
(12) United States Patent
Guyan et al.

(54) COMPONENT BASED TASK HANDLING
DURING CLAIM PROCESSING

(75) Inventors: George V. Guyan, Bethlehem, PA (US);
Robert H. Pish, Minneapolis, MN (US);
Carles Muntada, Chicago, IL (US)

(73) Assignee: Accenture LLP, San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(21) Appl. No.: 09/305,234

(22) Filed: May 4, 1999

(65) Prior Publication Data

US 2003/0145124 Al Jul. 31, 2003

(51) Int. Cl.
G06F 17/00 (2006.01)
G06Q 10/00 (2006.01)

(52) U.S. Cl. 707/104.1; 70511; 705/4;
70517

(58) Field of Classification Search 70511,
705/2,3,4,7-8,9; 707/3, 103, 104, 104.1,

707/100-102; 717/2
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,648,037 A 311987 Valentino
4,713,755 A 1211987 Worley et al.
4,831,526 A * 511989 Luchs et al. 705/4
5,128,859 A 711992 Carbone et al.
5,181,162 A 111993 Smith
5,182,705 A 111993 Barr et al.
5,191,522 A * 311993 Bosco et al. 705/4
5,208,748 A 511993 Flores et al.
5,216,603 A 611993 Flores et al.
5,241,664 A 811993 Ohba et al.
5,325,291 A * 611994 Garrett et al. 705/4
5,367,619 A 1111994 Dipaolo et al.

Client

111111 111

EP

US007617240B2

(10) Patent No.:
(45) Date of Patent:

5,392,428 A 2/1995
5,404,518 A 4/1995
5,420,973 A 5/1995
5,445,653 A 8/1995
5,446,653 A 8/1995
5,523,942 A 6/1996
5,530,861 A 6/1996

US 7,617,240 B2
Nov. 10,2009

Rabins
Gilbertson et al.
Dagdeviren
Hixson et aI.
Miller et al.
Tyler et al.
Diamant

(Continued)

FOREIGN PATENT DOCUMENTS

0841612 Al 1111997

(Continued)

OTHER PUBLICATIONS

International Search Report dated Jun. 3, 2002, for corresponding
international application PCTIUSOO/12240.

(Continued)

Primary Examiner-Sana AL-Hashemi
(74) Attorney, Agent, or Firm-Brinks Hofer Gilson & Lione

(57) ABSTRACT

A computer program for handling insurance-related tasks
includes a data component that stores, retrieves and manipu­
lates data utilizing a plurality of functions, a client component
that includes: (1) an adapter component that transmits and
receives data to/from the data component; (2) a business
component that serves as a data cache and includes logic for
manipulating the data; and (3) a controller component that is
adapted to handle events generated by a user utilizing the
business component to cache data and the component to
ultimately persist data to a data repository. In use, the client
component allows a user to define tasks during execution
phase of the program that achieve a goal upon completion.
The user is able to input rules which dictate which tasks
should be selected based on a set of predetermined events.
Tasks are generated based on received events.

39 Claims, 18 Drawing Sheets

US 7,617,240 B2
Page 2

u.s. PATENT DOCUMENTS 6,028,997 A
6,038,590 A
6,041,304 A
6,044,382 A
6,044,384 A
6,055,519 A
6,058,413 A
6,061,665 A
6,065,000 A
6,065,009 A
6,067,525 A
6,070,152 A
6,073,109 A
6,076,066 A *
6,078,890 A
6,098,070 A
6,108,673 A
6,115,646 A
6,119,093 A
6,125,363 A
6,131,155 A
6,141,011 A
6,151,660 A
6,158,044 A *
6,163,781 A *
6,163,784 A
6,182,274 Bl
6,199,099 Bl
6,230,169 Bl
6,233,537 Bl
6,253,369 Bl
6,256,636 Bl
6,278,977 Bl
6,279,009 Bl
6,289,348 Bl
6,289,385 Bl
6,308,224 Bl
6,311,192 Bl
6,321,133 Bl
6,321,374 Bl
6,327,046 Bl
6,330,541 Bl
6,332,155 Bl
6,334,146 Bl
6,336,096 Bl
6,347,303 B2
6,349,238 Bl
6,349,320 Bl
6,356,905 Bl
6,370,508 B2
6,380,951 Bl
6,389,588 Bl
6,393,431 Bl
6,393,456 Bl
6,397,191 Bl
6,397,192 Bl
6,415,259 Bl
6,426,759 Bl
6,442,528 Bl
6,442,557 Bl
6,442,563 Bl
6,470,303 B2
6,493,675 Bl
6,501,832 Bl
6,505,176 B2
6,516,322 Bl
6,519,578 Bl
6,546,396 Bl
6,549,893 Bl
6,567,783 Bl
6,574,636 Bl
6,625,602 Bl
6,632,251 Bl

5,557,515 A
5,581,682 A
5,592,611 A
5,613,108 A
5,630,069 A
5,632,015 A
5,640,501 A
5,649,182 A
5,655,085 A *
5,664,109 A
5,671,360 A
5,673,402 A *
5,675,745 A
5,687,385 A
5,701,400 A
5,706,452 A
5,721,913 A
5,721,940 A
5,724,575 A
5,726,884 A
5,734,837 A
5,742,836 A
5,745,687 A
5,745,901 A
5,752,055 A
5,758,351 A *
5,765,170 A
5,768,506 A
5,790,116 A
5,799,297 A
5,809,318 A
5,819,230 A
5,826,020 A
5,826,237 A
5,826,239 A
5,836,011 A
5,839,112 A *
5,845,289 A
5,848,271 A
5,848,393 A
5,855,005 A *
5,862,327 A
5,867,385 A
5,870,711 A
5,873,066 A *
5,875,330 A
5,881,230 A
5,884,256 A
5,886,693 A
5,890,130 A
5,890,133 A
5,899,989 A
5,903,873 A
5,907,828 A *
5,920,696 A
5,940,804 A
5,946,694 A
5,950,169 A *
5,956,687 A
5,970,464 A
5,974,390 A *
5,987,247 A *
5,991,733 A
5,999,911 A
6,002,396 A
6,003,007 A
6,003,011 A
6,012,066 A
6,021,418 A
6,023,572 A
6,023,578 A *

911996 Abbruzzese et al.
1211996 Anderson et al.

111997 Midgely et al.
311997 Morikawa
511997 Flores et al.
511997 Zimowski et al.
611997 Turpin
711997 Reitz
811997 Ryan et al. 705/4
911997 Johnson et al.
911997 Hambrick et al.
911997 Ryan et al. 705/38

1011997 Oku et al.
1111997 Janay
1211997 Amado

111998 Ivanov
211998 Ackroff
211998 Luther
311998 Hoover
311998 Sturgeon et al.
311998 Flores et al.
411998 Turpin
411998 Randell
411998 Entner et al.
511998 Redpath et al.
511998 Gibson et al. 707/104
611998 Morikawa
611998 Randell
811998 Malone et al.
811998 Goodridge et al.
911998 Tivette et al.

1011998 Christie et al.
1011998 Randell
1011998 MacRae et al.
1011998 Du et al.
1111998 Hambrick et al.
1111998 Schreitmueller et al 705/4
1211998 Baumeister et al.
1211998 Caruso et al.
1211998 Goodridge et al.
1211998 Schuler et al. 705/4

111999 Kwang et al.
211999 Brown
211999 Huffman
211999 Underwood et al. 705/4
211999 Goti
311999 Christensen et al.
311999 Bennett et al.
311999 Ho et al.
311999 Cox et al.
311999 Ernst
511999 Ikeuchi et al.
511999 Peterson et al.
511999 Meyer et al. 705/4
711999 Brandt et al.
811999 Turley et al.
811999 Copeland et al.
911999 Borghesi et al. 705/4
911999 Wamsley et al.

1011999 Apte et al.
1011999 Ross 705/36 R
1111999 Lau 717/2
1111999 Aleia et al.
1211999 Berg et al.
1211999 Davies
1211999 DiRienzo
1211999 Sarin et al.

112000 Discount et al.
212000 Brandt et al.
212000 Lautzenheiser et al.
212000 Birsan et al 717/2

212000 Leymann et al.
3/2000 Gish
3/2000 Meyer et al.
3/2000 Martino
3/2000 Ishima et al.
4/2000 Kennedyet al.
5/2000 Flores et al.
5/2000 Bahreman
5/2000 Jensen
5/2000 Leymann et al.
5/2000 Johnson et al.
5/2000 Carey et al.
6/2000 Flores et al.
6/2000 Dirienzo et al. 705/4
6/2000 Mangin et al.
8/2000 Maxwell
8/2000 Brandt et al.
912000 Fiszman et al.
912000 Walker et al.
912000 Buzzeo et al.

1012000 Alexander et al.
1012000 Bodnar et al.
1112000 Aoki
1212000 Tibbets 707/1
1212000 Wess, Jr 707/103
1212000 Taguchi et al.

112001 Lau
3/2001 Gershman et al.
5/2001 Nagae
5/2001 Gryphon et al.
6/2001 Cloud et al.
7/2001 Choy
8/2001 Agrawal et al.
8/2001 Smirnov et al.
912001 Richard et al.
9/2001 Whipple et al.

10/2001 Leymann et al.
10/2001 Rosenthal et al.
1112001 Smirnov et al.
1112001 Choy
12/2001 Miyamoto et al.
12/2001 Meyer et al.
12/2001 Notani
12/2001 Parasnis et al.

112002 Jernberg
212002 Nagai et al.
212002 Gabbita et al.
212002 Emberton et al.
3/2002 Gershman et al.
4/2002 Beck et al.
4/2002 Petchenkine et al.
5/2002 Wadhwa et al.
5/2002 Salvati et al.
5/2002 Ambler et al.
5/2002 Notani et al.
5/2002 Notani et al.
7/2002 Wolfinger et al.
7/2002 Ting et al.
8/2002 Notani et al.
8/2002 Buteau et al.
8/2002 Bacon et al.

1012002 Kidd et al.
1212002 Kanaya et al.
1212002 Saylor et al.

112003 DeFrancesco, Jr. et al.
212003 Meredith
212003 Reddy
4/2003 Borkowski et al.
4/2003 Lannert
5/2003 Notani et al.
6/2003 Balon et al.
912003 Meredith et al.

1012003 Rutten et al.

6,651,060 Bl 1112003 Harper et al.
6,671,692 Bl 1212003 Marpe et al.
6,671,693 Bl 1212003 Marpe et al.
6,671,716 Bl 1212003 Diedrichsen et al.
6,679,959 B2 112004 Boyd et al.
6,684,190 Bl 112004 Powers et al.
6,687,557 B2 212004 Ouchi
6,687,878 Bl 212004 Einracht et al.
6,697,784 B2 212004 Bacon et al.
6,714,914 Bl 3/2004 Peters et al.
6,725,224 Bl 4/2004 McCarthy et al.
6,728,947 Bl 4/2004 Bengston
6,738,736 Bl 5/2004 Bond
6,738,757 Bl 5/2004 Wynne etal.
6,763,353 B2 7/2004 Li et al.
6,768,984 B2 7/2004 Allen et al.
6,769,112 Bl 7/2004 Montana et al.
6,826,579 Bl 1112004 Leymann et al.
6,832,368 Bl 1212004 Zimowski
6,862,732 Bl 3/2005 Schultz et al.
6,868,193 Bl 3/2005 Gharbia et al.
6,874,008 Bl 3/2005 Eason et al.
6,877,153 B2 4/2005 Konnersman
6,879,959 Bl 4/2005 Chapman et al.
6,888,929 Bl 5/2005 Saylor et al.
6,889,375 Bl 5/2005 Chan et al.
6,895,084 Bl 5/2005 Saylor et al.
6,896,574 B2 5/2005 Needham et al.
6,898,574 Bl 5/2005 Regan
6,901,405 Bl 5/2005 McCrady et al.
6,918,053 Bl 7/2005 Thatte et al.
6,920,456 B2 7/2005 Lee et al.
6,925,593 Bl 8/2005 Knutson et al.
6,928,487 B2 8/2005 Eggebraaten et al.
6,937,990 Bl 8/2005 Walker et al.
6,938,030 Bl 8/2005 Simone, Jr. et al.
6,952,679 Bl 10/2005 Pulford
6,970,931 Bl 1112005 Bellamy et al.
6,975,914 B2 12/2005 DeRemer et al.
6,993,528 Bl 112006 Bver et al.
7,000,186 Bl 212006 Gropper et al.
7,007,227 Bl 212006 Constantino et al.
7,013,309 B2 3/2006 Chakraborty et al.
7,039,597 Bl 5/2006 Notani et al.
7,047,535 B2 5/2006 Lee et al.
7,051,036 B2 5/2006 Rosnow et al.
7,051,071 B2 5/2006 Stewart et al.
7,051,072 B2 5/2006 Stewart et al.
7,051,074 Bl 5/2006 Buchsbaum et al.
7,065,504 B2 6/2006 Sakuma et al.
7,069,536 B2 6/2006 Yaung
7,076,504 Bl 7/2006 Handel
7,100,147 B2 8/2006 Miller et al.
7,110,952 B2 912006 Kursh
7,113,913 Bl 912006 Davis et al.
7,117,271 B2 1012006 Haverstock et al.
7,124,203 B2 1012006 Joshi et al.
7,150,000 Bl 1212006 Feldman
7,171,647 Bl 112007 Smith et al.
7,181,427 Bl 212007 DeFrancesco et al.
7,184,967 Bl 212007 Mital et al.
7,188,073 Bl 3/2007 Tam et al.
7,194,679 Bl 3/2007 Green
7,216,163 B2 5/2007 Sinn
7,219,050 B2 5/2007 Ishikawa et al.
7,228,547 B2 6/2007 Yaung
7,242,991 B2 7/2007 Budinger et al.
7,249,157 B2 7/2007 Stewart et al.
7,249,180 B2 7/2007 Erickson et al.
7,269,621 B2 912007 Chang et al.
7,269,718 B2 912007 Alexander, III et al.
7,296,056 B2 1112007 Yaung
7,305,488 B2 1212007 Wallace et al.

US 7,617,240 B2
Page 3

7,310,607 B2
200210035488 Al
200210165739 Al
200210188674 Al
2003/0009357 Al
2003/0145124 Al
2003/0200527 Al
2005/0246206 Al
2006/0218017 Al
2007/0005463 Al
2007/0156463 Al
2007/0255601 Al

1212007 Brandt et al.
312002 Aquiklia et al.

1112002 Guyan et al.
1212002 Brown et al.

112003 Pish
7/2003 Guyan et al.

1012003 Lynn et al.
1112005 Obora et al.
912006 Ren et al.
112007 Davis et al.
7/2007 Burton et al.

1112007 Heydon et al.

EP
EP
EP
JP
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO
WO

FOREIGN PATENT DOCUMENTS

0844558 A2
0854431 A2

0897149 Al
11-353234

WO 84/01448 Al
WO 91108543
WO 93/00643 Al
WO 94116395 Al
WO 95/03569
WO 95/08543 Al
WO 96/31828
WO 96/31828 Al
WO 98112616 A2
WO 98112616 A3
WO 98/21680 Al
WO 98/38563 A2
WO 98/38563 A3
WO 00/67182 A2

5/1998
7/1998
2/1999

12/1999
4/1984
6/1991
111993
7/1994
2/1995
3/1995

10/1996
10/1996
3/1998
3/1998
5/1998
9/1998
9/1998

1112000

OTHER PUBLICATIONS

M. Potel, "MVP: Model-View-Presenter The Taligent Programming
Model for C++ and Java", Taligent, Inc., 1996.
Cugola, G., et aI., "Exploiting an event-based infrastructure to
develop complex distributed systems," Software Engineering, 1988;
Proceedings of the 1988 International Conference on Kyoto, Japan,
Apr. 19-25, 1998, IEEE pp. 261-270.
Groiss, Herbert, et aI., "Interoperability with World Wide
Workflows," 1" World Conference on Integrated Design& Process
Technology, 1995 pp. 1-7.
Extended European Search Report for European Patent Application
No. 06005193.5, dated Aug. 22, 2006.
Office Action, mailed Nov. 5, 2007, for commonly owned U.S. Appl.
No. 111017,086.
AFLAC cuts processing time with object system. (American Family
Life Assurance, Portable Systems Technology's SmartImage insur­
ance processing automation system) (Company Operations). Christy
Tauhert. Insurance & Technolgy 22.n6(Jun. 1997): p.25(2) abstract.
Case study: Advantage. (Motorists Insurance Companies uses
Advantage, a business-rule DBMS developed in-house, to manage
quoting, data entry, rating and other core processes)(DataArchitect)
(Company Operations).John Milligan. Database Programming &
Design 10.nI2(Dec. 1997): p.17(3).
Image-EnabledApp Streams Workflow for Gerling Re.(Gerling Glo­
bal Reinsurance's use of key File's document management software
and insurance Software and Systems' SICS insurance record-keep­
ing software)(Product Information).Insurance & Technolgy(Feb. 1,
1997): pNA(1).(839 words).
John Hancock streamlines legacy systems with objects. (John
Hancock Mutual Life Insurance)(Company Operations).Paul Way.
Insurance & Technology 22.n9(Sep. 1997):p. 24(1) abstract.
Bandat, K, "Document Based Customization and Adaption of Pro­
cess" IBM Technical Disclosure Bulletin, Sep. 1994, pp. 629-630.
Engel, James D., "Technology in claims management", Risk Man­
agement, Dec. 1995 v42 n12 p. 13(3).
Fisher, Susan, E., "Insurer streamlines info gathering" (Client/Server
Deployment: Arkwright Mutual Insurance) PC Week, Nov. 15, 1993
v 10 n45 p. 8(2).

US 7,617,240 B2
Page 4

Held, Jeffrey J., Network Computing Practice, "GroupWare In
Investment Banking: Improving Revenue and Deal Flow",
GroupWare '92, Edited by David D. Coleman, The Conference
Group, Morgan Kaufmann Publishers, pp. 461-464.
Hung K. Sun Y. Rose T. "A dynamic business object architecture for
an insurance industrial project." Proceedings of International Con­
ference on Object Oriented Information Systems, (OOIS'97).
Brisbane, Qld., Australia Nov. 10-12, 1997, Published 1998, abstract.
International Search Report dated Aug. 8, 2002 for PCTIUSOOI
12508.
International Search Report dated Sep. 12, 2002 for PCTIUSOOI
12238.
Kappel, G. et a!., "Coordination in Workflow Management Systems
A Rule-Based Approach", Department ofInformation Systems, Uni­
versity of Linz, A-4040 Linz, Austria, pp. 99-119.
Koehler SH, Proceedings of Object Expo '94. New York, NY, USA
Jun. 6-10, 1994, Published 1994, abstract.
Korzeniowski, Paul, "Workflow software automates processes; pass­
ing messages on network platform helps CareAmerica process insur­
ance claims" (use of workflow software to streamline business pro­
cesses) (Client/Service Computing), Software Magazine, Feb. 1993
v13 n3 p.73(4).
Medina-Mora, "Action Workflow™ Technology and Applications
for Groupware" GroupWare '92, Edited by David D. Coleman, The
Conference Group, Morgan Kaufmann Publishers, pp. 165-167.
Nilsson, Y. "TFM: a tool for task flow management." Philips Tele­
communication and Data Systems Review, vo!' 47, No.4, Dec. 1989,
pp. 33-46. Netherlands. Abstract.
"Primavera Extends Lead in High-End Project Management Soft­
ware," Business Wire, Apr. 4, 1995.
"Primavera Products and Solutions," www.primavera.comlproducts/
p3.html, downloaded from internet Feb. 2, 2001, 2 pages.
Stickel E., "Competitive product development in the financial ser­
vices industry-a knowledge-based approach" International Journal of
Intelligent Systems in Accounting, Finance and Management, vo!' 4,
No.4, Dec. 1995, pp. 273-87, abstract.
Sutherland, RW, "TABLE Driven Health Insurance Claim Prepara­
tion" IBM Technical Disclosure Bulletin, Ju!. 1986, abstract.
Todd, G. et a!., Microsoft Exchange Server 5.5, 556 pages.
Tombros, Dimitrios et a!., "Semantics of Reactive Components in
Event-Driven Workflow Execution", Institut for Informatic,
Universitat Zurich, Advanced Information systems Engineering, 9 th

International Conference, SAiSE'97, Barcelona,Catalonia, Spain,
Jun. 16-20, 1997 Proceedings, pp. 409-422.
Winograd, Terry, "Groupware and the Emergence of Business Tech­
nology", GroupWare '92, Edited by David D. Coleman, The Confer­
ence Group, Morgan Kaufmann Publishers, pp. 69-72.
"Report on the Filing or Determination of an Action Regarding a
Patent or Trademark," identifYing U.S. Pat. No. 7,013,284 B2
asserted in Accenture Global Services GmbH, et a!. v. Guidewire
Software, Inc., D. De!. Dec. 18,2007.
"Answer and Counterclaims,"filed on Feb. 6, 2008 in lawsuit assert­
ing U.S. Pat. No. 7,013,284 B2, captionedAccenture Global Services
GmbH, et al. v. Guidewire Software Inc., D. De!. Dec. 18, 2007.
The prosecution history of U.S. App!. No. 09/305,228 shown in the
attached Patent Application Retrieval file wrapper document list,
printed Apr. 3, 2008, including each substantive office action and
applicant response.
The prosecution history of U.S. App!. No. 111017,086 shown in the
attached Patent Application Retrieval file wrapper document list,
printed Apr. 3, 2008, including each substantive office action and
applicant response.
Office Action, mailed Feb. 26, 2001, for commonly owned U.S. App!.
No. 09/305,228.
Aug. 27, 2001 Response to Office Action mailed Feb. 26, 2001, for
commonly owned U.S. App!. No. 09/305,228.
Office Action, mailed Oct. 18,2001, for commonly owned U.S. App!.
No. 09/305,228.
Jan. 18, 2002 Response to Office Action, mailed Oct. 18, 2001, for
commonly owned U.S. App!. No. 09/305,228.
Office Action, mailed Mar. 1,2002, for commonly owned U.S. App!.
No. 09/305,228.

Ju!. 1, 2002 Response to Office Action, mailed Mar. 1, 2002, for
commonly owned U.S. App!. No. 09/305,228.
Office Action, mailed Apr. 9, 2002, for commonly owned U.S. App!.
No. 09/305,228.
Office Action, mailed Sep. 11,2002, for commonly owned U.S. App!.
No. 09/305,228.
Mar. 11,2003 Response to Office Action mailed Seo. 11,2002, for
commonly owned U.S. App!. No. 09/305,228.
Office Action, mailed Jun. 4,2003, for commonly owned U.S. App!.
No. 09/305,228.
Oct. 6, 2003 Response to Office Action mailed Jun. 4, 2003, for
commonly owned U.S. App!. No. 09/305,228.
Office Action, mailed Oct. 22, 2003, for commonly owned U.S. App!.
No. 09/305,228.
Feb. 20, 2004 Response to Office Action mailed Oct. 22, 2003, for
commonly owned U.S. App!. No. 09/305,228.
Office Action, mailed May 13, 2004, for commonly owned U.S. App!.
No. 09/305,2228.
Office Action, mailed Nov. 16, 2004, for commonly owned U.S.
App!. No. 09/305,228.
Office Action, mailed Aug. 13, 2001, for commonly owned U.S.
App!. No. 09/305,817.
Feb. 12,2002 Response to Office Action, mailed Aug. 13,2001, for
commonly owned U.S. App!. No. 09/305,817.
Office Action, mailed Mar. 22, 2002, for commonly owned U.S.
App!. No. 09/305,817.
Oct. 8, 2002 Response to Office Action, mailed Mar. 22, 2002, for
commonly owned U.S. App!. No. 09/305,817.
Office Action, mailed Dec. 20, 2002, for commonly owned U.S.
App!. No. 09-305,817.
Jun. 20, 2003 Response to Office Action, mailed Dec. 20, 2002, for
commonly owned U.S. App!. No. 09/305,817.
Office Action, mailed Ju!. 22, 2003, for commonly owned U.S. App!.
No. 09/305,817.
Office Action, mailed Apr. 6, 2004, for commonly owned U.S. App!.
No. 09/305,817.
Office Action, mailed Mar. 14, 2001, for commonly owned U.S.
App!. No. 09/305,331.
Sep. 14, 2001 Response to Office Action, mailed Mar. 14, 2001, for
commonly owned U.S. App!. No. 09/305,331.
Office Action, mailed Dec. 3, 2001, for commonly owned U.S. App!.
No. 09/305,331.
Office Action, mailed Aug. 14, 2002, for commonly owned U.S.
App!. No. 09/305,331.
Nov. 14,2002 Response to Office Action, mailed Aug. 14,2002, for
commonly owned U.S. App!. No. 09/305,331.
Office Action, mailed Dec. 20, 2002, for commonly owned U.S.
App!. No. 09/305,331.
Office Action, mailed Mar. 4, 2003, for commonly owned U.S. App!.
No. 09/305,331.
Feb. 20, 2003 Response to Office Action, mailed Dec. 20, 2002, for
commonly owned U.S. App!. No. 09/305,331.
Office Action, mailed Jun. 30, 2003, for commonly owned U.S. App!.
No. 09/305,331.
Sep. 22, 2003 Response to Office Action, mailed Jun. 30, 2003, for
commonly owned U.S. App!. No. 09/305,331.
Office Action, mailed Dec. 3, 2003, for commonly owned U.S. App!.
No. 09/305,331.
Jan. 5, 2004 Response to Office Action, mailed Dec. 3, 2003, for
commonly owned U.S. App!. No. 09/305,331.
Feb. 2, 2004 Response to Office Action, mailed Dec., 2003, for
commonly owned U.S. App!. No. 09/305,331.
Office Action, mailed Mar. 21, 2001, for commonly owned U.S.
App!. No. 09/305,816.
Sep. 21, 2001 Response to Office Action, mailed MAr. 21, 2001, for
commonly owned U.S. App!. No. 09/305,816.
Office Action, mailed Nov. 23, 2001 for commonly owned U.S. App!.
No. 09/305,816.
Apr. 19, 2002 Response to Office Action, mailed Nov. 23, 2001 for
commonly owned U.S. App!. No. 09/305,816.
Office Action, Notice of Allowability, mailed May 3,2002 for com­
monly owned U.S. App!. No. 09/305,816.

US 7,617,240 B2
Page 5

The prosecution history of U.S. Appl. No. 111017,086 shown in the
attached Patent Application Retrieval file wrapper document list,
printed Jan. 29, 2008, including each substantive office action and
applicant response.
U.S. Office Action mailed Jul. 17,2009, for U.S. Reexamination No.
901010,201 filed Jun. 19,2008.28 pp.
U.S. Office Action mailed Jul. 21, 2009, for U.S. Appl. No.
111017,086 filed Dec. 20, 2004. 25 pp.
International Search Report dated Apr. 17,2002, for PCT Application
No. PCTIUS00l12351, filed May 4,2000.
Koschel et al. (Nov. 1998). "Configurable event triggered services for
CORE-based systems," Enterprise Distributed Object Computing
Workshop, 1998. EDOC '98 Proceedings, Second International La
Jolla, CA, USA, Nov. 3-5,1998. New York, NY, USA, IEEE, US. pp.
306-318.
Kellogg et al. (Apr. 1998). "Interface management: a COREA uni­
versal service manager," Systems Management, 1998. Proceedings
of the IEEE Third International Workshop on Newport, RI, USA,
Apr. 22-24, 1998, Los Alamitos, CA, USA, IEEE Comput. Soc., US,
Apr. 22, 1998. pp. 148-149.
Tsuchiya et al. (Nov. 1997). "Operator-oriented approach for the
inter-work of service and network management," Global Conver­
gence of Telecommunications and Distributed Object Computing,
1997. Proceedings. Tine 97 Santiago, Chile, Nov. 17-20, 1997, Los
Alamitos, CA, USA, EEE Comput. Soc., US, Nov. 17, 1997. pp.
144-150.
Decision of the Board of Patent Appeals and Interferences mailed
Jun. 9, 2009, for U.S. Appl. No. 09/305,146, 14 pages.
Office Action, mailed Nov. 5, 2007, for commonly owned U.S. Appl.
No. 111017,086.
U.S. Patent 7,013,284 Re-Examination Request, U.S. Appl. No.
901010,201, filed Jun. 19,2008.
"Bulletin of the Technical Committee on Data Engineering"; IEEE
Computer Society; Jun., 1993; vol. 16 No.2, pp. 1-56.
Denning, Peter J. et al.; "Completing the Loops"; INTERFACES
25:3 May-Jun. 1995 (pp. 42- 57); 1995.

Feiler, Peter H. et al.; "An Incremental Programming Environment,"
Proceedings of the 5th International Conference on Software Engi­
neering, San Diego, California, (1981) pp. 44-53.
Medina-Mora, Raul al.; "Action Workflow® in Use: Clark County
Department of Business License," Proceedings of the Twelfth Inter­
national Conference on Data Engineering, Feb.26 - Mar 1,1996, pp.
288-294.
Medina-Mora, Raul et al.; "Aloe Users' and Implementors' Guide,"
Technical Report CMU-CS-81-145, CMU, Computer Science
Department, Nov. 1981.
Medina-Mora, Raul et al.; "The Action Workflow Approach to
Workflow Management Technology," Proceedings of the 1992 ACM
conference on Computer-supported cooperative work, 1992, pp. 281-
288.
Medina-Mora, Raul, et al.; "Action Workflow™ as the Enterprise
Integration Technology," Bulletin of the Technical Committee on
Data Engineering, IEEE Computer Society, (16)2, pp. 49-52.
Medina-Mora, Raul; "Syntax-Directed Editing: Towards Integrated
Programming Environments," Doctoral Thesis, Department of Com­
puter Science; Carnegie-Mellon University; Mar. 1982, 156 pp.
Nilsson, Y; "TFM: A Tool for Task Flow Management"; Philips
Telecommunication and Data Systems Review; vol. 47, No.4; Dec.
1989 pp. 32-33.
Tsai, W.H. et al.; "Architecture of a Multi -Microprocessor System for
Parallel Processing ofIrnage Sequences," Proceedings of 1981 IEEE
Computer Society Workshop on Computer Architecture of Pattern
Analysis and Image Database Management (1981) pp. 104-111.
Winograd, Terry et al.; "Understanding Computers and Cognition: A
New Foundation for Design"; Ablex Publishing Corporation;
Norwood, New Jersey (1986).
Winograd, Terry; "A Languagel Action Perspective on the Design of
Cooperative Work"; Published in Human-Computer Interaction 3:1
(1987-88); 3-30; 3 pp.

* cited by examiner

124

111!!!!!!~~M

rrr;:'j'jl~'j"~~

110

CPU

112
122

120

116 114

ROM I I RAM

USER
INTERFACE
ADAPTER

136

DISPLAY
ADAPTER

132J 126

NETWORK (135)

118
,/ 'I

COMMUNICATION
ADAPTER

138

· ,0

Prior Art Figure 1

~
7Jl
•
~
~
~
~ = ~

z
o
~
~o

N
o
o
\0

rFJ

=­('D
('D
o
QO

d
rJl
-....l
0..,

"""'" -....l
N
~ = = N

u.s. Patent Nov. 10,2009 Sheet 2 of 18 US 7,617,240 B2

Client

200

0)
lI..

