
c12) United States Patent
Fanton et al.

(54) SECURE SYSTEMFORALLOWINGTHE
EXECUTION OF AUTHORIZED COMPUTER
PROGRAM CODE

(75) Inventors: Andrew F. Fanton, Westminster, CO
(US); John J. Gandee, Loveland, CO
(US); William H. Lutton, Fort Collins,
CO (US); Edwin L. Harper, Fort
Collins, CO (US); Kurt E. Godwin,
Loveland, CO (US); Anthony A. Rozga,
Wellington, CO (US)

(73) Assignee: Whitecell Software Inc., Fort Collins,
CO (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1103 days.

(21) Appl. No.: 11/296,094

(22) Filed: Dec. 5, 2005

(65)

(60)

(51)

(52)
(58)

(56)

Prior Publication Data

US 2006/0150256 AI Jul. 6, 2006

Related U.S. Application Data

Provisional application No. 60/633,272, filed on Dec.
3, 2004.

Int. Cl.
G06F 7104 (2006.01)
G06F 17130 (2006.01)
U.S. Cl. ... 726/27; 713/150
Field of Classification Search 235/382;

713/200, 201, 150; 714/724; 707/9, 205,
707/200; 715/808; 726/3, 24, 22, 27; 380/270

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,823,460 B1 1112004 Hollander eta!.

(Authentication) 500
Processing \

MRU Cache

'""' 505"- '""' 506
!

111111 111
US007698744B2

(10) Patent No.:
(45) Date of Patent:

6,986,050 B2 112006
7,020,895 B2 3/2006
7,184,554 B2 2/2007
7,266,845 B2 9/2007
7,293,177 B2 1112007

US 7,698,744 B2
Apr. 13, 2010

Hypponen
Albrecht
Freese
Hypponen
Lahti eta!.

(Continued)

OTHER PUBLICATIONS

LF Friedrich, A Parallel/distributed Implementation Environment;
Year: 1997; IEEE; pp. 61-67.*

(Continued)

Primary Examiner-Kambiz Zand
Assistant Examiner-Monjour Rahim
(7 4) Attorney, Agent, or Firm-Hamilton, DeSanctis & Cha,
LLP

(57) ABSTRACT

Systems and methods are described for allowing the execu
tion of authorized computer program code and for protecting
computer systems and networks from unauthorized code
execution. In one embodiment, a multi-level proactive
whitelist approach is employed to secure a computer system
by allowing only the execution of authorized computer pro
gram code thereby protecting the computer system against
the execution of malicious code such as viruses, Trojan
horses, spy-ware, and/or the like. Various embodiments use a
kernel-level driver, which intercepts or "hooks" certain sys
tem Application Programming Interface (API) calls in order
to monitor the creation of processes prior to code execution.
The kernel-level driver may also intercept and monitor the
loading of code modules by running processes, and the pass
ing of non-executable code modules, such as script files, to
approved or running code modules via command line options,
for example. Once intercepted, a multi-level whitelist
approach may be used to authorize the code execution.

46 Claims, 6 Drawing Sheets

~ 520 "'-' Local Whitelist
Database

'
Entry1

Entry2

! tv 521

/
E

~ '""" ~ 51_0 5L~~ 530 5l5 L,
Pathname Previous Run Option Pathname ~~' Run Option Admin Info

Authenticator

C:\Adobe\ReadeMcroRd32.exe Uncoditiona\ Allow C:\AcroRd32.exe A35F UncodltlonaiAIIow TimeStamp

C:\MyDoom.exe Unconditional Deny C:\MyDoom.exe son Unconditional Deny Authoc

C:\Winamp\winampa.exe Additional Auth. Req C:lwinampa.exe BB35 AddiUonaiAuth.Req. Fla ..

5551"v
550/V

Administrator or Global Whitelist ~ End User Database

"' ' Entry:l
551 rv :

'"""

US 7,698,744 B2
Page 2

U.S. PATENT DOCUMENTS

7,319,751 B2 112008 Kirichenko
7,398,389 B2 7/2008 Teal et al.
7,480,683 B2 * 112009 Thomas eta!. 707/205
7,487,495 B2 212009 Usov
7,516,489 B2 4/2009 Lahti
7,529,374 B2 5/2009 Huttunen
7,533,131 B2 * 5/2009 Thomas eta!. 707/200
7,539,828 B2 5/2009 Lornnes

2002/0070272 A1 * 6/2002 Gressel et a!. 235/382
2002/0099952 A1 7/2002 Lambert et a!.
2002/0129277 A1 9/2002 Caccavale
2002/0178374 A1 1112002 Swimmer et a!.
2003/0135756 A1 7/2003 Verma
2003/0135791 A1 7/2003 Natvig
2003/0172167 A1 9/2003 Judge eta!.
2003/0212902 A1 1112003 VanDe Made
2004/0015712 A1 112004 Szor
2004/0034794 A1 2/2004 Mayer et al.
2004/0044906 A1 * 3/2004 England et al. 713/200
2004/0098607 A1 5/2004 Alagna eta!.
2004/0153918 A1 * 8/2004 Tanaka eta!. 714/724
2004/0158730 A1 8/2004 Sarkar
2004/0187023 A1 9/2004 Alagna eta!.
2004/0199763 A1 10/2004 Freund
2004/0205167 A1 10/2004 Grumann
2004/0225877 A1 1112004 Huang
2004/0243829 A1 12/2004 Jordan
2004/0255163 A1 12/2004 Swimmer et a!.
2005/0022018 A1 112005 Szor
2005/0060566 A1 * 3/2005 Chebolu eta!. 713/200
2005/0060581 A1 * 3/2005 Chebolu eta!. 713/201
2005/0065935 A1 * 3/2005 Chebolu eta!. 707/9
2005/0066290 A1 * 3/2005 Chebolu eta!. 715/808
2005/0108516 A1 5/2005 Balzer et al.
2005/0120242 A1 6/2005 Mayer et al.
2005/0149726 A1 7/2005 Joshi eta!.
2005/0166268 A1 * 7/2005 Szor 726/24
2005/0262558 A1 * 1112005 Usov 726/22
2006/0147043 A1 * 7/2006 Mann eta!. 380/270
2006/0242685 A1 * 10/2006 Heard eta!. 726/3
2007/0208689 A1 9/2007 Park

OTHER PUBLICATIONS

Enterprise Application Whitelisting, "Achieving PCI Compliance at
the Point of Sale Using Bit9 ParityTM to Protect Cardholder Data."
Bit9Parity. 5 pages. www.bit9.com.
Enterprise Application Whitelisting, "What is That Application?"
Bit9Parity. 2 pages. www.bit9.com.
Enterprise Application Whitelisting, "SimplifY Desktop Manage
ment through Enterprise Application Whitelisting" Bit9Parity. 2
pages. www.bit9.com.
Enterprise Application Whitelisting, "In Software We Trust."
Bit9Parity. 2 pages. www.bit9.com.

"F-Secure DeepGuard™-A Proactive Response to the Evolving
Threat Scenario." F-Secure. Nov. 2006. 11 pages.
"F-Secure DeepGuard™ 2.0." F-Secure. Sep. 2008. 13 pages.
Leyden, J., "SecureWave Revamps Alternative to Desktop AV
[printer-friendly] • The Register." http://www.theregister.co.uk/
2004/03/30/securewave_revamps_alternative_to_desktop/pri ..
Mar. 2004. 2 pages.
"From Zero-day to Real-time-How McAfee Artemis Technology
Combats Real-Time Cybercrime With Community Threat Intelli
gence." McAfee. www.mcafee.com. 9 pages.
"McAfee Artemis Technology-Always-On, Real-Time Protection."
McAfee. www.mcafee.com. 3 pages.
Solidcore S3 Control-Embedded. Certification Report. NSS Labs.
Sep. 2008. 32 pages.
"Runtime Control the Perfect Antivirus Solution-Be prepared and
decrease your risk from today's targeted attacks and threat land
scape." Solidcore. 4 pages.
Virtualized Laptop and Desktop Management Viewfinity Compli
ance and Security. ViewFinity. 5 pages.
"S3 Control Product Comparison." Solidcore. 1 page.
"Prevx 3.0." PC Magazine. www.pcmag.com. May 2009. 3 pages.
"BOUNCER by CoreTrace™-High-Security I Easy-Change Appli
cation Whitelisting." core Trace. 4 pages, 2009.
True Endpoint Security-A Matter of 180 degrees. coreTrace. Jul.
2008. 9 pages.
"White Paper: Application Whitelisting and Energy Systems-A
Good Match?" core Trace, 6 pages, 2009.
"Bouncer by CoreTraceTM-Provides True Endpoint Security with
Rapid Breakeven." coreTrace. Jul. 2008. 10 pages.
"Regulatory Compliance Protecting PCI Systems and Data."
coreTrace. 2 pages, 2009 .
"Core Trace Continues to Knock Down Application Whitelisting Bar
riers." EMA. 3 pages, 2009.
Luallen, M. E., et al. "Malicious Software Prevention for NERC
CIP-007 Compliance: Protective Controls for Operating Systems and
Supporting Applications." 8 pages.
Wakeham, R., "White Paper-Hardening Critical Systems at Elec
trical Utilities-Meeting Regulatory Requirements Through
Endpoint Controls." NetSPI. 5 pages.
Ogren, E., "The Tenets of Endpoint Control." Ogren Group. 7 pages,
2008.
"Product Data Sheet." Faronics Anti-Executable™. 2 pages .
"Faronics Anti-Executable Enterprise." Faronics Anti-Executable™.
Oct. 2009. 4 pages.
"Anti-Executable Key Features." FaronicsAnti-Executable™. http://
www.faronics.com/html/ AEFeatures.asp. 2 pages.
"Faronics Anti-Executable Standard." Faronics Anti-Executable™.
Oct. 2009. 3 pages.
"Faronics Anti-Executable-Application Whitelisting for Endpoint
Security." Faronics Anti-Executable™. http://www.faronics.corn/
htrnl/ AntiExec.asp. 2 pages.
"Blacklist Versus Whitelist Software Solutions." Faronics. Aug.
2005. 6 pages.
"User Guide." Faronics Anti-Executable™ Enterprise. Aug. 2009. 67
pages.

