a file server, a print server, or the like. In addition, the
network site 900 may also include a number of client
machines such as desktops and laptops 920. Each of these
servers 910 and laptops 920 may be treated as a primary

A B c D E F G H 30 computing system as described above.

A NA
B -0.30 NA
c -0.31 0.85 NA
D 0.93 -0.19 -0.16 NA
E 0.87 -0.46 -0.28 0.89
F -0.24 0.99 0.86 -0.16
G -0.27 0.94 0.82 -0.13
H 0.93 -0.19 -0.15 0.55

-0.44 0.83 0.96 -0.28
0.89 -0.35 -0.21 0.84

NA
-0.41 NA
-0.42 0.95 NA

0.89 -0.16 -0.13
-0.42 0.84 0.84

0.93 -0.31 -0.38

NA
-0.28 NA

0.84 -0.38 NA

35

40

The web site 900 also includes a recovery computing sys­
tem 940, which has captured the running state of the servers
910 and clients 920 as of a particular point in time. Eachofthe
running states has the injected standard device driver(s) to
permit the running state to operate on the recovery computing
system 940 even though the recovery computing system 940
regardless of the hardware configuration of the recovery com­
puting system 940. The recovery computing system 940 also
has access to the network 930.

In case the servers 910 and clients 920 experience a cata­
strophic failure and are lost, the recovery computing system
940 may quickly take over the operations of the network site
900. This would happen by activating all of the running states

In Table 2, negative values indicate that the computing
service in the row occurs before the computing service in the
colunm. Conversely, positive values indicate that the comput­
ing service in the column occurs before the computing service
in the row.

In this case, act 702 may involve simply identifY the pair of
computing services having an absolute value greater than
some threshold amount (e.g., 0.7) as having a dependency.

45
in an appropriate order (e.g., honoring the desired boot orders
for the servers and clients), and then having the recovery
computing system 940 use the various running states to con­
tinue operation. This may also be done in a testing scenario in

Returning back to FIG. 5, the initialization order is then
derived for the computing services in the system based on the 50
estimated initialization dependencies (act 503). Referring
back to FIG. 4, the initialization ordering may be constructed
based on the following four initialization dependencies:

1) 421 depends on 422;

which the servers 910 and clients 920 continue operation.

In a disaster event, once the specific hardware for the
servers 910 and clients 920 has been replaced, the running
states may be restored back to the appropriate replacement
server or client. In the meantime, however, the recovery com­
puting system 940 has been operational thereby preventing

2) 431 depends on 432; 55 much lost down time.
3) 411 depends on 421; and
4) 411 depends on 431.
In the physical boot embodiment, the derivation of an

initialization ordering constitutes the derivation of a boot
order, since the computing services are the physical primary 60

computing systems, and the initializations of the primary
computing systems is the same as a booting of the computing
system. However, even outside of the physical boot embodi­
ment, where the computing services are software compo­
nents, the boot order of the primary computing systems them- 65

selves may be derived (act 504) based on the initialization
ordering for the computing services. For instance, referred to

Accordingly, the principles of the present invention allow
prompt recovery from the catastrophic failure of primary
computing systems even when those primary computing sys­
tems are lost, and replacement hardware is not immediately
available. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid­
ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes,
which come within the meaning and range of equivalency of
the claims, are to be embraced within their scope.

US 7,480,822 Bl
13

What is claimed and desired secured by United States
Letters Patent is:

1. A method for restoring access to running states of a
plurality of primary computing systems onto a single com­
puting system, the method comprising the following:

14
for multiple pairs of the plurality of computing services, an

act of estimating a sequential time-based correlation for
the pair of initialization of the computing services; and

an act of estimating that the pairs of computing services
with higher sequential time-based correlation have an
initialization dependency. an act of accessing a captured running state of each of the

primary computing systems on the single computing
system, wherein the captured running states each
include, or are altered to include, at least one device
driver that is configured to interface with a common
virtualization component that runs on the single com­
puting system, wherein the common virtualization com­
ponent is configured to at least indirectly interface with
hardware on the single computing system that operates

10. A method in accordance with claim 8, wherein the act
of monitoring initialization times for the plurality of comput­
ing services for one or more prior initializations of the plu-

10 rality of computing services comprises the following:

at least part of the hardware using a different interface 15

than the at least one device driver is configured to inter­
face with;

an act of identifYing a boot order for each of the primary
computing systems; and

an act of booting the captured running states for each of the 20

primary computing systems in the identified boot order
on the single computing system.

2. A method in accordance with claim 1, further compris-

~: ~
an act of capturing the running states of each of the primary

computing systems.

an act of monitoring one or more initialization event logs
for each of the plurality of primary computing systems;
and

an act of filtering the one or more initialization event logs
for events related to initialization of the plurality of
computing services.

11. A method in accordance with claim 1, wherein the act
of identifYing a boot order for each of the primary computing
systems comprises the following:

an act of monitoring boot times of the plurality of primary
computing systems for one or more prior boots of the
plurality of primary computing systems;

an act of automatically estimating one or more boot depen­
dencies of the plurality of primary computing systems
based on the act of monitoring; and

an act of automatically estimating the boot order for the
plurality of primary computing systems based on the
estimated one or more boot dependencies.

3. A method in accordance with claim 2, further compris­
ing:

an act of ensuring that each of the captured running states
includes at least one device driver that is configured to
interface with a common virtualization component.

12. A method in accordance with claim 1, wherein each of
30 the running states is an entire volume of the corresponding

primary computing system.

4. A method in accordance with claim 3, wherein the act of
capturing occurs before the act of ensuring.

5. A method in accordance with claim 3, wherein the act of 35

capturing occurs after the act of ensuring.