:::s (,)
(,)0) 0) ,_

:!:,e .co e
<C

Server

Application Object

206

Client Comp
Adapter (CCA)

202

208

1----- -----, 210

: COM Comp ! /
1 Interface (CCI) L----"
1 1 L ____ , _____ ...J

Server
Component

200

222

Figure 2A

207

u.s. Patent Nov. 10,2009 Sheet 3 of 18 US 7,617,240 B2

Store Object Data

Encapsulate Object Manipulation Functions With
Object Data

Access Stored Data Object Utilizing Object
Manipulation Functions

Figure 28

230

)

232

)

234

)

u.s. Patent Nov. 10,2009 Sheet 4 of 18 US 7,617,240 B2

236

Enter Data in UI Form J

238

UI Controller Interprets Data Entered On Form J

240

UI Controller Places Data into Business Object lJ

Figure 2C

u.s. Patent Nov. 10,2009 Sheet 5 of 18 US 7,617,240 B2

242

Request Made To Place Data In Server Database)

244

CCI Utilized To Transfer Data to Server Component)

246

Server Component Stores Data From CCI)

Figure 2D

u.s. Patent Nov. 10,2009 Sheet 6 of 18 US 7,617,240 B2

206 202 204 300

,-" " "'- ~

~ I CAlliNG 1 r APP OBJECT II I TARGET 1 I FORM
11 CONTROLLER CONTROLlER

I

--Qea/e New--t LEGEND
0;- ~ Create New Class jtile I -HmonCal--

r-~-- - VBfred --

-1JiICIass
~Rehm-

3

~I

WINDOW <l--~

INITIALIZES
-ftvlam

f-CrealeNew
fooD Wze

f<2- Create New

~ I
~I

f<l-- ttiIFoon -
I ~ 1lR

r-- Svri.foon -.- :--SInW 3 06

3

""V IhUd\im :'-ColilrtClqe
USER INTERACTS

"
--"--')

