
c12) United States Patent
Stringham

(54) METHODS AND SYSTEMS FOR CREATING
AND MANAGING BACKUPS USING VIRTUAL
DISKS

(75) Inventor: Russell Stringham, Orem, UT (US)

(73) Assignee: Symantec Corporation, Mountain View,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 295 days.

(21) Appl. No.: 12/415,278

(22)

(51)

(52)
(58)

(56)

Filed: Mar. 31,2009

Int. Cl.
G06F 17130 (2006.01)
U.S. Cl. .. 707/646; 713/2
Field of Classification Search 707/648
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,266,655 B1* 9/2007 Escabi eta!. 7111162
7,356,679 B1* 4/2008 Le eta!. 713/1

2010/0049930 A1 * 2/2010 Pershin et al. 7111162
2010/0153617 A1 * 6/2010 Miroshnichenko eta!. 71116

OTHER PUBLICATIONS

"VMware Consolidated Backup Product Datasheet", Item Number:
07Q4_ VM_CB3-5_DS_EN_R2, VMware, Inc. 2007, pp. 1-2.*
"VMware Converter User's Manual", Item Number: VMC-ENG­
Q407-281, VMware, Inc. 2007, pp. 1-16.*

Backup Virtual-Disk File
124

111111 111
US008117168Bl

(10) Patent No.:
(45) Date of Patent:

US 8,117,168 B1
Feb.14,2012

Perilli, Alessandro; "Microsoft Vista CompletePC Backup will Use
Virtual Server Virtual Disk Format"; Jun. 24, 2006; http://www.
virtualization.info/2006/06/microsoft-vista-completepc-backup­
will.html.
"Explore the features: Windows Backup and Restore Center";
(accessed on May 14, 2009); http://www.microsoft.com/windows/
windows-vista/features/backup.aspx.
Stevenson, Dan; Backup and Restore in Windows Vista and Windows
Server Longhorn; http:/ /download.microsoft.com/download/5/b/9/
5b970 17b-e28a-4bae-ba48-174cf47d23cd/BUS107 _ WH06.ppt.
"Windows Vista: A Guide to Windows Vista Backup Technologies";
(accessed May 18, 2009); http://technet.microsoft.com/en-us/maga­
zine/2007 .09 .backup.aspx.
Van Rietschote; "SW virtualization (aka VMware)"; Oct. 25, 2001;
Veritas.

* cited by examiner

Primary Examiner- Cheryl Lewis
Assistant Examiner- Scott A Waldron
(74) Attorney, Agent, or Firm- Advantedge Law Group

(57) ABSTRACT

A computer-implemented method may, at a first point in time,
back up at least a portion of a data-storage entity to a first
virtual-disk file. The computer-implemented method may
capture, in a second virtual-disk file, at least one change made
to data in the data-storage entity after the first point in time.
The computer-implemented method may also create a parent­
child relationship between the first virtual-disk file and the
second virtual-disk file, with first virtual-disk file being a
parent of the second virtual-disk file. The computer-imple­
mented method may further copy data stored in the second
virtual-disk file to the first virtual-disk file so that the first
virtual-disk file includes the at least one change made to data
in the data-storage entity after the first point in time. Various
other methods, systems, and computer-readable media are
also disclosed.

14 Claims, 6 Drawing Sheets

Time

U.S. Patent Feb.14,2012 Sheet 1 of 6 US 8,117,168 B1

System
100

Modules Storage Entities
11.Q 120

I""'"' Mod"'' I Data-Storage Entity
122 .ill.

Recovery Module Backup Virtual-Disk File
ill 124

Empty Virtual-Disk File
126

Backup Virtual-Disk File
128

Empty Virtual-Disk File
130

Backup Virtual-Disk File
m

Empty Virtual-Disk File
134

FIG. 1

U.S. Patent Feb.14,2012 Sheet 2 of 6 US 8,117,168 B1

200~
Start)

At a first point in time, backup at least a portion of a data-storage entity
to a first virtual-disk file

210

~'

Capture, in a second virtual-disk file, at least one change made to data
in the data-storage entity after the first point in time

220

~'
Create a parent-child relationship between the first virtual-disk file and
the second virtual-disk file, the first virtual-disk file being a parent of the

second virtual-disk file
230

~'
Copy data stored in the second virtual-disk file to the first virtual-disk
file so that the first virtual-disk file includes the at least one change
made to data in the data-storage entity after the first point in time

240

~'

End)

FIG. 2

U.S. Patent Feb.14,2012 Sheet 3 of 6 US 8,117,168 B1

300~ c Start)

"
At a first point in time, back up at least a portion of a data-storage entity to a first virtual-disk file

305

•
Create a first empty virtual-disk file

.llQ

•
Create a parent-child relationship between the first virtual-disk file and the first empty virtual-disk file,

the first virtual-disk file being a parent of the first empty virtual-disk file
315

•
Capture, in a second virtual-disk file, at least one change made to data in the data-storage entity after

the first point in time
320

•
Create a parent-child relationship between the first virtual-disk file and the second virtual-disk file, the

first virtual-disk file being a parent of the second virtual-disk file
~

"
Create a second empty virtual-disk file

330

•
Create a parent-child relationship between the second virtual-disk file and the second empty virtual-disk

file, the second virtual-disk file being a parent of the second empty virtual-disk file
335

•
Copy data stored in the second virtual-disk file to the first virtual-disk file so that the first virtual-disk file

includes the at least one change made to data in the data-storage entity after the first point in time
340

•
Modify the parent-child relationship of the second empty virtual-disk file such that the second empty
virtual-disk file is a child of the first virtual-disk file instead being a child of the second-virtual-disk file

345

•
Delete the second virtual-disk file and the first empty virtual-disk file

350

• FIG. 3 c End)

(

Backup Virtual-Disk File
124

Point in Time
410

"""

Backup Virtual-Disk
..--------1 File

128

Point in Time
412

"""

Backup Virtual-Disk
..--------1 File

132

Point in Time
414

"""

FIG. 4

" ,.
Time

~
00
•
~
~
~
~ = ~

""f'j
('D

?'
~ ...
N
0
N

rFJ

=­('D
('D
0
0\

d
rJl

"'010

""""' """"' "'-....1

""""' 0'1
010

= """"'

Computing System
510

~

Processor
514

~

.. ..

?
Commun

lnfrastru
512

~ation

~ture

t
Display
Adapter

526

t
Display
Device

524

System Memory Memory Controller
516 518

~

~

Input
Interface

530

Input
Device

528

FIG. 5

1/0 Controller
520

~

..

t
Storage
Interface

534

f
!

Primary
Storage
Device

532

Communication
Interface

522

.. ...