* cited by examiner

165

Remote Signing
Server

115/V

100

\

OS Process
Creation Activity

~160
~

User Interface Layer
(Provides prompts and notifications to end users)

110

OS Module
Load Activity

User Mode Service Layer

140~
Options

Kernel Mode Driver

Fig. 1

105

125

Global Whitelist Server

130

135

~
00
•
~
~
~
~ = ~

> 'e
:-:
(.H
~

N
0
0

rFJ

=('D
('D
0
0\

d
rJl
-....l
0..,
\C
00
~
~
~

= N

U.S. Patent Apr. 13, 2010 Sheet 2 of 6 US 7,698,744 B2

200

J
r--,

Q)
0>

r---
0
C\1

~ Q)
0 (.) -·-Cf)>
rn a>
rnO
ro
~

>.
c:~
Qo
-cE
ro a>
Q)~

0:::

~
0
C\1

<0
0
C\1

It)
0
C\1

C\1
0
C\1

...
0
rn
rn
Q)
(.)

e
a..

c:
0
~

~
·- t c: 0
:::Ja..
E
E
0

(.)

(t)
0
C\1

N

C) ·-Ll..

U.S. Patent Apr. 13, 2010 Sheet 3 of 6

Deny New Process
Creation Request

330

Record Information
Associated with Denial
New Process Creation

Request 335

Transmit Error Code

340

New Process Creation
Authorization Processing

Monitor For New Process
Creation Requests From

Code Modules
310

Grant New Process
Creation Request

345

Record Information
Associated with Granting

New Process Creation
Request 350

Fig. 3

US 7,698,744 B2

300

J

Request Decision from
Administrator/End User

355

U.S. Patent Apr. 13, 2010 Sheet 4 of 6

Authorization of Loading
of Code Modules by
Running Processes

Monitor Load Code
Module Requests by
Running Processe~

Deny Load Code No
Module Requests

430

Record Information
Associated with Denial

System Resources
435

Transmit Error Code

Yes

Allow Load Code
Module Requests

445

Record Information
Associated with Granting

Access to System
Resources 450

Fig. 4

US 7,698,744 B2

400

)

Request Decision from
Administrator/End User

455

Authentication 500 I
Processing \

,- -....
' I I'-- _...

545 """' ..
MRU Cache 520 /'v Local Whitelist -- license Server

Database .._ ..-"' -- Entry 1 - Entry 1

505 """' Entry 2 V'v5o6 Entry 2

• • f..-

• • l'v 521 • •

/
Entry n

5~ ~
Entry n

-~ 5~
530 5~ L,

Pathname Previous Run Option Pathname
content

Run Option Admin Info
Authenticator

C:\Adobe\Reader\AcroRd32.exe Uncoditional Allow C:\AcroRd32.exe A35F Uncoditional Allow TimeStamp

(0
C:\MyDoom.exe Unconditional Deny C:\MyDoom.exe 8D77 Unconditional Deny Author

C:\Winamp\winampa.exe Additional Auth. Req. C:\winampa.exe 8835 Additional Auth. Req. Flags

550 /VI I
555 /'v

Administrator or Global Whitelist -
End User

Database
Entry 1

Entry 2

551 /'v • f-• •
Entry n

-

~
00
•
~
~
~
~ = ~

> 'e
:-:
......
(.H
~

N
0
0

rFJ

=('D
('D
Ul
0
0\

d
rJl
-....l
0..,
\C
00
~
~
~

= N

U.S. Patent Apr. 13, 2010

Multi-Level Module Authorization
From 310, 410

Check MRU Cache for
RunOption this path/

filename

Check first level
whitelist for RunOption
for this Authenticator

Check next level
whitelist for RunOption
for this Authenticator

605

Yes

615

620

Yes

630

Yes

5

Set RunOption to
Unknown

No

Sheet 6 of 6

Extract the "script"
path/filename from
the command line

Perform this
authentication
process on the

script file

5

(To 345,445)

Fig. 6

US 7,698,744 B2

600

I

No

No

Determine Number
of Authorized

Software Licenses

685

Is There at Least One
Free License?

Yes
670

5

Run Option

Unknown;,;.:....--'-----...

(To 330, 430)

To 355,455

US 7,698,744 B2
1

SECURE SYSTEM FOR ALLOWING THE
EXECUTION OF AUTHORIZED COMPUTER

PROGRAM CODE

CROSS-REFERENCE TO RELATED
APPLICATIONS

2
of a second code module associated with a running process
may be intercepted. In any event, once the request is inter
cepted, a determination may be made, by using a multi-level
whitelist approach, as to whether the request is authorized.
According to various embodiments, the multi-level whitelist
architecture may have one or more of a most recently used
(MRU) cache, one or more local whitelists and/or one or more
global whitelists. In some embodiments, a prioritization may
be associated with the multiple whitelists which determine

This application claims the benefit of Provisional Applica
tion No. 60/633,272, filed on Dec. 3, 2004, which is hereby
incorporated by reference for all purposes.

COPYRIGHT NOTICE

10 the order the whitelists are checked. If the request is autho
rized, the code module may be permitted to be loaded and
executed.

Contained herein is material that is subject to copyright
protection. The copyright owner has no objection to the fac
simile reproduction of the patent disclosure by any person as
it appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all rights to the copyright
whatsoever. Copyright© 2004-2005 WhiteCell Software Inc.

In some embodiments, the computer system may be a
server. In other cases, the computer system may be a personal

15 computer. In the case where the computer system is a server,
the request may originate from either a client system or from
the server.

According to some embodiments, if the request carmot be
authenticated with reference to the MRU cache, then a con-

BACKGROUND

1. Field

20 tent authenticator associated with the code module may be
generated. The content authenticator may be a cyptographi
cally-secure hash value. In some embodiments, a hash algo
rithm such as secure hash algorithm 256 (SHA-256) may be

Various embodiments of the present invention generally
relate to systems and methods for protecting computer sys- 25
terns and networks from unauthorized code execution. More
specifically, many of the embodiments provide for systems
and methods of securing a computer system by allowing only
the execution of authorized computer program code.

utilized to generate a content authenticator.
In other embodiments, the determination as to whether the

code module is authorized to execute may be done by com
paring the content authenticator with entries in a global
whitelist database when the request is not authorized by com
paring the generated content authenticator with the one or

2. Background 30 more entries of the local whitelist database.
The execution of unauthorized software has had a serious

impact on computer users. The impact of unauthorized soft
ware execution not only applies to malicious software, or
mal ware, but also the use of unlicensed software and software
which may distract employees from working, such as music 35

players, games, and/or the like.

An inventory of a mass storage device associated with the
computer system may be performed in accordance with one
or more embodiments in order to determine installed code
modules. Then, each installed code module may be associ
ated with a content authenticator and recorded in a local
whitelist.

Other embodiments of the present invention provide for
recording information in a software activity database. The
information may be associated with the execution and utili
zation of code modules.

Some embodiments provide for a method of allowing
authorized code to execute on a computer system by storing
information in a most recently used (MRU) cache. The infor
mation may be associated with a code module that has previ-

Current approaches to dealing with these issues have
proven ineffective. One common method of virus or mal ware
detection is through the use of system scans either initiated by
the user or automatically schedule on a periodic basis. During 40

the scanning, the malicious software detector may search for
traces of a virus or other malware using a database of know
malware signatures. However, such databases must be rou
tinely updated and have generally proven ineffective against
the next variation of the virus.

Another common approach to dealing with malicious soft
ware execution is real-time background system monitoring.
Typically, this approach, continuously monitors all incoming
and outgoing files from the computer system in order to
determine any association with known malicious software. 50

Again, many of these approaches use a signature-based
approach which is ineffective against the next variation of the
malicious software.

45 ously been authenticated on the computer system. In various
embodiments, the information being associated with a code
module that has previous been authenticated responsive to a
request to load the code module may be stored information in
a memory store. In some embodiments, the information may
include one or more parameters associated with the code
module such as a run option, a file path, and/or a content
authenticator. Then, responsive to a subsequent new process
creation request corresponding to the code module, a deter
mination may be made as to whether the code module is

SUMMARY 55 allowed to run with reference to the information in the MRU

Systems and methods are described for allowing autho
rized code to execute on a computer system, while preventing
unauthorized code execution. According to various embodi
ments, a multi-level whitelist architecture may be used. In 60

some embodiments, a request to create a process associated
with a code module may be intercepted. The code module
may be associated with one or more boot processes of the
computer system according to some embodiments. In other
embodiment, the code module may associated with computer 65

software or a dynamically-linked library. Still yet, in other
embodiments, a request to load a first code module on behalf

cache.
In some embodiments, the invalidation or removal of

entries in the MRU cache may include determining whether
the code module has been altered since the code module was
previously authenticated. For example, in one or more
embodiments, this may be done by observing that a write has
been performed to the code module. The subsequent new
process creation request may be allowed if an entry is found
in the MRU cache corresponding to the code module and has
associated therewith a run option indicating the code module
was previously affirmatively authenticated. However, if no
valid entry is found in the MRU cache corresponding to the

US 7,698,744 B2
3

code module, then according to various embodiments, the
subsequent new process creation request may be evaluated
with reference to a first of one or more local whitelists.

The subsequent new process creation request may be
denied if an entry is found in the MRU cache, or memory
store, corresponding to the code module and has associated
therewith a run option indicating authentication of the code
module failed.

4
FIG. 3 is a flow diagram illustrating an exemplary method

for new process creation authorization processing in accor
dance with one embodiment of the present invention;

FIG. 4 is an exemplary flow diagram illustrating a method
for authorization of loading of code modules by running
processes in accordance with one embodiment of the present
invention;

FIG. 5 conceptually illustrates an exemplary multi-level
whitelist database system in accordance with one embodi-

10 ment of the present invention; and
Various embodiments provide for systems and methods of

allowing authorized files to execute on a computer system.
Some embodiments provide for the interception of process
creation requests wherein one or more of the code modules
includes a known executable module configured to execute
instructions contained within a separate script file. If an inter
cepted process creation request is associated with the known 15

executable module, then a determination as to whether a
separate script file identified by the intercepted process cre
ation request is authorized if the separate script file is in an
approved list. The intercepted process creation request may

FIG. 6 is a flow diagram illustrating a method of using a
multi-level whitelist approach in accordance one embodi
ment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention generally relate to
systems for allowing the execution of authorized computer
program code and methods for protecting computer systems
and networks from unauthorized code execution. According
to one embodiment, a proactive whitelist approach is

be allowed if the separate script file was in the approved list. 20

According to one or more embodiments, a known executable
module may be tagged as an authorized script interpreter by
setting a run option associated with an entry in a local
whitelist associated with the known executable module.

employed to secure a computer system by allowing only the
execution of authorized computer program code thereby pro
tecting the computer system against the execution of mali-

25 cious code such as viruses, Trojan horses, spy-ware, and/or
the like.