{IJw~Oa1aJ
WITH WINDOW ~ DeIemftFcxmStale - R

r-C«wrt C1mJe -..-

IHu()alaVdfidSave
<J- cnrIOKJId-

~ L (lJseif1ctsOKJ

L klIeiro! ~Iefoon
, 08

.f-Saw-
~

'-1Jitlad
USER CLOSES

~~~~ WINDOW 
( _llR fcmtlkml 

lhmf 
r-- Save - cmdOKJH--i> 

WINDOW I hml}emrilate 
TERMINATES cms~Sw ro I 
~ ~~ ""'-

3 

~ 
..... ..... '- ~ '- ..... '- ..... '" 

FIG. 3 



u.s. Patent 

400~ 

404 

English UI 

Nov. 10,2009 

402 

Sheet 7 of 18 

Common 
Controller 

Code Base 

English DLL 

Figure 4 

US 7,617,240 B2 

406 

French UI 

16&1 French DLL 



u.s. Patent 

514 

Nov. 10,2009 Sheet 8 of 18 

Arch Object Hierarchy 
512 

508 

US 7,617,240 B2 

Figure 5 

500 

510 

504 



u.s. Patent Nov. 10,2009 Sheet 9 of 18 

600~ 

604 
602 

Code 
Code_ Category C Category 
C Category C Code 
C_Cache N_Sort_Order 
T _Category D _Effective 
D_Last_Update D _Expiration 

C Category 
608 C Code 

N Lang ID 
T _Short_Desc 
T _Long_Desc 

Figure 6 

US 7,617,240 B2 

606 

Code_Relations 
C Category 1 
C Code 1 
C Category2 
C Code2 



u.s. Patent Nov. 10,2009 Sheet 10 of 18 US 7,617,240 B2 

700~ 

702 

Yes Is Arch Initialized? No 
708 

704 

Read CodeDecode 

s Freshness Interva 
"LastUpdate" fields for 

Expired? 
Yes each Category. 

Pass to Arch Server 

710 

From Database: 
Read new Categories. 
Read updated Categories. 

Return Recordsets. 

712 
No 

Update Local DB with 
return if any. 

706 

Figure 7 



u.s. Patent Nov. 10,2009 Sheet 11 of 18 

202 

206 

208 

210 

222 

800~ 

Application Object 

U I Controller 

Client Component 
Adaptor 
(CCA) 

COM Component 
Interface 

(CCI) 

Server Component 

Architecture 

Architecture 

isOperAuthorized 

I,SVCOperAulhorized 

Figure 8 

US 7,617,240 B2 

200 

802 
DLL 

Client 

Server 
200 



u.s. Patent Nov. 10,2009 Sheet 12 of 18 US 7,617,240 B2 

900~ 

200 802 

Client 

904 

Server 
r---- -----1 210 

!lInitComp~ 
L _________ .J 

906 

InitComp 

DBMS 

Figure 9 



u.s. Patent Nov. 10,2009 Sheet 13 of 18 

1000 \ 

1007----t-+l 
'-------' 

Event 

Generator 

File 

Notes 

1008 

Figure 10 

US 7,617,240 B2 

1004 

1006 



u.s. Patent Nov. 10,2009 Sheet 14 of 18 US 7,617,240 B2 

1100 

~ 
Employee Database 110 

Provided L-/ 
2 

Claims Database 110 4 
Provided J 

User Links 110 

L/ Employees to Claims 

6 

Claims/Employee 110 
Databases Updated J 

8 

Users Allowed To 111 
Search Among 

~i Claims and/or 
Employees 

o 

gure 11 



u.s. Patent 

1204 

Claim 

Nov. 10,2009 Sheet 15 of 18 US 7,617,240 B2 

1202 
Luke S. 

Lea O. 

Hans S. 

1200 

Luke S. --...f...-+ Driver +-_B_- 1208 

Lea O. --~) Injury 

Hans S.--~~ Witness 

Forms 
& 

Correspondence 

Figure 12 

1210 



u.s. Patent Nov. 10,2009 Sheet 16 of 18 US 7,617,240 B2 

Task Engine 130 
Provideds Tasks L/ 

o 

Task Assistant 
130 

Displays List of 

J Tasks 

2 

User Adds/Edits 130 4 
Tasks in Task 

~ Assistant 

User/Task Engine 
130 

Determine When a 

LJ Task is Completed 

6 

Historical Record Of 130 8 

Completed Tasks is 

~i Generated 

gure 13 



Events 

1 111 J------------

1006 ./ I ...--!!iF I 1008 

1404 ~ 

1406J~ 

1402 "'-
Task ) Engine 1 

1400 

Event/lnfo 

Figure 14 

1402 

I 
1402 
) 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

Z 
0 
~ .... 
~o 

N 
0 
0 
\0 

rFJ 

=-('D 
('D ..... .... 
-....l 
0 .... .... 
QO 

d 
rJl 
-....l 
0.., 

"""'" -....l 
N 
~ = = N 



15( 

1400 

~ 1006,\ 

Event 
Event Processor II------+_ 

Task Library 

Task Engine 

Figure 15 

1406 \ 

Task 

Task Librarian 0
02 

~ 
7Jl 
• 
~ 
~ 
~ 
~ = ~ 

z o 
~ .... 
~o 

N 
o 
o 
\0 

rFJ 

=­('D 
('D ..... .... 
QO 

o .... .... 
QO 

d 
rJl 

",-.....1 
0'1 

"""'" -.....1 
N 
~ = = N 



US 7,617,240 B2 
1 

COMPONENT BASED TASK HANDLING 
DURING CLAIM PROCESSING 

FIELD OF THE INVENTION 

The present invention relates to task management and more 
particularly to handling task during insurance claim process­
ing utilizing a computer system. 

BACKGROUND OF THE INVENTION 

Computers have become a necessity in life today. They 
appear in nearly every office and household worldwide. A 
representative hardware environment is depicted in prior art 
FIG. 1, which illustrates a typical hardware configuration of a 
workstation having a central processing unit 110, such as a 
microprocessor, and a nnmber of other units interconnected 
via a system bus 112. The workstation shown in FIG. 1 
includes a Random Access Memory (RAM) 114, Read Only 
Memory (ROM) 116, an I/O adapter 118 for connecting 
peripheral devices such as disk storage units 120 to the bus 
112, a user interface adapter 122 for connecting a keyboard 
124, a mouse 126, a speaker 128, a microphone 132, and/or 
other user interface devices such as a touch screen (not 
shown) to the bus 112, communication adapter 134 for con­
necting the workstation to a communication network (e.g., a 
data processing network) and a display adapter 136 for con­
necting the bus 112 to a display device 138. The workstation 
typically has resident thereon an operating system such as the 
Microsoft Windows NT or Windows/95 Operating System 
(OS), the IBM OS/2 operating system, the MAC OS, or UNIX 
operating system. 

Object oriented programming (OOP) has become increas­
ingly used to develop complex applications. As OOP moves 
toward the mainstream of software design Object oriented 
programming (OOP) has become increasingly used to 
develop complex applications. As OOP moves toward the 
mainstream of software design and development, various 
software solutions require adaptation to make use of the ben­
efits of OOP. A need exists for these principles of OOP to be 
applied to a messaging interface of an electronic messaging 
system such that a set of OOP classes and objects for the 
messaging interface can be provided. 

2 
often just called a class. A class of objects can be viewed as a 
blueprint, from which many objects can be formed. 

OOP allows the programmer to create an object that is a 
part of another object. For example, the object representing a 
piston engine is said to have a composition-relationship with 
the object representing a piston. In reality, a piston engine 
comprises a piston, valves and many other components; the 
fact that a piston is an element of a piston engine can be 
logically and semantically represented in OOP by two 

10 objects. 
OOP also allows creation of an object that "depends from" 

another object. If there are two objects, one representing a 
piston engine and the other representing a piston engine 
wherein the piston is made of ceramic, then the relationship 

15 between the two objects is not that of composition. A ceramic 
piston engine does not make up a piston engine. Rather it is 
merely one kind of piston engine that has one more limitation 
than the piston engine; its piston is made of ceramic. In this 
case, the object representing the ceramic piston engine is 

20 called a derived object, and it inherits all of the aspects of the 
object representing the piston engine and adds further limi­
tation or detail to it. The object representing the ceramic 
piston engine "depends from" the object representing the 
piston engine. The relationship between these objects is 

25 called inheritance. 
When the object or class representing the ceramic piston 

engine inherits all of the aspects of the objects representing 
the piston engine, it inherits the thermal characteristics of a 
standard piston defined in the piston engine class. However, 

30 the ceramic piston engine object overrides these ceramic spe­
cific thermal characteristics, which are typically different 
from those associated with a metal piston. It skips over the 
original and uses new functions related to ceramic pistons. 
Different kinds of piston engines have different characteris-

35 tics, but may have the same underlying functions associated 
with it (e.g., how many pistons in the engine, ignition 
sequences, lubrication, etc.). To access each of these func­
tions in any piston engine obj ect, a programmer would call the 
same functions with the same names, but each type of piston 

40 engine may have different/overriding implementations of 
functions behind the same name. This ability to hide different 
implementations of a function behind the same name is called 
polymorphism and it greatly simplifies communication 
among objects. 

With the concepts of composition-relationship, encapsula-
tion, inheritance and polymorphism, an object can represent 
just about anything in the real world. In fact, the logical 
perception of the reality is the only limit on determining the 
kinds of things that can become objects in object-oriented 

OOP is a process of developing computer software using 
objects, including the steps of analyzing the problem, design- 45 

ing the system, and constructing the program. An object is a 
software package that contains both data and a collection of 
related structures and procedures. Since it contains both data 
and a collection of structures and procedures, it can be visu­
alized as a self-sufficient component that does not require 
other additional structures, procedures or data to perform its 
specific task. OOP, therefore, views a computer program as a 
collection oflargely autonomous components, called objects, 
each of which is responsible for a specific task. This concept 

50 software. Some typical categories are as follows: 
Objects can represent physical objects, such as automo­

biles in a traffic-flow simulation, electrical components 
in a circuit-design program, countries in an economics 
model, or aircraft in an air-traffic-control system. 

of packaging data, structures, and procedures together in one 55 

component or module is called encapsulation. 
In general, OOP components are reusable software mod­

ules which present an interface that conforms to an object 
model and which are accessed at run-time through a compo­
nent integration architecture. A component integration archi - 60 

tecture is a set of architecture mechanisms which allow soft-

Objects can represent elements of the computer-user envi­
ronment such as windows, menus or graphics objects. 

An object can represent an inventory, such as a personnel 
file or a table of the latitudes and longitudes of cities. 

An object can represent user-defined data types such as 
time, angles, and complex nnmbers, or points on the 
plane. 

ware modules in different process spaces to utilize each 
others capabilities or functions. This is generally done by 
assuming a common component object model on which to 
build the architecture. It is worthwhile to differentiate 
between an object and a class of objects at this point. An 
object is a single instance of the class of objects, which is 

With this enormous capability of an object to represent just 
about any logically separable matters, OOP allows the soft­
ware developer to design and implement a computer program 

65 that is a model of some aspects of reality, whether that reality 
is a physical entity, a process, a system, or a composition of 
matter. Since the object can represent anything, the software 



US 7,617,240 B2 
3 

developer can create an object which can be used as a com­
ponent in a larger software project in the future. 

If90% of a new OOP software program consists of proven, 
existing components made from preexisting reusable objects, 
then only the remaining 10% of the new software project has 
to be written and tested from scratch. Since 90% already came 
from an inventory of extensively tested reusable objects, the 
potential domain from which an error could originate is 10% 
of the program. As a result, OOP enables software developers 
to build objects out of other, previously built objects. 10 

This process closely resembles complex machinery being 
built out of assemblies and sub-assemblies. OOP technology, 
therefore, makes software engineering more like hardware 
engineering in that software is built from existing compo­
nents, which are available to the developer as objects. All this 15 

adds up to an improved quality of the software as well as an 
increased speed of its development. 

SUMMARY OF THE INVENTION 

4 
FIG. 6 is an illustration showing the physical layout of 

CodeDecode tables according to one embodiment of the 
present invention. 

FIG. 7 is a logic diagram according to one embodiment of 
the present invention. 

FIG. 8 is a block diagram of the security framework and its 
components. 

FIG. 9 is an illustration showing the relationships between 
the security element and other elements. 

FIG. 10 is an illustration of the Negotiation component of 
one embodiment of the present invention; 

FIG. 11 is a flow diagram of the operations carried out by 
the Organization component of one embodiment of the 
present invention; 

FIG. 12 is an illustration of the Participant component of 
one embodiment of the present invention; 

FIG. 13 is a flow diagram of the operations carried out by 
the Task Assistant component of one embodiment of the 
present invention; 

20 FIG. 14 is an illustration of the Event Processor in combi-

25 

A computer program is provided for developing compo­
nent based software capable of handling insurance-related 
tasks. The program includes a data component that stores, 
retrieves and manipulates data utilizing a plurality of func­
tions. Also provided is a client component which includes an 
adapter component that transmits and receives data to/from 
the data component. The client component also includes a 
business component that serves as a data cache and includes 
logic for manipulating the data. A controller component is 30 

also included which is adapted to handle events generated by 
a user utilizing the business component to cache data and the 
adapter component to ultimately persist data to a data reposi­
tory. In use, the client component allows a user to define tasks 
that achieve an insurance-related goal upon completion. In 35 

addition, the user is able to input rules which dictate which 
tasks should be selected based on a set of predetermined 
events. Events are then received from any source, such as a 
common event queue. Finally, tasks are selected and output­
ted based on the received events. 

nation with other components of the system in accordance 
with on embodiment of the present invention; and 

FIG. 15 is an illustration of the Task Engine in accordance 
with one embodiment of the present invention. 

DISCLOSURE OF THE INVENTION 

Progranlilling languages are beginning to fully support the 
OOP principles, such as encapsulation, inheritance, polymor­
phism, and composition-relationship. With the advent of the 
C++ language, many commercial software developers have 
embraced OOP. C++ is an OOP language that offers a fast, 
machine-executable code. Furthermore, C++ is suitable for 
both commercial-application and systems-progranlilling 
projects. For now, C++ appears to be the most popular choice 
among many OOP programmers, but there is a host of other 
OOP languages, such as Smalltalk, Common Lisp Object 
System (CLOS), and Eiffel. Additionally, OOP capabilities 
are being added to more traditional popular computer pro-

40 gramming languages such as Pascal. 
DESCRIPTION OF THE DRAWINGS 

The foregoing and other objects, aspects and advantages 
are better understood from the following detailed description 45 

of a preferred embodiment of the invention with reference to 
the drawings, in which: 

Prior Art FIG. 1 is a schematic diagram of the present 
invention; and 

FIG. 2Ais block diagram of one embodiment of the present 50 

invention. 
FIG. 2B is a flowchart showing how components generally 

operate in accordance with one embodiment of the present 
invention. 

FIG. 2C is a flowchart showing how the UI Controller 55 

operates in accordance with one embodiment of the present 
invention. 

FIG. 2D is a flowchart showing the interactions between 
the CCA, the CCI, and the Server Component in accordance 
with one embodiment of the present invention. 60 

FIG. 3 shows the life cycle of a typical User Interface and 
the standard methods that are part of the Window Processing 
Framework. 

FIG. 4 is an illustration showing how different languages 65 

are repainted and recompiled. 

FIG. 5 is a block diagram of an Architecture Object. 

The benefits of object classes can be summarized, as fol­
lows: 

Objects and their corresponding classes break down com­
plex programming problems into many smaller, simpler 
problems. 

Encapsulation enforces data abstraction through the orga­
nization of data into small, independent objects that can 
communicate with each other. Encapsulation protects 
the data in an object from accidental damage, but allows 
other objects to interact with that data by calling the 
object's member functions and structures. 

Subclassing and inheritance make it possible to extend and 
modifY objects through deriving new kinds of objects 
from the standard classes available in the system. Thus, 
new capabilities are created without having to start from 
scratch. 

Polymorphism and multiple inheritance make it possible 
for different progranlillers to mix and match character­
istics of many different classes and create specialized 
objects that can still work with related objects in predict­
able ways. 

Class hierarchies and containment hierarchies provide a 
flexible mechanism for modeling real-world objects and 
the relationships among them. 

Libraries of reusable classes are useful in many situations, 
but they also have some limitations. For example: 



US 7,617,240 B2 
5 

Complexity. In a complex system, the class hierarchies for 
related classes can become extremely confusing, with 
many dozens or even hundreds of classes. 

Flow of control. A program written with the aid of class 
libraries is still responsible for the flow of control (i.e., it 
must control the interactions among all the objects cre­
ated from a particular library). The programmer has to 
decide which functions to call at what times for which 
kinds of objects. 

Duplication of effort. Although class libraries allow pro- 10 

grammers to use and reuse many small pieces of code, 
each programmer puts those pieces together in a differ­
ent way. Two different programmers can use the same set 
of class libraries to write two programs that do exactly 
the same thing but whose internal structure (i.e., design) 15 

may be quite different, depending on hundreds of small 
decisions each programmer makes along the way. Inevi­
tab�y' similar pieces of code end up doing similar things 

6 
together, programmers using application frameworks start 
with working application code and basic user interface ele­
ments in place. Subsequently, they build from there by replac­
ing some of the generic capabilities of the framework with the 
specific capabilities of the intended application. 

Application frameworks reduce the total amount of code 
that a programmer has to write from scratch. However, 
because the framework is really a generic application that 
displays windows, supports copy and paste, and so on, the 
programmer can also relinquish control to a greater degree 
than event loop programs permit. The framework code takes 
care of almost all event handling and flow of control, and the 
programmer's code is called only when the framework needs 
it (e.g., to create or manipulate a proprietary data structure). 

A programmer writing a framework program not only 
relinquishes control to the user (as is also true for event loop 
programs), but also relinquishes the detailed flow of control 
within the program to the framework. This approach allows 
the creation of more complex systems that work together in in slightly different ways and do not work as well 

together as they should. 20 interesting ways, as opposed to isolated programs, having 
custom code, being created over and over again for similar 
problems. 

Class libraries are very flexible. As programs grow more 
complex, more programmers are forced to reinvent basic 
solutions to basic problems over and over again. A relatively 
new extension of the class library concept is to have a frame­
work of class libraries. This framework is more complex and 25 

consists of significant collections of collaborating classes that 
capture both the small scale patterns and major mechanisms 
that implement the common requirements and design in a 
specific application domain. They were first developed to free 
application programmers from the chores involved in dis- 30 

playing menus, windows, dialog boxes, and other standard 
user interface elements for personal computers. 

Frameworks also represent a change in the way program­
mers think about the interaction between the code they write 
and code written by others. In the early days of procedural 35 

programming, the programmer called libraries provided by 
the operating system to perform certain tasks, but basically 
the program executed down the page from start to finish, and 
the programmer was solely responsible for the flow of con­
trol. This was appropriate for printing out paychecks, calcu- 40 

lating a mathematical table, or solving other problems with a 
program that executed injust one way. 

The development of graphical user interfaces began to tum 
this procedural programming arrangement inside out. These 
interfaces allow the user, rather than program logic, to drive 45 

the program and decide when certain actions should be per­
formed. Today, most personal computer software accom­
plishes this by means of an event loop which monitors the 
mouse, keyboard, and other sources of external events and 
calls the appropriate parts of the programmer's code accord- 50 

ing to actions that the user performs. The programmer no 
longer determines the order in which events occur. Instead, a 
program is divided into separate pieces that are called at 
unpredictable times and in an unpredictable order. By relin­
quishing control in this way to users, the developer creates a 55 

program that is much easier to use. Nevertheless, individual 
pieces of the program written by the developer still call1ibrar-
ies provided by the operating system to accomplish certain 
tasks, and the programmer must still determine the flow of 
control within each piece after it's called by the event loop. 60 

Application code still "sits on top of' the system. 
Even event loop programs require programmers to write a 

lot of code that should not need to be written separately for 
every application. The concept of an application framework 
carries the event loop concept further. Instead of dealing with 65 

all the nuts and bolts of constructing basic menus, windows, 
and dialog boxes and then making these things all work 

Thus, as is explained above, a framework basically is a 
collection of cooperating classes that make up a reusable 
design solution for a given problem domain. It typically 
includes objects that provide default behavior (e.g., for menus 
and windows), and programmers use it by inheriting some of 
that default behavior and overriding other behavior so that the 
framework calls application code at the appropriate times. 

There are three main differences between frameworks and 
class libraries: 

Behavior versus protocol. Class libraries are essentially 
collections of behaviors that you can call when you want 
those individual behaviors in your program. A frame­
work, on the other hand, provides not only behavior but 
also the protocol or set of rules that govern the ways in 
which behaviors can be combined, including rules for 
what a programmer is supposed to provide versus what 
the framework provides. 

Call versus override. With a class library, the code the 
programmer instantiates objects and calls their member 
functions. It's possible to instantiate and call objects in 
the same way with a framework (i.e., to treat the frame­
work as a class library), but to take full advantage of a 
framework's reusable design, a programmer typically 
writes code that overrides and is called by the frame­
work. The framework manages the flow of control 
among its objects. Writing a program involves dividing 
responsibilities among the various pieces of software 
that are called by the framework rather than specifying 
how the different pieces should work together. 

Implementation versus design. With class libraries, pro­
grammers reuse only implementations, whereas with 
frameworks, they reuse design. A framework embodies 
the way a family of related programs or pieces of soft­
ware work. It represents a generic design solution that 
can be adapted to a variety of specific problems in a 
given domain. For example, a single framework can 
embody the way a user interface works, even though two 
different user interfaces created with the same frame­
work might solve quite different interface problems. 

Thus, through the development of frameworks for solu­
tions to various problems and programming tasks, significant 
reductions in the design and development effort for software 
can be achieved. A preferred embodiment of the invention 
utilizes HyperText Markup Language (HTML) to implement 
documents on the Internet together with a general-purpose 



US 7,617,240 B2 
7 

secure communication protocol for a transport medium 
between the client and the Newco. HTTP or other protocols 
could be readily substituted for HTML without undue experi­
mentation. Information on these products is available in T. 
Berners-Lee, D. Connoly, "RFC 1866: Hypertext Markup 
Language-2.0" (November 1995); and R. Fielding, H, Fry­
styk, T. Berners-Lee, J. Gettys and J. C. Mogul, "Hypertext 
Transfer Protocol-HTTPIl.l: HTTP Working Group Inter­
net Draft" (May 2, 1996). HTML is a simple data format used 
to create hypertext documents that are portable from one 10 

platform to another. HTML documents are SGML documents 
with generic semantics that are appropriate for representing 
information from a wide range of domains. HTML has been 
in use by the World-Wide Web global information initiative 
since 1990. HTML is an application ofISO Standard 8879; 15 

1986 Information Processing Text and Office Systems; Stan­
dard Generalized Markup Language (SGML). 

To date, Web development tools have been limited in their 
ability to create dynamic Web applications which span from 
client to server and interoperate with existing computing 20 

resources. Until recently, HTML has been the dominant tech­
nology used in development of Web-based solutions. How­
ever, HTML has proven to be inadequate in the following 
areas: 

8 
includes tools for developing animation, 3-D virtual reality, 
video and other multimedia content. The tools use Internet 
standards, work on multiple platforms, and are being sup­
ported by over 100 companies. The group's building blocks 
are called ActiveX Controls, small, fast components that 
enable developers to embed parts of software in hypertext 
markup language (HTML) pages. ActiveX Controls work 
with a variety of programming languages including 
Microsoft Visual C++, Borland Delphi, Microsoft Visual 
Basic programming system and, in the future, Microsoft's 
development tool for Java, code named "Jakarta." ActiveX 
Technologies also includes ActiveX Server Framework, 
allowing developers to create server applications. One of 
ordinary skill in the art readily recognizes that ActiveX could 
be substituted for JAVA without undue experimentation to 
practice the invention. 

DETAILED DESCRIPTION 

One embodiment of the present invention is a server based 
framework utilizing component based architecture. Referring 
to FIG. 2A, one embodiment of the present invention includes 
an Architecture Object 200, an Application Object 202, a 

Poor performance; 
Restricted user interface capabilities; 
Can only produce static Web pages; 
Lack of interoperability with existing applications and 

data; and 

25 User Interface Form 204, a User Interface Controller 206, a 
Client Component Adapter 208, a COM Component Inter­
face 210, and a Server Component 222. 

In general, the components of the present invention operate 

Inability to scale. 
Sun Microsystem's Java language solves many of the cli­

ent-side problems by: 
Improving performance on the client side; 
Enabling the creation of dynamic, real-time Web applica­

tions; and 

30 as shown in FIG. 2B. In step 230, data is stored in an object of 
the component. In step 232, functions which manipulate the 
object are encapsulated with the object data. Later, in step 
234, the stored object data can be manipulated by other com­
ponents utilizing the functions of step 232. 

Providing the ability to create a wide variety of user inter­
face components. 

35 Architecture Object 

With Java, developers can create robust User Interface (VI) 
components. Custom "widgets" (e.g., real-time stock tickers, 
animated icons, etc.) can be created, and client-side perfor- 40 

mance is improved. Unlike HTML, Java supports the notion 
of client-side validation, offioading appropriate processing 
onto the client for improved performance. Dynamic, real­
time Web pages can be created. Using the above-mentioned 
custom UI components, dynamic Web pages can also be 45 

created. 

The Architecture Object 200 provides an easy-to-use 
object model that masks the complexity of the architecture on 
the client. The Architecture Object 200 provides purely tech­
nical services and does not contain any business logic or 
functional code. It is used on the client as the single point of 
access to all architecture services. 

On the server side, the Architecture Object 200 is supple­
mented by a set of global functions contained in standard VB 
modules 

The Architecture Object 200 is responsible for providing 
all client architecture services (i.e., codes table access, error 
logging, etc.), and a single point of entry for architecture 
services. The Architecture Object 200 is also responsible for 

50 allowing the architecture to exist as an autonomous unit, thus 
allowing internal changes to be made to the architecture with 
minimal impact to application. 

Sun's Java language has emerged as an industry-recog­
nized language for "programming the Internet." Sun defines 
Java as: "a simple, object-oriented, distributed, interpreted, 
robust, secure, architecture-neutral, portable, high-perfor­
mance, multithreaded, dynamic, buzzword-compliant, gen­
eral-purpose progranm1ing language. Java supports program­
ming for the Internet in the form of platform-independent 
Java applets." Java applets are small, specialized applications 
that comply with Sun's Java Application Programming Inter- 55 

face (API) allowing developers to add "interactive content" to 
Web documents (e.g., simple animations, page adornments, 
basic games, etc.). Applets execute within a Java-compatible 
browser (e.g., Netscape Navigator) by copying code from the 
server to client. From a language standpoint, Java's core 60 

feature set is based on C++. Sun's Java literature states that 
Java is basically, "C++ with extensions from Objective C for 
more dynamic method resolution." 

Another technology that provides similar function to JAVA 
is provided by Microsoft and ActiveX Technologies, to give 
developers and Web designers wherewithal to build dynamic 
content for the Internet and personal computers. ActiveX 

The Architecture Object 200 provides a code manager, 
client profile, text manager, ID manager, registry manager, 
log manager, error manager, and a security manager. The 
codes manager reads codes from a local database on the 
client, marshals the codes into objects, and makes them avail­
able to the application. The client profile provides informa­
tion about the current logged-in user. The text manager pro­
vides various text manipulation services such as search and 
replace. The ID manager generates unique IDs and times-
tamps. The registry manager encapsulates access to the sys­
tem registry. The log manager writes error or informational 
messages to the message log. The error manager provides an 

65 easy way to save and re-raise an error. And the security 
manager determines whether or not the current user is autho­
rized to perform certain actions. 



US 7,617,240 B2 
9 

Application Object 
10 

creates new business objects 207 when necessary. Finally, the 
VI Controller 206 interacts with Client Component Adapters 
208 to add, retrieve, modifY, or delete business objects 207, 
and handles all client-side errors. 

Business Objects 

The Application Object 202 has a method to initiate each 
business operation in the application. It uses late binding to 
instantiate target VI controllers in order to provide autonomy 
between windows. This allows different controllers to use the 
Application Object 202 without statically linking to each and 
every VI controller in the application. 

When opening a VI controller, the Application Object 202 
calls the architecture initialization, class initialization, and 
form initialization member functions. 

The Business Object's (BO) 207 primary functionality is to 
act as a data holder, allowing data to be shared across Vser 
Interface Controllers 206 using an object-based program-

10 ming model. 

The Application Object 202 keeps a list of every active 
window, so that it can shut down the application in the event 

BOs 207 perfonn validation on their attributes as they are 
being set to maintain the integrity of the information they 
contain. BOs 207 also expose methods other than accessors to 
manipulate their data, such as methods to change the life 

of an error. When a window closes, it tells the Application 
Object 202, and is removed from the Application Object's 
202 list of active windows. 

The Application Object 202 is responsible for instantiating 
each VI Controller 206, passing data/business context to the 
target VI Controller 206, and invoking standard services such 

15 cycle state of aBO 207 or to derive the value of a calculated 
attribute. 

as initialize controller, initializing Fonn and Initialize Archi­
tecture. The Application Object 202 also keeps track of which 20 

windows are active so that it can coordinate the shutdown 
process. 

VI Fonn 

In many cases, a BO 207 will have its own table in the 
database and its own window for viewing or editing opera­
tions. 

Business Objects 207 contain infonnation about a single 
business entity and maintain the integrity of that information. 
The BO 207 encapsulates business rules that pertain to that 
single business entity and maintains relationships with other 
business objects (e.g., a claim contains a collection of supple-

The VI fonn's 204 primary responsibility is to forward 
important events to its controller 206. It remains mostly unin­
telligent and contains as little logic as possible. Most event 
handlers on the fonn simply delegate the work by calling 
methods on the form's controller 206. 

The VI form 204 never enables or disables its own controls, 
but ask its controller 206 to do it instead. Logic is included on 
the VI form 204 only when it involves very simple field 
masking or minor visual details. 

25 ments). Finally, the BO 207 provides additional properties 
relating to the status of the infonnation it contains (such as 
whether that information has changed or not), provides vali­
dation of new data when necessary, and calculates attributes 
that are derived from other attributes (such as Full Name, 

30 which is derived from First Name, Middle Initial, and Last 
Name). 

The VI fonn 204 presents an easy-to-use, graphical inter­
face to the user and infonns its controller 206 of important 35 

user actions. The VI fonn 204 may also provide basic data 
validation (e.g., data type validation) through input masking. 
In addition, the VI fonn is responsible for intelligently resiz­
ing itself, launching context-sensitive help, and unload itself. 

Client Component Adapters 
Client Component Adapters (CCAs) 208 are responsible 

for retrieving, adding, updating, and deleting business objects 
in the database. CCAs 208 hide the storage fonnat and loca­
tion of data from the VI controller 206. The VI controller 206 
does not care about where or how objects are stored, since this 
is taken care of by the CCA 208. 

The CCA 208 marshals data contained in recordsets 
Vser Interface Controller 

Every VI Controller 206 includes a set of standard methods 
for initialization, enabling and disabling controls on its VI 
form 204, validating data on the form, getting data from the 
VI form 204, and unloading the VI form 204. 

40 returned by the server into business objects 207. CCAs 208 
masks all remote requests from VI Controller 206 to a specific 
component, and act as a "hook" for services such as data 
compression, and data encryption. 

VI Controllers 206 contain the majority oflogic to manipu- 45 

late Business Objects 207 and manage the appearance of its 
VI fonn 204. Ifits form is not read-only, the VI Controller 206 
also tracks whether or not data on the VI fonn 204 has 
changed, so as to avoid unnecessary database writes when the 
user decides to save. In addition, controllers of auxiliary 50 

windows (like the File-Save dialog box in Microsoft Word), 
keep track of their calling VI controller 206 so that they can 
notify it when they are ready to close. 

FIG. 2C is a flowchart showing how the VI Controller 
operates in one embodiment of the present invention. In step 55 

236, data is entered in a VI form by a user. In step 238, the VI 
controller interprets the data entered into the VI fonn. In step 
240, the VI controller places the appropriate data into a Busi­
ness Object to be utilized and retrieved later. 

A VI Controller 206 defines a Logical Vnit of Work 60 

(LVW). If an LVW involves more than one VI Controller 
206, the LVW is implemented as a separate object. 

COM Component Interface 
A COM Component Interface (CCI) 210 is a "contract" for 

services provided by a component. By "implementing" an 
interface (CCI) 210, a component is promising to provide all 
the services defined by the CCI 20. 

The CCI 210 is not a physical entity (which is why it is 
depicted with a dotted line). It's only reason for existence is to 
define the way a component appears to other objects. It 
includes the signatures or headers of all the public properties 
or methods that a component will provide. 

To implement a CCI 210, a server component exposes a set 
of specially named methods, one for each method defined on 
the interface. These methods should do nothing except del­
egate the request to a private method on the component which 
will do the real work. 

The CCI 210 defines a set of related services provided by a 
component. The CCI allows any component to "hide" behind 
the interface to perfonn the services defined by the interface 
by "implementing" the interface. The VI Controller 206 is responsible for handling events 

generated by the user interacting with the VI form 204 and 
providing complex field validation and cross field validation 
within a Logical Vnit of Work. The VI Controller 206 also 
contains the logic to interact with business objects 207, and 

65 Server Component 
Server components 222 are course grained and transaction 

oriented. They are designed for maximum efficiency. 



US 7,617,240 B2 
11 

Server Components 222 encapsulate all access to the data­
base, and define business transaction boundaries. In addition, 
Server Components 222 are responsible for ensuring that 
business rules are honored during data access operations. 

A Server Component 222 performs data access operations 
on behalf of CCAs 208 or other components and participates 
in transactions sparming server components 222 by commu­
nicating with other server components 222. The Server Com­
ponent 222 is accessible by multiple front end personalities 
(e.g., Active Server Pages), and contains business logic 10 

designed to maintain the integrity of data in the database. 

12 
completed, and the frequency of repetition defined by the 
repeat rule. Putting the logic to compute the new display date 
into the Task BO 207 ensures that it is coded only once. 

Responses to Business Events 
Business rules that relate to system events and involve no 

user interaction are enforced on the server components. 
Completion of a task is a major event in the system. When 

a task is completed, the system first ensures that the performer 
completing the task is added to the claim. Then, after the task 
is marked complete in the database, it is checked to see if the 
task has a repeat rule. If so, another task is created and added 
to the database. Finally, the event component is notified, 
because the Task Engine may need to react to the task comple-
tion. 

Consider the scenario if the logic to enforce this rule were 
placed on the VI controller 206. 

FIG. 2D is a flowchart showing the interactions between 
the CCA, the CCI, and the Server Component in accordance 
with one embodiment of the present invention. In step 242, a 
request is made to place client created data on the server 
database. In step 244, the data is transferred to the server 15 

component 222 utilizing a CCI 210. In step 246, the server 
component 222 stores the data in the server database. The controller 206 calls the Performer Component to see if 

the performer completing the task has been added to the 
claim. If the performer has not been added to the claim, then 

20 the controller 206 calls the performer component again to add 
them. 

Business Rule Placement 

Overview 
The distribution of business rules across tiers of the appli­

cation directly affects the robustness and performance of the 
system as a whole. Business rules can be categorized into the 25 

following sections: Relationships, Calculations, and Busi­
ness Events. 

Relationships between Business Objects 

Next, the controller 206 calls the Task Component to mark 
the task complete in the database. If the task has a repeat rule, 
the controller 206 computes the date the task is to be redis­
played and calls the Task Component again to add a new task. 
Lastly, the controller 206 calls the Event Component to notifY 
the Task Engine of the task completion. 

The above implementation requires five network round 
trips in its worst case. In addition, any other controller 206 or Business Objects 207 are responsible for knowing other 

business objects 207 with which they are associated. 
Relationships between BOs 207 are built by the CCA 208 

during the marshaling process. For example, when a CCA 
208 builds a claim BO 207, it will also build the collection of 
supplements if necessary. 

30 server component 222 that wants to complete a task must 
code this logic all over again. Enforcing this rule in the task 
server component 222 reduces the number of network round 
trips and eliminates the need to code the logic more than once. 

Calculated Business Data 35 Responses to Vser Events 
All responses to user events are coordinated by the con­

troller 206. The controller 206 is responsible for actions such 
as enabling or disabling controls on its form, requesting 
authorization from the security component, or making calls to 

Business rules involving calculations based on business 
object 207 attributes are coded in the business objects 207 
themselves. Participant Full Name is a good example of a 
calculated attribute. Rather than force the controllers to con­
catenate the first name, middle initial, and last name every 
time they wanted to display the full name, a calculated 
attribute that performs this logic is exposed on the business 
object. In this way, the code to compose the full name only has 

40 the CCA 208. 

to be written once and can be used by many controllers 206. 
Another example of a calculated attribute is the display 45 

date of a repeating task. When a task with a repeat rule is 
completed, a new display date must be determined. This 
display date is calculated based on the date the task was 

Authorization 
All logic for granting authorization is encapsulated inside 

the security component. Controllers 206 and components 222 
must ask the security component if the current user is autho­
rized to execute certain business operations in the system. The 
security component will answer yes or no according to some 
predefined security logic. 

Summary 

Type of Business Rule Example Responsibility 

Maintaining relationships Claim keeps a collection of supplements Business Objects 
between BOs 
Building relationships CCA builds the claim's collection of CCAs 
between BOs supplements 
Calculated Business Data Participant calculates its full name Business Objects 
Responses to Business Task Component collaborates with other Components 
Events components 
Requesting Authorization Task Library controller asks the Controllers and 

security component if the current user Components 
is allowed to access Task Library 

Granting Authorization Security component dete11llines whether Security Component 
