
USOO8407722B2

(12) United States Patent (10) Patent No.: US 8,407,722 B2
Tuttle et al. (45) Date of Patent: Mar. 26, 2013

(54) ASYNCHRONOUS MESSAGING USINGA 5,699,523. A 12/1997 Li et al.
NODE SPECIALIZATION ARCHITECTURE $295 s A f 3. R E.

- 4 ea.
IN THE DYNAMIC ROUTING NETWORK 5,754,939 A 5/1998 Herz et al.

(75) Inventors: Timothy Tuttle, San Francisco, CA (Continued)
US): Karl E. Rumelhart, Palo Alt A ser umenart, Falo Allo, FOREIGN PATENT DOCUMENTS

EP O 733983 A2 9, 1996
(73) Assignee: Shaw Parsing L.L.C., Las Vegas, NV EP 0 749 081 A1 12, 1996

(US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 1127 days. Franklin et al., “Dissemination-Based Information Systems.” IEEE

Data Engineering Bulletin, vol. 19, No. 3, Sep. 1996, 9 pages.
(21) Appl. No.: 11/396,251

(Continued)
(22) Filed: Mar. 30, 2006

(65) Prior Publication Data Primary Examiner — Andy Ho
Assistant Examiner — Tuan Dao

US 2007/O239822 A1 Oct. 11, 2007 (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
Related U.S. Application Data & Fox PL.L.C.

(63) Continuation of application No. 10/105,018, filed on
Mar 21, 2002, now Pat. No. 7,051,070, which is a (57) ABSTRACT
continuation-in-part of application No. 10/017,182,
filed on Dec. 14, 2001, now Pat. No. 7.043.525. A network routes update messages containing updates to

s s sw - s properties of live objects from input sources to clients having
(Continued) the objects. When the clients receive live objects, the clients

identify the objectIDs associated with the objects and register
(51) Int. Cl. the objectIDs with the routing network. The routing network

G06F 3/00 (2006.01) is adapted to selectively send update messages to nodes in the
G06F 15/16 (2006.01) network and the nodes forward the messages to the clients.

(52) U.S. Cl. .. 719/316; 709/206 One implementation uses a hierarchy of registries to indicate
(58) Field of Classification Search 709/203, which nodes and clients receive which update messages.

709/219; 719/309 Another implementation assigns update messages to one or
See application file for complete search history. more of N categories and nodes to one or more of M types,

and the gateways maintain mapping between categories and
(56) References Cited types. To ensure that clients receive all of the update messages

U.S. PATENT DOCUMENTS
for which they register, the clients connect to client proxies
that in turn connect to at least one node of each type.

5,230,048 A * 7/1993 Moy 707/1
5,535,335 A 7, 1996 Cox et al.
5,692, 193 A 11/1997 Jagannathan et al. 37 Claims, 12 Drawing Sheets

Receive
Message -N

010

identify
Message
Category a

lock Up
Nisodes of the

as a
t

Tansmit

lities a
Deterine Clients

E.

ansmit

s a
Traini
E -
Clients 107

US 8,407,722 B2
Page 2

Related U.S. Application Data 7,043,525 B2 5, 2006 Tuttle et al.
7,051,070 B2 5/2006 Tuttle et al.

(60) Provisional application No. 60/256,613, filed on Dec. 7,107,326 B1 9/2006 Fijolek et al.
18, 2000, provisional application No. 60/276,847, 7,127,720 B2 10/2006 Canoet al.
filed on Mar. 16, 2001, provisional application No. 2:3: R 1399; Sith et al.
60/278.303, filed on Mar. 21, 2001, provisional appli- 7207043 B2 4/2007 Blythe et al.
cation No. 60/279,608, filed on Mar. 28, 2001, provi- 7.209.959 B1 * 4/2007 Campbell et al. TO9,219
sional application No. 60/280,627, filed on Mar. 29, 232 R 38 Estable et al.
2001. 7,277.917 B2 10/2007 Tuttle et al.

7,293,074 B1 * 1 1/2007 Jellinek et al. TO9.218
(56) References Cited 7.350,213 B2 3/2008 Deutesfeld et al.

7,412,518 B1 8/2008 Duigou et al.
U.S. PATENT DOCUMENTS 7,426,721 B1 339 Sarash et al.

7.430,610 B2 9/2008 Pace et al.
5,822,543 A 10, 1998 Dunn et al. 7,516,177 B2 4/2009 Knapp et al.
5,845,324. A 12/1998 White et al. 7,565,359 B2 7/2009 Nazem et al.
5,878.420 A 3, 1999 de la Salle 2001/0012299 A1 8, 2001 Dahlen
5,886,643 A 3/1999 Diebboll et al. 2001/0047426 A1 11, 2001 Hunter
5.919,247 A 7/1999 Van Hoffet al. 2002/0010757 A1 1/2002 Grank et al.
5,933,429 A 8, 1999 Bubenik et al. 2002fOO13852 A1 1/2002 Janik
5,938,733 A 8/1999 Heimsoth et al. 2002/0024536 A1 2/2002 Kahan et al.
5,964,839 A 10/1999 Johnson et al. 2002.0056004 A1 5, 2002 Smith et al.
5.974.457 A 10/1999 Waclawsky et al. 2002/0073.165 A1 6/2002 McNulty et al.
6,018,619 A 1/2000 Allard et al. 2002fOO78251 A1 6, 2002 Lewis
6,029, 175 A 2/2000 Chow et al. 2002fOO87630 A1* 7, 2002 Wu TO9,203
6,052,447 A 4/2000 Golden et al. 2002fO095399 A1 7, 2002 Devine et al.
$95,493 A 4.299 Ries et al. 2002/0120717 A1* 8, 2002 Giotta TO9,219
6,091,724. A * 7/2000 Chandra et al. 370,390 2002fO165977 A1* 11/2002 Novaes TO9,238
6,094,681. A 7/2000 Shaffer et al. 2003, OO26254 A1 2/2003 Sim
6,112,240 A 8/2000 Pogue et al. 2003/004111.0 A1 2/2003 Wenocur et al.
6,138,158 A 10/2000 Boyle et al. 2003/O120817 A1 6, 2003 Ott et al.
6,173.406 B1 1/2001 Wang et al. 2003. O1401 11 A1 7, 2003 Pace et al.
6,233,600 B1 5/2001 Salas et al. 2004/0139433 A1 7/2004 Blythe et al.

6.253,167 B1 6/2001 Matsuda et al. 2004/0199926 A1 10/2004 Gilgen et al.
6.256,747 B1 7/2001 Inohara et al. 2004/0215493 A1 10/2004 Koppes et al.
6.292,835 B1 9/2001 Huang et al. 2005/0027815 A1 2/2005 Christodoulou et al.
$38,292 B 1929. Lecheler 2005/0033841 A1 2/2005 McCarthy et al. 6,314.459 B1 * 1 1/2001 Freeman 709.220 2005/0125557. A 6/2005 Vasudevanet al.
6,324,587 B1 * 1 1/2001 Trenbeath et al. T19,310 2005/0278726 A1 12/2005 Cano et al.
6,363,421 B2 3/2002 Barker et al. 2006/0031282 A1 2/2006 Tuttle et al.
6,366,926 B1* 4/2002 Pohlmann et al. TO7 104.1 2006, OO31283 A1 2/2006 Tuttle et al.
6.405,245 B1 6/2002 Burson et al. 2006/0041681 A1 2/2006 Rumelhart
6,408,282 B1 6/2002 Buist 2006/0075.279 A1 4/2006 Cameros et al.
6,418.448 B1 7/2002 Sarkar 2006/01 17318 A1 6/2006 Rumelhart et al.
6,418.467 B1 7/2002 Schweitzer et al. 2006/0265488 A1 11/2006 Tuttle et al.
6,446,257 B1 9/2002 Pradhan et al. 2007/0033293 A1 2/2007 Rumelhart
6,449,638 B1 9/2002 Wecker et al. 2007/0050519 A1 3, 2007 Cano et al.
6.460.036 B1 10/2002 Herz 2007/0061811 A1 3/2007 Rumelhart et al.
6,484.143 B1 11/2002 Swildens et al. 2009/0077173 A1 3/2009 Lowery et al.
6,502,131 B1 12/2002 Vaid et al.
6,510,323 B1* 1/2003 Stocker et al. 455,466 FOREIGN PATENT DOCUMENTS
6,539.427 B1 3/2003 Natarajan et al. EP O 889 421 A1 1, 1999
6,553,413 B1 4/2003 Leighton et al.
6,560,611 B1 5/2003 E. WO WO97, 16796 A1 5, 1997
6,567,411 B2 5/2003 Dahlen WO WOO1,63837 A2 8, 2001
6,577.328 B2 6/2003 Matsuda et al. WO WO 2005/046184 A1 5, 2005
6,606,596 B1 8/2003 Zirngiblet al. 6,606,643 B1 8/2003 Emens et al. OTHER PUBLICATIONS
6,609,138 B1 8/2003 Merriam Nagami et al., “Toshiba's Flow Attribute Notification Protocol
6,654,804 B1 1 1/2003 Fleming (FANP) Specification.” Apr. 1997, RFC 2129, Internet RFC/STD/
6,658,652 B1 12/2003 Alexander et al.
6,687,729 B1 2/2004 Sievert et al. FYI/BCP Archives online), retrieved on May 16, 2002. Retrived
6,691, 165 B1 2/2004 Bruck et al. from the Internet: <landfield.com/rfcs/rfc2129.html>, 16 pages.
6,725,446 B1 4/2004 Hahn et al. Strom et al., “Gryphon: An Information Flow Based Approach to
6,728,747 B1 4/2004 Jenkins et al. Message Brokering.” International Symposium on Software Reli
6,751,663 B1 6, 2004 Farrell et al. ability Engineering 98, 1998, 2 pages.
6,760,324 B1 7/2004 Scott et al. Sturman et al., “Reflection in the Gryphon Message Brokering Sys
6,769,009 B1 7/2004 Reisman tem.” Reflection Workshop of the 13. Sup,th ACM Conference on
6,789,115 B1 9/2004 Singer et al.
6,792.458 B1 9, 2004 Muret et al.
6,829,642 B1 12/2004 Giroir et al.

Object Oriented Program Systems, Languages and Applications
(OOPSLA '98), 1998, 5 pages.

6.832.222 B1 12/2004 Zimowski International DOI Foundation, “Introduction to the Digital Object
6836,886 B2 12/2004 Tuerke et al. Identifier,” online). Apr. 1998 retrieved on May 16, 2002).
6,871,346 B1 3/2005 Kumbalimutt et al. Retrieved from the Internet: <doi.org/introduction.html>, 4 pages.
6,918,084 B1 7/2005 Slaughter et al. Aksoy et al., “Research in Data Broadcast and Dissemination”. Proc.
6,970,924 B1 1 1/2005 Chu et al. 1st Int’l Conf. on Advanced Multimedia Content Processing, Osaka
7,020,082 B2 3/2006 Bhagavath et al. University, Osaka, Japan, Nov. 1998.