!
Backup
Storage
Device

533

~
00
•
~
~
~
~ = ~

""f'j
('D

?'
~ ...
N
0
N

rFJ

=­('D
('D
Ul
0
0\

d
rJl

"'010

""""' """"' "'-....1

""""' 0'1
010

= """"'

Network Architecture

600 ~

FIG. 6

Server
640

Server
645

Intelligent
Storage Array

695

Device
690(Nl

~
00
•
~
~
~
~ = ~

""f'j
('D

?'
~ ...
N
0
N

rFJ

=­('D
('D
0\
0
0\

d
rJl

"'010

""""' """"' "'-....1

""""' 0'1
010

= """"'

US 8,117,168 Bl
1

METHODS AND SYSTEMS FOR CREATING
AND MANAGING BACKUPS USING VIRTUAL

DISKS

BACKGROUND

Backup and recovery are two significant issues facing
Information Technology ("IT") administrators. Whether
from physical failure, human error, or a system crash, data
loss is inevitable without an appropriate backup and recovery 10

solution. IT administrators may examine their recovery point
objectives ("RPO") and recovery time objectives ("RTO")
when considering a proper backup and recovery solution. An
IT organization may have a system that allows some data loss

15
and only requires a backup once every day. Another system
may require every change to be backed up, allowing data to be
recovered from any point in time. Some non-critical systems
may allow several days to recover after a failure; however,
other critical systems, requiring high-availability, may 20

require immediate failover.
Some IT organizations use physical machines for backup

and recovery. A physical recovery point may need to be con­
figured with hardware identical to a failed machine to recover
data for the failed machine. Other solutions may allow recov- 25

ery machines and failed machines to have different hardware,
which may necessitate modifYing data backed up from the
failed machine to allow the data to run on the recovery
machine.

Systems that need short recovery times may include a 30

substantial amount of hardware redundancy-sometimes up
to twice the number of physical machines needed for day-to­
day operations. The extra machines may contain hot backups
that allow a failed machine to be replaced instantly. In addi­
tion to the extra hardware costs, such disaster recovery sys- 35

terns may consume management resources to keep the
backup machines and the production machines in sync.

2
In some embodiments, the first virtual-disk file may

include a full backup of the data-storage entity, and the sec­
ond virtual-disk file may include an incremental backup of
the data-storage entity. In other embodiments, the first and
second virtual-disk files may both be incremental backups of
the data-storage entity. According to certain embodiments,
the first and second virtual-disk files may comprise a virtual­
machine-disk-format file or a virtual-hard-disk file.

In various embodiments, the backup module may create an
empty virtual-disk file. The backup module may then create a
parent-child relationship linking the first virtual-disk file to
the empty virtual-disk file. Some embodiments may include a
recovery module that may retarget the empty virtual-disk file
to enable a virtual machine to boot from the first virtual-disk
file. The recovery module may use the first empty virtual-disk
file to boot a virtual machine from the first virtual-disk file.
Features from any of the above-mentioned embodiments may
be used in combination with one another in accordance with
the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem­
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem­
onstrate and explain various principles of the instant disclo­
sure.

FIG. 1 is a block diagram of an exemplary system for
creating and managing backups using virtual disks according
to certain embodiments.

FIG. 2 is a flow diagram of an exemplary method for
creating and managing backups using virtual disks according
to certain embodiments.

FIG. 3 is a flow diagram of another exemplary method for
creating and managing backups using virtual disks according
to certain embodiments.

FIG. 4 is a timeline showing backup events of an exemplary
system for creating and managing backups using virtual disks
according to certain embodiments.

IT administrators are increasingly turning to computer sys­
tem virtualization to better administer and manage their infra­
structures. In some cases, virtualization may reduce overall 40

costs, including those associated with backup and recovery.
Some traditional backup and recovery systems may imple­
ment virtualization by converting a backup file to a virtual­
disk file to allow a virtual machine to be booted from the
virtual-disk file. Unfortunately, converting backup files to
virtual-disk files may consume additional data storage and
may involve substantial input/output ("I/0") and processing.

FIG. 5 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-

45 ments described and/or illustrated herein.

SUMMARY

FIG. 6 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi­
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
50 and descriptions indicate similar, but not necessarily identi­

cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail

The instant disclosure is directed to methods and systems
for creating and managing backups using virtual-disk files.
Embodiments of the instant disclosure may enable an IT
administrator to backup data to a virtual-disk file, capture
incremental changes in an incremental virtual-disk file, and
roll the incremental changes into the virtual-disk file. For
example, at a first point in time, a backup module may back up
data from a data-storage entity (e.g., a volume) to a first
virtual-disk file. At a second point in time, the backup module
may capture, in a second virtual-disk file (e.g., an incremental 60

virtual-disk file), a change made to the data in the data-storage
entity. The backup module may create a parent-childrelation­
ship linking the first and second virtual-disk files. The backup
module may then copy the data from the second virtual-disk
file to the first virtual-disk file so that the first virtual-disk file 65

contains a synthetic full backup of the data from the data­
storage entity as it existed at the second point in time.

55 herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica­
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Embodiments of the instant disclosure provide methods
and systems for creating and managing backups using virtual
disks. For example, a backup module may backup a data­
storage entity, (e.g., a full or incremental backup) to a virtual-

US 8,117,168 Bl
3

disk file at a first point in time. Later, the backup module may
capture, in a second virtual-disk file, at least one change made
to data stored in the data-storage entity (e.g., an incremental
backup). The backup module may then copy data from the
second virtual-disk file to the first virtual-disk file so that the 5

4
Storage entities 120 may include data-storage entity 122, a

backup virtual-disk file 124, an empty virtual-disk file 126, a
backup virtual-disk file 128, an empty virtual-disk file 130, a
backup virtual-disk file 132, and an empty virtual-disk file
134. One or more of storage entities 120 in FIG. 1 may
represent a portion of one or more computing devices. For
example, one or more of storage entities 120 may represent a
portion of one or more of computing system 510 in FIG. 5,
and/or portions of exemplary network architecture 600 in

first virtual-disk file contains a backup that represents the
data-storage entity at the later point in time. A recovery mod­
ule may be programmed to use an empty virtual-disk file for
retargeting and/or to use the first empty virtual-disk file to
boot a virtual machine from the first virtual-disk file. 10 FIG. 6. Alternatively, one or more of storage entities 120 in

FIG. 1 may represent one or more physically separate devices
capable ofbeing accessed by a computing device, such as one
or more of computing system 510 in FIG. 5, and/ or portions of

Embodiments described herein may provide one or more
features and/or advantages not provided by traditional backup
systems. For example, using a virtual-disk file as a backup as
described herein may avoid the costly I/0, processing, and

15
data storage involved in converting backup files to virtual­
disk files. Furthermore, using a virtual-disk file as a backup
may be advantageous because one or more other appliances,
such as deduplication appliances, may be configured to
handle virtual-disk file formats but may not be configured to
handle one or more other traditional backup file formats.

exemplary network architecture 600 in FIG. 6.
As used herein, the phrases "virtual disk" and "virtual-disk

file" may refer to a disk that may appear to an operating
system to be a physical disk. In some embodiments, virtual
disks may be implemented using a disk emulator. A virtual
disk may emulate any type of physical disk, such a hard drive,

20 an optical disk, a network share, and/or any other physical
storage entity.