or not the current user can access Task 
Library 



US 7,617,240 B2 
13 

Window Processing Framework 

The Default Window Framework provides default window 
processing for each window contained within the system. 
This default processing aides the developer in developing 
robust, maintainable VIs, standardizes common processes 
(such as form initialization) and facilitates smooth integration 
with architecture services. 

FIG. 3 shows the life cycle of a typical Vser Interface and 
the standard methods that are part of the Window Processing 10 

Framework 300. 
The Window Processing Framework 300 encompasses the 

following: 
Window Initialization 302; 

14 
on the controller 206 to initialize it. The calling of these 
methods, ArchInitClass, InitClass, InitForm, and ShowForm, 
is illustrated below. 

ArchInitClass 
The main purpose of the ArchInitClass function is to tell 

the target controller 206 who is calling it. TheApp Object 202 
"does the introductions" by passing the target controller 206 
a reference to itself and a reference to the calling controller 
206. In addition, it serves as a hook into the controller 206 for 
adding architecture functionality in the future. 

Public Sub ArchinitClass( objApp As Object, objCallingCTLRAs 

Window Save Processing 304; 15 Object) 

Window Control State Management 306; 
Window Data Validation 308; 
Window Shutdown Processing 310. 
Window Initialization Processing 302: After creating a 20 

controller 206 for the desired window, the App object 202 
calls a set of standard initialization functions on the controller 
206 before the form 204 is displayed to the user. Standardiz­
ing these functions makes the VIs more homogeneous 
throughout the application, while promoting good functional 25 

decomposition. 
Window Save Processing 304: Any time a user updates any 

form text or adds an item to a ListBox, the VI Controller 206 
marks the form as "dirty". This allows the VI controller 206 to 
determine whether data has changed when the form closes 30 

and prompt the user to commit or lose their changes. 
Window Control State Management 306: Enabling and 

disabling controls and menu options is a very complex part of 
building a VI. The logic that modifies the state of controls is 
encapsulated in a single place for maintainability. 35 

Window Data Validation 308: Whenever data changes on a 
form, validation rules can be broken. The controller is able to 
detect those changes, validate the data, and prompt the user to 
correct invalid entries. 

Window Shutdown Processing 310: The Window Shut­
down framework provides a clear termination path for each 
VI in the event of an error. This reduces the chance of memory 
leaks, and General Protection failures. 

Benefits 

40 

45 

, remember who called me 
Set m_objApp ~ objApp 
Set m_objCallingCTLR ~ objCallingCTLR 

End Sub 

InitClass 
This function provides a way fortheApp Object 202 to give 

the target controller 206 any data it needs to do its processing. 
It is at this point that the target controller 206 can determine 
what "mode" it is in. Typical form modes include, add mode, 
edit mode, and view mode. If the window is in add mode, it 
creates a new BO 207 of the appropriate type in this method. 

Public Sub InitClass(colPrevSelectionAs CArchCollection) 
If col,PrevSelection Is Nothing Then 

no accounts were previously selected 
Set m colPrevSelection ~ New CArchCollection 
Set m colNewSelection ~ New CArchCollection 

Else 
some aCcOlUlts may have already been selected 

Set ill_colPrevSelection = colPrevSelection 
Set m_colNewSelection ~ coIPrevSelection.Clone( ) 

End If 
Set m_colResults ~ New CArchCollection 
DetermineFormMode( ) 

End Sub 

InitForm 
The InitForm procedure of each controller 206 coordinates 

any initialization of the form 204 before it is displayed. 
Because initialization is often a multi-step process, InitForm 
creates the window and then delegates the majority of the 
initialization logic to helper methods that each have a single 

Standardized Processing: Standardizing the window pro­
cessing increases the homogeneity of the application. This 
ensures that all windows within the application behave in a 
consistent manner for the end users, making the application 
easier to use. It also shortens the learning curve for developers 
and increases maintainability, since all windows are coded in 
a consistent manner. 

50 purpose, in order to follow the rules of good functional 
decomposition. For example, the logic to determine a form's 
204 state based on user actions and relevant security restric­
tions and move to that state is encapsulated in the Determine­
FormState method. Simplified Development: Developers can leverage the best 

practices documented in the window processing framework 55 

to make effective design and coding decisions. In addition, a 
shell provides some "canned" code that gives developers a 
head start during the coding effort. 

Layered Architecture: Because several architecture mod­
ules provide standardized processing to each application win - 60 

dow, the core logic can be changed for every system window 
by simply making modifications to a single procedure. 

Window Initialization 302 

To open a new window, the App Object 202 creates the 
target window's controller 206 and calls a series of methods 

65 

Publi,c Sub InitForm( ) 
create my form 

Set m_frmCurrentForm ~ New frmAccountSearch 
figure out the state of my form based on arguments I 

received in InitClass and 
, enable/disable the appropriate controls 
DetermineFormState( ) 
, fill my form with data 
PopulateForm( ) 

End Sub 



US 7,617,240 B2 
15 

PopulateFonn 
16 

Fonn State 
A fonn 204 will have a number of different states for each 

mode, where a state is a unique combination of enabled/ 
disabled, visible/invisible controls. When a fonn 204 moves 
to a different state, at least one control is enabled or disabled 
or modified in some way. 

PopulateForm is a private method responsible for filling 
the form with data during initialization. It is called exactly 
once by the InitFonn method. PopulateFonn is used to fill 
combo boxes on a fonn 204, get the details of an object for an 
editing window, or display objects that have already been 
selected by the user, as in the following example. 

Private Sub PopulateForm( ) 
Dim acct As CAccount 
Dim item As GTListItem 

A key difference between form mode and form state is that 
mode is detennined when the controller 206 is initialized and 
remains constant until the controller 206 tenninates. State is 

10 determined when the window initializes, but is constantly 
being reevaluated in response to user actions. 

, display any accounts already selected by tbe user Handling UI Events 
When the value of a control on the form 204 changes, it is , create and add a ListItem for every Account in the 

previous selection collection 
Witb frmCurrentForm.lvwResults.ListItems 

.Clear 
For Each acct In m colPrevSelection 

Set item ~ .AddC acct.Number, acct.Number) 
item.SubItems(l) ~ acct.Narne 

15 necessary to reevaluate the state of the controls on the fonn 
(whether or not they are enabled/disabled or visible/invisible, 
etc.). If changing the value of one control could cause the state 
of a second control to change, an event handler is written for 
the appropriate event of the first control. 

Next 
EndWitb 20 

End Sub 

ShowForm 
The ShowFonn method simply centers and displays the 25 

newly initialized form 204. 

Public Sub ShowForm() 
, center my form 
frmCurrentForm.Move(Screen.Widtb - frmCurrentForm.Widtb) 1 

2,_ 
(Screen.Height - frmCurrentForm.Height) 

12 
, display my form 
frmCurrentForm.Show vbModal 

End Sub 

Window Control State Management 306 

It is often necessary to enable or disable controls on a fonn 
204 in response to user actions. This section describes the 
patterns employed by the Component Based Architecture for 
MTS (CBAM) to manage this process effectively. 

30 

35 

40 

The following table lists common controls and the events 
that are triggered when their value changes. 

Control Event 

TextBox Change 
ComboBox Change 
ListBox Click 
CheckBox Click 
Option Button Click 

The event handler calls the DetermineFonnState method 
on the controller 206. 

Setting the State of Controls 
It is essential for maintainability that the process of setting 

the state of controls be separate from the process for setting 
the values of those controls. The DetennineFonnState 
method on the controller 206 forces this separation between 
setting the state of controls and setting their values. 

DetennineFormState is the only method that modifies the 
state of any of the controls on the form 204. Because control 
state requirements are so complex and vary so widely, this is 
the only restriction made by the architecture framework. 

If necessary, parameters are passed to the DetennineForm-

Form Mode 
It is helpful to distinguish between form mode and fonn 

state. Form mode indicates the reason the fonn 204 has been 

45 State function to act as "hints" or "clues" for determining the 
new state of the fonn 204. For complex fonns, it is helpful to 
decompose the DetennineFonnState function into a number 
of helper functions, each handling a group of related controls 

invoked. Often, fonns 204 are used for more than one pur­
pose. A common example is the use of the same fonn to view, 50 

add, and edit a particular type of object, such as a task or a 
claim. In this case, the fonn's modes would include View, 
Add, and Update. 

The modes of a form 204 are also used to comply with 
security restrictions based on the current user's access level. 55 

For example, Task Library is a window that limits access to 
task templates based on the current user's role. It might have 
a Librarian mode and aNon-Librarian mode to reflect the fact 
that a non-librarian user cannot be allowed to edit task tem­
plates. In this way, modes help to enforce the requirement that 60 

certain controls on the form 204 remain disabled unless the 
user has a certain access level. 

It is not always necessary for a form 204 to have a mode; a 
form might be so simple that it would have only one mode­
the default mode. In this case, even though it is not immedi- 65 

ately necessary, it may be beneficial to make the fonn "mode­
aware" so that it can be easily extended should the need arise. 

on the fonn or moving the fonn 204 to a different state. 

Example 
The EditiAddlView Task Window has three modes: Edit, 

Add, and View. In Add mode, everything on the form is 
editable. Some details will stay disabled when in Edit mode, 
since they should be set only once when the task is added. In 
both Add and Edit modes, the repeat rule may be edited. 
Enabling editing of the repeat rule always disables the manual 
editing of the task's due and display dates. In View mode, 
only the Category combo box and Private checkbox are 
enabled. 

Edit! AddNiew Task Form 
Private Sub txtNarne_Change( ) 

myController.DetermineFormState 
End Sub 



US 7,617,240 B2 
17 

-continued 

Edit/AddNiew Task Controller 
Public Sub DetermineFormState( ) 

On Error Goto ErrorHandler 
Select Case m_nFormMode 

, In Edit Mode, enable only "editable" details and 
Repeat Rule editing if necessary 

Case cmFormModeEdit 
EnableAddDetails False 
EnableEditDetails True 
EnableViewDetails True 
Ifm_frmCurrentForm.chkRepetetiveTask.Checked Then 

EnableEditRepeatRule True 
EnableEditDisplayDueDates False 

Else 
EnableEditRepeatRule False 
EnableEditDisplayDueDates True 

End If 
Ifm_nFormDirty Then EnableSave True Else 

EnableSave False 
, In Add Mode, enable all details and Repeat Rule 

editing if necessary 
Case cmFormModeAdd 

EnableAddDetails True 
EnableEditDetails True 
EnableViewDetails True 
Ifm_frmCurrentForm.chkRepetetiveTask.Checked Then 

EnableEditRepeatRule True 
EnableEditDisplayDueDates False 

Else 
EnableEditRepeatRule False 
EnableEditDisplayDueDates True 

End If 
Ifm_nFormDirty Then EnableSave True Else 

EnableSave False 

details 
In View Mode, disable everything except a few 

Case cmFormModeView 
EnableAddDetails False 
EnableEditDetails False 
EnableViewDetails True 
EnableEditRepeatRule False 
EnableEditDisplayDueDates False 
EnableSave False 

Case Else 
End Select 
Exit Sub 

ErrorHandler: 
error handling 

End Sub 
Edit/AddNiew Task Controller 

Private Sub EnableAddDetails(b YesNo As Boolean) 
On Error Goto ErrorHandler 

Enable or disable controls that should be available only 
when the task is being added. 

With frmCurrentForm 
.Name.Enabled ~ bYesNo 
.Description.Enabled ~ bYesNo 
.Type.Enabled ~ bYesNo 
.Level.Enabled ~ b YesNo 
.Source.Enabled ~ bYesNo 

End With 
Exit Sub 

ErrorHandler: 
error handling logic 

End Sub 

Window Data Validation 308 

18 
prevent the user from even entering invalid data. Input mask­
ing may be done programmatically or via a special masked 
text box, however the logic is always located on the form, and 
is invoked whenever a masked field changes. 

Single-Field Range Checking 
Single-field range checking determines the validity of the 

value of one field on the form by comparing it with a set of 
valid values. Single-field range checking may be done via a 

10 combo box, spin button, or programmatically on the form, 
and is invoked whenever the range-checked field changes. 

Cross-Field Validation 
Cross-field validation compares the values of two or more 

fields to determine if a validation rule is met or broken, and 
15 occurs just before saving (or searching). Cross-field valida­

tionmay be done on the Controller 206 or the Business Object 
207, however it is preferable to place the logic on the Business 
Object 207 when the validation logic can be shared by mul-

20 
tiple Controllers 206. 

Invalid data is caught and rejected as early as possible 
during the input process. Input masking and range checking 
provide the first line of defense, followed by cross-field vali­
dation when the window saves (or searches). 

25 Single-Field Validation 
All single-field validation is accomplished via some sort of 

input masking. Masks that are attached to textboxes are used 
to validate the type or format of data being entered. Combo 
boxes and spin buttons may also be used to limit the user to 

30 valid choices. If neither of these are sufficient, a small amount 
oflogic may be placed on the form's event handler to perform 
the masking functionality, such as keeping a value below a 
certain threshold or keeping apostrophes out of a textbox. 

35 
Cross-Field Validation 

When the user clicks OK or Save, the form calls the 
IsFormDataValid on the controller to perform cross-field vali­
dation (e.g., verifying that a start date is less than an end date). 
If the business object 207 contains validation rules, the con-

40 troller 206 may call a method on the business object 207 to 
make sure those rules are not violated. 

If invalid data is detected by the controller 206, it will 
notify the user with a message box and, if possible, the indi­
cate which field or fields are in error. Under no circumstances 

45 will the window perform validation when the user is trying to 
cancel. 

50 

55 

Example 

Generic Edit Form 
Private Sub cmdOK_Click() 

On Error Goto ErrorHandler 
, shut down if my data is valid. 
, saving/canceling will occur in my controller's 

QueryUnload function 
IfIsFormDataValid Then Unload Me 
Exit Sub 

ErrorHandler: 

Window data validation is the process by which data on the 
window is examined for errors, inconsistencies, and proper 
formatting. It is important, for the sake of consistency, to 60 

implement this process similarly or identically in all windows 

Err. Raise Err.Number 
End Sub 
Public Function IsFormData Valid( ) As Boolean 

On Error Goto ErrorHandler 
assume success 

IsFormData Valid ~ True 
evaluate all validation rules 

With frmCurrentForm 

of the application. 

Types of Validation 

Input Masking 65 

Input masking is the first line of defense. It involves screen­
ing the data (usually character by character) as it is entered, to 

make sure start date is earlier than end date 
If .txtStartDate.Text >.txtEndDate.Text Then 

IsFormData Valid ~ False 



US 7,617,240 B2 
19 

-continued 

MsgBox cmMsgInvalidEndDate 
.txtEndDate.SetFocus 

EIseIf ... 
more validation rules 

End If 
End With 
Exit FlUlction 

ErrorHandler: 

20 
Shutdown 

In order to know what windows must be shut down, the 
architecture tracks which windows are open. Whenever the 
App Object 202 creates a controller 206, it calls its RegCTLR 
function to add the controller 206 to a collection of open 
controllers. Likewise, whenever a window closes, it tells the 
App Object 202 that it is closing by calling theApp Object's 
202 VnRegCTLR function, and theApp Object 202 removes 

error handling logic 
End Function 

10 the closing controller 206 from its collection. In the case of an 
error, theApp Object 202 loops through its collection of open 
controllers, telling each controller to "quiesce" or shutdown 
immediately. 

Window Save Processing 304 
15 GeneralErrorHandler 

Window "Save Processing" involves tracking changes to 
data on a form 204 and responding to save and cancel events 
initiated by the user. 

The GeneralErrorHandler is a method in MArch.bas that 
acts as the point of entry into the architecture's error handling 
mechanism. A component or a controller will call the Gen-

Tracking Changes to Fonn Data 
Each window within the CBAM application contains a 

field within its corresponding control object known as the 
dirty flag. The dirty flag is set to True whenever an end user 
modifies data within the window. This field is interrogated by 
the VI Controller 206 to determine when a user should be 
prompted on Cancel or if a remote procedure should be 
invoked upon window close. 

20 eralErrorHandler when they encounter any type of unex­
pected or unknown error. The general error handler will return 
a value indicating what the component or controller should 
do: (1) resume on the line that triggered the error (2) resume 
on the statement after the line that triggered the error (3) exit 

25 the function (4) quiesce (5) shutdown the entire application. 

The application shell provides standard processing for 
each window containing an OK or Save button. 

Saving 
The default Save processing is implemented within the VI 

Controller 206 as follows: 

30 

The VI Controller is Notified that the OK button has been 
clicked. Then the controller 206 checks its Dirty Flag. Ifflag 35 

is dirty, the controller 206 calls the InterrogateFonn method 
to retrieve data from the form 204 and calls a server compo­
nent 222 to store the business object 207 in the database. If the 
Dirty Flag is not set, then no save is necessary. The window is 
then closed. 40 

Canceling 
When the user cancels a window, the VI Controller 206 

immediately examines the Dirty Flag. If the flag is set to true, 
the user is prompted that their changes will be lost if they 45 

decide to close the window. 
Once prompted, the user can elect to continue to close the 

window and lose their changes or decide not to close and 
continue working. 

Window Shutdown Processing 310 
50 

In the event of an error, it is sometimes necessary to shut­
down a window or to tenninate the entire application. It is 
critical that all windows follow the shutdown process in order 55 

to avoid the GPFs commonly associated with tenninating 
incorrectly. Following is how the window/application is shut­
down. 

ErrorHandler: 
Selec,t Case CStr (Err. Number) 

handle a search with no result error 
Case cmErrNoClaimTreeData 

MsgBox cmMsgNoResultsQuery, vbInforruation 
frmCurrentForru.StatusBar.Panels(l) ~ 

cmNoResultsQuery 
, Sets mouse pointer back to default 
frmCurrentForru.MousePointer ~ vbDefault 

Case Else 
Dim nResumeCode As Integer 
nReswneCode = 

GeneralErrorHandler( objApp.objArch.AsMsgStruct, cmController, 

cmMethodName) 
Select Case CStr(nResumeCode) 

Case cmErrorResume 
Reswne 

Case cmErrorResumeNext 
Reswne Next 

Case cmErrorExit 
Exit Sub 

Case cmErrorQuiesce 
Quiesce 

Case Else 
objApp.Shutdown 

End Select 
End Select 

End Sub 

cmClassNarne, 

In order to prevent recursive calls the GeneralErrorHandler 
keeps a collection of controllers that are in the process of 
shutting down. If it is called twice in a row by the same 
controller 206, it is able to detect and short-circuit the loop. 
When the controller 206 finally does terminate, it calls the 

Shutdown Scope 60 VnRegisterError function to let the GeneralErrorHandler 
know that it has shut down and removed from the collection of The scope of the shutdown is as small as possible. If an 

error occurs in a controller 206 that does not affect the rest of 
the application, only that window is shut down. If an error 
occurs that threatens the entire application, there is a way to 
quickly close every open window in the application. The 65 

window shutdown strategy is able to accommodate both types 
of shutdowns. 

controllers. 

Shutdown Process 

After being told what to do by the GeneralErrorHandler, 
the controller 206 in error may try to execute the statement 
that caused the error, proceed as if nothing happened, exit the 



US 7,617,240 B2 
21 

current function, call its Quiesce function to shut itself down, 
or call the Shutdown method on the App Object 202 to shut 
the entire application down. 

Additional Standard Methods 

Searching 

22 
Approach 

ABO 207 has a method to move to each one of its different 
life cycle states. Rather than simply exposing a public vari­
able containing the life cycle state of the task, the BO exposes 
methods, such as Task.Clear( ), Task.Complete( ), and Task. 
MarkInError( ), that move the task a new state. This approach 
prevents the task from containing an invalid value for life 
cycle state, and makes it obvious what the life cycle states of 
a task are. Controllers 206 that manage search windows have a public 

method named Find<Noun>s where <Noun> is the type of 
object being searched for. This method is called in the event 
handler for the Find Now button. 

10 Example 

Saving 

Any controller 206 that manages an edit window has a 15 

public method called Save that saves changes the user makes 
to the data on the form 204. This method is called by the event 
handlers for both the Save and OK buttons (when/if the OK 
button needs to save changes before closing). 

Closing 
20 

A VB window is closed by the user in several ways: via the 
control-box in upper left comer, the X button in upper right 
comer, or the Close button. When the form closes, the only 
method that will always be called, regardless of the way in 25 

which the close was initiated, is the form's 204 QueryUnload 
event handler. 

Because of this, there cannot be a standard Close method. 
Any processing that must occur when a window closes is to be 30 

done in the QueryUnload method on the controller 206 
(which is called by the form's QueryUnload event handler). 

CTask Business Object 
Public Sub MarkInError( ) 

On Error Goto ErrorHandler 
Selec~ Case m_nLifeCycleState 

cleared 
move to error only if I've already been completed or 

Case cmTaskCompleted, cmTaskCleared 
m_nLifeCycleState ~ cmTaskinError 

otherwise, raise an error 
Case Else 

Err. Raise cmErrInvalidLifeCycleState 
End Select 
Exit Sub 

ErrorHandler: 
Err. Raise Err.Number 

End Sub 

Business Logic: Operating on Groups of Business 
Objects 

Overview 
Sometimes, a BO 207 acts as a container for a group of 

The VB statement, Unload Me, appears in the Close but­
ton's event handler to manually initiate the unloading pro­
cess. In this way, the Close button mimics the functionality of 
the control box and the X button, so that the closing process is 
handled the same way every time, regardless of how the user 
triggered the close. The OK button's event handler also 
executes the Unload Me statement, but calls the Save method 
on the controller first to save any pending changes. 

35 other BOs. This happens when performing operations involv­
ing multiple BOs. For example, to close, a claim ensures that 
it has no open supplements or tasks. There might be a method 
on the claim BO---CanClose( )-that evaluates the business 
rules restricting the closing of a claim and return true or false. 

Business Objects 

40 Another situation might involve retrieving the open tasks for 
a claim. The claim can loop through its collection of tasks, 
asking each task ifit is open and, if so, adding it to a temporary 
collection which is returned to the caller. 

Business Objects 207 are responsible for containing data, 
maintaining the integrity of that data, and exposing functions 45 

that make the data easy to manipulate. Whenever logic per­
tains to a single BO 207 it is a candidate to be placed on that 
BO. This ensures that it will not be coded once for each 
controller 206 that needs it. Following are some standard 
examples of business object logic. 50 

Business Logic: Managing Life Cycle State 

Overview 
The "state" of a business object 207 is the set of all its 

attributes. Life cycle state refers only to a single attribute (or 
a small group of attributes) that determine where the BO 207 

55 

is in its life cycle. For example, the life cycle states of a Task 
are Open, Completed, Cleared, or Error. Business objectives 60 

usually involve moving a BO toward its final state (i.e., Com­
pleted for a Task, Closed for a Supplement, etc.). 

Often, there are restrictions on a BO's movement through 
its life cycle. For example, a Task may only move to the Error 
state after first being Completed or Cleared. BOs provide a 65 

mechanism to ensure that they do not violate life cycle restric­
tions when they move from state to state. 

Example 

, Claim Business Object 
, Error handling omitted for clarity 
Public Function CanClose( ) As Boolean 

CanClose ~ HasOpenTasks( ) And HasOpenSupplements( ) 
End Function 
Publi,c Function HasOpenTasks( ) As Boolean 

assume that I have open tasks 
HasOpenTasks ~ True 

open 
, loop through all my tasks and exit if! find one that is 

Dim task As CTask 
For Each task In m_colTasks 

If task.IsOpen( ) Then Exit Function 
Nexttask 

I must not have any open tasks 
HasOpenTasks ~ False 

End Function 
Publi,c Function HasOpenSupplements( ) As Boolean 

assume that I have open supplements 
HasOpenSupplements ~ True 
, loop through all my supplements and exit if! find one 

that is open 
Dim supp As CSupplement 
For Each supp In m_colSupplements 



US 7,617,240 B2 
23 

-continued 

If supp.IsOpen( ) Then Exit Function 
Next supp 
HasOpenSupplements ~ False 

End Function 
Public Function GetOpenTasks( ) As Collection 

Dim task As CTask 
Dim colOpenTasks As Collection 
For Each task In m colTasks 

Iftask.IsOpen( ) Then colOpenTasks.Add task, task.Id 
Nexttask 
Set GetOpenTasks ~ colOpenTasks 

End Function 

Business Object Structures 

Overview 

10 

15 

When a BO 207 is added or updated, it sends all of its 
attributes down to a server component 222 to write to the 20 

database. Instead of explicitly referring to each attribute in the 
parameter list of the functions on the CCA 208 and server 
component 222, all the attributes are sent in a single variant 
array. This array is also known as a structure. 

25 
Approach 

Each editable BO 207 has a method named AsStruct that 
takes the object's member variables and puts them in a variant 
array. The CCA 208 calls this method on a BO 207 before it 
sends the BO 207 down to the server component 222 to be 30 

added or updated. The reason that this is necessary is that, 
although object references can be passed by value over the 
network, the objects themselves cannot. Only basic data types 
like Integer and String can be sent by value to a server com­
ponent 222. A VB enumeration is used to name the slots of the 35 

structure, so that the server component 222 can use a sym­
bolic name to access elements in the array instead of an index. 
Note that this is generally used only when performing adds or 
full updates on a business object 207. 

24 

-continued 

create and fill structure 
Dim vStruct(cmTaskNumOfAttributes - 1) As Variant 
vStruct(cmTaskId) ~ m_vId 
vStruct(cmTaskName) ~ m_sName 
vStruct(cmTaskPerformerId) ~ m_vPerformerId 

vStruct(cmTaskDescription) ~ m_sDescription 
AsStruct ~ vStruct 
Exit Function 

Error Handler: 
Err. Raise Err.Number 

End Function 
Public Sub FromStruct(vStructAs Variant) 

On Error Goto ErrorHandler 
check size ofvStruct 

IfUbound(vStruct) <> (cmTaskNumOfAttributes - 1) Then 
Err.Raise cmErrInvalidPararneters 

, update my values from the structure 
m_vId ~ vStruct(cmTaskId) 
m_sName ~ vStruct(cmTaskName) 
m_vPerformer.Id ~ vStruct(cmTaskPerformerId) 

m_sDescription ~ vStruct(cmTaskDescription) 
Exit Sub 

ErrorHandler: 
Err. Raise Err.Number 

End Sub 

Cloning Business Objects 

Overview 
Often a copy of a business object 207 is made. Cloning is a 

way to implement this kind of functionality by encapsulating 
the copying process in the BO 207 itself. Controllers 206 that 
need to make tentative changes to a business object 207 
simply ask the original BO 207 for a clone and make changes 
to the clone. If the user decides to save the changes, the 
controller 206 ask the original BO to update itself from the 
changes made to the clone. 

Approach 
Each BO 207 has a Clone method to return a shallow copy 

of itself. A shallow copy is a copy that doesn't include copies 
of the other objects that the BO 207 refers to, but only a copy 
of a reference to those objects. For example, to clone a task, it 

In a few cases, there is a reason to re-instantiate the BO 207 40 

on the server side. The FromStruct method does exactly the 
opposite of the AsStruct method and initializes the BO 207 
from a variant array. The size of the structure passed as a 
parameter to FromStruct is checked to increase the certainty 
that it is a valid structure. 45 does not give the clone a brand new claim object; it gives the 

clone a new reference to the existing claim 0 bj ect. Collections 
are the only exception to this rule-they are always copied 
completely since they contain references to other BOs. 

When aBO 207 contains a reference to another BO 207, the 
AsStruct method stores the primary key of the referenced BO 
207. For example, the Task structure contains a PerformerId, 
not the performer BO 207 that is referenced by the task. When 
the FromStruct method encounters the PerformerId in the 
task structure, it instantiates a new performer BO and fills in 
the ID, leaving the rest of the performer BO empty. 

Example 

CTask Business Object 
enwneration of all task attributes 

Public Enum TaskAttributes 
cmTaskId 
cmTaskNarne 

cmTaskDescription 
EndEnum 

all task attributes declarations here 
all setter and getter functions here 

Public Function AsStruct( ) As CTask 
On Error Goto ErrorHandler 

Each BO 207 also has an UpdateFromClone method to 
50 allow it "merge" a clone back in to itself by changing its 

attributes to match the changes made to the clone. 

55 

60 

65 

Example 

CTask Business Object 
Public Function Clone( ) As CTask 

On Error Goto ErrorHandler 
create clone object 

Dim tskClone As CTask 
Set tskClone ~ New CTask 

fill clone with my data 
With tskClone 

.Id~m_vId 

.Name = ffi_sNarne 

.PerformerId ~ m_vPerformerId 
Set .Performer ~ m_prfperformer 



US 7,617,240 B2 
25 

-continued 

.Description = ffi_sDescription 

End With 

Set Clone ~ tskClone 

Exit FlUlction 

ErrorHandler: 

Err. Raise Err.Number 

End Function 

Public Sub UpdateFromClone(tskClone As CTask) 

On Error Goto ErrorHandler 

10 

26 
to refresh the BO 207 passed by the first window if it knows 
that the BO 207 is baked fully enough to be used. 

CCAs 

CCAs 208 are responsible for transforming data from row 
and columns in a recordset to business objects 207, and for 
executing calls to server components 222 on behalf of con­
trollers 206. 

Retrieving Business Objects 

Overview set my values equal to the clone's values 

With tskClone 15 After asking a component to retrieve data, the CCA 208 
marshals the data returned by the component into business 
objects 207 that are used by the UI Controller 206. 

m_vld~ .ID 

ffi_sNarne = .Name 

m_vPerformerld ~ .Performerld 

Set ffi_prfPerformer = .Perfo11ller 

Approach 
The marshaling process is as follows: 

20 CCAs 208 call GetRows on the recordset to get a copy of its 
ffi_sDescription = .Description 

End With 

Exit Sub 

data in a variant array in order to release the recordset as soon 
as possible. A method exist to coordinate the marshaling of 
each recordset returned by the component. 

Only one recordset is coordinated in the marshaling pro-
ErrorHandler: 

Err. Raise Err.Number 

End Sub 

25 cess of a single method. A method exist to build a BO from a 
single row of a recordset. This method is called once for each 
row in the recordset by the marshaling coordination method. 

30 
Half-Baked Business Objects 

Overview 

BOs 207 occasionally are filled only half-full for perfor- 35 

mance reasons. This is done for queries involving multiple 
tables that return large data sets. Using half-baked BOs 207 
can be an error prone process, so it is essential that the half­
baking of BOs are carefully managed and contained. 

In most applications, there are two kinds of windows- 40 

search windows and edit/detail windows. Search windows are 
the only windows that half-bake BOs 207. Generally, half­
baking only is a problem when a detail window expecting a 
fully-baked BO receives a half-baked BO from a search win- 45 

dow. 

Approach 

Detail windows refresh the BOs 207 they are passed by the 
search windows, regardless of whether or not they were 50 

already fully-baked. This addresses the problems associated 
with passing half-baked BOs and also helps ensure that the 
BO 207 is up-to-date. 

This approach requires another type of method (besides 55 

Get, Add, Update, and Delete) on the CCA 208: a Refresh 
method. This method is very similar to a Get method (in fact, 
it calls the same method on the server component) but is 
unique because it refreshes the data in objects that are already 
created. The detail window's controller 206 calls the appro- 60 

priate CCA 208 passing the BO 207 to be refreshed, and may 
assume that, when control returns from the CCA 208, the BO 
207 will be up-to-date and fully-baked. 

This is may not be necessary if two windows are very 65 

closely related. If the first window is the only window that 
ever opens the second, it is necessary for the second window 

Example 

TaskCCA 
Public Function GetAllTasks( ) As Collection 

On Error Goto ErrorHandler 
call a helper method to retrieve tasks 

Dim v Rows As Variant 
vRows ~ RetrieveAllTasks 
Dim i As Integer 
Dim task As CTask 
Dim colTasks As Collection 
Set colTasks ~ New Collection 

vRows is dimmed as colunm, row. Loop til I nUl out of 
rows. 

For i ~ 0 To Ubound(vRows, 2) 
, build BO using helper method 
Set task ~ BuildTaskFromRow(vRows, i) 
, add to collection with ID as the key 
colTasks.Add task, task.ld 

Nexti 
Set MarshalTasks ~ colTasks 
Exit Function 

ErrorHandler: 
Err. Raise Err.Number 

End Function 
Private Function RetrieveAllTasks( ) As Variant 

On Error Goto ErrorHandler 
call my component and get a recordset full of all tasks 

Dim rs As ADOR.Recordset 
~et rs ~ tskComp.GetAllTasks( ) 

get data in variant array from the recordset 
GetAllTasks ~ rs.GetRows 

release the recordset ASAP 
rs.Close 
Set rs ~ Nothing 
Exit Function 

ErrorHandler: 
Err. Raise Err.Number 

End Function 
Private Function BuildTaskFromRow(vRows As Variant, 
nCurrentRow As Integer, _ 

CTask 
On Error Goto ErrorHandler 

create task if it wasil't passed 

Optional task As CTask) As 



US 7,617,240 B2 
27 

-continued 

If task Is Nothing Then Set task ~ New CTask 

fill task with data 
With task 

.Id ~ vRows(O, nCurrentRow) 

.Name ~ vRows(l, nCurrentRow) 

.PerformerId ~ vRows(2, nCurrentRow) 

.Description ~ vRows(32, nCurrentRow) 

End With 

Set BuildTaskFromRow ~ task 

Exit Function 

ErrorHandler: 

Err. Raise Err.Number 
End Function 

Refreshing Business Objects 

Overview 

10 

15 

20 

The logic to refresh BOs 207 is very similar to the logic to 
create them in the first place. A "refresh" method is very 25 

similar to a "get" method, but must use BOs 207 that already 
exist when carrying out the marshalling process. 

Example 

TaskCCA 
Public Sub RefreshTask(task As CTask) 

On Error Goto ErrorHandler 
call a helper method to retrieve tasks 

Dim vRow As Variant 
vRow ~ RetrieveTaskWithId(taskId) 
BuildTaskFromRow vRow, i, task 
Exit Sub 

ErrorHandler: 
Err. Raise Err.Number 

End Sub 
Private Function RetrieveTaskWithId(vId As Variant) As Variant 

On Error Goto ErrorHandler 
call my component and get a recordset full of all tasks 

Dim rs As ADOR.Recordset 
~et rs ~ tskComp.GetTaskWithId(vId) 

get data in variant array from the recordset 
RetrieveTaskWithId ~ rs.GetRows 

release the recordset ASAP 
rs.Close 

30 

35 

40 

45 

28 
Example 

TaskCCA 

Public Sub AddTask(taskAs CTask) 

On Error Goto ErrorHandler 

call component to add task passing a task structure 

Dim v IdAndTimestamp As Variant 

vIdAndTimestamp ~ tskComp.AddTask(taskAsStruct(» 

update ID and Timestamp on task 

taskId ~ vIdAndTimestamp(O) 

task TimeStamp ~ vIdAndTimestamp(l) 

Exit Sub 

ErrorHandler: 

Err. Raise Err.Number 

End Sub 

Updating Business Objects 

Overview 

The update process is very similar to the add process. The 
only difference is that the server component only returns a 
timestamp, since the BO already has an ID. 

Example 

TaskCCA 
Public Sub UpdateTask(taskAs CTask) 

On Error Goto ErrorHandler 
call component to update task passing a task structure 

Dim I TimeStamp As Long 
!TimeStamp ~ tskComp.AddTask(taskAsStruct(» 

update Timestamp on task 
task TimeStamp ~ lTimeStamp 
Exit Sub 

ErrorHandler: 
Err. Raise Err.Number 

End Sub 

Deleting Business Objects 

Deleting Overview 
Set rs ~ Nothing 
Exit Function 

ErrorHandler: 
Err. Raise Err.Number 

End Function 

Like the add and the update methods, delete methods take 
50 a business object 207 as a parameter and do not have a return 

value. The delete method does not modifY the object 207 it is 
deleting since that object will soon be discarded. 

Adding Business Objects 
Example 

55 

Overview 

Controllers 206 are responsible for creating and populating 
new BOs 207. To add aBO 207 to the database, the controller 60 

206 must call the CCA 208, passing the business object 207 to 
be added. The CCA 208 calls the AsStruct method on the BO 
207, and pass the BO structure down to the component to be 
saved. It then updates the BO 207 with the ID and timestamp 65 

generated by the server. Note the method on the CCA 208 just 
updates the BO 207. 

TaskCCA 
Public Sub DeleteTask(taskAs CTask) 

On Error Goto ErrorHandler 
call component to update task passing a the ID and 

Timestamp 
tskComp.DeleteTask taskId, task TimeStamp 
Exit Sub 

ErrorHandler: 
Err. Raise Err.Number 

End Sub 



US 7,617,240 B2 
29 

Server Component 

Server components 222 have two purposes: enforcing busi­
ness rules and carrying out data access operations. They are 
designed to avoid duplicating logic between functions. 

Designing for Reuse 

Enforcing Encapsulation 

30 
have procedure scope, each procedure can have a line labeled 
"ErrorHandler"). The ErrorHandler label is preceded by a 
Exit Sub or Exit Function statement to avoid executing the 
error handling code when there is no error. 

Errors are handled differently based on the module's level 
within the application (i.e., user interface modules are respon­
sible for displaying error messages to the user). 

All modules take advantage of technical architecture to log 
10 messages. Client modules that already have a reference to the 

architecture call the Log Manager object directly. Because 
server modules do not usually have a reference to the archi­
tecture' they use the LogMessage() global function complied 

Each server component 222 encapsulates a single database 
table or a set of closely related database tables. As much as 
possible, server components 222 select or modifY data from a 
single table. A component occasionally selects from a table 
that is "owned" or encapsulated by another component in 
order to use a join (for efficiency reasons). A server compo- 15 

nent 222 often collaborates with other server components to 
complete a business transaction. 

into each server component. 

Any errors that are raised within a server component 222 
are handled by the calling VI controller 206. This ensures that 
the user is appropriately notified of the error and that business 
errors are not translated to unhandled fatal errors. Partioning Logic between Multiple Classes 

If the component becomes very large, it is split into more 20 

than one class. When this occurs, it is divided into two 
classes---one for business rules and one for data access. The 
business rules class implements the component's interface 
and utilizes the data access class to modify data as needed. 

All unexpected errors are handled by a general error han­
dler function at the global Architecture module in order to 
always gracefully shut-down the application. 

Example 

Private Function MarkTaskInError(vMsg As Variant,_ 
vTaskId As Variant, _ 
lTimestamp As Variant, _ 
sReason As String) As Long 

with 

On Error GoTo ErrorHandler 
Const cmMethodName ~ "MarkTaskInError" 

set the SQL statement 
Dim sSQLAs String 
~SQL ~ cmSQLMarkTaskInError 

get a new timestamp 
Dim INewTimeStamp As Long 
INewTimeStamp ~ GetTimeStamp( ) 
. create and fill a collection of argnments to be merged 

the SQL by the ExecuteQuery method 
Dim colArgs As CCollection 
Set colArgs ~ New CCollection 
With colArgs 

.Add INewTimeStamp 

.Add cmDBBooleanTrue 

.Add sReason 

.Add vTaskId 

.Add lTimestamp 
End With 

run the SQL and set my return value 
ExecuteQuery vMsg, cmUpdate, sSQL, coIArguments:~coIArgs 
MarkTaskinError ~ INewTimeStamp 
. tell MTS I'm done 
GetObjectContext.SetComplete 
Exit Function 

ErrorHandler: 
do error handling here 

End Function 

Error Handling 

General Infonnation 

25 Server Component Errors 

The error handler for each service module contains a Case 
statement to check for all anticipated errors. If the error is not 

30 a recoverable error, the logic to handle it is first tell MTS 
about the error by calling GetObjectContext.SetAbort( ). 
Next, the global LogMessage( ) function is called to log the 
short description intended for level one support personnel. 
Then the LogMessage( ) function is called a second time to 

35 log the detailed description of the error for upper level support 
personnel. Finally, the error is re-raised, so that the calling 
function will know the operation failed. 

A default Case condition is coded to handle any unex-
40 pected errors. This logs the VB generated error then raises it. 

A code sample is provided below: 

Following is an example of how error handling in the task 
component is implemented when an attempt is made to reas­
sign a task to a performer that doesn't exist. Executing SQL to 

45 reassign a task to a non-existent performer generates a refer­
ential integrity violation error, which is trapped in this error 
handler: 

50 

'Class Declarations 
Private Const cmClassName ~ "CTaskComp" 

Public Sub ReassignTask( ... ) 
On Error GoTo ErrorHandler 

55 Private Const cmMethodName ~ "Reassign Task" 

60 

Private Const cmErrReassignTask = "Could not reassign 
task." 

logic to reassign a task 

GetObjectContext.SetComplete 

Exit Sub 
With the exception of "Class_Initialize", "Class_Tenni- ErrorHandler: 

nate", and methods called within an error handler, every Dim sShortDescr As String 

function or subroutine has a user defined 'On Error Go To' sShortDescr ~ cmErrReassignTask 

statement. The first line in each procedure is: On Error Go To 65 log short description as warning 

ErrorHandler. A line near the end of the procedure is given a LogMessage vMsg, Err.Number, cmSeverilyWarning, 

label "ErrorHandler". (Note that because line labels in VB 5.0 



US 7,617,240 B2 
31 

-continued 

cmClassNarne, cmMethodNarne, sShortDescr 
Dim sLongDescr As String 
Select Case Err.Number 

tried •• 

Case cmErrReflntegrilyViolation 
GetObjectContext.SetAbort 
sLongDescr = "Referential integrity violation -

& "to reassign task to a non-existant 
perf011ller. " _ 

& "Association ID: •• & sAssnld 
& "Association Type: •• & sAssnType_ 
& "Old Performer Id: •• & sOldPerformerld 
& "New Performer Id: •• & sNewPerformerld 

log long description as severe 
LogMessage vMsg, Err.Number, em Severity Severe, 

cmClassNarne, cmMethodNarne, _ 
sLongDescr 

Err. Raise Err.Number 

more error handling 

Case Else 
