
111111 111

c12) United States Patent
Cheng et al.

(54) CRYPTO-ENGINE FOR CRYPTOGRAPHIC
PROCESSING OF DATA

(75) Inventors: Lee Ming Cheng, Hong Kong (HK);
Ting On Ngan, Hong Kong (HK); Ka
Wai Hau, Hong Kong (HK)

(73) Assignee: Cityu Research Limited, Kowloon,
Hong Kong (HK)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 509 days.

(21) Appl. No.: 10/641,869

(22) Filed: Aug. 15, 2003

(65) Prior Publication Data

US 2005/0036617 Al Feb. 17, 2005

(51) Int. Cl.
G06F 17110 (2006.01)

(52) U.S. Cl. 713/191; 713/189; 713/192;
380/30

(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,316,055 A 2/1982 Feistel

dala_in k 1-y
/

/k 'Z temp_data
/ I/

address k/
SRAMBiock

I/'
~

4 4)" .u
f/.,_.

/ [/

a

b1

n1

b2

n2

US007634666B2

(10) Patent No.: US 7,634,666 B2
Dec. 15, 2009 (45) Date of Patent:

wo

4,484,301 A *
4,891,781 A *
6,230,179 B1*
6,397,241 B1 *
6,671,709 B2 *
7,027,597 B1 *
7,277,540 B1 *

1111984 Borgerding et al 708/632
111990 Omura 708/670
5/2001 Dworkin et al 708/492
5/2002 Glaser eta!. 708/625

12/2003 Glaser eta!. 708/492
4/2006 Stojancic eta!. 380/28

10/2007 Shiba eta!. 380/28

FOREIGN PATENT DOCUMENTS

wo 00/46954 8/2000

OTHER PUBLICATIONS

Pseudorandom Generator Based on Clipped Hopfield Neural Net
work; IEEE 1998; Cheng Et AI.

* cited by examiner

Primary Examiner-lung Kim
(74) Attorney, Agent, or Firm-Aiix, Yale & Ristas, LLP

(57) ABSTRACT

A crypto-engine for cryptographic processing has an arith
metic unit and an interface controller for managing commu
nications between the arithmetic unit and a host processor.
The arithmetic unit has a memory unit for storing and loading
data and arithmetic units for performing arithmetic opera
tions on the data. The memory and arithmetic units are con
trolled by an arithmetic controller.

11 Claims, 8 Drawing Sheets

k dala_out

k/ temp_data
Modular /

Multiplication
Unit

control2 15_

6 /

J
!._. •/temp data

/
k/ temp_ data

Modular

~ Addition
/

Unit
r_opcode / Controller -modula

slatus 8/ .12
~

ll
3/ control3

1 S / conlrol4

~ Sign Inversion
k/ temp_ data

1/ l / Unit
1l

11

To
Host

Processor

8/ data
/
~ opcode

/

8 key
/

/
8/ status

/
interrupt

Compact Crypto-engine

Interface ..
Control

Unit

12

-

FIGURE 1

/ k data out
/

/k data in
/

/ a modular oocode
/

/8 status out
/

10.

Modular
Arithmetic

Unit

11

~
00
•
~
~
~
~ = ~

c
('D

~
~Ul

N
0
0
\0

rFJ

=('D
('D
0
QO

d
rJl
-....l
0..,
w
~
0..,
0'1
0'1

= N

data_in k '/- a
/ /
k/ temp_data ~ b1

/ /
address ~ n1

SRAM Block
/

control1 'Y b2
/

4 /4 v .u ly n2
/ / /

control2

6 /
/

"L temp_ data J
/

mod uta r_opcode } Controller -
ltatus ~

/

3/ control3
11

1

~ _Lcontrol4

I I
11

FIGURE 2

k/_ temp_data
Modular /

Multiplication
Unit

15.

~tem_p_ data - /
Modular
Addition

Unit

.1Q

Sign Inversion
k/ temp_ data

/
Unit

1Z

kL data_out
/

~
00
•
~
~
~
~ = ~

c
('D

~
~Ul

N
0
0
\0

rFJ

=('D
('D
N
0
QO

d
rJl
-....l
0..,
w
~
0..,
0'1
0'1

= N

Bus
Interface

Unit
dat 8/ . I BDATA 1-... 7 __..,_ ,-

opco e 8/
-.{ BOPCODE l /

8/ I BKEY l
/ --,_ r

key

s __ 8/
{ BSTATUS 1--... /

statu

interr' ~t BINTERRUPT -
~

Concatenation/
Split -

Tda~ Unit

.19
8/ ·~

/
8 ;.,ape ...

Con I Split
Control

/ ..
8 '9<ey Modular -opcode

.. Generator --..

8 ~sta
20.