A backup virtual-disk file may comprise a virtual-ma­
chine-disk-format file, a virtual-hard-disk file, or any other
virtual-disk file format. An example of a virtual-machine-

FIG. 1 shows an exemplary system for creating and man­
aging backups using virtual disks, FIGS. 2 and 3 show an
exemplary method for accomplishing the same. FIG. 4 illus­
trates a timeline showing backup events, and FIGS. 5 and 6
illustrate an exemplary network and computing system for
implementing embodiments of the instant disclosure.

25 disk-format file is a VMWARE VIRTUAL-MACHINE­
DISK-FORMAT file ("VMDK"). An example of a virtual­
hard-disk file is a MICROSOFT VIRTUAL-HARD-DISK
file ("VHD"). In certain embodiments, a backup virtual-disk FIG. 1 illustrates an exemplary backup system 100 for

creating and managing backups using virtual disks. System
100 may include modules 110 and storage entities 120. Mod- 30

ules 110 may include a backup module 112 and a recovery
module 114. Backup module 112 may be programmed to, at
a first point in time, back up at least a portion of data-storage
entity 122 to backup virtual-disk file 124. Backup module 112
may also be programmed to capture, in backup virtual-disk 35

file 128, one or more changes made to the data in data-storage
entity 122. Backup module 112 may also be programmed to
create a parent-child relationship between backup virtual­
disk file 124 and backup virtual-disk file 128, where backup
virtual-disk file 124 is the parent of backup virtual-disk file 40

128. Backup module 112 may be further programmed to copy
data stored in backup virtual-disk file 128 to backup virtual­
disk file 124 so that backup virtual-disk file 124 contains the
one or more changes made to data-storage entity 122. Recov­
ery module 114 may be programmed to use an empty virtual- 45

disk file 126 for retargeting and/or to boot a virtual machine
from backup virtual-disk file 124.

In certain embodiments, one or more of modules 110 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing system, may 50

cause the computing system to perform one or more steps
disclosed herein. For example, as will be described in greater
detail below, one or more of modules 110 may represent
software modules configured to run on one or more comput­
ing devices, such as computing system 510 in FIG. 5 and/or 55

portions of exemplary network architecture 600 in FIG. 6.
One or more of modules 110 in FIG.l may also represent all

file may include an incremental virtual-disk file. An incre­
mental virtual-disk file may include any file that stores incre­
mental changes. An incremental virtual-disk file may store an
incremental backup. Examples of incremental virtual-disk
files include MICROSOFT's UNDO file and VMWARE's
REDO file.

FIG. 2 shows an exemplary method for creating and man­
aging backups using virtual disks. The steps shown in FIG. 2
may be performed by any suitable computer executable code
and/or computing system. In some embodiments, the steps
shown in FIG. 2 may be performed by one or more of backup
module 112 and/or recovery module 114. For example, at step
210 backup module 112 may, at a first point in time, back up
at least a portion of data-storage entity 122 to backup virtual­
disk file 124. Backup module 112 may back up at least a
portion of data-storage entity 122 to virtual-disk file 124 in
any suitable marmer. Backing up at least a portion of the
data-storage entity may include backing up one or more bytes
from the data-storage entity, backing up one or more blocks
from the data-storage entity, backing up one or more sectors
from the data-storage entity, backing up one or more file-level
elements (e.g., files, directories, etc.) stored in the data-stor­
age entity, and/or backing up any other data unit stored in the
data-storage entity.

Backup module 112 may backup any data stored in data­
storage entity 122. Data may include any computer-readable
(i.e. binary) information stored in data-storage entity 122.
Examples of data include files (e.g., program files, registry
files, hidden files, encrypted files, etc.), directories, system
descriptions, boot sectors, partition layouts, file metadata,
and system metadata. In some embodiments, data-storage

or portions of one or more special-purpose computers con­
figured to perform one or more of the tasks associated with
steps disclosed herein.

As previously noted, system 100 may include storage enti­
ties 120. As used herein, the phrase "storage entity" may refer

60 entity 122 may comprise a volume. A volume may include
any storage medium accessible by a single file system.
Examples of a volume include a hard disk, an optical disk
(e.g., DVD-ROM, CD-ROM, etc.), a flash memory drive, a to any physical and/or logical storage entity. For example, a

storage entity may include a volume, a physical disk, a virtual
disk, a partition on a drive, a set of one or more data entities 65

(e.g., files, blocks, clusters), and/or any other data storage
area.

floppy disk, a tape medium (e.g., DAT, DDS, LTO, or DLT),
a partition on a hard disk, a RAID array, a storage area
network ("SAN"), a network-attached storage ("NAS")
device, or a virtual disk.

US 8,117,168 Bl
5

In some embodiments, backup virtual-disk file 124 may
contain a full back up of data-storage entity 122. As used
herein, the phrase "full backup" may refer to any data backup
that includes each data unit (e.g., block, sector, cluster, file,
etc.) in a set of data units. For example, a full backup of a 5

volume may include each block in the volume. In some
embodiments, a full backup may include only those clusters
(blocks) that are currently allocated by the file system while
skipping clusters that are not currently allocated by the file
system. In some embodiments, a full backup may include 10

only those files which have been identified for backup, which
means that a full backup may include a subset of the data on
a system or volume. In other embodiments, a full backup may
include a copy of all data and/or software on a system. For

15
example, a full backup may include an entire data store,
regardless of whether or not that data has been changed since
a previous backup was performed. A full backup may include
all data needed for a complete system restoration. A full
backup may be a starting point for other backups (e.g., incre- 20

mental backups).
In other embodiments, backup virtual-disk file 124 may

contain an incremental backup of data-storage entity 122. An
incremental backup may include only changes made to data
that has already been backed up. For example, an incremental 25

backup may only include changes made to a data storage
entity since a previous incremental or full backup. In some
embodiments, an incremental backup may include data units
for which an archive bit (or other backup indicator) is set.

