
c12) United States Patent
Per et al.

(54) METHOD AND SYSTEM FOR FAST
INCREMENTAL BACKUP USING
COMPARISON OF DESCRIPTORS

(75) Inventors: Yuri S. Per, Moscow (RU); Maxim V.
Tsypliaev, Moscow (RU); Maxim V.
Lyadvinsky, Moscow (RU); Alexander
G. Tormasov, Moscow (RU); Serguei
M. Beloussov, Singapore (SG)

(73) Assignee: Acronis Inc., Tortola (VG)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 494 days.

This patent is subject to a terminal dis­
claimer.

(21) Appl. No.: 11/686,454

(22) Filed: Mar. 15, 2007

Related U.S. Application Data

(63) Continuation-in-part of application No. 11/244,298,
filed on Oct. 6, 2005, now Pat. No. 7,366,859.

(51) Int. Cl.
G06F 12116 (2006.01)

(52) U.S. Cl. 7111162; 707/625
(58) Field of Classification Search 711/161,

711/162, 216; 707/624-625, 634, 639, 646,
707/745, 747, 999.202, 999.204

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,649,152 A 7 I 1997 Ohran et a!.

111111 111
US007831789B 1

(10) Patent No.: US 7,831,789 Bl
(45) Date of Patent: *Nov. 9, 2010

5,835,953 A *
6,625,623 B1 *
6,665,815 B1
7,434,052 B1 *

2006/0075294 A1 *

* cited by examiner

1111998 Ohran 7111162
9/2003 Midgley et a!. 707/204

12/2003 Goldstein eta!.
10/2008 Rump 713/171
4/2006 Ma eta!. 714/13

Primary Examiner-Brian R Peugh
Assistant Examiner-Nicholas Simonetti
(74) Attorney, Agent, or Firm-Bardmesser Law Group

(57) ABSTRACT

A method, system computer program product recorded on a
computer readable medium, for fast incremental backup of a
storage device includes selecting an area of the data storage
device for backup; creating the bitmap of data storage device;
reading the selected area of the data storage device; convert­
ing data read from the data storage device into a usable format
for the comparison of descriptors; reading descriptors oflogi­
cal storage units of the selected area; discarding selected data
access attributes of the descriptors; generating hash values for
the descriptors; comparing the hash values of the descriptors
of the logical storage units of the selected area with the hash
values of the descriptors of previously archived logical stor­
age units; for physical storage units related to logical storage
units of the selected area whose hash values of the descriptors
are identical to the hash values of the descriptors of the
archived logical storage units, checking if these physical stor­
age units need to be backed up; updating the bitmap of data
storage device; and backing up contents of the physical stor­
age units marked in the backup. The logical storage units can
be files. The descriptors can be compared on a physical stor­
age unit basis.

31 Claims, 11 Drawing Sheets

U.S. Patent Nov. 9, 2010 Sheet 1 of 11 US 7,831,789 Bl

102

Start

104

Suspend storage
,_)

writes

106
,_)

Create bitmap of
used storage units

110
Update bitmap ,_)
(unmark some
storage units)

r
11 2

Archive marked units as an ,_)
increment (may be executed

simultaneously with 11 0)

114

Permit storage
,_)

writes

116

Finish

FIG. 1

U.S. Patent Nov. 9, 2010 Sheet 2 of 11

Set Record Pointer
(e.g. record's

physical address)

Read Pointed
Record from the

Disk

Record from the
backup

Unmark blocks
corresponding to the

file in the bitmap

No

Finish Bitmap
Updating

FIG. 2

220

No

235

Yes

240

Set Next
Record Pointer

US 7,831,789 Bl

250

I
I
I
I
L

System Memory

(ROM) 24

I -- BIOS ~ II 22

(RAM) 25

OPERA T1 NG
35 SYSTEM _,

FILE
SYSTEM 36

APPLICATION
PROGRAMS 37

OTHER PROGRAM
MODULES 38

I PROGRAM 391
DATA

/

//

//

OPERA TIN~ APPLICATION
SYSTEM I 35 PROGRAMS
FILESYS 36 37

FIG. 3

Processing
Unit

23

20

21

OTHER 381 PROGRAM
PROGRAM DATA
MODULES 39

---------------,

Host

I
I
I

47

Monitor

'
56

Storage
Device

51
LAN

~
00
•
~
~
~
~ = ~

z
0
~
~'-CI

N
0
0

rFJ

=­('D
('D
(.H

0

d
rJl
-....l
Oo
w
""""' ~
00
\C

= """"'

MAIN
STORAGE

1/0 application

Previous
Incremental

backup
(optional)

FIG.4

406

Backup
storage area

B

~
00
•
~
~
~
~ = ~

z
0
~
~'-CI

N
0
0

rFJ

=­('D
('D
.j;o.

0

d
rJl
-....l
Oo w
""""' ~
00
\C

= """"'

U.S. Patent Nov. 9, 2010 Sheet 5 of 11 US 7,831,789 Bl

502

Start

504

Reading disk area (on ~
data storage device or
in backup for step 225)

with descriptors
information

506
Converting ~
descriptors

information in the
usable format

, 3 Discarding data access

2

attributes

514
Converting ~

necessary and
additional data
into the hash

516

Finish

FIG. 5

U.S. Patent Nov. 9, 2010 Sheet 6 of 11 US 7,831,789 Bl

603

'
f

I I 30

6' 601

506 ~6
Convert MFT into ,-/

usable format FILE 1 Record 631 I
HEADER 633 I Ol

c:: 35 I .s:::
$DATA 635

<J)

I Cil
.s:::

... ~:::, IAI\IUAKU_ll\lt"UK
~s ~ MATION 636 c::

/~
! $A I I Kl~~~ t:_Ll::> I I ~ :::0

IL.- $MFT 606
£ $FILE_NAME 640 I §
.... .8 <1; I c::

$0BJECT_ID 641 I
$MFTMirr 608

FILE 2 Record 632 I
$Log File 610 HEADER I Ol

c::
I .s:::

$Volume 612 $DATA
<J)

~ I Cil
.s:::

$AttrDef 614 LL
"'

$:::,I AI~:T~~Nll\lt-UK ~s
~ .2! c::

:::0
$ATTRIBUTE_LIST I ~ $Bitmap 616 -f:/7 ~

<1; $FILE_NAME I §
.8

$Boot618 I c::
$0BJECT_ID)

$BadCius 620 ...

' $Secure 622
FILE N Record I

HEADER I Ol
c::

I .s:::
$DATA <J)

I Cil
.s:::

!
$:::, 1 AN~:T~~NlNt-UK. ~s c:: ;J4 :::0 $A TTRIBUTE_LIST I ~ ~

HASH VALUES ~ $FILE_NAME I §
.8 I c::

$0BJECT_ID)

FIG. 6

U.S. Patent Nov. 9, 2010 Sheet 7 of 11 US 7,831,789 Bl

602 6?3
7~ r- I I 600

~'::'? I '"

601 6'

506 36
~ Convert MFT into

'\
usable format FILE 1 Record 631

I
HEADER 633 I

605 I Ol
$DATA 635 -~

I .J:: ... ~::,I AI'JUAK.U_li\Jt-UK. (/)

l'l
I

Cll

"' MATION 636 .J::

"' ~A I I K.lt>U I t:_Ll!::> I

~~ .2! ::. 638

L.- $MFT 606
~ ./ $FILE_NAME 640 I 15 q; § I $0BJECT_ID 641 .2

$MFTMirr 608 ..1 -~

FILE 2 Record 632 '\

I
$LogFile 610 HEADER I

$Volume 612 $DATA I Ol
-~

I- I .J::

~::,I AI\JUAK.U_li\Jt-UK. (/)

$AttrDef 614 LL I
Cll

! MAT! ON .J::

~ ::. $ATTRIBUTE_LIST ~~ $Bitmap 616 ~ s
~

0

$FILE_NAME I ~

$Boot 618 I
E

$0BJECT_ID _, .E
-~

$BadCius 620 ...