1/
Tint Cryptographic

Controller

2.1

FIGURE 3

k/ data_out
/

k/ data in
/

8./ modular opcode

/

~ ~

status out
/

12

._

.... --

-

~
00
•
~
~
~
~ = ~

c
('D

~
~Ul

N
0
0
\0

rFJ

=('D
('D
(.H

0
QO

d
rJl
-....l
0..,
w
~
0..,
0'1
0'1

= N

data_in
k/

mux srect[O)
4/ address select[0:3]

..... MUXO k/
7

temp data k/
k/ data inO

/
23 I/ 7

2/ control select[O: 11

address address select[O ·15] 3/ address select[4:6]

~ 1§,- - . /

/4Jontrol1
...... /

k/ data in1

Address
/

/
p

Decoder 1
c!}ntrol_select[0:9]

2/ control select[2:3]
/

I/
22

6/ mux_select[0:5]
3/ address select[7:9l

/
1/

...... k/ data in2
/
2/ control select[4:5]

/

3/ address select[10:12]
/
ly data in3

/
2/ control select[6:7]

/

3 address select[13:15l

k/ data in4
/

ll 2/ control_select[8:9]

/

4

r:24 .2.5 mux_select(1]
~data outO . ~

/

16 X k bit
..- MUX 1 k; a

SRAMO

mux_srect[2)

k/ data out1
8 X k bit 7 ly b1
SRAM 1

MUX2 ,.. /

mux_srect(3]

8 X k bit k/ data out2 1'Y SRAM2 / MUX3
b2 - 1/

mux_srect(4]

8 X k bit
k/ data out3

/ ly n1

SRAM3 rl MUX4 I/

mux_srect[5]

kL data out4 8 X k bit
SRAM4

/
-..

MUX5 '5L n2
~ /

--

~

--

~
7J).
•
~
~
~
~ = ~

c
('D

~
~Ul

N
0
0
\0

rFJ

=('D
('D
.j;o.

0
QO

d
rJl
-....l
0..,
w
~
0..,
0'1
0'1

= N

r ·--- --·· .. ·-·
t k a k/ J Register l / Y I/ I 27 k

u_in /y f u_carry

b1
k/ Process
/

Element 1
n1 k/ - (PE1)

/ f.-

26 u_outO k{ lu_carryO

I FF2
u_out1 + + u carry1

b2 k " - --/ Process
Element 2 n2 k/ - (PE2)

.....
/

ktf 1 u_carry_out

u_out

c ontrol2 6/
/

15

+ r Shift ,
Register 28 1

8j
I

load_a_control1 Load_shift_ control

J FF1 I

FIFO
29

ai+1

load_a_control2

load control
Control Load shift control

Line
~ Element load_a control1 (P~)

30 load_a_control2 (P':_2)

Is-
Vdata_ot t

k/
7

1 ata

GORE 5

~
00
•
~
~
~
~ = ~

c
('D

~
~Ul

N
0
0
\0

rFJ

=('D
('D
Ul
0
QO

d
rJl
-....l
0..,
w
~
0..,
0'1
0'1

= N

b

n

u_in
---+-k

u_carry

u[k-1]
r----

u[k-2] u[O]

••••
} [,- - k-bit CLA- - 31

'1- . r
n[O]
-,

b[O] b[k-1] b[k-2] n[k-1] n[k-2]

••••

35
cnq[k-2] • • • •

(k-1)-bit CLA

40 36 ~:7-~~f i ~+~'i.:FJ~'~];FFO-;~]J}N' :~:~v",

t •••• - -•-
u_out[k-1] u_out[k-2] u_out[O]

u carry_out

37

Tk
u_out

'
nq[O]

38

26

~a
' load_a

FIGURE 6

~
00
•
~
~
~
~ = ~

c
('D

~
Ul
~

N
0
0
\0

rFJ

=('D
('D
0\
0
QO

d
rJl
-....l
0..,
w
~
0..,
0'1
0'1

= N

U.S. Patent Dec. 15, 2009

1. Reset

2. Write 2 Bytes Data of Key

No

Yes

3. Se1 Key End (KENO)

4. Write Data to RSA

5. Check Read Message
Request (RMR) of RSAS

No

Sheet 7 of8 US 7,634,666 B2

6. Check Write Key
Request (WKR} of RSAS

No

Yes

1. Write 1 Byte Data of key

No

Yes

8. Set Key End (KEND}

9. Check Read Message
Request {RMR} of RSAS

No

Yes

1 0. Read Data from RSA

FIGURE 7

U.S. Patent

Yes

Yes
+

(Finish)

Dec. 15, 2009 Sheet 8 of8 US 7,634,666 B2

Yes

Yes

Show Error Signal

FIGURE 8

US 7,634,666 B2
1

CRYPTO-ENGINE FOR CRYPTOGRAPHIC
PROCESSING OF DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention relates to crypto-engines for cryptographic

processing of data. More particularly, the invention relates to
a crypto-engine capable of executing either Rivest-Shamir
Adleman (RSA) or Elliptic Curve Cryptography (ECC) pub- 10

lie key encryption protocols.
2. Description of Prior Art
The RSA public-key cryptosystem devised by Rivest,

Shamir and Adleman and the EEC cryptosystem devised by
Koblitz and Miller are two common algorithms adopted by 15

public key infrastructures.
RSA involves a computation of the exponentiation and

modulo of product of two large prime numbers whereas ECC
is based on computations with points on an elliptic curve. To
achieve faster speed, hardware architectures are normally 20

used to implement these algorithms.
In RSA, the main basic operation is the modular multipli

cation. When the ECC is implemented over the field GF(p),
where pis a large prime number, the main basic operations are
also modular multiplication. Thus the two algorithms share a 25

common operation. However, in known hardware architec
tures resources cannot be shared by the algorithms and
reused.