13. A method in accordance with claim 1, further compris­
ing:

an act of the common virtualization component emulating
the network between at least two of the plurality of
primary computing systems when the capture running
states of the at least two primary computing systems
attempt to communicate over the network.

6. A method in accordance with claim 1, wherein the at
least one device driver are each the same on each of the
captured running states.

7. A method in accordance with claim 1, wherein the act of
identifying a boot order for each of the primary computing
systems comprises:

40
14. A method in accordance with claim 1, wherein the

common virtualization component is configured to interface
with hardware on the single computing system using an oper­
ating system of the single computing system.

15. A computer program product comprising one or more an act of the single computing system receiving an identi­
fication of the boot order from a source external to the
single computing system.

8. A method in accordance with claim 1, wherein the act of
identifying a boot order for each of the primary computing
systems comprises the following:

an act of monitoring initialization timestamps for a plural­
ity of computing services that operate on the primary
computing systems for one or more prior initializations

45 computer-readable storage media having thereon computer­
executable instructions that, when executed by one or more
processors of a single computing system, cause the single
computing system to perform a method for restoring access to
running states of a plurality of primary computing systems

50 onto the single computing system, the method comprising the
following:

of the plurality of computing services;
an act of automatically estimating one or more initializa­

tion dependencies of pairs of the plurality of computing
55

services of the plurality of computing systems based on
the act of monitoring;

an act of automatically deriving an initialization ordering
for the plurality of computing services of the plurality of
primary computing systems based on the estimated one 60
or more initialization dependencies; and

an act of deriving the boot order based on the act of deriving
the initialization ordering for the plurality of computing
services of the plurality of primary computing systems.

9. A method in accordance with claim 8, wherein the act of 65

estimating one or more initialization dependencies com-
prises:

an act of accessing a captured running state of each of the
primary computing systems on the single computing
system, wherein the captured running states each
include, or are altered to include, at least one device
driver that is configured to interface with a common
virtualization component that rnns on the single com­
puting system, wherein the common virtualization com­
ponent is configured to at least indirectly interface with
hardware on the single computing system, at least part of
the hardware using a different interface than the at least
one device driver is configured to interface with;

an act of identifYing a boot order for each of the primary
computing systems; and

an act ofbooting the captured running states for each of the
primary computing systems in the identified boot order
on the single computing system.

US 7,480,822 Bl
15

16. A computer program product in accordance with claim
15, wherein the one or more computer-readable media are
physical memory media.

17. A method for restoring access to running states of a
plurality of primary computing systems onto a single com­
puting system, the method comprising the following:

an act of capturing the running states of each of the primary
computing systems;

an act of ensuring that each of the captured running states
includes at least one device driver that is configured to 10

interface with a common virtualization component,
wherein the common virtualization component is con­
figured to at least indirectly interface with hardware on
the single computing system, at least part of the hard­
ware using a different interface than the device driver is 15

configured to interface with;
an act of identifYing a boot order for each of the primary

computing systems; and
an act of booting the captured running states for each of the

primary computing systems in the identified boot order 20

on the single computing system.
18. A computing system comprising:
one or more processors;
at least one hardware component;
a device driver that is configured to interface with operating

systems using a hardware interface to thereby control
the hardware component;

one or more computer-readable media having thereon the
following:
computer-executable instructions that, when executed

by the one or more processors, causes the computing
system to operating a common virtualization compo­
nent that is configured to at least indirectly interface
with the device driver;

a captured running state for each of a plurality of primary
computing systems, wherein each capture running
state contains, or is altered to contain, at least one
device driver, at least some of which operate using a
different interface than the hardware interface; and

computer-executable instructions that are structured
such that, when executed by the one or more proces­
sors, they cause the computing system to perform the
following:

25

30

35

40

an act of identifYing a boot order for each of the 45

primary computing systems; and
an act of booting the captured running states for each

of the primary computing systems in the identified
boot order on the single computing system.

50
19. A computing system in accordance with claim 18,

wherein the computer-readable media are physical memory
media.

16
20. A computing system in accordance with claim 18,

wherein the one or more computer-readable media further
having thereon:

computer-executable instructions that are structured such
that, when executed by the one or more processors, they
cause the computing system to operate the operating
system, wherein the common virtualization component
interfaces with the device driver through the operating
system.

21. A method comprising:
inserting a first device driver into a first running state of a

first computing system, the first device driver being con­
figured to interface with a virtualization component on a
recovery system;

inserting second device driver into a second running state
of a second computing system, the second device driver
being configured to interface with the virtualization
component on the recovery system;

capturing the first running state of the first computing sys­
tem;

capturing the second running state of the second comput­
ing system;

including the virtualization component on the recovery
computing system;

restoring the first running state to the recovery computing
system, the first device driver interfacing with hardware
of the recovery system through the virtualization com­
ponent;

restoring the second running state to the recovery comput­
ing system, the second device driver interfacing with the
hardware of the recovery system through the virtualiza­
tion component;

providing access to the first and second running states.
22. The method of claim 21, further comprising:
including an operating system on a recovery computing

system, the virtualization component interfacing with
the hardware of the recovery system through the oper­
ating system.

23. The method of claim 21, further comprising:
identifYing a boot order for the first and second computing

systems;
booting the first and second running states in the boot order.
24. The method of claim 23, wherein identifying a boot

order further comprises:
monitoring initialization timestamps for the first and sec­

ond computing systems that operate on the computing
systems for one or more prior initializations of the com­
puting services.

25. The method of claim 21, further comprising:
emulating a network between the first and second comput­

ing systems.

* * * * *