FILE N Record I
$Secure 622 I

HEADER
I

Ol

$DATA I -~
.J::

I
(/)

~::,I AI'JUAK.U_li\Jt-UK. Cll

"'
.J::

! MATION I .E ::. $ATTRIBUTE_LIST 32 ~ ~g
HASH VALUES q; $FILE_NAME I

Cll
E

$0BJECT_ID I .E
<=

FIG. 7

U.S. Patent Nov. 9, 2010 Sheet 8 of 11 US 7,831,789 Bl

Disk storage with ~0
FAT file system

1
Convert data in ~1

the usable format }J 4

FAT ele1nent 1

FAT element 1 (804) ~ Directory table (822) I
N I
0 FAT element 2 (806)

~ DOS file name (824) I 00 g I I- FAT element 3 (806) ~ File Attributes J826j ..c
<(I <J)

LL co
~ Reserved (828) ..c

I

~ Create time (830) ~~
~ Create time (832) I co

~
E

~4 ~ Last access date (834) I £
I .S

HASH VALUES ~ EA-Index J836j I ..._
Last modified data (838) I

......_ Last modified time (840) I

......_
File size (842)

I
I

FIG. 8

U.S. Patent Nov. 9, 2010 Sheet 9 of 11 US 7,831,789 Bl

30 ~0

N
0

Disk storage with
FAT file system

I
Converting data in ~1
the usable format

FAT element 1 804 '1

ro
1--t----------1
<(FAT element 3 806

FAT element 2 806

LLt----------1

.---~--. 902

HASH VALUES __:.)

FAT ele1nent 1

Directory table 822

......_ DOS file name 824

......_ File Attributes 826

......_ Reserved 828

......_ Create time 830

.....,__ Create time 832

......_ Last access date 834

......_ EA-Index 836

......_ Last modified data 838

......_ Last modified time 840

......_ File size 842

FAT ele1nent 2

FIG. 9

U.S. Patent Nov. 9, 2010 Sheet 10 of 11

lnode table

Inode 1

10
~ Header 1012

Owner 1014

Access 1:1me
Cl 1015
C)
C)

Group ID 1016 ...
"' .2! Lastmodified :::.
:5!
.h 1018 ...

~1ze (1::$ytes) <t

1020

Inode 2

Header

11 Owner
'-..

10

Access time

~ Group ID
:::.
:5!
.h Lastmodified ...
<t

Size (Bytes)

...

HASH VALUES

'\
I
I
I
I
I
I

I
I
I
I

.J

'\
I
I
I
I
I
I

..J

Ol
c

..c
rJ)

C'il
..c

1030

US 7,831,789 Bl

FIG. 10

U.S. Patent

1100

Nov. 9, 2010 Sheet 11 of 11

Converting data
into usable format

I node table

Inode 1
10 ~ Header (1012)

Owner (1014)
0'1 Access time
0 (1015) 0 ,....

Group ID (1016) Ill
f Lastmod itied :::J
:Q (1018)
i:: ~1ze {t;ytes) t

'CC (1020)

...

Inode 2

Header
10 11
'-. Owner

Access time
Ill
Q)

Group ID
:::J

.Q s Lastmod ified

'CC
Size (Bytes)

...

HASH VALUES

FIG. 11

1006

1007

" I
I
I
I
I
I

I
I
I
J

' I
I
I
I
I
I

I
I
I
I

1102

Ol
,£;
..c
(/)

co
..c

Ol
c

:.c
(/)

co
..c

US 7,831,789 Bl

US 7,831,789 Bl
1

METHOD AND SYSTEM FOR FAST
INCREMENTAL BACKUP USING

COMPARISON OF DESCRIPTORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. Pat. No.
7,366,859, which was U.S. patent application Ser. No.
11/244,298, filed Oct. 6, 2005, entitled FAST INCREMEN­
TAL BACKUP METHOD AND SYSTEM, which is incor­
porated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to archiving and copying of
data, and more particularly, to fast archiving of hard disk drive
(HDD) data at various predetermined points in time by using
comparison of descriptors.

2. Description of the Related Art

Currently, there are a number of conventional methods that
relate to organization of data archiving. One of these methods
is a backup of the entire hard drive, which typically involves
copying of the hard drive content onto some other medium,
such as another hard disk drive, a DVD ROM, a DVD RAM,
a flash disk, etc. The primary disadvantage of such a method
is the need to backup what is frequently a very large amount

2
Accordingly, there is a need in the art for an effective and

efficient method of identifYing data blocks that are not subject
to archiving, with minimal time and effort.

SUMMARY OF THE INVENTION

Accordingly, the present invention is related to a method
and system for fast incremental backup using comparison of
descriptors that substantially obviates one or more of the

10 disadvantages of the related art.

In one aspect, there is provided a method for incremental
backup of a storage device, including selecting an area of the
data storage device for backup; creating the bitmap of data
storage device; reading the selected area of the data storage

15 device; converting data read from the data storage device into
a usable format for the comparison of descriptors; reading
descriptors of logical storage units of the selected area; dis­
carding selected data access attributes of the descriptors;
generating hash values for the descriptors; comparing the

20 hash values of the descriptors of the logical storage units of
the selected area with the hash values of the descriptors of
previously archived logical storage units; for physical storage
units related to logical storage units of the selected area whose
hash values of the descriptors are identical to the hash values

25 of the descriptors of the archived logical storage units, check­
ing if these physical storage units need to be backed up;
updating the bitmap of data storage device; and backing up
contents of the physical storage units marked in the backup.

of data. On the one hand, this results in a relatively lengthy 30

process of archiving, and, on the other hand, frequently
requires relatively large available space for the archived data.
This ultimately results in a relatively high cost of archiving
per unit of archived data.

The logical storage units can be files. The comparison can
be, e.g., (1) bit-wise comparison of the logical blocks, (2)
comparing control sums of the logical blocks, and (3) com­
paring log files relating to the logical storage units. The physi­
cal storage units can be blocks. The descriptors can be, e.g.,
MFT entries, directory entries, directory entries and numbers

35 of all clusters according to which the directory entries are
ordered, inodes, hash function values, timestamps, check­
sums, and file metadata. The descriptors can be compared on
a physical storage unit basis.