US 8,407,722 B2
Page 3

Banavar et al., “An Efficient Multicast Protocol for Content-Based
Publish-Subscribe Systems.” Proc. of the 19th International Confer
ence on Distributed Computing Systems, 1999, 9 pages.
Banavar et al., “Information Flow Based Event Distribution
Middleware.” Proceedings of the 1999 ICDCS Workshop on Elec
tronic Commerce and Web-Based Applications, 1999, 8 pages.
Aguilera et al., “Matching Events in a Content-based Subscription
System.” Eighteenth ACM Symposium on Principles of Distributed
Computing (PODC 99), Atlanta, GA. May 4-6, 1999, 9 pages.
Banavar et al., “A Case for Message Oriented Middleware.” Distrib
uted Computing, 13. Sup,th International Symposium, Bratislava,
Slavak Republic, Sep. 27-29, 1999, 18 pages.
Aguilera et al., “Efficient Atomic Broadcast Using Deterministic
Merge.” Symposium on Principles of Distributed Computing, 2000,
10 pages.
Opyrchal et al., “Exploiting IP Multicast in Content-Based Publish
Subscribe Systems.” Proceedings of the IFIP ACM International
Conference on Distributed Systems Platforms (Middleware 2000),
Apr. 2000, 23 pages.
Caplin Systems Ltd., White Paper “Real Time Text Protocol
(RTTP).” Version 1.1, Sep. 2000, 11 pages.
Reuters, "Reuters Market Data Systems and the Trading Solutions
Architecture.” Version 1.0, Jan. 12, 2001, 51 pages.
Ramamrithan et al., “Dissemination of Dynamic Data on the
Internet,” online). Powerpoint Presentation, Spring 2001, retrieved
on Feb. 6, 2002), 5 pages. Retrieved from the Internet <.cs.umbc.edu/
courses graduate/CMSC691T/spring. Sub-2001/rlist amit.ppt).
ComputerLetter, vol. 17. No. 23, Jul. 16, 2001, pp. 1-8.
ComputerLetter, vol. 17. No. 31, Sep. 24, 2001, pp. 1-6.
ComputerLetter, vol. 17. No. 35, Nov. 5, 2001, pp. 1-6.
Tuttle et al., “Upstream Delivery of Information in a Digital Net
work”, U.S. Appl. No. 09/901,582, filed Jul. 9, 2001.
“Repackaging the Net'. ComputerLetter, vol. 17, No. 35, Nov. 5,
2001, pp. 1-5.
"Reckoning with IP, ComputerLetter, vol. 17. No. 37, Nov. 19.
2001, pp. 1-6.
“Persistence Counts”. ComputerLetter, vol. 17, No. 23, Jul. 16, 2001,
pp. 1, 5-7.
Zhao et al.; "A Workflow-centric Study of Organizational Knowledge
Distribution.” Proceedings of the 33rd Hawaii International Confer
ence on System Sciences; 2000; pp. 1-10; IEEE.
Gribble, et al.; "The Ninja Architecture for Robust Internet-scale
Systems and Services.” ComputerNetworks; 2001; pp. 473-497; vol.
35; Elsevier Science B.V.
Carmona, David; “Programming the Thread Pool in the .NET Frame
work'; 'Online Jun. 2002, pp. 1-17, XP002357234; retrieved on
Dec. 1, 2005 from the Internet: URL:http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dndotnet/hmtl/progthrepool.
asp>, pp. 1-17.
Welsh, Matthew D.; "An Architecture for Highly Concurrent, Well
Conditioned Internet Services': URL: http://www.eecs.harvard.edu/
{mdw?papers/mdw-phdthesis/pdf>, 2005, pp. 48-54, 101, and 113
114.
Written Opinion of the International Searching Authority for Inter
national Application No. PCT/US2005/029162, recorded Jan. 17,
2006, 7 pages.
Written Opinion of the International Searching Authority for Inter
national Application No. PCT/US2005/029021, recorded Dec. 14,
2005, 10 pages.

Written Opinion of the International Searching Authority for Inter
national Application No. PCT/US2005/029158, recorded Jan. 25,
2006, 7 pages.
Non-Final Office Action dated Oct. 26, 2009, U.S. Appl. No.
1 1/205.263, Rumelhart et al., filed Aug. 15, 2005.
Final Office Action dated Nov. 24, 2009, U.S. Appl. No. 1 1/205.237,
Rumelhart et al., filed Aug. 15, 2005.
Non-Final Office Action dated May 3, 2005, 8 pages in U.S. Appl.
No. 10/017,182, Tuttle et al., filed Dec. 14, 2001.
Notice of Allowance dated Jan. 3, 2006, U.S. Appl. No. 10/105,018,
Tuttle et al., filed Mar. 21, 2002.
Notice of Allowance dated Jul. 5, 2006, U.S. Appl. No. 10/105,018,
Tuttle et al., filed Mar. 21, 2002.
Non-Final Office Action dated Aug. 9, 2005, U.S. Appl. No.
10/213,269, Cano et al., filed Aug. 5, 2002.
Final Office Action dated Jan. 26, 2006, U.S. Appl. No. 10/213,269,
Cano et al., filed Aug. 5, 2002.
Notice of Allowance dated Jun. 6, 2006, U.S. Appl. No. 10/213.269,
Cano et al., filed Aug. 5, 2002.
Non-Final Office Action dated Feb. 3, 2009, U.S. Appl. No.
1 1/205,233, Rumelhart et al., filed Aug. 15, 2005.
Non-Final Office Action dated Aug. 6, 2009, U.S. Appl. No.
1 1/205,233, Rumelhart et al., filed Aug. 15, 2005.
Non-Final Office Action dated Apr. 22, 2008, U.S. Appl. No.
1 1/205.237, Cameros et al., filed Aug. 15, 2005.
Non-Final Office Action dated Apr. 29, 2009, U.S. Appl. No.
1 1/205.237, Cameros et al., filed Aug. 15, 2005.
Final Office Action dated Nov. 25, 2008, U.S. Appl. No. 1 1/205.237,
Cameros et al., filed Aug. 15, 2005.
Notice of Allowance dated May 22, 2007, U.S. Appl. No. 1 1/347,802,
Tuttle et al., filed Feb. 3, 2006.
Non-Final Office Action dated Jan. 26, 2007, U.S. Appl. No.
1 1/347,802, Tuttle et al., filed Feb. 3, 2006.
Non-Final Office Action dated Mar. 6, 2009, U.S. Appl. No.
1 1/515,233, Rumelhart et al., filed Aug. 31, 2006.
Final Office Action dated Oct. 7, 2009, U.S. Appl. No. 1 1/515,233,
Rumelhart et al., filed Aug. 31, 2006.
Non-Final Office Action dated Jan. 7, 2010, U.S. Appl. No.
1 1/205,233, Rumelhart et al., filed Aug. 15, 2005.
Non-Final Office Action dated Feb. 22, 2010, U.S. Appl. No.
1 1/515,233, Rumelhart et al., filed Aug. 31, 2006.
Final Office Action dated Mar. 23, 2010, U.S. Appl. No. 1 1/205.263,
Rumelhart et al., filed Aug. 15, 2005.
U.S. Appl. No. 13/617,168, Tuttle et al., “Asynchronous Messaging
Using A Node Specialization Architecture in the Dynamic Routing
Network.” filed Sep. 14, 2012.
Non-Final Rejection mailed Aug. 9, 2005 for U.S. Appl. No.
10/213,269, filed Aug. 5, 2002; 11 pages.
Final Rejection mailed Jan. 26, 2006 for U.S. Appl. No. 10/213,269,
filed Aug. 5, 2002; 8 pages.
Notice of Allowance mailed Jun. 6, 2006 for U.S. Appl. No.
10/213,269, filed Aug. 5, 2002; 4 pages.
Non-Final Rejection mailed Aug. 26, 2010 for U.S. Appl. No.
11/515.366, filed Aug. 31, 2006; 16 pages.
Final Rejection mailed Feb. 17, 2011 for U.S. Appl. No. 1 1/515.366,
filed Aug. 31, 2006; 30 pages.
Notice of Allowance mailed Nov. 10, 2005 for U.S. Appl. No.
10/017,182, filed Dec. 14, 2001; 6 pages.

* cited by examiner

US 8,407,722 B2
Sheet 1 of 12

Mar. 26, 2013
U.S. Patent

0

|
|

|
|

US 8,407,722 B2
Sheet 2 of 12

Mar. 26, 2013
U.S. Patent

?senbax|| 36ed qÐNA

US 8,407,722 B2
Sheet 3 of 12

Mar. 26, 2013
U.S. Patent

$

(61-)

GOES GEES GEG) GEG? GÐ) GE? G? G?)} v\!
0

|
|

|
|

U.S. Patent
Mar. 26, 2013

Sheet 5 of 12
U
S
 8,407,722 B2

.

O)
O

h O

CO
-

O
.

C

U.S. Patent Mar. 26, 2013 Sheet 6 of 12 US 8,407,722 B2

Parse Page
and identify
Object IDs

61O

Connect to
Routing
Network 612

Register
Object IDs

With
Network

Terminate

Message
Received

from Network
?

Update
ldentified
Object

Fig. 6

U.S. Patent Mar. 26, 2013 Sheet 7 of 12 US 8,407,722 B2

710A 71OB 71OC 71 OD

Information Dynamic
Content O O. O.

ProVider
Provider

Global Load Balancer 16

- - - - - - -

Cluster Load
| Balancer 720A

724A

I

Cluster Load Balancer

Cluster Load
Balancer 722A Cluster Load Balancer

Global Load Balancer 71

712A 712B 712C 712D 712E 712F

Fig. 7

U.S. Patent Mar. 26, 2013 Sheet 8 of 12 US 8,407,722 B2

Receive
Message

Extract DS

Look up
Registered
Nodes

Transmit
Message to

Registered Nodes
if any

Look up
Registered

Clients

Transmit
Message to
Registered

Clients

Fig. 8

U.S. Patent Mar. 26, 2013 Sheet 9 of 12 US 8,407,722 B2

Node of Type 1 Node of Type 2
732 732

Client Proxy

Client 1 Client 2

110

Fig. 9

U.S. Patent Mar. 26, 2013 Sheet 10 of 12 US 8,407,722 B2

Receive
Message

identify
Message
Category

Look Up
Nodes of the
Message
Category

Transmit
Message to

ldentified Nodes

Determine Clients
Registered for the
Message and Client
Proxies Connected

to the Clients

Transmit
Message to
Client Proxy

Transmit
Message to
Registered

Clients

Fig. 10

U.S. Patent Mar. 26, 2013 Sheet 11 of 12 US 8,407,722 B2

Node of Type 1 Node of Type 2

Client Proxy
736

Client 1

110

Fig. 11

U.S. Patent Mar. 26, 2013 Sheet 12 of 12 US 8,407,722 B2

Node of Type 1 Node of Type 2

Node of Type 3

Client 1 Client 1

110

Fig. 12

US 8,407,722 B2
1.

ASYNCHRONOUS MESSAGING USINGA
NODE SPECIALIZATION ARCHITECTURE
IN THE DYNAMIC ROUTING NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 10/105,018 filed Mar. 21, 2002 (now U.S. Pat. No. 7,051,
070), which is a continuation-in-part of U.S. application Ser.
No. 10/017,182 filed Dec. 14, 2001 now U.S. Pat. No. 7,043,
525, which claims the benefit of U.S. Provisional Application
No. 60/256,613, filed Dec. 18, 2000, U.S. Provisional Appli
cation No. 60/276,847, filed Mar. 16, 2001, U.S. Provisional
Application No. 60/278.303, filed Mar. 21, 2001, U.S. Pro
visional Application No. 60/279,608, filed Mar. 28, 2001, and
U.S. Provisional Application No. 60/280,627, filed Mar. 29,
2001, all of which are hereby incorporated by reference
herein.

BACKGROUND

1. Field of the Invention
This invention pertains in general to transferring informa

tion through digital networks and in particular to transferring
information for remotely updating content at client devices
through the digital networks.

2. Background Art
The Internet is a digital network of computers. An indi

vidual computer on the Internet is typically identified by an
internet protocol (IP) address. A computer on the Internet
sends a packet of information to another computer by routing
the packet to a logical port at the destination computer's IP
address. The destination computer interprets the packet
according to one of several possible protocols determined by
the port to which the packet was sent.