SUMMARY OF THE INVENTION 30

It is an object of the present invention to provide a hardware
based crypto-engine for asymmetric cryptograhic processing
using RCA or ECC algorithms. It is a further object of the
invention to provide a crypto-engine that operates as a copra- 35

cessor to a host processor.
According to the invention there is provided a crypto

engine for cryptographic processing of data comprising an
arithmetic unit operable as a co-processor for a host processor
and an interface controller for managing communications 40

between the arithmetic unit and host processor, the arithmetic
unit including:

a memory unit for storing and loading data,
a multiplication unit, an addition unit and a sign inversion

unit for performing arithmetic operations on said data, 45

and

2
Preferably, the multiplication elements comprise a bitwise

segmented multiplier, a bitwise segmented multiplicand, and
a modulo for performing modular multiplication of the mul
tiplier and multiplicand according to the modulo value.

Preferably, the interface controller comprises
a bus interface for connecting high frequency manipulated

data inside the arithmetic unit with the lower frequency
manipulated data in the host processor,

a concatenater/splitter for merging or splitting data width,
and

a cryptographic controller for generating status and inter
rupt signals for the host processor and having a op-code
generator for generating the op-code signals for the
arithmetic unit to select RSA or ECC operations and to
synchronize the timing discrepancy of heterogeneous
processing.

Further aspects of the invention will become apparent from
the following description, which is given by way of example
only.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described by
way of example only and with reference to the accompanying
drawings in which:

FIG. 1 is a block diagram of a compact crypto-engine for
asymmetric cryptographic processing according to the inven
tion,

FIG. 2 is a block diagram of a modular arithmetic unit,
FIG. 3 is a block diagram of an interface control unit,
FIG. 4 is a block diagram of Static Random Access

Memory (SRAM) Block,
FIG. 5 is a block diagram of a modular multiplication unit,
FIG. 6 is a block diagram of a processor element,
FIG. 7 is a flow diagram ofRSA implementation example

using polling mode, and
FIG. 8 is a flow diagram of an RSA implementation

example using interrupt mode.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the invention a common architecture platform for the
two algorithms, RSA and ECC, whose inputs are taken in two
different forms, is used to manipulate the two asymmetric
encryption algorithms. In the preferred embodiment the com
bining function is restricted to the computational engine, i.e.
modular manipulation. This relies heavily on the low-bit, say
8 bit, processor software to complete the design. Thus, three

an arithmetic controller for controlling the storing and
loading of data by the memory unit and for enabling the
multiplication, addition and sign inversion units.

Preferably, the memory unit comprises:
50 design considerations must are taken into account. These

considerations are:
an input switch for selecting input/interim data, a plurality

of Static Random Access Memory elements for receiv
ing and storing the input/interim data from the input
switch,

a plurality of output switches connected to the memory
elements, and

an address controller for controlling flow of the data
through the switches and memory elements.

Preferably, the multiplication unit comprises:
a register to pre-store the multiplier data,
a pair of multiplication elements for performing multipli

cation,
a shift register to load the multiplier data bitwise into the

multiplication elements, and
a first-in-first-out register for synchronizing data move

ment between the multiplication elements.

55

1) hardware optimization for both RSA and ECC implemen
tation with the best speed/resource trade off,

2) the amount of design/module reuse and hardware sharing
of the two protocols, and

3) the asynchronous executing of the hardware modules in
much higher speed than the processor communicating with
it, i.e. heterogeneous processing.
The preferred embodiment of the present invention pro-

60 vides a compact crypto-engine capable of executing asym
metric cryptographic algorithms including both RSA and
ECC protocols and has heterogeneous computation ability
running at a higher internal clock speed.

Referring to FIG. 1, the preferred embodiment of a com-
65 pact crypto-engine 10 comprises a Modular Arithmetic Unit

(MAU) 11 and an Interface Control Unit (ICU) 12. The inputs
and outputs of the ICU are provided from/to a host processor

US 7,634,666 B2
3

(not shown) such as a personal, network computer or Digital
Signal Processor. The host processor provides an 8-bit 'data'
transput (input and output) to and from ICU 12, and 8-bit
'key' and operation code ('opcode') inputs to ICU 12. The
ICU 12 has an 8-bit 'status' and a 1-bit 'interrupt' output to 5

signal the host processor. Communication between the ICU

4
'Tope' and 'Tkey', is provided to MAU 11. The 8-bit output
'status_out' ofMAU 11 is provided to ere 21 to generate the
8-bit 'Tsta' and 1-bit 'Tint' signals.

Referring to FIG. 4, the Static Random Access Memory

12 and MAU 11 comprises a k-bit 'data_in' and a 8-bit
'modular_opcode' signals from the ICU 12 to the MAU 11,
and a k-bit 'data_out' and a 8-bit 'status_ out' signals from the
MAU 11 to the ICU 12.

Referring to FIG. 2, the MAU 11 comprises an SRAM
Block 13, a Controller 14, a Modular Multiplication Unit
(MMU) 15, a Modular Addition Unit (MADU) 16 and a Sign
Inversion Unit (SIU) 17. The outputs k-bit 'data_in' ofiCU
12, k-bit 'temp_data' of MMU 15/MADU 16/SIU 17, 4-bit
'address' and 4-bit 'control!' of Controller 14 go into SRAM
Block 13. The output k-bit 'a/bl/b2/nl/n2' of SRAM Block

(SRAM) block 13 comprises an Address Decoder 22, a plu
rality of switches MUXO 23 and MUX1/MUX2/MUX3/
MUX4/MUX5 25, a plurality of memory blocks 24 compris
ing one 16xk-bit SRAMO and four 8xk-bit SRAM1/SRAM2/
SRAM3/SRAM4/SRAM5. In the preferred embodiment

10 there are a total of 3xl024-bit SRAM blocks to store the 5
parameters 'a/bl/nl/b2/n2' for 1024-bit RSA modular mul
tiplication in various stages or to store 192-bit ECC tempo
rary data. The gate counts required for storing of interim

15
manipulation results are substantially reduced.