Another approach is often referred to as "incremental
backup," which generally decreases the amount of space
required for the archiving. With the incremental backup, typi­
cally the contents of the hard disk drive are archived, or stored
somewhere, once. After that, only that data that has been
changed, or added, since the previous backup, or since the 40

pervious incremental backup, is actually archived. Recovery

According to a proposed method, hashed or non-hashed
files or directory attributes can be stored in an incremental
backup for further comparison with hashed or non-hashed
data access attributes upon completion of a next backup pro­
cess or the attributes can be deleted upon creation or update of

of the data from the archive typically involves merging of the
original backup and the various incremental backups.

There are generally two conventional approaches to imple­
menting the incremental backup. One approach is to archive
data in a form oflogical structures, such as files. The second
approach is to preserve the physical structures as they are
represented on a storage medium. In other words, in the
second case, sectors, clusters, and other physical data blocks
are archived.

Despite the fact that incremental backup at a logical level
makes it easier to identify data that is subject to archiving, in
a number of situations, this approach is unacceptable. For
example, backup at a physical level provides an ability to
restore the functionality of the computing system, since it is
possible to restore hidden and otherwise urnnovable data
blocks, for example, hidden and system areas of the disk,
including boot areas.

At the same time, incremental backup at a physical level
requires identifYing the blocks that are subject to archiving, in
other words, identifYing blocks whose content did not change
since the prior archiving operation. When data block level
comparison is used, this task requires a considerable time and
CPU resources, both for data block comparison and for
extraction of previously archived data blocks from the
archive.

45
a bitmap.

The stored file or directory attributes (hashed or non­
hashed), reflecting the changes or displacement of the file or
the directory, are used for forming the backup and for restor­
ing data from the backup. Also, the proposed method can

50 optionally include generating a bitmap of the physical storage
units of the storage device; marking, in the bitmap, those
physical storage units that correspond to logical storage units
with different descriptors; and archiving content of the physi­
cal storage units marked in the bitmap. The method can

55 optionally include archiving logical storage units of the stor­
age device having the same name as corresponding archived
logical storage units of the storage device, but different time
stamps.

Additional features and advantages of the invention will be
60 set forth in the description that follows, and in part will be

apparent from the description, or may be learned by practice
of the invention. The advantages of the invention will be
realized and attained by the structure particularly pointed out
in the written description and claims hereof as well as the

65 appended drawings.
It is to be understood that both the foregoing general

description and the following detailed description are exem-

US 7,831,789 Bl
3

plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE ATTACHED
FIGURES

The accompanying drawings, which are included to pro­
vide a further understanding of the invention and are incor­
porated in and constitute a part of this specification, illustrate
embodiments of the invention and together with the descrip­
tion serve to explain the principles of the invention.

In the drawings:
FIG. 1 illustrates one general exemplary method of the

present invention.
FIG. 2 illustrates identification of physical storage units

that should not be subject of incremental backup.
FIG. 3 is a schematic diagram of an exemplary computer or

server that can be used in the invention.
FIG. 4 is a schematic diagram of storage structures han­

dling according to one embodiment of the invention.
FIG. 5 illustrates a process of reading and converting

descriptors from the data storage device.
FIG. 6 illustrates a process of hashing the descriptors from

a data storage device with NTFS file system.
FIG. 7 illustrates a process of hashing the descriptors from

the backup of the data storage device with NTFS file system.
FIG. 8 illustrates a process of hashing the descriptors from

a data storage device with FAT file system.

4
to use traditional methods and other suggested mechanisms to
further reduce the number of data blocks that are actually
subject to archiving.

In order to implement the proposed methods, the following
steps are utilized:

First, at a physical level, a complete (or partial) backup of
the storage medium is formed, and a time stamp of the backup
is recorded (although it is also possible to work without a time
stamp, by using other descriptors, such as hash functions,

10 discussed below, file metadata, file names, MFT contents,
inodes, directory entries, etc.). When a second archiving
operation is performed, a bitmap of the data blocks of the hard
disk drive is formed. For example, this can be a bitmap of the
data blocks that are subject to archiving, or the bitmap of used

15 data blocks of the hard disk drive (i.e., the blocks of the hard
disk drive that contain useful data, rather than "empty"
blocks, or free blocks).

During subsequent archiving of the hard disk drive, a com­
parison of the descriptors of the logical structures of the

20 drives is performed. This comparison characterizes the dis­
tribution of the data of the logical structures into the data
blocks. If the logical structures (including the addresses of the
blocks) correspond to each other, the data blocks that are
occupied by the corresponding logical structures are identi-

25 fied, and for these blocks, the corresponding bit in the bitmap
is cleared.

At the same time, it is also possible to retain, in the incre-
mental backups, those blocks that were previously archived.

FIG. 9 illustrates a process of hashing the descriptors from 30

the backup of a data storage device with FAT file system.

However, a substantial increase in the speed of identifying the
blocks that do not need to be archived compensates for this. If
it is necessary to reduce the downtime of the computing

FIG. 10 illustrates a process of hashing the descriptors
from a data storage device with Ext2/Ext3 file system.

FIG. 11 illustrates a process of hashing the descriptors
35

from the backup of a data storage device with Ext2/Ext3 file
system.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Reference will now be made in detail to the embodiments
of the present invention, examples of which are illustrated in
the accompanying drawings.

40

system or server, the advantages of the above approach are
fairly substantial. In other words, comparing the time needed
for a full backup with the time necessary for a bit-wise com­
parison of the data block's content (given the necessity of
unarchiving of the contents of one or more copies of the data,
and the time necessary to implement a single backup in the
proposed approach), the advantages of the proposed approach
are self-evident.

The logs or change journal entries can be used to at least
partially exclude various logical structures from the analysis.
In other words, the fact that journal entries exist in the logs
means that some changes have been made to the data in the
blocks or files, and, therefore, they do need to be backed up

In order to make the archiving process more efficient, it is
proposed to form a backup of data being represented mostly

45 without further checks. Thus, those physical storage units
may be excluded from the selected area, or may be included in
the selected area if only some blocks of those files may be
modified.

at a physical level, and in addition, to use information that
characterizes the logical structure of the data storage device,
such as a hard disk drive. It should be noted that data repre­
sentation at a physical level and also "physical storage units" 50

used in context of this discussion mostly signify access level
to the data being stored. For purposes of this discussion,
"physical storage units" specifY parts (normally equal sized)
of the physical or logical volume storage, the volume (hard
disk drive or its part or even flash drive or network storage 55

area or the like) is divided into, and which can be accessed at
random by the operating system. Such a physical storage unit
may be block or cluster or sector or similar structures used by
the OS when accessing the volume.

It should be noted that this approach, in some cases, does 60

not always identify every single data block that is not subject

A file system such as NTFS creates a Master File Table
(MFT) and an associated log file that records file transaction
information and implements file system recoverability.
Because the log file is a system file, it can be found early in the
boot process and used to recover the disk volume, if neces­
sary. When a user updates a file, the Log File Service records
all metadata "redo" and "undo" information for the transac­
tion. For recoverability, "redo" information in the log file
allows NTFS to roll the transaction forward (repeat the trans­
action if necessary), and "undo" allows NTFS to roll the
transaction back, if an error occurs.