At step 220, backup module 112 may capture, in backup 30

virtual-disk file 128, at least one change made to data in
data-storage entity 122 after the first point in time. Backup
module 112 may capture the at least one change in any suit­
able manner. For example, backup module 112 may capture

35
changes to one or more blocks stored in data-storage entity
122, changes to one or more sectors stored in data-storage
entity 122, changes to one or more clusters stored in data­
storage entity 122, and/or changes to one or more file-level
elements stored in data-storage entity 122. The one or more 40

changes captured after the first point in time may be referred
to as a snapshot of data-storage entity 122. Backup module
112 may capture the at least one change as a full or incremen-
tal backup. In some embodiments, backup virtual-disk file
128 may comprise an incremental backup of data-storage 45

entity 122. In other embodiments, backup virtual-disk file
128 may comprise a full backup of data-storage entity 122. In
at least one embodiment, backup module 112 may monitor
data-storage entity 122 and use a copy-on-write method to
capture the at least one change by capturing every write made 50

to data-storage entity 122.
Backup module 112 may capture the at least one change

made to data in data-storage entity 122 at various intervals.
For example, backup module 112 may capture changes to
data-storage entity 122 once every minute, once every hour, 55

once every day, or once every week. In other embodiments,
backup module 112 may capture changes to data-storage
entity 122 at irregular intervals. Backup module 112 may also
provide continuous data protection by capturing every write
made to data in data-storage entity 122 to a separate backup 60

file.

6
virtual-disk files may indicate that the child virtual-disk file
holds incremental changes made to data since the parent
virtual-disk file was created.

At step 240, backup module 112 may copy data stored in
backup virtual-disk file 128 to backup virtual-disk file 124 so
that backup virtual-disk file 124 includes the at least one
change made to data in data-storage entity 122 after the first
point in time. As a result, virtual-disk file 124 may represent
data-storage entity 122 at a second point in time. In embodi-
ments where backup virtual-disk file 124 includes a full
backup, backup virtual-disk file 124 may be referred to as a
full synthetic backup of data-storage entity 122. As used
herein, the phrase "full synthetic backup" may refer to a full
backup taken at a first point in time that has been updated to
include one or more changes made to a data-storage entity
through a second point in time. Backup module 112 may
transform backup virtual-disk file 124 into a full synthetic
backup by copying data stored in backup virtual-disk file 128
to backup virtual-disk file 124.

Backup module 112 may begin copying data stored in
backup virtual-disk file 128 to backup virtual-disk file 124 at
various points during a backup process. In some embodi­
ments, backup module 112 may begin copying data from
backup virtual-disk file 128 to backup virtual-disk file 124
immediately after the data is captured in backup virtual-disk
file 128. In other embodiments, backup module 112 may copy
data from backup virtual-disk file 128 to backup virtual-disk
file 124 at a predetermined point in time.

In some embodiments, backup module 112 may not begin
copying data stored in backup virtual-disk file 128 to backup
virtual-disk file 124 until the capturing of the at least one
change is complete. That way, if the capturing fails, backup
virtual-disk file 124 may be used as the last successful
backup. If the capturing succeeds, backup virtual-disk file
128 may be used as the last successful backup. If backup
module 112 begins to copy data stored in backup virtual-disk
file 128 to backup virtual-disk file 124 before the capturing is
complete and the capturing fails then backup virtual-disk files
124 and 128 may no longer be valid backups of data-storage
entity 122.

FIG. 3 shows another exemplary method for creating and
managing backups using virtual disks. The steps shown in
FIG. 3 may be performed by any suitable computer execut-
able code and/or computing system. In some embodiments,
the steps shown in FIG. 3 may be performed by one or more
of backup module 112 and/or recovery module 114. For
example, at step 305 backup module 112 may, at a first point
in time, back up at least a portion of data-storage entity 122 to
backup virtual-disk file 124.

At step 310, backup module 112 may create empty virtual­
disk file 126, which may be an incremental virtual-disk file.
At step 315, backup module 112 may create a parent-child
relationship between backup virtual-disk file 124 and empty
virtual-disk file 126, with backup virtual-disk file 124 being a
parent of empty virtual-disk file 126. In at least one embodi­
ment, recovery module 114 may retarget empty virtual-disk
file 126 to enable a virtual machine to boot from backup
virtual-disk file 124. Retargeting empty virtual-disk file 126
may include any action that enables a virtual machine to boot
from backup virtual-disk file 124. Examples of retargeting
may include replacing, reconfiguring, and/or installing one or
more of the Hardware Abstraction Layer ("HAL"), kernel,
mass storage driver, and/or any other device drivers.

At step 230, backup module 112 may create a parent-child
relationship between backup virtual-disk file 124 and backup
virtual-diskfile 128, with backup virtual-diskfile 124 being a
parent of backup virtual-disk file 128. Backup module 112
may create and store the parent-child relationship in any
suitable manner. A parent-child relationship between two

In certain embodiments, recovery module 114 may use
65 empty virtual-disk file 126 to boot a virtual machine from

backup virtual-disk file 124. The virtual machine may redi­
rect future writes to empty virtual-disk file 126, allowing

US 8,117,168 Bl
7

backup virtual-disk file 124 to remain unchanged. As long as
backup virtual-disk file 124 remains unchanged, backup vir­
tual-disk file 124 may be used as a base or parent for addi­
tional incremental backups.

At step 320, backup module 112 may capture, in backup 5

virtual-disk file 128, at least one change made to data in
data-storage entity 122 after the first point in time. At step
325, backup module 112 may create a parent-child relation­
ship between backup virtual-disk file 124 and backup virtual­
disk file 128, with backup virtual-disk file 124 being a parent 10

of backup virtual-disk file 128.
At step 330, backup module 112 may create empty virtual­

disk file 130. Then, at step 335, backup module 112 may
create a parent-child relationship between backup virtual­
disk file 128 and empty virtual-disk file 130, with backup 15

virtual-disk file 128 being a parent of empty virtual-disk file
130. Recovery module 114 may retarget empty virtual-disk
file 130 and/or use empty virtual-disk file 130 to boot a virtual
machine from backup virtual-disk file 128.

At step 340, backup module 112 may copy data stored in 20

backup virtual-disk file 128 to backup virtual-disk file 124 so
that backup virtual-disk file 124 includes the at least one
change made to data in data-storage entity 122 after the first
point in time. After the data stored in backup virtual-disk file
128 is copied to backup virtual-disk file 124, backup virtual- 25

disk file 124 may no longer be a valid parent of empty virtual­
disk file 126. At the same time, backup virtual-disk file 128
may contain redundant information. Therefore at step 345,
backup module 112 may modify the parent-child relationship
of empty virtual-disk file 130 such that empty virtual-disk file 30

130 is a child of backup virtual-disk file 124 instead of being
a child of backup virtual-disk file 128. At step 350, backup
module 112 may delete backup virtual-disk file 128 and
empty virtual-disk file 126.

FIG. 4 is a timeline showing backup events of an exemplary 35

system for creating and managing backups using virtual
disks. FIG. 4 shows time line 400 containing point in time 410,
point in time 412, and point in time 414. Point in time 410,
point in time 412, and point in time 414 may refer to points in
time from steps described and/or illustrated herein. In some 40

embodiments, backup module 112 may, at point in time 410,
backup at least a portion of data-storage entity 122 to backup
virtual-disk file 124. Backup module 112 may then create
empty virtual-disk file 126. Backup module 112 may associ-
ate empty virtual-disk file 126 with backup virtual-disk file 45

124 so that a virtual machine may boot backup virtual-disk
file 124 and may access the at least a portion of data-storage
entity 122 as it existed at point in time 410 without modifying
virtual disk file 124.