According to various embodiments, systems and methods
are described for license enforcement. According to one or
more of these embodiments, the loading of software applica
tions are monitored and intercepted. Then, a determination
may be made to decide if the number of instances of the
software application is greater than a number of authorized 30

instances. Accordingly, the execution of the software appli
cation may be denied if the number of instances already
rum1ing of the software application is greater than the number

Embodiments of the present invention also provide for
systems and methods to enable an external license enforce
ment mechanism to be imposed upon software applications
having no built in mechanism to support license tracking. For
example, when an end user attempts to run a software appli-
cation or other code module being monitored by the external
license enforcement mechanism, the execution request may
first be authenticated with reference to a whitelist database, of authorized instances.

According to some embodiments, a system comprising one
or more processors configured to execute code modules asso
ciated with running processes may be provided along with a
global whitelist stored on one or more databases and a kernel
driver configured to intercept system resource requests from
code modules attempting to execute. In some embodiments,
the kernel driver is further configured to determine if the code
module attempting to execute is authorized by finding a cryp
tographically-secure hash value associated with the code
module in the global whitelist and prevent the code module
from executing on the one or more processors if the kernel
driver determined the code module was unauthorized.

A more complete understanding of various embodiments
of the present invention may be derived by referring to the
detailed description of preferred embodiments and claims
when considered in connection with the figures.

BRIEF DESCRIPTION OF THE DRAWINGS

In the Figures, similar components and/or features may
have the same reference label. Further, various components of
the same type may be distinguished by following the refer
ence label with a second label that distinguishes among the
similar components. If only the first reference label is used in
the specification, the description is applicable to any one of
the similar components having the same first reference label
irrespective of the second reference label.

FIG. 1 is a high level architectural diagram of a multi-level
whitelist authentication system for allowing the execution of
authorized computer code in accordance with one embodi
ment of the present invention;

FIG. 2 illustrates an example of a computer system with
which embodiments of the present invention may be utilized;

35 and if affirmatively authenticated, the execution request may
then be further validated by querying a floating license server
which allows only a predetermined number of concurrent
instances of a licensed software application to be run.

Various embodiments use a kernel-level driver, which
40 intercepts or "hooks" certain system Application Program

ming Interface (API) calls in order to monitor the creation of
processes prior to code execution. The kernel-level driver
may also intercept and monitor the loading of code modules
by running processes, and the passing of non-executable code

45 modules, such as script files, to approved or running code
modules via command line options, for example. The kernel
level driver makes decisions regarding whether to allow code
modules to be loaded (e.g., mapped into memory) and/or
executed based on whether the code modules are "approved"

50 as described in more detail below.
Various embodiments make use of a user-level service to

augment the processing provided by the driver. Certain tasks,
such as network communication, are much more easily
implemented in user-level code than in a driver. While it is

55 possible to implement all of the functionality of this system in
the driver, the preferred embodiment divides processing
between a user-level service process and the driver-level gen
erally along the lines of performing the most time sensitive
operations directly in the driver and performing the more

60 complex operations at user-level.
Various features and/or advantages may be provided by

one or more embodiments of the present invention. These
features and/or advantages may include the following: pro
viding a secure system for limiting the execution of computer

65 program code to only that executable code which can be
verified to be approved to run on that computer; and systems
and methods for protecting a computer system from attack by

US 7,698,744 B2
5

unauthorized or malicious users or software attempting to
modifY the various whitelist databases or otherwise spoof the
system such that unauthorized code would be allowed to run.

6
execution of certain code modules is useful for other pur
poses. In this manifestation, the user may not have any control
over approving or denying particular modules, but the IT
manager or department may. Instead of relying on a truly
global whitelist, a custom whitelist database may be created
and maintained by the IT department. General operation of
such an authentication system is similar; however, less
emphasis is given to an individual user's ability to locally
approve/reject modules.

In an enterprise setting, to better support centralized con-
trol over which modules are allowed to execute, it is antici
pated that the authentication system would include a 'man
agement console' and that the authentication system software
is capable ofbeing controlled/configured/updated via remote

According to one embodiment, a software package may be
provided which performs one or more of the methods
described herein. During the installation of the software on a
computer system, the software modules (e.g., one or more of
the kernel mode driver, OS file system activity monitor, OS
process creation activity monitor, OS module load activity
monitor, user mode service layer and user interface layer, etc. 10

described below) are also installed. In some embodiments, a
current copy of a global whitelist may be installed locally on
the computer system. In addition, according to one embodi
ment, an inventory of the user's hard drive may be performed
during which a content authenticator may be created for each
code module. For example, code modules may include, but
need not be limited to, files containing executable code, script
files, batch files, dynamically-linked libraries (DLLs),
executables, and/or the like.

15 control. Also, in this environment it is desirable that the
authentication system software be able to interface with other
enterprise management tools. Therefore, in one embodiment,
the authentication system software may be equipped with a
remote control port to support such operations. Remote con-

According to one embodiment, protection is not just lim
ited to traditional executable modules but also extends to
many kinds of 'script' command/data files. The content
authenticator may be compared to those contained in one or
more whitelists of varying scope. For example, some embodi
ments may use a multi-level whitelist architecture including
one or more MRU caches, one or more global whitelists,
and/or one or more local whitelists.

According to one embodiment, one or more whitelists may
be protected by a digital signature of its own contents. The
digital signature may be based in part upon a hash value for
the data in the whitelist. This signature may then be encrypted
remotely by a Remote Signing Server (RSS) using private key
encryption. Then, each time one or more of the whitelists are
read into memory to look up a value during normal operation,
the hash value may be recalculated by the authentication
system software, and compared to the unencrypted stored
value (unencrypted using the public key). If the two hash
values compare equally, then it can be reasonably assured that
the authenticated whitelist has not been modified maliciously.

In one embodiment, the RSS may be used to encrypt hash
values of the whitelists using Public Key Infrastructure (PKI)
encryption, for example. The RSS may host a secret (private)
encryption key that it uses to encrypt values sent to it by client
installations who are in need of modifying their database.
Later a public key may be used to decrypt the value for
comparison against calculated values allowing the code to
determine if any of the data has been modified.

Some embodiments additionally provide for a client veri
fication scheme. According to one embodiment, the RSS
verifies that a client making a signature request is indeed an
actual approved instance of the authentication system soft
ware, and not a hacker or someone attempting to spoof the
RSS. In order to do so, the system may make use a variety of
identifying information from the requestor to make that deter
mination. For example a machine ID, a password, and/or the
like may be used. A machine ID is a unique identifier (num
ber) that is generated at the time of authentication system
software installation on an end user computer or server. It may
contain a globally unique identifier (GUID) in combination
with some other values that uniquely identify the computer
system that the client code was installed on (including possi
bly a CPU serial number, a network card unique media access
control (MAC) address, and/or various other system informa
tion).

Various embodiments of the present invention may be used
in either a personal setting or within in a corporate network
environment. The basic technology for allowing/denying the

20 trol of the authentication system software may be subject to
validation/authentication techniques to insure that only
approved management consoles can control the authentica
tion system software.

In addition to malware protection, other purposes and uses
25 for a corporate version of the authentication system software

may include additional features, such as one or more of: the
ability to manually limit allowed applications on worksta
tions within the network; the ability to monitor and track
software use activity; software license management; software

30 use management, and/or the ability to aggregate data from
many computers on a network about how many copies of a
certain software application are being used at any one time.

In the following description, for the purposes of explana
tion, numerous specific details are set forth in order to provide

35 a thorough understanding of embodiments of the present
invention. It will be apparent, however, to one skilled in the art
that embodiments of the present invention may be practiced
without some of these specific details.

Embodiments of the present invention may be provided as
40 a computer program product which may include a machine

readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform a process. The machine-readable medium
may include, but is not limited to, floppy diskettes, optical

45 disks, compact disc read-only memories (CD-ROMs), and
magneto-optical disks, ROMs, random access memories
(RAMs), erasable programmable read-only memories
(EPROMs), electrically erasable progrannnable read-only
memories (EEPROMs), magnetic or optical cards, flash

50 memory, or other type of media/machine-readable medium
suitable for storing electronic instructions. Moreover,
embodiments of the present invention may also be down
loaded as a computer program product, wherein the program
may be transferred from a remote computer to a requesting

55 computer via a communication link (e.g., a modem or net
work connection).

While, for convenience, various embodiments of the
present invention may be described with reference to a pro
active malware protection methodology implemented within

60 a Microsoft® Windows® kernel mode driver, the present
invention is equally applicable to various other operating
system environments and other applications in which moni
toring and/or enforcement of software activity is desired. For
example, according to one embodiment, techniques

65 described herein may be used to monitor and track software
use activity by logging the execution and use of all or selected
types or categories of modules on a computer system or

US 7,698,744 B2
7

network. Additionally, various of the methodologies
described herein may be used to enforce and monitor floating
licenses for software applications by limiting the number of
concurrent users of a particular software application. Various
other usage scenarios, such as copy enforcement, software/
application use management, and/or the like, for a system as
described herein will be apparent to those of ordinary skill in
the art

For the sake of illustration, various embodiments of the
present invention have herein been described in the context of
computer programs, physical components, and logical inter
actions within modern computer networks. Importantly,
while these embodiments describe various aspects of the
invention in relation to modern computer networks and pro
grams, the method and apparatus described herein are equally
applicable to other systems, devices, and networks as one
skilled in the art will appreciate. As such, the illustrated
applications of the embodiments of the present invention are
not meant to be limiting, but instead exemplary. Other sys
tems, devices, and networks to which embodiments of the
present invention are applicable include, but are not limited
to, other types communication and computer devices and
systems. More specifically, embodiments are applicable to
communication systems, services, and devices such as cell
phone networks and compatible devices. In addition, embodi
ments are applicable to all levels of computing from the
personal computer to large network mainframes and servers
as well as being applicable to local area networks (LAN s) and
wide area networks (WANs), such as enterprise-wide net
works.

TERMINOLOGY

Brief definitions of terms, abbreviations, and phrases used
throughout this application are given below.

The phrase "code module" generally refers to any file that
contains information that may be interpreted by a computer
system. Examples of code modules include executable
objects, file system objects, data files, text files, script files
and/or the like. Furthermore, code module objects, such as
visual basic scripts, java scripts, Windows®-based scripts,
java applets, and/or the like, are intended to be encompassed
by the phrase "code module." Common file extensions of
executable objects include, but are not limited to, .exe, .com,
.sys, .dll, .scr, .cpl, .api, .drv, .bpi and/or the like. File system
objects include objects like device drivers, network inter
faces, and/or the like. Other examples of code modules may
include files using the IEEE-695 standard, S-records, PEF/
CFM Mach-O (NeXT, Mac OS X), a.out (Unix/Linux),
COFF (Unix/Linux), ECOFF (Mips), XCOFF (AIX), ELF
(Unix/Linux), Mach-O (NeXT, Mac OS X), Portable Execut
able, IBM 360 object format, NLM, OMF, SOM (HP), XBE
(Xbox executable), and/or the like.