The infinite log file is a circularly reused file. When a new
record is added, it is appended to the end of the file. When the
log file reaches its capacity, the Log File Service waits for
writes to occur and frees up space for the new entries.

to archiving. However, the proposed method, with a minimal
expenditure of time and resources, provides for a guaranteed
exclusion of a substantial majority of the blocks from
archiving of those blocks that do not need to be archived.
Subsequently, for the blocks, that were not excluded from
archiving, and are therefore subject to archiving, it is possible

As may be seen from the above discussion, the log file
65 retains descriptions of only the latest transactions. Thus, the

log file can only be used as an auxiliary source of information,
since it does not provide a guarantee of a consistent backup.

US 7,831,789 Bl
5

Following that logic, by using the bitmap, it is possible to
archive the marked blocks, in addition to a previously created
archive.

6
data access attributes are discarded or replaced by nulls while
conversion of descriptors of the logical structures to hash
values takes place.

The term "data access attributes" used herein refers to any
part oflogical storage units of the selected area of the storage
device intended for a backup, which is only changing after the
access to the file or directory. These data access attributes can
be changed, for example, while reading the file, and do not
reflect the actual file changes, so these attributes is not reflect

Due to the fact that the final descriptors are also a subject to
archiving, the modification of the bitmap and the archiving
can take place simultaneously. For example, it is possible to
archive MFT blocks simultaneously with verification of iden­
tity of the file structures of the archived blocks. Identical
blocks of the original MFT and the current MFT are not
archived. At the same time, in some cases, the identity of the
blocks frequently is due to the identity of the corresponding
files, although this is not guaranteed.

10 necessity of this file's backup. All other attributes can be
hashed. In most cases, those attributes should be saved for
further restoration.

Throughout the implementation of the proposed method,
some data access attributes can change during file accessing, For files with distributed blocks, for example, in logical

structures described by FAT16 and FAT32, the proposed
method of backup organization also permits to considerably
shorten the time necessary for checking of data blocks of the
files. This is due to the fact that some of the files are excluded

15 and they may not reflect any of the actual file changes. Data
access attributes can be, for example, such attributes as Data
Access Time, Time Read in MFT, data access date in direc­
tory entries of operating systems with FAT, and others as
described above and will be described below. from this process, without any further need for subsequent

checking of data block identity. In some cases, when the data 20

block address is changed (for example, due to defragmenta­
tion process), it is possible to also change the address of the
original cluster, as well as of the subsequent clusters. If this is
done, no subsequent checking of the data blocks needs to be
performed. Thus, the volume of computation necessary for 25

the archiving is reduced significantly, compared to a block by
block comparison of the contents of the hard disk drive.

In some cases, it is possible to use a comparison of used
blocks bitmap with current and previously stored states of the
hard disk drive. In this case, blocks that were previously free
are excluded from consideration, and are archived without
any further examination of the contents of the data blocks.

In another case, the descriptors of the logical structures can

In order to determine the identity of the logical structures,
the hash values of the descriptors can be compared, as well as
the hash values of the descriptors of the current state of the
hard disk drive. Also, in one embodiment, bit-wise compari­
son of the hash values can be performed.

Depending on the length of the key that is generated by the
hash operation, some other mechanisms may be added to
verifY blocks that should or should not be subject to archiving.

In fact, relatively short hash values may be generated and
compared fairly rapidly. If hash values being compared are

30 different, it shows that the original contents are also different.
However, using a short hash key results in a higher probability
that different contents have the same hash value. For example,
if maximum hash value is less then number of different data
blocks (here, groups of physical storage units), the different

35 data blocks can have the same hash value. Therefore, when a
possibility of omitting data required for archiving needs to be
reduced to zero, additional operation of comparing blocks
with the same hash values need to be implemented to prove

be compared not directly, but through a creation of additional
data structures, and subsequent comparison of such data
structures. For example, when forming a snapshot oflogical
structure descriptors, it is possible to convert them by using
various control sum functions, for example, cyclic redun­
dancy check (CRC) functions or hash functions. Hash func­
tions are one example of algorithms that transform a string of 40

bytes into a (usually) shorter value of a fixed length that
represents the original string.

that the data blocks at issue really are the same.
If the hash key length is relatively long, it gives an accept-

able guarantee that the data blocks with the same hash values
are in fact the same, e.g., the MD5 function gives about 1037

different keys, and no additional comparison of the data
blocks with the same hash values is required. In this case, This short value is called a hash value. When hashing a data

block, or a file, the content is converted into a short bit
string-a hash value. In this case coincident data blocks
always result in coincident hash values. Therefore, only the
hash values can be saved, and can be stored together with, or
added to, the backup. This allows avoiding hashing a data
block, or a file, whose content is converted into a hash value,
and the hash value can be used in creating the new incremen­
tal backup, with the already-calculated hash values for their
comparison.

In the proposed embodiment the two types of hash values
are created for each file at once: short and long hash values.
Note, that only short hash values can be created, or only long
hash values for each file. For example in MD5 algorithm the
short hash values have 32 bits and the long hash values have

45 however, physical storage units from data blocks with differ­
ent hash values need to be compared to exclude additional
storage units from archiving, e.g., for saving archiving stor­
age space.

The advantages of using hash value comparison are as
50 following: first, it speeds up the comparison process, since the

value of the hash of the data is much less in size than the data
itself, and, second it permits simplification of comparison of
fragmented data. In disk drive terminology, "structure(s)"can
be used that emulates a tree structure with a set of linked

55 nodes. Each node has zero or more child nodes, which are
located below it in the tree. A node that has a child is called the
parent node. A child has at most one parent; a node without a
parent is called the root node (or "root"). Usually a place­
holder for storing root information concerning the file is fixed
in length.

In such cases, when the file descriptor has more bytes than
the placeholder can hold, links or pointers to blocks that
contain additional information are used. Such structures (leaf
nodes) can be physically stored away from the root node, can

64 bits. The short hash value is calculated sufficiently fast, but
there is a small probability of the hash values coincidences for 60
different data from the data storage device. Thus, it is neces­
sary to perform some additional checking to reduce the prob­
ability of error caused by coincident. Note that the longer
hash value reduces the probability of the hash values coinci­
dences for different data from the data storage device. 65 be fragmented or can be changed without modifYing the

contents of the file, e.g., while changing long file name only.
For example, descriptors of files (e.g., inodes), which can

Calculation of the long hash values takes longer, but the
probability of error is significantly lower. In this embodiment,

US 7,831,789 Bl
7

have links to indirect blocks and remote inodes, are hashed
together with the indirect blocks. This arrangement permits a
rapid comparison of the hash values and also permits group­
ing of fragmented data sets.

In one example, for structures described in FAT16 and
FAT32 with a possibility of file fragmentation, a significant
characteristic of their logical structure description is not only
the file length and the address of the first data block, but also
the location of all the blocks of the file. This information can
be extracted sequentially for all the blocks of the file, and
hashed together with the hashing of the FAT. This approach
can also be used in NTFS, to verify B-trees.

To implement the proposed method, it is possible to use
various approaches that suspend data storage device opera­
tions during the time that the archive is being formed. Single
threaded run mode or single threaded data storage device
access can be used. This can be accomplished by an operating
system that maintains a single-threaded environment or by
one that provides file system locking, and hence allows exclu­
sive access. For example, the MS-DOS operating system
provides exclusive file access because it is a single-threaded
environment, at least from an application's perspective.