8
changes made to data in data-storage entity 122 since point in
time 412. In certain embodiments, backup module 112 may
create a parent-child relationship between backup virtual-
disk file 132 and backup virtual-disk file 128, with backup
virtual-disk file 128 being a parent to backup virtual-disk file
132. Backup module 112 may also create empty virtual-disk
file 134 and associate it with backup virtual-disk file 132.
Empty virtual-disk file 134 may then be used to enable a
virtual machine to boot from backup virtual-disk file 132.
Therefore, a virtual machine may access the data stored in
data-storage entity 122 as it existed at point in time 414.

After point in time 414, backup module 112 may roll the
data in backup virtual-disk file 132 into backup virtual-disk
file 128. After the data is copied from backup virtual-disk file
132 to backup virtual-disk file 128, backup module 112 may
update the parent-child relationship between backup virtual­
disk file 132 and empty virtual-disk file 134 such that backup
virtual-disk file 128 is the parent of empty virtual-disk file
134. Backup module 112 may then delete backup virtual-disk
file 132 and empty virtual-disk file 130. At this point, backup
virtual-disk file 128 may be accessible as a backup that rep­
resents a state of data-storage entity 122 at point in time 414.

Backup module 112 may also roll the data in backup vir-
tual-disk file 128 into backup virtual-disk file 124. After the
data is copied, backup module 112 may update the parent­
child relationship between backup virtual-disk file 124 and
empty virtual-disk file 126 such that backup virtual-disk file
124 is the parent of empty virtual-disk file 134. Backup mod­
ule 112 may then delete backup virtual-disk file 128 and
empty virtual-disk file 126. At this point, backup virtual-disk
file 124 may be accessible as a backup that represents a state
of data-storage entity 122 at point in time 414. If backup
module 112 were to copy the data from virtual-disk file 128 to
virtual-disk file 124, without having previously copied the
data in virtual-disk file 132 into virtual-disk file 128, then
before deleting virtual-disk file 128, it would also need to
update virtual-disk file 132 so that virtual-disk file 132's
parent becomes virtual-disk file 124. Similarly, if virtual-disk
file 128 is copied back into virtual-disk file 124 before virtual­
disk file 132 is created, then virtual-disk file 132 would be
created with virtual-disk file 124 as its parent.

In some embodiments, backup module 112 may, when
creating parent-child relationships, define backup virtual­
disk file 124 as the parent of every backup virtual-disk file
created after point in time 410. These additional backup vir­
tual-disk files may be referred to as differential backups.

FIG. 5 is a block diagram of an exemplary computing
system 510 capable of implementing one or more of the
embodiments described and/or illustrated herein. Computing
system 510 broadly represents any single or multi-processor

At point in time 412, backup module 112 may capture, in
backup virtual-disk file 128, at least one change made to data
in data-storage entity 122. Backup module 112 may create a
parent-child relationship between backup virtual-disk file
128 and backup virtual-diskfile 124, with backup virtual-disk
file 124 being a parent to backup virtual-disk file 128. Backup
module 112 may also create empty virtual-disk file 130 and
associate it with backup virtual-disk file 128. Empty virtual­
disk file 130 may then be used to enable a virtual machine to
boot from backup virtual-disk file 128. Therefore, the virtual
machine may access the at least a portion of data-storage
entity 122 as it existed at point in time 412.

50 computing device or system capable of executing computer­
readable instructions. Examples of computing system 510
include, without limitation, workstations, laptops, client-side
terminals, servers, distributed computing systems, handheld
devices, or any other computing system or device. In its most

Backup module 112 may continue to make any number of
additional backups of data-storage entity 122 in a similar
manner. For example, backup module 112 may capture, in
backup virtual-disk file 132, at least one change made to data
in data-storage entity 122 at point in time 414. In some
embodiments, the at least one change may include only the

55 basic configuration, computing system 510 may comprise at
least one processor 514 and system memory 516.

Processor 514 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor

60 514 may receive instructions from a software application or
module. These instructions may cause processor 514 to per­
form the functions of one or more of the exemplary embodi­
ments described and/or illustrated herein. For example, pro­
cessor 514 may perform and/or be a means for performing,

65 either alone or in combination with other elements, one or
more of the backing up, capturing, creating, copying, retar­
geting, using, modifYing, and deleting steps described herein.

US 8,117,168 Bl
9

Processor 514 may also perform and/or be a means for per­
forming any other steps, methods, or processes described
and/or illustrated herein.

System memory 516 generally represents any type or form
of volatile or non-volatile storage device or medium capable

10
server via a direct link to a network, such as the Internet.
Communication interface 522 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network or a wireless IEEE 802.11
network), a personal area network (such as a BLUETOOTH
or IEEE Standard 802.15.1-2002 network), a telephone or
cable network, a cellular telephone connection, a satellite
data connection, or any other suitable connection.

In certain embodiments, communication interface 522
may also represent a host adapter configured to facilitate
communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters

of storing data and/or other computer-readable instructions.
Examples of system memory 516 include, without limitation,
random access memory (RAM), read only memory (ROM),
flash memory, or any other suitable memory device. Although
not required, in certain embodiments computing system 510 10

may comprise both a volatile memory unit (such as, for
example, system memory 516) and a non-volatile storage
device (such as, for example, primary storage device 532, as
described in detail below).

In certain embodiments, exemplary computing system 510
may also comprise one or more components or elements in
addition to processor 514 and system memory 516. For
example, as illustrated in FIG. 5, computing system 510 may
comprise a memory controller 518, an Input/Output (I/0) 20

controller 520, and a communication interface 522, each of

15
include, without limitation, SCSI host adapters, USB host
adapters, IEEE 1394 host adapters, SATA and eSATA host
adapters, ATA and PATA host adapters, Fibre Channel inter­
face adapters, Ethernet adapters, or the like. Communication

which may be interconnected via a communication infra­
structure 512. Communication infrastructure 512 generally
represents any type or form of infrastructure capable offacili­
tating communication between one or more components of a 25

computing device. Examples of communication infrastruc­
ture 512 include, without limitation, a communication bus
(such as an ISA, PCI, PCie, or similar bus) and a network.

interface 522 may also allow computing system 510 to
engage in distributed or remote computing. For example,
communication interface 522 may receive instructions from a
remote device or send instructions to a remote device for
execution. In certain embodiments, communication interface
522 may perform and/or be a means for performing, either
alone or in combination with other elements, one or more of
the backing up, capturing, creating, copying, retargeting,
using, modifYing, and deleting steps disclosed herein. Com­
munication interface 522 may also be used to perform and/or
be a means for performing other steps and features set forth in
the instant disclosure.