To ameliorate the overflow problems that may be encoun
tered during the modular multiplication calculation in MMU
15, a memory-size-expansion approach is adopted with
according to the memory block size provided by Integrated

13 goes to MMU 15. The output k-bit 'a/bl/nl' of SRAM
Block 13 goes to MADU 16. The output k-bit 'bl' ofSRAM
Block 13 goes to SIU 17.

The outputs 8-bit 'modular_opcode' of ICU 12 and k-bit
'temp_data' ofMMU 15/MADU 16/SIU 17 go to Controller
14. The outputs 4-bit 'address/control!' of Controller 14 goes

20
Circuit fabrication supplier, say a 1152-bit memory for a
1 024-bit manipulation.

to SRAM Block 13. The output 6-bit 'control2' goes to MMU
15. The output 3-bit 'control3' of Controller 14 goes to 25

MADU 16. The output 3-bit 'control4' of Controller 14 goes
to SIU 17. The 8-bit 'status_out' of Controller 14 goes to ICU
12. The outputs k-bit 'a/bl/b2/nl/n2' ofSRAM Block 13 and
6-bit 'control2' of Controller 14 go to MMU 15. The output
k-bit 'data_out' of MMU 15 goes to ICU 12 and the output 30

k-bit 'temp_data' of MMU 15 goes to SRAM Block 13 and
Controller 14.

The outputs k-bit 'a/bl/nl' of SRAM Block 13 and 3-bit
'control3' of Controller 14 go to MADU 16. The output k-bit
'temp_data' ofMADU 16 go to SRAM Block 13 and Con- 35

troller 14. The outputs k-bit 'bl' ofSRAM Block 13 and 3-bit
'control4' of Controller 14 go to SIU 17. The output k-bit
'temp_data' ofSIU 17 goes to SRAM Block 13 and Control-
ler 14.

Another preferred approach to overcome the overflow
problem is to provide an "overflow control unit" with addi
tional one bit for checking, say 1 025-bit memory for 1 024-bit
manipulation.

Still referring to FIG. 4, the 4-bit outputs 'address' and
'control!' of Controller 14 are provided to Address Decoder
22 to generate one 16-bit 'address_select[O: 15'] output, one
1 O-bit 'control_select[0:9]' output and one 6-bit 'mux_select
[0:5]' output. The output first bit 'mux_select[O]' of Address
Decoder 22 is provided to switch MUXO 23 to select either
k-bit 'data_in' outputted by ICU 12 or k-bit 'temp_data'
outputted by MMU 15/MAU 16/SIU 17. The outputs k-bit
'data_in 0', 'data_inl ', 'data_in2', 'data_in3', and 'data_in4'
of MUXO 23 are provided to SRAMO, SRAMl, SRAM2,
SRAM3 and SRAM4 24 respectively.

The output 3-bit address_select[0:3], address_select[4:6],
address_select [7:9], address_select [10: 12] and address_se
lect[13:15] of Address Decoder 22 is provided to SRAMO,

40 SRAMl, SRAM2, SRAM3 and SRAM4 24 respectively. The
output 2-bit control_select[O:l], control_select[2:3], con
trol_select [4:5], control_select [6:7] and control_select[8:9]
of Address Decoder 22 are provided to SRAMO, SRAMl,

Referring to FIG. 3, the Interface Control Unit 11 com
prises a Bus Interface Unit (BIU) 18, a Concatenation/Split
Unit (CSU) 19 and a Modular-opcode Generator (MOG) 20
embedded into a Cryptographic Controller (CrC) 21. The
8-bit transput (input and output) 'data' of buffer BDATA in
BIU 18 is provided to the host processor. The 8-bit outputs 45

'ope ode' and 'key' from the host processor are provided to the
buffer BOPCODE and BKEY respectively in the BIU 18. The
8-bit output 'status' and 1-bit output 'interrupt' ofBSTATUS
and BINTERRUPT in BIU 18 respectively are provided to the
host processor. In the preferred embodiment, the ICU pro
vides buffers to handle heterogeneous operation and the
'interrupt' signal to synchronize the data exchange. This
allows the crypto-engine 10 to operate at a different clock
speed to the host processor.

The 8-bit transput 'Tdata' of Buffer BDATA in BIU 18 is
provided to the Concatenation/Split Unit 19. The 8-bit out
puts 'Tope' and 'Tkey' of buffer BOPCODE and BKEY
respectively in the BIU 18 are provided to the Modular
opcode Generator (MOG) 20 inside Cryptographic Control
ler (Cre) 21. The outputs 8-bit 'Tsta' and 1-bit 'Tint' gener
ated from the 'status_ out' signal in the ere 21 are provided to
the BIU 18. The k-bit output 'data_in' of Concatenation/Split
Unit (CSU) 19, generated by cascading a sequence of 8-bit
'Tdata', is provided to MAU 11. The k-bit output 'data_out'

SRAM2, SRAM3 and SRAM4 24 respectively.