The World WideWeb (the “Web’) is a collection of tech
nology and content available on the Internet that allows the
content to be routed from server computers to particular des
tination computers. The Web includes a large number of web
pages residing on many different servers. Web pages contain
one or more files, or references to one or more files, specify
ing instructions for presenting the web page and content, Such
as text, images, applets, video, and/or audio.
Web pages use a variety of definitional and programming

languages to control how information is presented. The most
fundamental of these is the Hypertext Markup Language
(HTML). HTML uses a system of “tags' to specify how
content should be displayed. Recent advances in HTML
introduce “style sheets” which help separate content infor
mation from display information. HTML has also been modi
fied and extended to provide new capabilities. For example,
Extensible Markup Language (XML) adds semantic content
to web pages. In addition, Dynamic HTML (DHTML) adds
Some dynamic content to web pages.
A web page may also include one or more programs for

controlling how the web page is displayed. For example,
JAVAR) applets and JAVASCRIPTR) scripts may be used to
control the display of a web page. In addition, DHTML uses
Scripts to control the dynamic content. Thus, a web page
designer can use applets and scripts to produce animation
effects or modify the display based on user interaction. For
example, the designer can write a script that changes the color
of a piece of text when a user clicks on a button.

Devices that display/execute web pages are often called
“client devices” or simply "clients.” Client devices include
personal computers, web-enabled set-top boxes and televi

10

15

25

30

35

40

45

50

55

60

65

2
sions, cellular telephones, personal digital assistants and
other handheld devices, and special-purpose web-browsing
appliances. Client devices typically employ a program called
a “web browser' for interpreting the HTML or other display
instructions in the web page and displaying the content
accordingly. Most web browsers include special functional
ity, such as a Java Virtual Machine, for executing JAVAR)
applets and/or other applets or scripts embedded in the web
pageS.
A client device specifies a web page or other document on

the web using a Uniform Resource Locator (URL). A URL
has the form “service://server/path/file.” Here “service'
refers to the protocol to be used, such as the file transfer
protocol (FTP) or the hypertext transport protocol (HTTP).
“Server' is the IP address of the server containing the page,
and “path/file’specifies the particular web page on the server.
The Web suffers from a substantial limitation with respect

to dynamically updating content in a web page at a client
device. The Web’s only mode of operation is for a client
device to first request a page from a server and then for the
server to send the requested page to the client device. Once
the server delivers the page to the client, it typically termi
nates its connection to the client, and does not retain any
information about the client or the page that was sent. For this
reason, servers are typically “stateless. As a result, client
devices drive and control the flow of information around the
Web. While client-side control is appropriate in some situa
tions, it does not permit efficient updating of data at the client
devices. For example, ifa web page contains information that
may change, such as the score of a baseball game or a stock
quote, the server has no way to inform the client devices that
are viewing the page of the change. Instead, the client devices
must ask the server for the updated information. However, the
client devices do not know when the information on the web
page has changed, and thus do not know to ask for the update.

There are some simple web programming techniques that
attempt to update content on client device-side web pages.
One approach that web designers use is to rely on the client
devices to periodically re-request web pages. This updating
can be performed as the result of user action (such as pressing
the “refresh' button) or can be automated to occur on a
particular schedule (such as by using the HTML Meta
Refreshtag to cause the client device to request the page every
X seconds). Although this technique provides client devices
with more up-to-date information, it is very wasteful of
resources. In particular, the web server must resend the page
even if nothing has changed, and, even when something has
changed, it must resend the entire web page rather than just
the updated information, which may be only a very small part
of the page. Further, attempting to reduce unnecessary
requests by decreasing the request rate results in decreasing
the currency of the data. This is an unalterable trade off in a
client-driven approach.
The performance of automatic refreshing can be improved

Somewhat by putting information that may change in a sepa
rate frame from information that is less likely to change, and
only refreshing the separate frame. A few web designers even
write custom JAVA applets to limit refreshing to individual
components on a page, such as the score of a Soccer game. A
willingness to go to such effort illustrates the serious drain of
resources caused by frequent refreshing. Nevertheless, even
custom JAVA applets are not a meaningful attack on this
problem. Custom applets require a large separate develop
ment effort for each item on each page that might need to be
updated. More importantly, most custom applets still update
content based upon client-driven requests, although it is pos
sible to design an applet that accepts “pushed' messages. This

US 8,407,722 B2
3

solution is not scalable to provide updated information for
large numbers of client devices and for large numbers of web
pageS.

Therefore, there is a need in the art for an efficient way to
provide dynamic content to a web page at a client device.

DISCLOSURE OF THE INVENTION

The above need is met by a dynamic content routing net
work that routes messages containing data for updating prop
erties of live objects to clients displaying web pages or other
representations of data containing the live objects. The web
server that initially provides the web pages to the clients does
not need to track which clients are currently displaying the
live objects. Instead, the information provider or a dynamic
content provider (generically referred to as an "input source”)
that provided the live object simply sends an update message
to the routing network. This routing utilizes bandwidth effi
ciently because the update messages are provided to the cli
ents only when the live objects change.
The routing network is adapted to selectively send mes

sages to the nodes in the network. In one embodiment, a
hierarchy of registrations is used. Each gateway in the routing
network maintains the mappings between the live: objects
and the nodes that have registered for the live objects. Each
node in the routing network, in turn, maintains the mappings
between the live objects and the clients that display them. An
input source provides a message to a gateway in each cluster
in the routing network. Each gateway forwards to each node
only messages that reference the objects for which it has
registered. Each node forwards to each client only messages
that reference the objects for which it has registered. Adding
node functionality to the gateway and client functionality to
the node advantageously allows the routing network to decide
which nodes should receive an update message. As a result,
messages are sent to only nodes that have registered for the
messages. Furthermore, each node receives all the messages
that the clients connected to that node are interested in.

In another embodiment, all messages from an input source
are assigned to one or more of N categories. Also, the nodes
are assigned to one or more of M types, and mappings are
created between message categories and node types. Each
gateway keeps track of these mappings. When a gateway
receives messages from input sources, the gateway identifies
the categories of the messages and routes the messages to the
nodes of the types to which the categories are mapped. To
ensure that clients have access to the messages they need,
clients are allowed to communicate with nodes of several
types using client proxies connected between the clients and
the nodes. There are at least two ways to implement the client
proxy embodiment. The implementations differ primarily in
where the client registration information is stored. In the first
implementation, client registration information is stored at
the nodes, and the client proxy merely passes messages
among the clients and nodes. When a node directs a message
to the client, the node passes the message to the client proxy
along with a pointer to the client socket. When the client
proxy receives the message, it simply pushes it to the client
Socket.

In the second implementation of the client proxy embodi
ment, the client proxy stores client registration information.
In this embodiment, each node stores the object IDs regis
tered by client proxies connected to the node. The client proxy
registers with the nodes for all objects for which it needs to
receive updates. The nodes receive the messages from the
input sources, determine which client proxies have registered
for the messages, and send the messages to the appropriate

10

15

25

30

35

40

45

50

55

60

65

4
client proxies. The client proxies, in turn, transmit the mes
sages to the clients that have registered for the messages.
The features and advantages described in this Summary and

the following detailed description are not all-inclusive, and
particularly, many additional features and advantages will be
apparent to one of ordinary skill in the art in view of the
drawings, specification, and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level block diagram illustrating an envi
ronment containing a dynamic content routing network;

FIG. 2 is an interaction diagram illustrating interactions
among a server, information provider, dynamic content pro
vider, client, and routing network to update a property of a live
object on a web page;

FIG. 3 is a high-level diagram graphically indicating the
many-to-many mapping performed by the routing network;

FIG. 4 illustrates two different web pages containing sports
Scores;

FIG. 5 is a block diagram illustrating an input source and
the tools available to it for generating the update messages;

FIG. 6 is a flow chart illustrating the steps performed by an
embodiment of an activation module:

FIG. 7 is a block diagram illustrating a lower-level view of
the routing network according to an embodiment of the
present invention;

FIG. 8 is a flow chart illustrating steps performed by a
gateway and a node in a cluster to perform object-based
routing of a message received from an input source in an
embodiment using a hierarchy of registries;

FIG. 9 is a block diagram illustrating a high-level view of
the routing network in an embodiment adapted to use mes
sage categories, node types, and client proxies;

FIG. 10 is a flow chart illustrating steps performed by a
gateway, a node that stores client registration information,
and a pass-through client proxy to perform object-based rout
ing of a message received from an input source:

FIG. 11 is a block diagram illustrating a high-level view of
the routing network for an embodiment in which the client
proxy stores the client registration information; and

FIG. 12 is a block diagram illustrating a high-level view of
the routing network for an embodiment in which the nodes
adopt client proxy functionality.
The figures depict an embodiment of the present invention

for purposes of illustration only. One skilled in the art will
readily recognize from the following description that alterna
tive embodiments of the structures and methods illustrated
herein may be employed without departing from the prin
ciples of the invention described herein.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 is a high-level block diagram illustrating an envi
ronment 100 containing a dynamic content routing network
110 (hereafter referred to as the “routing network”). The
environment 100 also contains a server 112 in communica
tion with a client 114, an information provider 108, and a
dynamic content provider 116. Although a typical environ
ment 100 will have hundreds of servers 112 and information
providers 108, thousands (or even millions) of clients 114,
and multiple dynamic content providers 116, FIG. 1 illus
trates only one of each of these entities in order to enhance the
clarity of this description.
The server 112, client 114, information provider 108,

dynamic content provider 116, and routing network 110 are

US 8,407,722 B2
5

preferably in communication via conventional communica
tions links 117 such as those comprising the Internet. The
communications links 117 include known wired communi
cations media, Such as dedicated or shared data, cable televi
sion or telephone lines, and/or known wireless communica- 5
tions media, Such as communications over the cellular
telephone network using protocols such as the global system
for mobile communications (GSM), code division multiple
access (CDMA), time division multiple access (TDMA), etc.

In one embodiment, the entities may each be in communi
cation with one or more Internet Service Providers (ISPs) (not
shown) that provide each entity with access to other comput
ers on the Internet. In addition, the server 112, client 114,
information provider 108, dynamic content provider 116, and
routing network 110 are preferably each identified by at least
one Internet Protocol (IP) address such as “66.35.209.224.”
The IP address may also have one or more domain names
associated with it, Such as "bangnetworks.com. Alternative
embodiments of the present invention may use alternative 20
addressing schemes and/or naming conventions instead of, or
in addition to, those described herein. For example, embodi
ments wherein one or more of the clients are cellular tele
phones or other portable devices may rely on different
addressing schemes. 25

Preferably, the information provider 108 provides web
pages or other representations of data to the server 112. The
web pages contain one or more “live objects, which are
designated to be real-time dynamically-updateable objects.
Each live object is identified by an object identifier, or object 30
ID. Preferably, the server 112 provides the web pages 118 to
multiple clients 114. The clients 114 contact the routing net
work 110 and register for update messages for the objectIDs
on the web page. The routing network 110, in turn, preferably
maintains a registry indicating which clients have registered 35
for which object IDs.
The information provider 108 and/or dynamic content pro

vider 116 send update messages to the routing network 110.
These messages can be sent any time the information provider
108 or dynamic content provider 116 wants to update a prop- 40
erty of a live object. Each update message preferably identi
fies a live object and contains data for updating a property of
the identified live object. The routing network 110 accesses
the registry and determines which clients have registered for
the identified object. Then, the routing network 110 routes the 45
update message to the appropriate clients. Upon receipt of an
update message, the clients 114 update the specified property
of the live object.
The routing network 110 provides an efficient one-to-many

mapping of objects to clients (and by inference of informa- 50
tion, a many-to-many mapping of information providers 1087
dynamic content providers 116 to clients) through object
based routing. Messages provided by the information
provider 108 and/or dynamic content provider 116 to the
routing network 110 are not routed to the clients 114 based 55
entirely on a specified destination; more specifically, they are
not routed based on the IP address of the client, as in conven
tional IP routing schemes. Instead, the messages are routed
based on the live objects referenced by the message.

The mapping and object-based routing provided by the 60
routing network 110 allow the information provider 108 and
dynamic content provider 116 to update properties of live
objects at a dynamically changing cross-section of clients in
real-time, without requiring the information provider or
dynamic content provider to track the clients or web pages 65
being viewed by the clients. The clients 114, in turn, do not
need to have any a priori knowledge of object IDs—they

10

15

6
“discover which IDs they should register when they receives
the web pages 118 from the server 112.