As illustrated in FIG. 5, computing system 510 may also
comprise at least one display device 524 coupled to commu­
nication infrastructure 512 via a display adapter 526. Display
device 524 generally represents any type or form of device
capable of visually displaying information forwarded by dis­
play adapter 526. Similarly, display adapter 526 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc­
ture 512 (or from a frame buffer, as known in the art) for

Memory controller 518 generally represents any type or
form of device capable of handling memory or data or con- 30

trolling communication between one or more components of
computing system 510. For example, in certain embodiments
memory controller 518 may control communication between
processor 514, system memory 516, and I/0 controller 520
via communication infrastructure 512. In certain embodi- 35

ments, memory controller 518 may perform and/or be a
means for performing, either alone or in combination with
other elements, one or more of the steps or features described
and/or illustrated herein, such as backing up, capturing, cre­
ating, copying, retargeting, using, modifying, and deleting. 40 display on display device 524.

I/0 controller 520 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments I/0 controller 520 may control or facili­
tate transfer of data between one or more elements of com- 45

puting system 510, such as processor 514, system memory
516, communication interface 522, display adapter 526, input
interface 530, and storage interface 534. I/0 controller 520
may be used, for example, to perform and/or be a means for
backing up, capturing, creating, copying, retargeting, using, 50

modifYing, and deleting steps described herein. I/0 controller
520 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Communication interface 522 broadly represents any type 55

or form of communication device or adapter capable of facili­
tating communication between exemplary computing system
510 and one or more additional devices. For example, in
certain embodiments communication interface 522 may
facilitate communication between computing system 510 and 60

a private or public network comprising additional computing
systems. Examples of communication interface 522 include,
without limitation, a wired network interface (such as a net­
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other 65

suitable interface. In at least one embodiment, communica­
tion interface 522 may provide a direct connection to a remote

As illustrated in FIG. 5, exemplary computing system 510
may also comprise at least one input device 528 coupled to
communication infrastructure 512 via an input interface 530.
Input device 528 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 510.
Examples of input device 528 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device. In at least one embodiment, input
device 528 may perform and/or be a means for performing,
either alone or in combination with other elements, one or
more of the backing up, capturing, creating, copying, retar­
geting, using, modifYing, and deleting steps disclosed herein.
Input device 528 may also be used to perform and/or be a
means for performing other steps and features set forth in the
instant disclosure.

As illustrated in FIG. 5, exemplary computing system 510
may also comprise a primary storage device 532 and a backup
storage device 533 coupled to communication infrastructure
512 via a storage interface 534. Storage devices 532 and 533
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read­
able instructions. For example, storage devices 532 and 533
may be a magnetic disk drive (e.g., a so-called hard drive), a
floppy disk drive, a magnetic tape drive, an optical disk drive,
a flash drive, or the like. Storage interface 534 generally
represents any type or form of interface or device for trans-

US 8,117,168 Bl
11

ferring data between storage devices 532 and 533 and other
components of computing system 510.

In certain embodiments, storage devices 532 and 533 may
be configured to read from and/or write to a removable stor­
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov­
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 532 and 533 may also comprise other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 510. For example, storage devices 532
and 533 may be configured to read and write software, data, or
other computer-readable information. Storage devices 532
and 533 may also be a part of computing system 510 or may
be a separate device accessed through other interface sys­
tems.

Storage devices 532 and 533 may also be used, for
example, to perform and/or be a means for performing, either
alone or in combination with other elements, one or more of
the identifying, backing up, capturing, creating, copying,
retargeting, using, modifYing, and deleting steps disclosed
herein. Storage devices 532 and 533 may also be used to
perform and/or be a means for performing other steps and
features set forth in the instant disclosure.

Many other devices or subsystems may be connected to
computing system 510. Conversely, all of the components
and devices illustrated in FIG. 5 need not be present to prac­
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter­
connected in different ways from that shown in FIG. 5. Com­
puting system 510 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com­
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read­
able medium. The phrase "computer-readable medium" gen­
erally refers to any form of device, carrier, or medium capable
of storing or carrying computer-readable instructions.
Examples of computer-readable media include, without limi­
tation, transmission-type media, such as carrier waves, and
physical media, such as magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid­
state drives and flash media), and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 510. All or a
portion of the computer program stored on the computer­
readable medium may then be stored in system memory 516
and/or various portions of storage devices 532 and 533. When
executed by processor 514, a computer program loaded into
computing system 510 may cause processor 514 to perform
and/ or be a means for performing the functions of one or more

12
generally represent computing devices or systems, such as
application servers or database servers, configured to provide
various database services and/or to run certain software appli­
cations. Network 650 generally represents any telecommuni­
cation or computer network; including, for example, an intra­
net, a wide area network (WAN), a local area network (LAN),
a personal area network (PAN), or the Internet.

As illustrated in FIG. 6, one or more storage devices 660
(1)-(N) may be directly attached to server 640. Similarly, one

10 or more storage devices 670(1)-(N) may be directly attached
to server 645. Storage devices 660(1)-(N) and storage devices
670(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com­
puter-readable instructions. In certain embodiments, storage

15 devices 660(1)-(N) and storage devices 670(1)-(N) may rep­
resent network-attached storage (NAS) devices configured to
communicate with servers 640 and 645 using various proto­
cols, such as NFS, SMB, or CIFS.

Servers 640 and 645 may also be connected to a storage
20 area network (SAN) fabric 680. SAN fabric 680 generally

represents any type or form of computer network or architec­
ture capable of facilitating communication between a plural­
ity of storage devices. SAN fabric 680 may facilitate commu­
nication between servers 640 and 645 and a plurality of

25 storage devices 690(1)-(N) and/or an intelligent storage array
695. SAN fabric 680 may also facilitate, via network 650 and
servers 640 and 645, communication between client systems
610, 620, and 630 and storage devices 690(1)-(N) and/or
intelligent storage array 695 in such a manner that devices

30 690(1)-(N) and array 695 appear as locally attached devices
to client systems 610, 620, and 630. As with storage devices
660(1)-(N) and storage devices 670(1)-(N), storage devices
690(1)-(N) and intelligent storage array 695 generally repre­
sent any type or form of storage device or medium capable of

35 storing data and/or other computer-readable instructions.
In certain embodiments, and with reference to exemplary

computing system 510 of FIG. 5, a communication interface,
such as communication interface 522 in FIG. 5, may be used
to provide connectivity between each client system 610, 620,

40 and 630 and network 650. Client systems 610, 620, and 630
may be able to access information on server 640 or 645 using,
for example, a web browser or other client software. Such
software may allow client systems 610, 620, and 630 to
access data hosted by server 640, server 645, storage devices