SRAMO, SRAMl, SRAM2, SRAM3 and SRAM4 receive
respective signals 'address_select[O: 15]', 'data in
0'/'data_inl '/'data_in2'/'data_in3' /'data_in4 and 'con
trol_select[0:9]' to generate respective k-bit outputs
'data_outO', 'data_outl', 'data_out2', 'data_out3' and

50 'data_out4'.
The 1-bit outputs 'mux_select[l]', 'mux_select[2]',

'mux_ select[3]', 'mux_select[4]'and 'mux_select[5]' of
Address Decoder 22 control switches 25 to select between

55
MUXl inputs 'data_outO' or 'bl ', MUX2 and MUX3 inputs
'data_ out!' or 'data_out2' and MUX4 and MUX5 inputs
'data_out3' or 'data_out4'.

Referring to FIG. 2, the k-bit outputs 'a', 'bl ', 'b2', 'nl'
and 'n2' of switches 25 are provided to MMU 15; outputs 'a',

60 'bl' and 'nl' are provided to MAU 16; and output 'bl' is
provided to SIU 17.

of MAU 11, converted to a sequence of 8-bit 'Tdata', is 65

provided to Concatenation/Split Unit (CSU) 19. The 8-bit
output 'module_opcode' ofMOG 20, generated from signals

Referring to FIG. 5, the Modular Multiplication Unit
MMU 15 comprises a pair of Process Elements PEl 26 and
PE2 link up with a Flop-flip (FF), a Register 27, a Shift
Register 28, a First in First Out Flip-flop (FIFO) 29 and a
Control Line Element (CLE) 30. The 6-bit output 'control2'
of Controller 14 is provided to Control Line Element 30 and

US 7,634,666 B2
5

is decoded into a plurality of outputs 'load_ control', 'load_
shift_ control', 'load_a_control1' (PEl) and
'load_a_control2' (PE2).

The k-bit output 'a' of SRAM Block 13 is provided to
Register 27. The k-bit output 'data_out' of Register 27 is
provided to Shift Register 28 and to ICU 12 when the output
'load_control' ofCLE 30 is set.

The 1-bit outputs 'a,' and 'a1+1 ' of Shift Register 28 are
provided to Process Element 1 (PEl) 26 and Process Element 10
2 (PE2) respectively when the output 'load_shift_control' of
CLE 30 is set.

In the preferred embodiment the interim data 'U_out' and
'u_carry _out' are included with (k+ 1)-bit instead of normal
(2xk)-bit for logic gate size (physical hardware size) reduc- 15

tionand the FIFO 29 is used as a delay line for the inputs k-bit
'u_out' and 1-bit 'u_carry_out' ofPE2 to provide the inputs
k-bit 'u_in' and 1-bit 'u_carry' ofPEl. The k-bit output 'u_in'
of FIFO 29 is provided to a Flip-flop (FFl) and the k-bit

20 output 'temp_data' ofFFl is provided to SRAM Block 13.

The k-bit outputs 'b1' and 'n1' of SRAM Block 13, the
outputs k-bit 'u_in' and 1-bit 'u_carry' of FIFO 29, the output
'a,' of Shift Register 28 and the outputs 1-bit
'load_a_control1' (PEl) of CLE 30 are provided to Process 25

Element 1 (PEl) to generate the outputs k-bit 'u_outO' and
1-bit 'u_carryO'. The outputs k-bit 'u_outO' and 1-bit
'u_carryO' are provided to Flip-flop (FF2) to generate the
outputs k-bit 'u_outl' and 1-bit 'u_carry1 '.

The k-bit outputs 'b2' and 'n2' of SRAM Block 13, the 30

outputs k-bit 'U_outl' and 1-bit 'u_carry1' ofF!ip-flop (FF2),
the output 'a,+r' of Shift Register 28 and the outputs 1-bit
'load_a_control2' ofCLE 30 are provided to Process Element

6

e-1 e-1 e-1 e-1

A=~Ai, B=~Bi, N = ~ Ni and u = ~ uJ
j=O j=O j=O j=O

The algorithm is modified into:

//where superscripts= blocks, subscripts= bits and for
ui-1 = llo i-b 0 is the first outer-loop.

Moclule PE(A, B, U, N, m)
{U_l := 0;
fori= 0 tom do
II q, is implemented using MUX6 39 and CSA 34

qi := o,i-1 + aibo;

(u_carry, U?J = a;B0 + uL; I I implemented using CSA 34

(u_carry, UfJ = Uf + q,N" + u_carry;

for j = 1 to e - 1 do

II perform (u_carry, ui) = a,Bi + Uj_1 + q,Ni + u_carry;

II implement using CSA 34, i.e. Uj =(a; &Bi) $ Uj_ 1 EJ)u_carry

II u_carry =(a; & Bi & u_carry) I (UJ_ 1 & u_carry) I (a; &Bi & Uj_I)

II results store as (cab's, uab's)

II implement using CSA 35, i.e. Uj = (q, &Ni) EJ)Uj EJ)u_carry

II u_carry= (q, & Ni &u_carry) I (Ui &u_carry) I (q, &Ni & ui)

2 (PE2) to generate the outputs k-bit 'u_out' and 1-bit 'u_car
ry_out'. The outputs k-bit 'u_out' and 1-bit 'U_carry_out' are
provided to FIFO 29 to generate the outputs k-bit 'u_min' and
1-bit 'u_carry'.