The terms "connected" or "coupled" and related terms are
used in an operational sense and are not necessarily limited to
a direct physical connection or coupling. Thus, for example,
two devices may be couple directly, or via one or more inter
mediary media or devices. As another example, devices may
be coupled in such a way that information can be passed
therebetween, while not sharing any physical connection on
with another. Based on the disclosure provided herein, one of
ordinary skill in the art will appreciate a variety of ways in
which connection or coupling exists in accordance with the
aforementioned definition.

The phrase "content authenticator" generally refers to a
result of method for generating an authenticating mark which
may be used in verifYing digital information, files, code and/

8
or data segments of code modules and/or the like. For
example, in some cases a method of content authentication
comprises two complimentary algorithms. One for generat
ing the authenticating mark and one for verifYing the authen
ticating mark. In one embodiment, a digital signature is
employed as the content authenticator. A digital signature or
cryptographic digital signature denotes the result of comput
ing a cryptographic hash value, such as SHA-1, SHA-256,
MD-5, and the like, over a specific body of encoded data, then

10 encrypting the hash value using a private key. Given the same
body of encoded data, re-computing the hash value, and
decrypting the digital signature using the corresponding pub
lic key, will produce the identical value if the encoded data

15
remains the same. According to one embodiment, in an effort
to increase real-time performance, content authenticators
may be generated and validated for only the code segment of
a code module representing an executable. In other embodi
ments, the content authenticators may cover both the code

20 and data segments of code modules representing executables.

The phrase "global whitelist" generally refers to a whitelist
identifying commonly accepted code modules that are
approved for execution. In one embodiment, a global
whitelist is a list of all known approved code modules, not

25 limited to those existing on any one particular computer sys
tem. According to various embodiments, the global whitelist
may be provided by a source external to the organization,
enterprise or individual end user or group of end users whose
code modules are whitelisted. In some embodiments, a

30 trusted service provider may maintain a global whitelist and
allow local copies of the global whitelist to be stored on
computer systems associated with a registered user of the
trusted service provider. In other embodiments, the global
whitelist may exist only one or more protected servers and is

35 not distributed in the form of local copies. In one embodi
ment, the global whitelist may be populated with a truly
"global" list of all known safe code modules as identified by
multiple sources. In other embodiments, the global whitelist
may be edited and/or created by an administrator based on an

40 enterprise-, division-, development group-wide software
policy, for example. In addition, according to various embodi
ments, the global whitelist database may be updated on a
periodic schedule such as yearly, monthly, weekly, etc. or on
an as needed basis. In an enterprise network, for example, the

45 global whitelist database might contain a limited subset of
known good code modules that are approved for use with the
particular enterprise. As an example, a global whitelist may
identify code modules associated with common operating
system software, operating system services, and common

50 utilities such as word processors, internet browsers, and/or
the like. In addition, a global whitelist database may contain
one or more fields that contain various information about the
code module or the entry in the global whitelist. For example,
in some cases the fields may include one or more of the

55 following: a content authenticator, a file name and/or a file
path, information identifYing the user or process that created
and/or last edited the entry, a run option, additional flags
describing what processing should occur for this entry such as
an "interpreter" flag, a time stamp, and/or the like. In some

60 embodiments, the run option for a given entry can encode
more information and indicate a wider range of processing
than just allow. Thus it is understood that "whitelist" as used
in accordance with various embodiments stores more than
just the list of authenticators that are valid; it should be under-

65 stood to have the broader meaning of the list of authenticators
for which we want to perform some specific processing (e.g.,
deny, prompt, etc).

US 7,698,744 B2
9

The phrases "in one embodiment," "according to one
embodiment," and the like generally mean the particular fea
ture, structure, or characteristic following the phrase is
included in at least one embodiment of the present invention,
and may be included in more than one embodiment of the
present invention. Importantly, such phases do not necessar
ily refer to the same embodiment.

The phrase "local whitelist" generally refers to a whitelist
which identifies code modules which have been locally
approved for execution on one or more computer systems or 10

a whitelist that has otherwise been customized for use by one

10
bases, and/or the like. This list is no way meant to be an
exhaustive list of devices and/or data structures falling with in
the definition of "memory store," but is instead meant to
highlight some examples. Those skilled in the art will appre
ciate many additional devices and techniques for storing
information which are intended to be included within the
phrase "memory store."

The phrase "MRU cache" or "most recently used cache"
generally refers to a most recently used list of code modules
that have been requested or themselves have requested to be
loaded or mapped into memory or to create a process. In one
embodiment, the MRU cache is used to efficiently identifY
authorized and/or unauthorized code modules without having
to recalculate a content authenticator associated with the code

or more particular computer systems. The local/global quali
fier when used in connection with the term whitelist does not
necessarily refer to where the whitelist is stored, but rather is
intended to refer to the size, scope or quantity of entries in the
whitelist. Typically, a global whitelist would be expected to

15 modules as the code module has relatively recently already
been authenticated. Accordingly, new entries may be added to
the MRU cache as code modules are authenticated and then
allowed or disallowed to load or execute. In some embodi-

be more comprehensive than a local whitelist. In one embodi
ment, the local whitelist may be stored in a memory store. In
contrast to global whitelists, a local whitelist allows for a
more specific customization of the computer software which 20

may be run on an individual computer, thereby allowing an
administrator to tailor a local whitelist to allow or disallow
particular code modules. According to various embodiments,
a local whitelist database may contain entries for files known
to be installed on one or more computer systems. For
example, according to some embodiments, a local whitelist
may be created by a computer lock down procedure that scans
one or more local computers for code modules which are then
added to the local whitelist database. In other embodiments,
an end user or administrator may be authorized to add or
remove entries indicating which code modules are allowed to
execute and/or load. The entries found within a local
whitelist, according to some embodiments, may consist of a
content authenticator value, file name and/or file path infor
mation, run-options and flags. Flags can contain information,
such as whether the corresponding code module is a script
interpreter, or whether the code module is being monitored by

ments, the MRU cache is an in-memory list of code module
file path names (identifying EXEs, DLLs, Scripts, etc.) and
associated run-options for the corresponding file path names.
According to various embodiments, the MRU cache may be
updated when a kernel-level driver intercepts file system
write activity for any of the files identified in the MRU cache.

25 As such, the cache entry for the particular file may be
removed from the list or otherwise invalidated to preclude a
file that may have been modified by being authenticated based
on the MRU cache. Other embodiments provide for the MRU
cache may be stored in any memory store. The use of a MRU

30 cache may provide a significant performance enhancement
by allowing the kernel-level driver to bypass the steps of
having to calculate and look up the content authenticator
associated with the code module in one or more of the higher
level whitelists each time a code module is loaded into

35 memory.

a floating license server. In each case, it should be understood
that the terms local whitelist and global whitelist do not
necessarily imply separate file storage. Indeed, the local and 40

global entries, at least according to some embodiments, could

The phrase "multi-level whitelist" general refers to a
whitelist architecture in which a hierarchical whitelist
approach with multiple whitelists of varying scope and/or an
MRU cache are employed. Accordingly, a priority is created
that governs the order in which the whitelists and caches are
checked. Some embodiments of a multi-level whitelist may
use one or more of MRU caches, one or more local whitelist
databases, and/or one or more global whitelist databases.

The term "responsive" includes completely or partially

all be stored in a single file with an appropriate flag on each
entry indicating its local/global status. Such statuses are
important for being able to properly update the locally stored
lists from external sources. 45 responsive.

If the specification states a component or feature "may",
"can", "could", or "might" be included or have a character
istic, that particular component or feature is not required to be
included or have the characteristic.

The phrase "rnn options" generally refers to an indicator
associated with one or more code modules of whether a code
module should be unconditionally allowed to execute, uncon
ditionally denied to execute, or if more information is

The phrases "memory store" or "data store" generally refer
to any device, mechanism, or populated data structure used
for storing information. For purposes of this patent applica
tion, "memory store" or "data store" are intended to encom
pass, but are not limited to, one or more databases, one or
more tables, one or more files, volatile memory, nonvolatile
memory and dynamic memory. By way of further illustration,

50 required before a decision can be made about the execution of
the code module. In some embodiments, a rnn option may
indicate that a license check is required, administrator
approval is required, that the code module may be allowed if
certain conditions are met, or that the code module should be

55 disallowed under certain conditions. For example, a music
player or instant message application may be associated with
a run option that will only allow execution of the code mod
ules after work hours.

for example, random access memory, memory storage
devices, and other recording media are covered by the phrase
"memory store" or "data store." Common examples of a
memory store include, but are not limited to, magnetic media 60

such as floppy disks, magnetic tapes, hard drives and/or the
like. Other examples of "memory stores" include SIMMs,
SDRAM, DIMMs, RDRAM, DDR RAM, SODIMMS, opti-
cal memory devices such as compact disks, DVDs, and/or the
like. In addition, a "memory store" may include one or more 65

disk drives, flash drives, databases, local cache memories,
processor cache memories, relational databases, flat data-

The term "whitelist" generally refers to an access control
mechanism that may identifY a set of one or more code mod
ules approved for execution on one or more computer sys
tems. In some embodiments, a whitelist may also include
information identifYing a set of one or more code modules
that are not approved for execution (e.g., blacklist informa-
tion). A whitelist may be stored in a memory store or a data
store resident in local memory, on a mass storage device, on
a remote machine or distributed across one or more remote

US 7,698,744 B2
11

machines. In some embodiments, a whitelist may also contain
information associated with the code modules, such as a file
name or file path (e.g., a file name and/or associated extension
or a fully qualified path of a file), content authenticator, spe
cial file tags, known associations, and/or the like.

Exemplary System Overview
FIG. 1 is a high level architectural diagram of a multi-level

whitelist authentication system 100 for allowing the execu
tion of authorized computer code in accordance with one
embodiment of the present invention. According to the
present example, the multi-level whitelist authentication sys
tem 100 includes a user interface layer 105, a user mode
service layer 110 and a kernel mode driver 160.

In one embodiment, the kernel mode driver 115 interacts
with and makes use of various other components, such as an
OS file system activity monitor 155, an OS process creation
monitor 150, an OS module load activity monitor 145 and a
local whitelist 135, to perform real-time authentication of
code modules. According to one embodiment, the OS file
system activity monitor 155 may also be configured to moni
tor and protect one or more of the whitelists such as MRU
cache 160, local whitelist 135, and/or global whitelist 130. In
one embodiment, the kernel mode driver 115 hooks low level
operating system APis to intercept various OS operations,
such as process creation, module loading, and file system
input/output (I/0) activity. In this manner, the kernel mode
driver 115 may perform appropriate authentication process
ing prior to the loading or mapping of a requested code
module into memory or prior to the execution of a requested
code module.