45 660(1)-(N), storage devices 670(1)-(N), storage devices 690
(1)-(N), or intelligent storage array 695. Although FIG. 6
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or illus­
trated herein are not limited to the Internet or any particular

50 network-based environment.

of the exemplary embodiments described and/or illustrated 55

herein. Additionally or alternatively, one or more of the exem­
plary embodiments described and/or illustrated herein may

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 640, server 645, storage devices 660(1)-(N), storage
devices 670(1)-(N), storage devices 690(1)-(N), intelligent
storage array 695, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 640, run by server 645, and distributed to client sys­
tems 610, 620, and 630 over network 650. Accordingly, net­
work architecture 600 may perform and/or be a means for
performing, either alone or in combination with other ele­
ments, one or more of the backing up, capturing, creating,
copying, retargeting, using, modifYing, and deleting steps
disclosed herein. Network architecture 600 may also be used
to perform and/or be a means for performing other steps and
features set forth in the instant disclosure.

be implemented in firmware and/or hardware. For example,
computing system 510 may be configured as an application
specific integrated circuit (ASIC) adapted to implement one 60

or more of the exemplary embodiments disclosed herein.
FIG. 6 is a block diagram of an exemplary network archi­

tecture 600 in which client systems 610, 620, and 630 and
servers 640 and 645 may be coupled to a network 650. Client
systems 610, 620, and 630 generally represent any type or 65

form of computing device or system, such as exemplary com­
puting system 510 in FIG. 5. Similarly, servers 640 and 645

US 8,117,168 Bl
13 14

As detailed above, computing system 510 and/or one or
more of components of network architecture 600 may per­
form and/or be a means of performing, either alone or in
combination with other elements, one or more steps of the
exemplary methods described and/or illustrated herein. For
example, a computing system (e.g., computing system 510
and/ or one or more of the components of network architecture
600) may perform a computer-implemented method for cre­
ating and managing backups using virtual disks. For example,
the computing system may at a first point in time, back up at 10

least a portion of a data-storage entity to a first virtual-disk
file. The computing system may capture, in a second virtual­
disk file, at least one change made to data in the data-storage
entity after the first point in time.

data-storage entity after the first point in time. The backup
module may also create a parent-child relationship between
the first virtual-disk file and the second virtual-disk file, the
first virtual-disk file being a parent of the second virtual-disk
file. The backup module may further copy data stored in the
second virtual-disk file to the first virtual-disk file so that the
first virtual-disk file includes the at least one change made to
data in the data-storage entity after the first point in time. The
computing system may include a storage device in commu­
nication with the backup module. The storage device may
store the first virtual-disk file and/ or the second virtual-disk
file. The computing system may also include a processor
configured to execute the backup module.

In some embodiments, the first virtual-disk file may com­
prise a full backup of the data-storage entity. The second
virtual-disk file may comprise an incremental backup of the
data-storage entity. In other embodiments, the first virtual­
disk file may comprise a first incremental backup of the
data-storage entity, and the second virtual-disk file may com-

The computing system may also create a parent-child rela- 15

tionship between the first virtual-disk file and the second
virtual-disk file, with the first virtual-disk file being a parent
of the second virtual-disk file. The computing system may
further copy data stored in the second virtual-disk file to the
first virtual-disk file so that the first virtual-disk file includes 20 prise a second incremental backup of the data-storage entity.

In various embodiments, the backup module may create a first the at least one change made to data in the data-storage entity
after the first point in time. In some embodiments, the first
virtual-disk file may include a full backup of the data-storage
entity, and the second virtual-disk file may include an incre­
mental backup of the data-storage entity. In other embodi­
ments, the first virtual-disk file may include a first incremen­
tal backup of the data-storage entity. The second virtual-disk
file may include a second incremental backup of the data­
storage entity.

In various embodiments, the computing system may create
a first empty virtual-disk file. The computing system may
create a parent-child relationship between the first virtual­
disk file and the first empty virtual-disk file, with the first
virtual-disk file being a parent of the first empty virtual-disk
file. In some embodiments, the computing system may retar­
get the first empty virtual-disk file to enable a virtual machine
to boot from the first virtual-disk file. In at least one embodi­
ment, the computing system may use the first empty virtual­
disk file to boot a virtual machine from the first virtual-disk
file.

In some embodiments, the computing system may create a
second empty virtual-disk file. The computing system may
also create a parent-child relationship between the second
virtual-disk file and the second empty virtual-disk file, the
second virtual-disk file being a parent of the second empty
virtual-disk file. The computing system may, after copying
data stored in the second virtual-disk file to the first virtual­
disk file, modify the parent-child relationship of the second
empty virtual-disk file such that the second empty virtual­
disk file is a child of the first virtual-disk file instead being a
child of the second virtual-disk file.

In various embodiments, the computing system may, after
copying data stored in the second virtual-disk file to the first
virtual-disk file, delete the second virtual-disk file and the first
empty virtual-disk file. In other embodiments, the computing
system may be triggered, by the completion of the capturing
at least one change made to data in the data-storage entity, to
copy the data stored in the second virtual-disk file to the first
virtual-disk file. In some embodiments the virtual-disk file
may include a virtual-machine-disk-format ("VMDK") file
or a virtual-hard-disk ("VHD") file. In at least one embodi­
ment, the data-storage entity may comprise a volume.

In some embodiments, the computing system may include

empty virtual-disk file. The backup module may also create a
parent-child relationship between the first virtual-disk file
and the first empty virtual-disk file, with the first virtual-disk

25 file being a parent of the first empty virtual-disk file.
While the foregoing disclosure sets forth various embodi­

ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated

30 herein may be implemented, individually and/or collectively,
using a wide range ofhardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo­
sure of components contained within other components
should be considered exemplary in nature since many other

35 architectures can be implemented to achieve the same func­
tionality.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps

40 illustrated and/ or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated

45 herein or include additional steps in addition to those dis­
closed.

Furthermore, while various embodiments have been
described and/or illustrated herein in the context of fully
functional computing systems, one or more of these exem-

50 plary embodiments may be distributed as a program product
in a variety of forms, regardless of the particular type of
computer-readable media used to actually carry out the dis­
tribution. The embodiments disclosed herein may also be
implemented using software modules that perform certain

55 tasks. These software modules may include script, batch, or
other executable files that may be stored on a computer­
readable storage medium or in a computing system. In some
embodiments, these software modules may configure a com­
puting system to perform one or more of the exemplary

60 embodiments disclosed herein.

a backup module. The backup module may, at a first point in
time, back up at least a portion of a data-storage entity to a first 65

virtual-disk file. The backup module may capture, in a second
virtual-disk file, at least one change made to data in the

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments described herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia­
tions are possible without departing from the spirit and scope
of the instant disclosure. It is desired that the embodiments

US 8,117,168 Bl
15

described herein be considered in all respects illustrative and
not restrictive and that reference be made to the appended
claims and their equivalents for determining the scope of the
instant disclosure.