35 II results store as (cnq's, unq's)

Referring to FIG. 6, the processor elements (PEs) imple
ment Montgomery's multiplication to generate the modular 40

multiplication. By defining

II concatenate the LSB ofU1 to MSB ofU1_1 as carry &

II ut1
:= ut1

div 2, implement using CLAs 32 and 49

II results store as (u_carry_out, u_out)

m-1 m-1 m-1 m-1

A=~a;i, B=~b;i; N=~n;i and U=~u;i 45
i=O i=O i=O i=O

endfor

as the multiplier, multiplicand, modulo and modular product
(result) respectively, for m bit integers where {a,, b,, n,, 50

u,} E{ 0,1}, the basic algorithm for Montgomery's multiplica
tion is given as follows:

u;e-l) := (u_carry, u~~i/1)

endfor
Return Um
}

Module PE(A,B,U,N,m)
{U_1 := 0;
fori= 0 tom do

CJi := (U,_1 +a, B) mod 2; //LSB ofU,_1 = u0 ,_1
U, := (U,_ 1 + CJiN + a,B) div 2 ,

endfor
return um
}

In order to optimize the Process Element (PE) sizes for a
compact hardware implementation, instead offull m-size PE
elements, k-size (where m=exk) PE pairs are included and
parameters N, IY, Ni and lY are included where

In the preferred embodiment the Process Element 26 and

55 the modified algorithm include a k-bit Carry Look-ahead
Adder (CLA) 31, a (k-1)-bit CLA 32, a plurality of AND
gates 33, a plurality of Carry Save Adders (CSA) Ievell 34
and level 2 35, a plurality of Flip-flops 36, a (k-1)-bit Flip
flop 37, registers 38, a Multiplexer MUX6 39 and a single

60 CLA40.
The outputs k-bit 'u_in' and 1-bit 'u_carry' of FIFO 29 are

provided to a k-bit CLA 31 of Process Element 1 (PEl) 26.
For Process Element 2 (PE2), the outputs k-bit 'u_outl' and
1-bit 'u_carry1' are provided to a k-bit CLA 31. The outputs

65 k-bit 'b' (b1 or b2) of SRAM Block 13 and k-bit 'a_ out' of
Register! are provided bitwise to a plurality of two-input
AND gates 33. The outputs k-bit 'u[O:k-1]' ofk-bit CLA 31,

US 7,634,666 B2
7

1-bit 'u_carry' ofFIFO 29 and 'ab[O:k-1]' of AND gates 33
are provided to level 1 CSA 34 to generate a plurality of add
results 'uab[O:k-1]' and carry 'cab[O:k-1]'.

7

8
RSAO, RSAS and RSAK in a host processor for controlling
and monitoring the RSA coprocessor. A brief description of
the SFRs now follows:

RSA DATA (RSAD)
Bit:

4 2 0

RSAD.7 RSAD.6 RSAD.5 RSAD.4 RSAD.3 RSAD.2 RSAD.1 RSAD.O

The outputs 1-bit 'q' of MUX6 and k-bit 'n' (n1 or n2) of
15

SRAM Block 13 are provided to a plurality of AND gates to
generate a k-bit output 'nq[O:k-1]'. The outputs k-bit 'nq[O:
k-1]' of a plurality of AND gates 33, k-bit 'uab[O:k-1]'and
k-bit 'cab[O:k-1]' are provided to level2 CSA 35 bitwise to
generate a plurality of add results 'unq[O:k-1]' and carry

20
'cnq[O:k-1]'. Preferably, the output 'cab[k-1]'goes through
a Flip-flop (FF3) to bit-0 (oflevel2) CSA 35.

The outputs k-bit 'unq[O:k-1]'and 'cnq[O:k-1]' of a plu
rality ofCSAs 35 are provided to a (k-1)-bit CLA 32 and 1-bit
CLA 40 to generate the outputs k-bit 'u_out' and 1-bit 'u_car-

25
ry_out'. Preferably, the output 'cnq(k-1)' of CSA goes
through a Flip-flop (FF4) to CLA 40 and the output carry of
(k-1)-bit CLA 32 goes through a Flip-flop (FF5) 36 to CLA
40. Preferably, the outputs of (k-1)-bit CLA 32 go through a
plurality ofFlip-flops (FF6) 37 to generate the outputs 'u_out 30
[O:k-2]' of 'u_out'.

The outputs 'uab[O]' of bit-0 CSA 34 and 1-bit delayed
'uab[O]' of Register! 38 are provided to MUX6 39 to give
output 'q' according to condition of an output 'load_a' ofCLE
30. The output 'q' ofRegisterl 38 is generated according to 35
the outputs 'uab[O]' of bit-0 CSA 34 and delayed 'load_a'
from Register3 ofCLE 30.

The outputs 1-bit 'load_a' ofCLE 30 and 1-bit 'a' of Shift
Register 28 are provided to Register2 to generate an output of
1-bit 'a_out'.

Embodiments of the invention have been implemented
using 0.35 f.tm semiconductor technology. A total gate count

40

of 15K for RSA and 20K for both RSA and ECC was utilized
for k=64. The benchmark testing for a 1024 (1 024-bit) RSA is
s=arized in Table 1 as follows with an internal clock of 22 45
MHz.