let architecture handle unanticipated error 

Dim nResumeCode As Integer 
nReswneCode = GeneralErrorHandler(vMsg, cmServer, 

cmClassName, cmMethodName) 

10 

15 

20 

32 
on the statement that triggered the error, resume on the next 
statement, call its Quiesce function to shut itself down, or call 
a Shutdown method on the application 0 bj ect to shutdown the 
entire application. 

No errors are raised from this level of the application, since 
controllers handle all errors. A code sample of a controller 
error handler is provided below: 

'Class Constants 

Private Const cmClassNarne As String = "<ComponentNarne>" 

Sub SubName( ) 

On Error GoTo ErrorHandler 

Const cmMethodName As String ~ "<MethodName>" 

<the procedure's code here> 

Exit Sub 

ErrorHandler: 

Select Case CStr(Err.Number) 

Case ... 
Select Case nResumeCode 

Case cmErrorResume 
Reswne 

25 'display the error to the user 

Case cmErrorResumeNext 
Reswne Next 

Case cmErrorExit 
Exit Sub 

Case Else 
GetObjectContext.Abort 
Err.Raise Err. Number 

End Select 
End Select 

End Sub 

CCAs, CCls, Business Objects, and Fonns 

All CCI's, CCA's, Business Objects, and Forms raise any 
error that is generated. A code sample is provided below: 

Sub SubName( ) 
On Error GoTo ErrorHandler 
<the procedure's code here> 

Exit Sub 
ErrorHandler: 

Err.Raise Err. Number 
End Sub 

Vser Interface Controller Errors 

30 

35 

40 

45 

50 

perform any necessary logic 
Exit Sub (or Resume, or Resume Next) 

Case Else 

Dim nResumeCode As Integer 

nResumeCode ~ GeneralErrorHandler(vMsg, 

cmController, cmClassName, cmMethodName) 

Select Case CStr(nResumeCode) 

Case cmErrorResume 

Reswne 

Case cmErrorResumeNext 

Reswne Next 

Case cmErrorExit 

Exit Sub 

Case cmErrorQuiesce 

Quiesce 

Case Else 

objApp.SHUTDOWN 

End Select 

End Select 

End Sub 

Localization 

The CBAM application is constructed so that it can be 
localized for different languages and countries with a mini-

The user interface controllers 206 handle any errors gen­
erated and passed up from the lower levels of the application. 
VI modules are responsible for handling whatever errors 
might be raised by server components 222 by displaying a 
message box to the user. 

55 mum effort or conversion. 

Any error generated in the VI' s is also displayed to the user 60 

in a dialog box. Any error initiated on the client is logged 
using the LogMessage( ) procedure. Errors initiated on the 
server will already have been logged and therefore do not 
need to be logged again. 

All unexpected errors are trapped by a general error 65 

method at the global architecture module. Depending on the 
value returned from this function, the controller may resume 

Requirements and Scope 

The CBAM architecture provides support for certain local-
ization features: 

Localizable Resource Repository; 

Flexible Vser Interface Design; 

Date Format Localization; and 

Exposure of Windows Operation System Localization Fea­
tures. 



US 7,617,240 B2 
33 34 

Localization Approach Checklist 

Supported via Supported via 
Architecture Architecture Best Practices and 

Localization Feature Service API's Asswnptions* 

Language Code 
(Locale Identifier) 
Time Zones 
Date/Time 
Name 
Telephone Numbers 
Functions to Avoid 
Weights and Measures 
Money 
Addresses/Address Hierarchies 
Menus, Icons, Labels/Identifiers 
on Windows 
MessageslDialogs 
String Functions, Sort Order and 
String Comparison 
Code Tables 
Drop-Down Lists 
Form & Correspondence 
Templates 
Online and Printed Docwnentation 
Database (DB2) 
yd Party Controls 

Miscellaneous 

,/ 
,/ 

,/ 
,/ 

Localizable Literals Repository 

,/ 

30 

,/ 

,/ 

,/ 
,/ 
,/ 

,/ 
,/ 
,/ 

,/ 

,/ 

,/ 
,/ 

,/ 

Although the Mask property can be manipulated, the 
default setting is preferably accepted (the default setting for 
Mask is "O-System Default"; it is set at design time), Accept­
ing the default system settings eliminates the need to code for 

The CBAM application has an infrastructure to support 
multiple languages, The architecture acts as a centralized 
literals repository via its Codes Table Approach, 

The Codes Tables have localization in mind, Each row in 
the codes table contains an associated language identifier, Via 
the language identifier, any given code can support values of 
any language, 

35 multiple locales (with some possible exceptions), does not 
interfere with intrinsic Visual Basic functions such as 
DateAdd, and allows dates to be fonnatted as strings for use 
inSQL 

40 
Flexible Interface 400 

Flexible user interface 400 and code makes customization 
easy, The FIG, 4 illustrates how different languages are 
repainted and recompiled, For example, both a English VI 45 

404, and a French VI 406 are easily accommodated, This 
entails minimal effort because both VIs share the same core 
code base 402, Vpdates to the VIs are merely be a superficial 
change, 

Generic graphics are used and overcrowding is avoided to 50 

create a user interface which is easy to localize, 

Data Localization 

Language localization settings affect the way dates are 55 

displayed on VIs (user interfaces), The default system display 
format is different for different Language/Countries, For 
Example: 

English (Vnited States) displays "mm/dd/yy" (e,g" "05/ 
16/98") 60 

English (Vnited Kingdom) displays "dd/mm/yy" (e,g" 
"16/05/98"), 

The present inventions VI's employ a number of third­
party date controls including Sheridan Calendar Widgets 
(from Sheridan Software) which allow developers to set pre- 65 

defined input masks for dates (via the controls' Property 
Pages; the property in this case is "Mask"), 

The test program illustrated below shows how a date using 
the English (United Kingdom) default system date format is 
reformatted to a user-defined format (in this case, a string 
constant for use with DB2 SQL statements): 

Const cmDB2DateAndTime ~ "mm-dd-yyyy-h.mm.ss" 

Private Sub cmdConvToDB2_Click( ) 

Dim sDB2Date As String 

sDB2Date ~ Format$(SSDateCombol.Date, 

cmDB2DateAndTime) 

txtDB2String. Text ~ sDB2Date 

End Sub 

Leverage Windows Operation System 

The CBAM architecture exposes interface methods on the 
RegistryService object to access locale specific values which 
are set from the control panel. 

The architecture exposes an API from the RegistryService 
object which allows access to all of the infonnation available 
in the control panel. Shown below is the signature oftheAPI: 



US 7,617,240 B2 
35 36 

GetRegionalInfo(Info As RegionalInfo) As String 
Where Regionalinfo can be any of the values in the table below: 

RegionalInfo Values 

CmLanguageld 
CmLanguageLocalized 
CmLanguageEnglish 
CmLanguageAbbr 
CmLanguageNative 
CmCountryld 
CmCountry Localized 
CmCountry English 
CmCountry Abbr 
CmCountryNative 
CmLanguageDefaultId 
CmCountry DefaultId 

CmDTDateSeparator 
CmDTTimeSeparator 
CmDTShortDateFormat 
CmLDTongDateFormat 
CmDTTimeFormat 
CmDTDateFormatOrdering 
CmDTLongDateOrdering 
CmDTTimeFormatSpecifier 
CmDTCentury FormatSpecifier 
CmDTTime WithLeadingZeros 
CmDTDayWithLeadingZeros 
CmDTMonth WithLeadingZeros 

CmDTDesignatorAM 
CmDTDesignatorPM 

cmDayLongNarneMonday 
cmDayLongNarneTuesday 
cmDay LongNarne Wednesday 
cmDayLongNarneThursday 
cmDayLongNarneFriday 
cmDayLongNarneSaturday 
cmDayLongNarneSunday 
cmDayAbbrNarneMonday 
cmDayAbbrNarneTuesday 
cmDay AbbrNarne Wednesday 
cmDayAbbrNarneThursday 
cmDayAbbrNarneFriday 

cmDayAbbrNarneSaturday 
cmDayAbbrNarneSunday 

cmMonthLongNarneJan 
cmMonthLongNarneFeb 
cmMonthLongN arneMar 
cmMonthLongN arneApr 
cmMonthLongN arneMay 
cmMonthLongN arneJun 
cmMonthLongN arneJul 
cmMonthLongN arneAug 
cmMonthLongN arneSep 
cmMonthLongN arneOct 
cmMonthLongNarneNov 
cmMonthLongN arneDec 

cmMonthAbbrNarneJan 
cmMonthAbbrNarneFeb 
cmMonthAbbrNarneMar 

cmMonthAbbrNarneApr 
cmMonthAbbrNarneMay 

cmMonthAbbrNarneJun 
cmMonthAbbrNarneJul 
cmMonthAbbrNarneAug 

cmMonthAbbrNarneSep 
cmMonthAbbrNarneOct 

cmMonthAbbrNarneNov 
cmMonthAbbrNarneDec 

Get RegionalInfo Example: 

Private Sub Commandl_Click( ) 
MsgBox "This is the language id for English: " &_ 
GetRegionalInfo(cmLanguageld) 

End Sub 

Logical Unit of Work 

30 

35 

40 

Approach 
Controllers 206 may have different levels ofLUW "aware­

ness": 
Requires New: always creates a new LUW; 
Requires: requires an LUW, and creates a new LUW only 

if one is not passed by the calling controller; 
Requires Existing: requires an LUW, but does not create a 

new LUW if one is not passed by the calling controller. Raises 
an error ifno LUW is passed; and 

Not Supported: is not capable of using an LUW. 
Controllers 206 that always require a new LUW create that 

LUW in their ArchInitClass function during initialization. 
They may choose whether or not to involve other windows in 
their LUW. Ifit is desirable for another window to be involved 

The Logical Unit of Work (LUW) pattern enables separa­
tion of concern between UI Controllers 206 and business 
logic. 

Overview 

45 in an existing LUW, the controller 206 that owns the LUW 
passes a reference to that LUW when it calls the App Object 
202 to open the second window. Controllers 206 that require 
an LUW or require an existing LUW accept the LUW as a Normally, when a user opens a window, makes changes, 

and clicks OK or Save, a server component 222 is called to 
execute a transaction that will save the user's changes to the 50 

database. Because of this, it can be said that the window 
defines the boundary of the transaction, since the transaction 
is committed when the window closes. 

The LUW pattern is useful when database transactions 
span windows. For example, a user begins editing data on one 55 

window and then, without saving, opens another window and 
begins editing data on that window, the save process involves 
multiple windows. Neither window controller 206 can man­
age the saving process, since data from both windows must be 
saved as an part of an indivisible unit of work. Instead, a LUW 60 

object is introduced to manage the saving process. 
The LUW acts as a sort of "shopping bag". When a con­

troller 206 modifies a business object 207, it puts it in the bag 
to be paid for (saved) later. It might give the bag to another 
controller 206 to finish the shopping (modify more objects), 65 

and then to a third controller who pays (asks the LUW to 
initiate the save). 

parameter in the ArchInitClass function. 
LUW s contain all the necessary logic to persist their "con­

tents"-the modified BOs 207. They handle calling methods 
on the CCA 208 and updating the BOs 207 with new IDs 
and/or timestamps. 

Architecture API Hierarchy 

Following is an overview of the architecture object model, 
including a description of each method and the parameters it 
accepts. Additional sections address the concepts behind spe­
cific areas (code caching, message logging, and data access) 
in more detail. 

Arch Object 

FIG. 5 depicts the current properties on the Arch Object 
200. 

The following are APIs located on the Arch Object 200 
which return either a retrieved or created instance of an object 
which implements the following interfaces: 



CodesMan( ) 500; 
TextMan( ) 502; 
IdMan( ) 504; 
RegMan( ) 506; 
LogMan() 508; 
ErrMan() 510; 
UserMan() 512; and 
SecurityMan( ) 514. 

AsMsgStruct( ) 

37 
US 7,617,240 B2 

38 
CheckCacheFreshness( ); 
FillControl(ctIControl, ncategory, nFillType, [nCodeSta-

tusj, 
[colAssignedCodes ]); 
FilterCodes( colAllCodes, nCodeStatus); 
GetCategoryCodes(nCategory); 
GetCodeObject(nCategory, sCode); 
GetResourceString(lStringld); 
GetServerDate( ); 

10 RefreshCache( ); 

This method on the Arch Object returns a variant structure 
to pass along a remote message. 

Remove ValidDates( sCode, coIPassedlnAssignedCodes); 
and 

SetServerDate( dtServerDate). 

Syntax: 
Public Function AsMsgStruct( ) As Variant 
End Function 

Example: 
Dim vMsgAsVariant 
vMsg ~ objArch.AsMsgStruct 

CodesMan 

15 CheckCacheFreshness() 
Checks whether the cache has expired, if so refresh. 

Syntax: 
Private Sub CheckCacheFreshness( ) 

20 End Sub 
Example: 

CheckCacheFreshness 

FillControl( ) 
25 This API is used to filllistboxes orcomboboxes with values 

The following are APIs located on the interface of the Arch 
Object 200 named CodesMan 500: 

from a list of CodeDecodes. Returns a collection for subse­
quent lookups to Code objects used to fill controls. 

Syntax: 

Public Function FillControl(ctlControl As Object, nCategory As CodeDecodeCats, 

nFillType As CodeDecodeLengths, Optional nCodeStatus As CodeDecodeFilters ~ 

em ValidCodes, Optional colAssignedCodes As CCollection) As CCollection 

End Function 

Parameters: 

ctlControl: A reference to a passed in listbox or combobox. 

nCategory: The integer based constant which classified these CodeDecodes from 

others. Several of the valid constants include: 

cmCatTaskType ~ 1 

cmCatSource 

cmCatTaskStatus 

nFillType: The attribute of the CodeDecode which you want to fill. Several of 

the valid values include: 

cmCode 

cmShortDecode 

cmLongDecode 

nCodeStatus: Optional value which filters the Code Decodes according to their 

Effective and Expiration dates. Several of the valid constants include: 

cmAllCodes Pending + Valid + Expired Codes 

cmPendingCodes Codes whose effective date is greater than the 

current date 

cmValidCodes Not Pending or Expired Codes 

colAssignedCodes: Used when filling a control which should fill and include 

assigned values. 

Example: 

'Declare an instance variable for States collection on object 

Private colStates As CCollection 

'Call FillControll API, and set local collection inst var to collection of 

codes which were used to fill the cantrall. This collection will be used for 

subsequent lookups. 

Set colStates ~ objArch.CodesMan.FillControl(frmCurrentForm.choStates, 

cmCatStates, cmLongDecode) 



US 7,617,240 B2 
39 

FilterCodes( ) 

Returns a collection of code/decodes that are filtered using 
their effective and expiration dates based on whichnCodeSta­
tus is passed from the fillcontrol method. 

Syntax: 

Private Function FilterCodes(colAllCodes As CCollection, 

nCodeStatns As CodeDecodeFilters) As CCollection 

End Function 

Parameters: 

colAllCodes: 

nCodeStatns: 

Example: 

Set colFilteredCodes ~ FilterCodes(coICodes, nCodeStatns) 

GetCategoryCodes( ) 

Returns a collection of CCode objects given a valid cat­
egory 

Syntax: 
Public Function GetCategoryCodes(nCategory As CodeDecodeCats) 
As CCollection 
End Function 

Parameters: 
nCategory: The integer based constant which classified these 
Code Decodes from others. 

Example: 
Dim colMyStates As CCollection 
Set colMyStates ~ 
o bjArch. Codes Man. GetCategoryCodes( em CatStates) 
'Below shows an example oflooking up the Code value for the 
currently selected state. 
With frmCurrentForm.cboStates 
If .Listindex > -1 Then 
Dim objCode As CCode 

Set objCode ~ coIStates(.ItemData(.ListIndex» 
sStateCode ~ objCode.Code 

End If 
End With 

GetCodeObject( ) 

Returns a valid CCode object given a specific category and 
code. 

Syntax: 

10 

40 
GetResourceString( ) 

Returns a string from the resource file given a specific 
string ID. 

Syntax: 
Private Function GetResourceString(lStringId As Long) As String 
End Function 

Parameters: 
IStringId: The id associated with the string in the resource file. 

Example: 
sMsg ~ arch.CodesMan.GetResourceString (CLng(vMessage» 

15 GetServerDate() 

20 

25 

30 

35 

Returns the date from the server. 

Syntax: 
Private Function GetServerDate( ) As Date 
End Function 

Example: 
SetServerDate CCA.GetServerDate 

RefreshCache( ) 

Refreshes all of the code obhjects in the cache. 

Syntax: 
Private Sub RefreshCache( ) 
End Sub 

Example: 
m_Cache.RefreshCache 

RemoveValidCodes( ) 

Removes all valid codes from the passed in assigned codes 
40 collection, which is used to see which codes are assigned and 

not valid. 

45 
Syntax: 

Private Sub RemoveValidCodes(sCode As String, 
colPassedinAssignedCodes As CCollection) 
End Sub 

Public Function GetCodeObject(nCategory As CodeDecodeCats, sCode As String) As 

CCode 

End Function 

Parameters: 

nCategory: The integer based constant which classified these CodeDecodes from 

others. 

sCode: A string indicating the Code attribute of the CodeDecode object. 

Example: 

frmCurrentForm.lblState ~ objArch.CodesMan.GetCodeObject(cmCatStates, 

"IL").LongDecode 



41 

-continued 

Parameters: 

sCode: Name of code 

colPassedlnAssignedCodes: Codes already in use. 

Example: 

US 7,617,240 B2 
42 

PairUpAmps( ) 
Pairs up ampersands in the passed string. 

Syntax: 
Public Function PairUpAmps(sOriginalString As String) As String 
End Function 

Parameters: 

RemoveValidCodes codCode.Code, colPassedlnAssignedCodes 
sOriginalString: string passed in by !be caller 

10 Example: 

SetServerDate( ) 

Sets the server date. 

Syntax: 
Private Sub SetServerDate(dtServerDate As Date) 
End Sub 

Parameters: 
dtServerDate: Date of Server. 

Example: 
SetServerDate CCA.GetServerDate 

TextMan 

Dim sString As String 
sString ~ objArch.TextMan.PairUpAmps("Forms&Corr") 

'expected return: sString ~ "Forms&&Corr" 

15 MergeParms () 

20 

Merges string with the passed parameters collection. 

Syntax: 
Public Function MergeParms(sString As String, colParms As 
CCollection) As String 
End Function 

Parameters: 
sOriginalString: string passed in by !be caller 
colParms As Ccollection: collection of the parameters passed in by 
!be caller 

25 Example: 
Dim sString As String 
sString ~ objArch.TextMan.MergeParms(sString, colParms) 

The following are APls located on the interface of the Arch 
Object 200 named TextMan 502. 

PairUpAposts( ); 

PairUpAmps( ); and 

MergeParms ( ). 

PairUpAposts( ) 

Pairs up apostrophes in the passed string. 

Syntax: 

30 

35 

40 

IdMan 

The following are APls located on the interface of the Arch 
Object 200 named IdMan 504: 

GetGUID( ); 
GetSequenceID( ); 
GetTimeStamp( ); 
GetTrackingNbr( ); and 
GetUniqueld( ). 

GetGUID () 

Public Function PairUpAposts(sOriginalString As String) As String 
End Function Syntax: 

Parameters: 
sOriginalString: string passed in by !be caller 

Example: 
Dim sString As String 45 

Public Function GetGUID( ) 
End Function 

Example: 
Dim vNewGuid As Variant 

sString ~ objArch.TextMan.PairUpAposts("This is Monika's string") 
'expected return: sString ~ "This is Monika"s string" 

vNewGuid ~ objArch.IdMan.GetGUID 

GetSequenceld( ) 

Syntax: 

Public Function GetSequenceld(sTemplateType As CounterName) As String 

End Function 

Parameters: 

sTemplateType: The string specifying !be template requesting a sequence id 

(i.e. cmCountFC ~ Forms & Corr) 

Example: 

frmCurrentForm.txtTemplateNumber ~ objArch.IdMan.GetSequenceld(cmCountFC) 



US 7,617,240 B2 
43 

GetTimeStamp ( ) 

Syntax: 
Public Function GetTimeStamp( ) 
End Function 

Example: 
Dim nNewTimeStamp As Long 
nNewTimeStamp ~ objArch.IdMan.GetTimeStamp 

GetTruckingNbr ( ) 

Syntax: 
Public Function GetTrackingNbr( ) 
End Function 

Example: 
Set objTechArch ~ New CTechArch 
sUniqueTrackNum ~ obj TechArch.IdMan.GetTrackingNbr 

GetUniqueld ( ) 

Syntax: 
Public Function GetUniqueld( ) 
End Function 

Example: 
Dim vUid As Variant 
vNewUid ~ objArch.IdMan.GetUniqueld 

RegMan 

10 

15 

20 

25 

44 
GetClientDSN( ) 

Syntax: 
Public Function GetClientDSN( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetClientDSN 

GetComputerName( ) 

Syntax: 
Public Function GetComputerName( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.CetComputerName 

GetDefaultAndValidate( ) 

Syntax: 
Private Function GetDefaultAndValidate(sKey As String) As String 
End Function 

Parameters: 
sKey: The key within the registry of which the user is requesting (i.e.: 

30 Help Path) 
Example: 

Dim sDefault As String 
sDefault ~ objArch.RegMan.GetDefaultAndValidate (sKey) 

The following are APIs located on the interface of the Arch 35 
GetFCArchiveDirectory( ) Object 200 named RegMan 506: 

GetCacheLife( ); 
GetClientDSN( ); 
GetComputerName( ); 
GetDefaultAndValidate( ); 
GetFCArchiveDirectory( ); 
GetFCDistributionDirectory( ); 
GetFCMasterDirectory( ); 
GetFCUserDirectory( ); 
GetFCWorkingDirectory( ); 
GetHelpPath( ); 
GetLocalInfo( ); 
GetLogLevel( ); 
GetRegionalInfo( ); 
GetRegValue( ); 
GetServerDSN( ); 
GetSetting( ); 
GetTimerLogLevel( ); 
GetTimerLogPath( ); and 
GetUseLocalCodes( ). 

GetCacheLife( ) 

Syntax: 
Public Function GetCacheLife( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetCacheLife 

40 

45 

50 

55 

60 

65 

Syntax: 
Public Function GetFCArchiveDirectory( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetFCArchiveDirectory 

GetFCDistributionDirectory( ) 

Syntax: 
Public Function GetFCDistributionDirectory( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetFCDistributionDirectory 

GetFCMasterDirectory( ) 

Syntax: 
Public Function GetFCMasterDirectory( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetFCMasterDirectory 



US 7,617,240 B2 
45 

GetFCUserDirectory( ) 

Syntax: 
Public Function GetFCUserDirectory( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetFCUserDirectory 

GetFCWorkingDirectory( ) 

Syntax: 
Public Function GetFCWorkingDirectory( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetFCWorkingDirectory 

GetHelpPath( ) 

Syntax: 
Public Function GetHelpPath( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetHelpPath 

GetLocalInfo( ) 

Syntax: 
Public Function GetLocalInfo( ) As String 
End Function 

Example: 

10 

15 

20 

25 

30 

35 

46 

-continued 

cmLanguageAbbr ~ &H3 

cmLanguageNative ~ &H4 

Example: 

Dim s As String 

s ~ objArch.RegMan.GetRegionalInfo 

GetRegValue( ) 

Syntax: 

abbreviated language name 

native name of language 

Public Function GetRegValue( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetRegValue 

GetServerDSN( ) 

Syntax: 
Public Function GetServerDSN( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetServerDSN 

GetSetting( ) 

Get setting from the registry. 

Syntax: 
Public Function GetSetting(sKey As String) As String 
End Function 

Dim s As String 
s ~ objArch.RegMan.GetLocalinfo 

40 Parameters: 

GetLogLevel( ) 

Syntax: 
Public Function GetLogLevel( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetLogLevel 

GetRegionalInfo( ) 

45 

50 

Allows access to all locale specific values which are set 55 

from control panel. 

Syntax: 
Public Function GetRegionalInfo(Info As RegionalInfo) As String 
End Function 

Parameters: 
Info: string containing the regional info11llatioll. Several of the valid 
constants include: 

cmLanguageJd ~ &Hl 
cmLanguageLocalized ~ &H2 
cmLanguageEnglish ~ &H1001 

language id 
localized name of language 
English name of language 

60 

65 

sKey: The key within the registry of which the user is requesting (i.e.: 
Help Path) 

Parameters: 
GetHelpPath ~ GetSetting(cmRegHelpPathKey) 

GetTimerLogLevel( ) 

Syntax: 
Public Function GetTimerLogLevel( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetTimerLogLevel 

GetTimerLogPath( ) 

Syntax: 
Public Function GetTimerLogPath( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetTimerLogPath 



US 7,617,240 B2 
47 

GetUseLocalCodes( ) 

Syntax: 
Public Function GetUseLocalCodes( ) As String 
End Function 

Example: 
Dim s As String 
s ~ objArch.RegMan.GetUseLocaICodes 

48 

Syntax: 
Private Sub WriteToDatabase(vMsg As Variant, msgToLog As 
CMessage) 
End Sub 

Parameters: 
vMsg: the standard architecture message 
msgToLog: a parameter containing the text of the message. 

Example: 
10 IfmsgToLog.IsLoggableAtLevel(m_LocaILogLevel) Then 

LPSTRToVBString( ) 
Extracts a VB string from a buffer containing a null termi­

nated string. 

WriteToDatabase vMsg, msgToLog 
End If 

15 WriteToLocalLog ( ) 

Syntax: 
Private Function LPSTRToVBString$(ByVal s$) 
End Function 

LogMan 

20 

The following are APls located on the interface of the Arch 25 

Object 200 named LogMan 508: 
LogMessage ( ); 
WriteToDatabase( ); and 
WriteToLocalLog( ). 

LogMessage ( ) 
Used to log the message. This function will determine 

where the message should be logged, if at all, based on its 
severity and the vMsg's log level. 

Syntax: 
Public Sub LogMessage(vMsg As Variant, _ 

ISeverity As Long, _ 

End Sub 
Parameters: 

sClassName As String, _ 
sMethodName As String,_ 
sVersion As String, _ 
lErrorNum As Long, _ 
Optional sText As String ~ vbNullString) 

vMsg: the standard architecture message 
ISeverity: the severity of the message 

30 

35 

40 

45 

Used to log the message to either a flat file, in the case of 
Windows 95, or the NT Event Log, in the case of Windows 
NT. 

Syntax: 
Private Sub WriteToLocalLog(msgToLog As CMessage) 
End Sub 

Parameters: 
msgToLog: a parameter containing the text of the message. 

Example: 
ErrorHandler: 

WriteToLocalLog msgToLog 
End Sub 

ErrMan 

The following are APls located on the interface of the Arch 
Object 200 named ErrMan 510: 

HandleError( ); 
RaiseOriginal( ); 
ResetError(); and 
Update( ). 

HandleError( ) 
This method is passed through to the general error handler 

in MArch. bas 

Syntax: 
Public Function HandleError(vMsg As Variant, nCompType As 
CompType, sClassName As String, sMethodname As String) 
As ErrResumeCodes 

sClassName: the name of the class logging the message 
sMethodName: the name of the method logging the message 
sVersion: the version of the binary file (EXE or DLL) that contains 
the method logging message 
lErrorNwn: the nwnber of the current error 

End Sub 
50 Parameters: 

sText: an optional parameter containing the text of the message. 
If omitted, the text will be looked up in a string file or the generic 
VB error description will be used 

Example: 
If Err.Number <> 0 Then 

, log message 
Arch.LogMan.LogMessage(vMsg, cmSeverityFatal, 
"COrganizationCTLR", 

"InitForm", 
GetVersion( ), Err.Number, Err. Description) 

, re-raise the error 
Err. Raise Err.Number 

End If 

WriteToDatabase ( ) 

55 

60 

Used to log the message to the database on the server using 65 

the CLoggingComp. This functionretums the Trackingld that 
is generated by the CLoggingObject. 

vMsg: General Architecture Information 
nCompType: Contains tier information (Client or Server) 
sClassNarne: Class which raised the error. 
sMethodName: Method which raised the error. 

RaiseOriginal( ) 
This method is used to Reset the error object and raise. 

Syntax: 
Public Sub RaiseOriginal( ) 
End Sub 

Example: 
objArch.ErrMan.RaiseOriginal 



US 7,617,240 B2 
49 

ResetError( ) 
This method is used to reset attributes. 

Update( ) 

Syntax: 
Public Sub ResetError( ) 
End Sub 

Example: 
objArch.ErrMan.ResetError 

This method is used to update attributes to the values of 
YBs global Error object. 

Syntax: 
Public Sub Update( ) 
End Sub 

10 

15 

50 

-continued 

Example: 
Dim sLName As String 
sLName ~ objArch.UserMan.EmployeeLastName 

EmployeeMiddlelnitial( ) 
Syntax: 

Public Property Get EmployeeMiddleinitial( ) As String 
End Property 

Example: 
Dim sMI As String 
sMI ~ objArch.UserMan.EmployeeMiddlelnitial 

GetAuthorizedEmployees( ) 
Creates a collection of user's supervisees from the dictio­

nary and returns GetAuthorizedEmployees---collection of 
authorized employees 

Example: 20 
Syntax: o bjArch.ErrMan. Update 

UserMan 

The following are APls located on the interface of the Arch 
Object 200 named UserMan 512. 

UserId; 
Employeeld; 
EmployeeName; 
EmployeeFirstName; 
EmployeeLastName; 
EmployeeMiddlelnitial; 
GetAuthorizedEmployees; 
IsSuperOf ( ); 
IsRelativeOf(); and 
IsInRole( ). 

Userld( ) 
Syntax: 

Public Property Get Userld( ) As String 
End Property 

Example: 
Dim sNewtserld As String 
sNewUserld ~ objArch.UseMan.Userld 

Employeeld( ) 
Syntax: 

Public Property Get Employeeld( ) As String 
End Property 

Example: 
Dim sNewEmployeeldAs String 
sNewEmployeeld ~ objArch.UserMan. Employeeld 

EmployeeName( ) 
Syntax: 

Public Property Get EmployeeName( ) As String 
End Property 

Example: 
Dim sNameAs String 
sName ~ objArch.UserMan.EmployeeName 

EmployeeFirstName( ) 
Syntax: 

Public Property Get EmployeeFirstName( ) As String 
End Property 

Example: 
Dim sFNameAs String 
sFName ~ objArch.UserMan.EmployeeFirstName 

EmployeeLastName( ) 
Syntax: 

Public Property Get EmployeeLastName( ) As String 
End Property 

25 

30 

Public Function GetAuthorizedEmployees( ) As Collection 
End Function 

Example: 
Dim colAuthAs Collection 
colAuth ~ objArch.UserMan.GetAuthorizedEmployees 

IsSuperOf ( ) 
Checks if the current user is supervisor of the passed in 

user. 

Syntax: 
Public Function IsSuperOf(sEmpld As String) As Boolean 
End Function 

35 Parameters: 

40 

45 

sEmpld: string containing Employee ID number 
Example: 

Dim bIsSuperOfMonika As Boolean 
bIsSuperOfMonika ~ objArch.UserMan.IsSuperOf("TSOI2345") 

IsRelativeOf ( ) 
Checks if the passed in user is relative of the current user. 

Syntax: 
Public Function IsRelativeOf(sEmpld As String) As Boolean 
End Function 

Parameters: 
sEmpld: string containing Employee ID number 

50 Example: 
Dim bIsRelativeOfMonikaAs Boolean 
bIsRelativeOfMonika ~ objArch.UserMan.IsRelativeOf("TSOI2345") 

55 IsInRole ( ) 

60 

65 

Checks to see if the current user is in a certain role. 

Syntax: 
Public Function IsinRole(sRole As String) As Boolean 
End Function 

Parameters: 
sRole: string containing role 

Example: 
Dim bIslnRoleTaskLibrarian As Boolean 
bIslnRoleTaskLibrarian ~ objArch.UserMan.IslnRole("TA") 



US 7,617,240 B2 
51 

SecurityMan 

The following APIs are located on the interface of the Arch 
Object 200 named SecurityMan 514. 

EvalClaimRules; 
EvalFileNoteRules; 
EvalFormsCorrRules; 
EvalOrgRules; 
EvalRunApplicationRules; 

52 

-continued 

Example: 
Select Case IOperation 
Case cmMaintainFormsColT 

IsOperAuthorized ~ EvaIFormsCorrRules(cmEdit) And_ 

EvaIFomsCorrRules(cmDelete) And_ 

EvaIFomsCorrRules(cmAdd) 

EvalRunEventProcRules; 10 

EvalTaskTemplateRules; 
EvalU serProfilesRules; 
IsOperAuthorized; 
GetUserId; and 

EvalOrgRules () 

This API references business rules for Event Processor 
security checking and returns a boolean if rules are met. 

OverrideUser. 15 

EvalClaimrules ( ) 
This API references business rules for claim security 

checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalClaimRules(lBasicOp As cmBasicOperations, 
vContextDataAs Variant) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 
vContextData: a variant array holding relevant business objects 
or other info11llatioll. 

Example: 
Select Case IOperation 
Case cmWorkOnClaim 

IsOperAuthorized ~ EvaIClaimRules(cmView, 
vContextData) And_ 
EvaIClaimRules(cmEdit, 
vContextData) 

EvalFileNoteRules () 
This API references business rules for FileNote security 

checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalFileNoteRules(lBasicOp As cmBasicOperations, 
vContextDataAs Variant) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 
vContextData: a variant array holding relevant business 
objects or other info11llatioll. 

Example: 
Select Case IOperation 
Case cmDeleteFileNote 

IsOperAuthorized ~ EvaIFileNoteRules(cmDelete, 
vContextData) 

EvalFormsCorrRules () 
This API references business rules for Forms and Corr 

security checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalFormsCorrRules(lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 

20 

25 

Syntax: 
Private Function EvalOrgRules(lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 

Example: 
Select Case IOperation 
Case cmMaintainOrg 

IsOperAuthorized ~ EvaIOrgRules(cmAdd) And_ 
EvaIOrgRules(cmEdit) And_ 
EvalOrgRules (cmDelete) 

30 EvalRunApplicationRules ( ) 

35 

40 

45 

This API references business rules for running the appli­
cation and returns a boolean if rules are met. 

Syntax: 
Private Function EvalRunApplicationRules(lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 

Example: 
Select Case IOperation 

Case cmRunApplication 
IsOperAuthorized ~ EvalRunApplicationRules( cmExecute) 

EvalRunEventProcRules ( ) 

This API references business rules for Event Processor 
50 security checking and returns a boolean if rules are met. 

55 

60 

Syntax: 
Private Function EvalRunEventProcRules(lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 

Example: 
Select Case IOperation 
Case cmRunEventProcessor 

IsOperAuthorized ~ EvalRunEventProcRules( cmExecute) 

65 EvaITaskTemplateRules ( ) 

This API references business rules for Task Template secu­
rity checking and returns a boolean if rules are met. 



US 7,617,240 B2 
53 

Syntax: 
Private Function EvalTaskTemplateRules(lBasicOp As 
cmBasicOperations) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 

Example: 
Select Case IOperation 
Case cmMaintainTaskLibrary 

IsOperAuthorized ~ EvalTaskTemplateRules(cmAdd) 
And 

EvalTaskTemplateRules(cmEdit) And_ 
Eval TaskTemplateRules( cmDelete) 

EvalUserProfileRules () 
This API references business rules for Task Template secu­

rity checking and returns a boolean if rules are met. 

Syntax: 
Private Function EvalUserProfileRules(lBasicOp As 
cmBasicOperations, vContextData As Variant) As Boolean 
End Function 

Parameters: 
IBasicOp: a basic operation the current user is wishing to perform 
(i.e. Delete) 
vContextData: a variant array holding relevant business objects or 
other information. 

Example: 
Select Case IOperation 
Case cmIsRelativeOf 

IsOperAuthorized ~ EvalUserProfileRules(cmView, 
vContextData) And_ 
EvalUserProfileRules(cmAdd, 
vContextData) And_ 
EvalUserProfileRules(cmEdit, 
vContextData) And_ 
EvalUserProfileRules(cmDelete, 
vContextData) 

GetUserId () 
Returns the login name/user id of the current user. 

Syntax: 
Public Function GetUserld( ) As String 
End Function 

Example: 
Dim sUserld as String 
sUserld ~ GetUserld 

IsOperAuthorized ( ) 
This API references business rules and returns a boolean 

determining whether the user has security privileges to per­
form a certain operation. 

Syntax: 
Public Function IsOperAuthorized(vMsg, as variant, nOperation 
as cmOperations, vContext As Variant) As Boolean 
End Function 

Parameters: 
vMsg: the standard architecture message 
nOperation: an enwneration containing name of operation to be 
checked. 
vcontext: a variant array holding relevant business objects or other 
information. 

54 

-continued 

Example: 
Dim bCanIDo This As Boolean 
bCanIDoThis ~ objArch.SecurilyMan.IsOperAuthorized(vMsg, 
aOperationName, vcontext) 
TlbEditIcon.Enabled ~ bCanIDoThis 

10 OverrideUser () 

15 

20 

25 

30 

Re-initializes for a different user. 

Syntax: 
Public Sub OverrideUser(Optional sUserld As String, Optional 
dictRoles As CDictionary, Optional dictSubs As CDictionary) 
End Function 

Parameters: 
sUserld: 
dictRoles: 
dictSubs: 

Example: 
Dim xAs New CTechArch 

x.SecurityMan.OverrideUser "Everyone", New CDictionary, 
New CDictionary 

Codes Framework 

General Requirements 

Separate tables (CodesDecodes) are Created for storing the 
static values. 

Only the references to codes/decodes are stored in business 
tables (e.g., Task) which utilize these values. This minimizes 
the size of the business tables, since storing a Code value 

35 takes much less storage space than its corresponding Decode 
value (e.g., For State, "AL" is stored in each table row instead 
of the string "Alabama"). 

CodeDecodes are stored locally on the client workstation 
in a local DBMS. On Application startup, a procedure to 

40 ensure the local tables are in sync with the central DBMS is 
performed. 

45 

Infrastructure Approach 

The present invention's Code Decode Infrastructure 600 
Approach outlines the method of physically modeling codes 
tables. The model allows codes to be extended with no impact 
to the physical data model and/or application and architec­
ture. FIG. 6 shows the physical layout of Code Decode tables 

50 according to one embodiment of the present invention. 

Infrastructure 
The physical model of the CodeDecode infrastructure 600 

does the following: 
55 Supports relational functionality between CodeDecode 

objects; 
Supports extensibility without modification to the DBMS 

or Application Architecture; 
Provides a consistent approach for accessing all CodeDe-

60 code elements; and 
Is easily maintainable. 
These generic tables are able to handle new categories, and 

modification of relationships without a need to change the 
DBMS or CodeDecode Application Architecture. 

65 Benefits of this model are extensibility and maintainability. 
This model allows for the modifications of code categories 
without any impact to the DBMS or the Application Archi-



US 7,617,240 B2 
55 

tecture code. This model also requires fewer tables to main­
tain. In addition, only one method is necessary to access 
CodeDecodes. 

Table Relationships and Field Descriptions: 
(Pk) indicates a Primary Key 

Code_Category 602 
C_Category (Pk): The category number for a group of 

codes 
C_ Cache (currently not utilized): Can indicate whether the 

category should be cached in memory on the client 
machine 

10 

56 
T_Long_Desc: A full-length textual description of 

C_Code-what the user will actually see (e.g., Close 
Supplement-Recovery, File Note, Workers Compensa­
tion) 

Localization Support Approach 

Enabling Localization 

Codes have support for multiple languages. The key to this 
feature is storing a language identifier along with each Cod­
eDecode value. This Language field makes up a part of the 
compound key of the Code_Decode table. Each Code API 
lookup includes a system level call to retrieve the Language T_ Category: A text description of the category (e.g., Appli­

cation Task Types, claim Status, Days of Week) 
D_Last_Vpdate: The date any data within the given cat­

egory was last updated; this field is used in detennining 
whether to update a category or categories on the local 
data base 

15 system variable. This value is used as part of the call to 
retrieve the values given the correct language. 

Relationships 

A one-to-many relationship with the table Code (i.e., one 
category can have multiple codes) 

Code 604 

20 

C_Category (Pk): The category number for a group of 25 

codes 

Maintaining Language Localization Setting 

A link to the Language system environment variable to the 
language keys is stored on each CodeDecode. This value is 
modified at any time by the user simply by editing the 
regional settings Vser Interface available in the Microsoft 
Windows Control Panel folder. 

Codes Expiration Approach 

Handling Time Sensitive Codes becomes an issue when 
filling controls with a list of values. One objective is to only 

C_Code (Pk): A brief code identifier (up to ten characters; 
the current maximum length being used is five charac­
ters) 

D_Effective: A date field indicating the code's effective 
date 

D _Expiration: A date field indicating the code's expiration 
date (the default is Jan. 1,2999) 

30 allow the user to view and select appropriate entries. The 
challenge lies in being able to expire Codes without adversely 
affecting the application. To achieve this, consideration is 
given to how each VI will decide which values are appropriate 
to show to the user given its current mode. 

35 Relationships 

A many-to-one relationship with Code_Category 602 (de­
scribed above) 

A one-to-many relationship with Code_Relations 606 (a 
given category-and-code combination can be related to 40 

multiple other category-and-code combinations) 

Code_Relations 606 

C_Categoryl (Pk): The first category 

C_Codel (pk): The first code 

C_Category2 (Pk): The related category 
C_Code2 (pk): The related code 

Relationships 

45 

A many-to-one relationship with the Code table (each cat- 50 

egory and code in the Code table can have multiple 
related category-code combinations) 

The three most common VI modes that affect time sensi-
tive codes are Add Mode, View Mode, and Edit Mode. 

Add Mode 

In Add Mode, typically only valid codes are displayed to 
the user as selection options. Note that the constant, cm Valid­
Codes, is the default and will still work the same even when 
this optional parameter is omitted. 

Set eoIStates ~ objAreh.CodesMan.FillControI(frmCurrentForm.eboStates, 
cmCatStates, 

emLongDeeode, em ValidCodes) 

View Mode 

In View Mode, the user is typically viewing results of 
Code_Decode 608 historical data without direct ability to edit. Editing selected 

C_Category (Pk): The category number for a group of historical data launches another VI. Given this the controls 
codes 55 are filled with valid and expired codes, or in other words, 

C_Code (Pk): A brief code identifier (up to ten characters; non-pending codes. 
the current maximum length being used is five charac-
ters) 

N_Lang_ID (pk): A value indicating the local language 
setting (as defined in a given machine's Regional Set­
tings). For example, the value for English (United 
States) is stored as 0409. Vse of this setting allows for 
the storage and selection of text code descriptions based 
on the language chosen 

T_Short_Desc: An abbreviated textual description of 
C_Code 

60 Set eoIStates ~ objAreh.CodesMan.FillControI(frmCurrentForm.eboStates, 
cmCatStates, 

emLongDeeode, emNonPendingCodes) 

65 Edit Mode 
In Edit Mode, changes are allowed to valid codes but also 

expired codes are displayed if already assigned to the entity. 



57 

Dim colAssignedCodes As New cCollection 
colAssignedCodes.Add HistoricalAddress.State 

US 7,617,240 B2 
58 

FillControl(ctIControl, ncategory, nFillType, [nCodeSta­
tusj, 

[colAssignedCodes D. 

Set colStates ~ objArch.CodesMan.FillControl(frmCurrentForrn.cboStates, 
em CatStates, 

GetCodeObject: Returns a valid CCode object given a 
specific category and code. 

cmLongDecode, em ValidCodes, colAssignedCodes) 

Syntax: 

Updating Local CodeDecodes 
GetCodeObject(nCategory, sCode) 

10 Parameters: 

The Local CodeDecode tables are kept in sync with central 
storage of Code Decodes. The architecture is responsible for 
making a check to see if there are any new or updated code 
decodes from the server on a regular basis. The architecture 15 

also, upon detection of new or modified CodeDecode catego­
ries, returns the associated data, and performs an update to the 
local database. FIG. 7 is a logic diagram for this process 700. 

nCategory: The integer based constant which classified these 
Code Decodes from others. 
sCode: A string indicating the Code attribute of the CodeDecode 
object. 

Example: 
frmCurrentForm.lblstate ~ objArch.CodesMan.GetCodeObject 

(cmCatStates, "IL") .LongDecode 

GetCategoryCodes: Returns a collection ofCCode objects 
given a valid category After an API call, a check is made to determine if the Arch 

20 is initialized 702. If it is a check is made to determine if the 
Freshness Interval has expired 704. If the Freshness Interval 
has not expired, the API call is complete 706. However, if 
either the Arch is not initialized or the Freshness Interval has 
expired, then the "LastUpdate" fields for each category are 
read from the CodeDecode and passed to the server 708. Then 25 

new and updated catagories are read from the database 710. 
Finally the Local database is updated 712. 

Syntax: 
GetCategoryCodes( nCategory) 

Parameters: 
nCategory: The integer based constant which classified these 
Code Decodes from others. 

Example: 
Dim colMyStates As CCollection 

Code Access APIs 
Set colMyStates ~ objArch.CodesMan.GetCategory(cmCatStates) 

30 

The following are APIs located on the interface of the Arch 
Object 200 named CodesMan 500. 

FillControl: This API is used to filllistboxes or combob­
oxes with values from a list of Code Decodes. Returns a col­
lection for subsequent lookups to Code objects used to fill 
controls. 

GetCodeObject(nCategory, sCode); 
GetCategoryCodes(nCategory); 

Syntax: 
FillControl(ctlControl, nCategory, nFillType, [nCodeStatus], [coIAssignedCodes]) 

Parameters: 
ctlControl: A reference to a passed in listbox or combo box. 
nCategory: The integer based constant which classified these CodeDecodes 
from others. 
nFillType: The attribute of the CodeDecode which you want to fill. Valid 
values include: 

cmCode 
cmShortDecode 
cmLongDecode 

nCodeStatus: Optional value which filters the Code Decodes according to 
their Effective and Expiration dates. Valid constants include the following: 

cmAllCodes Pending + Valid + Expired Codes 
cmPendingCodes Codes whose effective date is greater than the 

current date 
em ValidCodes Not Pending or Expired Codes 
cmExpiredCodes Codes whose expired date is greater than the current 

date 
cmNonPendingCodes Valid + Expired Codes 
cmNonValidCodes Pending + Expired Codes 
cmNonExpiredCodes Pending + Valid Codes 

colAssignedCodes: Used when filling a control which should fill and 
include assigned values. 

Example: 
'Declare an instance variable for States collection on object 
Private colStates As CCollection 
'Call FillControl API, and set local collection inst var to collection of codes 