Unless otherwise noted, the terms "a" or "an," as used in 5

the specification and claims, are to be construed as meaning
"at least one of." In addition, for ease of use, the words
"including" and "having," as used in the specification and
claims, are interchangeable with and have the same meaning
as the word "comprising." 10

I claim:
1. A computer-implemented method for backing up data, at

least a portion of the method being performed by a computing
system comprising at least one processor, the method com- 15

prising:
at a first point in time, backing up at least a portion of a

data-storage entity to a first virtual-disk file;
capturing, in a second virtual-disk file, at least one change

made to data in the data -storage entity after the first point 20

in time;
creating a parent-child relationship between the first vir­

tual-disk file and the second virtual-disk file, the first
virtual-disk file being a parent of the second virtual-disk
file; 25

16
6. The computer-implemented method of claim 5, further

comprising:

after copying data stored in the second virtual-disk file to
the first virtual-disk file, deleting the second virtual-disk
file and the first retargeted virtual-disk file.

7. The computer-implemented method of claim 1, wherein
completion of the capturing at least one change made to data
in the data-storage entity triggers the copying of data stored in
the second virtual-disk file to the first virtual-disk file.

8. The computer-implemented method of claim 1, wherein
the first and second virtual-disks file comprise at least one of
a:

virtual-machine-disk-format file;

virtual-hard-disk file.

9. The computer-implemented method of claim 1, wherein
the data-storage entity comprises a volume.

10. The computer-implemented method of claim 1,
wherein copying the data stored in the second virtual-disk file
to the first virtual-disk file comprises copying data stored in
the second virtual-disk file to the first virtual disk file so that
the first virtual-disk file comprises a synthetic full backup that
represents the data-storage entity at the time the change was
captured in the second virtual-disk file.

11. The computer-implemented method of claim 1,
wherein storing the first virtual-disk file comprises enabling
the at least one virtual machine to boot from the stored first
virtual-disk file without converting the synthetic backup from

copying data stored in the second virtual-disk file to the
first virtual-disk file so that the first virtual-disk file
comprises a synthetic backup that includes the at least
one change made to data in the data-storage entity after
the first point in time; 30

a different file format to a virtual-disk file.

storing the first virtual-disk file that comprises the syn­
thetic backup in a manner that enables at least one virtual
machine to boot from the stored first virtual-disk file;

creating a first empty virtual-disk file;
creating a parent-child relationship between the first vir- 35

tual-disk file and the first empty virtual-disk file, the first
virtual-disk file being a parent of the first empty virtual­
disk file;

retargeting the first empty virtual-disk file to provide a first
retargeted virtual-disk file and to enable the at least one 40

virtual machine to boot from the first virtual-disk file.
2. The computer-implemented method of claim 1, wherein:
the first virtual-disk file comprises a full backup of the

data-storage entity;
the second virtual-disk file comprises an incremental 45

backup of the data-storage entity.
3. The computer-implemented method of claim 1, wherein:
the first virtual-disk file comprises a first incremental

backup of the data-storage entity;
the second virtual-disk file comprises a second incremental 50

backup of the data-storage entity.
4. The computer-implemented method of claim 1, further

comprising using the first retargeted virtual-disk file to boot
the at least one virtual machine from the first virtual-disk file.

5. The computer-implemented method of claim 1, further 55

comprising:
creating a second empty virtual-disk file;
creating a parent-child relationship between the second

virtual-disk file and the second empty virtual-disk file,
the second virtual-disk file being a parent of the second 60

empty virtual-disk file;
after copying data stored in the second virtual-disk file to

the first virtual-disk file, modifYing the parent-child
relationship of the second empty virtual-disk file such
that the second empty virtual-disk file is a child of the 65

first virtual-disk file instead being a child of the second
virtual-disk file.

12. A system comprising:

a backup module programmed to:

at a first point in time, back up at least a portion of a
data-storage entity to a first virtual-disk file;

capture, in a second virtual-disk file, at least one change
made to data in the data-storage entity after the first
point in time;

create a parent-child relationship between the first vir­
tual-disk file and the second virtual-disk file, the first
virtual-disk file being a parent of the second virtual­
disk file;

copy data stored in the second virtual-disk file to the first
virtual-disk file so that the first virtual-disk file com­
prises a synthetic backup that includes the at least one
change made to data in the data-storage entity after
the first point in time;

store the first virtual-disk file that comprises the syn­
thetic backup in a manner that enables at least one
virtual machine to boot from the stored first virtual­
disk file;

create a first empty virtual-disk file;

create a parent-child relationship between the first vir­
tual-disk file and the first empty virtual-disk file, the
first virtual-disk file being a parent of the first empty
virtual-disk file;

retarget the first empty virtual-disk file to provide a first
retargeted virtual-disk file and to enable the at least
one virtual machine to boot from the first virtual-disk
file;

a storage device in communication with the backup module
and configured to store at least one of:

the first virtual-disk file;

the second virtual-disk file;

a processor configured to execute the backup module.

US 8,117,168 Bl
17

13. The system of claim 12, wherein the backup module is
programmed to:

create a second empty virtual-disk file;
create a parent-child relationship between the second vir­

tual-disk file and the second empty virtual-disk file, the 5
second virtual-disk file being a parent of the second
empty virtual-disk file;

after copying data stored in the second virtual-disk file to
the first virtual-disk file, modifY the parent-child rela­
tionship of the second empty virtual-disk file such that 10
the second empty virtual-disk file is a child of the first
virtual-disk file instead of being a child of the second
virtual-disk file.

14. A non-transitory computer-readable medium compris­
ing one or more computer-executable instructions that, when 15
executed by a computing device, cause the computing device
to:

at a first point in time, back up at least a portion of a
data-storage entity to a first virtual-disk file;

capture, in a second virtual-disk file, at least one change 20
made to data in the data -storage entity after the first point
in time;

18
create a parent-child relationship between the first virtual­

disk file and the second virtual-disk file, the first virtual­
disk file being a parent of the second virtual-disk file;

copy data stored in the second virtual-disk file to the first
virtual-disk file so that the first virtual-disk file com­
prises a synthetic backup that includes the at least one
change made to data in the data-storage entity after the
first point in time;

store the first virtual-disk file that comprises the synthetic
backup in a manner that enables at least one virtual
machine to boot from the stored first virtual-disk file;

create a first empty virtual-disk file;
create a parent-child relationship between the first virtual­

disk file and the first empty virtual-disk file, the first
virtual-disk file being a parent of the first empty virtual­
disk file;

retarget the first empty virtual-disk file to provide a first
retargeted virtual-disk file and to enable the at least one
virtual machine to boot from the first virtual-disk file.

* * * * *