8
Note that the proposed method is particularly applicable to

file systems with contiguously arranged data blocks, for
example, NTFS. Since the file descriptors are used in forma­
tion of the backup, upon user request, some of the files can be
excluded from the archiving process. Examples of data that
may not be subject to backup include various swap and pag­
ing structures, temporary files, and various other files, as
identified by the user.

If identity is not determined, it is possible to perform an
10 additional check as to the reasons for why identity is not

established. For example, if the file contains additional char­
acteristics or metadata, which results not in a change in con­
tents, but in addition of other blocks to the file or, more
commonly, to the file descriptor, (for example, the appearance

15 of new data streams), the bitmap needs only to reset the bits
that correspond to newer blocks of the file. As another
example, additions can be performed, and if no identity of the
contents exists, the corresponding blocks are always
archived. As another example, additions can be performed,

20 and if no identity of the contents exists, the corresponding
blocks are always archived.

Additionally, to avoid the necessity of copying of identical
data blocks into the incremental backup, it is possible to have
a second step in the verification of identity of the blocks. In

25 this secondary verification, the contents of the blocks that
were previously identified as not subject to archiving are
compared. At the same time, the contents of the blocks that
were identified in a log file need not be checked for whether

A Linux (or another UNIX -like) operating system can be
used, utilizing system locks to provide exclusive access.
While the Windows™ operating systems are multi-threaded,
they can defer to MS-DOS, Linux or another single-threaded
environment. An archiving program according to the embodi­
ment can begin execution in these multi-threaded environ­
ments, and then can pass control to a code that runs in DOS or
Linux mode and thus provide exclusive data storage device 30

access. Some operating systems also provide locks that
ensure exclusive data storage device access.

they need to be archived.
In the case of the second step discussed above, blocks

and/or clusters are grouped in some predetermined manner,
and for these grouped blocks, hashes are generated, which are
then compared. If the hashes are identical, the corresponding
blocks are marked as not subject to archiving. If the hashes are
not identical, additional verification checks of some of the

Also, when practicing the proposed method described
above, the freezing, or suspension, of data storage device

35
access can be replaced with other mechanisms for preserving
the contents of the data storage device at the moment when
the backup process begins. For example, it is possible to
create an additional data structure that includes the contents
of the data blocks as described in pending application Ser. No.

40
11/016,727, entitled System and Method for Incremental
Backup ofLocal Drive Data, filed on Dec. 21,2004, which is
incorporated herein by reference in its entirety. Subsequently,
this structure can be used as a part of the incremental backup,
or, alternatively, the contents of the data blocks can be moved

45
into an incremental backup after checking for necessity of
archiving these blocks.

blocks can be performed, for example, on a cluster by cluster
basis.

The proposed method can also be used with generic file
systems, such as ReiserFS, ext3, XFS, JFS and XenFS. Note
that when a file is being moved form one folder to another,
which only affects the entry in the MFT, the backup of the
data need not be made, but only the MFT needs to be backed
up along with the corresponding entries and descriptors of the
file.

Since the MFT is approximately 10% of the data storage
device or a partition, the volnme of the data that is being
compared or restored from a prior backup is significantly less
compared to the entire drive. Only those blocks whose data

As yet another alternative, data that is subject to being
written to the data storage device can be stored in some
temporary data storage, with subsequent copying to the data
storage device, once the formation of the incremental backup
is completed.

50 has not been changed are not backed up. Therefore, some of
the blocks in the incremental backup may be "extra."

From the perspective of the method described above, it is
not critical exactly how files are organized into a logical
structure, since the primary concern is how the file is
described, rather than its location in the logical hierarchy. In
other words, to establish identity of descriptors, it is possible
to merely compare relevant file attributes. For instance, it is
possible to compare the dates of changes to file contents, and
ignore the dates of renaming of files, if the operating system
permits this. Also, for files stored on a data storage device, it
is possible to examine hash value functions of the file contents
(e.g., using MD 5 and SHA-1 algorithms, which employ two
commonly used hash functions) and in the future, these val­
ues can be used for a preliminary analysis after identity is
established based on file hashes and file descriptions. A more
detailed comparison can then be made.

FIG. 1 illustrates one exemplary method of the present
invention. As shown in FIG. 1, after starting the archiving
process (step 102), storage writes are suspended (step 104). A

55 bitmap of used storage units (i.e., blocks or clusters or sec­
tors) is created (step 106). In step 110, the bitmap is updated
by unmarking some of the storage units that are not subject of
incremental backup. Such storage units are, for example,
physical blocks or clusters of storage device related to logical

60 storage units with coincident descriptors.
Also, other mechanisms of identifying physical storage

units that should not be subject to archiving may be imple­
mented, as discussed below. In step 112, units that are marked
are archived as part of the incremental backup. This step may

65 be executed simultaneously with step 110. In step 114, stor­
age writes are again permitted, and the process finishes in step
116.

US 7,831,789 Bl
9

FIG. 2 illustrates identification of physical storage units
that should not be subject to incremental backup being
described in a particular implementation of bitmap updating
algorithm shown in FIG. 1 as step 110. In step 202, the bitmap
updating process begins. It should be noted that the steps in
FIG. 2 are described using records as examples. Such records
store information that characterizes logical storage units.
Examples of records can be physical storage blocks, or parts
of MFT file that contains descriptors of files, or inodes, or
other similar data objects.

Commonly, descriptors of files are stored in the designated
data storage device area, and logical descriptors are stored in
the same blocks, if the descriptor is not changed. In this case,
the simplest way of comparing descriptors is comparing
records, represented by the physical storage blocks of the
designated area. The task of counting records involves, for
example, consecutively incrementing designated block
addresses and comparing contents of the blocks with the same
addresses that have been read from the storage device vs.
those extracted from the previous backup structure. A direct
comparison of corresponding blocks' content may be
replaced by comparing hash values, calculated for those
blocks, or by any other appropriate method.

In step 210, the record pointer (e.g., address of an initial
storage block) is set, in other words, the records physical
address is identified. In step 220, the record, to which the
pointer points to, is read from the data storage device or from
the snapshot of the data storage device. In step 225, the
record, to which the pointer points to, is read from the backup.
Note that processes 220 and 225 can occur in parallel to each
other. In step 230, comparing of descriptors oflogical storage
units is provided. The descriptors can be compared entirely or
partially (for example, only file names, time stamps of file
modification and physical addresses of files' clusters can be
compared).

In another embodiment, a procedure for comparing
descriptors or portions of descriptors may be implemented by
calculating hash values for the descriptors or their parts and
comparing calculated hash values. For handling oflarge data
sets, further comparing of data itself required since equal
hashes may be generated for different sets of data. If the
answer is yes, i.e. descriptors are coincident, then in step 235
physical storage units of the logical storage units are
unmarked in the bitmap, and further are not considered as a
subject to incremental backup. If the answer is no, i.e.
descriptor of logical storage unit had been changed since
previous backup, then the corresponding physical storage
units can be subjected to the incremental backup.

Then the process goes to step 237 to check if there are
logical storage units being unexamined. If there are unexam­
ined logical storage units, the next record pointer is set in step
250, and the process then proceeds back to step 220. If all the
logical storage units from the selected area are examined, bit
map updating is finished (step 240).