According to the present example and as will be described
in further detail below, during the creation of any new pro
cesses, or the loading of a code module by an existing process,
the kernel mode driver 115 can make a determination as to
whether to allow the particular operation to continue (e.g.,
grant the request) or deny the request (e.g., by propagating an
error code to the user mode service layer 11 0) with reference
to an MRU cache 160 and the local whitelist 135.

12
(DLLs) and scripts. When employed, the MRU cache 160
provides significant performance enhancement by allowing
the kernel mode driver 115 not to have to calculate and look
up the content authenticator each time a commonly used code
module is loaded.

According to one embodiment, the MRU cache 160 is an
in-memory list of path names and associated run-options for
the most recently requested code modules. Entries may be
added to the MRU cache 160 after code modules are authen-

10 ticated by other means (e.g., with reference to the local
whitelist 135, the global whitelist 130, or after explicit
approval by the end user or the system or network adminis
trator). Since code modules identified by entries of the MRU
cache 160 have already been recently authenticated, as long

15 as the file associated with code module remains unaltered,
there is no need to perform the time consuming process of
calculating and looking up the content authenticator for the
requested code module.

According to one embodiment and as described in further
20 detail below, the kernel mode driver 115 protects the integrity

of the MRU cache 160 by removing or otherwise invalidating
cache entries associated with files that may have been altered.
For example, when the kernel mode driver 115 intercepts file
system write activity via the OS file system activity monitor

25 155 for any of the files in the MRU cache 160, the entry
associated with the file may be removed from the list or
marked as invalid to allow subsequent cache processing to
overwrite the entry. Consequently, in one embodiment, if a
valid entry associated with the requested code module is

30 found in MRU cache 160, then an accelerated authentication
of the requested code module may be performed by simply
using the previous authentication results.

The global whitelist 130 is a list of approved code modules
that is not limited to those existing on a particular computer

35 system. According to one embodiment, the global whitelist
130 is an externally supplied knowledge base of known safe
software modules that may be gathered from one or more
sources. While in some implementations, the global whitelist
130 may be populated with a truly "global" list of all known

40 safe software, it is contemplated that within an enterprise
network, the global whitelist 130 might contain only a limited
subset of known good software that is approved for use with
the particular enterprise. In one embodiment, the global
whitelist 130 contains the same fields as the local whitelist

According to one embodiment, the local whitelist 135 con
tains entries for files known to be resident on the local com
puter system or within the LAN or enterprise network. The
local whitelist 135 may be stored in RAM or in a disk file. As
described further below, in one embodiment, entries of the
local whitelist 135 include a content authenticator value, path
information, run-options and flags associated with each code
module. Flags can contain information such as whether the
corresponding code module is a script interpreter or whether
the code module is being monitored by a floating license
server, such as floating license server 120. As described fur- 50

ther below, in accordance with a typical authentication sce
nario that does not include the optional cache acceleration
technique (described below), responsive to a request to
execute or load a code module, the multi-level whitelist
authentication system 100 first attempts to authenticate the 55

code module with reference to the local whitelist 135 (e.g.,
calculate a content authenticator value associated with the
code module and compare the calculated value to the
expected value stored in the local whitelist 135). If such
authentication is inconclusive, then authentication process- 60

ing continues with reference to the global whitelist 130.

45 135.
According to one embodiment, the user mode service layer

110 provides services that help make decisions about whether
to allow execution of code modules that the kernel mode
driver 115 cannot affirmatively authenticate. For example, if
the kernel mode driver 115 caunot locate an entry for a code
module in either the MRU cache 160 or the local whitelist
135, then responsibility for completing authentication of the
code module may propagate up the chain to the user mode
service layer 110. In the present example, configuration
options 140 stored within the user mode service layer 110
may help determine the actions that are taken in these cases.
For example, the configuration options 140 may include such
items as whether the end user or a system or network admin
istrator should be prompted to allow unknown code modules
to execute (permissions), whether a Global Whitelist Server
should be contacted to obtain approval, whether the floating
license server 120 should be contacted to obtain approval, etc.
In one embodiment, the user mode service layer 110 may also
be responsible for logging (storing) information about the
operation of the system, etc.

As described further below, a cache acceleration technique
involving the use of an optional most recently used (MRU)
cache 160 facilitates real-time authentication of code mod
ules by maintaining a relatively small set of cache entries 65

relating to code modules that have recently been requested to
execute, such as executables, dynamically-linked libraries

In the present example, the user interface layer 105 is
responsible for displaying information to the end user of the

US 7,698,744 B2
13

computer system and/or for displaying information to a sys
tem or network administrator. This may include prompting
the end user or administrator for permission to execute an
unknown code module (if the configuration options 140 are
set to do that) or simply notifying the user and/or administra
tor that a code module was denied execution as a result of the
operation of the multi-level whitelist authentication system
100.

14
provide a password or phrase to the server through a web page
that is never stored on the end user system. The user may then
be asked to provide this password during the database signing
protocol.

A global whitelist server 125 may be a server to which the
multi-level whitelist authentication system 100 is connected 10

over the Internet or it may be a locally hosted server in an
enterprise network. In one embodiment, the global whitelist
server 125 is an external source for receiving updated
whitelist information. Depending upon the particular imple
mentation, the global whitelist server 125 may allow a com- 15

plete local copy to be stored with the multi-level whitelist
authentication system 100 or the global whitelist server 125
may simply respond to individual code module information

In addition, some embodiments provide for abuse/misuse
detection. According to one embodiment, the RSS contains
code to monitor requests made of it and looks for patterns of
malicious use, such as repeated failed authentications from
the same IP address, etc.

Exemplary Computer System Overview
Embodiments of the present invention include various

steps, which will be described in more detail below. A variety
of these steps may be performed by hardware components or
may be embodied in machine-executable instructions, which
may be used to cause a general-purpose or special-purpose
processor programmed with the instructions to perform the
steps. Alternatively, the steps may be performed by a combi
nation of hardware, software, and/or firmware. As such, FIG.

queries.
In embodiments in which it is desirable to enforce concur- 20

2 is an example of a computer system 200, such as a work
station, personal computer, client, or server, upon which
embodiments of the present invention may be utilized.

rent instance limitations on particular software applications, a
floating license server 120 may be included to centrally man
age the number of concurrent executions of particular code
modules. According to one embodiment, the floating license
server 120 may be programmed to allow a limited number of
concurrent executions for certain modules. For example,
when a monitored application is launched, the available
license count may be decremented. When that instance of the
application terminates, the floating license server 120 is noti
fied so that it can increment the available license count.

As described further below, in one embodiment, the float
ing license server 120 may be queried by individual clients to
determine whether licenses are available at a given time to
execute the monitored application(s). If there is not an avail
able license when one is requested, it will return that infor
mation so that the client can deny the execution at that time.
Advantageously, in this manner, an application that is not
otherwise provided with built in capabilities to perform
license enforcement may be subjected to concurrent execu
tion limitations as may be desired by an enterprise or other
wise contractually imposed by an application provider, for
example.

According to the present example, the computer system
includes a bus 201, at least one processor 202, at least one

25
communication port 203, a main memory 204, a removable
storage media 205 a read only memory 206, and a mass
storage 207.

Processor(s) 202 can be any know processor, such as, but
not limited to, an Intel® Itanium® or Itanium 2®

30
processor(s), or AMD® Opteron® or Athlon MP®
processor(s), or Motorola® lines of processors. Communica
tion port(s) 203 can be any of an RS-232 port for use with a
modem based dialup connection, a 10/100 Ethernet port, or a
Gigabit port using copper or fiber. Communication port(s)

35
203 may be chosen depending on a network such a Local Area
Network (LAN), Wide Area Network (WAN), or any network
to which the computer system 200 connects.

Main memory 204 can be Random Access Memory
(RAM), or any other dynamic storage device(s) commonly

40
known in the art. Read only memory 206 can be any static
storage device(s) such as Progrannnable Read Only Memory
(PROM) chips for storing static information such as instruc
tions for processor 202.

In the present example, an Remote Signing Server (RSS)
165, may be used to protect one or more of the global whitelist
130, the local whitelist 135 and the MRU cache 160 with an
externally generated digital signature. The digital signature
may be based in part upon a hash value for the data in the
corresponding whitelist. This signature may then be
encrypted remotely by a Remote Signing Server (RSS) using
private key encryption. Then, each time one or more of the
whitelists are read into memory to look up a value during
normal operation, the hash value may be recalculated by the
authentication system software, and compared to the unen
crypted stored value (unencrypted using the public key). If the
two hash values compare equally, then it can be reasonably 55

assured that the authenticated whitelist has not been modified

Mass storage 207 can be used to store information and

45
instructions. For example, hard disks such as the Adaptec®
family of SCSI drives, an optical disc, an array of disks such
as RAID, such as the Adaptec family of RAID drives, or any
other mass storage devices may be used.

Bus 201 communicatively couples processor(s) 202 with

50
the other memory, storage and communication blocks. Bus
201 can be a PCI/PCI-X or SCSI based system bus depending
on the storage devices used.

Removable storage media 205 can be any kind of external
hard-drives, floppy drives, IOMEGA® Zip Drives, Compact
Disc-Read Only Memory (CD-ROM), Compact Disc-Re
Writable (CD-RW), Digital Video Disk-Read Only Memory

maliciously.
Some embodiments additionally provide for a client veri

fication scheme according to which a caller of the RSS 165 is
confirmed to be an authorized code module associated with
the authentication system software by requiring the caller to
provide identifYing information, such as a machine ID, a
password, and/or the like.

In one embodiment, the client verification scheme employs
an un-stored password (from user memory) that is used when
an end-user installs the authentication system software and
creates a new account on the RSS, he/she may be prompted to

(DVD-ROM).
The components described above are meant to exemplifY

some types of possibilities. In no way should the aforemen-
60 tioned examples limit the scope of the invention, as they are

only exemplary embodiments.
FIG. 3 is a flow diagram illustrating an exemplary method

300 for new process creation authorization processing in
accordance with one embodiment of the present invention. In

65 accordance with the present example, a monitoring step, step
310, monitors for process creation requests from code mod
ules. In one embodiment, the kernel mode driver 115 is acti-

US 7,698,744 B2
15

vated as new processes are created, just before execution. For
example, in the context of the Windows operating system, the
OS process creation activity monitor 150 may intercept new
process creation activity by hooking to the Windows® Crea
teSection API call and in response temporarily turning con
trol over to the kernel mode driver 115 to allow appropriate
authentication processing to be performed. The monitoring
for new process creation requests may occur during system
boot processing or during normal system operations.