Object-based routing also allows information providers
108 to dynamically update content on web pages without
requiring the clients 114 to re-request the content, and with
out requiring the information providers 108 or servers 112 to
maintain connections with the clients. In this manner, signifi
cantly more clients can receive updated content from a given
information provider 108 than would be possible utilizing
conventional client-side request-driven transmission control
protocol/Internet Protocol (TCP/IP) connections between the
clients and the server 112.

Turning now to the individual entities illustrated in FIG. 1,
the server 112 is preferably a conventional computer system
configured to act as a web server and serves web pages 118
and other data representations to clients 114. The web pages
118 provided by the server 112 are associated with one or
more information providers 108.
An information provider 108 is an entity providing one or

more web pages 118, information contained in web pages,
and/or other representations of data served by the server 112.
The information provider 108 preferably has a conventional
computer system coupled to the Internet. In one embodiment,
the server 112 is directly controlled by the information pro
vider 108 (e.g., the server is physically located at the infor
mation provider and/or is dedicated to serving only the infor
mation providers web pages). In this embodiment, the server
112 and information provider 108 can be treated as the same
entity. In an alternative embodiment, the server 112 serves
web pages from multiple information providers.
As is known in the art, the web pages 118 and other content

on the server 112 are specified by uniform resource locators
(URLs) having the form “service://server/path/web page.”
Typically, web pages 118 are obtained via the hypertext trans
port protocol (HTTP) and thus an exemplary URL for retriev
ing the web page “b1.html from the web server having the
domain name “www.bangnetworks.com' is "http://www
.bangnetworks.com/news/b1.html.”
As used herein, a “web page' is a block of data available

from the server 112. In the simplest case, a web page is a file
written in the hypertext markup language (HTML). The web
page may also contain or refer to one or more other blocks of
data, such as other files, text, images, applets, video, and/or
audio. In addition, the web page may contain instructions for
presenting the web page and its content, Such as HTML tags
and style sheets. The instructions may also be in the Exten
sible Markup Language (XML), which is related to HTML
and adds semantic content to web pages or the Dynamic
HTML (DHTML), which adds some dynamic content to web
pages. Additionally, the instructions may take the form of one
or more programs such as JAVAR) applets and JAVAS
CRIPTR and/or DHTML scripts.
As used herein, the phrase “web page” also refers to other

representations of data served by the server 112 regardless of
whether these data representations include characteristics of
conventional web pages. These data representations include,
for example, application programs and data intended for the
web browser 120 or other application programs residing at the
clients 114 or elsewhere, such as spreadsheet or textual (e.g.,
word processing) data, etc.

In a preferred embodiment, objects at the client, such as
web pages and elements of web pages, can be designated as
“live” by the information provider 108. Properties of a live
object can be dynamically updated in real-time at the client
114 by the information provider 108 or another entity acting
on behalf of the information provider. As used herein, an
“object' is any datum or data at the client 114 that can be

US 8,407,722 B2
7

individually identified or accessed. Examples of objects
include elements of web pages such as text characters and
strings, images, frames, tables, audio, video, applets, Scripts,
HTML, XML, and other code forming the web page, vari
ables and other information used by applets, scripts and/or 5
code, URLS embedded in the web page, etc. Application and
operating system constructs are also objects. For example,
cells of spreadsheets, text in word processor documents, and
title bars and messages displayed by the operating system or
applications are objects. Preferably, multiple objects can be
grouped together into a single, logical object. Thus, an object
can be defined at any desired or useful level of granularity.

Since content on a web page is conceptualized and orga
nized by “object the present invention essentially abstracts
web pages and web page content, and other modules and/or
functionality at the client 114, away from the HTML code or
other conventional representation. This abstraction allows the
information provider 108 to update a property of an object
without concern for the location, display format, or other 20
specifics of how the data is being represented at the client 114.

Live objects have associated “properties” which include
any modifiable data related to the object or referenced with
respect to the object. The information provider 108 typically,
but not necessarily, provides initial settings for the properties 25
of live objects provided to the client 114. The properties may
or may not affect the visual representation of the object in the
web page or other data representation. A property may affect
an internal aspect of the object and, thus, a change to the
property may not have any direct effect on a web page con- 30
taining the object. For example, the property may affect
whether particular aspects of the object are modifiable, how
the object responds to user input or other stimuli, etc. Addi
tionally, a property may also have a direct effect on how the
object is displayed at the client 114. For example, the property 35
may affect the content, color, typeface, size, formatting, or
other attribute of text, images, or other data displayed by the
object. Other properties may occupy parts of the spectrum
between having no effect on the visible representation of the
object and having a direct effect on the visible representation 40
of the object. For example, a web page showing scores of
football games may include a list of games and the current
scores of the games as of the time the server 112 serves the
web page. The list of games, Subset of games to be displayed,
and the scores of the games can be designated as live objects 45
(or properties of a single live object) and updated as necessary
or desired.
A property can also preferably include instantiating an

instance of the object or invoking functionality of the object.
For example, a property of a browser window object may 50
include functionality for instantiating another browser win
dow. This function can be invoked as a logical change to a
property of the object. The second browser window can be
referenced through the original browser window (i.e., object)
or designated as a new live object. 55
An information provider 108 or other entity preferably

updates a live object at a client 114 via an update message. In
general, an update message identifies the live object and, if
necessary, the property of the live object, and contains data for
updating the property. In one embodiment, the data may be 60
the actual value for the property or executable code for caus
ing the object's property to be updated. For example, the data
may be a simple numerical or textual value, e.g., “4” to which
the property should be set, and/or the data may be JAVAS
CRIPTOR) code or a call to a JAVASCRIPTR) function at the 65
client that effects the desired change to the property of the
object.

10

15

8
The update message preferably implicitly or explicitly

identifies a handler at the client 114 for use in updating the
live object’s property. In one embodiment, the client 114
utilizes a default handler when the message implicitly speci
fies the handler (e.g. when the message does not identify a
specific handler). In one embodiment, if the update message
specifies the actual value for the property, a default handler
generates JAVASCRIPTR) code for changing the property to
the specified value. If the data in the update message are
JAVASCRIPTR) code, the default handler does not perform
any processing of the code. In either case, the default handlers
preferably use LiveConnect to execute the JAVASCRIPTR)
code in a Java Virtual Machine (JVM) 122 at the client 114
and thereby update the property of the live object.

For certain objects and/or data types, the default handlers
are not appropriate. In these cases, the message preferably
explicitly identifies a handler for performing the update. For
example, the message may explicitly specify a function to call
on the data or the message may explicitly identify the envi
ronment in which the data should be executed. For example,
the data in the update message may include code for execu
tion by a software “plug-in such as MACROMEDIA
FLASHR and the message may explicitly identify FLASH as
the handler.
The information provider 108 preferably designates an

object as “live' by including a unique identifier for the object,
the object ID, in the web page or other data representation
provided to the client 114. In one embodiment, the informa
tion provider 108 encodes the objectID in an object’s corre
sponding HTML “ID' attribute using the following HTML
expression:

ID="elementIdentifier.”
where "elementIdentifier is the objectID and is preferably a
string. The String can encode any information desired by the
information provider 108 or other entity establishing the
object ID and in one embodiment is a simple textual and/or
numeric identifier. In one embodiment, the information pro
vider 108 begins the object ID with a predefined token, such
as “Bang.S. in order to distinguish live objects from other
objects that happen to have defined ID attributes. For
example, an object can have the object ID “BangSelementI
dentifier

In the preferred embodiment, each information provider
108 optionally encodes a unique information provider ID in
its object IDs in order to prevent naming collisions between
the object IDs of different information providers. In one
embodiment, the information provider ID is a textual and/or
numeric identifier. The information provider 108 may specify
the information provider ID and the object ID as part of a
hierarchical namespace. For example, in one
embodiment objects are named as follows: “Snamespace1S
namespace2S . . . SnamespaceNSobjectId, where
“Snamespace1 is the information provider ID and the “S”
operates as the name separator and defines additional optional
levels of a namespace hierarchy. One embodiment of the
system 100 supports typical directory services functionality.
For example, two dollar sign characters appearing together,
“SS. refers to the top level of the namespace hierarchy.

Thus, the object ID for a live object is preferably formed
from a combination of the predefined token, the information
provider ID namespace, and a value assigned by the informa
tion provider 108. For example, the object ID for a live object
representing the real time price of a stock having the symbol
“BANG” might be: “BangSSinformationProviderID
SequitiesSrealtimeSbang.” In this example, “BangS' is the
predefined token that signifies a live object, “Sinformation
ProviderID is the ID identifying the information provider,

US 8,407,722 B2

“Sequities Sreal timeS' defines levels of a namespace hierar
chy, and “bang identifies the specific object.

In some embodiments and situations, the object ID utilizes
relative names. For example, an information provider 108
referring to its own object IDs is implicitly in its own
namespace. Accordingly, the information provider 108 does
not need to include the information Provider ID in the object
IDs it utilizes internally. In one embodiment, the information
provider ID is not explicitly encoded into the object ID.
Instead, the information provider ID is encoded elsewhere in
the web page in order to provide Scope to the page’s object
IDS.

In one embodiment, the objectID identifies a point (i.e., a
node in a tree) in a Document Object Model (DOM) repre
sentation of a web page or other document at the client 114.
The DOM is a platform- and language-neutral interface that
represents a document as a hierarchy of objects. The DOM
also provides an interface that allows programs and Scripts to
dynamically access and update properties of the objects.
Object properties can be inherited by descendent objects.

In this embodiment, the client 114 preferably executes an
update message in the context of the specified point in the
DOM representation. The update may specify a change to a
property of the object at the identified point. The update also
may specify a change to a parent or descendent of the object
at the identified point. In each case, the update is executed
relative to the specified point in the DOM representation. In
one embodiment, points in the DOM representation specify
how to update properties of live objects located at those
points. Thus, the same update may be interpreted differently
depending upon the identified live object's location in the
DOM representation.

For example, assume there is an object in the DOM repre
sentation identified as “window.document.frame|3. Objec
tID. Also assume that the object has an “innerText” property
located at “window.document.frame|3.ObjectID.innerText'
that specifies the text displayed by the object. An update
message can change the text displayed by the object by speci
fying "ObjectID' and the new value for the innerText prop
erty.
An advantage of utilizing object IDs to specify objects is

that the information provider 108 or other entity providing the
update message can access and change properties of objects
without knowing the object’s actual location in the DOM
representation. Indeed, the object may be in different loca
tions in different DOM representations and/or in multiple
locations in the same DOM representation. In any of these
cases, the update message will change the specified properties
of all of the objects having the given object ID.

Depending upon the particular embodiment of the environ
ment 100, the information provider 108 and/or the dynamic
content provider 116 provides update messages to the routing
network 110. The dynamic content provider 116 is preferably
a conventional computer system operated by an entity that
provides real-time information, such as stock prices and/or
sports scores. In one embodiment, the information provider
108 receives updated properties for the live objects from the
dynamic content provider 116 or another source (or generates
the updated properties internally). Then, the information pro
vider 108 sends an update message specifying the object ID
and the change to the object property to the routing network
110. In this embodiment, the dynamic content provider 116
may be absent from the environment 100.