Some physical storage units outside the selected area may
be archived without additional checking. Such units may be
blocks or clusters of the MFT, blocks with partition informa­
tion, blocks of files indicated in the log file described above,
etc.

Additionally, it should be noted that after a defragmenta­
tion of the hard drive (or some other movement or relocation

10
With reference to FIG. 3, an exemplary system for imple­

menting the invention includes a general purpose computing
device in the form of a personal computer or server 20 or the
like, including a processing unit 21, a system memory 22, and
a system bus 23 that couples various system components
including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety ofbus architectures.

10 The system memory includes read-only memory (ROM) 24
and random access memory (RAM) 25. A basic input/output
system 26 (BIOS), containing the basic routines that help to
transfer information between elements within the personal
computer 20, such as during start-up, is stored in ROM 24.

15 The personal computer 20 may further include a hard disk
drive 27 for reading from and writing to a hard disk, not
shown, a magnetic disk drive 28 for reading from or writing to
a removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such as

20 a CD-ROM, DVD-ROM or other optical media. The hard disk
drive 27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface
32, a magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and their associated

25 computer-readable media provide non-volatile storage of
computer readable instructions, data structures, program
modules and other data for the personal computer 20.
Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a

30 removable optical disk 31, it should be appreciated by those
skilled in the art that other types of computer readable media
that can store data that is accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs),

35 read-only memories (ROMs) and the like may also be used in
the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 35 (preferably Windows™

40 2000). The computer 20 includes a file system 36 associated
with or included within the operating system 35, such as the
Windows NT™ File System (NTFS), one or more application
programs 37, other program modules 38 and program data 39.
A user may enter commands and information into the per-

45 sonal computer 20 through input devices such as a keyboard
40 and pointing device 42. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish,
scanner or the like. These and other input devices are often
connected to the processing unit 21 through a serial port

so interface 46 that is coupled to the system bus, but may be
connected by other interfaces, such as a parallel port, game
port or universal serial bus (USB). A monitor 47 or other type
of display device is also connected to the system bus 23 via an
interface, such as a video adapter 48. In addition to the moni-

55 tor 47, personal computers typically include other peripheral
output devices (not shown), such as speakers and printers. A
data storage device 57, such as a hard disk drive, a magnetic
tape, or other type of storage device is also connected to the
system bus 23 via an interface, such as a host adapter 55 via a

60 connection interface 56, such as Integrated Drive Electronics
(IDE), Advanced Technology Attachment (ATA), Ultra ATA,
Small Computer System Interface (SCSI), SATA, Serial SCSI
and the like.

of the data blocks that does not affect their contents), the
descriptors are changed to ensure that the new location of the
data block is properly reflected in the corresponding descrip­
tors and/or the bitmap. Therefore, movement of blocks may 65

be properly analyzed during the update of the bitmap even if
content of the file itself does not change.

The personal computer 20 may operate in a networked
environment using logical connections to one or more remote
computers 49. The remote computer (or computers) 49 may
be another personal computer, a server, a router, a network

US 7,831,789 Bl
11

PC, a peer device or other common network node, and typi­
cally includes many or all of the elements described above
relative to the personal computer 20. may further include a
memory storage device 50. The logical connections include a
local area network (LAN) 51 and a wide area network (WAN)
52. Such networking environments are commonplace in
offices, enterprise-wide computer networks, Intranets and the
Internet.

12
All of the data unnecessary for the process of descriptors'

comparison needs to be eliminated. In step 506 the data
without the file information is discarded. After the descrip­
tors' information is converted, the unnecessary data access
attributes can be discarded, e.g. reset, erased, nulled or
replaced by constant or predefined values, because some data
access attributes can be changed, for example, while reading
the file, and do not reflect the actual file changes, as was
described above.

Also incase of file system, such as FAT, FAT16, FAT32 and
others, directory represented as file can have changing
attributes, which do not mean anything in terms of a backup
process. For example, a simple action of file allocation in
directory structure can change the attributes. The discarded

When used in a LAN networking environment, the per­
sonal computer 20 is connected to the local area network 51 10

through a network interface or adapter 53. When used in a
WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establish­
ing communications over the wide area network 52, such as
the Internet. The modem 54, which may be internal or exter­
nal, is connected to the system bus 23 via the serial port
interface 46. In a networked environment, program modules
depicted relative to the personal computer 20, or portions
thereof, may be stored in the remote memory storage device.

15 data access attributes can be completely discarded while
hashing takes place. However, the date related to file alloca­
tion should be backed up.

In step 512 the data access attributes are discarded. In step
514 prepared data is converted into the hash value and the

It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

FIG. 4 illustrates a system block diagram of one embodi­
ment. As shown in FIG. 4, a main storage 402 interfaces with
an I/0 application 404 for the purpose ofbacking up file data.
The I/0 application 404 maintains a bitmap 414, as discussed
above, which keeps track of selected area of the data storage
device, e.g. used blocks (i.e., blocks that contain useful data),
or blocks of logical units that area not reflected in a log of
changes. The latter may stay out of consideration, since it
should be backed up any way.

A backed up data storage area 406 consists of at least a full
backup 412 of data storage device, a previous incremental
backup 410, and the backup currently under consideration
(408), based on the contents of the marked blocks. At time t 1

the bitmap is maintained based on the state of the main stor­
age 402 then, at time t2 the descriptors are compared (416)
and after updating bitmap, at time t3 content of marked physi­
cal storage units is transferred to incremental backup storage
408.

FIG. 5 illustrates a process of reading and converting
descriptors from the data storage device (or from the snapshot
of the data storage device) or from the backup. As shown in
FIG. 5, after setting a record pointer the process of reading
and converting a pointed record from the data storage device
(or from the snapshot of the data storage device) or from the
backup is started (step 502). After step 502 the descriptors'
information is read from a data storage device area (step 504).

The file system contains the file attributes. The file
attributes have a special section containing the descriptors'
information. The file attributes for each file system are differ­
ent. For example, in NTFS file system the file attributes are
located in the header of file record in a form of $data (data,
that contains file data), $attribute_list (lists the location of all
the attribute records that do not fit in the MFT record), $file_
name (a repeatable attribute for both long and short file
names), $object_ID (a volume-unique file identifier, used by
the link tracking service) and other records in file record.

For FAT file system the file attributes are DOS file name,
file attributes, create time, last access time, EA-index, last
modified data, last modified time, file size and other records in
the directory table of FAT element.

For Ext2/Ext3 file system the file attributes are header of
inode, owner, access time, last modified, size and other
records in inode of the inode table. The descriptors' informa­
tion is stored on the storage device in its own format with
information needed for its processing.

20 process is finished in step 516. Note that the data access
attributes can be discarded completely while the hashing
process is going on. After the data from the data storage
device (or from the snapshot of the data storage device) and
the data from the backup are converted into hash values they

25 can be compared.
After converting data from disk areas on data storage

device (or in the snapshot of the data storage device) and
optionally from the backup into hash values, they can be
compared. The comparison, in another embodiment, may be

30 performed in parallel with the hash calculation, and hash
values calculated for backed up structures may be stored
separately or as a part of backup after an earlier backup, and
then used for comparison.