TABLE 1

Performance of various RSA operations

No. of No. of Computation
Exponent '1 's 'O's Modulus time

17 bit 1 2 15 1024 bit 7ms
1024 bit2 512 512 1024 bit 607 ms

1The public key e ~ 2 16 + 1 ~ 65537 is used.
2 Average case, 1024-bit exponent, 50% '1 ',50% '0' in binary representa
tion.

50

55

The benchmark device is capable of running at 100 MHz
where the computational time can be reduced to 0.18 seconds 60

for the worst case scenario.
With the heterogeneous computation ability, the process

can be executed in a much higher clock rate using phase lock
clock multiplier to allow faster computational and thus trans-
action time. 65

A implementation example of an RSA coprocessor is
based on four special function registers (SFRs) RSAD,

The bi-directional SFR is accessed via a nmemonic RSAD.
Depending on the SFR RSAS, CPU and RSA coprocessor
read from and write to this register. Data X, N and M are
written at the beginning by software while Data M is read at
the end by hardware. The RSAD is reset to OOh by a reset.
There is unrestricted read/write access to this SFR.

7

KEND

RSA OPCODE (RSAO)
Bit:

4 2

RST wx WN

0

RWM RW

The RSA Opcode Register with nmemonic RSAO receives
instructions to configure the operation of the RSA coproces
sor. This byte is set or cleared by software for the following
purpose.

KEND

RST

wx

WN

Key End: This bit is set to tell the coprocessor
the key writing is finished.
Reset: This bit is set to reset the coprocessor
synchronously.
Write Precomputation Constant X: When this bit and
RW are set, 128 bytes of data X are written into
the coprocessor. When this bit is cleared, data X
will not be written.
Write Modulus N: When this bit and RW are set, 128
bytes of data N are written into the coprocessor.
When this bit is cleared, data N will not be
written.

RWM Read Write Message M: When this bit and RW are
set, 128 bytes of data M are written into the
coprocessor. When this bit is set while RW is
cleared, 128 bytes of data M are read from the
coprocessor. When this bit is cleared, data M will
not be read or written.

RW Read Write Control: When this bit is set, data X,
N, M will be written depends on bits WX, WN, RWM.
When cleared, 128 bytes of data M are read from
the cop recess or if RWM is set.

All possible combination of read/write operation:
WN
RWM
RW
Read/Write Operation
1
0
0

Write data X
0

0
1
Write data N
0
0
1
1
Write data M
1
1
0
1

Write data X and N
1
0
1
1
Write data X and M
0
1
1
1
Write data Nand M
1
1
1
1
Write data X, Nand M
X
X
1
0
Read data M
X
X
0
0
No operation
0
0
0

9
US 7,634,666 B2

10

7

10

WKR Write Key Request: This bit is set to request the

CPU to write the next byte of key to the SFR RSAK.

RMR Read Message Request: This bit is set to tell the

CPU that the RSA operation is finish and it is

ready to read the data M. It also requests the CPU

to write instruction to read data M from RSAD.

The RSAS is reset to OOh by a reset.

There is restricted read only access to this SFR.

RSA KEY (RSAK)
Bit:

4 2 0

RSAK.7 RSAK.6 RSAK.5 RSAK.4 RSAK.3 RSAK.2 RSAK.l RSAK.O

The SFR with nmemonic RSAK will be used to store the
key. One byte ofRSA key, i.e. the exponent e or dis written

25 into this register by software, while the bit WKR of the SFR
RSAS is set. The RSAK is reset to OOh by a reset. There is
unrestricted read/write access to this SFR.

The procedure of control the RSA coprocessor to carry out

30
a RSA operation is summarized in FIGS. 7 and 8. The
sequence of operation is as follows:

35

1. The coprocessor must be reset at the beginning of RSA
operation; the Reset (RST) bit is set (RSA0=10h) and cleared
(RSAO=OOh) to reset the coprocessor.

2. Two bytes ofRSAkey are then written to RSAK, starting
from the most significant byte.

3. If the key ends, i.e. the key is less than or equal to 2 bytes,
set the bit KEND ofRSAO (RSA0=20h) to inform the copro
cessor.

40 4. Set the Write operation by setting appropriate bits in
RSAO, followed by writing the data block(s) in the order of
data X, Nand Minto RSAD, starting from the least significant
byte of first data block. For example, ifRSAO=OFh, 3x128
bytes of data X, N, and M are written to RSAD sequentially,

45 starting from the least significant byte of data X; If
RSAO=OBh, 2x128 bytes of data X and Mare written to
RSAD sequentially, starting from the least significant byte of
data X; If RSA0=09h, only 128 bytes of data X is written to
RSAD, starting from the least significant byte of data X.

50 5. Check the WKR of RSAS to see whether the RSA
coprocessor request next byte of key.

6. If the WKR is set, write one byte of key to RSAK.
7. If the key ends, i.e. all bytes ofkey is written into RSAK,

No operation
set the bit KEND ofRSAO (RSA0=20h) to inform the copra

X

The RSAO is reset to OOh by a reset. There is unrestricted 55 cessor.
read/write access to this SFR.

7

RSA STATUS (RSAS)
Bit:

4 2 0

8. Check the RMR to see whether the result data is ready to
be read.

9. When it is ready to read the data, the read data M

60 instruction is assigned to the RSAO (RSA0=02h). 128 bytes
of data M are read from RSAD, starting from the least sig
nificant byte of data M.