In another embodiment, the dynamic content provider 116
provides the object IDs for live objects to one or more infor
mation providers 108 and the information providers 108 dis
tribute the live objects to the clients 114. Then, the dynamic

10

15

25

30

35

40

45

50

55

60

65

10
content provider 116 sends messages specifying the changes
to the properties of the live objects to the routing network 110.
For example, the dynamic content provider 116 distributes an
object ID associated with the score of a particular baseball
game to the information providers 108. Then, the dynamic
content provider 116 sends a message specifying the object
ID and an update to a property of the object that controls the
displayed score of the particular baseball game to the routing
network 110. These two embodiments are not mutually exclu
sive and, therefore, some updates may be provided to the
routing network 110 by the information provider 108 while
others are provided by the dynamic content provider 116.
The client 114 is a device that retrieves web pages 118

and/or other information from the server 112. In one embodi
ment, the client 114 is a conventional personal computer used
by a person to access information on the Internet. In alterna
tive embodiments, the client 114 is a different consumer
electronic device having Internet connectivity, Such as an
Internet-enabled television, a cellular telephone, a personal
digital assistant (PDA), a web browsing appliance, etc. The
client 114 preferably, but not necessarily, has an associated
display device.
The client 114 preferably executes a web browser 120,

such as MICROSOFT INTERNET EXPLORERR, for
retrieving web pages and displaying them on the display
device. In embodiments where the client receives data repre
sentations from the server 112 other than conventional web
pages, the web browser 120 does not necessarily share simi
larities with conventional web browsers. Preferably, the web
browser 120 contains a JVM 122 for executing JAVAR)
applets and/or scripts. The web browser 120 also preferably
contains Dynamic HTML capabilities, such as support for
JAVASCRIPTR) (or another scripting language, such as
VBScript) and the Document Object Model (DOM), and
enables communications between JAVAR) and the scripting
languages. In one embodiment, the web browser 120 Supports
the LiveConnect standard for enabling communication
between JAVAR) applets and scripts written in the supported
Scripting languages. The web browser 120 can also be
extended through software plug-ins such as MACROMEDIA
FLASHR), REAL NETWORKS REALPLAYER(R), and/or
APPLE QUICKTIMER). In alternative embodiments, the
functionality of the JVM 122 and/or other aspects of the web
browser 120 are provided by one or more other functional
units within the client 114. The term "module' is used herein
to refer to Software computer program code and/or any hard
ware or circuitry utilized to provide the functionality attrib
uted to the module. The web browser 120 and JVM 122 are
examples of modules in the client 114.

In some embodiments, the client 114 does not necessarily
have a display device, web browser 120 and/or other compo
nents associated with a typical consumer device. The client
114, for example, may be a dedicated purpose device having
certain aspects of web connectivity Such as an embedded
HTTP client in a web-enabled appliance or in a controller for
an automobile, audio-visual equipment, or some other device.
A web page 118 provided from the server 112 to the client

114 preferably includes instructions for enabling the live
objects on the web page. The instructions cause the client 114
to automatically and transparently (i.e., without user interac
tion) contact the routing network 110 and download an acti
vation module 124 for activating the live objects. In one
embodiment, the instructions comprise a URL specifying the
location of the activation module 124 at the routing network
110. In an alternative embodiment, the client 114 obtains the
activation module 124 from the server 112 or another source.

US 8,407,722 B2
11

The activation module 124 preferably contains JAVAR)
instructions for execution by the JVM 122. However, alter
native embodiments of the module 124 may encode the
instructions in the web page 118 and/or the activation module
124 using different languages and/or techniques. For
example, the instructions and/or activation module 124 can be
embedded in the web browser 120 or operating system, either
as native code or as plug-ins. In these alternative embodi
ments, the web browser 120 does not have to download the
activation module 124 from an external source.
The activation module 124 preferably registers object IDs

from the web page 118 downloaded by the client 114 with the
routing network 110 and updates the live objects in response
to update messages received from the network. The routing
network 110 records the registrations in the registry 125. The
client's registrations preferably remain in effect as long as the
client is displaying the associated web page 118, although
other embodiments of the system 100 may use different cri
teria for determining when to terminate the client's registra
tions.

FIG. 2 is an interaction diagram illustrating interactions
among the server 112, information provider 108/dynamic
content provider 116 (generically referred to as an “input
source 210'), client 114, and the routing network 110 to
update a property of a live object. Initially, the client 114
sends 212 a web page request to the server 112. In response,
the server 112 provides 214 to the client 114 the web page
containing or otherwise identifying the one or more live
objects. Instructions encoded in the web page preferably
cause the client 114 to transparently request 216 the activa
tion module 124 from the routing network 110. In response,
the routing network 110 sends 218 the activation module 124.
The client 114 executes 220 the activation module 124, which
identifies the object IDs of the live objects at the client and
registers 222 the objectIDs with the routing network 110. The
routing network 110 updates 223 its registry to identify the
object IDs for which the client 114 has registered.

At some point, the input source 210 sends 224 an update
message to the routing network 110 in order to change a
property of a live object at the client 114. In one embodiment,
the message from the input source 210 to the routing network
110 contains only a single object ID and an update to a
property of the identified object. In another embodiment, the
message contains multiple object IDs and the corresponding
property updates. In this latter embodiment, the message may
have an associated “Batch ID' that identifies the message as
having multiple objectIDs and updates. Preferably, the infor
mation provider 108 can include a batch ID in a web page 118
in the same manner as including an object ID. Likewise, the
client 114 can preferably register for a batch ID with the
routing network 110 in the same manner as an object ID. In
fact, the batch ID can be the same as the object ID so that the
client 114 registers for both batch and non-batch messages by
registering one ID. Alternatively, separate procedures can be
established for registering batch messages. The client 114
preferably processes the component messages of a batch as if
each message were delivered separately.
The routing network 110, in turn, routes 226 the message to

each client 114 that has registered for the specified objectID,
preferably by utilizing standard Internet communications
protocols, such as IP addresses, etc. The activation module
124 at the client 114 processes the message and updates 228
the property of the identified live object. If live objects having
the same object ID appear in multiple locations at the client
114 (e.g., at multiple locations on a web page being displayed
at the client), the activation module 124 preferably updates
each of the live objects having the specified ID. As a result, the

10

15

25

30

35

40

45

50

55

60

65

12
routing network 110 allows live objects at the client 114 to be
dynamically updated. Preferably, this routing and updating
happens quickly enough to be considered “real-time' for the
purposes of the input source 210.

This update process, indicated within the dashed box 230
in FIG.2, can repeat an indefinite number of times and is fully
asynchronous as to the information provider 210 and client
114. For example, the input source 210 may send regular
update messages to the routing network 110 as the score of a
sporting event changes or a stock price fluctuates, but may
stop sending update messages once the sporting eventends or
stock market closes. When the client 114 ends the display of
a web page containing the live object, or otherwise no longer
desires to receive update messages, the client preferably
closes 232 the connection with the routing network 110. The
routing network 110, in turn, updates 234 the registry 125 to
remove the clients object registrations. In another embodi
ment, the client 114 sends messages to the routing network
110 that selectively register and/or de-register the client from
one or more objects yet leaves the connection open in order to
receive update messages pertaining to other objects.

FIG. 3 is a high-level diagram graphically indicating the
many-to-many mapping performed by the routing network
110. Multiple input sources (labeled 210A-C) send update
messages to the routing network 110. Each update message
preferably specifies at least one object ID and an update to a
property of the identified object. The routing network 110, in
turn, selectively routes the update messages to the clients 114
that have registered for the given object ID from the given
input source 210. In FIG. 3, assume for example that clients
312A and 312Bhave registered for a given objectID while the
other clients have not registered for the object ID. Accord
ingly, the routing network 110 routes the update message to
clients 3 12A and 312B, but does not route the message to
clients 312C-312H.

FIG. 4 illustrates an example of the capabilities of the
dynamic content routing network 110. FIG. 4 illustrates two
different web pages 410, 412 containing sports scores.
Although the web pages are formatted differently, each page
contains the same scores for two professional football games
and two professional baseball games. Web page 410 contains
all four games under the heading “Local Sports Scores' while
web page 412 contains the baseball games under the heading
“Baseball Scores” and the football games under the heading
“Football Scores.

There are various ways to internally represent the games
and scores in the web pages using live objects. In one embodi
ment, a “game'' object is defined having properties for the two
teams involved in the game and the score associated with each
team. The game object is placed at a selected position in the
web page and the properties of the object cause the informa
tion about the game to be displayed on the page. In another
embodiment, “team' and “score objects are defined, with the
team object having a property defining the name of a team and
the score object having a property defining a score. In this
second embodiment, the team and score objects are placed at
selected locations on the page so that the proper teams and
scores are aligned when the page is rendered. In yet another
embodiment, an object is defined having properties for the
name of one team and a score associated with that team. Then,
pairs of the objects are placed in the page in the proper
alignment to indicate the games and scores. In another
embodiment, an object is defined having properties specify
ing names of two teams and a separate object is defined
having properties specifying two scores. In this last embodi
ment, the two objects are placed in the page so that the names

US 8,407,722 B2
13

of the teams align with the associated scores. Obviously,
additional variations of these representations are possible.
Assume for the example of FIG. 4 that the names of teams

in a game are specified by a “names' object having properties
for the two team names and the scores in the game are speci
fied by a “scores' object having properties for two scores. In
web page 410, a names object 414 having properties set to
identify the “SF 49ers' and the “STL Rams' is located
directly under the “Local Sports Scores' heading. A scores
object 416 having a property set to identify the score of the
game as “42 to “7” is directly to the right of the names object
414. In web page 412, the properties of the second names
object 418 identify the same game using slightly different
terminology: "SF and “STL. However, this names object
418 is aligned with the same scores object 416 as is utilized in
web page 410.

Thus, the same scores object 416 is utilized in different
positions in each web page 410, 412. In order to update the
score of the San Francisco 49ers vs. St. Louis Rams football
game on both web pages, the input source 210 simply sends
an update message to the routing network 110 specifying the
objectID for the scores object 416 and the update to the score
property. The routing network 110 routes the update message
to the appropriate clients 114, and the clients update the
appropriate score regardless of the particular page layout.
The input source 210, i.e., the information provider 108

and/or dynamic content provider 116 can use a variety of
tools to generate the update messages. FIG. 5 is a block
diagram illustrating an input source 210 and the tools avail
able to it for generating the update messages. Other tools can
be utilized in addition to or instead of the ones described
herein.

Preferably, the tools allow the inputsource 210 to access an
application programming interface (API) provided by the
routing network 110 for accepting messages. In one embodi
ment, the messages sent by the input source 210 are in the
same format as utilized by the activation module 124 at the
client 114. In an alternative embodiment, the messages pro
vided to the routing network 110 are in a different format and
the routing network translates the messages into the format
utilized by the activation module 124.

In one embodiment, the input source 210 utilizes a data
pump module 510 to access the API. The data pump module
510 reads an extensible markup language (XML) file contain
ing one or more object IDs and the new values for the iden
tified objects at regular intervals and automatically generates
API calls that send messages representing changes to object
properties to the routing network 110. In another embodi
ment, the data pump module 510 is event-driven and reads the
XML file in response to a change in the file or some other
OCCUCC.

In another embodiment, the input source 210 utilizes a
director console module 512 to access the API. Preferably, the
director console module 512 presents an administrator with a
graphical interface displaying the contents of the web page
118. For example, the administrator may use the director
console 512 to edit textual data, images, and/or any objects or
properties of objects on the web page. After editing, the
administrator uses a “send update' button or similar tech
nique to cause the director console module 512 to send mes
sages for the changed objects and properties to the routing
network 110 via the API.

In another embodiment, the information provider 108 and
dynamic content provider 116 work together as the input
Source 210 by using a content management system module
514 to access the API. Preferably, the content management
system module 514 resides at the information provider 108

5

10

15

25

30

35

40

45

50

55

60

65

14
and receives object property updates from the dynamic con
tent provider 116. The content management system module
514 preferably updates the properties of the live objects in the
web page 118 stored at the server 112 and also sends mes
sages for the changed properties to the routing network 110.
In this manner, the web page 118 at the server 112 and the web
page displayed at the client 114 are updated almost simulta
neously. In one embodiment, the dynamic content provider
116 sends the update messages to the routing network 110
instead of to the information provider 108. Embodiments of
the system 100 can also utilize any combination of the content
management techniques described herein.