which were used to fill the control. This collection will be used for 
subsequent lookups. 
Set col States ~ objArch.CodesMan.FillControl(frmCurrentForrn.cboStates, 
cmCatStates, cmLongDecode) 
'Below shows an example of looking up the Code value for the currently selected 
state. 
With frmCurrentForm.cboStates 



US 7,617,240 B2 

If .Listindex > -1 Then 
Dim objCode As CCode 

59 

-continued 

Set objCode ~ coIStates(.ItemData(.ListIndex» 
sStateCode ~ objCode.Code 

End If 
End With 

Relational Codes Access APIs 
10 

Code objects returned via the "GetCodeObject" or "Get­
CategoryCodes" APIs can have relations to other code 
objects. This allows for functionality in which codes are 15 

associated to other individual code objects. 
The APIs used to retrieve these values are similar to those 

on the CodesMan interface. The difference, however is that 
the methods are called on the Codes object rather that the 
CodesManager interface: Listed below again are the APIs. 

GetCodeObject(nCategory, sCode); 
GetCategoryCodes(nCategory); 
FillControl(ctIControl, nCategory, nFillType, [nCodeSta­

tus], 

20 

60 

logged for the purpose of debugging have a severity of Infor­
mational, so as not to be confused with legitimate error mes­
sages. 

Usage 

A message is logged by calling the LogMessage() function 
on the architecture. 

Description of Parameters: 
vMsg: the standard architecture message 
lSeverity: the severity of the message 
sClassName: the name of the class logging the message 
sMethodName: the name of the method logging the mes-

[colAssignedCodes D. 25 sage 
Given below is some sample code to illustrate how these 

APIs are also called on Code objects. 

GetCodeObject Example: 
Dim objBondCode As CCode 

sVersion: the version of the binary file (EXE or DLL) that 
contains the method logging the message 

Set objBondCode ~ objArch.CodesMan.GetCodeObject(cmCatLOB, "B") 
Dim objSuretyCode As CCode 
Set objSuretyCode ~ objBondCode.GetCodeObject(cmCatSupplement, "BOl") 

GetCategory Example: 
Dim objBondCode As CCode 
Set objBondCode ~ objArch.CodesMan.GetCodeObject(cmCatLOB, "B") 
Dim colSupplements As CCollection 
Set col Supplements ~ objBondCode.GetCategory(cmCatSupplement) 

FillControl Example: 
Dim objBondCode As CCode 
Set objBondCode ~ objArch.CodesMan.GetCodeObject(cmCatLOB, "B") 
Dim colSupplements As CCollection 
Set col Supplements ~ objBondCode.FillControl(frmForm.cboSupplements, 

cmCatSupplements, 
cmLongDecode) 

Message Logging 50 

The message logging architecture allows message logging 
in a safe and consistent marmer. The interface to the message 
logging component is simple and consistent, allowing mes­
sage logging on any processing tier. Both error and informa- 55 

tional messages are logged to a centralized repository. 

IErrorNum: the number of the current error 

sText: an optional parameter containing the text of the 
message. If omitted, the text will be looked up in a string file 
or the generic VB error description will be used. 

sText: an optional parameter containing the text of the 
message. If omitted, the text will be looked up in a string file 
or the generic VB error description will be used. Abstracting the message logging approach allows the 

implementation to change without breaking existing code. 

Best Practices 

lLoggingOptions: an optional parameter containing a con­
stant specifying where to log the message (i.e., passing 

60 cmLogToDBAndEventViewer to LogMessage will log the 
error to the database and the event viewer.) 

Messages are always logged by the architecture when an 
unrecoverable error occurs (i.e., the network goes down) and 
it is not explicitly handled. Message logging may be used on 
an as-needed basis to facilitate the diagnosis and fixing of 65 

SIRs. This sort of logging is especially useful at points of 
integration between classes and components. Messages 

Logging Levels 

Before a message is logged, its severity is compared to the 
log level of the current machine. If the severity of the message 
is less than or equal to the log level, then the message is 
logged. 



US 7,617,240 B2 
61 62 

Value Name Description Example 

0 CmFatal A critical condition that closes or Application Server 
threatens the entire system crash 

CmSevere A condition that closes or threatens a Network failure 
major component of the entire system 

2 CmWaming A warning that something in the system Optimistic locking 
is wrong but it does not close or error 
threaten to close the system 

CmInformational Notification of a particular occurrence Developer debugging 
for logging and audit purposes information 

Example 

If Err.Number <> 0 Then 

log message 
Arch.LogMan.LogMessage(vMsg, 

cmSeverityFatal, "COrganizationCTLR", 

"InitForm", 

End If 

GetVersion( ), Err.Number, Err. Description) 

re-raise the error 

Err. Raise Err.Number 

Database Log 

The database log table is composed of the following fields: 

Field Name Description 

N_MSG_ID Unique ID of the message 
D MSG Date the message occurred 
C_ERR_SEV Severity of the error 
N_USER_ID Name of user when error occurred 
N_MACH ID Name of the machine that the error occurred on 
M CLASS Name of the class that the error occurred in 
M METHOD Name of the method that the error occurred in 
N_CMPNT_ VER Version of the binary file that the error occurred in 
C_ERR Number of the error 
T MSG Text of the message 

Local Log 

15 text "The VB Application identified by ... Logged:" is auto­
matically added by VB; the text that follows contains the 
details of the message. 

20 

25 

Data Access 

All but a few exceptional cases use the "ExecuteQuery" 
API. This API covers singular database operations in which 
there exists a single input and a single output. Essentially 
should only exclude certain batch type operations. 

The Data Access Framework serves the purposes of per­
formance, consistency, and maintainability. 

Performance 
The "ExecuteQuery" method incorporates usage patterns 

30 for using ADO in an efficient manner. Examples of these 
patterns include utilization of disconnected recordsets, and 
explicitly declaring optional parameters which result in the 
best performance. 

35 Consistency 
This method provides a common interface for development 

of data access. Given a simple and stable data access inter­
face, best practices can be developed and disseminated. 

40 Maintainability 
Since the method is located in a single location, it is very 

modularized and can be maintained with little impact to its 
callers. 

Application servers often use the ActiveX Data Objects 
45 (ADO) data access interface. This allows for a simplified 

programming model as well as enabling the embodiments to 
utilize a variety of data sources. 

The "ExecuteQuery" Method 
50 

Messages are always logged to the application server's 
Event Log; however this is not necessarily true for the data­
base as noted by the optional parameter passed to LogMes­
sage, lLoggingOptions. An administrator with the appropri- 55 

ate access rights can connect to the MTS application server 
remotely and view its Event Log. Only one MTS package 
contains the Event Log Component, so that errors will all be 
written to the same application server Event Log. 

Overview 
The "ExecuteQuery" method should be used for most 

application SQL calls. This method encapsulates functional­
ity for using ADO in a effective and efficient manner. This 
API applies to situations in which a single operation needs to 
be executed which returns a single recordset object. 

Events logged via Visual Basic always have "VBRnntime" 
as the source. The Computer field is automatically populated 
with the name of the computer that is logging the event (i.e., 
the MTS application server) rather than the computer that 
generated the event (typically a client computer). 

The same event details that are written to the database are 
formatted into a readable string and written to the log. The 

60 Syntax 

65 

Set obj ~ ExecuteQuery(vMsg, nTranType, sSQL, [nMaxRows], 
[ado TransConn], [args]) 

Parameters 
vMsg 

This parameter is the TechArch struct. This is used as a 
token for information capture such as performance metrics, 
error information, and security. 



US 7,617,240 B2 
63 64 

-continued -continued 

nTranType adoTransConn (Optional) 

An application defined constant which indicates which type of 

operation is being performed. Values for this parameter 

An ADO Connection object. This is created and passed into 
execute query for operations which require ADO transactional 
control (see "Using Transactions" section) 

sSQL 

can be one of the following constants: 

emS elect 

cmSelectLocal 

cmUpdate 

cmlnsert 

cmDelete 

String containing the SQL code to be performed against the 

DBMS. 

nMaxRows (Optional) 

args (Optional) 

A list of parameters to be respectfully inserted into the SQ L 
10 statement. 

Implementation 

Integer value which represent the maximum number of records 

that the recordset of the current query will return. 

In one embodiment of the present invention the "Execute­
Query" method resides within the Mserv Arch.bas file. This 
file should be incorporated into all ServerComponent type 

15 projects. This will allow each server component access to this 
method. 

Note: Since this method is a public method in a "bas" 
module, it is globally available from anywhere in the project. 

Public Function ExecuteQuery(vMsg As Variant,_ 
nTranType As TranTypes,_ 
sSQL As String, _ 
Optional nMaxRows As Integer ~ 0, _ 
Optional adoTransConn As ADODB.Connection,_ 
Optional colArguments As CCollection) As Variant 

On Error GoTo ErrorHandler 
Const cmMethodName As String ~ "ExecuteQuery" 
StartTimeLogger vMsg, cmTimerIdDBTotal, cmClassName, cmMethodName 
'find out if this call is an isolate operation or 
'part of an ADO (not MTS) transaction 
Dim isAtomicTrans As Boolean 
isAtomicTrans = adoTransConn Is Nothing 
Dim nRecordsAffected As Integer 
Dim adoRS As New ADODB.Recordset 
Dim adoConn As ADODB.Connection 
Dim IAuxErrNumber As Long 
'open a new connection or keep using the passed in COIlllection 
Set adoConn ~ IIf(isAtomicTrans, New ADODB.Connection, adoTransConn) 
If isAtomicTrans Then 

adoConn.Open cmODBC_Connect 
'ADO will wait indefinitely until the execution is complete during 

perfo11llance 
testing 
#IfIsPerITest Then 

adoConn.CommandTimeout ~ 0 
#End If 

End If 
'Make sure date args are forruatled for DB2 if appropriate 
If Not colArguments Is Nothing Then_ 

Set colArguments ~ FormatArgsForDB2(coIArguments) 
'merge the passed in arguments with the SQL string 
sSQL ~ MergeSQL(sSQL, colArguments) 
Debug.Print Time & ": " & sSQL 
'execute the SQL statement depending on the transaction type 
Select Case CStr(nTranType) 

Case cmSelect 

adCmdText 

adoRS.MaxRecords ~ nMaxRows 
adoRS.CursorLocation ~ adUseClient 
adoRS.Open sSQL, adoConn, adOpenForwardOnly, adLockReadOnly, 

Set adoRS.ActiveConnection ~ Nothing 
Set ExecuteQuery ~ adoRS 

Case cmSelectLocal 

adCmdText 

adoRS.MaxRecords ~ nMaxRows 
adoRS.CursorLocation ~ adUseClient 
adoRS.Open sSQL, adoConn, adOpenStatic, adLockBatchOptimistic, 

Set adoRS.ActiveConnection ~ Nothing 
Set ExecuteQuery ~ adoRS 

Case cmlnsert 
Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, adCmdText) 
If nRecordsAffected <~ 0 Then Err. Raise cmErrQuery Insert 
Set adoRS ~ Nothing 
ExecuteQuery ~ nRecordsAffected 



US 7,617,240 B2 
65 

-continued 

Case cmUpdate, cmDelete 
Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, adCmdText) 
If nRecordsAffected <~ 0 Then Err. Raise cmErrOptimisticLock 
Set adoRS ~ Nothing 
ExecuteQuery ~ nRecordsAffected 

Case cmSpFileNote 
Sec adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, adCmdText) 
Set adoRS ~ Nothing 

Case Else 
Err. Raise cmErrlnvalidPararneters 

End Select 
StopTimeLogger vMsg, cmTimerIdDBTotal, cmClassName, cmMethodName 
Exit Function 

ErrorHandler: 
Dim objArchAs Object 
Set objArch ~ CreateObject("cmArch.CTechArch") 
Select Case CStr(Err) 

Case cmErrQuery Insert, cmErrOptimisticLock, cmErrlnvalidPararneters 
'Raise error 
Err. Raise Err 

Case cmErrDSNNotFound 
Dim sMsgTextAs String 
sMsgText ~ "Data Source Name not found." & vbCrLf & "( " &_ 

CStr(objArch.RegMan.GetServerDSN) &")" 
, Create a new message log and log the message 
objArch.LogMan.LogMessage vMsg, cmSeverityFatal, cmClassName, 

cmMethodName, 
GetVersion( ), cmErrDSNNotFound, sMsgText, 

cmLogToEventViewerOnly 
lAuxErrNumber ~ adoConn.Errors(O) .NativeError 'The error code is 

stored since 
when closing the 

conection it will 
be lost 

If adoConn.State <> adStateClosed Then adoConn.Close 
Err. Raise cmErrDSNNotFound, , sMsgText 

Case Else 
, Create a new message log and log the message 
objArch.LogMan.LogMessage vMsg, cmSeverityFatal, cmClassName, 

cmMethodName, 
GetVersion( ), Err.Number, Err. Description, 

cmLogToEventViewerOnly 
lAuxErrNumber ~ adoConn.Errors(O) .NativeError 'The error code is 

stored since 
when closing the 

conection it will 
be lost 

If adoConn.State <> adStateClosed Then adoConn.Close 
Err. Raise lAuxErrNumber 

End Select 
End Function 

Selecting Records 

ExecuteQuery utilizes disconnected recordsets for 
"Select" type statements. This requires that the clients, par- 50 

ticularly the CCA's contain a reference to ADOR, ActiveX 
Data Object Recordset. This DLL is a subset oftheADODB 
DLL. ADOR contains only the recordset object. 

66 

-continued 

Set objRS ~ Nothing 
Exit Function 

End If 
vAns ~ adoRS.GetRows 
Set adoRS ~ Nothing 
'Marshall vAns into objects 

Using disconnected recordsets allows marshalling of 
recordset objects from sever to client. This performs much 55 

more efficiently than the variant array which is associated 
with using the "GetRows" API on the server. This perfor­
mance gain is especially apparent when the application server 

Sample from Server Component 

is under load of a large number of concurrent users. 

Sample from Client Component Adapter (CCA) 
Dim vAns as Variant 
Dim adoRS As ADOR.Recordset 
Set adoRS ~ objServer.PerformSelect(vMsg, nId) 
If objRS.EOF Then 

60 

65 

Private Const cmCustSQL ~ "Select * from Customer where id ~ ?" 
Public Function PerformSelect(vMsg, nId) as Variant 

Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add nId 
Set PerformSelect ~ ExecuteQuery(vMsg, cmSelect, 
sCustSQL, , , colArgs) 

End Function 
Code Clip from ExecuteQuery (Select Section) 

Case cmSelect 
adoRS.MaxRecords ~ nMaxRows 
adoRS.CursorLocation ~ adUseClient 
adoRS.Open sSQL, adoConn, adOpenForwardOnly, 



US 7,617,240 B2 
67 

-continued 

adLockReadOnly, adCmdText 
Set ExecuteQuery ~ adoRS 

Inserting Records 

68 

-continued 

Set adoRS ~ Nothing 
ExecuteQuery ~ nRecordsAffected 

Updating Records 

Inserting records requires certain infonnation pertaining to 
10 Updating records requires certain infonnation pertaining 

to optimistic locking, On the server a unique value is 
requested to indicate the last time modified, Also the last read 
timestamp is used to validate, during the update, that the 
record has not been modified since last time read, 

optimistic locking, On the server a unique value is requested 
to indicate the last time modified, This unique value is 
returned back to the requestor such that it can be used to later 
database operations, 

Sample from Client Component Adapter (CCA) 
Dim vNewTS as Variant 

vNewTS ~ objServer.PerformUpdate(vMsg, 1, 'Rick', 8907654) 

Set object's TimeStamp to vNewTS 

Sample Code Clip from Server Component 

Private Const cmCustUpdateSQL ~_ 

"Update Customer Set Name ~ '?', LastUpdated ~ ? "&_ 

"Where Id ~?" & 

"And LastUpdated ~ ? " 

Public Function PerformUpdate(vMsg, nId, sName, ILastTS) As Variant 

Dim ICurrTS as Long 

ICurrTS ~ GetTimeStamp 

Dim colArgs as CCollection 

Set colArgs ~ New Ccollection 

colArgs.Add sName 

colArgs.Add ICurrTS 

colArgs.Add nId 

colArgs.Add ILastTS 

PerformUpdate ~ ExecuteQuery(vMsg, cmUpdate, sCustUpdateSQL, , , colArgs) 

PerformUpdate ~ ICurrTS 

End Function 

Code Clip from ExecuteQuery (Update Section) 

Sample from Client Component Adapter (CCA) 
Dim vNewTS as Variant 
vNewTS ~ objServer.PerformInsert(vMsg, nId, sName) 
'Set object's TimeStamp to vNewTS 

Sample from Server Component 
Private Const cmCustinsertSQL ~ "Insert Customer (nId, Name, 
LastUpdated) Values(?, '?', ?)" 
Public Function PerformInsert(vMsg, nId, sName) As Variant 
Dim ICurrTS as Long 
ICurrTS ~ GetTimeStamp 
Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add nId 
colArgs.Add sName 
colArgs.Add ICurrTS 
ExecuteQuery(vMsg, cmInsert, sCustInsertSQL, , , colArgs) 
Performinsert ~ ICurrTS 

Code Clip from ExecuteQuery (Insert Section) 
Case cmInsert 

Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 
adCmdText) 
IfnRecordsAffected <~ 0 Then Err.Raise cmErrQueryInsert 

Case cmUpdate 

Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, adCmdText) 

If nRecordsAffected < 0 Then Err. Raise cmErrOptimisticLock 

ExecuteQuery ~ nRecordsAffected 

45 

Deleting Records 

In deleting records the last read timestamp is used to vali­
date, during the delete, that the record has not been modified 

50 since last time read. 

Sample from Client Component Adapter (CCA) 
55 Dim vAns as Variant 

vAns ~ objServer.PerformDelete(vMsg, nId, ILastTS) 
Sample from Server Component 

Private Const cmCustDeleteSQL ~_ 
"Delete From Customer" & 
"Where Id ~ ? " & 

60 "And LastUpdated ~ ? " 
Public Function PerformDelete(vMsg, nId ILastTS) As Variant 

Dim colArgs as CCollection 
Set colArgs ~ New Ccollection 
colArgs.Add nId 
colArgs.Add ILastTS 

65 PerformDelete ~ ExecuteQuery(vMsg, cmDelete, 
cmCustDeleteSQL) 



US 7,617,240 B2 
69 

-continued 

Exit Function 
Code Clip from ExecuteQuery (Delete Section) 

Case cmDelete 
Set adoRS ~ adoConn.Execute(sSQL, nRecordsAffected, 
adCmdText) 
If nRecordsAffected < 0 Then Err. Raise cmErrOptimisticLock 
ExecuteQuery ~ nRecordsAffected 

Database Locking Framework 

Database Locking ensures the integrity of the database in a 
multi-user environment. Locking prevents the common prob­
lem of lost updates from multiple users updating the same 
record. 

Solution Options 

Pessimistic Locking 
This policy of locking allows the first user to have full 

access to the record while following users are denied access 
or have read only access until the record is unlocked. There 
are drawbacks to this method oflocking. It is a method that is 

Client Components 

70 
ensures database integrity as well as the low overhead asso­
ciated with this form oflocking. Other benefits to this method 
are increased availability of records to multiple users, and a 
minimization of database deadlocks. 

Table candidates for concurrency control are identified 
during the "Data Modeling Exercise". The only table which is 

updated concurrently is the Optimistic Locking mechanism. 

Once these are identified, the following is added to the appli-
10 cation. 

15 

20 

Add "N_LasCUpdt" field to table in database; 

Error Handling routines on those operations which modifY 

or delete from this table; and 

Display/Notification to user that the error has occurred. 

Usage 

The chart below describes the roles of the two basic types 
of components to enable optimistic locking. 

Assumption: The optimistic locking field is of type Date 
and is named "N_Last_Updt" 

Server Components 

Read Store N_Last_Updt value in the 
Access business object for use in possible 

updates or deletes. 

Retrieve data (Always including N_Last_Updt field). 
SELECT Id, FirstName, N_Last_Updt 
FROM Customer 

Inserts Normal 
WHERE id ~ 10; 
Dim ICurrTS As Double 
ICurrTS ~ GetTimeStamp 
INSERT INTO Customer (Id, FirstName, N_Last_Updt) 
VALUES (1, "Rick", ICurrTS); 

Updates Pass previously read timestamp to 
identify whether row was modified. 
This is in addition to a unique identifier 
and whatever data needs to be updated. 
Handle exception if record has been 
previously modified. 

Return new timestamp (lCurrTS) as well as new Id 
Dim ICurrTS As Double 
ICurrTS ~ GetTimeStamp 
UPDATE Customer 
SET firstName ~ "Richard", 
N_Last_Updt ~ ICurrTS 
WHEREid~ 1 

Notify user of conflict. 
Rollback any changes. 

AND LastUpdate ~ lastReadTimestamp; 
If no rows are affected, handle and propagate error back 
out to the client. 

Deletes Pass previously read timestamp to 
identify whether row was modified. 
This is in addition to a unique identifier 
Handle exception if record has been 
previously modified. 

Return new timestamp (lCurrTS) 
DELETE Customer 
WHEREid~ 1 
AND N_Last_Updt ~ lastReadTimestamp; 
If no rows are affected, handle and propagate error back 
out to the client. 

Notify user of conflict. 
Rollback any changes. 

prone to deadlocks on the database as well poor performance 
when conflicts are encountered. 

Optimistic Locking 

The optimistic approach to record locking is based on the 
assumption that it is not normal processing for multiple users 
to both read and update records concurrently. This situation is 
treated as exceptional processing rather than normal process­
ing. Locks are not actually placed on the database at read 
time. A timestamp mechanism is used at time of update or 
delete to ensure that another user has not modified or deleted 
the record since you last read the record. 

A preferred embodiment of the present invention uses an 
optimistic locking approach to concurrency control. This 

55 

Large Result Set 

When retrieving records from a database, if the search 
criteria is too broad, the amount of data required to be 
retrieved from the database and passed across the network 
will affect user perceived performance. Windows requesting 

60 such data will be slow to paint and searches will be slow. The 
formation of the database queries is made such that a work­
able amount of data is retrieved. There are a few options for 
addressing the problems that occur from large result sets. The 
options are given below in order of preference. 

65 Redesign the interface/controller to return smaller result 
sets. By designing the controllers that present the database 
queries intelligently, the queries that are presented to the 



US 7,617,240 B2 
71 

database server do not return a result set that is large enough 
to affect user perceived performance. In essence, the potential 
to retrieve too many records indicates that the VIs and the 
controllers have been designed differently. An example of a 
well designed Search VI is one where the user is required to 
enter in a minimum search criteria to prevent an excessively 
large result set. 

Have Scrollable Result Sets. The scrolling retrieval of a 
large result set is the incremental retrieval of a result subset 
repeated as many times as the user requests or until the entire 10 

result set is obtained. Results are retrieved by the Bounded 
Query Approach where the first record is determined by a 
where clause with calculated values. 

72 
its collection of objects (an accumulation of previous results) 
and while doing so will performs the comparison of the last 
object to the first object of the next row. The values necessary 
to discriminate the two rows are added to the variant array that 
is necessary to pass to the component for the subsequent 
query. 

The Controller 206 on the client retains the values for 
nMaxRows, the initial SQL statement, and array of values to 
discern between the last row of the previous query and the first 
row of the next query. The mechanism by which the controller 
206 is aware that there are more records to retrieve is by 
checking the number of results is one greater than the max 
number of rows. To prevent the retrieval of records past the 
end of file, the controller 206 disables these functions on the 

Scrollable Result Set Client Requirements 

Preferred VI 

15 VI. For example, a command button More on the VI, used to 
requested the data, is disabled when the number of objects 
returned is less than nMaxRows+ 1. 

The preferred displays are as follows: 
Returned results are displayed in a GreenTree List Box; 
An action button with the label More ... is provided for the 20 

user to obtain the remaining results; 

Application Responsibility 

Server 
The More button is enabled when the user has performed 

an initial search and there are still results to be retrieved; 
The Server component is responsible for creating a collec­

tion of arguments and appending the SQL statement to add a 
25 where clause that will be able to discriminate between the last The More button is disabled when there are no more results 

to retrieve; row of the previous query and the first row of the next. 
The List Box and the Action button is contained within a 

group box to provide a visual association between the button 
and the List Box. 

CCA 
The CCA 208 processes the recordset into objects as in non 

limited queries. The CCA 208 forwards the variant array 
30 passed from the Controller 206 to identify the limited results. Bounded Query 

Controller 
The controller 206 has the responsibility of disabling the 

More control when the end of file has been reached. The 
35 controller 206 populates the variant array (vKeys) with the 

values necessary to determine start of next query. 

Queries that are implemented with the limited result sets 
are sent to the server. The server implements the execute­
Query method to retrieve the recordset as usual. Limited 
result queries have an order by clause that includes the busi­
ness required sort order along with a sufficient number of 
colunms to ensure that all rows can be uniquely identified. 
The recordset is limited by the nMaxRows variable passed 
from the client incremented to obtain the first row of the next 
result set. The return from the component is a recordset just 40 

the same as with a query that is not limited. The CCA 208 
creates the objects and passes these back to the controller 206. 
The Controller 206 adds this returned collection of object to 

EXAMPLE 

A CCA 208 is coded for a user defined search which has the 
potential to return a sizable result set. The code example 
below implements the Bounded Query approach. 

On the Server the developer codes the query as follows: 

Public Function RetrieveBusinessObjects(vMsg As Variant, ByVal sSql As String, 
ByVal nMaxRows As Integer, Optional ByVal vKeys As Variant) As Recordset 

On Error GoTo ErrorHandler 
'Declare local constants 
Const cmMetbodName As String ~ "RetrieveBusinessObjects" 
'Declare local variables 
Dim cmClassNameAs String 
Dim colArgs As New CCollection 
'initialize instance variables 
cmClassName ~ "CSRSTestComp" 
'fill argument collection 
Set colArgs ~ArgumentsForBusinessObject(vKeys, sSQL) 
'increment nMaxRows to obtain row for comparison 
nMaxRows = nMaxRows + 1 
'ExecuteQuery 

Set RetrieveBusinessObjects ~ ExecuteQuery(vMsg, cmSelectLocal, sQuery, 
nMaxRows" colArgs) 

'Tell MTS we're done 
GetObjectContext.SetComplete 
Exit Function 

ErrorHandler: 
Select Case Err.Number 

Case Else 
Dim iResumeCode As Integer 



US 7,617,240 B2 
73 74 

-continued 

iResumeCode = GeneralErrorHandler(vMsg, em Server, cmClassNarne, 
cmMethodName) 

Select Case iResumeCode 
Case cmErrorResume 

Reswne 
Case cmErrorResumeNext 

Reswne Next 
Case cmErrorExit 

Exit Function 
Case Else 

GetObjectContext.SetAbort 
Err.Raise Err. Number 

End Select 
End Select 

End Function 

To determine the additional where clause necessary to 
determine the starting point of the query, the following -continued 
method is added: 20 

Private Function ArgumentsForBusinessObject(vKeys As Variant, 
sSql As string) 
As CCollection 

Dim colArgs As Ccollection 
Const cmGreaterThanWhereString As String ~"? >? " 
Const cmGreaterThanOrEqualWhereString As 
~tring ~ " ? >~ ? AND" 

initialize local variables 
Set colArgs ~ New Ccollection 
sSql ~ sSql + "WHERE" 
With colArgs 

IfvKeys(O) <> Empty Then 
.Add ("N_ TASK_ TEMPL_ID") 
.Add (vKeys(O» 

End If 
'lfvKeys(l) <> Nothing Then 

'.Add value2 fieldName 
'.add vKeys(l) 
sSql ~ sSql + cmGreaterThanOrEqualWhereString 

'End If 
'lfvKeys(2) <> Nothing Then 

'.Add value3 fieldName 
'.add vKeys(2) 
sSql ~ sSql + cmGreaterThanOrEqualWhereString 

'End If 
End With 
'finalize SQL statement 
sSql ~ sSql + cmGreaterThanWhereString 
Set ArgumentsForBusinessObject ~ colArgs 

End Function 

On the CCA 208, allowance must be made for the passing 
of the vKeys 

Public Function RetrieveBusinessObjects(vMsg As Vari­
ant, sSql As String, nMaxRows As Integer, Optional ByVal 
vKeys As Variant) As CCollection 

Set percmpComponent ~ New CSRSTestComp 
Dim i As Integer 
Set adoRS ~ percmpComponent.RetrieveBusinessObjects(vMsg, 
sSql, nMaxRows, 

vKeys) 
'convert recordset to business objects 
adoRS.MoveFirst 
Do Until adoRS.EOF 

Call ConvertToBusinessObject 
adoRS.MoveNext 

Loop 
'return the collection of business objects 

Set RetrieveBusinessObjects ~ dictBusinessObject 
Set dictBusinessObject ~ New CCollection 
End Function 

25 The controller initiates the query and updates the variant 

30 

array of keys and form 204 properties based on the return. In 
addition to the code shown for the example below, the More 
Control is enabled if the search is cleared. 

'declare instance variables 
Private nMaxRows As Integer 
Dim interimResults As CCollection 
Dim vResultsAs CCollection 

35 Dim vKeys(3) As Variant 
'declare Constants 

40 

Private Const nDefaultAmount As Long ~ 50 
Private Const cmRetrieveBusinessObjectSQL ~ "SELECT * FROM 
NODE RULEORDERBY 
_N_TASK_TEMPL_ID" 

During class initialization perform the following: 

45 Public Sub Class_init( ) 
'obtain settings from registry 
nMaxRows ~ CInt(GetSetting(cmRegApp, cmRegArchSection, 

cmLimitedResultAmountKey, lDefaultAmount» 
Call resetSearch 
Set objCCA ~ New {CCA class name} 

50 End Sub 

55 

60 

65 

Search reset functionality is kept outside of initialization so 
this may be called from other parts of the application. 

Public Sub resetSearch( ) 
Dim I as Integer 

Set vResults ~ New Ccollection 
For I ~ 0 To 3 

Set v Keys(l) ~ Empty 
Next 

Set vKeys(O) ~ Empty 
frmCurrentForm.cmdMore.Enabled ~ True 

End Sub 
Public Sub RetrieveBusinessObjects( ) 

Const cmMethodName As String ~ 
"retrieveBusinessObjects" 



US 7,617,240 B2 
75 

-continued 

Call RetainMouse 
, get arch message 
Dim vMsg As Variant 
vMsg ~ objApp.objArch.AsMsgStruct( ) 
, call the component 
Dim pair As CArchPair 
'Declare local variables 
Dim sSql As String 
Dim colArgs As CCollection 
Dim cmClassName As String 

Set interimResults ~ objCCA.RetrieveBusinessObjects(vMsg, 
cmRetrieveBusinessObjectSQL, nMaxRows, vKeys) 

ctr ~ ProcessObjectCollection 
'stop if size of return is less than the maximwn 

If ctr < nMaxRows + 1 Then frmCurrentForm.cmdMore. 
Enabled ~ False 
, restore pointer 
Screen.MousePointer = IPrevPtr 

End Sub 

In order to retain the values to discriminate between the last 
row of the result set and the first row of the next the following 
method on the controller is used: 

Private Function ProcessObjectCollection( ) As Integer 
, merge results with the instance variable for the collection 

Dim ctr As Integer 
ctr~ 0 

For Each element In interimResults 
ctr~ ctr+ 1 
'retain Keys for subsequent Queries 
With element 
Select Case ctr 

Case nMaxRows 
'store all values that may be used for row comparison 
vKeys(O) ~ .NodeId 

'add last object to collection 
vResults.Add element 

Case nMaxRows + 1 

size ofvKeys 

'last object only used for comparison 
'If the proceeding value can be used to uniquely 
'identify row then delete value from array 
'THERE SHOULD BE N - 1 nested If statements 
where N ~ 

'If .value2 <> vKeys(l) Then 
'vKeys(2) ~ Empty 
If .NodeId <>vKeys(O) Then vKeys(l) ~ Empty 

'End If 
Case Else 

vResults.Add element 
End Select 
End With 

Next 
ProcessObjectCollection ~ ctr 

End Function 
Operation of example with data 

Person 

First Name Last Name Status 

Joy Andersen Closed 
Jay Anderson Open 
John Barleycorn Closed 
John Barleycorn Open 
Esther Davidson Open 
David Dyson Closed 
Bobby Halford Open 
Steven Jackowski Closed 
Kyle Johnsen Open 
Jeff Johansen Open 
Mary Johnson Closed 
Larry Olsen Open 
William O'Neil Closed 
Jane Pick Open 

Unique ID 

22 
12 

512 
32 
88 
98 

234 
4 

65 
13 
24 
21 
29 

3285 

10 

76 
For this example let nMaxRows=3. The business case calls 

for the result set to be ordered by the last name, and developer 
knows that any row can be uniquely identified by the First­
Name, LastName, and Unique ID fields so the initial SQL 
added as a constant in the controller should be; 

SELECT * FROM Person ORDER BY LastName, First­
Name, Unique_ID 

Initial Query 
The first query is sent with an empty vKeys Array. When 

the server receives this query, the methodArgumentsF orBusi­
nessObject identifies the elements as being empty and does 
not populate the colArgs. The query is executed with the intial 
SQL unchanged. The recordset of size nMaxRows+l is 

15 returned to the CCA 208 and processed the same as non­
limited results. The CCA 208 returns the collection of objects 
to the controller 206. The controller 206 proceeds to populate 
the vResults collection with the returned objects. vResults is 
the comprehensive collection of objects returned. When the 

20 last object of the first request is reached (at nMaxRows), the 

25 

values are stored in vKeys as such; 
vKeys(O)=LastName (Barleycorn) 
vKeys(1)=FirstName (John) 
vKeys(2)=Unique_ID (512) 
When the First Object of the next request is reached (at 

nMaxRows+l), comparison of the object variables against 
the vKeys values is performed. Because the last names match, 
vKeys(2) will not be deleted and no further checks are per­
formed. 

30 Subsequent Query 
The subsequent query will pass vKeys along with it. The 

server creates the collection of arguments from vKeys and 
append the sSql string in accordance. The sSql statement that 
is passed to execute query is 

35 SELECT * FROM Person ORDER BY LastName, First-
Name, Unique_ID WHERE 7>=7 AND 7>=7 AND 7>7 

This sSql and collection is included in the call to Execute­
Query which merges the arguments with the string relying on 

40 the architecture method MergeSQL to complete the SQL 
statement. 

45 

The starting point of the recordset is defined by the 
WHERE clause and the limit is set by the nMaxRows value. 

Query Less Restrictive WHERE Criteria 
After the second query the last row of the query is David 

Dyson and the next is Bobby Halford. Because the last name 
is different, vKeys will be empty except forvKeys(O)=Dyson. 

The ProcessObjectCollection will populate vKeys as fol-
50 lows when processing nMaxRows object: 

vKeys(O)=LastName (Dyson) 
vKeys(1)=FirstName (David) 
vKeys(2)=Unique_ID (98) 
After identifying the differences between vKeys values 

55 and the nMaxRows+l object the vKeys array is updated as 

60 

follows: 
vKeys(O)=LastName (Dyson) 
vKeys(1 )=Empty 
vKeys(2)=Empty 
The query that is returned from ArgumentsForBusines­

sObject is 
SELECT * FROM Person ORDER BY LastName, First­

Name, Unique_ID WHERE 7>7 

65 and the colArgs possessing the fieldname FirstName and the 
value ("David"). ExecuteQuery merges the arguments with 
the sql statement as before and returns the value. 



US 7,617,240 B2 
77 

Ending 
After the fifth iteration the result set will only possess 2 

records. When the controller 206 processes the returned col­
lection the counter returned from ProcessObjectCollection is 
less than nMaxRows+ 1 which indicates that all records have 
been retrieved. 

Security Framework 

Implementation 

FIG. 8 shows a representation of the Security Framework 
800 and its main components. 

10 

78 
SQL Filtering is used in the cases where sensitive data must 

not even be available at the Client, or where there is a great 
advantage on reducing the size of the data set returned to the 
Client. 

SQL Filtering is only used in very rare cases where perfor­
mance is a serious concern. It is used carefully in order to 
avoid increased complexity and performance impacts 
because some queries can be cumbersome and embedding 
security on them could increase complexity even more. 

Security Framework 

It can be seen from FIG. 8 that the Security object 802 is 
present at the Client and a Security API is provided at the 15 

server. The Security object 802 provides one method respon­
sible for authorizing any operation, being given the vMsg 
structure, an operation ID and an optional parameter describ­

Overview 
The Security object 802 serves the purpose of holding hard 

coded business rules to grant or deny user access for various 
application functions. This information is returned to the VI 
controllers 206 which make the necessary modifications on 
the VI state. The ClientProfile object serves the purpose of ing the operation's context. 

Client 

V ser Authentication: 

20 caching user specific (and static) security information 
directly on the client. This information is necessary to evalu­
ate the business rules at the Security object 802. 

Vser authentication is handled via a method located in the 
Security object 802 called IsOperAuthorized. As the Appli­
cation object loads, it calls the IsOperAuthorized method, 25 

with the operation being "Login", before executing further 
processing. This method subsequently calls a authentication 
DLL, which is responsible for identifYing the user as an 
authorized user within the Corporate Security. 

Relationships 

FIG. 9 shows the relationships between the security ele­
ment and other elements. 

Architecture Object 
The TechArch object is responsible for providing access 

VI Controllers: 

The VI Controllers limit access to their functions by 
restricting access to specific widgets through enabling and 
disabling them. The logic for the enabling and disabling of 
widgets remains on the VI Controller 206, but the logic to 
determine whether a user has access to a specific functionality 
is located in the Security object 802 in the form of business 
rules. The VI Controller 206 calls the IsOperAuthorized 
method in order to set the state of its widgets. 

Server 

Server security is implemented by restricting access to the 
data in three different ways: 

Server Security Method 

Server Components 222 call the IsOperAuthorizedAPI in 
the Architecture before executing every operation. In all cases 
the Security object 802 returns a boolean, according to the 
user's access rights and the business rules 

SQL Filtering 

Includes security attributes, like claim sensItiveness or 
public/private file note, into the SQL statements when select­
ing or updating rows. This efficiently restricts the resulting 
data set, and avoids the return of restricted data to the client. 

Description 

30 
and maintaining the state of the ClientProfile 902 and Secu­
rity objects 802. The ClientProfile object 902 is instantiated 
and destroyed in the TechArch's initialization and terminate 
methods, respectively. This object is maintained through an 

35 instance variable on the TechArch object. 

CInitCompCCA 
The CInitCompCCA object 904 provides two services to 

the architecture object 200, it serves as an access point to the 
40 CInitComp Server 906, and it Marshalls the query result set 

into a ClientProfile object 902. 

CInitComp 
The CInitComp server object 906 provides data access to 

the data that resides in the organization tables 908. This data 
45 is useful on the client to determine level of access to data 

based on hard coded business rules. 

Organization Tables 
The Organization tables 908 contain user, employee and 

50 unit information necessary to build the hierarchy of informa­
tion necessary to determine level of access to sensitive infor­
mation. 

Client Profile 
55 The ClientProfile object 902 serves the purpose of caching 

static, user specific security information directly on the client. 
This information is necessary to determine data access level 
of information to the user, which is accomplished by passing 
the necessary values to the Security object 802. 

Security Object 

Any GVI related security is implemented at the Client 
using the Security object 802. The information is available 60 

both at the Client Profile and Business Objects 207 which 
enables the security rules to be properly evaluated. The Security Object 802 contains business rules used to 

determine a user's access privileges in relation to specific 
functions. The object accepts certain parameters passed in by 

65 the various VI Controllers 206 and passes them to through the 
business rule logic which, in tum, interrogates the Client 
Profile object 902 for specific user information. 

IsOperAuthorized is called to set widgets upon the loading 
of a VI or if there is a change of state within the VI. 

Vser authentication always is used by the Application 
Objects 202 in order to validate user privilege to launch the 
application. 



US 7,617,240 B2 
79 

Client Profile 

Attributes 
The following are internal attributes for the Client Profile 

object 902. These attributes are not exposed to the application 
and should only be used by the Security object 802: 

sProfile: 
This attribute is passed by the legacy application at start-

up and contains the user's TSIds, External Indicator, 10 

Count of Group Elements and Group Elements. It is 
marshalled into these attributes by request of the 
application 0 bj ects. 

colSpecialVsers: 
This attribute caches information from a table contain- 15 

ing special users which do not fit into one of the 
described roles, such as Organization Librarian. (e.g., 
Vice President or CEO of the corporation.) 

sTSId: 
This is the current users' TSId, and it corresponds to 20 

hislher Windows NT Id. It is used to get information 
about the current logged on user from the Organiza­
tional Tables 908. 

sEmployeeId: 
This corresponds to the user's employee Id, as stored in 25 

the Organizational tables 908. It is used against the 
passed in employee Id, in order to check relationship 
between performers and the current user. 

sEmployeeName, sEmployeeFirst, sEmployeeMI and 
sEmployeeLast: 
All these attributes correspond to the current user's 

name. 
dictClientPrivileges: 

30 

This attribute contains a collection of identifiers that 
indicate what role/authority an individual plays/pos- 35 

sesses. This value is used to identifY the static role of 
the logged in user. 

These values are used for security business logic which 
grants or denies access based on whether the user is 
internal or external, or whether the user is in a given 40 

administrative role. Existing values are the following: 
SC-Indicates sensitive Claim authority 
CC-Indicates Change Claim status authority 

80 
Public Methods 

The following are the APIs exposed by the Client Profile 
object. These APIs are used for security checking by the 
Security object and should not be used by the developers in 
any portion of the application. 

GetAuthorizedEmployees As Collection 
This function returns a collection of employee Ids from 

the employees supervised by the current user. 
IsSuperOf(sVserId) As Boolean 

This API returns true if the logged in useris a super of the 
passed in user Id. It looks up the sVserId value inside 
the dictProxyList attribute. 

IsRelativeOf(sVserId) As Boolean 
This API returns true if the passed in user Id corresponds 

to either the logged in user or someone from the 
dictProxy List. 

IsInternal As Boolean 
This API is used to grant or restrict the user to informa­

tion based on whether the data is private to the orga­
nization whether the user is internal or external. 

IsInRole( sRole) As Boolean 
This API looks up the appropriate sRole value contained 

within the dictClientRoles attribute to determine 
whether the current user is authorized to perform that 
role. 

The following accessors are used to get data from the 
Client Profile's object: 

VserId: returns sTSId 
EmployeeId: return sEmployeeId 
EmployeeName: returns sEmployeeName 
EmployeeFirstName: returns sEmployeeFirst 
EmployeeLastName: returns sEmployeeLast 
EmployeeMiddleInitial: returns sEmployeeMI 
ExpandTree: returns boolExpandTreePreference 
TemplatePathPreference: returns sTemplatePathPrefer-

ence 

Security Object 

Public Methods 
MT -Indicates maintain F&C Templates authority 
MO-Indicates maintain Organization authority 
MR-Indicates maintain Roles authority 

The following API is exposed by the Security Object and is 
45 used by the application for security checking: 

The following are the proposed additions: 
TA-Indicates authority to execute Task Assistant 
FN-Indicates authority to execute FileNotes 
CH-Indicates authority to execute Claim History 
TL-Indicates authority to maintain Task Templates 

dictProxyList: 

50 

This attribute contains an employees' reporting hierar­
chy. It is used to determine whether the current user! 55 

employee has permission to perform some action 