At decision block 320, a determination may then be made 10

as to whether the code module is authorized to execute.

16
at which the determination was made, whether the denial/
allowance was as a result of user input, the content authenti
cator calculated for the code module, code module name,
code module file path, machine id, and/or the like. In various
embodiments, this information may be stored in one or more
databases. In other embodiments, the information may be
transmitted to an external monitoring system which may pre
pare a summary of denied/allowed process creation requests.
This report may then be transmitted to a designated person on
a periodic or on-demand basis. At block 340, in some embodi
ments, in addition to or instead of recording information
associated with the process creation denial, an error code
associated with the process creation denial may be displayed
to an end user, system administrator or other authorized per-

According to one embodiment, a multi-level whitelisting
approach may be used. One embodiment of the multi-level
whitelisting approach is described in more detail with refer
ence to FIG. 6. Briefly, in accordance with one embodiment, 15 sonnel.
a content authenticator of the code module being loaded may
be calculated and compared to the expected value stored in an
entry of one or more of the multiple whitelists available. If the
entry is found, the authorization determination may based on
one or more parameters as to whether the request should be 20

approved; and then control is returned to the operating sys
tem. In one embodiment, requests may be unconditionally
approved, unconditionally denied, or a decision may need to
be made by an authorized user.

If the request is granted, control flow continues along the 25

"Yes" path exiting decision block 320 to block 345. If the
request is denied, control flow continues along the "No" path
from decision block 320 to block 330. Otherwise, if no deter
mination can be made without further input from an autho
rized user, for example, then the determination may be 30

unknown and control flow continues along the "UnK" path
from decision block 320 to block 355.

According to one embodiment, the information associated
with the denial of the new process creation request may be
used to remove the unauthorized code modules from the
system. This may be done automatically, using manual user
intervention, and/or a combination of the two. For example, if
the code module associated with the new process creation
request is known mal ware, the code module may be automati
cally removed. In other cases, user intervention may be desir
able. In other cases, nothing may need to be done immedi
ately. For example, if the reason for unconditional denial is
because there are not enough licenses currently available,
then no further action is necessary. However, in some
embodiments, information associated with a denial based on
insufficient licenses may be used to determine if additional
licenses may need to be purchased.

At block 355, a decision has previously been made that the
code module authorization processing of block 320 resulted
in "known" state, e.g., there is a need for more information or
intervention on the part of an authorized user. According to

At block 345, a decision has previously been made that the
code module in question may continue to load and execute in
the normal fashion. In one embodiment, this means that the
code module is granted access to system resources such as
memory, processors, and/or the like.

35 one embodiment, when this occurs, a request may be made at
block 355 for an administrator or end user to determine

At block 330, a decision has previously been made that the
code module in question is not allowed to create a new pro
cess and the new process creation request is denied. As 40

described in more detail below, a denial may arise for multiple
reasons. For example, in one embodiment, a run option may
be set to an "unconditional deny" state in one or more of the
whitelists. Once this is found, according to various embodi
ments, the request may be denied and access will not be 45

granted to the system resources such as memory, processors,
and the like. In other embodiments, a request may be denied

whether the new process creation request should be granted.
For example, when a request is received from a code module
that may have a legitimate purpose, but is either not currently
in one or more of the whitelists or is currently in one or more
of the whitelists but is associated with a run option of "addi
tiona! authorization required," for example, then a decision
may be requested from an administrator or end user. An
administrator may use behavior analysis techniques, such as
sandboxing, to determine if such code module requests
should be granted. In accordance with various embodiments,
it should be understood that this appeal to additional authority
includes but is not limited to: real-time notification of an if there are not enough licenses to allow another concurrent

instance of a particular software application, for example, that
is subject to monitoring by a floating license server. Still yet
in other cases, the denial may occur based on one or more
conditions placed on the code module for execution. For
example, a whitelist may indicate that a code module may be
executed only during a certain period of the day. As such, if it

administrator or querying one or more external servers that
50 might have more knowledge about the approval status of this

module.

is not during the time period indicated, then denial relating to 55

the creation of a new process associated with the requested
code module may occur. As another example, a whitelist may
indicate that only certain users are authorized to execute a
particular code module. As such, when another user attempts

According to one embodiment, one or more options may be
presented to the end user when a request for a decision is
made. In some cases, the options presented may depend on
whether the new process creation request occurred during a
boot process or after the system is fully booted. In other cases,
special configuration options control behavior of the system
before a user or management console control is available
from the operating system. For example, a user prompt, unat-

to execute the code module, the request may be denied. 60 tended deny and log mode, and/ or a user self-lockdown mode
may be present in one or more embodiments of the present
invention. According to one embodiment, the user may be
prompted that an unapproved module is attempting to execute

In one embodiment, if a new process creation request is
denied or granted, information associated with the denial or
allowance may be recorded at blocks 335 and 350, respec
tively. Various additional information associated with the
denial or allowance may be recorded. For example, param- 65

eters such as a time stamp, reason for denial/allowance, such
as run option set to unconditional deny/allow, whitelist level

and may be given various options from which to select.
According to one embodiment, the user may be given the
following choices: (1) allow the code module to execute this
time, but continue to warn or prompt on subsequent attempts

US 7,698,744 B2
17

(no modification of any whitelists takes place); (2) deny this
code module from executing this time and prompt on subse
quent attempts (again, no whitelist modification takes place);
(3) allow this code module to execute this time and in the
future-add an entry in a local whitelist; and/or (4) deny this
code module from executing this time and in the future-set
run option in one or more of the available whitelists to uncon
ditional deny.

18
certain code modules, while other running processes may not
be allowed to load the same code modules.

At block 430, a decision has previously been made that the
code module in question is not allowed to be mapped into
memory and that the code module load request is denied. As
described in more detail below, a denial may arise for multiple
reasons. For example, in one embodiment, a run option may
be set to an "unconditional deny" state in one or more of the
whitelists. Once this is found, according to various embodi-

10 ments, the request may be denied and access will not be
granted to the system resources such as memory, processors,
and the like. In other embodiments, the denial may occur
based on conditions placed on the code module for loading,
such as those discussed above with reference to FIG. 3.

According to one embodiment, in the unattended deny and
log mode, the system will deny execution of all unapproved
code modules. According to some embodiments, even code
modules which have an unknown determination may be
denied. In some embodiments, a log file entry may be made
noting that the unapproved code module attempted to
execute. No user notification or interaction is required. This 15

may be useful in the case of server, for example, since a
servers normally do not have an end user immediately avail
able.

In some embodiments, if a load module request is denied or
granted, information associated with the denial or allowance
may be recorded, see blocks 435 and 450. Various informa
tion associated with this unconditional denial or uncondi
tional allowance may be recorded at blocks 435 and 450, If the user self-lockdown mode is active, various embodi

ments provide that the user may elect to deny all unapproved
code modules, but be notified when one attempts to execute
through the user interface. In some embodiments, this may be
an immediate notification such as a pop-up dialog screen,
audible notification, print out, e-mail, and/or the like. Other
embodiments provide for notification on an on-demand basis
or a periodic basis, such as hourly, daily, weekly, and the like.

20 respectively. For example, parameters such as a time stamp,
reason for denial/allowance, such as run option set to uncon
ditional deny/allow, the running process requesting the load
ing of the code module, whitelist level at which the determi
nation was made, if the denial/allowance resulted from user

25 input, the content authenticator calculated for the code mod
ule, code module name, code module file path, machine id,
and/or the like. FIG. 4 is a flow diagram illustrating a method 400 for

authorization of loading of code modules by running pro
cesses in accordance with one embodiment of the present
invention. In accordance with the present example, a moni- 30

taring step, step 410, monitors for the loading of code mod
ules by running processes. In one embodiment, the kernel
mode driver 115 is activated as module load activity occurs.
For example, in the context of the Windows operating system,
the OS module load activity monitor 145 may intercept mod- 35

ule loading activity by hooking to the Windows® CreateSec
tion API call and in response thereto temporarily turning
control over to the kernel mode driver 115 to allow appropri-

In various embodiments, this information may be stored in
one or more databases. In other embodiments, the informa
tion may be transmitted to an external monitoring system
which may prepare a summary of denied/allowed code mod-
ule load requests. As indicated above, with reference to FIG.
3, such a report may then be transmitted to a designated
person on a periodic or on-demand basis. Other embodi
ments, simply determine an error code when the load code
module request is denied and transmits this error code to an
end user, system administrator or other authorized personnel,
see step 440.

At block 455, a decision has previously been made that the ate authentication processing to be performed.
Once a request from a running process is received to load a

code module, such as a .dll, .exe, script file, and/or the like, a
determination is made at decision block 320, as to whether the
request should be authorized. According to various embodi
ments, a multi-level whitelisting approach may be used. A
more detailed description of how this decision is made in
accordance with one embodiment of the present invention is
provided below. Briefly, in accordance with one embodiment,
decision block 320 may result in an unconditional deny, an
unconditional allow, or an unknown state (in which case, a
decision may be solicited from an authorized user).

40 code module load authorization processing of block 320
resulted in "unknown" state, e.g., there is a need for more
information or intervention on the part of an authorized user.
According to one embodiment, when this occurs, a request
may be made at block 455 for an administrator or end user to

45 determine whether the load request should be granted. Vari
ous embodiments allow for different options. As such, it
should be understood that this appeal to additional authority
includes but need not be limited to real-time notification of an
administrator or querying one or more external servers that

50 might have more knowledge about the approval status of this
module.

If the request is granted, control flow continues along the
"Yes" path exiting decision block 320 to block 445. If the
request is denied, control flow continues along the "No" path
from decision block 320 to block 430. Otherwise, if no deter- 55
mination can be made without further input from an autho
rized user, for example, then the determination may be
unknown and control flow continues along the "UnK" path
from decision block 320 to block 455.

According to one embodiment, one or more options may be
presented to the end user when a request for a decision is
made. In some cases, the options presented may depend on
whether the loading request occurred during a boot process or
after the system is fully booted. As described above with
reference to FIG. 3, in other embodiments, special configu
ration options may control behavior of the system before a
user or management console control is available from the

At block 445, a decision has previously been made that the
code module in question may continue to be mapped into
memory. In one embodiment, this means that the code module
is granted access to system resources such as memory, pro
cessors, and/or the like. In some cases, the determination as to
whether the load request should be granted may depend on the
running process which is performing the loading request. For
example, some running processes may be authorized to load

60 operating system. For example, a user prompt mode, unat
tended deny and log mode, and/ or a user self-lockdown mode
may be supported in accordance with one embodiment.
According to one embodiment, in user prompt mode, the user
may be provided with one or more of the following choices:

65 (1) allow this code module to be mapped into memory this
time, but continue to warn or prompt on subsequent attempts
(no modification of multi-level whitelists); (2) deny this code

US 7,698,744 B2
19

module from being mapped into memory this time and
prompt if it attempts to do so in the future (no multi-level
whitelist modification); (3) allow this module to be mapped
into memory this time and in the future-add a content
authenticator to a whitelist; and/or (4) deny this code module
from being mapped into memory this time and in the future
set run option to unconditional deny in the whitelist.