Where in the foregoing description reference has been
made to methods or elements have known equivalents then

The status with nmemonic RSAS of the RSA coprocessor 65 such are included as if individually set forth herein.

WKR RMR

is expected to shown in the RSA Status Register. This byte is Embodiments of the invention have been described, how-
set or clear by hardware for the following purpose. ever it is understood that variations, improvement or modifi-

US 7,634,666 B2
11

cations can take place without departure from the spirit of the
invention or scope of the appended claims.

What is claimed is:
1. A crypto-engine for cryptographic processing of data

comprising an arithmetic unit operable as a co-processor for
a host processor and an interface controller for managing
communications between the arithmetic unit and host proces
sor, the arithmetic unit including:

a memory unit for storing and loading data, the memory
unit including
an input switch for selecting input-interim data;
a plurality of Static Random Access Memory elements

for receiving and storing the input/interim data from
the input switch;

10

a plurality of output switches connected to the memory 15

elements; and
an address controller for controlling flow of the data

through the switches and memory elements
a multiplication unit, an addition unit and a sign inversion

unit for performing arithmetic operations on said data, 20

the multiplication unit, the addition unit and the sign
inversion unit each having an output; and

an arithmetic controller for controlling the storing and
loading of data by the memory unit and for enabling the
multiplication, addition and sign inversion units;

wherein the outputs of the multiplication unit, the addition
unit and the sign inversion unit are feedback to the arith
metic controller.

25

12
data, the multiplication unit, addition unit and sign
inversion unit each having an output; and

an arithmetic controller for controlling the storing and
loading of data by the memory unit and for enabling
the multiplication, addition and sign inversion units,
wherein the outputs of the multiplication unit, an
addition unit and a sign inversion unit are feedback to
the arithmetic controller;

the interface controller including:
a bus interface for connecting high frequency manipulated

data inside the arithmetic unit with the lower frequency
manipulated data in the host processor;

a concatenater/splitter for merging or splitting data width,
and

a cryptographic controller generating status and interrupt
signals for the host processor and generating an op-code
signal for the arithmetic unit, the arithmetic unit select
ing RSA or EGO modes of operation based on the op
code signal.

5. The crypto-engine of claim 4 wherein the multiplication
unit comprises:

a register to pre-store the multiplier data;
a pair of multiplication elements for performing multipli

cation;
a shift registerto load the multiplier data bitwise into the

multiplication elements; and
a first-in-first-out register for synchronizing data move

ment between the multiplication elements.
6. The crypto-engine of claim 5 wherein the multiplication 2. The crypto-engine of claim 1 wherein the multiplication

unit comprises:
a register to pre-store the multiplier data;
a pair of multiplication elements for performing multipli

cation;

30 elements comprise a bitwise segmented multiplier, a bitwise
segmented multiplicand, and a modulo for performing modu
lar multiplication of the multiplier and multiplicand accord
ing to the modulo value.

a shift register to load the multiplier data bitwise into the
multiplication elements; and

a first-in-first-out register for synchronizing data move
ment between the multiplication elements.

7. The crypto-engine of claim 5 wherein the memory unit
35 has a size substantially equal to 384 bytes and the sign inver

sion unit has a k-size substantially equal to 64 bits.

3. The crypto-engine of claim 2 wherein the multiplication
elements comprise a bitwise segmented multiplier, a bitwise
segmented multiplicand, and a modulo for performing modu- 40

lar multiplication of the multiplier and multiplicand accord
ing to the modulo value.

4. A crypto-engine for cryptographic processing of data
comprising an arithmetic unit operable as a co-processor for
a host processor and an interface controller for managing 45

communications between the arithmetic unit and host proces-
sor,

the arithmetic unit including:

8. The crypto-engine of claim 1 wherein the outputs of the
multiplication unit, the addition unit and the sign inversion
unit are feedback to the arithmetic controller and the memory
unit.

9. The crypto-engine of claim 4 wherein the memory unit
has a size substantially equal to 384 bytes and the sign inver
sion unit has a k-size substantially equal to 64 bits.

10. The crypto-engine of claim 4 wherein the multiplica
tion unit, the addition unit and the sign inversion unit each
having an output that is feedback to the arithmetic controller.

11. The crypto-engine of claim 10 wherein the outputs of
the multiplication unit, the addition unit and the sign inver
sion unit are feedback to the arithmetic controller and the a memory unit for storing and loading data;

a multiplication unit, an addition unit and a sign inver
sion unit for performing arithmetic operations on said

so memory unit.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,634,666B2 Page 1 of 1
APPLICATION NO. : 10/641869
DATED :December 15, 2009
INVENTOR(S) : Cheng et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 12:
Line 18, delete "EGO" and substitute --ECC--.

Line 25, delete "registerto" and substitute --register to--.

Line 34, delete "claim 5" and substitute --claim 1--.

Signed and Sealed this

Thirtieth Day of March, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,634,666 B2 Page 1 of 1
APPLICATION NO. : 10/641869
DATED : December 15,2009
INVENTOR(S) : Cheng et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subjectto any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 983 days.

Signed and Sealed this

Ninth Day ofNovember, 2010

David J. Kappas
Director of the United States Patent and Trademark Office