For example, the tools described above can generate a
message having the following code for updating the text
displayed by a score object to “2:

LiveObject score-new LiveObject(“BangShomeScor
eID);

score...setProperty(“innerText”, “2).
This code sets the innerText property of the object having
object ID “BangShomeScoreID” to “2.” The tools use the API
to pass this message to the routing network 110.

Turning now to the actions performed at the client 114,
FIG. 6 is a flow chart illustrating the steps performed by an
embodiment of the activation module 124. Those of skill in
the art will recognize that different embodiments may per
form the steps of FIG. 6 in different orders. The activation
module 124 generally performs three functions: register
object IDs with the routing network 110, handle messages
received by the client 114 from the network in order to update
the properties of live objects, and control communications
between the client and the network.

In order to register object IDs, the activation module 124
preferably parses 610 the web page 118 received from the
server 112 and identifies the objectIDs of the live objects. In
an alternative embodiment, the activation module 124 iden
tifies only a subset of the objectIDs, such as the IDs of only
live objects that are currently being displayed by the web
browser 120. Alternatively, a list of object IDs may be pre
encoded in the web page in addition to the objects themselves,
thereby enabling easy identification by the activation module
124. In yet another embodiment, a user of the client 114
selects the object IDs to register.
The activation module 124 preferably opens 612 a connec

tion between the client 114 and the routing network 110. The
activation module 124 can open 612 this connection before or
after the activation module receives and/or parses the web
page 118. In some cases, the client 114 is located behind a
firewall that puts a restriction on the types of connection
requests the client can make. A firewall might, for example,
block all non-HTTP traffic. For this reason, the activation
module 124 preferably wraps the connection request in an
HTTP header in order to get the request to the routing network
110 through the firewall.
The activation module 124 uses the connection between

the client 114 and routing network 110 to register 614 the
object IDs by communicating to the routing network 116 a
vector (e.g., a list or array) containing the identified object
IDs. In order to accomplish this task through the firewall, the
activation module 124 preferably puts the vector into a string,
referred to as “object data.” and then preferably creates an
HTTP message to communicate the object data to the routing
network 110. A schematic example is as follows:

POSTAHTTP/1.\ran
Content-Length: <length of object datad\r\n
\rn
<object datad

US 8,407,722 B2
15

where <object data is the object ID list. When the routing
network 110 receives such an HTTP request, it extracts the
object data and updates the registry 125 to indicate that the
client 114 has registered for the identified objects.

If the web browser 120 loads 616 a new page, or otherwise
terminates display of the objects on the initial page, the acti
vation module 124 associated with the initial web page pref
erably terminates 618 the client’s connection with the routing
network 110. Those of skill in the art will recognize that this
termination 618 can occur asynchronously with the other
steps illustrated in FIG. 6. Thus, the location of steps 616 and
618 represents only one possible place in the sequence of
steps where the termination may occur.

If the connection is not terminated, the activation module
124 preferably waits until it receives 618 a message from the
routing network 110 specifying an object ID and an update to
a property of the identified object. In one embodiment, this
message is received as HTTP data. Upon receipt of the mes
sage, the activation module 124 preferably extracts 620 the
object ID and update from the HTTP data. Then, the activa
tion module 124 updates 622 the property of the identified
object, or causes the object to be updated, as specified by the
message.
The sequence of receiving messages 618, extracting data

620, and updating objects 622 is preferably repeated until a
new page is loaded 616 or the connection with the routing
network 110 is otherwise terminated. Although not shown in
FIG. 6, in certain circumstances, such as when a user action
with respect to the web page 118 activates a new live object,
the activation module 124 may register new object IDs with
the routing network 110 without first downloading and pars
ing a new page. In one embodiment, if the newly-loaded page
contains live objects, then the process of downloading the
activation module 124 and updating the objects as described
by FIG. 6 is repeated. In an alternative embodiment, the
activation module 124 remains active at the client 114 and,
therefore, the client does not re-download the activation mod
ule from the routing network 110. Instead, the already
present activation module 124 performs the live-enabling
process on the new page.

FIG. 7 is a block diagram illustrating a lower-level view of
the routing network 110 according to one embodiment of the
present invention. FIG. 7 illustrates multiple input sources
(labeled 710A-D) representative of sources providing mes
sages to the routing network 110. Such as an information
provider 710A and a dynamic content provider 710B. FIG.7
also illustrates multiple clients (labeled 712A-F) representa
tive of the many clients in communication with the routing
network 110 at any given instant.

Internally, the routing network 110 is preferably divided
into one or more clusters 714. In FIG. 7, the routing network
110 has three clusters 714A, 714B, 714C, although the num
ber of clusters can vary depending upon the processing needs
of the network. An input-side global load balancer 716 pref
erably routes messages from the input sources 710 to the
clusters 714. Similarly, a client-side global load balancer 718
preferably routes connection requests from the clients 712 to
the clusters 714. The load balancers 716, 718 are designed to
ensure that load is distributed among the clusters 714 accord
ing to a predetermined heuristic. For example, the load may
be distributed evenly among the clusters 714 or a more pow
erful cluster may be distributed a majority of the load. In one
embodiment, one load balancer performs the functions of the
input-side 716 and client-side 718 load balancers and utilizes
conventional Domain Name System-(DNS-) based load bal
ancing.

10

15

25

30

35

40

45

50

55

60

65

16
Each cluster 714, of which cluster 714A is representative,

preferably contains an input-side cluster load balancer 720A
and a client-side cluster load balancer 722A. The cluster load
balancers 720A, 722A function similarly to the correspond
ing global load balancers 716, 718 in that the input-side
cluster load balancer 720A balances and routes incoming
messages among one or more gateways 724A and the client
side clusterloadbalancer 722A balances and routes incoming
connection requests among one or more nodes 726A and
application servers 728A. The gateways 724A are connected
to the nodes 726A. In one embodiment every gateway 724A
is connected to every node 726A and in another embodiment
certain gateways are connected to only certain nodes.

Preferably, the routing network 110 utilizes conventional
single-processor computer systems executing the Linux oper
ating system (OS). Preferably, each component of the routing
network 110 is implemented by a separate, dedicated com
puter system in order to enable the separate optimization of
the components. The input/output (I/O) functionality of the
OS is preferably enhanced through the use of a non-blocking
OS package such as NBIO available from the University of
California, Berkeley, Calif. Based on the assumption that
connections with the nodes 728 are long-lived, the OS is
preferably configured to not allocate resources toward moni
toring idle connections. Instead, the well-known/dev/poll
patch is preferably applied to the OS in order to provide
advanced socket polling capabilities.

Those skilled in the art will recognize that there are many
ways to use the functionality of the routing network 110 to
route update messages to clients 710. For example, in one
embodiment, every message is distributed to every node 726.
In another embodiment, the routing network 110 selectively
sends messages to the nodes 726 in the routing network 110.
Selectively sending messages to the nodes in the routing
network presents at least the two difficulties. First, for a given
message, a decision needs to be made as to which nodes
should receive it. Second, a client must receive all messages
in which it is interested. There are at least two approaches
meeting these difficulties. The first approach uses a hierarchy
of registries at the gateways and nodes to respectively keep
track which messages to send to the nodes and clients. The
Second approach assigns messages to one or more categories,
assigns nodes to one or more types, and maintains mappings
between categories and types. This latter approach also uses
client proxies to allow clients 712 to communicate with mul
tiple nodes of different types.

FIG. 7 illustrates the embodiment using the hierarchy of
registries. A node 726 registers with each gateway 724 in all
of the clusters and indicates which messages it needs and the
clients do the same with the nodes. Each gateway 724 pref
erably maintains a registry 734 containing the object IDs
registered by the nodes 726 connected to the gateway 724. In
one embodiment, the gateway registry 734 associates each
objectID with a linked list containing one entry for each node
726 that has registered for that object ID. In another embodi
ment, the gateway registry 734 is a hash table containing the
object ID registered by the nodes 726 connected to the gate
way 724. A node 726 preferably maintains a node registry 732
containing the objectIDs registered by clients 712 connected
to the node. The gateways 724 in each cluster 714 receive the
messages from the input sources 710 and direct the messages
to the appropriate node or nodes 726. The nodes 726 prefer
ably transmit messages received from the gateways 724 to the
clients 712 that have registered in the objectIDs identified by
the messages.

In one embodiment, the node registry 732 associates each
object ID with a linked list containing one entry for each

US 8,407,722 B2
17

client 712 that has registered for that object ID. In another
embodiment, the node registry 732 is a hash table containing
the object ID registered by the clients 712 connected to the
nodes 726. Each entry in the linked list or hash table prefer
ably contains a pointerto a socket representing the connection
to the corresponding client 712. As is known in the art, the
pointer to the socket, typically called a “file descriptor, rep
resents an address to which the node can write in order to send
the message to the corresponding client. Gateways 724 can
also use file descriptors in this manner to store node
addresses. Alternative embodiments of the present invention
utilize other data structures in addition to, or instead of the
hash table and linked list, and/or may utilize different data
within the data structures.

Preferably, the node 726 adds an entry to its registry 732
every time a client 712 registers an interest in an object and
deletes the corresponding entry from the registry when the
client 712 disconnects from the node or otherwise indicates
that it is no longer interested in a particular object. If the node
726 determines that the client 712 registered for an object ID
that was not previously registered on that node, the node
preferably registers that object ID with the gateways 724 to
which it is connected. Similarly, if the node 726 determines
that the client 712 deregistered an object ID for which it was
the last interested client, the node 726 deregisters that object
ID with the gateways 724 to which it is connected. The
gateways 724 update their registries 734 in response to the
communication from the node 726.

In alternative embodiments of the present invention, when
the client 712 disconnects from the node 726 or otherwise
indicates that it is no longer interested in a particular object,
the node 726 waits for a period of time or until some event
occurs before deregistering the object ID with the gateway
724. For example, the node 726 could wait until it receives a
message associated with that object ID to do the deregistra
tion. Alternatively, the wait time can be fixed, random, or
based on the frequency of registrations for that objectID, or
registrations for the same inputsource 710 as the object being
deregistered. This latter approach keeps the object IDs from
more frequently used inputsources 710 registered for a longer
period of time. This waiting advantageously reduces the num
ber of registration changes required between nodes and gate
ways in cases where it is likely that another client will soon
register for the same object ID.

Since a gateway 724 does not control the rate at which it
receives messages from input sources 710, it is possible for
the gateway to receive messages faster than it can process
them (i.e., send the messages to the nodes). Therefore, each
gateway 724 preferably maintains a queue 730 of messages
that have been received but not yet processed in order to avoid
losing messages. In one embodiment, the gateway 724 drops
messages if the queue 730 becomes too long. In another
embodiment, the gateway 724 utilizes priorities assigned to
certain messages or input sources to determine which mes
Sages to drop.
The application server 728 within each node 714 prefer

ably serves the activation module 124 to the clients 712 in
response to client requests. In addition, the application server
728 serves any other modules that may be required or desired
to support the environment 100. In an alternative embodiment
of the routing network, a single application server 728 fulfills
all of the client requests. This application server 728 may be
within a certain cluster 714 or independent of the clusters.
However, this single-application-server embodiment is less
desirable because it lacks redundancy.

FIG. 8 is a flow chart illustrating steps performed by a
gateway 724 and a node 726 in a cluster 714 to perform

5

10

15

25

30

35

40

45

50

55

60

65

18
object-based routing of a message received from an input
source 710 in the embodiment using a hierarchy of registries.
Initially, the gateway 724 receives 810 the message from the
input source 710. The gateway 724 extracts 820 the object ID
from the message. The gateway 724 examines its registry 734
to determine the nodes 726 that have registered in the object
ID. The gateway 724 transmits 840 the message to each of the
registered nodes 726. Each node 726 that receives the mes
sage uses its registry 732 to determine 850 which clients 712
have registered for the message. Each node 726 then forwards
860 the message to the registered clients 712.
Adding node functionality to the gateway and client func

tionality to the node advantageously allows the routing net
work 110 to solve the difficulties identified above. For
example, it allows the routing network 110 to decide which
nodes should receive an updated message. As a result, mes
sages are sent to only nodes that have registered for the
message. Further, no matter which node a client connects to,
that node will receive all messages that the client wants. One
skilled in the art would understand that while the present
invention allows registration at both a gateway level and node
level, registration could be extended to any number of levels.