FIG. 6 illustrates a process of hashing the descriptors from
35 the data storage device with NTFS file system. The record, to

which the pointer points to, is read from the disk. The disk
storage within NTFS 600 includes the MFT-zone 601, places
for files 603 and the first records copy 604. After starting the
process of reading pointed record from the disk it is necessary

40 to read the disk area within the MFT-zone. The MFT-zone
consists of metafiles 602, such as $MFT (master file table,
that contains one base file record for each file and directory on
an NTFS volume) 606, $MFTMirr (master file table 2-a
duplicate image of the first four records of the MFT, that

45 guarantees access to the MFT in case of a single-sector fail­
ure) 608, $LogFile Gournaling support file, that contains a list
of transaction steps used for NTFS recoverability) 610, $Vol­
ume (housekeeping information-volume label, file system
version, etc.) 612, $AttrDef(list of standard files attributes on

50 the volnme) 614, $Bitmap (volume free space bitmap) 616,
$Boot (boot sector, that includes the bootstrap for the volnme
if it is a boatable volume) 618, $BadClus (bad cluster file, that
contains bad clusters for the volume) 620, $Secure (security
file, that contains unique security descriptors for all files

55 within a volume) 622 and others.
Only $MFT-file 606 contains the descriptors' information

necessary for this embodiment. Note that $MFT-file is stored
on the data storage in its own data format with the information
necessary for processing. In step 506 the $MFT-file is con-

60 verted to the original form 605.
After $MFT-file has been presented in the original form the

data access attributes are discarded. $MFT-file consists of file
records 631, 632 etc., corresponding to the files on the disk
storage. The file record consists of a header 633 and attributes

65 634. The attributes consist of$DATA (data, that contains file
data) 635, $STANDARD_INFORMATION (standard infor­
mation, that includes information such as time stamp and link

US 7,831,789 Bl
13

count) 636, $ATTRIBUTE_LIST (lists the location of all the
attribute records that do not fit in the MFT record) 638,
$FILE_NAME (a repeatable attribute for both long and short
file names) 640, $0BJECT_ID (a volume-unique file identi­
fier, used by the link tracking service) 641 and etc.

In case of the NTFS-system the data access attributes are
the update sequence in header 633 and Time Read (not
shown) in $STANDARD_INFORMATION (636). Only the
data access attributes described above can be discarded. How­
ever, any other attributes can change duringjust reading of the
file and do not reflect any of the actual file changes.

File record contents from start of file record to the end
marker (i.e. all data with the exception of the unused area of
MFT entries) and extra file-records (if any exist) is converted
to a hash value 644 after the data access attributes are dis­
carded. Thus, the hash values are reduced. Therefore, the time
needed for making comparison of the hash values from the
backup and from the file record contents on data storage area
is significantly reduced.

14
case of reading descriptors from the backup 900, the previ­
ously stored data from the data storage device with FAT 800
is included in the backup. The data storage device stored area
can be read through from the backup in FAT structure.

After hash values 902 are acquired the operation of com­
paring descriptors or portions of the descriptors implemented
by calculating hash values for the descriptors or parts of the
descriptors can be started.

FIG. 10 illustrates a process of hashing the descriptors
10 from the data storage device with Ext2/Ext3 file system. The

disk storage with Ext2/Ext3 file system 1000 includes the
super-block 1001, group descriptors 1002, block bitmap
1003, inode bitmap 1004, inode table 1005 and data 1006.

The disk storage with Ext2/Ext3 file system (1000) con-
15 tains elements necessary for file processing. After starting the

process of reading pointed record from the disk, it is neces­
sary to read the disk area with inode table 1008. The inode
table is stored on the data storage in its own format. In step
1007 the inode table is converted to the original form 1008.

After an inode table has been presented in the original form
the data access attributes are discarded. The inode table con­
sists of inodes 1010, 1011 etc., corresponding to files on the
disk storage. The in ode consists of header 1012 and attributes
1009. The attributes consist of owner 1014, access time 1015,

In some cases a number of the same file records can exist 20

for one file. These file records are called extra file records
(except for the first file record). In case of existence of extra
file records, after the data access attributes are discarded,
$MFT contents from start of file record to the end marker are
converted to a hash value and are written additionally to the
end of the created hash string according to the file record
priority (i.e. first file record, second and etc.).

25 group ID 1016, last modified 1018, size 1020, etc. Inode
entries (without discarded attributes), numbers of indirect
blocks, numbers of double indirect blocks and numbers of
triple indirect blocks are converted to hash values 1030 after FIG. 7 illustrates a process of hashing the descriptors from

the backup of the data storage device with NTFS file system. the data access attributes are discarded.
In case of reading descriptors from the backup 700, previ- 30

ously stored data from the data storage device with NTFS 600
FIG. 11 illustrates a process of hashing the descriptors

from the backup of the data storage device with Ext2/Ext3 file
system. In case of reading descriptors from the backup 1100,
the previously stored data from the disk storage with Ext2/
Ext3 file system 1000 is included in the backup. The stored

is included in the backup. The stored data storage device area
can be read through from the backup in NTFS structure.

After hash values 702 are acquired, the operation of com­
paring descriptors or portions of descriptors' implemented by
calculating hash values for the descriptors or portions of the
descriptors', can be started.

FIG. 8 illustrates a process of hashing the descriptors from
the data storage device with FAT file system. The data storage
device with FAT file system (800) contains necessary ele­
ments for processing files. After starting the process ofread­
ing pointed records from the data storage device it is neces­
sary to read the data storage device area with the File
Allocation Table (FAT) 802.

The FAT is stored on the data storage in its own format with
the information necessary for processing. In step 801 FAT is
converted to the original form 802. After FAT has been pre­
sented in the original form the data access attributes are
discarded. FAT consists of FAT elements 804, 806, etc., cor­
responding to clusters on the data storage device. The FAT
elements consist of directory table 822.

Each entry of the directory table has a record for every file,
that consist of: DOS file name 824, file attributes 826,
reserved area 828, create time 830, create time 832, last
access date 834, EA-Index 836, last modified data 838, last
modified time 840 and file size 842. Each file or directory
stored is represented by a 32-byte entry in the directory table.
In this embodiment the common FAT records are converted
into records for each file.

Further directory entries and block numbers for this direc­
tory, except number of first block, are converted into a hash
value 844 after the data access attributes are discarded. Also,
the directory entries for the files and block numbers for this
file, except number of first block, are converted into hash
values 844 after the data access attributes are discarded.

FIG. 9 illustrates a process of hashing the descriptors from
the backup of the data storage device with FAT file system. In

35 disk area can be read through from the backup in Ext2/Ext3
file system structure.

After hash values 1102 are acquired, the procedure for
comparing descriptors or portions of descriptors, imple­
mented by calculating hash values for the descriptors or parts

40 of the descriptors, can be started.
Note that, in this embodiment, hashed or non-hashed file or

directory attributes can be stored in an incremental backup for
further comparison with hashed or non-hashed data access
attributes after the next backing up process, or the attributes

45
can be deleted after bitmap creation or update. The stored file
or directory attributes (hashed or non-hashed) reflecting the
file or the directory changes or displacements are necessary
for the backup creation and restoration of data.