based on hislher relationship to other users/employ­
ees within their hierarchy. A business example of this 
is the case of a supervisor, who has rights to view 
information that his/her subordinates have access to. 60 

The relationship API's make use of dictProxyList to 
determine if the user assigned to the information is 
super or subordinate of the current user. 

boolInternal: 
This attribute indicates whether the logged in user is 65 

external or internal. It is also marshalled from the 
sProfile attribute, passed in by the legacy application. 

IsOperAuthorized(vMsg As Variant, nOperations As 
cmOperations, vContextAs Variant) as Boolean 
This API will return true or false depending on what is 

returned from the business rule functions to determine 
user access levels. This API is called on two situa­
tions: 

1. When setting the initial state before loading the form. 
If a security requirement exists, IsOperAuthorized is 
called for the appropriate operation. 

2. After any relevant change on the VI state. For 
example, when a sensitive claim is highlighted on the 
Task Assistant window. A relevant change is one 
which brings the need for a security check. 

The valid values for the enumeration and the correspon­
dent context data are: 
cmMaintainF ormsCorr (none) 
cmRunEventProcessor (none) 
cmWorkOnSensitiveClaim (a Claim object) 
cmMaintainPersonalProfile (none) 
cmMaintain Workplan (none) 



US 7,617,240 B2 
81 

cmDeleteFileNote (a File Note object) 
cmMaintainTaskLIbrary (none) 
cmMaintainOrg (none) 

Server Security APIs 

IsSVCOperAuthorized(vMsg As Variant, sOperations As 
String, vContext As Variant) as Boolean 
This API is called by every method on the server that 

persists data or can potentially access sensitive data 10 

(reactive approach). 
IsOperAuthorized(vMsg As Variant, nOperations As 

cmOperations, vContext As Variant) as Boolean 
This API is available for those cases where a proactive 

security check is needed on the server. 

Implementation Examples 

The following examples show some ways to implement the 
options described above: 

Client 
Business Logic 

IsOperAuthorized 

15 

20 

Let's consider the case of the Task Assistant window, 25 

where the user should not be allowed to view any 
information on a sensitive claim if he/she is not the 
claim performer or the performer's supervisor. The 
following code would be at the Controller: 

30 

Public Sub GetDraftFNotes( ) 
Dim objCP as Object 

82 

Set objCP ~ taoArch.objClientProfile 
Dim fntCCA as Object 
Sec fntCCA ~ taaApp.taoArch.GetCCA(cmCCAFileNote) 
Call fntCCA.GetADraftFNote(vMsg, objCp.sOrgUserld, colFNotes) 

End Sub 

And at the Component, the SQL statement would be: 

Select nFNoteld, 
sFNoteAuthor, 
dFNoteFinal, 

From 
Where 
And 

File Note 
sFileNoteSts ~ 'D' 
sFNoteAuthor ~ sAuthor 

Task Engine Application 

This application runs on the server as a background process 
or service with no direct interaction with Client applications, 
so it doesn't need any GUI related security. Basically, its main 
actions are limited to the generation of new tasks in response 
to externally generated events or, more specifically, it: 

Reads static information from the Task Template tables; 
Reads events from the Event tables; 
Inserts tasks on the Task table. Private Sub TaskTree_NodeChanged( ... ) 

myController.SetCurrentTask 
myController.SetState 

End Sub 

In this sense, its security is totally dependent on external 
35 entities as described below: 

Private Sub SetState( ) 

vContext) 

Dim objSecurity as Object 
Dim vContext(l) as Object 
Set obj Security ~ taaApp.taoArch.objSecurity 
vContext(O) ~ CurrentClaim 
vContext(l) ~ CurrentTask 
tlbEditIcon.Enabled ~ 

End Sub 

obj Security.IsOperAuthorized(vMsg, 
em WorkOnSensitiveClaim, 

40 

45 

The Task Library application is the entrance point for any 
changes on the Task Template database tables. It will 
make use of the options described above in order to 
fulfill its security requirements. 

Events are generated from legacy applications, so the Task 
Engine relies completely on the security implemented 
for these applications in order to control the generation 
of events. 

Another level of security for event generation relies on the 
Database authorization and authentication functions. 
Only authorized components have access to the database 
tables (this is valid for all the other applications as well). 

Claim Folder 

Let's consider the case of the Maintain Correspondence 
Search window where only a user who is a Forms and 
Correspondence Librarian should be allowed to 
delete a template. The following code would be at the 
Controller: 50 

Private Sub SetWindowMode( ) 
Dim obj Security as Object 
Set objSecurity ~ taaApp.taoArch.objSecurity 

tlbEditIcon.Enabled ~ objSecurity.IsOperAuthorized(vMsg, 
cmMaintainFormsCorr) 
End Sub 

Server 
SQL Filtering: 

Definition 
The claim Folder manages claim information from first 

notice through closing and archiving. It does this by providing 
55 a structured and easy to use interface that supports multiple 

business processes for handling claims. The information that 
it captures is fed to many other components that allow claims 
professionals to make use of enabling applications that 
reduce their workload. Because physical claim files are still 

60 required, the claim folder provides capabilities that support 
physical file tracking. It works with the LEGACY system to 
support all the capabilities that exist within the current sys­
tem. 

Let's consider the example of the Draft File Note win­
dow, where a user can only look at the draft file notes 65 

on which he/she is the author. At the controller, one 
would have: 

The primary processes supported by the claim Folder are: 
First Notice of Loss 

The Claim Folder is the primary entry point for new loss 
information. Claim files exist in the Claim Folder 



US 7,617,240 B2 
83 

before they are "pushed" to the LEGACY system to 
perform financial processing. 

Claim Inquiry 
Claim Folder supports internal and external inquires for 

claim information. The folder design allows quick 
access to various levels of information within the 
claim for many different reasons. 

Initiation of Claim Handling 

84 
in the LEGACY system, and therefore allows certain infor­
mation to be entered and modified once the claim is pushed to 
the LEGACY system. 

The Claim Folder decomposes a claim into different levels 
that reflect the policy, the insured, the claim, the claimants, 
and the claimant's lines. Each level has a structured set of 
information that applies to it. For example, the claim level of 
the claim has information on the claim status, line of business, 
and performers. An individual line has information which The Claim Folder provides initial loss information to the 

claim professional so they may begin the process of 
making first contacts with appropriate participants in 
the claim. It allows them to view and enter data 
received through their initial contacts and investiga-

10 includes the line type, jurisdiction, and property or vehicle 
damages. The claimant level contains contact information as 
well as injury descriptions. 

tion. 
Investigation and Evaluation 

The information at each level is grouped into sections for 
organization purposes. Each level has a details section that 

15 includes the basic information about the level. 
The Claim Folder provides access to detailed informa­

tion needed for the investigation and evaluation pro­
cess. It allows the claim handler to navigate between 
all the applications and information they need to sup­
port these processes. 

IdentifYing Claim Events 
20 

The Claim Folder identifies critical events that occur in 
the life of a claim, such as a change of status, which 
can trigger responses in other components to perform 
automated functions, like triggering tasks in the Task 25 

Assistant. 
Managing the Physical File 

The Claim Folder supports better tracking capabilities 
for the physical files that go along with the electronic 
record of a claim. 

Value 

30 

The key levels on the Claim Folder and their information 
sections are: 

The Policy Level: Details and Covered Auto for auto 
claims, Covered Property for property claims and Cov­
ered Yacht for marine claims. 

The Claim Level: Details, Facts of Loss, Events, Liability. 
Liability is considered part of the Negotiation compo­
nent and described there. 

The Participant Level: Details and Contact Information. 
For claimants, additional sections are shown to display, 
Events, Injury and Disability Management. The partici­
pant level is discussed in the Participant Component. 

The Line Level: Details, Damaged Vehicle for vehicle 
lines, Damaged Property for property lines, Damaged 
Yacht for marine lines, Events, Damages, and Negotia­
tion. Damages and Negotiation are considered part of 
the Negotiation component and described there. 

Events are triggered in the Claim Folder by performing 
By capturing detailed information on claims, the Claim 

Folder tries to improve the efficiency of claim professionals in 
many ways. First, because the information is organized in a 
logical, easy to use format, there is less digging required to 
find basic information to support any number of inquiries. 
Second, the Claim Folder uses its information to support 
other applications like Forms and Correspondence, so that 
claim information does not have to be reentered every time it 
is needed. Third, it provides better ways to find physical files 
to reduce the time required finding and working with them. 
Beyond this, there are many other potential uses of claim 
folder information. 

35 certain actions like changing a jurisdiction, identifying an 
injury, or closing a line. Other general events are triggered in 
the Event Section on most levels by clicking the one that has 
occurred. These events are processed by the Event Processor 
and could generate any number of responses. In one embodi-

40 ment of the present invention, the primary response is to 
trigger new tasks in the Task Assistant for a claim. 

The claim Folder also tries to overcome some of the current 45 

processing requirements that the LEGACY system imposes 
such as recording losses without claims, requiring policy 
numbers for claim set-up, requiring reserves for lines, and 
other restrictions. This will reduce some of the low-value 
added work required to feed the LEGACY system. 50 

Finally, the Claim Folder organizes and coordinates infor­
mation on participants and performers so that all people 
involved in a claim can be identified quickly and easily. 

Key Users 
Although claim professionals are the primary users of the 55 

Claim Folder, any claims professional can utilize the Claim 
Folder to learn about a claim or answer an inquiry about a 
claim. 

Component Functionality 60 

Because the Claim Folder is the primary entry point for 
new claims, it needs to capture information necessary to 
set-up new claims and be able to pass the information to the 
LEGACY system. Once the information is passed, the 
LEGACY system owns all information contained in both 65 

systems, and it is uneditable in the Claim Folder. However, 
the Claim Folder has more information than what is contained 

User Interfaces 
Claim Folder VI 
Policy Level-Policy Details Tab 
Policy Level---Covered Vehicle Tab 
Policy Level---Covered Property Tab 
Policy Level---Covered Yacht Tab 
Claim level-Claim Details Tab 
Claim level-Facts of Loss Tab 
Claim level-Events Tab 
Claim level-Liability Tab 
Line level-Line Details Tab 
Line level-Damaged Property Tab 
Line level-Damaged Auto Tab 
Line level-Damaged Yacht Tab 
Line level-Events Tab 
Line level-Damages Tab 
Line level-Negotiation Tab 
Task Assistant 
File Notes 
Claim History 
Search Task Template 
Search for Correspondence 
Find Claims 



US 7,617,240 B2 

Version 7 
View File Folder 
Print Label 

85 

Claim Folder Tree and Menu Design 

Claim Tree 

86 
a line level is selected, the line level tabs for the specific line 
are shown in the body of the claim folder. 

There are several things that can alter the claim tree once it 
has been set up. First, if a claimant or line is deleted, it is 
removed from the claim tree. A claim that is marked in error 
does not change the appearance of the levels. Second, the 
claim, claimant, and line levels are identified by different 
icons depending on whether they are pushed to V7 or not. The claim tree in the Claim Folder window decomposes the 

claim into policy, insured, claim, claimant, and line levels 
depending on the specific composition of the claim. 

10 Third, when a line or claimant is offset, it is identified as such. 

The policy level is always the first node in the claim tree 
and is identified by the policy number. Before the policy 
number is entered, the field is listed as "Unknown". Ifa claim 
is uncoded, the field is listed as "Uncoded". Selecting the 
policy level brings up the policy level tabs in the body of the 15 

Claim Folder. 
The insured level is always the second node in the claim 

tree and is identified by the insured's name. Before the 
insured is identified, the field is listed as "Unknown". Select­
ing the insured level brings up the insured participant tabs in 20 

the body of the claim folder. Only one insured is listed at this 
level as identified in the policy level tabs, however, multiple 
insureds can still be added. Additional insureds are shown in 
the participant list below the claim tree. 

The claim level is always the third node in the claim tree 25 

and is identified by the claim number. When the claim level is 
selected, the claim level tabs appears in the body of the Claim 
Folder. 

Participant List 

The participant list box contains all the non-claimant and 
non-insured participants on the claim. (Claimants and 
insureds are shown in the claim tree and not repeated here.) 
Participants are shown with their name and role. When a 
participant is selected, the participant level tabs are displayed 
in the claim folder. 

Claim Folder Menu Items 

The claim folder menus contain the actions that a user 
would need to perform within the claim folder. They can all be 
accessed through keyboard selection. The menu options 
become enabled or disabled based on the state of the Claim 
Folder. The Claim Folder can be in view mode or edit mode 
for a specific level in the Claim Tree. When the Claim Folder 
is in edit mode, most options are disabled until the user saves 
their changes and is returned to view mode. The enabling/ 
disabling of menu options is also dependent on whether the 

After the claim level, all claimants are listed with their 
associated lines in a hierarchy format. When a claimant is 
added, a node is added to the tree, and the field identifYing the 
claimant is listed as "Unknown". Once a participant has been 
identified, partial or client, the name of the claimant is listed 

30 claim or portions of the claim have been pushed to V7. 

on the level. 
When the level is selected, the participant level tabs for the 

claimant is shown in the body of the claim folder. 
Line levels are identified by their line type. Before a line 

type is selected, the line level is listed as "Unknown". When 

Control Name 

Claim Tree 

Participant List 

Claim Folder Tool Bar 

The tool bar represents common action that a user performs 
that can be easily accessed by clicking the appropriate icon. 
There are five groups of button on the Claim Folder tool bar 

35 that represent, in order, common activities, adding new items 
to a claim, launching utilities, performing V7 activities, and 
accessing help functions. The enabling/disabling of tool bar 
buttons follows the same logic as for menu items. 

Window Description 

Default 
Type Description Value/State 

Tree View The Claim Tree lists the The current claim 
policy, inslITed, all of tree structure for 
the claimants and their the selected 
related lines in a claim claim. The claim 
tree format. level is selected 

and the claim 
level tabs are 
displayed. 

List View A list of all non-insured All participants 
and non-claimant who are not 
participants associated claimants or 
with a claim. insureds for the 

claim and their 
roles 

Edit Tool Bar Button Command Button Changes the tabs for the Enabled when 
level selected in the claim is in view 
claim tree or participant mode. 
list view to edit mode. 

Refresh Tool Bar Command Button Refreshes the current Enabled when 
Button claim, including all claim is in view 

Participant and Line mode. 
info11llatioll. 

Find Tool Bar Button Command Button Opens the Claim Search Enabled 
window to allow the 
user to search for 
another claim 



US 7,617,240 B2 
87 88 

-continued 

Claim Allocation Command Button Opens the Claim Enabled when 
Tool Bar Button Allocation window. claim is in view 

mode. 
Manage Physical File Command Button Opens the Manage Enabled when 
Tool Bar Button Physical File window. claim is in view 

mode. 
Declare Event Tool Command Button Opens the Declare Enabled when 
Bar Button Events window. claim is in view 

mode. 
Claimant Tool Bar Command Button Adds claimant and Enabled when 
Button opens Participant tabs in claim is in view 

edit mode for entry of a mode. V7 limit 
new claimant level node for claimants is 

999, we will not 
edit this here. 

Participant Tool Bar Command Button Adds a new participant Enabled when 
Button and opens Participant claim is in view 

tabs in edit mode. mode. 
Line Tool Bar Button Command Button Adds line and opens Enabled when 

Line tabs in edit mode claim is in view 
for entry of a new line mode and 
level node. claimant context 

selected in claim 
tree. V7 limit for 
lines is 15 per 
claimant, this 
button will be 
disabled after 15 
added. 

Assign Performer Command Button Opens Assign Performer Enabled when 
Tool Bar Button window claim is in view 

mode. 
Print Screen Tool Bar Command Button Prints the current claim Enabled 
Button folder window. 
Task Assistant Tool Command Button Launches Task Assistant Enabled when 
Bar Button for the current claim claim in view 

mode. 
File Notes Tool Bar Command Button Launch File Notes for Enabled when 
Button the current claim claim in view 

mode. 
Claim History Tool Command Button Launch Claim History Enabled when 
Bar Button for the current claim claim in view 

mode. 
Correspondence Tool Command Button Opens Forms and Enabled when 
Bar Button Correspondence window claim in view 

mode. 
Push to V7 Tool Bar Command Button Open the terminal Enabled when 
Button emulator window at the claim is in view 

first V7 setup screen. mode and claim 
status is pre-push 
or open and there 
are new claimants 
or lines to push. 

Make Payment Tool Command Button Open the V7 PUEM Enabled when 
Bar Button screen in the terminal claim had been 

emulator window if a pushed to V7 and 
claimant or participant a participant is 
tied to one claimant is selected. 
selected. Otherwise, 
display window that 
requires user to select a 
claimant. 

Help Tool Bar Button Command Button Opens Help Enabled 
ClaimlEdit Menu Option Changes Claim tabs into Enabled when 

Edit mode so that the claim is in view 
user can make changes mode. 

ClaimlRefresh Menu Option Refreshes the current Enabled when 
claim, including all claim is in view 
Participant and Line mode. 
information. 

ClaimlFind Menu Option Opens the Claim Search Enabled 
window 

ClaimlSave Menu Option Save the claim level Enabled when the 
when it is in edit mode. claim level is in 

edit mode. 



US 7,617,240 B2 
89 90 

-continued 

ClaimlClaim Status I Menu Option Changes the status of Enabled when 
First Report the claim to claim is in view 
Complete "Unassigned" and mode and claim 

creates First Report status is "New". 
Complete Event. 

ClaimlClaim Status I Menu Option Changes the status of Enabled when 
Assignment the claim to "Open" and claim is in view 
Complete creates Assignment mode and claim 

Complete Event. status is 
"Unassigned". 

ClaimlClaim Status I Menu Option Initiates the close claim Enabled when 
Close process claim is in view 

mode, V7 claim 
status is closed, 
and Millennium 
Claim Status is 
not "Closed·· or 
"Archived·· 

ClaimlClaim Status I Menu Option Changes the status of Enabled when 
Reopen the claim to "Open··. claim is in view 

mode and 
"Closed·· or 
"Archived··. 

ClaimlClaim Status I Menu Option Marks the current claim Enabled when 
Mark In Error and all of its lines in claim is in view 

error. Expires all mode, and not 
participants. pushed to V7. 

ClaimlAllocate Menu Option Opens the Claim Enabled when 
Allocation window. claim is in view 

mode. 
ClaimlManage Menu Option Opens Physical File Enabled when 
Physical File window claim is in view 

mode. 
ClaimlDeclare Event Menu Option Opens Declare Event Enabled when 

window claim is in view 
mode. 

ClaimlClose Claim Menu Option Closes current claim Enabled 
Folder folder window 
EditlCut Menu Option Move selected text to Disabled 

the clipboard 
EditlCopy Menu Option Copy selected text to the Disabled 

clipboard 
Edit I Paste Menu Option Paste text from the Disabled 

clipboard 
ViewlCollapseAll Menu Option Collapses the claim tree Enabled 
View I Expand All Menu Option Expand the claim tree Enabled 
PolicylEdit Menu Option Opens policy tabs in edit Enabled when 

mode. claim is in view 
mode. 

PolicylSave Menu Option Save current policy tab Enabled when 
information. policy level is in 

edit mode. 
ParticipantlNewl Menu Option Opens Participant tabs Enabled when 
Claimant in edit mode for entry of claim in view 

a new claimant level mode. 
node in the claim tree. 

ParticipantlNewl Menu Option Opens Participant tabs Enabled when 
Insured in edit mode for entry of claim in view 

a new insured level node mode. 
in the claim tree. 

ParticipantlNewl Menu Option Opens Participant tabs Enabled when 
Other in edit mode for entry of claim in view 

a new entry in the mode. 
Participant list. 

ParticipantlEdit Menu Option Puts currently selected Enabled when 
participant tabs into edit claim is in view 
mode. mode and 

participant 
selected in tree or 
list box. 

ParticipantlSave Menu Option Saves information Enabled only 
changed on participant when a 
tabs and returns claim to participant level 
view mode. is in edit mode. 

ParticipantlDelete Menu Option Deletes selected Enabled only 
participant when claim is in 

view mode and 
participant is 
selected. 



US 7,617,240 B2 
91 92 

-continued 

LinelNew Menu Option Adds new line to claim Enabled when 
tree and opens line tabs claim is in view 
in edit mode. mode, claimant 

has been selected, 
and limit of 15 
lines per claimant 
has not been 
exceeded. 

LinelEdit Menu Option Puts Line tabs into edit Enabled when 
mode so that the user claim is in view 
can change line details mode and line is 

selected. 
LinelSave Menu Option Save info11llation Enabled when a 

entered on line tabs and line is in edit 
returns claim to view mode. 
mode. 

LinelChange Status I Menu Option Changes status of a line Enabled when 
Close in the claim folder to claim is in view 

"Closed·· mode, a line is 
selected, the line 
is not closed, and 
its V7 status is 
closed. 

LinelChange Status I Menu Option Changes the status of Enabled when 
Reopen the line selected to claim is in view 

"Open··. mode, a line is 
selected, and line 
is "Closed··. 

LinelChange Status I Menu Option Marks selected line in Enabled when 
Mark in Error error. claim is in view 

mode, a line is 
selected, and line 
has not been 
pushed. 

Line I Allocate Menu Option Opens the Claim Enabled 
Allocation window. 

Performers lAs sign Menu Option Opens the Assign Enabled when 
Performers window claim is in view 

mode. 
Performers IView All Menu Option Displays all claim Enabled when 

performers assigned to claim is in view 
the claim in View mode. 
Performer UI. 

UtilitieslPrint Screen Menu Option Prints current screen. Enabled 
UtilitieslView Task Menu Option Opens Task Assistant Enabled when 
Assistant window for current claim is in view 

claim. mode. 
Utilities I Create New Menu Option Opens File Notes Enabled when 
File Note window for current claim is in view 

claim. mode. 
UtilitieslView Claim Menu Option Opens Claim History Enabled when 
History window for current claim is in view 

claim. mode. 
Utilities I Create Menu Option Opens Forms and Enabled when 
Correspondence Correspondence claim is in view 

window. mode. 
Version 71Push Menu Option Launches V7 to start the Enabled when 
Claim push process. claim is in view 

mode and in "Pre-
Push" status or 
open when there 
are unpushed 
claimants and 
lines. 

Version 71Undo Menu Option Reverts claim to pre- Enabled when 
Push push status. claim is in view 

mode and status 
is "Push-
Pending··. 

Version 7 I Make Menu Option Open the V7 PUEM Enabled when 
Payment screen in the terminal claim had been 

emulator window if a pushed to V7 and 
claimant or participant a participant is 
tied to one claimant is selected. 
selected. Otherwise, 
display window that 
requires user to select a 
claimant. 



Help I Contents 

Help I Search For 
Help On 
HelplAbout 

Control Name 

Claim Tree 
Participant List 
Claim Menu 
Edit Menu 
View Menu 
Policy Menu 
Participant Menu 
Line Menu 
Performer Menu 
Utilities Menu 
Version 7 Menu 
Help Menu 

Control Name 

Claim Tree 

All Text Fields 
Participant List 

Edit Tool Bar Button 

Refresh Tool Bar 
Button 

Find Tool Bar 
Button 

Claim Allocation 
Tool Bar Button 
Manage Physical 
File Tool Bar Button 
Declare Event Tool 
Bar Button 

US 7,617,240 B2 
93 94 

-continued 

Menu Option Opens help file to Enabled 
content menu. 

Menu Option Open help file to search Enabled 
window. 

Menu Option Opens window Enabled 
displaying information 
about the application. 

Window Details 

Initial Default Tab 
Focus Button Order 

Yes 
2 

4 

7 

9 
10 
11 
12 

CAR Diagram 

Short 
Cut Mnemonic 

Action Response Key Key 

Click Highlights Node in 
Tree 

Disable participant in 
list view if one selected 
previously 
Shows related tabs in 
view mode. 
Enable appropriate 
menu items and tool 
bar buttons. 

Double Click Level selected in tree 
enters Edit mode. 

Highlight Enable Cut and Copy. 
Click Highlights participant 

in list box 
Deselects level in claim 
tree if one selected 
previously 
Shows related tabs in 
view mode. 
Enable appropriate 
menu items and tool 
bar buttons. 

Double Click Participant selected in 
list view enters Edit 
mode. 

Click Changes the tabs for 
the level selected in the 
claim tree or participant 
list view to edit mode. 

Click Refreshes the current 
claim, including all 
Participant and Line 
info11llatioll. 

Click Opens the Claim 
Search window to 
allow the user to search 
for another claim 

Click Opens the Claim 
Allocation window. 

Click Opens the Manage 
Physical File window. 

Click Opens the Declare 
Events window. 



US 7,617,240 B2 
95 96 

-continued 

Claimant Tool Bar Click Adds claimant and 
Button opens Participant tabs 

in edit mode for entry 
of a new claimant level 
node 

Participant Tool Bar Click Adds new participant 
Button and opens Participant 

tabs in edit mode. 
Line Tool Bar Click Adds line and opens 
Button Line tabs in edit mode 

for entry of a new line 
level node. 

Assign Performer Click Opens Assign 
Tool Bar Button Perfo11ller window 
Print Screen Tool Click Prints the current claim 
Bar Button folder window. 
Task Assistant Tool Click Launches Task 
Bar Button Assistant for the 

current claim 
File Notes Tool Bar Click Launch File Notes for 
Button the current claim 
Claim History Tool Click Launch Claim History 
Bar Button for the current claim 
Correspondence Click Opens Forms and 
Tool Bar Button Correspondence 

window 
Push to V7 Tool Bar Click Open the terminal 
Button emulator window at the 

first V7 setup screen. 
Make Payment Tool Click Open the V7 PUEM 
Bar Button screen in the terminal 

emulator window if a 
claimant or participant 
tied to one claimant is 
selected. Otherwise, 
display window that 
requires user to select a 
claimant. 

Help Tool Bar Click Opens Help 
Button 
ClaimlEdit Click Changes Claim tabs 

into Edit mode so that 
the user can make 
changes 

ClaimlRefresh Click Refreshes the current Ctrl + R 
claim, including all 
Participant and Line information. 

ClaimlFind Click Opens the Claim Ctrl + F 
Search window 

ClaimlSave Click Save the claim level 
when it is in edit mode. 

ClaimlClaim Status I Click Changes the status of 
First Report the claim to 
Complete "Unassigned" and 

creates First Report 
Complete Event. 

ClaimlClaim Status I Click Changes the status of 
Assignment the claim to "Open" 
Complete and creates Assignment 

Complete Event. 
ClaimlClaim Status I Click Initiates the close claim 
Close process 
ClaimlClaim Status I Click Changes the status of 
Reopen the claim to "Open". 
ClaimlClaim Status I Click Marks the current claim 
Mark In Error and all of its lines in 

error. Expires all 
participants. 

ClaimlAllocate Click Opens the Claim 
Allocation window. 

ClaimlManage Click Opens Physical File 
Physical File window 
ClaimlDeclare Click Opens Declare Event 
Event window 
ClaimlClose Claim Click Closes current claim 
Folder folder window 
EditlCut Click Move selected text to Ctrl + X 

the clipboard 



US 7,617,240 B2 
97 98 

-continued 

EditlCopy Click Copy selected text to Ctrl + C 
the clipboard 

Edit I Paste Click Paste text from the Ctrl + V 
clipboard 

ViewlCollapseAll Click Collapses the claim tree 
View I Expand All Click Expand the claim tree 
PolicylEdit Click Opens Policy tabs in 

edit mode 
PolicylSave Click Save policy 

info11llation and returns 
tabs to view mode. 

ParticipantlNewl Click Opens Participant tabs 
Claimant in edit mode for entry 

of a new claimant level 
node in the claim tree. 

ParticipantlNewl Click Opens Participant tabs 
Insured in edit mode for entry 

of a new insured level 
node in the claim tree. 

ParticipantlNewl Click Opens Participant tabs 
Other in edit mode for entry 

of a new entry in the 
Participant list. 

ParticipantlEdit Click Puts currently selected 
participant tabs into 
edit mode. 

ParticipantlSave Click Saves info11llation 
changed on participant 
tabs and returns claim 
to view mode. 

ParticipantlDelete Click Deletes selected 
participant 

LinelNew Click Adds new line to claim 
tree and opens line tabs 
in edit mode. 

LinelEdit Click Puts Line tabs into edit 
mode so that the user 
can change line details 

LinelSave Click Save information 
entered on line tabs and 
returns claim to view 
mode. 

LinelChange Status I Click Changes status of a line 
Close in the claim folder to 

"Closed·· 
LinelChange Status I Click Changes the status of 
Reopen the line selected to 

"Open··. 
LinelChange Status I Click Marks selected line in 
Mark in Error error. 
Line I Allocate Click Opens the Claim 

Allocation window. 
Performers lAs sign Click Opens the Assign 

Perfo11llers window 
Performers IView Click Displays all claim 
All performers assigned to 

the claim in View 
Performer UI. 

Utilities I Print Click Prints current screen. Ctrl + P 
Screen 
UtilitieslView Task Click Opens Task Assistant 
Assistant window for current 

claim. 
Utilities I Create Click Opens File Notes 
New File Note window for current 

claim. 
UtilitieslView Click Opens Claim History 
Claim History window for current 

claim. 
Utilities I Create Click Opens Forms and 
Correspondence Correspondence 

window. 
Version 71Push Click Launches V7 to start 
Claim the push process. 
Version 71Undo Click Reverts claim to pre-
Push push status. 
Version 7 I Make Click Open the V7 PUEM 
Payment screen in the terminal 

emulator window if a 



US 7,617,240 B2 

Help I Contents Click 

99 

-continued 

claimant or participant 
tied to one claimant is 
selected. Otherwise, 
display window that 
requires user to select a 
claimant. 
Opens help file to 
content menu. 

Help I Search For 
Help On 
HelplAbout 

Click 

Click 

Open help file to search 
window. 
Opens window 
displaying information 
about the application. 

Literal 

Claim Tree 

Policy 

Insured 

Claim 

Claimant 

Line 

Participant List 
Box 

Length 

Data Elements 

Control 
Type 

Tree 
View 
Tree 
View 
Node 
Tree 
View 
Node 

Tree 
View 
Node 
Tree 
View 
Node 

Tree 
View 
List 
View 

Data Entity 
Tie 

Policy 
Number 
(Policy) 
Participant 
Preferred 
Name 
(Insurance 
Involvement) 
Claim 
Number 
(Claim) 
Particiapant 
Preferred 
Name 
(Insurance 
Involvement) 
Line Type 
(Line) 
Participant 
Preferred 
Name and 
Role 
(Insurance 
Involvement 
& 
Involvement 
Role) 

Commit Points 

Edit 
Rules * 

Error 
Handling 

ISave Menu Option - Saves all claim level data 
ISave Menu Option - Saves all policy level data 
ISave Menu Option - Saves all participant level data 
ISave Menu Option - Saves all line level data 

Claim 
Policy 
Participant 
Line 
Claim IClose Claim Folder Menu Option - Prompts user to save 

changes if in edit mode. 

Claim History 

Definition 
Claim history shows infonnation in one user interface that 

is intended to include all the constituent elements of a claim 
file. The four types of history included in the component are 
searchable by common indexing criteria like participant, per­
former, and claim phase. A caption report can be produced 
which shows the history selected in a document fonnat. 

Value 
Claim history provides the users with one common inter­

face through which to view a large variety of infonnation 
about the claim. It includes all history available on a claim, 
and is expanded as claim capabilities are built, like incoming 
mail capture. Users develop customized views of history 

100 

based on any criteria the history can be indexed by, and these 
reports are saved as customizable Word documents. The way 
the history information is indexed provides quick access to 

55 pertinent data needed to respond to a variety of requests. 

Key Users 
All members of the claims organization can use claim 

history as a way to quickly see all activity performed on a 
claim. This utility increases the ability to locate key infonna-

60 tion regarding any claim. 

Component Functionality 
Claim history is a component that contains a simple pro­

cess to retrieve history from the other components in the 
65 system. It contains no native data itself. Even viewing a 

history element is done in the component window where the 
item was first captured. 



US 7,617,240 B2 
101 

The second key process of claim history is to produce a 
caption report of all history elements according to the items 
the user wants to include. 

There are two user interfaces needed for this component 
that correspond to the two key functions above: 

Claim History Search: This window utilizes the claim 
phase, participant, performer and history type fields on 
each history record to help the user narrow the search for 
specific history. 

102 
4. View the criteria for a selected template. 
S. View the Microsoft Word template before leveraging any 

data. 

Forms and Correspondence-Template Maintenance 
1. Search for a template based on search criteria. 
2. Create, duplicate, edit, and delete Correspondence tem­

plates and their criteria. 

Caption Report: This report uses the functionality of Word 10 

to produce a report of each history item the user wants to 
see and its associated detail. Since the report is produced 

3. Internally test and approve newly created/edited tem­
plates. 

4. Properly copy Word templates for NAN distribution. 

V ser Interfaces 
in Word, it can be fully customized according to many 
different needs. 

V ser Interfaces 
Claim History Search 
Caption Report (Word document, not VI design) 

Forms and Correspondence 

Definition 
The Forms & Correspondence component supports inter­

nal and external Claim communication and documentation 
across all parts of the claims handling process. 

The Forms and Correspondence---Create Correspondence 
function provides the ability to search for a template using 
various search criteria, select a template for use and then 
leverage claim data into the selected template. 

15 

20 

Search for Correspondence 
Correspondence Details 
Associate Fields 
Maintain Correspondence Search 
Correspondence Template Information-Details tab 
Correspondence Template Information---Criteria tab 
Microsoft Word 

File Notes 

Definition 
File notes captures the textual information that cannot be 

25 gathered in discrete data elements as part of claim data cap­
ture. They are primarily a documentation tool, but also are 
used for internal communication between claim profession­
als. Vsers can sort the notes by participant or claim phase 

The Forms and Correspondence-Template Maintenance 30 

function is a tool for the librarian to create, delete, and update 
Correspondence templates and their associated criteria. 

(medical, investigation, coverage, etc.) in order to permit 
rapid retrieval and organization of this textual information. 

Value 
Some specific processes supported by Forms & Correspon­

dence are: 
Reporting of claims 

to state/federal agencies, etc. at First Notice of Loss 
internal requests for information 

Advising Participants 
Contacting Participants 
Performing Calculations 
Creating correspondence for claims or non-claims 

Value 

File notes speeds the retrieval and reporting of claim infor­
mation. A file notes search utility with multiple indexing 

35 criteria provides claim professionals and supervisors with the 
ability to quickly find a file note written about a particular 
person or topic. The file notes tool utilizes modem word 
processing capabilities which speed entry, reduce error, and 
allow for important information to be highlighted. Further-

40 more, the categorization and key field search eases the pro­
cess of finding and grouping file notes. Finally, file notes 
improves communication as they can be sent back and forth 
between those involved in managing the claim. 

The Forms and Correspondence component supports user 
in creating documentation. 

Leveraging information from the claim directly into corre- 45 

spondence reduces the amount of typing and dictating done to 
create forms and letters. The typical data available to the 
templates should include: author, addressee, claim number, 
date of loss, insured name, policy number, etc. A librarian 
adds and maintains standardized forms and letters in logical 50 

groupings made available for the entire company. 

KeyVsers 
All members of the claims organization can utilize file 

notes. External parties via RMS can view file notes marked 
General. This utility increases the ability to locate key infor­
mation regarding a claim. Anyone who wants to learn more 
about a claim or wants to record information about a claim 
utilizes the file notes tool. 

Component Functionality 
KeyVsers 

Claim employees are the primary users of the Forms and 
Correspondence component, but it can be used by anyone 
who has access to the system to create documents using 
existing templates. 

Forms and Correspondence librarians use the system to 
create, update or remove templates. 

Component Functionality 

Forms and Correspondence---Create Correspondence 
1. Search for a template based on search criteria. 
2. Create a correspondence from a template using claim 

data. 
3. Create a correspondence from a template without using 

claim data. 

F ile Notes searching is included as part of the claim history 
component which allows the user to search the historical 

55 elements of a claim file including tasks, letters, and signifi­
cant claim change events. 

60 

65 

The user interfaces that are needed for this component are: 
The File Notes Search (part of Claims History component): 

This window utilizes the claim phase fields on the file 
notes record to help the user narrow the search for spe­
cific file notes. Also, it allows users to view all file notes 
that meet specified criteria in a report style format. 

File Notes Entry: The window used to record the file note. 
It embeds a word processing system and provides the 
ability to categorize, indicate a note as company (pri­
vate) vs. general (public), save the note as a draft or a 
final copy, and send the note to another person. 



US 7,617,240 B2 

User Interfaces 
File Notes 
Draft File Note Review 
Participant Search 
Perfonner Search 

103 

Address Book 

User Interfaces 
Find Client 
Maintain Client 

Definition 

104 

Index 

The Index, or Claim Search, component provides the abil-Definition 
Address Book is the interface between the claims system 

and the Client database. The Client application is a new 
component designed to keep track of people or organizations 
that interact with RELIANCE for any reason, but claims are 
most likely the first application to use Client. The Address 
Book is accessed directly from the Desktop and from the 
Claim Folder. 

10 ity to locate claims within the system using various search 
criteria. The criteria cover a wider variety of search capabili­
ties than exist today including, but not limited to, claim per­
formers, participants, phonetic name searches, addresses, 
roles, offices, and lines of business. The search results display 

15 selected claim, participant, and performer data to help iden­
tify each claim. 

The Address Book meets several needs within the claim 
organization. Although, its primary function is to support the 
adding of participants to a claim, it acts as a pathway to the 
Client database for searching out existing participants, and 
adding new people or organizations to the corporate database. 

The Index component also allows easy navigation to vari­
ous claim components like the Claim Folder, once a claim has 
been identified. It can be accessed from the Desktop and from 

20 any open Claim Folder. 

The Client database maintains information on names, 
addresses, phone numbers, and other infonnation that always 
applies to a person or organization no matter what role they 
play on a claim. 25 

Value 
Address Book provides a common definition of people or 

organizations that interact with RELIANCE, and therefore 
provides a much more efficient means of capturing this infor- 30 

mati on. Each Client database entry provides the ability to link 
a person or organization to all the different roles that they play 
across the organization, and therefore makes retrieving infor­
mation on a client by client basis quick and easy. 

There are many benefits to RELIANCE by having a com- 35 

mon address book. Infonnation on people and organizations 
is leveraged into other activities like enabled tasks that lookup 
a client's phone numbers when a call needs to be made. 
Information that has been redundantly stored in the past can 
be entered once and reused. Once all areas of RELIANCE use 40 

the Client application, different areas of the company can 
share definitions of individuals and organizations. 

Component Functionality 
Address Book allows users to add, edit and delete records 

from the Client database. It also provides a robust search 45 

facility, including phonetic name searches to find people con­
tained in the Client database. 

There are two primary user interfaces for the Address 
Book: 

The Index component is designed to support several busi­
ness processes within the claim organization. Its functions are 
critical to improving claim staff productivity and customer 
service in the following areas: 

Matching Mail 
The capabilities of the Index search make it easier to 

identify the claim a piece of mail belongs to based on 
criteria used to identify claims in fonns, correspon­
dence, and bills. The perfonners for a claim can also 
be identified for mail routing purposes. 

Phone Inquiries 
This window is the primary point to handle incoming 

phone inquiries for any claim. Users can find claims 
quickly without having to burden the caller with 
requests for additional information. 

Duplicate Claims 
Prior to setting up new claims, checks can be done to 

ensure that the claim has not already been entered into 
the system. The additional search capabilities provide 
a greater assurance that duplicate claims will not be 
entered. This reduces the need to delete or merge 
claim records. 

Fraud Identification 
Because claims can be searched easily by participant 

and other criteria, fraud questions can be easily 
researched. This is not the primary purpose of this 
component, however. 

Find Address Book Entry-This is a search window that 
allows a user to find records in the Client database using 
names, addresses, phone numbers, and other identifiers. 
From this window, specific records can be selected and 
attached as participants on claims. 

50 Value 

MaintainAddress Book Entry-This window allows users 
to add or edit information about a client by specifying 
their names, addresses, phone numbers, email infonna­
tion, and identification numbers like a SSN or TIN. 