FIG. 5 conceptually illustrates an exemplary multi-level
whitelist database system 500 in accordance with one
embodiment of the present invention. According to one 10

embodiment, multiple whitelists with varying scope may be
used to authenticate requests. In the present example, an
MRU cache 505, a local whitelist 520, and a global whitelist
550 are consulted to authenticate requests. In one embodi
ment, there may be one or more of each scope/level of 15

whitelist. In other embodiments, one or more levels of
whitelist may not be present.

According to one embodiment, authentication processing
of a request relating to a code module begins with the MRU
cache 505, if insufficient information exists in the MRU cache 20

505 to make a deny/grant decision, then authentication pro
cessing continues with the one or more local whitelists 520. If
insufficient information exists in the one or more local
whitelists 520, then authentication processing continues with
reference to either the floating license server 545 or the one or 25

more global whitelists 550. If insufficient information exists

20
authorized to add or remove entries indicating which code
modules are allowed to execute and/or load.

In one embodiment, the entries 521 found within the local
whitelist 520 may consist of a file path 525, content authen
ticator value 530, run-options 535 and administrative infor
mation 540. Run-options 535 may consist of one or more of
the following states: "unconditional allow," "unconditional
deny," "conditional allow based on flags," or "requires addi-
tional user authorization." In one embodiment, the local
whitelist 520 may contain flags indicating information, such
as whether the corresponding code module is a script inter-
preter and conditions on execution. For example, in one
embodiment, a condition on execution may be approval from
the floating license server 545. In another embodiment, com
pliance with time prohibitions or time authorizations may be
necessary for the code module to be loaded or executed. For
example, a corporate enterprise may only allow the execution
of code modules associated with non-work-related software
applications, such as a music player application, after regular
business hours.

If an entry contains a flag indicating that the code module
is being monitored by a floating license server 545, the com
pliance with restrictions placed by the floating license server
will be necessary for the code module to execute. For
example, only a limited number a licenses may be available
for concurrent instances of a particular code module. In this
case, there must be a free license before the code module will
be allowed to execute. As another example, within a corporate
setting, a license may only be valid for a particular physical

in the one or more global whitelists 550, then the decision
regarding whether to allow or deny loading or execution of
the code module in question may be delegated to an autho
rized user 555.

The MRU cache 505 allows the use of a cache acceleration
technique involving the use of an optional most recently used
list. The MRU cache 505 facilitates real-time authentication

30 site or location, a particular computer, or by a particular user
or set of users. In these cases, compliance with these license
restrictions must be met before the code module will be

of code modules by maintaining a relatively small set of cache
entries 506 relating to code modules that have recently been 35

requested to be executed or to be loaded. In addition, these
entries generally contain a subset of the information available
for the same entries in one or more local whitelists 520 and/or
one or more global whitelists 550.

Examples of code modules include, but need not be limited 40

to, executables, dynamically-linked libraries (DLLs), scripts,
and/or the like. In one embodiment, the MRU cache 505 may
be stored in locally in memory, in a swap file, and/or the like.
In other embodiments, the MRU cache 505 may be stored on
other storage media locally, or in some cases, even remotely. 45

According to one embodiment, the MRU cache 505 com
prises an in-memory list of entries 506 identifYing path names
510 and previously associated run-options 515 for the most
recently requested code modules. Entries may be added to the
MRU cache 505 after code modules are authenticated by 50

other means.
A second tier of the multi-level whitelist approach may

include one or more local whitelists 520. A local whitelist
generally would be expected to be more comprehensive than

allowed to execute.
Some embodiments, allow for the use of one or more global

whitelists 550. Typically, a global whitelist would be
expected to be more comprehensive than a local whitelist. A
global whitelist 550 may identify commonly accepted code
modules that are approved for execution. In one embodiment,
the global whitelist 550 represents a list of all known
approved code modules, not limited to those existing on any
one particular computer system or those within a particular
corporate enterprise.

In some embodiments, the global whitelist 550 may iden
tifY code modules associated with common operating system
software, operating system services, and common utilities
such as word processors, internet browsers, and/or the like. In
addition, entries 551 of the global whitelist database 550 may
contain one or more fields that contain various information
about the corresponding code module. For example, in some
cases the fields may include the same fields as described in
connection with the local whitelist 520. In other cases, a
global whitelist may contain additional information in the
entries 551. For example, entries 551 in the global whitelist
database 550 may contain one or more of the following: a file

55 name and/or a file path, a content authenticator, information
identifying the user or process that created and/or last edited
the entry, a run option, a time stamp, and/or the like.

an MRU cache and less comprehensive than a global
whitelist. According to one embodiment, a local whitelist
may identifY code modules which have been locally approved
for execution on one or more computer systems or a whitelist
that has otherwise been customized for use by one or more
particular computer systems. According to various embodi
ments, a local whitelist database 520 may contain entries 521
for files known to be installed on one or more computer
system. For example, according to one embodiment, a local
whitelist may be created by a computer lock down procedure
that scans one or more local computers for code modules 65

which are then added to the local whitelist database 520. In
other embodiments, an end user or administrator may be

As described earlier, according to various embodiments,
the global whitelist 550 may be provided by a source external

60 to the organization, enterprise or individual end user or group
of end users whose code modules are whitelisted. In some
embodiments, a trusted service provider may maintain the
global whitelist 550 and allow local copies of the global
whitelist to be stored on computer systems associated with a
registered user of the trusted service provider. In other
embodiments, the global whitelist may exist only one or more
protected servers and is not distributed in the form of local

US 7,698,744 B2
21

copies. In one embodiment, the global whitelist may be popu
lated with a truly "global" list of all known safe code modules
as identified by multiple sources.

In other embodiments, the global whitelist may be edited
and/or created by an administrator based on an enterprise-,
division-, development group-wide software policy, for
example. In addition, according to various embodiments, the
global whitelist database may be updated on a periodic sched
ule such as yearly, monthly, weekly, etc. or on an as needed
basis. In an enterprise network, for example, the global 10

whitelist database might contain a limited subset of known
good code modules that are approved for use with the par
ticular enterprise.

According to some embodiments, a fourth tier for authen
tication processing involving prompting an administrator or 15

end user 555 for instructions regarding whether to allow or
disallow the loading or execution of the code module in
question may be included in the multi-level whitelist
approach. The prompting for end-user instructions may occur
after a search in any one of the other levels. Further detail 20

regarding exemplary multi-level code module authorization
is provided with reference to FIG. 6.

FIG. 6 is a flow diagram illustrating a method 600 of using
a multi-level whitelist approach in accordance one embodi
ment of the present invention. In accordance with the present 25

example, multiple whitelists, such as one or more MRU
caches, one or more local whitelists, and one or more global
whitelists, may be used to authenticate requests relating to
code modules. In accordance with one embodiment, available
whitelists are prioritized to create a search order. In some 30

embodiments, this may be done based on the relative com
prehensiveness or scope of the whitelists. In other embodi
ments, the order in which the whitelists are searched may
depend on flags associated with the code module. Still yet, in
other embodiments, the prioritization may be based on the 35

code module extension such as .dll or .exe.
A request for code module authorization may occur in a

varietyofmarmers, seeblocks310and410 ofFIG. 3 and FIG.
4, respectively, for two examples. In any event, once a request
for authorization is received, and a prioritization of the avail- 40

able whitelists has been established, the multi-level code
module authorization process may begin.

22
at block 670. Otherwise, however, if the run option was pre
viously determined to be "allow," then various other flags
associated with the whitelist entry may be checked at blocks
655 and 665, respectively, to determine whether special scrip
file processing or license restriction compliance needs to be
performed.

At decision block 655, a determination is made based on
various flags that may be associated with the whitelist entry
regarding whether the code module is a script interpreter. If
not, then the run option is returned at block 670. Otherwise, if
the code module is a script interpreter, then at block 660,
information about the associated script is extracted. For
example, information regarding one or more command line
parameters or arguments may be obtained, such as a file path
of a script file to be run by the script interpreter. Then, at block
665, the multi-level code module authorization is performed
on the script file. Advantageously, this allows script files to be
selectively authorized for execution on a computer system in
a manner similar to executable files. Otherwise, if the run
option does not identify the code module as a script inter
preter, then processing branches from decision block 655 to
decision block 665.

At decision block 665, a determination is made based on
various flags that may be associated with the whitelist entry
regarding whether the code module is one that requires com
pliance with one or more license restrictions, such as the code
module being monitored by a floating license server. If so,
then at block 680, information regarding the number of autho
rized software licenses is retrieved. Subsequently, at decision
block 685, it is determined whether there is at least one free
license for the code module to allow an additional concurrent
instance of the code module. If so, then the run option is
returned at block 670. If no free licenses are available, then
the run option of "deny" is returned at block 670. In alterna
tive embodiments, additional checks may be performed, such
as whether the user authorized to run this software, whether
the request in compliance with physical location restrictions,
and/or the like.

Once a run option is returned to the return run option block
670, the run option decision block 690 returns the appropriate
result indicating the code module is either allowed, denied, or
that more information or manual intervention is required to
make the determination.

In conclusion, the present invention provides novel sys
tems, methods and arrangements for securing a computer
system by allowing only the execution of authorized com
puter program code. While detailed descriptions of one or
more embodiments of the invention have been given above,
various alternatives, modifications, and equivalents will be

At block 605, the MRU cache is scanned to determine, see
decision block 610, if an entry associated with the requested
code module is present. If an entry is not found then a content 45

authenticator is computed for the requested code module at
block 615. After the content authenticator for the code mod
ule is determined, at block 620, the next whitelist is checked
for a matching entry. This whitelist may be another MRU
cache, a local whitelist, or a global whitelist. If no matching
entry is found, then at block 630, the next prioritized whitelist
is checked. If no matching entry is found, then a determina
tion is made at decision block 640 as to whether there are any
more whitelists to search. If not, according to one embodi
ment, a new entry is created in the last available whitelist level 55

for the code module with the run option set to unknown.

50 apparent to those skilled in the art without varying from the
spirit of the invention. Therefore, the above description
should not be taken as limiting the scope of the invention,
which is defined by the appended claims.

If during decision steps 610, 625, or 635 a entry corre
sponding to the code module is found, then processing pro
ceeds to block 650. At block 650, a new MRU entry is created
(or a least recently used MRU entry is overwritten) for the 60

code module and the filename and run option found in the
whitelist entry may be recorded in the new MRU entry.