In the second approach for meeting the difficulties
described above, all messages in the routing network 110 are
assigned to one or more of N categories, and all of the nodes
are assigned to one or more of M types. Mappings are created
that specify which categories of messages are forwarded to
which types of nodes. The mappings allow control over the
amount of traffic processed by the nodes.

FIG. 9 is a block diagram illustrating a high-level view of
the routing network 110 of FIG. 7 in an embodiment adapted
to use the approach having message categories and node
types. Although FIG. 9 illustrates only two node types—
nodes of type 1726 and nodes of type 2726 for purposes of
simplicity, this embodiment of the network 110 can have any
number of node types. FIG. 9 also illustrates a client proxy
740 for reasons described below. However, an embodiment of
the present invention using message categories and node
types does not necessarily utilize a client proxy 740.

There are many different possible mappings between mes
sage categories and node types. In the simple case, there is
one-to-one mapping between message categories and node
types. For example, if the message is of category 1, it is
forwarded to the nodes of type 1. In more complicated map
pings, messages of one category are mapped to nodes of
multiple types. For example, messages of category 1 are
mapped to nodes of types 1, 2, and 3, whereas messages of
category 2 are mapped to nodes of types 2, 3 and 4. In short,
any possible mapping of message categories to node types is
possible and the number of message categories, N, does not
have to be the same as the number of node types, M.

There are multiple ways to assign the messages into cat
egories. One way is to assign all messages from a given input
Source 710 into a certain category. Another way is to explic
itly specify the category in the object ID for the message. Yet
another way is to utilize a hashing function or lookup table to
partition messages into categories based on object IDs or
other values. For example, in one embodiment a hash func
tion is applied to the object ID to generate an integer between
1 and N, and this integer is the message category.
Nodes are preferably assigned to types based on informa

tion stored in the gateways 724. In one embodiment, each
gateway 724 holds a lookup table or other data structure that
specifies the types to which each node is assigned. The lookup
table also preferably stores the mappings between message
categories and node types. When a gateway 724 receives a
message from an input source, the gateway preferably deter

US 8,407,722 B2
19

mines the category of the message using one of the techniques
described above. Then, the gateway 724 determines the node
type (or types) to which the message category maps, and
determines which nodes are of the given type. The gateway
724 routes the message to the appropriate nodes.

In one embodiment, the gateway 724 uses a combination of
multiple techniques to determine the message categories,
node types, and/or mappings. For example, a lookup table can
be used to encode a priori knowledge about categories, types,
and/or mappings and a hash table can be used to route mes
sages for which there is no a priori knowledge. Continuing
this example, assume that certain messages are assigned to a
given category based on a table lookup, while other messages
are assigned to categories based on a hashing function. In this
example, the gateway 724 looks up the object ID (or other
information, Such as an input source ID) of an arriving mes
sage in a lookup table to determine if it has a specified cat
egory. If the object ID is stored in the lookup table, the
gateway 724 determines the mappings for the category and
routes the messages to the nodes of the appropriate types. If
the objectID is not stored in the lookup table, the gateway 724
utilizes a hash function on the objectID (or other information)
to determine the message category.

Message categorization advantageously allows the routing
network 110 to decide which nodes get which messages.
However, message categorization does not ensure that clients
712 have access to the messages they need. Assume a client
712 connects to a node of type 1 and the client 712 wants to
receive messages of category3. If there is a simple one-to-one
mapping of message categories to node types, nodes of type 1
will never receive messages of category 3, and neither will the
client 712. To ensure that clients have access to the messages
they need, the embodiment shown in FIG.9 uses client prox
ies to allow clients 712 to communicate with multiple nodes
of different types. As shown in FIG.9, the clients 712 connect
to a client proxy 740 instead of the nodes 726. Each client
proxy 740 is connected to at least one node of each type. For
example, as shown in FIG.9, the client proxy 740 connects to
a node of type 1726 and a node of type 2726.

There are at least two ways to implement the embodiment
that uses client proxies to ensure that clients connect to mul
tiple nodes of different types. The implementations vary pri
marily in where the client registration information is stored.
In the first variation, client registration information is stored
at the nodes, and the client proxy is adapted to simply pass
update messages and registration information among the cli
ents and nodes. In the second variation, the client proxy 740
is responsible for keeping track of client registrations.

FIG. 9 illustrates the variation where the nodes store the
client registration information, and the client proxy 740 is
adapted to pass messages and registration information among
the clients and nodes. When a client sends registration infor
mation to the client proxy 740, the client proxy passes it to the
appropriate node or nodes. In one embodiment, the client
proxy 740 sends client registration information to at least one
node of every type, and the nodes ignore irrelevant registra
tion information (e.g., registrations for messages of catego
ries not handled by the node). In another embodiment, the
client proxy 740 itself analyzes the registrations, and passes
only registrations relevant for a given node type to a node of
that type. In a third embodiment, the client contains function
ality for determining which node types handle which regis
tration requests, and the client tells the proxy 740 to which
node types to pass the registration information.
The client proxy 740 preferably stores an identifier of its

connection to each client 712. Such as a pointer to the socket
for the client connection, and sends this identifier to the nodes

10

15

25

30

35

40

45

50

55

60

65

20
along with the registration information. Each node 726, in
turn, maintains a registry 732 storing the relevant registration
information it receives from the client proxy 740. Preferably,
at most one node of each type will contain registration infor
mation for a given client for messages of a category mapped
to the node type. In addition, a node preferably does not store
registration information for messages of categories not
mapped to its node type.
The registry 732 for each node 726 preferably indicates the

object IDs registered by the clients, the client proxy 740 to
which the client is connected (e.g., a pointer to the Socket at
the node to which the client proxy is connected), and the
identifier indicating the client's connection to the client proxy
(e.g., the pointer to the Socket at the client proxy to which the
client is connected). When the node 726 receives an update
message, it uses the registry to identify the clients to which it
should forward the message, the client proxies to which the
clients are connected, and the specific connections between
the client proxies and the clients. The node routes the update
message to the identified client proxies and includes the iden
tifier (e.g., the pointer to the client socket) telling the client
proxy where to send the update message. When the client
proxy 740 receives the update message, it uses the identifierto
send the message to the client or clients.

In one embodiment, the node registry 732 contains, for
each objectID, a list with one entry for each client registered
for that ID. Each entry contains a (name of client proxy, name
of client) pair where each “name is a socket identifier or
some other information for identifying how to route the mes
sage to the named entity. In another embodiment, the registry
732 is adapted to more efficiently handle the case where
multiple clients at a given client proxy are registered for the
same object ID by placing a list of clients registered for the
objectID in each entry. Thus, each entry in the list for a given
object ID contains a (name of client proxy, list of names of
clients on that proxy) pair. When a message having a particu
lar object ID arrives at the node, the node walks down the
corresponding entries in the registry for that ID, pushing one
copy of the message to each listed client proxy. Along with the
message, the node includes the list of clients on that proxy
(e.g., a list of pointers to sockets for the clients) who have
registered for the object ID. When the client proxy receives
the message and the list, it simply pushes a copy of the
message to each client.
The approach using the pass-through client proxy 740

described above is advantageous because it reduces memory
loads because the client proxy stores only minimal state, and
each node has a restricted list of object IDs for which it is
responsible. It also expedites message routing because the
client proxy does very little processing to forward a message.
Plus, this approach separates different potential stress points
in the network into different components, allowing the net
work to be tuned to provide good performance. In particular,
the nodes handle a large amount of data and store a large
amount of state, but do not have to hold open a large number
of connections. The client proxies do not store a large amount
of data or state, but hold open a large number of connections
to the clients. In different embodiments, the ratios of nodes to
client proxies can be varied to match the network to its
requirements.

In the second variation of client proxies, the client proxy
740 stores client registration information. FIG. 11 illustrates
a high-level diagram of the routing network 110 in which the
client proxy 740 stores the client registration information. In
this embodiment, the node registry 732 stores the object IDs
registered by client proxies 740 connected to the node. Each
client proxy 740 preferably maintains a client proxy registry

US 8,407,722 B2
21

736 containing the object IDs registered by clients 712 con
nected to the client proxy 740. The client proxy 740 registers
with the nodes for all objects for which it needs to receive
updates. Thus, this variation is similar to the hierarchical
registry embodiment described above.
An alternative to maintaining a separate client proxy as

described above is to have the nodes themselves provide the
client proxy functionality. In this alternative, clients connect
to a node of a first type. When a client registers for messages
of a category not handled by the node, the node passes the
registration to a node of the appropriate type along with an
identifier of the client connection. In this case, the node con
nected to the client adopts the functionality of the pass
through client proxy. The node can also adopt the function
ality of the client proxy that stores client registration
information, thereby creating a hierarchy of registrations
among the nodes themselves.

FIG. 12 is a high-level block diagram of the routing net
work 110 of the embodiment in which the nodes themselves
adopt client proxy functionality. There are at least two ways to
implement this embodiment. In one implementation there is a
preferred node type, Such as node of type 3, that always serves
as a client proxy. This node type may be designated to handle
the most common categories of messages. As a result, the
client proxy functionality would be utilized very rarely. As
shown in FIG. 12, client 1712 and client 2712 are connected
to the node of type 3 726, which in turn is connected to a node
of type 1726 and a node of type 2726.

In another implementation, instead of having one preferred
node type that always serves as a client proxy, each node type
can serve as a node and as a client proxy. For example, when
a client 712 connects to a node 726, it passes the node all of
the object IDs the client wishes to register. For object IDs of
message categories handled by that node, the node stores the
registrations in its registry. For object IDs of messages in
other categories, the node acts as a client proxy and passes the
registration requests to nodes of the appropriate types. This
implementation can be made more efficient by providing
functionality in the activation module for identifying the most
common categories of messages sought by the client, and
causing the client to connect to a node of a type that receives
those categories of messages.
An alternative to connecting clients 712 to nodes 726 using

a client proxy 740 is having a client 712 maintain multiple
connections to the routing network 110. This can be accom
plished, for example, by attaching message-categorization
functionality to the activation module 124. The activation
module 124 preferably determines which categories of mes
sages it needs and to which nodes types it should connect. The
activation module 124 then makes a connection to one node of
each relevant type and registers the appropriate object IDs
with the appropriate nodes.
An alternative to using client proxies is to allow clients to

register for only categories of messages handled by one type
of node. For example, if each node type handles messages
from only one inputsource, each client 712 can be required to
register for messages from only one input source. This can be
done, for example, by configuring the load balancer 718 to
ensure that clients registering for messages from one input
Source connect to a node of the type that receives messages
from that input source.