Index reduces the time required to find existing claims, and 
also reduces potential rework from not finding claims when 
they are needed for matching mail or duplicate checks. 

55 Key Users 
Claim employees are the primary users of the Index win­

dow, but it can be used by anyone who has access to the 
system to access claims without having to memorize tracking 
numbers. 

Component Functionality 

The Address Book is created concurrently with the Client 
application to make sure that a consistent design approach is 60 

followed. Index is primarily a robust search engine that quickly and 
efficiently searches for claims. It is not a component that 
stores its own data, as it is primarily focused on pointing users 

65 more quickly and directly to claim data. 

Key Users 
All members of the claim organization use the Address 

Book to look up infonnation on people and organizations in 
the client database. Those who set up and handle claims use 
the Address Book to identify participants. 

Index is composed of one search window that follows the 
format of all other search windows in the system. 



US 7,617,240 B2 

User Interfaces 

Find Claims 

Definition 

105 

Injury 

The Injury component captures versions of a claimant's 
injuries as they progress. This window captures injury infor­
mation in the form of discrete data fields, reducing the need 10 

for free form text file notes. Capturing data, instead of text, 
allows the injury to be closely tracked and quickly reported. 
The data can also serve as feedback statistics, i.e. for building 
best claims practices and in risk selection. The preferred 15 

method of identifying and documenting injuries is the ICD-9 
code. The user can enter or search for the ICD-9 code using 
descriptors or numbers. 

106 
User Interfaces 

Claim Folder-Participant Level-Injury Tab 
ICD-9 Search Window 
Claim Folder-Participant Level-Disability Manage­

mentTab 

Negotiation 

Definition 
FIG. 10 is an illustration of the Negotiation component of 

one embodiment of the present invention. Negotiation pro­
vides a single, structured template that is supplemented by 
supporting views, to capture events regarding a negotiation. 
The negotiation interface 1000 captures key elements of a 
negotiation, such as a settlement target range, current 
demands and offers, and Supporting Strengths and Opposing 
Assertions of the claim. Negotiation information is gathered 
in discrete data elements 1002, enabling the capability to 
generate events 1006 based on key attributes or changes in a 

Value 

Data on every injury is captured and summarized in a 
consistent, accessible format, making recording and review­
ing the case considerably less time consuming and more 
organized, allowing the adjuster to focus on desired out­
comes. This "snapshot" of the current status and history of an 
injury greatly facilitates handing off or file transfers between 
claim professionals. Additionally, the discrete data field cap­
ture enables the use of events to identifY action points in the 
lifecycle of a claim that has injuries. 

20 negotiation. These events 1006 are then sent to a common 
event queue 1008. The negotiation component 1000 inter­
faces with the File Notes 1004 component to provide addi­
tional documentation capability, in a non-structured format. 
The negotiation template is supported by all other data con­
tained in the Claim Folder. 

25 Value 
Data on every case is summarized in a consistent, acces­

sible format, making recording and reviewing the case con­
siderably less time consuming and more organized, allowing 

Key Users 

All members of the claims organization can utilize the 
Injury component. This component increases the ability to 
locate and summarize key information regarding an injury. 

30 the adjuster to focus on negotiation strategy and desired out­
comes. This "snapshot" of the current status greatly facilitates 
handing off or file transfers between claim professionals. 
Additionally, the discrete data field capture enables the use of 
events to identify action points in a negotiation. 

35 Key Users 
Component Functionality All members of the claims organization can utilize Nego­

tiation. This component increases the ability to locate and 
summarize key information regarding a negotiation. 

Component Functionality 
Negotiation is a type of resolution activity, which is part of 

the claim component of the claims entity model. The claim 
component is the central focus of the claims entity model, 
because it contains the essential information about a claim. 
The claim component supports the core claim data capture 

Injury is an aspect of participant information, which is 
related to the claimant participants on the claim. The partici­
pant component relates clients to all other claim-related enti­
ties. Information on injuries will be related to participant 40 

records and displayed at the participant level information in 
the Claim Folder. New entities are needed to implement 
injury data capture: injury and ICD-9 search. The Injury 
component interacts with five other components: Claim 
Folder-which contains Disability Management data about a 
claimant; Participant-which lists the individuals associated 
with the claim; as well as File Notes, Task Assistant and the 
Event Processor. The injury component also uses Microsoft 
WORD to create a formatted, historical injury report for a 
particular individual. 

45 functionality, first notice processes, and resolution activity 
for claims. The main types/classes of data within the claim 
component are: Claim, Claimant, Line, Claim History, Reso­
lution Activity, Reserve Item, and Reserve Item Change. 
Three entities are needed to implement negotiation: resolu-

The user interfaces that are needed for this component are: 

50 tion activity, claim and claim history. There is also interaction 
between the Negotiation component and the Task Assistant, 
File Notes and Event Processor components. 

Injury: This is the primary injury window which captures 
basic injury report data, including: the source of the 
injury report, the date of the injury report, a Prior Medi- 55 

cal History indicator, and then a detailed list of the 
injuries associated with that report. The detailed list 
includes discrete fields for the following data: ICD-9 
code, body part, type, kind, severity, treatment, diagnos- 60 

tic, a free form text description field, and a causal rela­
tion indicator. 

ICD-9: This is the search window for locating ICD-9 codes 
and associated descriptions. 

Disability Management: This window contains a subset of 65 

participant data fields that enables more effective injury 
management. 

The user interfaces needed for negotiation are: 
Negotiation: This window captures demand and offer data, 

including: amount, date, type and mode of communica­
tion. The target settlement range, lowest and highest, is 
captured, along with strengths and weaknesses of the 
case. 

Supporting user interfaces, which are also part of the Claim 
Folder, include: 

Liability (claim level tab): This window is used to docu­
ment liability factors in evaluating and pricing a claim. 
The liability factors include percent of liability for all 
involved parties; form of negligence that prevails for that 
jurisdiction; theories of liability that the claim handler 
believes to be applicable to the claim. Used prior to 
developing negotiation strategy. 



US 7,617,240 B2 
107 

Damages (line level tab): This window provides the capa­
bility for pricing and evaluating a claim based on 
incurred and expected damages. Used prior to develop­
ing negotiation strategy. 

User Interfaces 
Claim Folder-Line Level-Negotiation Tab 
Claim Folder-Claim Level-Liability Tab 
Claim Folder-Line Level-Damages Tab 

108 
clients to claims 1204 by defining the roles that they play, e.g. 
claimant, driver, or doctor. It reuses the information contained 
in the Address Book 1202 so that it does not have to be 
reentered for each participant. 

The participant component also allows linkages 1206 to be 
made between participant and to various items on claims. A 
doctor can be linked to the claimant they treat and a driver can 
be linked to the damaged vehicle they were driving. 

Once a participant has been added to a claim, additional 

Organization 10 information 1208 that is specific to that claim can be attached. 

Definition 

This information includes injury, employment, and many 
other types of information that are specific to the role that a 
person or organization plays in a claim. 

FIG. 11 is a flow diagram of the operations utilized by the 
Organization component in accordance with one embodi­
ment of the present invention. The Organization component 
11 00 allows common information for the people who perform 
work on claims to be stored, searched, and reused across all 
the claims they work. 

The business processes primarily supported by Participant 
15 1200 are: 

In one embodiment of the organization component 1100, 20 

all employee records are kept in a common database 1102 so 
that they can be attached to the specific claims they work, 
located in a claim database 1104. The common information 
that is kept on the employee record includes name, location, 
phone, and some minimal organizational context information 25 

like office or division. This is the minimum required to sup­
port the tracking of performers on claims. The employee 
information 1102 is then linked 11 06 to the claim information 
1104 and the databases are updated 1108. Having linked the 
employees 1102 with the claims 1104 they are working on, 30 

the database can be searched by employee or claim 1110. 
However, this version of the organization can be expanded 

to include organization relationships (specifically tracking 
where an employee falls in the organization structure), groups 
of individuals as performers for claim assignment, and claim 35 

allocation within the organization structure. These capabili­
ties are to support any notion of caseload analysis, manage­
ment reporting, or automated assignment that would need to 
be included. 

Value 
By tracking common definitions of employees across 

claims, indexing capabilities are improved and performers on 
claims are accurately tracked. 

Key Users 

40 

45 

Recording Involvement in a Claim 
There is a basic data capture requirement to keep track of 

individuals and organizations involved in a claim, and 
this is done most efficiently using the participant 
approach. 

Recording Role Specific Information Address Book 1202 
stores information that can be reused across claims, but 
the Participant component 1200 needs to maintain the 
information that is specific to an individual or organiza­
tion's involvement in a specific claim. 

Making Contact with Clients 
Because participant ties back to the common Address 

Book 1202, any contact information contained there 
can be quickly and easily obtained. 

Forms and Correspondence 1210 
Leveraging address information into letters provides an 

efficiency enablement to all users who don't need to 
look up name and address information. 

Categorizing History Information 
Participants are used to categorize history items like 

tasks and file notes so that information relating to a 
single participant on a claim can be easily retrieved. 

Claim Indexing 
Attaching participants to a claim allows the Index com­

ponent to be more effective in the processing of claim 
inquires. 

Key Users 
The primary users of the Participant components 1200 are 

those who work directly on processing claims. They are the 
ones who maintain the participant relationships. 

The primary users of the organization capabilities are the 
administrative personnel who set up performers, as well as the 
technicians who track who is working a claim. 

Component Functionality 
The design of the minimum scope of the organization 

component includes a search window to find employees in the 
organization and a detail window to see specific information 
on each employee. 

Claims professionals who deal with injuries use the Par­
ticipant tabs in the claim folder to track injuries and manage 

50 disabilities for a better result on the claim. 

User Interfaces 
Organization Entity Search 
Add/Edit Organization Entity 

Participant 

Definition 

Value 
Because the Participant component 1200 only seeks to 

define the roles that individuals and organization play across 
55 all claims, there is no redundant entry of name, address, and 

phone information. This is all stored in the Address Book 
1202. 

The number of potential participant roles that can be 
defined is virtually limitless, and therefore expandable, as the 

60 involvement of additional people and organizations needs to 
be captured. 

FIG. 12 is an illustration of the Participant component in 
accordance with one embodiment of the present invention. 
Participant 1200 provides the link between claims and indi- 65 

viduals and organizations stored in the Client database and 
accessed through the Address Book 1202. Participant links 

Component Functionality 
Most participant functionality is executed within the con­

text of the Claim Folder. The Claim Folder contains partici­
pants levels in two ways. First, claimants are shown in the 
claim tree on the left-hand side of the window. Below this, 



US 7,617,240 B2 
109 

other participants are shown in a list. Selecting any participant 
displays a set of participant information tabs that displays the 
following information: 

Participant Details-Basic information about the role that 
a participant plays in a claim and all the other partici­
pants that are associated to it. 

Contact Information-Information from the Address Book 
on names, addresses, and phone numbers. 

Injury-Specific information on the nature of injuries suf­
fered by injured claimants. 

Disability Management-Information on injured claim­
ants with disabilities. 

Only the first two tabs will be consistently displayed for all 
participants. Other tabs can appear based on the role and 
characteristics of a participant's involvement in a claim. 

110 
The Performer component reduces the time required to find 

employees, teams or any potential performer, and ensures 
consistency of data. 

Key Users 
The primary users of the Performer component are those 

who work directly on processing claims. They are the ones 
who maintain the assignment of roles or tasks related to a 
claim. 

10 Component Functionality 
The Performer component supports an informational func­

tion and an assignment function. 
1. View details for performers (employee, office, unit, etc.). 

These details may suggest organizational entity relationships 
15 but in no way define or maintain them. 

Adding or editing participant role information is actually 
done through the Address Book 1202 search window. The 
process is as simple as finding the Address Book 1202 record 
for the intended participant and specifying the role the par­
ticipant plays in the claim. Once this is done, the participant 20 

will be shown in the Claim Folder, and additional information 
can be added. 

2. View all performers assigned to a claim, currently and 
historically (includes individuals, groups, offices, etc.) 

3. Assign performers to a claim-at the claim level, claim­
ant, and supplement levels (including individuals, office, 
groups, etc.) 

User Interfaces 
Assign Performer 
Performer Roles 
View Performer List 

The notion of a participant is a generic concept that is not 
specific to claims alone. It is a based on design pattern that can 
be expanded as additional claims capabilities are built. Any 25 

involvement of an individual or an organization can be mod­
eled this way. 

Task Assistant 

User Interfaces 
Participant Level-Participant Details Tab 
Participant Level-Contact Information Tab 
Participant Level-Events Tab 
Participant Level-Injury Tab (Injury Component) 
Participant Level-Disability Management Tab (Injury 

Component) 
View Participant List 

Performer 

Definition 
The Perforer component allows organizational entities (in­

dividuals, groups, offices, etc.) to be assigned to various roles 
in handling the claim from report to resolution. The Per­
former component is utilized on a claim-by-claim basis. 

A performer is defined as any individual or group that can 
be assigned to fulfill a role on a claim. 

30 

Definition 
The TaskAssistant is the cornerstone of a claim profession-

al's working environment. It provides diary functions at a 
work step level that allow the management of complex claim 
events. It enables the consistent execution of claim best prac­
tices by assembling and re-assembling all of the tasks that 

35 need to be performed for a claim based on detailed claim 
characteristics. These characteristics come from regulatory 
compliance requirements, account servicing commitments, 
and best practices for handling all types of claims. The Task 
Assistant also provides mechanisms that automate a portion 

40 of or all of the work in performing a task to assist the claim 
professional in completing his or her work. Once a task is 
completed, the Task Assistant generates a historical record to 
document the claim handler's actions. 

45 

The Task Assistant is ... 
A method for ensuring consistent execution of regulatory 

requirements, account servicing commitments and 
claim handling best practices 

The Performer component supports the assignment pro­
cesses within the claim handling process. This goes beyond 
the assignment of claim at FNOL. This component allows the 50 

assignment of work (tasks) as well. 

A source of automated assistance for claim professionals 
An organization-wide communication tool within the con­

text of a claim (it does not replace Lotus Notes). 
A mechanism for making claims strategy common practice 

Some specific processes supported by Performer are: 
Assign claims 

identification of different roles on the claims in order to 
assign the claim (Initiate claim-DC Process work) 

Keeps roles and relationships of performers within claims 
Assigning tasks 
Reassignments 
Supports Initiate claim process-assignment 
Search mechanism for employees, offices 
All performers should be in the Organization component 
Provides history of assignments 

Value 
The Performer component allows the assignment of roles 

or tasks to individuals or groups. The data about performers 
resides in a common repository: the Organization component. 

55 

and sharing corporate experience 
A diary application to keep track of claims 
A historical tracking tool 
A way to get a claim professional's or a team leader's 

attention 
A mechanism for making process changes in the organiza­

tion quickly 
Within the Task Assistant, claim professionals have the 

60 ultimate control to determine if and when tasks need to be 
completed. They also have the ability to add tasks to the list to 
represent work they do that is not reflected in standard defi­
nitions of tasks in the system. This supports a vision of the 
claim professional as a knowledgeable worker who spends 

65 most of his or her time focused on a successful result through 
investigation, evaluation, and negotiation of the best possible 
outcome. 



US 7,617,240 B2 
111 

Value 
The Task Assistant reduces the time required to handle a 

claim by providing the claim professional with the automatic 
scheduling of claim activity. It helps the claim professional 
remember, perform and record tasks completed for every 
claim. Completed tasks are self-documenting and remain part 
of the claim history. 

112 
as telephone support, forms and correspondence, and 
file notes. The number of potential task enablements is 
virtually limitless. 

Task Entry: Allows a user to add new task that weren't 
automatically added to the task list to cover situations 
where the claim handler wants to indicate work to be 
done that is not reflected by the standard task definitions 
in the task library. 

Behind the functioning of the Task Assistant, the Task 
The Task Assistant also ensures the consistent handling of 

claims throughout the organization, and by doing so can 
significantly impact expenses and loss costs. Furthermore, it 
helps ensure regulatory compliance and the fulfillment of 
account promises. It supports the teamwork required in han­
dling difficult claims as a structure communication mecha-

10 Engine continually evaluates messages sent from other com­
ponents and determines based on the rules established by the 
task librarian, which tasks should be populated on the Task 
Assistant. Messages are sent to the Task Assistant when 

msm. 
The automated enablements for tasks reduce the amount of 15 

time claim professionals have to spend on low value-added 
activities such as writing correspondence. They can therefore 
spend a larger amount of time investigating, evaluating, and 
negotiating each claim. 

Key Users 
20 

While claim professionals are the primary users of the Task 
Assistant, others use the application as well. The entire claims 
department utilizes the Task Assistant to structure work and 
communicate with one another. Team leaders use the Task 25 

Assistant to conduct file review and to guide the work of the 
claim professional. Administrative staff use the Task Assis­
tant as a means to receive work and to communicate the 
completion of that work. Claim professionals use the Task 
Assistant to complete work and to request assistance from 30 

team leaders and specialty claim professionals. 

something significant occurs in another component. The mes­
sages contain the characteristics the Task Engine needs to 
evaluate in order to place the proper tasks on the task list. 

User Interfaces 
Task Assistant 
Reassign Task 
Edit/Add Task 
Clear Task 
Mark Task In Error 
Build Workplan 
Participant Search 
Participant Phone Number 
Phone Task 
Personal Profile 
Account Search 
Organization Search 
Performer Search 

Event Processor/Task Engine 

Definition 

The TaskAssistantrequires a new type of user to set-up and 
maintain the variety of tasks that are created. A task librarian 
maintains the task library, which contains the list of all the 
standardized tasks across the organization. The librarian 35 

defines rules which cause tasks to be placed on task lists based FIG. 14 is an illustration of the Event Processor 1400 in 
combination with other components of the system in accor­
dance with on embodiment of the present invention. The 

40 Event Processor 1400 works behind the scenes of all claims 

on claim characteristics, dates which define when tasks are 
due, and task enablement through other applications. 

Component Functionality 
FIG. 13 is a flow diagram of the operations utilized by the 

Task Assistant component of the present invention. The pro­
cessing of tasks through the Task Assistant comprises the 
lifecycle of the task from its creation to its completion or 
deletion. In first operation 1300, the Task engine provides 45 

tasks to the Task Assistant. In the second operation 1302, the 
Task Assistant then displays the list of tasks provided by the 
Task Engine. In the third operation 1304, the user is allowed 

applications to listen for significant events that have occurred 
in the life of various entities in the system like claims (but 
potentially many more like accounts or policies in the future). 
It determines what the response should be to each event and 
passes it onto the system component that will process it. The 
Event Processor is completely generic to any specific entity or 
event in the system and therefore enables automation based 
on an almost limitless number of events and responses that 
could be defined. 

FIG. 15 is an illustration of the Task Engine 1404 in accor-
dance with one embodiment of the present invention. The 
Task Engine 1404 processes the most common set of event 
responses, those that need to generate tasks 1406 based on 
events 1006 that have occurred. It compares the tasks that 

to add tasks and edit tasks provided by the Task Engine. The 
fourth operation 1306 occurs as the claim is processed. As the 50 

claim is processed, the user and the Task Engine determine 
when the various tasks are completed. When a tasks is com­
pleted, the fifth operation 1308 occurs. In the fifth 1308 opera­
tion, a historical record is generated for any tasks which is 
determined to be completed. 55 have been defined to the system to a set of claim criteria to tell 

which tasks should be added and which tasks should now be 
The key user interfaces for this component are: 

The Task Assistant: This is the utility that supports the 
population, execution, and historical tracking of tasks. It 
allows users to perform tasks, complete tasks, and 60 

remove tasks that have been automatically added. 

The Task Workplan: This user interface allows the user to 
strategize the plan for a specific claim. It shows tasks 
attached to their respective levels of the claim including 
lines, participants, and the claim itself. 

Task Enablement Windows: There are many windows that 
can be added to enable task with other applications such 

65 

marked complete. 
The only interface the user sees to these components is the 

task library 1500, which allows task librarians 1502 to define 
the tasks and the rules that create them which are used by the 
Task Engine 1404. Working with these components is almost 
entirely a function performed by specialists who understand 
the complexity of the rules involved in ensuring events 1006 
and tasks 1406 are handled properly. 

The event processor 1400 also manages the communica­
tion and data synchronization between new claim compo­
nents and LEGACY claim systems. This single point of con-



US 7,617,240 B2 
113 

tact effectively encapsulates the complex processes of 
translation and notification of events between the two sys­
tems. 

Value 
The automated determination of event responses provides 

enormous benefits to system users by reducing the mainte­
nance they have to perform in ensuring the correct disposition 
of claims. Users trigger events by the data they enter and the 
system activities they perform, and the system automatically 10 

responds with appropriate automated activities like generat­
ing tasks. 

The task generation rules defined in the Task Library pro­
vide an extremely flexible definition of claim handling pro­
cesses limited only by the data available in the system on 15 

which task creation rules can be based. Process changes can 
be implemented quickly by task librarians, and enforced 
through the Task Assistant. 

Key Users 
Although all claim personnel directly benefit from the 20 

functioning of the event processor and task assistant, only 
specially trained users control the processing of these com­
ponents. Task Librarians using the Task Library user interface 
handle the process of defining new tasks and the rules that 
trigger them in the Task Engine. 25 

Operations personnel who ensure that all events are pro­
cessed correctly and that the appropriate system resources are 
available to manage the throughput handle event processing. 

Component Functionality 30 

114 
a data component that stores, retrieves and manipulates 

data utilizing a plurality of functions; and 
a client component having a user interface for processing 

said insurance related claims and including: 
an adapter component that transmits and receives data 

to/from the data component, 
a business component that serves as a data cache and 

includes logic for manipulating the data, and 
a controller component adapted to handle events gener­

ated by a user utilizing the business component to 
cache data and the adapter component to ultimately 
persist data to a data repository, 

wherein the client component is adapted for: (i) allowing a 
user to define tasks, during the execution phase of the 
program that processes the tasks and rules, by way of the 
user interface of the client component, wherein said 
tasks are carried out by a claim handler to achieve a goal 
upon completion, (ii) allowing the user to define the 
rules, during the execution phase of the program that 
processes the tasks and the rules, by way of the user 
interface of the client component, wherein said rules 
dictate which said tasks to select based on predeter­
mined events defined in said rules, (iii) receiving at least 
one event, (iv) automatically generating a task based on 
the received event in accordance with the rules and (v) 
outputting the task. 

2. The computer program product as set forth in claim 1, 
wherein the client component is further adapted for indicating 
which tasks are complete. 

3. The computer program product as set forth in claim 1, 
wherein an event is generated by data entered by a user and 
posted to an event queue, then said task is automatically 
generatedbased on the event received from the event queue. 

As shown in FIG. 14, the Event Processor 1400 utilizes a 
common queue 208 of events 1006 that are populated by any 
component 1402 of the system to identify what events have 
occurred. Working this queue, the Event Processor deter­
mines the appropriate response for an event and provides 
information to other components that need to process them. 
The Event Processor does not process any events itself and 
maintains clear encapsulation of system responsibilities. For 
example, an event that affects claim data is processed by the 
claim component. 

4. The computer program product as set forth in claim 3, 
35 wherein the event queue is populated with events from the 

data components of a system. 

The Task Engine 1404 follows a process of evaluating 
events 1006, determining claim characteristics, and matching 
the claim's characteristics to tasks defined in the Task Library 
1500. 

5. The computer program product as set forth in claim 3, 
further comprising a server component adapted to determine 
claim characteristics and match the claim characteristics to 

40 defined tasks. 
6. The computer program product as set forth in claim 1, 

wherein the goal is insurance related. 
7. The computer program product as set forth in claim 1, 

wherein the outputted tasks are provided for display on a list 
45 prior to completion of the outputted tasks. 

The key user interface for the Task Engine 1404 is the Task 
Library 1500. The Task Library 1500 maintains the templates 
that contain the fields and values with which tasks are estab­
lished. A task template might contain statements like "When 
event=litigation AND line of business=commercial auto, 
then ... "Templates also identify what a tasks due date should 50 

be and how the task is enabled with other applications. 

User Interfaces 
Search Task Template 
Search Triggering Templates 
Task Template Details 
While various embodiments have been described above, it 

should be understood that they have been presented by way of 
example only, and not limitation. Thus, the breadth and scope 

55 

of a preferred embodiment should not be limited by any of the 
above described exemplary embodiments, but should be 60 

defined only in accordance with the following claims and 
their equivalents. 

What is claimed is: 
1. A computer program product comprising a computer 

program embodied on a computer readable medium for han- 65 

dling tasks associated with the processing of an insurance 
related claim, the computer program comprising: 

8. A computer program product comprising a computer 
program embodied on a computer readable medium for han­
dling tasks associated with the processing of an insurance 
related claim, the computer program comprising: 

a user interface form code segment adapted for collecting 
data from a user input; 

a business object code segment adapted for caching data; 
an adapter code segment adapted for transmitting data to a 

server; and 
a controller component code segment adapted for handling 

events generated by the user interacting with the user 
interface code segment, providing validation within a 
logic unit of work, containing logic to interact with the 
business component, creating one or more business 
objects, interacting with the adapter component to add, 
retrieve, modifY, or delete business objects, and provid-
ing dirty flag processing to notifY a user of change pro­
cessing; 

wherein the computer program is adapted for: (i) allowing 
a user to define tasks, during the execution phase of the 
program that processes the tasks and rules, by way of a 
user interface of a client component, wherein said tasks 



US 7,617,240 B2 
115 

are carried out by a claim handler to achieve a goal upon 
completion, (ii) allowing the user to define the rules, 
during the execution phase of the program that processes 
the tasks and the rules, by way of the user interface of the 
client component, wherein said rules dictate which said 
tasks to select based on predetermined events defined in 
said rules, (iii) receiving at least one event, (iv) automati­
cally generating a task-based on the received event in 
accordance with the rules and (v) outputting the task. 

9. The computer program product as set forth in claim 8, 10 

wherein the computer program is further adapted for indicat­
ing which tasks are complete. 

10. The computer program product as set forth in claim 8, 
wherein an event is generated by data entered by a user and 
posted to an event queue, then said task is automatically 15 

generated based on the event received from the event queue. 
11. The computer program product as set forth in claim 8, 

wherein the goal is insurance related. 
12. The computer program product as set forth in claim 8, 

wherein the outputted tasks are provided for display on a list 20 

prior to completion of the outputted tasks. 
13. A computer program product comprising a computer 

program embodied on a computer readable medium for 
allowing communication between a plurality of clients and a 
server in order to handle tasks associated with the processing 25 

of an insurance related claim, the computer program com­
prising: 

one or more client components included with each client, 
each client component of each client adapted for com­
municating and manipulating data with a first data type, 30 

wherein the client component is adapted for: (i) allowing a 
user to define tasks during the execution phase of the 
program that processes the tasks and rules by way of a 
user interface of the client component, wherein said 
tasks are carried out by a claim handler to achieve a goal 35 

upon completion, (ii) allow the user to define the rules, 
during the execution phase of the program that processes 
the tasks and the rules, by way of the user interface of the 
client component, wherein said rules dictate which said 
tasks to select based on predetermined events defined in 40 

said rules, (iii) receiving at least one event, (iv) automati­
cally generating a task based on the received event in 
accordance with the rules, and (v) outputting the task; 

one or more server components adapted for communicat- 45 

ing and manipulating data with a second data type; and 
one or more adapter components included with each client 

for translating data from the one or more client compo­
nents to the second data type when communicating data 
from the client to the server and further translating data 50 

from the one or more server components to the first data 
type when communicating data from the server to the 
client. 

14. The computer program product as set forth in claim 13, 
wherein the client components are further adapted for indi- 55 

cating which tasks are complete. 
15. The computer program product as set forth in claim 13, 

wherein an event is generated by data entered by a user and 
posted to an event queue, then said task is automatically 
generated based on the event received from the event queue. 60 

16. The computer program product as set forth in claim 14, 
wherein the server component further comprises an event 
queue populated with events generated by data entered by a 
user. 

116 
18. The computer program product as set forth in claim 13, 

wherein the goal is insurance related. 
19. The computer program product as set forth in claim 13, 

wherein the outputted tasks are provided for display on a list 
prior to completion of the outputted tasks. 

20. The computer program product of claim 5 wherein 
completion of a task is a predetermined event. 

21. The computer program product of claim 9 wherein 
completion of a task is a predetermined event. 

22. The computer program product of claim 16 wherein 
completion of a task is a predetermined event. 

23. The computer program product as set forth in claim 13, 
wherein the server component is adapted to determine claim 
characteristics and match the claim characteristics to defined 
tasks. 

24. The computer program product of claim 13 wherein the 
server component is further adapted to identifY a claim char­
acteristic for the insurance related claim being processed and 
associated with the event, and match the claim characteristic 
to a defined task. 

25. The computer program product of claim 24 wherein 
said claim characteristic includes a line of business associated 
with the claim wherein the lines of business comprise auto­
mobiles, yachts and property insurance. 

26. A system for handling tasks associated with the pro­
cessing of an insurance related claim, the system comprising: 

a computer readable medium; 
a server in communication with the computer readable 

medium; and 
a data storage device comprising a data repository in com­

munication with the server; 
wherein a computer program is embodied on the computer 

readable medium, the computer program comprising: 
a data component that stores, retrieves and manipulates 

data utilizing a plurality of functions; and 
a client component having a user interface for process­

ing said insurance related claims and including: 
an adapter component that transmits and receives data 

to/from the data component, 
a business component that serves as a data cache and 

includes logic for manipulating the data, and 
a controller component adapted to handle events gen­

erated by a user utilizing the business component to 
cache data and the adapter component to ultimately 
persist data to a data repository, 

wherein the client component is adapted for: (i) allowing 
a user to define tasks, during the execution phase of 
the program that processes the tasks and rules, by way 
of the user interface of the client component, wherein 
said tasks are carried out by a claim handler to achieve 
a goal upon completion, (ii) allow the user to define 
the rules, during the execution phase of the program 
that processes the tasks and the rules, by way of the 
user interface of the client component, wherein said 
rules dictate which said tasks to select based on pre-
determined events defined in said rules, (iii) receiving 
at least one event, (iv) automatically generating a task 
based on the received event in accordance with the 
rules and (v) outputting the task. 

27. The system of claim 26, wherein the computer program 
is further adapted such that an event is generated by data 
entered by a user and posted to an event queue, then said task 
is automatically generated based on the event received from 

17. The computer program product as set forth in claim 16, 
wherein the event queue is populated with events indicative of 
a completion of a task. 

65 the event queue. 
28. The system of claim 27, wherein the event queue is 

populated with events from the data component. 



US 7,617,240 B2 
117 

29. The system of claim 26, wherein the computer program 
further comprises a server component adapted to determine 
claim characteristics and match the claim characteristics to 
defined tasks. 

30. The system of claim 26, wherein the outputted tasks are 
provided for display on a list prior to completion of the 
outputted tasks. 

31. A system for handling tasks associated with the pro­
cessing of an insurance related claim, the system comprising: 

a computer readable medium; and 10 

a server in communication with the computer readable 
medium; 

wherein a computer program is embodied on the computer 
readable medium, the computer program comprising: 
a user interface form code segment adapted for collect- 15 

ing data from a user input; 
a business object code segment adapted for caching data; 
an adapter code segment adapted for transmitting data to 

the server; and 
a controller component code segment adapted for: han- 20 

dling events generated by the user interacting with the 
user interface code segment; providing validation 
within a logic unit of work; containing logic to inter­
act with the business component; creating one or 
more business objects; interacting with the adapter 25 

component to add, retrieve, modifY, or delete business 
objects; and providing dirty flag processing to notify 
a user of change processing; 

wherein the computer program is adapted for: (i) allow­
ing a user to define tasks, during the execution phase 30 

of the program that processes the tasks and rules, by 
way of a user interface of a client component, wherein 
said tasks are carried out by a claim handler to achieve 
a goal upon completion, (ii) allow the user to define 
the rules, during the execution phase of the program 35 

that processes the tasks and the rules, by way of the 
user interface of the client component, wherein said 
rules dictate which said tasks to select based on pre­
determined events defined in said rules, (iii) receiving 
at least one event, (iv) automatically generating a task 40 

based on the received event in accordance with the 
rules and (v) outputting the task. 

32. The system of claim 31, wherein the computer program 
is further adapted such that an event is generated by data 
entered by a user and posted to an event queue, then said task 45 

is automatically generated based on the event received from 
the event queue. 

33. The system of claim 31, wherein the computer program 
further comprises a server component adapted to determine 
claim characteristics and match the claim characteristics to 50 

defined tasks. 
34. The system of claim 31, wherein the outputted tasks are 

provided for display on a list prior to completion of the 
outputted tasks. 

118 
35. A system for allowing communication between a client 

workstation and a server in order to handle tasks associated 
with the processing of an insurance related claim, the system 
comprising: 

a client workstation; 
a computer readable medium; and 
a server in communication with the client workstation and 

the computer readable medium; and 
wherein a computer program is embodied on the computer 

readable medium, the computer program comprising: 
a client component for execution on the client worksta­

tion, the client component adapted for communicat­
ing and manipulating data with a first data type, 

wherein the client component is adapted for: (i) allowing 
a user to define tasks, during the execution phase of 
the program that processes the tasks and rules, by way 
of a user interface of the client component, wherein 
said tasks are carried out by a claim handler to achieve 
a goal upon completion, (ii) allow the user to define 
the rules, during the execution phase of the program 
that processes the tasks and the rules, by way of the 
user interface of the client component, wherein said 
rules dictate which said tasks to select based on pre­
determined events defined in said rules, (iii) receiving 
at least one event, (iv) automatically generating a task 
based on the received event in accordance with the 
rules, and (v) outputting the task; 

a server component adapted for communicating and 
manipulating data with a second data type; and 

an adapter component included with the client compo­
nent for translating data from the client workstation to 
the second data type when communicating data from 
the client workstation to the server and further trans­
lating data from the server component to the first data 
type when communicating data from the server to the 
client workstation. 

36. The system of claim 35, wherein the computer program 
is further adapted such that an event is generated by data 
entered by a user and posted to an event queue, then said task 
is automatically generated based on the event received from 
the event queue. 

37. The system of claim 35, wherein the server component 
further comprises an event queue populated with events gen­
erated by data entered by a user. 

38. The system of claim 35, wherein the server component 
is adapted to determine claim characteristics and match the 
claim characteristics to defined tasks. 

39. The system of claim 35, wherein the outputted tasks are 
provided for display on a list on said client workstation prior 
to completion of the outputted tasks. 

* * * * * 