At decision block 653, a determination is made regarding
whether to check various other flags that may be associated
with the whitelist entry. For example, if the run option was 65

already determined to be "deny," then no further checking
need be performed and the run option may simply be returned

What is claimed is:
1. A method of allowing authorized code to execute on a

computer system, the method comprising:
intercepting, by a kernel-level driver within the computer

system, a request to create a process associated with a
code module;

determining, by the kernel-level driver, if the request is
authorized by authenticating the request with reference
to a multi-level whitelist database architecture, the
multi-level whitelist database architecture including (i)
a global whitelist database hosted by a trusted third party
service provider (ii) a local whitelist database created
based on the global whitelist and (iii) an in-memory
code module cache containing entries corresponding to

US 7,698,744 B2
23

code modules that have previously been authenticated
with reference to the global whitelist database or the
local whitelist database, the entries including informa
tion regarding whether the corresponding code module
has been altered since it was previously authenticated
and information regarding whether the corresponding
code module was previously affirmatively authenti
cated;

allowing, by the kernel-level driver, the code module to be
loaded and executed by granting the request if the
request is authorized.

2. The method of claim 1, wherein the computer system is
a server.

3. The method of claim 1, wherein the request is originated
by a client system.

4. The method of claim 1, wherein the code module is
associated with one or more boot processes of the computer
system.

5. The method of claim 1, the method further comprising:

24
local to the computer system and one or more whitelist data
bases local to the computer system.

10. The method of claim 8, wherein the code module com
prises an executable object.

11. The method of claim 8, wherein the code module com
prises a file system object.

12. The method of claim 8, wherein the code module com
prises a script file.

13. The method of claim 8, wherein the approved code
10 modules include code modules associated with common

operating system software, operating system services, and
common utilities, including word processors and internet
browsers.

14. The method of claim 8, wherein the approved code
15 modules are identified by multiple sources.

15. The method of claim 8, further comprising:
providing a local whitelist database maintained by an infor

mation technology (IT) administrator; and

if the request cannot be authenticated with reference to the 20

in-memory code module cache, then determining if the
code module is authorized to execute by causing a con
tent authenticator associated with the code module to be
compared with one or more entries in the local whitelist
database; and 25

consulting, by the kernel driver, the local whitelist database
before or after authenticating the cryptographic hash
value with reference to the remote whitelist database;

whereby the IT administrator has the ability to tailor the
local whitelist to allow or disallow particular code mod
ules from running on the computer system.

16. The method of claim 8, wherein said intercepting, by
the kernel driver of the computer system, a request to create a
process associated with a code module comprises the kernel
driver monitoring operating system process creation or mod-

if the request cannot be authenticated with reference to the
local whitelist database, then determining if the code
module is authorized to execute by causing the content
authenticator to be compared with one or more entries in
the global whitelist database.

6. The method of claim 1, the method further comprising:
performing an inventory of a mass storage device associ

ated with the computer system to determine installed
code modules; associating with each code module a
content authenticator, and recording each content
authenticator in the local whitelist database.

7. The method of claim 1, the method further comprising
recording, in a software activity database, information asso
ciated with the execution and utilization of code modules.

8. A method of allowing authorized code to execute on a
computer system, the method comprising:

intercepting, by a kernel driver of the computer system, a
request to create a process associated with a code mod
ule;

determining, by the kernel driver, whether to authorize the
request by causing a cryptographic hash value of the
code module to be authenticated with reference to a

30 ule load activity.
17. The method of claim 8, wherein said intercepting, by

the kernel driver of the computer system, a request to create a
process associated with a code module comprises the kernel
driver hooking low-level operating system application pro-

35 gramming interfaces (APis) to intercept one or more operat
ing system operations of interest including one or more of
process creation, module loading, and file system input/out
put activity.

18. The method of claim 8, wherein said intercepting, by

40
the kernel driver of the computer system, a request to create a
process associated with a code module comprises an operat
ing system process creation activity monitor intercepting new
process creation activity within the computer system by
hooking to a Windows CreateSection API call and tempo-

45 rarily turning control over to the kernel driver.

whitelist database remote from the computer system and
maintained by a trusted service provider, the remote 50
whitelist database containing cryptographic hash values

19. The method of claim 8, wherein said intercepting, by
the kernel driver of the computer system, a request to create a
process associated with a code module occurs during boot
processing of the computer system.

20. The method of claim 8, wherein said intercepting, by
the kernel driver of the computer system, a request to create a
process associated with a code module occurs during normal
system operations of the computer system.

of approved code modules, which are known not to
contain viruses or malicious code;

allowing the code module to be loaded and executed within
the computer system if the cryptographic hash value
matches one of the cryptographic hash values of
approved code modules within the remote whitelist
database; and

21. The method of claim 10, wherein the cryptographic

55 hash value covers a code segment of the executable object but
not a data segment of the executable object.

wherein the kernel driver is implemented in one or more
processors and one or more computer-readable storage 60

media associated with the computer system, the one or
more computer-readable storage media having instruc
tions tangibly embodied therein representing the kernel
driver that are executable by the one or more processors.

9. The method of claim 8, wherein the remote whitelist 65

database represents a part of a multi-level whitelist architec
ture including one or more most recently used (MRU) caches

22. The method of claim 10, wherein the cryptographic
hash value covers both a code segment and a data segment of
the executable object.

23. A code execution authorization system comprising:
a kernel driver of a computer system implemented in one or

more computer processors of the computer system and
one or more computer-readable storage media associ
ated with the computer system, the one or more com-
puter-readable storage media having instructions tangi
bly embodied therein representing the kernel driver that
are executable by the one or more computer processors,

US 7,698,744 B2
25

the kernel driver operable to perform a method of allow
ing authorized code to execute on the computer system
comprising:
intercepting a request to create a process associated with

a code module;
determining whether to authorize the request by causing

a cryptographic hash value of the code module to be
authenticated with reference to the global whitelist
database hosted by a trusted service provider, the
global whitelist database containing cryptographic 10

hash values of approved code modules, which are
known not to contain viruses or malicious code; and

allowing the code module to be loaded and executed
within the computer system if the cryptographic hash
value matches one of the cryptographic hash values of 15

approved code modules within the global whitelist
database.

24. The code execution authorization system of claim 23,
wherein the global whitelist database represents a part of a
multi-level whitelist architecture including one or more most 20

recently used (MRU) caches local to the computer system and
one or more whitelists local to the computer system.

25. The code execution authorization system of claim 23,
wherein the code module comprises an executable object.

26. The code execution authorization system of claim 23, 25

wherein the code module comprises a file system object.
27. The code execution authorization system of claim 23,

wherein the approved code modules include code modules
associated with common operating system software, operat
ing system services, and common utilities, including word 30

processors and internet browsers.

26
34. The code execution authorization system of claim 23,

wherein said intercepting a request to create a process asso
ciated with a code module occurs during normal system
operations of the computer system.

35. The code execution authorization system of claim 25,
wherein the cryptographic hash value covers a code segment
of the executable object, but not a data segment of the execut
able object.

36. The code execution authorization system of claim 25,
wherein the cryptographic hash value covers both a code
segment and a data segment of the executable object.

37. A program storage device readable by a computer sys
tem, tangibly embodying a program of instructions execut
able by one or more computer processors of the computer
system to perform method steps for allowing authorized code
to execute on the computer system comprising:

intercepting a request to create a process associated with a
code module;

determining whether to authorize the request by causing a
cryptographic hash value of the code module to be
authenticated with reference to a whitelist database
remote from the computer system and maintained by a
trusted service provider, the remote whitelist database
containing cryptographic hash values of approved code
modules, which are known not to contain viruses or
malicious code; and

allowing the code module to be loaded and executed within
the computer system if the cryptographic hash value
matches one of the cryptographic hash values of
approved code modules within the remote whitelist
database. 28. The code execution authorization system of claim 23,

wherein the approved code modules are identified by multiple
sources.

29. The code execution authorization system of claim 23,
the method further comprising:

consulting a local whitelist database before or after authen
ticating the cryptographic hash value with reference to
the global whitelist database, the local whitelist database
maintained by an information technology (IT) adminis
trator;

38. The program storage device of claim 37, wherein the
remote whitelist database represents a part of a multi-level

35 whitelist architecture including one or more most recently
used (MRU) caches local to the computer system and one or
more whitelists local to the computer system.

39. The program storage device of claim 37, wherein the

40
code module comprises an executable object.

40. The program storage device of claim 37, wherein the
code module comprises a file system object.

whereby the IT administrator has the ability to tailor the
local whitelist to allow or disallow particular code mod
ules from running on the computer system.

30. The code execution authorization system of claim 23,
wherein said intercepting a request to create a process asso
ciated with a code module comprises monitoring operating
system process creation or module load activity.

41. The program storage device of claim 37, wherein the
approved code modules include code modules associated

45 with common operating system software, operating system
services, and common utilities, including word processors
and internet browsers.

31. The code execution authorization system of claim 23, 50
wherein said intercepting a request to create a process asso
ciated with a code module comprises hooking low-level oper
ating system application programming interfaces (APis) to
intercept one or more operating system operations of interest
including one or more of process creation, module loading, 55
and file system input/output activity.

32. The code execution authorization system of claim 23,
wherein said intercepting a request to create a process asso
ciated with a code module comprises an operating system
process creation activity monitor intercepting new process 60

creation activity within the computer system by hooking to a
Windows CreateSection API call and temporarily turning
control over to the kernel driver.

42. The program storage device of claim 37, wherein the
approved code modules are identified by multiple sources.

43. The program storage device of claim 37, the method
further comprising:

consulting a local whitelist database before or after authen
ticating the cryptographic hash value with reference to
the global whitelist database, the local whitelist database
maintained by an information technology (IT) adminis-
trator;

whereby the IT administrator has the ability to tailor the
local whitelist to allow or disallow particular code mod
ules from running on the computer system.

44. The program storage device of claim 37, wherein said
intercepting a request to create a process associated with a
code module comprises hooking low-level operating system
application programming interfaces (APis) to intercept one 33. The code execution authorization system of claim 23,

wherein said intercepting a request to create a process asso
ciated with a code module occurs during boot processing of
the computer system.

65 or more operating system operations of interest including one
or more of process creation, module loading and file system
input/output activity.

US 7,698,744 B2
27

45. The program storage device of claim 37, wherein said

intercepting a request to create a process associated with a

code module occurs during boot processing of the computer
system.

28
46. The program storage device of claim 39, wherein the

cryptographic hash value covers both a code segment and a
data segment of the executable object.

* * * * *