50
Having thus described the different embodiments of a sys-

tem and method, it should be apparent to those skilled in the
art that certain advantages of the described method and appa­
ratus have been achieved. In particular, it should be appreci­
ated by those skilled in the art that the incremental backup

55
method and system described in one of the embodiments
significantly reduces the computational burden and associ­
ated costs, while increases the overall efficiency of the backup
process.

It should also be appreciated that various modifications,

60 adaptations, and alternative embodiments thereof may be
made within the scope and spirit of the present invention. The
invention is further defined by the following claims.

65

What is claimed is:
1. A method for combining file-level and block -level back­

ups for a fast incremental backup of a storage device, the
method comprising:

US 7,831,789 Bl
15

(a) creating a bitmap ofblocks of the storage device with all
blocks that require backing up being marked in the bit­
map;

(b) extracting descriptors of the files and directories from a
descriptors area of the storage device;

(c) discarding at least some of the descriptors from a set of
descriptors associated with each file and then generating
a common hash value of a resulting set of descriptors;

(d) recognizing identical hash values related to a prior
backup of the storage device and to a current state of the 10

storage device;
(e) checking coincidence of blocks that form a single file,

wherein the descriptors of the files have identical hash
values, and, for at least some of the blocks that form the
single file, comparing contents of the blocks;

(f) unmarking, in the bitmap, the coincident blocks;
(g) backing up contents of the blocks that are marked in the

bitmap; and
(h) storing pointers for coincident blocks, wherein the

pointers point to blocks from the prior backup.
2. The method of claim 1, wherein the prior backup is a

backup of the storage device at a previous point in time.

15

20

16
19. A method for combining file-level and block-level

backups for a fast incremental backup, the method compris­
ing:

(a) creating a bitmap ofblocks of a first storage device with
all blocks that require backing up being marked in the
bitmap;

(b) extracting descriptors of the files and directories corre­
sponding to blocks of the first storage device and a
second storage device;

(c) generating a common hash value of the descriptors;
(d) recognizing identical hash values related to a backup of

the second storage device and to a current state of the
first storage device;

(e) checking coincidence ofblocks that form a single file,
wherein the descriptors have identical hash values, and,
for at least some of the blocks that form the single file,
comparing contents of the blocks;

(f) unmarking, in the bitmap, the coincident blocks;
(g) backing up contents of the units blocks that are marked

in the bitmap; and
(h) storing pointers for coincident blocks, wherein the

pointers point to blocks from the backup of the second
storage device. 3. The method of claim 1, wherein the prior backup is a

backup of a different storage device.
4. The method of claim 1, wherein the prior backup

includes multiple backups of the storage device.
5. The method of claim 1, wherein the discarding includes

resetting selected data access attributes of the descriptors.

20. The method of claim 19, further comprising discarding
25 at least some of the descriptors prior to the generating step.

21. A system for combining file-level and block -level back­
ups for a fast incremental backup of a storage device, the
system comprising:

6. The method of claim 1, wherein the discarding includes
resetting selected attributes of the descriptors. 30

7. The method of claim 1, wherein the descriptors are MFT
entries.

8. The method of claim 1, wherein the descriptors are
inodes entries.

35
9. The method of claim 1, wherein the descriptors are

directory entries and numbers of all clusters, according to
which the directory entries are ordered.

10. The method of claim 1, wherein step (c) further com­
prises generating hash values for blocks and comparing the

40
hash values of the blocks of the storage device with the hash
values of previously archived blocks, that have the same
addresses.

11. The method of claim 1, wherein step (e) further com­
prises bit-wise comparison of the content of the blocks.

12. The method of claim 1, wherein step (b) further com­
prises reading the descriptors from a disk area of the data
storage device.

13. The method of claim 1, further comprising elimination

45

of information unnecessary for the descriptors comparison 50
from the descriptors area.

14. The method of claim 1, wherein the descriptors include
data access attributes of any of "Update sequence" in MFT
file record header and time read in "$STANDARD_INFOR­
MATION" from attributes ofMFT file record.

15. The method of claim 1, wherein MFT contents from a
start of a file record to an end marker are converted into hash
values.

55

16. The method of claim 1, wherein the descriptors include
data access attribute "last access date" in operating systems 60

with FAT file system.
17. The method of claim 1, wherein the descriptors include

data access attribute "access time" in operating system with
Ext2/Ext3 file system.

18. The method of claim 1, wherein inodes contents, indi- 65

rect blocks, double indirect blocks and triple indirect blocks
with file data are converted into hash values.

(a) a bitmap of blocks of the storage device with all blocks
that require backing up being marked in the bitmap;

(b) a plurality of descriptors of the files and directories
stored in a descriptors area of the storage device;

(c) wherein at least some of the descriptors from a set of
descriptors associated with each file are discarded and
then a common hash value of a resulting set of descrip­
tors is generated;

(d) a set of identical hash values related to a prior backup of
the storage device and to a current state of the storage
device;

(e) means for checking coincidence of blocks that form a
single file, wherein the descriptors have identical hash
values, and, for at least some of the blocks that form the
single file, comparing contents of the blocks;

(f) wherein, in the bitmap, the coincident blocks are
unmarked;

(g) a backup of contents of the blocks that are marked in the
bitmap; and

(h) a plurality of pointers for coincident blocks, wherein
the pointers point to blocks from the prior backup.

22. The system of claim 21, wherein the discarding com­
prises resetting selected data access attributes of the descrip­
tors.

23. The system of claim 21, wherein the discarding
includes resetting selected attributes of the descriptors.

24. The system of claim 21, wherein the common hash
value comprises hash values for blocks and comparing the
hash values of the blocks of the storage device with the hash
values of previously archived blocks, that have the same
addresses.

25. The system of claim 21, wherein the descriptors include
data access attributes, including any of the "Update
sequence" in MFT file record header and time read in
"$STANDARD_INFORMATION" from attributes of MFT
file record.

26. The system of claim 21, wherein MFT contents from a
start of a file record to an end marker are converted into hash
values.

US 7,831,789 Bl
17

27. The system of claim 21, wherein inodes contents, indi­
rect blocks, double indirect blocks and triple indirect blocks
with file data are converted into hash values.

28.A system for combining file-level and block-level back­
ups for a fast incremental backup, comprising:

a main storage that includes blocks and files;
a bitmap of the blocks with all blocks that require backing

up being marked in the bitmap;

18
form the single file, contents of the blocks are compared
to determine if these blocks need to be backed up and
urmwrking, in the bitmap, coincident blocks that corre­
spond to the archived logical storage units with coinci­
dent descriptors and backing up contents of the blocks
that are marked in the bitmap.

29. The method of claim 1, wherein, for those files that
contain additional blocks, the bitmap only resets those bits
that correspond to the additional blocks. a block-based archive of a previous state of the main stor-

age; and 10 30. The method of claim 1, wherein, for those files that
contain additional metadata, but no new contents, the bitmap
only resets those bits that correspond to the new metadata.

31. The method of claim 1, further comprising, for those
blocks whose hashes are not identical, comparing the blocks

15 on a cluster by cluster basis, a cluster being a group ofblocks.

a plurality of descriptors of the files,
wherein for those files whose control sum values of the

descriptors are not identical to control sum values of the
descriptors of the previously archived files, an incre­
mental block-based backup of corresponding blocks is
performed, wherein for at least some of the blocks that * * * * *