FIG. 10 is a flow chart illustrating steps performed by a
gateway 724, a node 726 that stores client registration infor
mation, and a pass-through client proxy 740 to perform
object-based routing of a message received from an input
source 710. Initially, the gateway 724 receives 1010 the mes
sage from an input source 710. The gateway 724 determines

10

15

25

30

35

40

45

50

55

60

65

22
1020 to which category the message belongs using one or
more of the techniques described above. After the gateway
724 has determined to which category the message belongs,
the gateway 724 identifies 1030 node types to which the
message category is mapped and routes 1040 the message to
the nodes of those types. Each node 726 that receives the
message extracts 1050 the object ID from the message. Each
node 726 examines its registry 732 to determine which clients
have registered for the message, the client proxies to which
the clients are connected, and the connections between the
client proxies and the clients. Each node 726 then forwards
1060 the message to the identified client proxies 740 along
with the identifiers for the client connections (e.g., the client
socket or a list of client sockets). When a client proxy 740
receives the message from a node 726, it pushes 1070 the
message to the identified client Socket or Sockets.
The above description is included to illustrate the operation

of the preferred embodiments and is not meant to limit the
scope of the invention. The scope of the invention is to be
limited only by the following claims. From the above discus
Sion, many variations will be apparent to one skilled in the
relevant art that would yet be encompassed by the spirit and
Scope of the invention. For example, the invention may be
implemented using a tangible computer-readable medium
having stored thereon computer-executable instructions.
The invention claimed is:
1. A method comprising:
receiving, using a processing device, an update message

from an input source, the update message identifying a
live object and containing data for updating a property of
the live object;

identifying a category of the update message based on the
input source:

determining a node having a node type to which the update
message is to be routed based on a mapping of categories
of update messages to node types, the mapping control
ling an amount of update message traffic through nodes
of a routing network;

routing, using the processing device, the update message to
the node having the determined node type;

causing the node, through the update message, to deter
mine a client, different from the input source, that has
registered for updates of the live object;
causing the node to route the update message from the

node to the client; and
causing the client to process the update message and to

update the property of the lire object.
2. The method of claim 1, further comprising:
causing the node to extract an object identifier (ID) from

the update message, to establish a connection with the
client, and to determine if the client has registered for
updates of the live object based on the object ID.

3. The method of claim 2, further comprising:
causing the node to determine at least one client proxy with

which the client communicates;
causing the node to route the update message to the client

proxy; and
causing the client proxy to route the update message to the

client to determine the connection.
4. The method of claim 3, further comprising causing the

node to maintain client registration information concerning
the client connection.

5. The method of claim 3, further comprising causing the
node to maintain client registration information concerning
the client connection at the client proxy.

6. The method of claim 1, wherein the property of the live
object has a direct effect on a visual representation of the live

US 8,407,722 B2
23

object in a data representation, has an effect on an internal
aspect of the live object and has no effect on the visual
representation of the live object in the data representation, or
has a direct effect on one aspect of the visual representation of
the live object in the data representation and has no effect on
other aspect of the visual representation of the live object in
the data representation.

7. A routing network comprising:
a gateway device configured to:
receive an update message from an input source, the update

message identifying a live object and containing data for
updating a property of the live object,
identify a category of the update message based on the

input source;
determine a node having a node type to which the update

message is to be routed based on a mapping of a
categories of update messages to node types, the map
ping controlling an amount of update message traffic
through nodes of a routing network; and route the
update message; and

the node configured to:
receive the update message from the gateway device,

wherein the node is configured to be mapped to the
node type,

determine a client, different from the input source, that
has registered for updates of the live object, and

route the update message from the node to the client,
wherein the client is adapted to process the update
message and to update the property of the live object.

8. The routing network of claim 7, wherein the node is
configured to extract an object identifier (ID) from the update
message and to determine a connection to the client to route
the data to the client.

9. The routing network of claim 8, wherein the node is
configured to determine the connection by determining at
least one client proxy with which the client communicates
and to route the update message to the client proxy.

10. The routing network of claim 9, wherein client regis
tration information concerning the client connection is con
figured to be maintained at the node.

11. The routing network of claim 9, wherein client regis
tration information concerning the client connection is con
figured to be maintained at the client proxy.

12. The routing network of claim 7, wherein:
the gateway device is configured to route the update mes

Sage to the node adapted to receive messages of more
than one message category, and

the node is configured to determine a connection with at
least one client proxy with which the client communi
cates and to route the data to the client proxy.

13. The routing network of claim 7, wherein the node type
is configured to identify the node that receives the update
message from the gateway device.

14. A method comprising:
providing, using a processing device of an input source, a

data representation to a client device, different from the
input source, coupled to a routing network, wherein the
data representation includes at least one live object rec
ognizable by the client device, and causing the client
device to respond to the live object of the data represen
tation by determining an object identifier (ID) of the live
object and to register for updates of the live object with
the routing network, Such that registering the client
device with the routing network provides client connec
tion information to a node in the routing network; and

sending, using the processing device of the input source, an
update message to the routing network, wherein the

5

10

15

25

30

35

40

45

50

55

60

65

24
update message identifies the live object and contains
update data that updates a property of the live object,

wherein a gateway device at the routing network is config
ured to identify a category of the update message based
on the input source, to determine a node type to which
the identified category maps, and to route the update
message to the node, having the node type, at the routing
network,

wherein the node is configured to identify the client device
as a registered device and to route the update message to
the client device, and
wherein the client device processes the update message
upon receipt to update the property of the live object at
the client device.

15. The method of claim 14, wherein providing the data
representation to the client device includes providing the live
object that causes the client device to register with a client
proxy of the routing network.

16. The method of claim 14, wherein providing the data
representation to the client device includes providing the live
object that causes the client device to register with the node of
the routing network.

17. The method of claim 14, wherein providing the data
representation to the client device includes providing an acti
vation module that is executed by the client device and that
registers the live object with the routing network.

18. The method of claim 17, wherein providing the activa
tion module includes providing the activation module that is
configured to determine a node type that handles registration
and that causes the client device to register with the node
corresponding to the node type.

19. The method of claim 17, wherein providing the activa
tion module includes providing the activation module that is
configured to determine a message category of the data rep
resentation and that causes the client device to register with a
node having a node type corresponding to the message cat
egory.

20. An apparatus comprising:
an input source device configured to provide a data repre

sentation to a client device, different from the input
Source, coupled to a routing network, wherein the data
representation includes at least one live object that is
recognizable by the client device, and that causes the
client device to determine an object identifier (ID) of the
live object to register for updates of the bye object with
the routing network, Such that registering the client
device with the routing network provides client connec
tion information to the routing network,

wherein the input source device is configured to route an
update message to the routing network, wherein the
update message identifies the live object and contains
update data for updating a property of the live object,

wherein a gateway device at the network is configured to
identify a category of the update message based on the
input source, to determine a node type to which the
identified category maps, and to route the update mes
Sage to a node of the node type at the routing network,
wherein the node is configured to identify the client

device as a registered device and route the update
message containing the update data to the client
device, and

wherein the client device is configured to process the
update message upon receipt to update the property of
the bye object at the client device.

21. The apparatus of claim 20, wherein the live object of the
data representation is configured to cause the client device to
register with a client proxy of the routing network.

US 8,407,722 B2
25

22. The apparatus of claim 20, wherein the live object of the
data representation is configured to cause the client device to
register with the node of the routing network.

23. The apparatus of claim 20, wherein the received data
representation includes an activation module that is config
ured to be executed by the client device and adapted to reg
ister the live object with the routing network.

24. The apparatus of claim 23, wherein the activation mod
ule is configured to determine a node type for handling reg
istration and to cause the client device to register with the
node of the node type.

25. The apparatus of claim 23, wherein the activation mod
ule determines a message category of the data representation
and causes the client device to register with the node having a
node type corresponding to the message category.

26. An article of manufacture including a computer-read
able storage medium having instructions stored thereon,
execution of which by a computing device causes the com
puting device to perform operations comprising:

providing, using a processing device of an input source, a
data representation to a client device, different from the
input source, coupled to a routing network, wherein the
data representation includes at least one live object that
is recognizable by the client device, and that causes the
client device to respond to the live object by determining
an object identifier (ID) of the live object to register for
updates of the live object with the routing network, such
that registering the client device with the routing net
work provides client connection information to the rout
ing network; and

sending, using the processing device of the input source, an
update message to the routing network, wherein the
update message identifies the live object and contains
update data for updating a property of the live object,

wherein a gateway device at the routing network is config
ured to identify a category of the update message based
on the input source, to determine a node type to which
the identified category maps, and to route the update
message to a node of the node type at the routing net
work,

wherein the node is configured to identify the client device
as a registered device and to route the update message to
the client device, and

wherein the client device is configured to process the
update message upon receipt to update the property of
the live object at the client device.

27. The article of manufacture of claim 26, wherein the live
object of the data representation causes the client device to
register with a client proxy of the routing network.

28. The article of manufacture of claim 26, wherein the live
object of the data representation causes the client device to
register with the node of the routing network.

29. The article of manufacture of claim 26, wherein the
received data representation includes an activation module
executed by the client device and adapted to register the live
object with the routing network.

30. The article of manufacture of claim 29, wherein the
activation module determines a node type that handles regis
tration and causes the client device to register with the node of
the node type.

10

15

25

30

35

40

45

50

55

26
31. The article of manufacture of claim 29, wherein the

activation module determines a message category of the data
representation and causes the client device to register with the
node having a node type corresponding to the message cat
egory.

32. A non-transitory computer readable storage medium
having instructions stored thereon, the instructions compris
ing:

instructions for providing a data representation to a client
device coupled to a routing network, wherein the data
representation includes at least one live object recogniz
able by the client device, and wherein the client device is
configured to respond to the live object of the data rep
resentation by determining an object identifier (ID) of
the live object to register for updates of the live object
with the routing network, Such that registering the client
device with the routing, network provides client connec
tion information to the routing network; and

instructions for providing, using a processing device of an
input source, different from the client device, an update
message to the routing network, wherein the update
message identifies the live object and contains update
data for updating a property of the live object,

wherein a gateway device at the routing network is config
ured to identify a category of the update message based
on the input source, to determine a node type to which
the identified category maps, and to route the update
message to a node of the node type at the routing net
work,

wherein the node is configured to identify the client device
as a registered device and to route the update message
containing the update data to the client device, and

wherein the client device is configured to process the
update message upon receipt to update the property of
the live object at the client device.

33. The non-transitory computer readable storage medium
of claim 32, wherein the live object of the data representation
causes the client device to register with a client proxy of the
routing network.

34. The non-transitory computer readable storage medium
of claim 32, wherein the live object of the data representation
causes the client device to register with the node of the routing
network.

35. The non-transitory computer readable storage medium
of claim 32, wherein the data representation includes an acti
vation module that is executed by the client device and that is
adapted to register the live object with the routing network.

36. The non-transitory computer readable storage medium
of claim35, wherein the activation module determines a node
type for handling registration and causes the client device to
register with the node of the node type.

37. The non-transitory computer readable storage medium
of claim 35, wherein the activation module determines a
message category of the data representation and causes the
client device to register with the node having the node type
corresponding to the message category.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,407,722 B2 Page 1 of 1
APPLICATIONNO. : 1 1/39.6251
DATED : March 26, 2013
INVENTOR(S) : Tuttle et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Title Page 2, Item (56), under “OTHER PUBLICATIONS'', in Column 2, Line 3,
delete “Retrived and insert -- Retrieved --, therefor.

On Title Page 3, Item (56), under “OTHER PUBLICATIONS'', in Column 1, Line 12,
delete “Slavak Republic, and insert -- Slovak Republic, --, therefor.

On Title Page 3, Item (56), under “OTHER PUBLICATIONS'', in Column 1, Line 48,
delete “library/default.asp?url=/library/en-us/dndotnet/hmtl/progthrepool. and
insert -- library/default.asp?url=/library/en-us/dndotnet/html/progthrepool. --, therefor.

In the Specifications

In Column 3, Line 24, delete “live: objects and insert -- live objects --, therefor.

In Column 12, Line 7, delete “provider 210’ and insert -- provider 108 --, therefor.

In Column 14, Line 57, delete “network 116 and insert -- network 110--, therefor.

In the Claims

In Column 22, Line 47, in Claim 1, delete “of the lire and insert -- of the live --, therefor.

In Column 24, Line 45, in Claim 20, delete “of the bye' and insert -- of the live --, therefor.

In Column 24, Line 64, in Claim 20, delete “bye object and insert -- live object --, therefor.

In Column 26, Line 17, in Claim 32, delete “routing, network and insert -- routing network --,
therefor.

Signed and Sealed this
Thirteenth Day of May, 2014

74-4-04- 2% 4
Michelle K. Lee

Deputy Director of the United States Patent and Trademark Office

